PRODUCTION SCHEDULING WITH CAPACITY-LOT SIZE AND SEQUENCE CONSIDERATION

Mr. Rattapon Patikarnmonthon

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR)

are the thesis authors' files submitted through the University Graduate School.

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Logistics Management (Interdisciplinary Program) Graduate School Chulalongkorn University Academic Year 2016 Copyright of Chulalongkorn University การวางแผนการผลิต โดยกำนึงถึง กวามสามารถที่จะรับได้ ล็อตการผลิต และลำคับในการผลิต

นายรัฐพล ปฏิการมณฑล

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรคุษฎีบัณฑิต สาขาวิชาการจัดการด้านโลจิสติกส์ (สหสาขาวิชา) บัณฑิตวิทยาลัย จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2559 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	PRODUCTION CAPACITY-LOT CONSIDERATION	SCHED SIZE A	ULING WITH ND SEQUENCE
Ву	Mr. Rattapon Patika	rnmontho	n
Field of Study	Logistics Management		
Thesis Advisor	Assistant Professor	Manoj Loł	natepanont, Sc.D.
Thesis Co-Advisor	Associate Professo Ph.D.	r Pongsa	Pornchaiwiseskul,

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

> Dean of the Graduate School (Associate Professor Sunait Chutintaranond, Ph.D.)

THESIS COMMITTEE

COMMITTEE
Chairman
Professor Kamonchanok Suthiwartnarueput, Ph.D.)
Thesis Advisor
Assistant Professor Manoj Lohatepanont, Sc.D.)
Thesis Co-Advisor
Associate Professor Pongsa Pornchaiwiseskul, Ph.D.)
Chillelongkogn Englen
Associate Professor Paveena Chaovalitwongse, Ph.D.)
Examiner
Assistant Professor Tartat Mokkhamakkul, Ph.D.)
External Examiner
Associate Professor Nakorn Indra-payoong, Ph.D.)

รัฐพล ปฏิการมณฑล : การวางแผนการผลิตโดยคำนึงถึง ความสามารถที่จะรับได้ ล็อต การผลิต และ ลำ ดับในการผลิต (PRODUCTION SCHEDULING WITH CAPACITY-LOT SIZE AND SEQUENCE CONSIDERATION) อ.ที่ปรึกษา วิทยานิพนธ์หลัก: ผศ. คร. มาโนช โลหเตปานนท์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: รศ. คร. พงศา พรชัยวิเศษกูล, 76 หน้า.

การวางแผนการผลิตโดยคำนึงถึง ความสามารถที่จะรับได้ ล็อตการผลิต และลำดับใน การผลิต (General Lotsizing and Scheduling Problem หรือ GLSP) เป็นหนึ่งในกระบวนการ สำคัญสำหรับการวางแผนการผลิต โดยเป็นการคำนึงถึงข้อจำกัดหลายๆด้าน เช่น กำลังการผลิต ล๊อตการผลิต และลำดับการผลิต

การศึกษานี้นำเสนอการแบ่ง GLSP ออกเป็นสองกระบวนการ โดยในกระบวนการแรก จะเป็นการสร้างถำดับการผลิต โดยการระบุล๊อตในการผลิตก่อน หลังจากนั้น ถำดับการผลิตที่ กำนวนได้จากกระบวนการแรกจะถูกส่งไปยังกระบวนการที่สอง เพื่อทำการกำนวนหาปริมาณการ ผลิตที่เหมาะสมเพื่อให้ได้ต้นทุนในการผลิตที่ต่ำที่สุด ทั้งนี้ ในการศึกษานี้ยังได้มีการเพิ่ม ซัพพลาย จากภายนอกเข้าไปใน แบบจำลอง เพื่อสะท้อนถึงการทำงานในสภาวะของธุรกิจจริงที่มีทรัพยากร จำกัด โดยแบบจำลองที่นำเสนอนั้นจะถูกพิจารณาจากความสามารถในการกำนวน และเวลาที่ใช้ ในการกำนวน โดยแบบจำลองจะถูกทดสอบบนสถานการณ์ 8 สถานการณ์ ทั้งนี้ ผลของ แบบจำลองพบว่า แบบจำลองที่นำเสนอมีความสามารถในการกำนวนได้ดีกว่า GLSP

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

สาขาวิชา การจัดการด้านโลจิสติกส์ ปีการศึกษา 2559

ลายมือชื่อนิสิต
ลายมือชื่อ อ.ที่ปรึกษาหลัก
ลายมือชื่อ อ.ที่ปรึกษาร่วม

5487800920 : MAJOR LOGISTICS MANAGEMENT

KEYWORDS: : PRODUCTION SCHEDULING OPTIMIZATION / TWO-PHASE OPTIMIZATION / LOT-SIZE PRODUCTION SCHEDULING / SEQUENCE DEPENDENT PRODUCTION SCHEDULING

RATTAPON PATIKARNMONTHON: PRODUCTION SCHEDULING WITH CAPACITY-LOT SIZE AND SEQUENCE CONSIDERATION. ADVISOR: ASST. PROF. MANOJ LOHATEPANONT, Sc.D., CO-ADVISOR: ASSOC. PROF. PONGSA PORNCHAIWISESKUL, Ph.D., 76 pp.

The *General Lotsizing and Scheduling Problem* (GLSP) is a method of addressing a common problem found in continuous production planning. The problem involves many constraints including machine capacity, production lot-size, and production sequence. This study proposes a re-formulation of the GLSP divided into two phases known as the *General Lotsizing and Scheduling Problem using Two Phases with External Supply* (GLSP-TE). Phase one is the Pattern generation with Specific Batch size and Capacity. Phase two is the Production Allocation using Specified Pattern obtained from the production pattern in Phase One. Additionally, external supplies are included in the formulation to reflect the real situation for businesses faced with limited resources. In this study, the justification of the formulation was tested in eight scenarios.

The results show that the proposed formulation is more tractable and is better at solving problems than the GLSP. The objective value of GLSP-TE showed improvement up to 70% in high fluctuation scenarios compared to the original GLSP with a defined computational time limit.

Field of Study:	Logistics Management	Student's Signature
Academic Year:	2016	Advisor's Signature
		Co-Advisor's Signature

ACKNOWLEDGEMENTS

First, I would like to deeply thank you to my advisor, Ajarn Manoj Lohatepanont. He's not only be an advisor but he also be a consultant, teacher and coach by his expertise in research area for consulting with kindness during the long journey of doctoral degree. I also would like to thank you to all thesis committee including Ajarn Kamonchanok, Chairman Ajarn Pongsa, Co-Advisor Ajarn Paveena Ajarn Tartat, Examiner and Ajarn Nakorn, External Examiner for their valued comment and advise.

For my lovely family. I am passionately grateful to my mother Nattawan, who is my first teacher and supporter since I was born. I cannot success without her endless support. I would like to thank you my younger sister Nisa for writing and moral support. Also, my wife Amornrat for all supports that energized me to the end of journey with full of love. I am also grateful to my other family members and friends who have supported me along the way.

I am grateful to all my teachers since my childhood. Men and women who building every blocks of my knowledge and my thought, without any single teacher that taught me since childhood I cannot reach the doctoral degree. I would like to dedicate my accomplishment to all teachers.

Finally, I would like to thank you to Graduate School, Chulalongkorn University for scholarship that support my degree.

CONTENTS

Page
THAI ABSTRACTiv
ENGLISH ABSTRACTv
ACKNOWLEDGEMENTSvi
CONTENTSvii
TABLE OF FIGURESix
LIST OF TABLESxi
Chapter 1: Introduction
1.1 Background and Motivation4
1.2 Dissertation Objective
1.3 Dissertation Scope
1.4 Anticipated Benefit
Chapter 2: Literature Review
2.1 Formulation
2.2 Solution Methodology
Chapter 3: Methodology
3.1 Dissertation process
3.2 Data used
3.3 Tools and technology used
Chapter 4: Results
4.1 Model Validity
4.2 Results by Test Scenario
4.3 Model Results
4.4 Model Stress Test42
Chapter 5: Conclusions
5.1 Performance categories45
5.2 Discussion
5.3 Gaps for further study51
REFERENCES

	Page
APPENDIX	54
APPENDIX I: Data usage	55
VITA	76

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

viii

TABLE OF FIGURES

Figure 1-1: Sample of the Production Scheduling2
Figure 1 2: Changeover Cost from product i to project (s _{ij})2
Figure 1-3: Changeover Variable from product i to product j in time s (z_{ijs})
Figure 3-1: Dissertation Process
Figure 3-2: The example of bound behavior16
Figure 3-3: The number of binary variables increased from increase production17
Figure 3-4: Calculations in each phase
Figure 4-1: Model Quality of GLSP-TE
Figure 4-2: Distribution of Iteration numbers on Scenario 1
Figure 4-3: Number of Optimal runs on Scenario 1
Figure 4-4: Distribution of Iteration numbers on Scenario 230
Figure 4-5: Number of Optimal runs on Scenario 2
Figure 4-6: Distribution of Iteration on Scenario 3
Figure 4-7: Number of Optimal runs on Scenario 3
Figure 4-8: Distribution of Iteration numbers on Scenario 4
Figure 4-9: Number of Optimal runs on Scenario 4
Figure 4-10: Distribution of Iteration numbers on Scenario 535
Figure 4-11: Number of Optimal runs on Scenario 5
Figure 4-12: Distribution of Iteration numbers on Scenario 6
Figure 4-13: Number of Optimal runs on Scenario 6
Figure 4-14: Distribution of Iteration numbers on Scenario 7
Figure 4-15: Number of Optimal runs on Scenario 7
Figure 4-16: Distribution of Iteration numbers on Scenario 8
Figure 4-17: Number of Optimal runs on Scenario 840
Figure 4-18: Objective Value Improvement
Figure 4-19: Result Gap Comparison between GLSP and GLSP-TE on SCN642
Figure 4-20: Result Gap Comparison between GLSP and GLSP-TE on SCN842

