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CHAPTER I INTRODUCTION 

 

1.1 Overview 

 

The steel industries such as automotives, electronics and households, which 

utilize steels as a major component for their manufacturing, are constantly in need for 

developing the coating-materials and processings that effectively provide corrosion 

resistance for the steel structures [1-11].  Electrogalvanized coating, also known as 

electrodeposited zinc (EZ), which refers to an application of zinc coatings onto steel 

surfaces via the electrodeposition process, has been employed widely for corrosion 

protection [12-14].  In the process, electrodeposition represents the most advantages, 

including relatively high speed, high purity, and easy to adjust of composition and 

thickness [15, 16].  Nevertheless, thus far, a scientific understanding of the 

relationship between the microstructure and corrosion behaviors of electrodeposited 

zinc has not been fully established.  This is at least partly an issue of scale and 

complexity: zinc coatings have intricate micro/nano-structural features, and are often 

capped with an extremely thin (and difficult to characterize) chromate conversion 

coating (CCC), which require a systematic and comprehensive study with an aid of 

advanced techniques for characterizations [17-19].  Among the relevant structural 

features, surface morphology [20, 21], crystallite size [22-24], and texture [25-30], 

have all been noted to influence corrosion behaviors of galvanized coatings.  

However, detailed analysis of crystallographic structure and nano-structure of 
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passivated electrogalvanized coatings and their influence on corrosion behaviors are 

yet to be carried out. 

Even though EZ has been used extensively, the understanding on the 

relationship between structure and properties were limited.  The challenges of these 

studies are divided into two parts (i) the effects of EZ’s structure on the corrosion 

properties and chromium-trivalence Cr(III) passivation abilities, which were the 

decorative and anti-corrosive layers.  Previously, the studies were obstructed by 

several problems.  For examples, the thickness of the EZ is quite thin, approximately 

5-25 micron [31]; the crystallite size is tiny in the scale of 20-90 nm [32, 33]; the 

surface is easy to oxidize at the normal atmosphere [34, 35].  Also, there were some 

problems in the study on Cr(III) passivation.  For examples, the process is complexly; 

the thickness is in the order of a few nanometer approximately 100-500 nm [36].  (ii) 

The alternative materials for passivation.  There have the needs of the new materials 

that presented the outstanding properties of corrosion resistance.  However, there are 

the needs for more understandings on the process-structure-property relationships in 

the EZ. 

One of the approaches involves introducing a novel type of materials that 

exhibits interesting properties to the coatings.  Recently, graphene, an allotrope of 

carbon, is one-atom-thick planar sheets, which are densely packed in a honeycomb 

crystal lattice [37].  According to its properties: high strength (1TPa) and high 

corrosion resistance, it might be used for the surface coating materials to protect 

corrosion of the based metal [38-41]. 
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The present study employs a suite of several complementary characterization 

techniques to systematically analyze the texture, microstructure, and nano-scale 

features of electrogalvanized coatings and their CCC and graphene-based passivation 

layers, in order to establish a structure-corrosion relationship framework for them.  

Three representative sets of alkaline non-cyanide based galvanized coatings produced 

under different conditions are studied, using field emission scanning electron 

microscopy (FE-SEM), X-ray diffractometry (XRD), focused ion beam (FIB), and 

transmission electron microscopy (TEM).  The corrosion properties of the coatings 

are then evaluated in light of the microstructure analysis, and general principles for 

improved coating performance are identified.  The understanding gained from this 

study should enable the development of enhanced corrosion resistant coatings via 

micro/nano-structural tailoring and engineering. 

 

1.2 Motivation 

 

The motivations of this research are divided into three parts below: 

1. Although, it has several studies on the relationship between structure and 

corrosion properties of electrodeposited zinc (EZ).  But it lacks of study on the 

processing-structure-property relationships in the EZ, with particular emphasis on the 

additive types to affect the crystal structure and corrosion resistance. 

2. There have been studied on the appearances of chromium-trivalence 

(Cr(III)) passivation on the chemical compositions, structures and properties.  But 
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there are fewer studies on the effects of the substrate’s structure; typically the EZ, on 

the formation of Cr(III) passivation because the process is complexly and the 

thickness is in the order of a few nanometer approximately 100-500 nm.  Therefore, 

the understanding gained from the first topic will lead to explain that the formation 

and the structure of Cr(III) passivation layer affected by the microstructure of the EZ.  

3. The outstanding property of graphene is the strongest materials, which has 

the tensile modulus of 1 TPa.  Moreover, it has the high corrosion resistant properties.  

In this case, it could be used for the surface coating materials to protect corrosion.  

Therefore, the development of graphene-based coatings might be used for protecting 

corrosion of the EZ. 

 

1.3 Research objective 

 

The objectives of this research are: 

1. To study the processing-structure-property relationships in electrodeposited 

zinc produced from alkaline non-cyanide bath, with particular emphasis on the 

additive types to affect the crystal structure and corrosion resistance. 

2. To investigate the effects of the electrodeposited-zinc structure on the 

structure of chromium-trivalence passivation layers. 

3. To examine the feasibility of the plating conditions of graphene as a 

potential for protecting corrosion. There were two feasibility studies for graphene-

based coatings: i) the feasibility of process for depositing graphene onto steel 
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substrate which were emphasized on the additive, current density, and deposited time.  

ii) the feasibility of corrosion resistant property of the graphene-based coating. 

 

1.4 Scope of research 

 

The research focused on three topics: 

1. The comparison of the effects of three types of additives, which have the 

different value of absorption strength, including, a mixture of imidazole and 

epihalohydrin (Lugalvan IZE), polyquaternary amine salt (Lugalvan P), and 

polyethyleneimine (Lugalvan G35) on the microstructure, crystal structure and 

corrosion properties of alkaline non-cyanide electrodeposited zinc. 

2. The research concentrated on the effects of substrates EZ1, EZ2, and EZ3 

on the microstructure, crystal structure, and corrosion responses of the chromium-

trivalence passivation layers. 

3. The research studied on the effects of the plating conditions which emphasis 

on the additive type, current density, and deposited time on the morphology, 

microstructure, crystal structure, and corrosion responses of the graphene-based 

coatings. 
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1.5 Benefits of research 

 

The success of this research impacted to two sections.  First, economics: the 

understanding gained from the research is critical for the development of the coatings 

that benefits the steel industry.  Second, academics: a new knowledge of the surface 

coating technology that published in an international journal.  The possibility of the 

topics for publication is listed below: 

 The processing-structure-property relationships in electrodeposited zinc 

produced from alkaline non-cyanide bath, with particular emphasis on the 

additive types to affect the crystal structure and corrosion resistance. 

