การบำบัลน้ำเสียจากภัตตาคาร โดยออกซิเดชันเชิง ไฟฟ้าเคมีในกระบวนการต่อเนื่อง

นายทรงศักดิ์ กล่ำคลัง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเคมีเทคนิค ภาควิชาเคมีเทคนิค กณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2549 ISBN 974-14-3476-6 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

RESTAURANT WASTEWATER TREATMENT BY ELECTROCHEMICAL OXIDATION IN CONTINUOUS PROCESS

Mr. Songsak Klamklang

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Chemical Technology Department of Chemical Technology

Faculty of Science
Chulalongkorn University
Academic year 2006
ISBN 974-14-3476-6

Copyright of Chulalongkorn University

Acknowledgements

I would like to express my sincere gratitude and appreciation to Professor Dr. Somsak Damronglerd, Professor Dr. Patrick Duverneuil and Associate Professor Dr. Kejvalee Pruksathorn, for providing me with the insights and guidance to recognize my mistakes and constant encouragement. I would also like to thank them for lending me adequate freedom and flexibility while working on my Ph.D. study.

I would like to thank Professor Dr. Pattarapan Prasassarakich for serving as chairman of the committee and also for some kindness helps during my Ph.D. study. Furthermore, I would like to thank Assistant Professor Dr. Hugues Vergnes and Dr. François Senocq for their keen observations regarding my work and for providing valuable suggests and for their care while I stayed at Toulouse, France. Assistant Professor Dr. Sangobtip Pongstabodee and Dr. Thawach Chatchupong have also been very supportive for my Ph.D. work. I would like to thank them for their guidance and for serving as members of my thesis committee.

I would like to acknowledge the Royal Golden Jubilee Ph.D. Program of the Thailand Research Fund and the Embassy of France in Thailand for the financial support to my Ph.D. work.

I wish to express my grateful appreciation to Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Thailand. I also gratefully thank to Laboratoire de Génie Chimique and Centre Inter-universitaire de Recherche et d'Ingéniérie des Matériaux, Ecole Nationale Supérieure des Ingénieurs en Arts Chimiques et Technologiques, Institut National Polytechnique de Toulouse, France.

A very special thank has expressed to my father, my mother, my family and my friends for their encouragement and love.

Contents

		Page
Absti	ract (in Thai)	ĺν
Absti	ract (in English)	V
Ackn	owledgement	vi
Cont	ents	vii
List o	of Tables	X
	of Figures	xi
Chap	ter 1 General Introduction	1
	Introduction	1
	Objectives	3
	The steps of work	4
	ter 2 Bibliography	5
	Wastewater	5
2.2	Restaurant wastewater	6
2.3	Wastewater treatment process	6
	2.3.1 Physical treatment	7
	2.3.2 Biological treatment	10
	2.3.3 Chemical treatment	11
2.4		14
	2.4.1 Electrocoagulation	14
	2.4.2 Electroflotation	17
	2.4.3 Electrochemical oxidation	18
2.5	Mechanisms of electrochemical oxidation	18
	2.5.1 Electrochemical conversion	21
	2.5.2 Electrochemical combustion	24
	2.5.3 Electrochemical oxidation performance	27
2.6	Electrocatalytic electrodes	33
2.7	The influence of electrode material on process performance	36
2.8	SnO ₂ type dimensionally stable anodes	40
	2.8.1 Preparation of SnO ₂ type dimensionally stable	
	anodes	41
2.9	Chemical vapor deposition	48
	2.9.1 Thermodynamics of chemical vapor deposition	51

	2.9.2	Thermal chemical vapor deposition processes	53
	2.9.3	Metal-organic chemical vapor deposition (MOCVD).	54
	2.9.4	Metal-organic chemical vapor deposition of tin oxide (SnO ₂)	55
	2.9.5	Metal-organic chemical vapor deposition of iridium	
		(Ir) and iridium oxide (IrO ₂)	57
Chap	ter 3 I	Materials and Methods	61
3.1.	Chem	nicals	61
		rate pretreatment	62
		Stainless steel 316L	62
	3.2.2.	Borosilicate glass	62
		Silicone wafer	62
	3.2.4.	Titanium	62
		Tantalum	63
		Tantalum carbide over tantalum	63
3.3.		sition of TiO ₂ by spray coating	63
		sition SnO ₂ by spray pyrolysis	64
		-organic chemical vapor deposition	64
		Choice of precursor	66
		Choice of substrate	66
	3.5.3.	Substrate placement	66
		Deposition condition	67
		Deposition characterization	69
3.6.		ochemical oxidation	69
		Batch electrochemical oxidation	69
		Continuous electrochemical oxidation	71
		Pollutant removal efficiency	73
Chapt	er 4 I	Results and Discussion	74
4.1	Prepa	ration of specific electrodes	74
	4.1.1	Treatment of substrates	74
	4.1.2	Deposition of TiO ₂ by spray coating	77
		Deposition of SnO ₂ by spray pyrolysis	77
		Deposition of IrO ₂ by MOCVD	78
		Deposition of Ir by MOCVD	82
	4.1.6	Deposition of SnO ₂ by MOCVD	87