Figure 4-21: Result Gap Comparison between GLSP and GLSP-TE on SCN6	.43
Figure 4-22: Result Gap Comparison between GLSP and GLSP-TE on SCN8	.43
Figure 5-1: Distribution of Iteration Numbers group by Performance	.47
Figure 5-2: Objective Value by Percentage of Improvement	.47
Figure 5-3: Computational time on each scenario using 5% solution gap	.48
Figure 5-4: Computational time on each scenario using 10% solution gap	.48
Figure 5-5: Computational time on each scenario using 20% solution gap	.49
Figure 5-6: Percentage of the Optimal result in each Scenario	49

LIST OF TABLES

Table 4-1: Testing Scenarios	27
Table 4-2: Computational time Resultfor Scenario 1	29
Table 4-3: Computational time Result for Scenario#2	30
Table 4-4: Computational time Result for Scenario#3	31
Table 4-5: Computational time Result for Scenario#4	33
Table 4-6: Computational time Result for Scenario#5	34
Table 4-7: Computational time Result for Scenario#6	36
Table 4-8: Computational time Result for Scenario#7	37
Table 4-9: Computational time Result for Scenario#8	39
Table 5-1: Computational Results of all Scenarios	44

qwiayiistean iyne iae Chulalongkorn University

Chapter 1

Introduction

Manufacturing, operations require several planning levels, including an operational plan, tactical plan, and strategic plan. Strategic planning is the core of the planning process as it has to match the business strategy. Actions resulting from such planning require long term implementation, i.e. building facilities, re-locating facilities and procuring machinery. Tactical planning includes taking into account supply and demand for each product, as well as choosing appropriate raw materials. The benefits received by one's business depend heavily on this level of planning. Operational planning deals with cost considerations, and as such, the main objective of operational planning is to minimize operating costs while still complying with tactical planning goals to pursue the ultimate goal of maximizing margins for the business.

Production scheduling is one of the essential tasks of operational planning. This process must indicate actions required on a daily or hourly basis, together with the types and quantity of the products required for production, according to fluctuation in demand, operational configuration, and production capacity. The inventory carried over the period serves as a buffer for demand that might exceed the production capacity in each period. Cost minimization has to be considered in this planning to ensure that the carrying cost of the inventory is as low as possible, while the demand can still be met. The production scheduling process is a straightforward and effective technique that can be applied to improve cost minimization. This process can be formulated based on a linear programming formulation, which considers demand, inventory carrying cost, and production capacity. Solving this problem is straightforward and effective in real business situations using the linearity assumption of the formulation.

For continuous production, the Changeover Cost is an important variable of the production planning, as converting from production of one product to another product might increase the cost of the operation. Changeover Cost can be defined as the additional cost incurred when a production sequence is altered as the cost for a skipped or reversed sequence is normally higher than maintaining the regular sequence. The production scheduling has to be carefully considered to reduce unnecessary changeover from period to period.

The minimum lot size of the production is another factor in continuous production. The minimum size of production for each product must be determined before changeover to a different product. According to this limitation, the inventory helps to minimize the production cost by carrying over the product that exceeds the current demand to the next period.

Adding lot-size and sequence considerations into production scheduling leads to transformation of calculations from Linear Programming (LP) to Mixed Integer Programming (MILP). The setting up status for each period is defined as the binary variables and also for the min-lot consideration which is cast as the integer variable. Both sets of the discrete variables add complexity into the formulation. The *General Lotsizing and Scheduling Problem* (GLSP), classified as a Non-Deterministic Polynomial-time hard Problem (NP-hard), requires substantial computational time to solve. The exact methodology to solve the problem involves taking into account the fractionality of the binary variables during computation. This fractionality is the cause of a weak bound in branch-and-bound technique that influents the branching technique in an appropriate direction and results in a large number of iterations in the computation. Enormous resources such as memory and computational time are required for finding the solution.

Figure 1 2: Changeover Cost from product i to project (sij)

An example of the Production Schedule is shown in Figure 1.1. The number of production in each period is indicated in x_{js} . In micro-period s_0 , the planned production was of product j_0 with the amount of x_{00} . In these 6 periods in the example, the planned production was of product j_0, j_2, j_3, j_0, j_1 and j_2 respectively. The plan shows that the changeover from product *i* to product *j* was assigned orderly. The Changeover Cost from product *i* to product *j* (s_{ij}) is illustrated in Figure 1.2. The solid line shows the minimum changeover cost from one product to another product. The dashed line shows the more expensive changeover from product to product to product.

Figure 1-3: Changeover Variable from product i to product j in time $s(z_{ijs})$

The large number of binary variables is the Changeover variable (z_{ijs}) . This binary variable indicates the changeover stage from product *i* to product *j* in time *s*. The number of z_{ijs} is equal to the number of the product squared multiplied by number of micro-period $(|J|^2 \times |S|)$. This set of variables will increase exponentially when the number of the product is increased. The increasing of this variable adds to the complexity of the problem. During the LP relaxation, this set of variables will face fractionality, the part that results in a weak bound in the problem.

This study proposes GLSP improvement by formulating a model by tackling the important part of the formulation and the bound from LP relaxation that is used for determining the solution gap of the incumbent solution. The tighter bound may lead to the calculation of exact methodology to effectively answer this sophisticated problem with less memory usage and computational time.

1.1 Background and Motivation

The production scheduling process influences how much of a product is supplied and how much inventory will be needed due to demand, limited capacities, limited resources or production characteristics. As many constraints are considered in scheduling, the development of the optimal production scheduling is difficult to perform manually. In addition, many binary variables must be considered which adds to the complexity for setting up the computational model.

In the previous studies, this problem is categorized as a NP-hard problem. The NP-hard problem has characteristics that obstruct computation, increasing in the number of parameters, such as time slot or number of product, and generates dramatic changes in the number of both linear variables and binary variables. Also, when some binary variables increase, they can affect the model in both of size and time consumed.

Improvement of the solution methodology for practical implementation can be beneficial for a business due to the optimization of the planning process and efficient management of the time and material consumed.

1.2 Dissertation Objective

This dissertation aims to develop a heuristics methodology for the production scheduling problem that considers the production lot-size, capacity and sequence in the computational model. In previous studies, researchers have introduced an exact methodology for handling the problem; however, this computational model is not appropriate for computing as it is considered a NP-hard problem based model that generates numerous binary variables, resulting in high time consumption and inaccurate calculation.

Current commercial software with the heuristics methodology was used to tackle this problem. If this problem can be overcome by the methodology introduced in this study with an acceptable computing time, this study can be useful for the business planning in real situations with optimum output.

1.3 Dissertation Scope

This dissertation focuses on production scheduling with consideration of the production lot-size, capacity and sequence characterized as:

- single machine
- finite time of production
- limited capacity in given time (K_t)
- setup cost/time from product *i* to *j* have constant cost/time for each direction of transition

Data used in this dissertation, including the capacity (K_t) and demand (d_{jt}) , were obtained from random generation and were used in the model for computing the results.

1.4 Anticipated Benefit

This dissertation is expected to introduce a modified formulation to address the production scheduling problem that has a tighter bound and is more tractable and solvable to use in practical situations.

Chapter 2

Literature Review

2.1 Formulation

Production scheduling with lot-size and capacity relaxation was introduced by Chen and Thizy (1990). This problem was referred as an NP-hard problem, which determined the magnitude of the operational timing of durable results. Their formulation is shown in formulation 2.1 to 2.4 with following sets and parameters.

Sets:

Т

<i>I</i> : Number of product

: Number of	production	period
-------------	------------	--------

Parameters:

s _{it}	: Production setup cost for product <i>i</i> in period <i>t</i>
p_{it}	: Unit of production cost of product <i>i</i> in period <i>t</i>
h _{ij}	: Inventory cost of one unit of product <i>i</i> between periods <i>t</i> and $t+1$
c _t	: Production capacity in period t
a _i	: Capacity consume by the production of one unit of product i
d _{it}	: Demand of product <i>i</i> in period <i>t</i>
$d_{it\tau}$	$=\sum_{j=t}^{\tau} d'_{ij}$ in which d'_{ij} is the demand for production <i>i</i> in
	period <i>j</i> adjusted for initial and final inventories
z_i^0	: The pre-specified initial inventory of product <i>i</i>
z_i^T	: The pre-specified final inventory of product <i>i</i>

Variables:

x _{it}	: the amount of product <i>i</i> produced in period <i>t</i>
z _{it}	: the inventory of product <i>i</i> carried from period <i>t</i> to period $t+1$
$y_{it} \in \{0,1\}$: The variable that has value 1 if $x_{it} > 0$, 0 if $x_{it} = 0$.

Formulation:

$$Min z = \sum_{i,t} (p_{it} x_{it} + s_{it} y_{it} + h_{it} z_{it})$$
(2.1)

Subject to:

Set:

$$\begin{aligned} z_{it} &= z_{i,t-1} + x_{it} - d_{it} & \forall i \in I, \forall t \in T \quad (2.2) \\ \sum_{i} a_{i} x_{it} &\leq c_{t} & \forall t \in T \quad (2.3) \\ x_{it} &\leq d_{itT} y_{it} & \forall i \in I, \forall j \in J \quad (2.4) \end{aligned}$$

The Objective Function (2.1) is a function that minimizes production and inventory costs which considers demand and inventory carried to the next period in Constraint 2.2, capacity in Constraint 2.3 and production setup in Constraint 2.4. Number of discrete variable is $[I \times T]$. The Chen and Thizy (1990) model does not allow for backlog and production sequences.

Fleischmann and Meyer (1997) studied higher complexity in the production scheduling problem by adding sequence considerations into the formulation, known as the *General Lotsizing and Scheduling Problem* (GLSP). In each setup, changing from one product to other products altered the production cost which depends on the differences between two products. With the sequence consideration included, the discrete variables were introduced into the formulation by defining and setting up the variable between the changing groups. The sets of data, variables and formulation are shown below.