 The effects of the electrodeposited-zinc structure on the formation of 

chromium-trivalence passivation. 

 The feasibility of graphene-based coatings as a potential for protecting 

corrosion. 
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CHAPTER II LITERATURE SURVEY 

 

2.1 Electrodeposited zinc (EZ) 

 

Corrosion, a destruction of materials, is a process resulting from a chemical 

reaction between a metal and its environment [7].  It was also the most occurred 

problem in the steel industries such as automotives, electronics and households. 

According to its damages, the lost in the preventive and maintenance cost were 

expanded [42].  The world corrosion organization reported that the corrosion cost was 

up to $U.S.2.2 trillion in 2012.  In this reason, the research and development on the 

protection of corrosion have been needed to study profoundly and extremely [43]. 

There were several of surface-treatment techniques for protecting corrosion, 

including the cleaning for surface conversion, surface modification, coating, and so 

forth.  Coating of metallic zinc was the economical techniques for protecting against 

corrosion [44].  Because it was higher corrosion resistance than iron and steel in the 

environment.  Various methods of applying a zinc coating to iron and steel are in 

general uses: hot dip galvanizing, mechanical plating, spraying, and electroplating 

[44, 45].  Among the coating processes, electrodeposition represents the most 

advantages including relatively high speed, high purity, easy control of coating 

composition and thickness, and so on [15, 16]. 
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In the process, zinc plating is a process of electrical and chemical reaction, 

which reduces zinc ions in electrolytes to form a zinc coating on electrode-steel-

substrate [46, 47].  It was controlled by several important parameters [48].  For 

example, bath composition, which was including acid, alkaline cyanide, and alkaline 

non-cyanide.  Among these baths, alkaline non cyanide was the most popular one in 

case of high throwing power and environmental friendly [15].  Moreover, enhancing 

the plating efficiency and producing the good appearances, additive agent has been 

used in the process.  In order to the duties, it is the leveling agent, ion discharge 

stabilizer and brightener [49, 50].  There are two groups of additives [51]: inorganic 

and organic [52-55].  Among these additives, organic compound of polyamines were 

the most popular one that used for EZ, according to the wide length of ion discharge 

values.  For example, Hsieh et al. studied on three types of polyamines, which 

including polyethyleneimine (Lugalvan G35), a mixture of imidazole and 

epihalohydrin (Lugalvan IZE) and polyquaternary amine salt (Lugalvan P) [56].  The 

results presented that all additives affect the adsorption strength or ion discharge in 

the difference value, but it was significantly improving the morphology.  Additives 

were not only affecting the surface morphology and appearance of the EZ, but also 

influencing the crystal structure including microstructures and the crystal orientation 

or crystallographic textures. 

It has been noted that crystal structure of EZ affects their corrosion properties 

[57-60].  Khorsand et al. [61], Park et al. [25], and Girin et al. [62] studied structural 

features that affect corrosion resistance of electrogalvanized coatings, and found that 

grain dissolution rate depends on which crystallographic planes are exposed.  

Ramanauskas et al. [30, 63] expanded the exploration of such crystallographic texture 
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effects in electrodeposited zinc and its alloys, and observed that packing density (and 

thus bond energy per unit area) of the exposed crystallographic planes is an important 

factor controlling their corrosion resistance.  Furthermore, lattice imperfections and 

texture have been found to affect the properties of passivating oxide films and hence 

the coatings’ corrosion resistance.  Mouanga et al. [64] examined the influence of 

plating additives for zinc produced from chloride baths, and observed that the 

additives affect the texture and corrosion resistance of the deposits.   

Together, the above studies have firmly established the importance of 

crystallographic texture on corrosion, and established that additives affect that texture 

as well as the structure of subsequent passivation layers for electrogalvanized 

coatings.  Nevertheless, these data points are isolated and not well connected to one 

another, so the relationship between the plating additive usage, crystallographic 

orientations, and corrosion behavior must be inferred across studies, and is thus quite 

incomplete.  Furthermore, preferred textures for electrogalvanized zinc that provide 

high resistance to corrosion remain inconclusive: Park et al. [25] and Ramanauskas et 

al. [30, 63] identify basal plane {00l} surface normals as being preferred, whereas 

Girin et al. [62] and Mouanga et al. [64] suggested instead prismatic planes are 

preferred {110}.  Finally, other microstructural factors affecting corrosion resistance 

including particularly the interface quality, do not appear to have been explored in 

detail. 
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2.2 Chromate passivation layers 

 

Passivation layer is the topcoat layer of the electrodeposited samples, typically 

EZ, for the decorations [65, 66].  Chromium trivalence (Cr(III)), the environmentally 

friendly material, was the most popular passivation material for coating onto EZ [67-

69].  It presented a good appearance with several colors via controlling the 

thicknesses, for example; thin film (< 80 nm) presented bright color, but thick film 

presented yellow, blue, and iridescent, respectively [37, 66].  Some metals added into 

the chromium solution to improve the color, for example, cobalt (Co) presents the 

dark black [70].  Recently, it has been reported that the chromium passivation layers 

presented the good property of corrosion resistance [71-73].  According to the 

outstanding properties of Cr(III) passivation, the processing is a key for controlling 

these properties.  

Passivation processing is based on the electroless coatings, which is the 

chemical reaction of the coating materials to form layers onto the substrate without 

the electricity induction [74].  The formation of Cr(III) passivation was influenced by 

several parameters such as chemical concentration, temperature, time duration, and 

pH.  There have been studied on the effects of parameters to the formation of the layer 

[75-79].  For example, On the hand Gigandet et al. [23], Fra˛ckowiak et al. [24], and 

Long et al. [25] studied the structure of CCC with scanning electron microscopy 

(SEM), glow discharge spectroscopy, and x-ray fluorescence spectroscopy.  They 

reported a variety of structures, including an amorphous oxide, a so-called “gel type” 

structure involving an amorphous matrix with small crystallites in it, and oxide layers 
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with compositions including Cr2O3, Cr(OH)3, Cr(OH)CrO4, and Zn2(OH)2CrO4.  The 

corrosion behaviors of Cr
3+

 and Cr
6+

 based CCC have been comparatively studied by 

Di Sarli et al. [26], Tomachuk et al. [27], and Rosalbino et al. [28].  Overall, these are 

far from complete studies.  Particularly, the detailed microstructure of the CCC layer 

has yet to be revealed, and in the industrially relevant case of CCC-passivated Zn we 

are not aware of comprehensive work on structure-property relationships for corrosion 

coatings 

Despite there have been studied the appearances and corrosion properties of 

Cr(III) passivation on the effects of these parameters [80-84], there were the needs for 

the further improvement and a better understanding of the EZ’s structure on the 

formation of Cr(III) passivation layers. 