4.2	Activation of new electrodes	
4.3	Application of SnO ₂ /Ir/Ti specific electrodes in batch	
	process with model solution	10
	4.3.1 Influence of SnO ₂ active film thickness	10
	4.3.2 Kinetic investigation	10
	4.3.3 Influence of current density	10
4.4		
	restaurant wastewater	10
	4.4.1 Characterization of restaurant wastewater	10
	4.4.2 Influence of current density	1
	4.4.3 Influence of residence time	1
	4.4.4 Influence of SnO ₂ active film thickness	1
4.5	Treatment cost analysis of restaurant wastewater treatment	
	by electrochemical oxidation	1
Chap	ter 5 General Conclusion	13
	Electrode preparation	1.
	5.1.1. Deposition of TiO ₂ by spray coating	1.
	5.1.2. Deposition of SnO ₂ by spray pyrolysis	12
	5.1.3. Deposition of IrO ₂ by MOCVD	12
	5.1.4. Deposition of Ir by MOCVD	1.
	5.1.5, Deposition of SnO ₂ by MOCVD	13
5.2.	Application of specific electrodes for actual restaurant	
	wastewater	12
	5.2.1. Application of specific electrodes in batch process	
	with model solution	12
	5.2.2. Kinetic investigation for batch process with model	
	solution	12
	5.2.3. Application of specific electrodes for actual	
	restaurant wastewater	12
Refere	ences	12
	idices	13
App	endix A	13
App	endix B	15
Biogra	aphy	15

List of Tables

Tab	le	Page
2-1	Properties of various organo-tin	56
2-2	Physical properties of iridium CVD precursors	59
3-1	Deposition conditions for IrO ₂ , Ir and SnO ₂	67
3-2	Characteristics of model solution	
3-3	Operating condition for batch electrochemical oxidation of	
	model solution	70
3-4	Operating condition for continuous electrochemical oxidation.	72
4-1	Characterization of wastewater from Chulalongkorn	
	University Student Canteen	109
4-2	Effect of current density on restaurant wastewater treatment	
	cost by electrochemical oxidation	121
4-3		
	cost by electrochemical oxidation	121
4-4	Effect of SnO2 thickness on restaurant wastewater treatment	
	cost by electrochemical oxidation	122
A-1	Sample and reagent quantities for various digestion vessels	140

List of Figures

Figure		Page
2-1	Schematic of electrocoagulation	16
2-2	Electroflotation process	
2-3	Generalized schema of the electrochemical conversion and combustion of organics with simultaneous oxygen	
	evolution	20
2-4	Electrochemical corrosion rate of base metals as a function	
	of H ₂ SO ₄ concentration at anode potential of 2	
	V/SCE	28
2-5	Instantaneous current efficiency of various coating	
	materials	29
2-6	Influence of current density on the degradation rate of	
	phenol	32
2-7	The crystalline structure of SnO ₂	41
2-8	Schematic overview of a medium frequency (MF) powered	
	twin magnetron reactive sputtering system	43
2-9	Cracking of IrO2 layer by sol-gel dip coating technique	45
2-10	Schematic set-up for spray pyrolysis technique	47
2-11	Sequence of gas transport and reaction processes	
	contributing to CVD film growth	50
2-12	Schematic diagram of chemical, transport and geometrical	
	complexities involved in modeling CVD process	51
3-1	MOCVD apparatus	65
3-2	Schematic diagram of silicon wafer and actual substrates	
	placement in MOCVD reactor	68
3-3	Schematic diagram of batch electrochemical oxidation	
	apparatus	71
3-4	Schematic diagram of continuous electrochemical oxidation	
	apparatus	72
3-5	Shimadzu TOC-5050A TOC analyzer	73
4-1	Roughness profile of 24 hr HF etched Ta substrate	75

4-2	Roughness profile of 1 hr hot-HCl etched Ti substrate	75
4-3	Average surface roughness of Ta substrates with various	
	etching time by HF	76
4-4	Scanning electron micrographs of some substrates	76
4-5	Effect of O2/Ir(acac)3 molar ratio on IrO2 film growth rate at	
	400 °C and 25 Torr	79
4-6	X-Ray diffraction of IrO2 coated Si wafer	80
4-7	Cross-sectional and surface microstructure of IrO2 film over	
	Si wafer	81
4-8	Effect of deposition temperature on deposition area of Ir film	
	at 12 Torr and O2/(MeCp)Ir(COD) molar ratio of 1491±89	83
4-9	Effect of deposition temperature on Ir film growth rate at 12	
	Torr and O ₂ /(MeCp)Ir(COD) molar ratio of 1491±89	84
4-10	Effect of oxygen content in feed gas mixture on deposition	
	area of Ir film at 300 °C and 12 Torr	84
4-11	Effect of oxygen molar ratio on Ir film growth rate at 300 °C	
	and 12 Torr	85
4-12	Scanning electron micrographs of Ir film	86
4-13	X-Ray diffraction of Ir coated Ti substrate	86
4-14	Effect of feed gas composition on SnO2 film growth rate at	
	380 °C and 15 Torr	87
4-15	The comparison of SnO2 film thickness at each point in the	
	reactor, when deposition temperature of 380 °C. deposition	
	pressure of 15 Torr and O ₂ /TET molar ratio of 1,200	88
4-16	X-Ray diffraction of SnO ₂ film over Si wafer at 380 °C and	
	15 Torr	89
4-17	Effect of residence time on SnO ₂ film growth rate at 380 °C	
	and 15 Torr	94
4-18	Effect of substrate on SnO ₂ film growth rate at 380 °C and	
4.10	15 Torr	95
4-19	Surface and cross-sectional microstructure of SnO ₂ film over	
1.20	various substrates	96
4-20	Activation of SnO ₂ /Ir/Ti electrode, current density of 10	
	mA/cm ²	98