หาลงกรณ์มหาวิทยาลัย

S_t	: Set of micro-periods s belonging to macro-period t
J	: Set of products
Т	: Set of Macro-Period
S	: Set of Micro-Period
Parameters:	
K_t	: Capacity (time) available in macro-period t
a _j	: Capacity consumption (time) needed to produce one unit of <i>j</i>
m _j	: Minimum lot-size of product <i>j</i>
h _j	: Holding costs of product <i>j</i> (per unit and per macro-period)
s _{ij}	: Setup costs of changeover from product <i>i</i> to product <i>j</i>
st _{ij}	: Setup time of changeover from product i to product j
d_{jt}	: Demand of product <i>j</i> in macro-period <i>t</i> (units)

I _{j0}	: Initial inventory of product <i>j</i> at the beginning of the planning horizon
	(units)
Via	\cdot Equal to 1 of the machine is set up for product <i>i</i> at the beginning of

y_{j0}	: Equal to 1 of the machine is set up for product <i>j</i> at the beginning of
	the planning horizon (0 otherwise)

Variables:

$I_{jt} \ge 0$: Inventory of product <i>j</i> at the end of the planning horizon (unit	ts))
---	-----	---

- $x_{js} \ge 0$: Quantity of item *j* produced in micro-period *s* (units)
- $y_{js} \in \{0,1\}$: Setup state: $y_{js} = 1$, if the machine is set up for product *j* in microperiod *s* (0 otherwise)
- $z_{ijs} \in \{0,1\}$: Take on 1, if a changeover from product *i* to product *j* takes place at the beginning of micro-period *s* (units)

Formulation:

$$Min \ z = \sum_{j \in J} \sum_{t \in T} h_j I_{jt} + \sum_{i \in J} \sum_{j \in J} \sum_{s \in S} s_{ij} z_{ijs}$$

$$Subject \ to:$$

$$I_{i} = I_{i} + \sum_{s \in J} r_{i} - d_{i}$$

$$(2.5)$$

$$I_{jt} = I_{j,t-1} + \sum_{s \in S_t} x_{js} - d_{jt} \qquad \forall t \in T, \forall j \in J \quad (2.6)$$
$$\sum_{j \in J} \sum_{s \in S_t} a_j x_{js} + \sum_{i \in J} \sum_{j \in J} \sum_{s \in S_t} st_{ij} z_{ijs} \le K_t \qquad \forall t \in T \quad (2.7)$$

$$\begin{aligned} x_{js} &\leq \frac{K_t}{a_j} y_{js} & \forall t \in T, \forall s \in S_t, \forall j \in J \quad (2.8) \\ x_{js} &\geq m_j (y_{js} - y_{j,s-1}) & \forall s \in S, \forall j \in J \quad (2.9) \\ \sum_{j \in J} y_{js} &= 1 & \forall s \in S, \forall j \in J \quad (2.10) \\ z_{ijs} &\geq y_{i,s-1} + y_{js} - 1 & \forall s \in S, \forall i \in I, \forall j \in J \quad (2.11) \\ l_{jt} &\geq 0 & \forall t \in T, \forall j \in J \quad (2.12) \\ x_{js} &\geq 0 & \forall s \in S, \forall j \in J \quad (2.13) \\ y_{js} &\in \{0,1\} & \forall s \in S, \forall j \in J \quad (2.14) \end{aligned}$$

$$z_{ijs} \in \{0,1\} \qquad \forall s \in S, \forall i \in J, \forall j \in J \quad (2.15)$$

The GLSP proposed by Fleischmann and Meyer (1997) contains an Objective Function (2.5) which consists of two parts. The first part is the inventory holding cost of each product in each macro-period. The second part is the setup cost of production changeover from product i to product j in each micro-period (if needed).

Subject to Constraint 2.6 is the cover demand volume of each product to be fulfilled in each macro-period with the number of inventory to be carried to the next macro-period. Constraint 2.7 is capacity constraint, which covers how much machine time is required in each macro-period and machine time used for production. This constraint calculates how much machine time is needed to produce each product in each macro-period, and how much machine time used in production setup to change from product i to product j.

Constraint 2.8 is used to determine which product has been set up for product j in micro-period s. Constraint 2.9 is used to set each production lot needed to produce at least the minimum run for each product. Constraint 2.10 is used to set up only one product in each micro-period. Constraint 2.11 is used to determine when the production changeover from product i to product j should occur.

With GLSP, the discrete variable required is $[|J|^2 \times |T|]$. This formulation also does not cover backlogging but does cover production sequence.

2.2 Solution Methodology

Production scheduling has been categorized into 5 groups by Drexl and Kimms: (1997) 1) the capacitated lot sizing problem, 2) the discrete lot sizing and scheduling problem, 3) the continuous setup lot sizing problem, 4) the proportional lot sizing and scheduling problem, and 5) the general lot sizing and scheduling problem. They also concluded that complexity can be addressed by casting as multi-level lot sizing and scheduling. Their study noted that the production scheduling problem has limitations such as gaps to approach, more complex setup time, setup with sequence dependent, parallel machines and backlog, and that tackling the scheduling problem can be done using 2 methodologies, the exact and the heuristics methodologies. The Capacitated Lotsizing Problem with sequence dependent Setup Cost (CLSD) was introduced by Haase Knut (1996) and discrete lotsizing problem with sequence dependent setup cost (DLSDSD). The CLSD is quite close to Fleishmann and Meyr's formulation (1997), the General Lotsizing and Scheduling Problem (GLSP) but the setup state can be preserved over idle time for Fleishmann. Haase also used the heuristics methodology to solve his CLSD and DLSDSD with priority rules on local searching in parameter space for lower solution costs. Besides providing an exact methodology, Fleishmann also introduces a heuristics methodology for approaching this problem by using various techniques including: 1) threshold accepting, 2) neighborhood search, and 3) backward oriented lot-sizing for a given setup pattern (Greedy-Sim, Greedy-Mod and Greedy-Cap). The GLSP has been used in many recent studies in which researchers have introduced improvements in both the exact and heuristics approach.

The improvements of the exact methodology were introduced in many aspects for example the Lagrangian Relaxation method was used by Chen and Thizy (1990) on several constraints such as setup, demand and capacity constraints. This method is also involved with the subgradient optimization and column generations in node-arc formations using the shortest path technique. The lower bound improvement by adding cutting plane to the formulation, was introduced by Belvaux and Wholsey (2001). By categorized the startup and changeover into four parts: 1) Small bucket model, 2) one setup per period, 3) two setup per period, and 4) big bucket model with changeovers. In addition, they also introduced the minimum production runs and full-capacity production. However, the drawback of this formulation is the changeover variable that uses a discrete variable that makes the model more complex. The modified branch and bound enumeration method, which was introduced by Haase and Kimms (2000). It stated that in period T, perform a branching step by choosing a sequence and doing calculations to choose whether the model needs to move on to period one step by step by doing backtracking in-between if necessary. The multi-level MILP formulation for Medium-Range Production Scheduling of a Multiproduct Batch Plant was introduced by Lin Xiaoxia et al (2002). by decomposition of the entire period into short time horizons using an exact methodology to solve the problem. Multiple intermediate due dates were used in each time horizon to enable the consolidation of the short time horizon in addressing the larger problem.

There are many techniques to approaching the NP-Hard problem. In the survey of Woeginger (2003) it was shown that the researcher used Dynamic Programming, Pruning the Search Tree, Preprocessing the Data and Local Search depending on the characteristics of the problem. The Mixed Integer Dynamic Optimization (MIDO) was used by researchers such as Held, Michael (1962), Bansal Vikrant et al. (2003), Prata, Adrian et al. (2008) and Chu Yunfei (2013). Prata, Oldenburg et al. (2008) was cast the problem as the MIDO and used a validated differential-algebraic model to represent the polymerization behavior. The key idea of implementation was to be the standard solution method for continuous process scheduling which has clear process. The Mixed-Integer Linear Fractional Programming (MILFP) also introduced for the cycle process scheduling problem by You Fengqi (2009). They also used the Dinkelbach's algorithm for solving large-scale MILFP formulation with continuous time Resource-Task Network (RTN). The result of the proposed solution was less computational resources used with greater optimality and efficiency. The Searching over Separator Strategy also was introduced by Hwang R. Z (1993) by dividing the problem into two subproblems in which the results from both subproblems were combined as an optimal solution. Furthermore, Drori Limor (2002) proposed an algorithm recursively partitioned the problem domain and eliminated some branches during calculations. All techniques have been used for tackling the optimization of the complex and time consumed problem.

The heuristics methodology was used by various researchers. Meyr (2000, 2002) also improved his methodology by using the dual network flow to re-optimize the sub-problem. This methodology evaluated the new candidate added back to the current solution to find the better solution using dual price. This methodology also used in both single machine consideration and the multi machines scheduling. Karimi et al. (2003) introduced heuristics approaches such as tabu search, simulated annealing, and other meta-heuristics for solving the capacitated lot-size production scheduling problem. They also added complexity into an exact approach by adding backlogging as well as the setup times and carryover. The three steps of heuristics were published by Gupta and Magnusson (2005) Their formulation considered the capacitated lot-sizing and scheduling problem with sequence-dependent setup cost and time. The flexibility of this approach provides a feasible optimal solution. Their heuristics is divided into three steps: Initialize, Sequence and Improve. The initialize step is used to find initial solutions by determining production quantities without sequence consideration. The sequence step is finding the least-costly production within each period. The last step, the improve step, is to refine production quantities and production sequence in respect to decreasing total cost. The hybrid of the mathematical programming and the local search methods were published by De Araujo, Arenales et al. (2007). This hybrid method is called the relax-and-fix methodology. It divides the problem into two levels: 1) solving some relaxed integer variables and solving relaxed problems, and 2) respecifying some integer variables and then solving partially fixed problems. The heuristics methodology is used to solve both steps to find feasible solutions. Almada-Lobo and Klabjan (2007) addressed the production lot-size capacity and sequencedependent problem by adding setup carryover. Five-steps heuristics were introduced to find an appropriate solution for the initial problem using the local search procedure. Their first step is lot-for-lot pass, allocating production volume to each demand period without considering the capacity constraint. The second step is doing a sequencing and amending procedure called the *minmax* algorithm. The third step is to try to improve the quality of the initial solution from first and second steps by backwards pass in time that seeks to avoid the cost and capacity consumption of a setup. Although this step can affect feasibility, fixing feasibility will be recovered at the end. The fourth step is a forward pass that seeks to reduce inventory holding cost by shifting forward a fraction or an entire lot of production which has the possibility to reduce total cost. The last step looks for improvements in the links between adjacent periods in a forward pass. Salomon, Solomon et al. (1997) introduced dynamic programming for solving the discrete lot-sizing scheduling problem with sequence dependent setup cost and time. This methodology was performed by reformulating the problem as a travelling salesman problem with time windows. Solving a reformulated problem using dynamic