 

2.3 Graphene-based coatings 

 

One of the approaches involves introducing a novel type of materials that 

exhibits interesting properties to the coatings.  Recently, graphene, an allotrope of 

carbon, is one-atom-thick planar sheets, which are densely packed in a honeycomb 

crystal lattice [37].  According to its properties: high strength (1TPa) and high 

corrosion resistance, it might be used for the surface coating materials to protect 

corrosion of the based metal [38-41]. 
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There have been studied on graphene as the surface coating materials to 

protect corrosion of based metal [41, 85-88].  Various techniques used for coating 

graphene on to the based-metal.  Among those, there are two popular techniques, 

which are the chemical vapor deposition (CVD) and the electrodeposition [89, 90].  

The previous researches have looked at this subject argued against the techniques to 

synthesize graphene coatings via CVD and electrodeposition for corrosion resistant 

property.  Shanshan Chen et al. [91], Kirkland et al. [86], and Dhiraj Prasai et al. [85], 

argued that the CVD was the technique that provides a single layer of high purity 

graphene.  It was presented the small area in corrosion resistant.  On the other hand, 

Hilder et al. [92] argued that the electrodeposition was the technique for coating 

graphene as a simple operation, low cost, and large area coating.  The result showed 

that high efficiency of corrosion resistant was presented in the large area of coatings.  

Debate center on the issue was the efficiency of graphene coatings.  As for, the 

techniques of coating via electrodeposition and CVD for corrosion resistant.  The 

CVD technique was suitable for the high purity graphene coating with the small area, 

but the electrodeposition technique was suitable for the large area of graphene plating 

[89, 90, 93]. 

Electrophoretic deposition, a sub-process of electrodeposition, is the most 

process for deposit charged powder particles [94].  Graphene nanoplatelets had been 

also deposited via electrophoretic process.  Graphene nanoplatelets were induced to 

form the charged graphene by additives (conductive polymer).  There have been 

studies on graphene deposition via electrophoretic process [95, 96].  However, the 

high efficiency of graphene for protecting corrosion in the large scale were interested.  

Therefore, the condition for synthesizing and plating graphene coatings is very 
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important.  Moreover, the understanding of these conditions will lead to achieve the 

coatings that protect corrosion in the other substrates, such as, steel or the 

electrodeposited zinc (EZ). 
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CHAPTER III EXPERIMENTAL PROCEDURE 

 This research studied on three topics including (i) the processing-structure-

property relationships in EZ, (ii) the effects of the EZ’s structure in the formation of 

Cr(III) passivation, and (iii) the feasibility of the plating conditions of graphene as a 

potential for protecting corrosion.  Therefore, the methodology of this research is 

divided into three parts below: 

 

Part I. The processing-structure-property relationships in electrodeposited zinc 

 

3.1.1 Sample fabrication  

 

Three sets of electrodeposited zinc samples were prepared from alkaline non-

cyanide zinc electrolytes, having different types of organic additives, namely (i) a 

mixture of imidazole and epihalohydrin (Lugalvan IZE, BASF, Germany), (ii) 

polyquaternary amine salt (Lugalvan P, BASF, Germany), and (iii) polyethyleneimine 

(Lugalvan G35, BASF, Germany).  These additives were selected in this study 

because they are the common levelers and brightening agents that are widely used 

commercially in environmentally-friendly electrogalvanizing systems [22-25], and are 

also known to provide electrodeposited zinc with distinct corrosion behavior [17, 18].  

The electrolytes were prepared from a mixture of 10 g/l zincate (Na2Zn(OH)4), 120 g/l 

sodium hydroxide (NaOH), and 1 ml/l of additive.  For comparison, an additional set 

of electrogalvanized samples was prepared without using an additive. 
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Low carbon steel (5 x 7 x 0.1 cm) was used as substrate, countered by 

platinum mesh anodes for deposition. Prior to plating, the samples were soak-cleaned 

in a 50
o
C 50% NaOH solution for 30 mins, electro-cleaned in 5% NaOH (5V) for 

another 10 s, and finally dipped in 5% HCl for 10 s.  Electrodeposition was carried 

out at room temperature using a current density of 0.02 A/cm
2 

for 30 min, according 

to the optimal condition determined by Hull cell testing [97, 98].  Subsequently, the 

samples were cleaned, oven-dried, and kept in a desiccator. 

 

3.1.2 Sample preparation and characterization 

 

3.1.2.1 Sample preparation for surface morphology analysis 

 The sample was fitted onto the stage of FE-SEM (without conductive coating 

on the surface).  Subsequently, the SEM micrographs were collected under the 

secondary electron mode. 

 

3.1.2.2 Cross sectioning for metallography 

Some basic challenges exist in its surface preparation process, which consists 

of (1) sample cutting, (2) mounting, (3) grinding, (4) polishing, and (5) etching.  Due 

to the intrinsic sacrificial nature of electrogalvanized coating, the major issues being 

faced are developments of surface non-uniformity in the polishing step and localized 

corrosion attack induced by chemical etchants of the last step, which hinders visibility 

of the microstructural features.  Whereas the first problem is commonly mitigated by 

using oil-based lubricants as polishing mediums, the best practice for the latter issue 
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remains unclear.  Therefore, the present study has demonstrated the challenges and 

strategies of surface modification of electrogalvanized coatings for electron 

microscopy analysis [19].  For more information, a full paper is reported in Appendix. 

 

3.1.2.3 Sample preparation for crystal structure analysis 

 Sample was cleaned and dried before testing.  After that, sample was fit into 

the stage of XRD.  Then, the leveling surface was adjusted.  Finally, XRD was 

analyzed under the condition of two-theta scan. 