99	Activation of SnO ₂ /TaC/Ta electrode, current density of 10 mA/cm ²	4-21
100		4-22
101		4-23
102		4-24
103		4-25
. 02	TOC concentration profile of model solution when t ≤2 hr by using of SnO ₂ /Ir/Ti, SnO ₂ thickness of 1.8 micron, electrode surface area of 3.2 cm ² and current density of 5	4-26
104	by using of SnO ₂ /Ir/Ti, SnO ₂ thickness of 1.8 micron, electrode surface area of 3.2 cm ² and current density of 5	4-27
106	mA/cm ² Comparison of experimental data and kinetic model	4-28
106	Effect of current density on TOC removal by using of SnO ₂ /Ir/Ti, SnO ₂ thickness of 1.8 micron and electrode	4-29
107	using of SnO ₂ /Ir/Ti, SnO ₂ thickness of 1.8 micron and	4-30
108	electrode surface area of 3.2 cm ² Effect of current density on TOC removal in continuous restaurant wastewater treatment by using of SnO ₂ /Ir/Ti, SnO ₂ thickness of 1.8 micron and electrode surface area of	4-31
111	3.2 cm ²	

4-32	Effect of current density on TOC removal efficiency in continuous restaurant wastewater treatment by using of SnO ₂ /Ir/Ti, SnO ₂ thickness of 1.8 micron and electrode	
	surface area of 3.2 cm ²	111
4-33	Effect of current density on COD removal in continuous restaurant wastewater treatment by using of SnO ₂ /Ir/Ti, SnO ₂ thickness of 1.8 micron and electrode surface area of	
	3.2 cm ²	112
4-34	Effect of current density on COD removal efficiency in continuous restaurant wastewater treatment by using of SnO ₂ /Ir/Ti, SnO ₂ thickness of 1.8 micron and electrode	
	surface area of 3.2 cm ²	112
4-35	Effect of residence time on TOC removal in continuous restaurant wastewater treatment by using of SnO ₂ /Ir/Ti, SnO ₂ thickness of 1.8 micron, current density 5 mA/cm ² and	
	electrode surface area of 3.2 cm ²	114
4-36	Effect of residence time on TOC removal efficiency in continuous restaurant wastewater treatment by using of SnO ₂ /Ir/Ti, SnO ₂ thickness of 1.8 micron, current density 5 mA/cm ² and electrode curfers are 63.2 m ²	
4-37	mA/cm² and electrode surface area of 3.2 cm² Effect of residence time on COD removal in continuous restaurant wastewater treatment by using of SnO ₂ /Ir/Ti, SnO ₂ thickness of 1.8 micron, current density of 5 mA/cm² and	115
1.20		115
4-38	Effect of residence time on COD removal efficiency in continuous restaurant wastewater treatment by using of SnO ₂ /Ir/Ti, SnO ₂ thickness of 1.8 micron, current density of 5	
1_30	mA/cm² and electrode surface area of 3.2 cm²	116
4-23	Effect of SnO ₂ layer thickness on TOC removal in continuous restaurant wastewater treatment by using of SnO ₂ /Ir/Ti, current density of 5 mA/cm ² and electrode	
	surface area of 3.2 cm ²	117

4-40	Effect of SnO ₂ layer thickness on TOC removal efficiency in	
	continuous restaurant wastewater treatment by using of	
	SnO ₂ /Ir/Ti, current density of 5 mA/cm ² and electrode	
	surface area of 3.2 cm ²	118
4-41	Effect of SnO2 layer thickness on COD removal in	
	continuous restaurant wastewater treatment by using of	
	SnO ₂ /Ir/Ti, current density 5 mA/cm ² and electrode surface	
	area 3.2 cm ²	118
4-42	Effect of SnO2 layer thickness on COD removal efficiency	
	in continuous restaurant wastewater treatment by using of	
	SnO ₂ /Ir/Ti, current density of 5 mA/cm ² and electrode	
	surface area of 3.2 cm ² .	119