programming algorithm was introduced by Dumas, Desrosiers et al. (1995). Salomon and Solomon et al found that their approach performance depended on problem dimensions, inventory holding cost, setup time and production capacity utilization. The dynamic programming and heuristics technique that focus on binary variables related to sequences was introduced by Kovács, Brown et al. (2009) while running a preprocesser to determine the items that should appear in an optimal solution. This technique focuses on the binary variables related to the sequences by using heuristics and dynamic programming to give tight LP-relaxation. Kämpf and Köchel (2006) introduced a new idea to approach the capacitated lot-sizing and the scheduling problem. The sequence-dependent setup time and cost were used in this approach with the combination of simulation and optimization. The simulation was used to find the optimal parameters before providing feedback for optimizing and assessing the value from the simulator for the possibility of optimality. The simulation was used to find the optimal parameters before feedback. The decomposition of integrated scheduling for chemical processes by tailoring the decomposition method based on generalized Blenders decomposition was put forth by Chu and You (2013). Dynamic optimization was used in master problem separated by the processing unit by collaboratively optimizing to improve the performance of the batch production from sequential methodology.

To summarize, the exact and heuristics methodologies were used to solve the production scheduling problem. As the problem is defined as an NP-hard problem, the exact methodology is a time-consuming approach due to the large number of the binary variables generated. Therefore, most of the previous studies applied the heuristics methodology to tackle this problem using various technics with more specified applications. Improvement on the GLSP still be the gap. Nowadays the processing power is much more enhancement, some technics can gain benefit from this enhancement. Due to the generalized problem can modify to use in various application, the improvement on GLSP also can accommodate in many applications.

Chapter 3

Methodology

This chapter consists of 3 parts to describe the methodology of this study. The first part is entitled the Dissertation Process, which outlines the steps used in this study. The second part is Data Used. This part describes the data used in testing and analyzing the model including the scenarios in the test. The third part is Tools and Technology Used, which includes the software and hardware used in this study.

3.1 Dissertation process

This dissertation was conducted in 7 steps starting from literature review, implementing the GLSP, analyzing the gap and finding the direction for improvement, formulating and implementing 2-phase formulation, testing & fine tuning the model, verifying and validating, and analyzing results & developing a report as shown in Figure 3-1.

Figure 3-1: Dissertation Process

Literature review

In this step, researching the current and relevant studies related to production scheduling with lot-size, capacity and production sequences was performed, as well as finding a possible research gap. According to the current studies, an exact methodology has not been developed since 2001. The node-arc type formulation obtained from this methodology causes weak bounds when doing LP relaxation in each iteration. This leads to difficulty in finding a solution gap to determine the optimality on each integer solution found. After 2001, the heuristics methodology with various algorithms was used to approach this problem.

Implementing the GLSP

In this step, the GLSP was implemented with C# and CPLEX using concert technology for a connector. The test results were collected and used for gap analysis to find the improvement direction in the next step. The notation and formulation are:

<u>Set:</u>	
S_t	: Set of micro-periods s belonging to macro-period t
J	: Set of products
Т	: Set of Macro-Period
S	: Set of Micro-Period
Parameters:	
K _t	: Capacity (time) available in macro-period t
a _j	: Capacity consumption (time) needed to produce one unit of j
m _j	: Minimum lot-size of product <i>j</i>
h _j	: Holding costs of product <i>j</i> (per unit and per macro-period)
S _{ij}	: Setup costs of changeover from product <i>i</i> to product <i>j</i>
st _{ij}	: Setup time of changeover from product i to product j
d _{jt}	: Demand of product <i>j</i> in macro-period <i>t</i> (units)
I _{j0}	: Initial inventory of product <i>j</i> at the beginning of the planning
	horizon (units)
y_{j0}	: Equal to 1 of the machine is set up for product <i>j</i> at the beginning of
	the planning horizon (0 otherwise)

Variables:

$I_{jt} \geq 0$: Inventory of product <i>j</i> at the end of the planning horizon (units)
$x_{js} \geq 0$: Quantity of item <i>j</i> produced in micro-period <i>s</i> (units)
$y_{js} \in \{0,1\}$: Setup state: $y_{js} = 1$, if the machine is set up for product <i>j</i> in microperiod <i>s</i> (0 otherwise)
$z_{ijs} \ge 0$: Take on 1, if a changeover from product <i>i</i> to product <i>j</i> takes place at
	the beginning of a micro-period s (units)

Formulation:

$$\begin{array}{ll} Min \ z = \sum_{j \in J} \sum_{t \in T} h_j I_{jt} + \sum_{i \in J} \sum_{j \in J} s_{\in S} s_{ij} z_{ijs} \\ Subject \ to: \\ I_{jt} = I_{j,t-1} + \sum_{s \in S_t} x_{js} - d_{jt} \\ \sum_{j \in J} \sum_{s \in S_t} a_j x_{js} + \sum_{i \in J} \sum_{j \in J} \sum_{s \in S_t} st_{ij} z_{ijs} \leq K_t \\ Y_t \in T, \forall j \in J \quad (3.2) \\ \forall t \in T, \forall j \in J \quad (3.3) \\ \forall t \in T, \forall s \in S_t, \forall j \in J \quad (3.4) \\ x_{js} \geq m_j (y_{js} - y_{j,s-1}) \\ \sum_{j \in J} y_{js} = 1 \\ \forall s \in S, \forall j \in J \quad (3.5) \\ \forall s \in S, \forall j \in J \quad (3.5) \\ \forall s \in S, \forall j \in J \quad (3.7) \\ I_{jt} \geq 0 \\ x_{js} \geq 0 \\ y_{js} \in \{0,1\} \\ \forall s \in S, \forall i \in J, \forall j \in J \quad (3.11) \\ \forall s \in S, \forall i \in J, \forall j \in J \quad (3.11) \\ \end{array}$$

The GLSP contains an Objective Function (3.1) which consists of two parts. The first part is the inventory holding cost of each product in each macro-period. The second part is the setup cost of production changeover from product *i* to product *j* in each micro-period (if needed).

Subject to Constraint 3.2 is the cover demand volume of each product to be fulfilled in each macro-period with the number of inventory carried to next macro-period. Constraint 3.3 is the capacity constraint that covers how much machine time is used in each macro-period and machine time used for production. This constraint calculates the machine time needed to produce each product in each macro-period, and

how much machine time is used in the production setup to switch from product i to product j.

Constraint 3.4 is used to determine which product has been set up for product j in micro-period s. Constraint 3.5 is used to set each production lot needed to produce at least a minimum run for each product. Constraint 3.6 is used to set up for only one product in each micro-period.

Constraint 3.7 is used to determine when the production changeover from product *i* to product *j* occurs. Constraint 3.8 and 3.9 are for non-negativity on variable I_{jt} and x_{js} . The binary constraint is on Constraint 3.10 and 3.11 on y_{js} and z_{ijs} .

Analyzing the gap and finding the direction for improvement

Based on the previous steps, this model provides a weak bound from binary variables (y_{js}, Z_{ijs}) when the LP relaxation is performed. The binary variables satisfied all constraints and became a fraction. This fraction and sense of formulation lead to the zero-objective value. This causes a weak bound in the most of iterations since initial optimization. The example of a bound that came from LP relaxation with a very large gap in most iterations as shown in Figure 3.2. In this example, the tolerance gap was set to 10% and most early iterations LP relaxation were 0 which caused the tolerance gap to be 100%. After many iterations, LP relaxation resulted in a better bound and an acceptable solution was achieved.

Figure 3-2: The example of bound behavior.

Another point of the problem is that it generates a substantial number of binary variables when we increase micro-periods and number of products (as shown in Figure 3.3). This model contains two sets of binary variables: y_{js} and z_{ijs} . The y_{js} is the number of product multiplied by the number of micro-period ($|j| \times |s|$). The z_{ijs} is the number of product square multiplied by the number of micro-periods ($|j| \times |s|$). This increment required significant computational time in order to find a feasible solution in MIP solver.

Number of Binary Variables

Figure 3-3: The number of binary variables increased from increase production.

A new formulation was proposed to tackle the weak bound, which is caused by fractionality of binary, targeting the set of set-up status (y_{js}) which is the most of fractionality during LP relaxation process by dividing the formulation into 2 parts including pattern generation and production volume calculation.

Another improvement on the proposed formulation is adding external supply to cover the demand that exceeds the capacity and inventory used. External supply will fulfill demand that cannot be satisfied by the inventory and production volume during that period but it will reflect the total cost for the entire solution.

Formulating and Implementing 2-Phase Formulation

The previous formulation has a weak bound on the set of setup binary variables. To tackle this issue, the *General Lotsizing and Scheduling Problem using Two Phases with External Supply* (GLSP-TE) was proposed by separating computation steps into two phases.