  

3.1.2.4 Sample thinning for structural analysis 

 The most powerful technique for TEM sample preparation is focused ion 

beam (FIB), model Helios NanoLab™ 600i, 30kV.  The sample was cut to form the 

size of 1 x 1 cm to fit into the FIB stage.  After that, the sample was milling, and 

transferring to TEM grids.  After the plated sample was welded on to the TEM grid, 

the thinning process was done until the thickness of 50 - 60 nm was achieved.  

Finally, TEM was employed for in-depth analysis of cross section microstructure 

details. 

 

3.1.2.5 Sample preparation for corrosion analysis 

 The corrosion properties were studied by potentiodynamic technique and salt 

spray technique following ASTM B117 for surface- and interlayer corrosion behavior 

study, respectively.  The solution of 5% NaCl was used in both techniques.  The 
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sample for potentiodynamic was fit into the electrochemical cell with the analyzed 

area of 1 cm
2
.  For the salt spray test, the sample was covered the edge with the 

protective tape for control the analyzed area for 5 cm
2
. 

 

Part II. The effects of the electrodeposited-zinc structure on the structure of 

chromium-trivalence passivation 

 

3.2.1 Sample fabrication  

 

A set of the electrodeposited zinc samples from each group was further treated 

with chromate passivation, whereby the samples were dipped in a chromate 

conversion solution for a specified time, during which a CCC was developed on the 

galvanized surface [99-101].  The Cr(III) solution [102] employed herein was 

composed of 10 g/l of H2CrO4 and 10 g/l of Na2SO4, with pH of 2.  Each passivation 

treatment session was executed at 30
o
C for 45 s. 

 

3.2.2 Sample preparation and characterization 

Same as the part I (3.1.2)  
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Table 1 Sample preparation details of the specimens in the current study. 

 

 

Figure 1 The flowchart of the methodology of electrogalvanized and chromium 

coatings. 

 

Sample name Plating Additives 

As-galvanized As-chromated 
 

EZ0 - Without additive 

EZ1 EZP1 A mixture of imidazole and epihalohydrin 

(Lugalvan IZE) 

EZ2 EZP2 Polyquaternary amine salt (Lugalvan P) 

EZ3 EZP3 Polyethyleneimine (Lugalvan G35) 
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Part III. The feasibility of graphene as a potential for protecting corrosion 

 

3.3.1 Sample fabrication  

 

The graphene electrolyte synthesized by using the graphene-nanoplatelets and 

additive.  The specification of graphene nanopowder was the product No. 0541DX 

from Graphene Tech., USA. The average particle diameter was 15 micron and surface 

area 120-150 m
2
/g with the Carbon content of 99.5% purity.  The 1 g/l of graphene 

nanoplatelet and 1 ml/l of additive were dispersed into the of 1 l. water.  The selected 

additive for this study was the polyquaternary amine salt (Lugalvan P, BASF, 

Germany), which was the common levelers and brightening agents that was widely 

used commercially in environmentally-friendly electrogalvanizing system.  In the 

synthesis of electrolyte process, diluted graphene nanopowder into electrolyte with 

additives and water.  After that, disperse under 50 Hz for 10 hours. 

After that, the samples from part I were used as a substrate for plating 

graphene electrolyte.  The optimum current density and time duration determined by 

using Hull Cell test.  The current densities for this study were 1 and 2 A/dm
2 

and 

various deposition time from 0-30 min. Then all samples were baked, and kept into 

the desiccators to control the moisture.  Finally, the characterization part was 

performed.  Figure 1 shows the synthesis of electrolyte and the plating process of 

graphene-based coatings. 
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Figure 2 The synthesis of electrolyte and the plating condition of graphene-based 

coatings. 

 

3.3.2 Sample preparation and characterization 

 

3.3.2.1 Sample preparation for surface morphology analysis 

 Same as part I (3.1.2.1) 
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3.3.2.2 Sample preparation for crystal structure analysis 

 Same as part I (3.1.2.3) 

 

3.3.2.3 Sample preparation for chemical structure analysis 

 X-ray photoelectron spectroscopy (XPS) is needed to analyze the graphene 

coating for confirming and understanding it.  So, the sample was cut to form the size 

of 0.5 x 0.5 mm to fit into the sample holder for XPS analysis.  After that, the sample 

was analyzed via XPS, AMICUS (Shimadzu), under a MgKα with 50 eV. 

 

3.3.2.4 Sample cross sectioning for thickness measurement 

 The sample was cut to form the size of 1 x 1 cm to fit into the FIB stage.  

Before milling process, the Pt layer was coated for protecting the degradation of 

graphene layer during the milling process. After that, the sample was milled to 

observe to a thickness of graphene layer.   

 

3.3.2.5 Sample preparation for corrosion analysis 

The corrosion properties were studied by potentiodynamic technique and the 

accelerated corrosion test for surface- and interlayer corrosion behavior study, 

respectively.  The solution of 5% NaCl was used in potentiodynamic technique.  The 

sample for potentiodynamic was fit into analyzing cell with the analyzed area of 1 

cm
2
.  The accelerated corrosion test, the sample was immerged into the 50% NaCl for 

2 days. 
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3.4 Detailed characterization techniques 

 

3.4.1 Morphology analysis 

 

The surface morphology of the fabricated specimens was examined by field 

emission scanning electron microscopy, FE-SEM (Helios model Nanolab 600) 

operating at 5kV.  

 

3.4.2 Crystal structure analysis 

 

Crystal structure was analyzed by x-ray diffraction, XRD (RIGAKU, TTRAX 

III model) under 50kV and 300mA.  The 2θ scan range was 30
o
–80

o
 with a step angle 

of 0.02
o
 and scan speed of 5

o
/min.  Scherrer’s equation [103] was employed to 

estimate crystallite size (XS) from the instrumental broadening-corrected XRD 

profiles.  The equation was presented below: 

   (1) 

Where, λ is the wavelength of x-ray source.  k is the unit cell geometry dependent 

constant that value is typically between 0.85 and 0.99.  B is the peak broadening or 

the full-width-half-max (FWHM) of the each peak in the unit of radians.  Bragg’s 

angle (θ) is acquired from the plane {hkl}. 
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The texture coefficient (TC) of the planes preferentially oriented perpendicular 

to the surface normal direction was determined from the following equation [104]: 

   (2) 

where, Ihkl and I
0

hkl are the intensity of hkl reflections from zinc coatings and from a 

random sample (ICDD PDF No. 04-0831), respectively, and n is the number of 

selected planes.  Additionally, the crystal orientations in 3-D, namely rolling (RD), 

transverse (TD), and normal (ND directions), were assessed through pole figures 

[105] with tilt angles (α) of 0
o
-90

o
, rotational angles (β) of 0

o
-360

o
, a 120

o
/min scan 

rate, and 5
o 
interval step.  