First phase of performing approximate optimization was to find a production pattern as shown in Formulation 3.12 to 3.20. Using the following notation to formulate problem:

	•	Set
200	•	SUL

S _t	: Set of micro-periods s belonging to macro-period t
J	: Set of products
Т	: Set of Macro-Period
S	: Set of Micro-Period
Parameters:	
K_s^*	: Modified Capacity (time) available in micro-period s
a_j	: Capacity consumption (time) needed to produce one unit of j
h _j	: Holding costs of product <i>j</i> (per unit and per macro-period)
C _{jt}	: External supply unit cost of product j in macro-period t
S _{ij}	: Setup costs of changeover from product <i>i</i> to product <i>j</i>
d_{jt}	: Demand of product <i>j</i> in macro-period <i>t</i> (units)
I _{j0}	: Initial inventory of product <i>j</i> at the beginning of the planning
	horizon (units)
y_{j0}	: Equal to 1 of the machine is set up for product <i>j</i> at the
	beginning of the planning horizon (0 otherwise)
Variables:	
$I_{jt} \geq 0$: Inventory of product j at the macro-period t (units)
$W_{jt} \geq 0$: Number of external supply of product j in macro-period t (units)
$x_{js} \geq 0$: Quantity of item <i>j</i> produced in micro-period <i>s</i> (units)
$y_{js} \in \{0,1\}$: Setup state: $y_{js} = 1$, if the machine is setup for product <i>j</i> in micro-
	period s (0 otherwise)
$z_{ijs} \in \{0,1\}$: Take on 1, if a change over from product i to product j takes place at
	the beginning of micro-period <i>s</i> (units)

Phase One : Pattern Generations

$$Min \ z = \sum_{j \in J} \sum_{t \in T} h_j I_{jt} + \sum_{j \in J} \sum_{t \in T} C_j W_{jt} + \sum_{i \in J} \sum_{j \in J} \sum_{s \in S} s_{ij} z_{ijs}$$
(3.12)
Subject to:

$$I_{jt} = I_{j,t-1} + \sum_{s} \frac{K_s^*}{a_j} y_{js} + W_{jt} - d_{jt} \qquad \forall t \in T, \forall j \in J \quad (3.13)$$

$$\sum_{j \in J} y_{js} = 1 \qquad \qquad \forall s \in S \quad (3.14)$$

$$\begin{aligned} z_{ijs} \geq y_{i,s-1} + y_{js} - 1 & \forall s \in S, \forall i \in J, \forall j \in J \quad (3.15) \\ I_{jt} \geq 0 & \forall t \in T, \forall j \in J \quad (3.16) \\ W_{jt} \geq 0 & \forall t \in T, \forall j \in J \quad (3.17) \\ y_{js} \in \{0,1\} & \forall s \in S, \forall i \in J, \forall j \in J \quad (3.18) \\ \forall s \in S, \forall i \in J, \forall j \in J \quad (3.19) \end{aligned}$$

The Objective Function (3.12) consists of costs including inventory carrying cost of product j and cost of external supply for product j in macro-period t, and setup cost of change over from product i to product j micro-period s.

The formulation is subject to 3 sets of constraints. First, conservation of flow to determine the inventory of each product j and external supply needed which satisfies demand of product j in macro-period t Constraint 3.13. The K_s^* is the modified capacity for each micro-period which is modified to relax real capacity for computing approximate production volume using pre-defined batch size for each product j. The second and third sets are responsible for setup state from product i to product j Constraint 3.14 and Constraint 3.15. For Constraint 3.16 to 3.17 are for non-negativity on variable I_{jt} , W_{jt} The binary constraints are on Constraint 3.18 and Constraint 3.19 on y_{js} and z_{ijs}

After optimizing the first step, the setup state variables (y_{js}) are passed to the second step to be used as a setup state to calculate the amount of production units as in Formulations 3.20 to 3.29, using the following notation to formulate problem: Set:

S_t	: Set of micro-periods <i>s</i> belonging to macro-period <i>t</i>
J	: Set of products
Т	: Set of Macro-Period
S	: Set of Micro-Period

|--|

K _t	: Modified Capacity (time) available in macro-period t
a_j	: Capacity consumption (time) needed to produce one unit of j
h_j	: Holding costs of product <i>j</i> (per unit and per macro-period)
C _{jt}	: External supply unit cost of product j in macro-period t
S _{ij}	: Setup costs of changeover from product i to product j
st _{ij}	: Setup time of changeover from product i to product j
d_{jt}	: Demand of product <i>j</i> in macro-period <i>t</i> (units)
I _{j0}	: Initial inventory of product j at the beginning of the planning horizon
	(units)
y_{j0}	: Equal to 1 of the machine is set up for product <i>j</i> at the beginning of
	the planning horizon (0 otherwise)
Variables:	
$I_{jt} \geq 0$: Inventory of product <i>j</i> at the macro-period <i>t</i> (units)
$W_{jt} \geq 0$: Number of external supply of product j in macro-period t (units)
$x_{js} \geq 0$: Quantity of item <i>j</i> produced in micro-period <i>s</i> (units)
$y_{js} \in \{0,1\}$: Setup state: $y_{js} = 1$, if the machine is set up for product <i>j</i> in micro-
	period <i>s</i> (0 otherwise)
$z_{ijs} \in \{0,1\}$: Take on 1, if a changeover from product i to product j takes place at
	the beginning of micro-period s (units)

Phase Two: Production Allocation

Chulalongkorn University

$$Min \ z = \sum_{j \in J} \sum_{t \in T} h_j I_{jt} + \sum_{j \in J} \sum_{t \in T} C_j W_{jt} + \left(\sum_{i \in J} \sum_{j \in J} \sum_{s \in S} s_{ij} z_{ijs} \right)^{*constant}$$
(3.20)

Subject to:

$$I_{jt} = I_{j,t-1} + \sum_{s \in S_t} x_{js} + W_{jt} - d_{jt} \qquad \forall t \in T, \forall j \in J \quad (3.21)$$

$$\sum_{j \in J} \sum_{s \in S_t} a_j x_{js} + \sum_{i \in J} \sum_{j \in J} \sum_{s \in S_t} st_{ij} z_{ijs} \le K_t \qquad \forall t \in T \quad (3.22)$$

$$z_{ijs} \ge y_{i,s-1} + y_{js} - 1 \qquad \qquad \forall s \in S, \forall i \in J, \forall j \in J \quad (3.23)$$

$$I_{jt} \ge 0 \qquad \qquad \forall t \in T, \forall j \in J \quad (3.24)$$

$$W_{jt} \ge 0 \qquad \qquad \forall t \in T, \forall j \in J \quad (3.25)$$

$$x_{js} \ge 0 \qquad \qquad \forall s \in S, \forall j \in J \quad (3.26)$$

The Objective Function in 3.20 considered inventory carrying cost and cost of external supply for product j in each macro-period t, including setup cost for changing product i to product j in micro-period s. The sets of constraints cover demand satisfaction on Constraint 3.21. Capacity consideration takes place on Constraint 3.22 and the switching cost is considered on Constraint 3.23. The minimum lot-size was already considered in the first phase. Constraint 3.24 to Constraint 3.26 are for non-negativity on variable I_{jt} , W_{jt} and x_{js} .

The calculation in each step focuses on different sets of variables. The first phase focuses only the production pattern using the K_s^* , the pre-defined production size. The result from first phase is the blue line in Figure 3-4. The variable that passes to second phase is y_{js} and z_{ijs} . Also, the changeover cost is settled in this phase. After the pattern is calculated in first phase, the second phase determines the production volume x_{js} with inventory carrying cost consideration as shown in green dots in Figure 3-4. The inventory carrying cost is settled in this phase combined with the changeover cost from the first phase which is the total cost consideration in the formulation.

Calculated by First Phase Calculated by Second Phase

Figure 3-4: Calculations in each phase

Verifying and Validating

Results from the GLSP-TE in step 4 were used in this step to verify and validate the solvability and usability to ensure that GLSP-TE has the appropriate quality for analyzing in next step. The formulation was tested using 8 scenarios on 6 commodities with 720 micro-periods. In the first phase, each scenario was tested on 22 parameters (K_s^*) to adjust for cases including 3 solution gaps.

Analyzing results & Developing report

The last step is the resulting analysis and report development including results on the number of iterations, number of optimal runs, objective function value improvement and computational time.

3.2 Data used

In order to test and analyze the developed model, data used for testing was obtained from random generation including:

- Demand (d_{it}) as random on normal distribution
- Capacity on s period (K_t) as random on uniform distribution

For constant used in the main problem including;

- Inventory carrying cost for product $j(h_i)$
- Unit production time for product $j(a_i)$
- Minimum lot-size of product $j(m_i)$
- Setup time for changing production from product *i* to $j(st_{ij})$

The test scenarios were generated to test the behavior of the GLSP-TE in 8 scenarios grouped into 5 categories.

- <u>Adjacent Demand</u>: The volume of demand in an adjacent period which illustrates that no production is needed in a certain period and build up inventory to satisfy demand in the next period.
 - Steady: The demand exists in every period
 - *Interval Demand commodity*: The demand for all commodities is missing in some periods
- <u>Missing Demand</u>: The volume of demand is missing in some periods and some or all commodities which illustrate the skipping of a sequence and build up inventory to satisfy demand in the next period.
 - No: No missing demand for all commodities in all periods
 - *Missing Middle demand / Skipped period*: There is missing demand for a commodity in the middle of the sequence and there is a skipped period
 - *One commodity in most periods*: One commodity in the middle of the sequence is missing in most periods
 - *All commodities in the same period*: Missing demand for all commodities in some periods.

- <u>Demand Fluctuation</u>: The fluctuation of demand in all periods which implies the pattern selection can skip a sequence to satisfy the demand when the fluctuation has an effect on the production capacity. Inventory is used to buffer the shortage of capacity in this case. The magnitude of the fluctuation is scaled in 3 levels.
 - *Low*: The ratio of top demand and lowest demand in each period less than 1.5
 - *Moderate*: The ratio of top demand and lowest demand in each period is between 1.6 and 2.2
 - *High*: The ratio of top demand and lowest demand in each period is more than 2.3
 - *Very High*: The ratio of top demand and lowest demand in each period is more than 10
- <u>Demand and Min-Lot</u>: The relation between Demand and Min-Lot which points out the select scheduling pattern that can skip a sequence due to the minimum lot size and inventory carrying is used to satisfy demand in next period. The relation of Demand and Min-Lot can be categorized into:
 - *Above*: All demand in each period will be higher than minimum lot size of each commodity
 - *Under and Above*: All demand in each period can be lower or higher than minimum lot size of each commodity
- <u>Demand and Capacity</u>: The relation between Demand and Production Capacity which signal the buildup of inventory to satisfy demand before the overcapacity demand period. The relation of Demand and Capacity can be categorized into:
 - <u>*Related*</u>: The demand in every single period is under production capacity.
 - *No-Related*: The demand in some periods can be over production capacity.

Scenario 1 (SCN1)

This scenario is the normal scenario in which the demand is steady with no missing demand. The fluctuation of the demand is low, all demand is over min-lot and there is sufficient capacity to satisfy demand. This scenario is the ideal behavior that has everything in control. The expectation of this to show that the GLSP-TE can improve performance in the normal scenario.

Scenario 2 (SCN2)

SCN2 is a scenario that can happen in a real situation. Adding missing demand in the middle sequence and skipped period into the normal scenario (SCN1) can add more complexity into the model. The model needs to make a trade-off between switching cost that has skipped a sequence and inventory carrying cost on production in respect to the sequence and to keep it to satisfy demand in the next period. The production pattern can be shifted to satisfy demand while the skipped demand is not reached by production sequence to avoid the production for storage and switching cost for the skipped sequence.

Scenario 3 (SCN3)

The SCN3 is the more complex than SCN2 due to the skipped demand which occurs in one commodity in most periods. The missing pattern forces the switching cost for the skipped sequence to happen. The model needs to consider the branching between skipping the sequence or production of stock. This is a trade-off between switching cost and inventory carrying cost.

Scenario 4 (SCN4)

The SCN4 is the extreme case. The missing demand for all commodities in the same period is the obvious case but for the formulation that allows to maintain switching stage in idle time which might not impact the complexity of the formulation. The test also adds more fluctuation in this case to add more complexity into the test.

Scenario 5 (SCN5)

The SCN5 is the scenario that tests the GLSP-TE in the fluctuation situation. The level or fluctuation is "high" with the possibility of overcapacity, while the other parameters are still in control. The Adjacent demand is steady, there is no missing demand, and all demand exceeds the minimum lot size. The decision is majority on what commodity should be produced and kept in inventory to satisfy demand in the next period.

Scenario 6 (SCN6)

The SCN6 is the scenario that tests the GLSP-TE in the moderate level of fluctuation. The level or fluctuation is "moderate" with the possibility of overcapacity, while the other parameters are still in control. The Adjacent demand is steady, there is no missing demand, and all demand exceeds the minimum lot size. The decision is which commodity should be produced and kept in inventory to satisfy demand in the next period.
Scenario 7 (SCN7)

The SCN7 is the scenario that tests the GLSP-TE in the high level of fluctuation. The demand can be under the minimum lot size and overcapacity might occur. The level or fluctuation is "high". The Adjacent demand is steady, there is no missing demand, and some demand can be under the minimum lot size. The decision is which commodity should be produced to be kept in inventory to satisfy demand in the next period and what commodity should be skipped due to the minimum lot size.

Scenario 8 (SCN8)

The SCN8 is the scenario that tests the GLSP-TE in the high level of fluctuation. The demand can be under the minimum lot size and overcapacity might occur. The level or fluctuation is "very high". The Adjacent demand is steady, there is no missing demand, and some demand can be under the minimum lot size. The decision is which commodity should be produced to be kept in inventory to satisfy demand in the next period and what commodity should be skipped due to the minimum lot size.

3.3 Tools and technology used

This study used the IBM CPLEX Optimizer x64 v.12.4.0 to solve the Mixed Integer Linear Programming (MILP). In the implementation of the model, C# on Visual Studio 2012 with .NET framework 4.0 in a 64 bits environment was used. In the .NET environment, the IBM ILOG Concert Technology was used as the interface for wrapping IBM CPLEX functionality into .NET class in the C# environment. All tests were performed on IBM compatible PC with an intel i7 3770 processer, which has 4 cores with hyper thread technology to perform 8 threads with 3.9GHz maximum frequency. The memory capacity of the machine is 16GB RAM and 1TB Storage to swap the memory. Assessment of the stated hardware and software was done to ensure that the proposed formulation could be performed and be tractable and solvable in practical situations.

Chapter 4

Results

The GLSP was tested using 8 scenarios with 5 angles Adjacent Demand, Missing Demand, Demand Fluctuation, Demand and Min-Lot. Finally, Demand and Capacity were also determined as shown in Table 4-1.

Each scenario was tested with the same parameters. The adjusted K_s^* , the Modified Capacity in Micro-period *s*, was scaling from min-lot more than two times of the min-lot itself in 22 values to test the solvability and tractability of proposed model.

The K_s^* was initiated as a pre-defined lot-size of each commodity used in the first phase to determine the production pattern and pass the production pattern to second phase to calculate the real production volume in each Micro-period with lot-size consideration.

Scenario	Adjacent	Missing Demand	Demand	Demand and	Demand and	
Code	Demand		Fluctuation	Min-Lot	Capacity	
SCN1	Steady	No	Low	Above	Related	
SCN2	Steady	Missing middle demand/ Skipped period	Low	Above	Related	
SCN3	Steady	One commodity in almost all periods	Low	Above	Related	
SCN4	Interval Demand commodity	All commodity in some periods	Moderate	Above	Related	
SCN5	Steady	No	High	Above	Not-related	
SCN6	Steady	No	Moderate	Above	Not-related	
SCN7	Steady	No	High	Under and Above	Not-related	
SCN8	Steady	No	Very High	Under and Above	Not-related	

Tal	ble	4-1	!:	1	Testing	3.	Scen	ari	0	S
-----	-----	-----	----	---	---------	----	------	-----	---	---

4.1 Model Validity

The GLSP-TE was tested by reducing the size of problem to make sure that GLSP-TE could provide the same optimal quality as GLSP. The reduced size of the problem contains three commodities with three Macro-Periods with a total of nine Micro-Periods. The same objective value was reached by both of GLSP and GLSP-TE, which can validate that GLSP-TE can provide the same optimal quality as GLSP. The Computational time improved 17.65% and the number of iterations improved 17.88% as shown in Figure 4-1.

Figure 4-1: Model Quality of GLSP-TE

4.2 Results by Test Scenario

Scenario 1 (SCN1)

In this scenario, the demand is steady with no missing demand. The fluctuation of the demand is low, all demand is over min-lot and there is sufficient capacity to satisfy demand.

The runs on Scenario 1 have a minimum time of 0.06 hours. The first quantile is 0.43 hours, the median is 0.78 hours, the third quantile is 2.01 hours and the maximum time is 2.07 hours as shown in Table 4-2.

The distribution of iterations can be grouped into 2 sets with less time consumption and near timeout set. Most of the runs have less time consumption as shown in Figure 4-2, which means that majority of the test runs found the optimal

solution within a 5% gap in a defined timeout. The results also show that 86% of runs reach the optimality as seen in Figure 4-3. Finally, the optimal result improved from GLSP about 40% as shown in Figure 4-18.

Table 4-2: Computational time Result for Scenario 1

	Computational Time
MIN	0.06
Q1	0.43
Median	0.78
Q3	2.01
Max	2.07

Figure 4-2: Distribution of Iteration numbers on Scenario 1

Figure 4-3: Number of Optimal runs on Scenario 1

Scenario2 (SCN2)

For Scenario 2, the missing demand occurred in the middle of a sequence and there is a skipped period.

The runs on Scenario 2 have a minimum time of 0.23 hours, the first quantile is 0.70 hours, the median is 1.12 hours, the third quantile is 2.01 hours and the maximum time is 2.04 hours as shown in Table 4-3.

The distribution of iterations can be grouped into 2 sets with less time consumption and near timeout set. Most of the runs have less time consumption as shown in Figure 4-4, which means that the majority of the test runs found the optimal solution within a 5% gap in a defined timeout. The results also show that 82% of runs reach the optimality as seen in Figure 4-5. Finally, the optimal result improved from GLSP about 35% as shown in Figure 4-18.

Table 4-3: Computational time Result for Scenario 2

	Computational Time	
MIN	0.23	
Q1	0.70	
Median	1.12	
Q3	2.01	
Max	2.04	

Figure 4-4: Distribution of Iteration numbers on Scenario 2

Number of Optimal runs on Scenario 2

Figure 4-5: Number of Optimal runs on Scenario 2

Scenario3 (SCN3)

In this scenario, the skipped demand occurs in one commodity in most periods. The runs on Scenario 3 have a minimum time of 0.08 hours, the first quantile is 0.63 hours, the median is 1.47 hours, the third quantile is 2.08 hours and the maximum time is 2.18 hours as shown in Table 4-4.

The distribution of iterations can likely be spread along the defined timeout with more runs that reach the timeout as shown in Figure 4-6, which means that the majority of the test runs found the optimal solution within a 5% gap in a defined timeout. The results also show that 68% of runs reach the optimality as seen in Figure 4-7. Finally, the optimal result improved from GLSP about 42% as shown in Figure 4-18.

Table 4-4: Computational time Result for Scenario 3

Computational Time						
MIN	0.08					
Q1	0.63					
Median	1.47					
Q3	2.08					
Max	2.18					

Figure 4-6: Distribution of Iteration on Scenario 3

Figure 4-7: Number of Optimal runs on Scenario 3

Scenario4 (SCN4)

In this scenario, the missing demand for all commodities in the same period is the obvious case.

The runs on Scenario 4 have a minimum time of 0.34 hours, the first quantile is 1.05 hours, the median is 1.95 hours, the third quantile is 2.14 hours and the maximum time is 2.20 hours as shown in Table 4-5.