 

3.4.3 Structural analysis via FIB and TEM 

 

In-depth analyses of the structure of the coatings and their interfaces were 

conducted using a transmission electron microscope, TEM (JEOL JEM-2010).  For 

preparation of TEM specimens, a focused ion beam (FIB) milling system (Helios 

Nanolab 600) was employed for cross-sectional milling of the samples and 

transferring them to TEM grids where further ion thinning was conducted [106-108].  

A series of images depicting the TEM sample preparation procedure is presented in 

Fig. 3. 
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Figure 3 Micrographs showing the steps of TEM sample preparation via FIB 

techniques: (a) an electrogalvanized specimen is milled in cross-section by FIB; (b) a 

1 µm thin lamellae was prepared using the H-bar FIB technique; (c) the manipulator 

probe lifted-out the lamellae and transfer it to a TEM grid; (d) FIB milling was further 

performed to thin the lamellae to about 50 nm. 
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3.4.4 Corrosion analysis 

 

Two sets of tests were employed to characterize the corrosion properties of the 

coating materials.  Firstly, salt spray tests (Q-Fog chamber, model CCT600), 

following ASTM B117, were performed to assess the corrosion behavior through the 

development of rust on the sample surface.  The corroded area per total area, percent 

red rust (RR), were carried out by Imagej software.  Secondly, using a potentiostat 

(μAutolab type III), potentiodynamic polarization measurements were carried out to 

electrochemically quantify the corrosion rates of the samples.  5% NaCl solution was 

employed for both sets of tests. 

Tafel plot is a tool for analyzing the corrosion behavior of the surface via 

Potentiodynamic polarization scan.  Figure 4 shows the intersection between the 

extrapolated lines of anodic and cathodic is used for determining the corrosion current 

and potential. Moreover, the corrosion current is then calculated for the corrosion rate 

which expressed in unit of millimeters per year. 
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Figure 4 Tafel plot and their extrapolated cathodic and anodic current for corrosion 

current and potential determination. 
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CHAPTER IV EXPERIMENTAL RESULTS AND DISCUSSION 

 

Part I. The processing-structure-property relationships in electrodeposited zinc 

 

4.1.1 Surface morphology 

 

 The electrodeposited zinc coating samples of all groups, namely EZ0, EZ1, 

EZ2 and EZ3 all exhibited good uniformity.  Micrographs showing the surface 

morphology of these specimens are presented in Fig. 5. Sample EZ0, with no use of 

plating additives (Fig. 5(a)), is characterized by coarse grains and a rather rough 

surface.  On the other hand, those that use additives exhibit finer grains and low 

surface roughness.  Furthermore, these deposits are relatively mechanically robust to 

handling as compared to EZ0.  Upon a closer examination, EZ1, EZ2 and EZ3 show 

different surface morphologies (Fig. 5(b-d)), which are in line with their distinct 

textures to be discussed in the subsequent section. 
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Figure 5 FE-SEM micrographs showing surface morphology of (a) EZ0, (b) EZ1, (c) 

EZ2, and (d) EZ3 samples. 

 

4.1.2 Crystallite size 

 

 The XRD profiles of the electrogalvanized samples of all groups presented in 

Fig. 6(a) confirm that all samples are comprised of a single phase of zinc, as expected.  

Using Scherrer’s equation (Eq. 1), crystallite sizes of the deposits could be determined 

for the {002}, {100}, {101}, and {110} reflections as shown in Fig. 6(a).  It can be 

observed that, overall, EZ0 exhibits relatively larger crystallite sizes, whereas the 

crystallite sizes of EZ1, EZ2, and EZ3 appear comparable at 20 nm.  Such small 
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crystallite sizes are underlined by bright-field TEM micrographs showing zinc grains 

and arrangements of zinc atoms, as exemplified by EZ1 in Fig. 7. 

 

4.1.3 Crystallographic texture 

 

Using the TC equation (Eq. 2) and relative XRD intensity of different crystal 

planes, the distribution of crystallographic orientations or texture of the 

polycrystalline deposits were determined.  Fig. 6(c) shows the texture coefficients of 

{002}, {100}, {101}, and {110} planes of the specimens in all groups.  EZ0 

demonstrates preferred surface-normal orientations with {002} and {101} planes, 

whereas EZ1, EZ2, and EZ3 preferentially orient in the directions of {100} and {110} 

planes normal to the coating surface.  Furthermore, the relative texture coefficients of 

different planes are somewhat distinct among EZ1, EZ2 and EZ3, as shown in Fig. 

6(c). 
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Figure 6 The electrogalvanized specimens of different groups were analyzed with 

XRD to provide: (a) XRD profiles; (b) estimated crystallite size; and (c) texture 

coefficient. 

 

Figure 7 TEM micrograph showing atomic arrays and grains of the electrogalvanized 

zinc sample from group EZ1. 
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Figure 8 shows the combined results of the XRD pole figures obtained from 

the analysis of the four crystal planes of the specimens, namely {002}, {100}, {110}, 

and {101}.  The results generally echo the 2D XRD profiles in Fig.6(a) and 

additionally indicate that the 3 groups of specimens (EZ1, EZ2, EZ3) all exhibit fiber 

textures.  The pole figures demonstrate that the index planes, {100}, of EZ1, EZ2, and 

EZ3 respectively align normal to the surface, diffusively spread away from the 

surface normal, and concentrate at 60
o
 of the tilt angle.  The {100} plane also 

corresponds to the lowest in-plane packing density, which has been suggested to 

correlate to corrosion resistance as described in the introduction; that the three 

specimens EZ1, EZ2, and EZ3 have different orientations of this plane is therefore 

convenient to explore a range of corrosion properties, as will be seen subsequently. 