The distribution of iterations can likely be spread along the defined timeout with more runs that reach the timeout as shown in Figure 4-8, which means that the majority of the test runs still found the optimal solution within a 5% gap in a defined timeout. The results also show that 55% of runs reach the optimality as seen in Figure 4-9. Finally, the optimal result improved from GLSP about 18% as shown in Figure 4-18.

Table 4-5: Computational time Result for Scenario 4

	Computational Time
MIN	0.34
Q1	1.05
Median	1.95
Q3	2.14
Max	2.20

Figure 4-8: Distribution of Iteration numbers on Scenario 4

Number of Optimal runs on Scenario 4

Figure 4-9: Number of Optimal runs on Scenario 4

Scenario5 (SCN5)

In this scenario, the level or fluctuation is "high" with the possibility of overcapacity. The runs on Scenario 5 have a minimum time of 0.15 hours, the first quantile is 1.23 hours, the median is 1.79 hours, the third quantile is 2.14 hours and the maximum time is 2.19 hours as shown in Table 4-6.

The distribution of iterations can be spread along the defined timeout with about the half of runs reaching the timeout as shown in Figure 4-10, which means that about the half of the runs could find the optimal solution within a 5% gap in a defined timeout. The results also show that 50% of runs reach optimality as seen in Figure 4-11. Finally, the optimal result improved from GLSP about 6% as shown in Figure 4-18.

Table 4-6: Computational time Result for Scenario 5

	Computational Time
MIN	0.15
Q1	1.23
Median	1.79
Q3	2.14
Max	2.19

Figure 4-10: Distribution of Iteration numbers on Scenario 5

Figure 4-11: Number of Optimal runs on Scenario 5

Scenario6 (SCN6)

Scenario 6 has moderate level of fluctuation with the possibility of overcapacity. The runs on Scenario 6 have a minimum time of 0.16 hours, the first quantile is 1.34 hours, the median is 2.01 hours, the third quantile is 2.14 hours and the maximum time is 2.22 hours as shown in Table 4-7.

The distribution of iterations shows that more runs reached the timeout as shown in Figure 4-12, which means that the majority of the test runs only found a feasible solution in a defined timeout. The results also show that 45% of runs reach optimality as seen in Figure 4-13. Finally, the optimal result did not improve from GLSP as shown in Figure 4-18.

Table 4-7: Computational time Result for Scenario 6

Figure 4-12: Distribution of Iteration numbers on Scenario 6

Number of Optimal runs on Scenario 6

Figure 4-13: Number of Optimal runs on Scenario 6

Scenario7 (SCN7)

In this scenario, which has a high level of fluctuation, the demand can be under the minimum lot size and overcapacity might occur. The runs on Scenario 7 have a minimum time of 0.30 hours, the first quantile is 0.50 hours, the median is 0.85 hours, the third quantile is 1.21 hours and the maximum time is 2.06 hours as shown in Table 4-8.

The distribution of iterations is clustered in less than the defined timeout as shown in Figure 4-14, which means that the majority of the test runs still found the optimal solution within a 5% gap in a defined timeout. The results also show that 95% of runs reach the optimality as seen in Figure 4-15. Finally, the optimal result improved from GLSP about 67% as shown in Figure 4-18.

Table 4-8: Computational time Result for Scenario 7

	Computational Time
MIN	0.30
Q1	0.50
Median	0.85
Q3	1.21
Max	2.06

Figure 4-14: Distribution of Iteration numbers on Scenario 7

Figure 4-15: Number of Optimal runs on Scenario 7

Scenario8 (SCN8)

In Scenario 8, the level or fluctuation is "high" with some demand under the minimum lot size. The runs on Scenario 8 have a minimum time of 0.09 hours, the first quantile is 0.27 hours, the median is 0.44 hours, the third quantile is 0.97 hours and the maximum time is 2.12 hours as shown in Table 4-9.

The distribution of iterations is clustered in less than the defined timeout as shown in Figure 4-16, which means that the majority of the test runs still found the optimal solution within a 5% gap in a defined timeout. The results also show that 91% of runs reach optimality as seen in Figure 4-17. Finally, the optimal result improved from GLSP about 70% as shown in Figure 4-18.

Table 4-9: Computational time Result for Scenario 8

	Computational Time	
MIN	0.09	
Q1	0.27	
Median	0.44	
Q3	0.97	
Max	2.12	
	1 Promonto	

Computational Time (Hr.)

Figure 4-16: Distribution of Iteration numbers on Scenario 8

Number of Optimal runs on Scenario 8

Figure 4-17: Number of Optimal runs on Scenario 8

Chulalongkorn University

4.3 Model Results

In this section, the GLSP-TE tested the improvement by running the optimization with 2 hours timeout and a 5% solution gap on the same settings of software and hardware. Phase One was tested by sampling K_s^* up to 22 values in each run. The production pattern was passed to Phase Two to do the final calculation, using the average of the objective function value compared with the objective function value of GLSP in each scenario.

Most of the runs of GLSP do not reach optimality before timeout but a feasible solution can be found, except SCN5, in which the optimal solution can be reached. The GLSP-TE improved on SCN SCN1, SCN2, SCN3, SCN4, SCN5, SCN7, and SCN8, which improved to 40%, 36%, 43%, 15%, 5%, 69%, and 72%, respectively, as shown in Fig 4-27. Only SCN6 did not have an improvement of the objective function value.

Objective Value Improvement

Figure 4-18: Objective Value Improvement

4.4 Model Stress Test

The stress test of the GLSP and GLSP-TE tested the worst and best scenarios, the sixth scenario (SCN6) and the eighth scenario (SCN8). The tests were performed in 2 sets, first, a scaling product from 4 products to 30 products, and second, scaling number of a micro-period from 4 to 24 micro-periods in each macro-period in the scenarios that have 4 products. Both used a 2 hours timeout and 5% solution gap except K_s^* , which has only GLSP-TE which used 10 parameters and the best result for comparison.

The GLSP result in first set shows the timeout with more than a 99% gap for all runs but GLSP-TE can perform most of the runs in optimality in SCN6 and all optimality in SCN8 as shown in Figure 4-19 and Figure 4-20.

Result Gap Comparison between GLSP and GLSP-TE

Figure 4-19: Result Gap Comparison between GLSP and GLSP-TE on SCN6

Result Gap Comparison between GLSP and GLSP-TE #SCN8

Figure 4-20: Result Gap Comparison between GLSP and GLSP-TE on SCN8

The second set shows that GLSP in SCN6 cannot reach the optimal solution for all runs. For SCN8, the runs that have total binary variable less than 10,000 variables can perform the optimality, but the GLSP-TE can perform all runs up to the optimality stage as shown in Figure 4-21 and Figure 4-22.

Figure 4-21: Result Gap Comparison between GLSP and GLSP-TE on SCN6

Figure 4-22: Result Gap Comparison between GLSP and GLSP-TE on SCN8

In summary, the GLSP-TE was validated by performing calculations compared with GLSP(Fleischmann & Meyr, 1997) in a reduced problem. The result is GLSP-TE performs with the same optimality result as GLSP(Fleischmann & Meyr, 1997) but uses less computational time and a lower number of iterations. The result from these scenarios also shows that in most of the runs the GLSP-TE can perform better in terms of computational time, percentage of optimality runs and percentage of objective value improvement compared with GLSP(Fleischmann & Meyr, 1997).

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Chapter 5

Conclusions

In this chapter, the results by scenario from the previous chapter were used to analyze the results of GLSP-TE compared with GLSP(Fleischmann & Meyr, 1997) to draw conclusions on the proposed formulation (GLSP-TE) in terms of improvement from GLSP, limitations and gaps for further study. This chapter includes 3 parts, Performance categories, Discussion and Gaps for further study.

5.1 Performance categories

The results of all scenarios are shown in 3 categories: Computational Time, Objective function value improvement and Percentage of optimal runs as shown in Table 5-1. The computational time shows brief time consumed in runs with the minimum runtime, the first quantile, the median, the third quantile and the maximum runtime to reflect the behavior of the GLSP-TE.

	SCN1	SCN2	SCN3	SCN4	SCN5	SCN6	SCN7	SCN8
					Con	nputatio	nal Time	e (Hr.)
MIN	0.06	0.23	0.08	0.34	0.15	0.16	0.30	0.09
Q1	0.43	0.70	0.63	1.05	1.23	1.34	0.50	0.27
Median	0.78	1.12	1.47	1.95	1.79	2.01	0.85	0.44
Q3	2.01	2.01	2.08	2.14	2.14	2.14	1.21	0.97
Max	2.07	2.04	2.18	2.20	2.19	2.22	2.06	2.12
Objectiv	e Functi	ion Valu	е			*improv	ement from	n GLSP
Improvement	40%	36%	43%	15%	5%	0%	69%	72%
Optimality Results *compared with all r					runs in			
							s	cenario
% of Optimality	86%	82%	68%	55%	50%	43%	97%	91%

Table 5-1: Computational Results of all Scenarios

A comparison of the results in each scenario is described in this section. The outcome can be grouped in 3 classes according to the distribution of iteration number, the objective value improvement, the value of the median, the value of the first quantile, the value of the third quantile and the percentage of optimal result, which are shown in Figure 5-1, Figure 5-2, Figure 5-3, Figure 5-4, Figure 5-5 and Figure 5-6, respectively.

The first class, in which GLSP-TE showed its best result, contains SCN7 and SCN8. The model was able to calculate the optimal solution with improvement from GLSP at 69% (SCN7) and 72% (SCN8) as shown in Figure 5-2. The computational time of this class is better than others. The distribution of the iteration and computation time, which is shown in Figure 5-1 annotated as "Green Dot," has low iterations and computational time used in calculation. The percentage optimal results are also low at 97% (SCN7) and 91% (SCN8) as shown in Figure 5-6.

The second class is the class in which GLSP-TE was able to perform with a good result and contains SCN1, SCN2 and SCN3. The model was able to calculate the optimal solution with improvement from GLSP at 40% (SCN1), 36% (SCN2) and 43% (SCN3) as shown in Figure 5-2. The computational time of this class was up to timeout but the median and the first quantile were better than the third class. The distribution of the iteration and computational time, which is shown in Figure 5-1 annotated as "Yellow Rectangle," shows that the distribution of the computational time is spread in the defined timeout range. The percentage of the optimal results are 86% (SCN1) 82% (SCN2) and 68% (SCN3) as shown in Figure 5-6.