 

 

Figure 8 Combined 3-D pole figures of the electrogalvanized samples: (a) EZ1 (b) 

EZ2, and (c) EZ3.  The high and low intensities are represented by red and blue 

contours, respectively. 
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4.1.4 Corrosion behavior of electrodeposited zinc  

 

4.1.4.1 Potentiodynamic polarization scan 

 Figure 9 comparatively presents the potentiodynamic polarization results of 

the electrogalvanized samples in the EZ1, EZ2, and EZ3 groups, all of which exhibit a 

similar shape.  Nevertheless, based on the values of the corrosion currents (Icorr), the 

corrosion rates (CR) of these samples vary somewhat, ranging from 0.424, 0.353, and 

0.175 mm/year for EZ1, EZ2, and EZ3, respectively. 

 

 

Figure 9 Tafel plots of the electrogalvanized specimens EZ1, EZ2 and EZ3, as 

obtained from the potentiodyanamic polarization measurements. 
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4.1.4.2 Salt spray test 

 Figure 10 shows the surface appearance of the EZ samples at different stages 

of the salt spray test.  As anticipated, white rust, which is comprised of the oxides and 

hydroxides of zinc [109], is initially formed across the samples’ surface.  Following 

the first 24 hrs, the content of the white rust of the different groups of samples appears 

to increase in the order EZ3 < EZ1 < EZ2.  Later on, the development of red rust, 

owing to oxidation of the steel substrate, is observed.  By the 360
th

 hr, the amount of 

red rust appears to increase in the order of EZ2 < EZ3 < EZ1.  Table 2 summarizes 

the results of corrosion behaviors of the electrogalvanized specimens. 
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Figure 10 The appearance of the electrogalvanized test specimens, EZ1, EZ2, and 

EZ3, following the salt spray test at different periods. 
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Table 2 Corrosion properties (corrosion current density (Icorr), corrosion rate (CR), 

and percent red rust (RR)) of the specimens from different groups, as assessed by the 

potentiodynamic polarization and salt spray tests. 

Sample name 

Potentiodynamics Salt spray 

Icorr.(μA) CR 

(mm/year) 

RR (%) 

360 hr 600 hr 

EZ1 36.50 0.424 81 - 

EZ2 30.35 0.353 28 - 

EZ3 15.03 0.175 60 - 

EZP1 1.16 0.014 - 10 

EZP2 0.06 0.001 - 0 

EZP3 0.95 0.011 - 0 

 

4.1.5 Relationship between structure and corrosion behavior of EZ 

 

Surface morphology and texture of the samples EZ0, EZ1, EZ2 and EZ3 are 

all distinct from one another, clearly the result of the plating additives, which serve as 

adsorbates, contributing to a reduction of the mean free path of the adions, and in 

effect influencing the nucleation, grain growth, and texture development [27, 110-

112].  The three organic additives examined herein in fact have different levels of 

charge density (meq./mg), in an increasing order of polyquarternary amine salt (5.3) > 

imidazole and epihalohydrin (4.3) > polyethyleneimine (3.0) [35].  Their adsorption 

strength varies correspondingly, and these additives could in turn influence texture 

development of the deposits to different degrees.   
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 Considering the corrosion resistance of the electrogalvanized specimens from 

the corrosion rates as analyzed by potentiodynamic polarization, the order of the 

samples with respect to increasing the resistance to corrosion is: EZ1 < EZ2 < EZ3.  

This result appears to be in line with the conventional understanding of how texture 

and crystallographic orientation can influence corrosion behavior – specifically, 

crystal planes with high packing density would exhibit relatively strong resistance to 

corrosion, and vice versa [29, 30, 113].  For hexagonal crystals, in particular, the 

order of crystal planes with respect to decreasing the atomic surface density is {002} 

> {110} > {101} > {100}.  It thus has been generally found that zinc coatings with 

{002} planes presented on the surface show relatively high surface hardness and high 

corrosion resistance [18, 19, 23].  Here, the weakly-packed atomic plane {100} is 

increasingly dominant on the specimens’ surface in the order of EZ3 < EZ2 < EZ1, 

which corresponds well to their increasing levels of the measured corrosion rates, 

respectively. 

 This reasoning connecting texture and corrosion, however, does not map well 

to the results obtained from the salt spray tests, which indicate that EZ2 exhibits 

highest resistance to red rust formation and corrosion among the three groups.  In part, 

this is certainly because the salt spray environment is complex, dynamic, and not 

simply predicted by, e.g., a polarization analysis. To better understand the salt spray 

trends, TEM analysis was additionally conducted to examine the cross-section of the 

specimens.  The resulting TEM bright field images presented in Fig. 11 reveal that 

specimens EZ1 and EZ3 exhibit voids and cracks close to the zinc/steel interface, 

whereas the interfacial microstructure of EZ2 is homogeneous and generally free of 

defects.  Clearly, the presence of the interfacial defects in EZ1 and EZ3 could have 
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promoted corrosion and red rust formation, especially as the salt spray test proceeded, 

allowing saline electrolyte to progressively permeate along the channels of these 

defects and reach the steel substrates.  The high level of charge density of 

polyquarternary amine salt in EZ2 could have promoted a relatively more stable 

electrodeposition session, leading to development of low residual stresses and 

hindrance of interfacial defect formation [114, 115]. 
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Figure 11 TEM micrographs showing the Zn/Fe interface of the electrogalvanized 

specimens: EZ1 (a;b), EZ2 (c;d), and EZ3 (e;f).  Regions in the brackets of the left-

hand side figures are magnified on the rights. 
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Part II. The effects of the electrodeposited-zinc structure on the structure of 

chromium-trivalence passivation 

 

4.2.1 Surface morphology 

 

 Having a uniformly black-colored surface, all electrogalvanized samples 

appeared to be successfully treated with a chromate conversation process.  Under a 

microscopic examination, it is observed that the surface of the passivated samples 

exhibits a mountain-range-liked morphology, with short cracks distributed throughout 

the surface (Figs 12(a)-(c)). 

  

 

Figure 12 FE-SEM micrographs showing surface morphology of (a) EZP1, (b) EZP2, 

and (c) EZP3 samples. 
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4.2.2 Through-thickness structure 

 

 Using a combined technique of FIB and TEM, the through-thickness structure 

of the chromate conversion coating (CCC) specimens are analyzed, as exemplified by 

a representative TEM micrograph obtained from specimen EZP3 (Fig. 13).  To the 

authors knowledge, this is one of the first TEM pictures that provide clear detail of the 

CCC structure.  The crystallographic analysis indicates that the thin film composes of 

three sub-layers, listed from the outer surface to the substrate side: (i) amorphous, the 

metallic oxide complex,  (ii) amorphous-oxide, trivalent chromium precipitates [23] 

comprising a mixture of amorphous matrix and crystalline phases, and (iii) crystalline 

oxides, the electrochemical combination between the metal and the metallic oxide.  

These structures are not aligned with those of prior studies, which proposed based on 

the glow discharge optical spectroscopy (GDOS) and X-ray photoelectron 

spectroscopy (XPS) that CCC films are composed of three layers of metallic oxide 

complex, trivalent chromium complex, and an oxide layer of Cr(OH)3, ZnO, and 

Cr2O3, respectively [31-33]. 
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Figure 13 Stitched TEM micrographs showing a cross section of the chromate 

conversion layer of the specimen from group EZP3.  Amorphous, amorphous-oxide, 

and oxide layers are observed in the structure. 
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Figure 14 TEM micrographs showing cross sections of the chromate conversion layer 

of the specimens from groups (a) EZP1, (b) EZP 2, and (c) EZP3. 

 

Comparing the through thickness structure of the CCC of the 3 specimens 

(EZP1, EZP2, EZP3) in Fig. 14, it is observed that the microstructure in EZP1 is 

somewhat distinct with that of EZP2 and EZP3 in that its amorphous layer is 

relatively thick and a grain structure in the amorphous-oxide layer is more refined.  

On the other hand, the microstructure of EZP2 and EZP3 is characterized by a thick 

amorphous-oxide layer, which contains grains of larger sizes. 

 

4.2.3 Corrosion behavior of passivated electrodeposited zinc 

 

4.2.3.1 Potentiodynamic polarization scan 

 Figure 15 comparatively presents the potentiodynamic polarization results of 

the electrogalvanized samples in the EZP1, EZP2, and EZP3 groups.  These 

polarization curves exhibit rather distinct shapes, which is also reflected in large 
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variations of their corrosion currents (Icorr) and hence the corrosion rates (CR).  CRs 

of the samples are found to increase in the order of EZP1 < EZP3 < EZP2. 

 

 

Figure 15 Tafel plots of the chromated electrogalvanized specimens EZP1, EZP2 and 

EZP3, as obtained from the potentiodyanamic polarization measurements. 
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4.2.3.2 Salt spray test 

Figure 16 shows the surface appearance of the EZP samples at different stages 

of the salt spray test.  After 72 hours, white stains appear across the samples’ surfaces, 

with EZP2 and EZP3 showing a relatively high amount of staining.  As time proceeds, 

however, EZP1 develops white rust at a faster pace compared to others.  The vivid 

white rust spots on EZP1 surface suggest that corrosion has reached the zinc layer of 

the sample.  By the 600
th

 hr, red rust and large white spots are observable on EZP1, 

whereas EZP2 and EZP3 exhibit moderate levels of white stain and are free of red 

rust.  The results of corrosion behaviors as observed from the salt spray test of EZP 

samples are summarized in Table 2. 

 



 

 

49 

 

Figure 16 The appearance of the chromated electrogalvanized test specimens, EZP1, 

EZP2, and EZP3, following the salt spray test at different periods. 
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4.2.4 Relationship between structure and corrosion behavior of EZP 

 

 As presented in the results section, the specimens EZP1, EZP2, and EZP3 

show distinct surface morphology and different microstructural details in their multi-

layered passivation films.  Interestingly, these structural and possibly chemical 

differentiations in the chromate conversion layers arise despite our having employed 

the same chromate treatment protocol on the three groups of electrogalvanized 

specimens.  This may be rationalized through the formation mechanism of a chromate 

conversion coating layer, whereby the oxidation-reduction processes of the zinc 

dissolution and complex chromium compound film formation steps take place 

concurrently [116-120].  Since the surface metal of the electrogalvanized layer 

directly interacts with chromic acid and chromium salt solutions, it is reasonable that 

the crystallographic characteristic of the zinc layer would influence the development 

of the CCC layer.  In this regard, it appears that the zinc layers with {110} texture 

promote the formation of the amorphous-oxide layer, whereas those with {100} 

texture facilitate an amorphous layer. 

 Considering the corrosion tests of the EZP specimens, the results from both 

the potentiodynamic polarization and salt spray tests show that the chromate layers 

serve as effective protective barriers [73, 121, 122], exhibiting much higher corrosion 

resistance than the unpassivated electrogalvanized (EZ) specimens. Furthermore, both 

sets of corrosion tests point to the relatively high corrosion resistance of specimens 

EZP2 and EZP3, as compared to EZP1.  The results thus appear to suggest that a 

formation of a relatively thick amorphous-oxide layer comprising large grain 

structure, as induced by surface texture of zinc, helps promote the incremental 
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corrosion resistance benefit of the chromate films.  Additionally, considering the 

variation of the polarization profiles in the anodic regions of the EZP specimens, the 

structure and surface morphology of the chromate layer may also influence the 

development of passive films during corrosion and provide an enhancement of 

corrosion resistance. 

 

Part III. The feasibility of graphene as a potential for protecting corrosion 

 

4.3.1 Surface morphology 

 

 Graphene electrolyte was plated onto the steel substrate.  Figure 17 shows the 

surface morphology of the specimens analyzed by SEM: (a) and (b) are the 

micrograph of the steel substrate while, (c) and (d) are the micrograph of the 

graphene-based coatings.  The graphene nanoplatelets were coated onto the steel 

substrate (Fig. 17(d)), which present the well-leveled and uniform generally.  It was 

appeared to be successfully to coat graphene onto the steel substrate via this 

methodology (3.3.1 Sample fabrication). 
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Figure 17 The surface morphology of the specimens. (a) and (b) are the micrograph 

of the steel substrate under the magnify of 200X and 2,000X, respectively. (c) and (d) 

are the micrograph of the graphene coatings under the magnify of 200X and 2,000X, 

respectively. 
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4.3.2 Surface structure 

  

 

 

Figure 18 Chemical structure of the graphene-base coating, which was analyzed 

under X-ray photoelectron spectrometer (XPS).  The binding energy of graphene 

structure is 285 eV at peak c1s1. 
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The chemical structure and the phase confirmation of the coatings were 

carried out by XPS technique.  Fig. 18 reveals the high peak intensity at binding 

energy of 285 eV, which is the representative of graphene phase.  Therefore, the 

coatings were formed the graphene structure via this methodology (3.3.1 Sample 

fabrication). 

 

4.3.3 Through-thickness structure 

 

 The plating parameter, which controlled the thickness, includes current density 

and deposited time.  Figure 19 shows the surface morphology of graphene-based 

coatings in difference of current densities.  The current density at 2 A/dm
2 

presents the 

grey surface at the deposited time of 10 min and subsequently black surface 

(completely dark) at the deposited time of 20 min.  While the 1 A/dm
2 

presents the 

grey surface at the deposited time of 30 min.  The higher current density (2 A/dm
2
) 

leads to the higher thickness.  The graphene nanoplatelets were coated onto the 

substrate with high rate and formed coating faster than the lower current density (1 

A/dm
2
).  On the other hand, the deposited time presents the increasing of thickness 

with the deposited time increases. 
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Figure 19 SEM micrographs showing surface morphology of the graphene-based 

coatings.  The upper micrographs present the graphene coatings under current density 

of 2 A/dm
2
 with increase the deposition time.  The lower micrographs present the 

graphene coatings under current density of 1 A/dm
2
 with increase the deposition time. 

 

It is difficult to find the thickness of graphene coating due to the very thin 

layer in the scale of nanometer.  However, this work employed FIB for cross 

sectioning the coating.  Figure 20. displays the thickness of graphene-based coating in 

cross-section prepared by FIB technique.  The coating thickness of the sample under 2 

A/dm
2
 with deposited time for 30 min was approximately 80 nm, which was the 

thickness of the high current density and long deposited time. 
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Figure 20 SEM Micrographs showing the cross-section prepared by FIB technique. 

(a) is the the thickness of graphene-based coating. (b) is the high magnify micrograph 

which presents the thickness of graphene approximately 80 nm. 

 

4.3.4 Corrosion behavior of graphene-based coatings  

 

4.3.4.1 Potentiodynamic polarization scan 

 Corrosion behavior of graphene-based coating was analyzed by 

potentiodynamic polarization.  Figure 21 shows tafel plots of the specimens, including 

graphene-based coating (G/STEEL), steel substrate (STEEL), electrodeposited zinc 

(EZ), graphene coated zinc (G/EZ), electrodeposited zinc with chromate passivation 

(EZP).  Based on the values of the corrosion currents (Icorr), the corrosion rates (CR) 

of these samples vary somewhat, ranging from 0.353, 0.300, 0.150, 0.033 and 0.001 

mm/year for EZ, STEEL, G/EZ, G/STEEL, and EZP, respectively.  Graphene coating 

presents the better corrosion resistance than others. 
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Figure 21 Tafel plots of the specimens, including graphene-based coating 

(G/STEEL), steel substrate (STEEL), electrodeposited zinc (EZ), graphene coated 

zinc (G/EZ), electrodeposited zinc with chromate passivation (EZP). 

 

4.3.4.2 The accelerated corrosion test 

 The other test is the accelerated corrosion, which performed under the 

condition of 2-day immersion in 50 wt.% in NaCl.  Figure 22 shows the digital 

images of the specimens before and after 2-day immersion in 50 wt.% in NaCl: (a) 

and (b) are the steel substrate and (c) and (d) are the graphene-based coatings.  
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Graphene coating has lower corrosion area (red rust) mean that it has higher corrosion 

resistance than steel substrate. 

 

Figure 22 The digital images of the specimens before and after 2-day immersion in 

50 wt.% in NaCl: (a) and (b) are the steel substrate and (c) and (d) are the graphene-

based coatings. 
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CHAPTER VI CONCLUSION 

 

This study investigates the relationship between microstructure and corrosion 

properties of both chromated and non-chromated electrogalvanized zinc coatings 

prepared with alkaline non-cyanide electrolytes containing three different sets of 

additives, namely a mixture of imidazole and epihalohydrin, polyquaternary amine 

salt, and polyethyleneimine.  These additives significantly influence the 

crystallographic texture of zinc and in turn control the corrosion behaviors of the 

deposits.  Therefore, the conclusion was divided into three parts below: 

 

Part I. The processing-structure-property relationships in electrodeposited zinc 

The investigation results indicate that crystallographic texture of zinc largely 

controls corrosion of the galvanized coatings, and decreasing of a texture coefficient 

of {100} planes contributes to improvements of corrosion resistance, as observed 

from the electrochemical analysis.  The detailed examination provided by the FIB and 

TEM studies and the salt spray tests evidently points to the effects of interfacial voids, 

which is again induced by the plating additives, also critically affect the coatings’ 

corrosion resistance. 
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Part II. The effects of the electrodeposited-zinc structure on the structure of 

chromium-trivalence passivation 

The uses of different plating additives also distinctly affects the 

microstructural developments of the chromate conversion coating.  Polyquaternary 

amine salt is identified as an especially effective additive for zinc plating in that it 

indirectly promotes formation of a relatively thick amorphous-oxide layer comprising 

large grain structure in the chromate film, which exhibits relatively high resistance to 

corrosion. 

 

Part III. The feasibility of graphene as a potential for protecting corrosion 

 Graphene nanoplatelets were coated onto the steel substrate for protecting 

corrosion.  The process to coat graphene is electrophoretic deposition which used 

current to induce the charged-graphene attached to the steel surface.  Two feasibility 

studies for graphene-based coatings were identified: i) the feasibility of process for 

depositing graphene onto a steel substrate, which was emphasized on the additive, 

current density, and deposited time.  ii) the feasibility of corrosion resistant property 

of the graphene-based coating.  This study selected polyquaternary amine salt as an 

additive to synthesis the electrolyte, which had the high charge density (5.3 meq/mg).  

The additive plays an important role to increase the efficiency of deposit rate because 

graphene gained the cation from additive to form the conductive electrolyte.  The high 

current density in the process (2 A/dm
2
) increased the deposition rate.  In addition, the 

high deposited time leads to increase thickness of graphene-based coatings.  

Therefore, two feasibility studies were identified.  The coatings were confirmed for 
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the graphene coatings via SEM and XPS, with the surface morphology and surface 

structure analyses, respectively.  In addition, the thickness of the coating was 

investigated via FIB and TEM.  Moreover, graphene-based coating presents the better 

corrosion resistance than steel substrate and electrodeposited zinc (EZ).  As the 

protective coatings of graphene it presents corrosion resistant behavior in both 

potentiodynamics and the accelerated corrosion test. 
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