The third class is the class, in which GLSP-TE was able to perform with a moderate result, contains SCN4, SCN5 and SCN6. The model improved the optimal result from GLSP at 15% (SCN4), 5% (SCN5) with no improvement on SCN6 as shown in Figure 5-2. The computational times of this class are mostly up to the defined timeout, which is shown in Figure 5-1 annotated as "Red Triangle." Also the median, the first quantile and the third quantile are very high. The percentage of the optimal results is 55% (SCN4), 50% (SCN5) and 43% (SCN6) as shown in Figure 5-6.

Figure 5-1: Distribution of Iteration Numbers group by Performance

Objective Value by Percentage of Improvement

Figure 5-2: Objective Value by Percentage of Improvement

Figure 5-3: Computational time on each scenario using 5% solution gap

Figure 5-4: Computational time on each scenario using 10% solution gap

Figure 5-5: Computational time on each scenario using 20% solution gap

Percentage of The Optimal result in each Scenario

Figure 5-6: Percentage of the Optimal result in each Scenario

5.2 Discussion

This study proposed model with improvement on tractability and solvability by tackle fractionality issue of variable y_{js} . Decomposition technic was used by separating the changeover variables in Phase one, Pattern Generation using a modified capacity (K_s^*) was used in a model to perform an approximate optimization in calculating the production pattern. Since the modified capacity was implemented using this technique, some of the feasible solutions might be removed by pattern generation causing an infeasible solution in Phase Two. For the reason stated, multiple modified capacities were used in the formulation testing in each scenario to ensure the feasible solutions without any single feasible solution.

In Phase Two, the setup pattern that was calculated in Phase One was used to calculate the production volume with demand, inventory carrying cost and capacity consideration to minimize setup cost and inventory carrying cost in the setup pattern specifically.

The quality of GLSP-TE was tested with a small problem size due to the limitation of the GLSP. The same optimality with less computational time and number of iterations resulted with GLSP-TE: therefore, it can be concluded that the GLSP-TE can provide the optimality level up to GLSP. The GLSP-TE also performed well with a larger problem size. The total computational time of both phases was less than GLSP with better objective function values in most tested scenarios. The objective function value can improve up to 72% compared with GLSP. The percentage of optimality run can be up to 97% of test runs in each scenario.

Based on all tests performed, it can be concluded that the GLSP-TE provides a better optimality level with less computational time than GLSP. The GLSP-TE also provided solution, which is the feasible solution in GLSP with more tractable and solvable. Finally, the GLSP-TE performed better performance in high demand fluctuation with more possibility of switching over.

5.3 Gaps for further study

The GLSP-TE is an exact methodology improvement of the GLSP achieved by separating the calculation into 2 phases. The separation focuses on the most complicated part of the formulation. Production pattern generation was done by using a pre-defined production size and production volume calculation on generated pattern with minimum lot-size and inventory carrying cost consideration.

The most important gap is the pre-defined production size in each micro-period. The K_s^* , in this study did not include the relationship between the size of $K_{s_i}^*$ which affects the model behavior. This parameter is very important for the pattern generation procedure, and also affects the changeover cost which is one of the important costs of the problem.

Multiple production lines is also one of the gaps in this study. Due to actual configurations in business, the production lines will involve more than one production. More complicated production planning involves planning across multiple production lines.

In addition, one of the key factors is the allowance of the setup stage in idle time, which means that in idle time the setup stage is maintained with no changeover from one commodity to another commodity. But in some production lines, the idle period is available for the changeover to the next stage. A shutdown or other overhead cost required for the idle period can also be considered a gap in the foundation of the model.

Chulalongkorn University

REFERENCES

- Almada-Lobo, B., Klabjan, D., Antónia carravilla, M., & Oliveira, J. F. (2007). Single machine multi-product capacitated lot sizing with sequence-dependent setups. *International Journal of Production Research*, 45(20), 4873-4894.
- Bansal, V., Sakizlis, V., Ross, R., Perkins, J. D., & Pistikopoulos, E. N. (2003). New algorithms for mixed-integer dynamic optimization. *Computers & Chemical Engineering*, 27(5), 647-668.
- Belvaux, G., & Wolsey, L. A. (2001). Modelling practical lot-sizing problems as mixed-integer programs. *Management Science*, 47(7), 993-1007.
- Chu, Y., & You, F. (2013). Integrated scheduling and dynamic optimization of complex batch processes with general network structure using a generalized benders decomposition approach. *Industrial & Engineering Chemistry Research*, 52(23), 7867-7885.
- de Araujo, S. A., Arenales, M. N., & Clark, A. R. (2007). Joint rolling-horizon scheduling of materials processing and lot-sizing with sequence-dependent setups. *Journal of Heuristics*, *13*(4), 337-358.
- Drexl, A., & Kimms, A. (1997). Lot sizing and scheduling—survey and extensions. *European Journal of Operational Research*, 99(2), 221-235.
- Drori, L., & Peleg, D. (2002). Faster exact solutions for some NP-hard problems. *Theoretical Computer Science*, 287(2), 473-499.
- Dumas, Y., Desrosiers, J., Gelinas, E., & Solomon, M. M. (1995). An optimal algorithm for the traveling salesman problem with time windows. *Operations research*, 43(2), 367-371.
- Fleischmann, B., & Meyr, H. (1997). The general lotsizing and scheduling problem. *OR spectrum*, 19(1), 11-21.
- Gupta, D., & Magnusson, T. (2005). The capacitated lot-sizing and scheduling problem with sequence-dependent setup costs and setup times. *Computers & Operations Research*, 32(4), 727-747.
- Haase, K. (1996). Capacitated lot-sizing with sequence dependent setup costs. *OR spectrum*, *18*(1), 51-59.
- Haase, K., & Kimms, A. (2000). Lot sizing and scheduling with sequence-dependent setup costs and times and efficient rescheduling opportunities. *International Journal of Production Economics*, 66(2), 159-169.
- Held, M., & Karp, R. M. (1962). A dynamic programming approach to sequencing problems. *Journal of the Society for Industrial and Applied Mathematics*, 10(1), 196-210.
- Hwang, R., Chang, R.-C., & Lee, R. C. T. (1993). The searching over separators strategy to solve some NP-hard problems in subexponential time. *Algorithmica*, *9*(4), 398-423.
- Kämpf, M., & Köchel, P. (2006). Simulation-based sequencing and lot size optimisation for a production-and-inventory system with multiple items. *International Journal of Production Economics*, 104(1), 191-200.
- Karimi, B., Ghomi, S. F., & Wilson, J. (2003). The capacitated lot sizing problem: a review of models and algorithms. *Omega*, *31*(5), 365-378.

- Kovács, A., Brown, K. N., & Tarim, S. A. (2009). An efficient MIP model for the capacitated lot-sizing and scheduling problem with sequence-dependent setups. *International Journal of Production Economics*, *118*(1), 282-291.
- Lin, X., Floudas, C. A., Modi, S., & Juhasz, N. M. (2002). Continuous-time optimization approach for medium-range production scheduling of a multiproduct batch plant. *Industrial & Engineering Chemistry Research*, 41(16), 3884-3906.
- Meyr, H. (2000). Simultaneous lotsizing and scheduling by combining local search with dual reoptimization. *European Journal of Operational Research*, *120*(2), 311-326.
- Meyr, H. (2002). Simultaneous lotsizing and scheduling on parallel machines. *European Journal of Operational Research*, 139(2), 277-292.
- Prata, A., Oldenburg, J., Kroll, A., & Marquardt, W. (2008). Integrated scheduling and dynamic optimization of grade transitions for a continuous polymerization reactor. *Computers & Chemical Engineering*, *32*(3), 463-476.
- Salomon, M., Solomon, M. M., Van Wassenhove, L. N., Dumas, Y., & Dauzère-Pérès, S. (1997). Solving the discrete lotsizing and scheduling problem with sequence dependent set-up costs and set-up times using the travelling salesman problem with time windows. *European Journal of Operational Research*, 100(3), 494-513.
- Woeginger, G. J. (2003). Exact algorithms for NP-hard problems: A survey. *Lecture* notes in computer science, 2570(2003), 185-207.
- You, F., Castro, P. M., & Grossmann, I. E. (2009). Dinkelbach's algorithm as an efficient method to solve a class of MINLP models for large-scale cyclic scheduling problems. *Computers & Chemical Engineering*, 33(11), 1879-1889.

53

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

APPENDIX I: Data usage

The data used in this study can be categorized in 2 sets

- The fixed parameters
- The scenario based parameters

The fixed parameters are the parameters that fixed for all test scenarios including

- Inventory Handling $Cost(h_i)$
- Capacity consumption of each production unit (a_i) ,
- Minimum Lot-size (m_i) ,
- Cost of External Supply (C_j)

		1/		
	h_j	a _j	m_j	Cj
Product 1	15%	1	100	200
Product 2	15%	1	100	250
Product 3	15%	0.85	120	230
Product 4	15%	0.85	120	200
Product 5	15%	1.2	90	230
Product 6	15%	1.2	90	250

จหาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

• Capacity (K_t)

	SCN 1-8	Stress Test
Product 1	2400	15000
Product 2	2700	15000
Product 3	2400	15000
Product 4	2700	15000
Product 5	2400	15000
Product 6	2700	15000
Product 7	N/A	15000
Product 8	N/A	15000
Product 9	N/A	15000
Product 10	N/A	15000
Product 11	N/A	15000
Product 12	N/A	15000

	SCN 1-8	Stress Test
Product 13	N/A	15000
Product 14	N/A	15000
Product 15	N/A	15000
Product 16	N/A	15000
Product 17	N/A	15000
Product 18	N/A	15000
Product 19	N/A	15000
Product 20	N/A	15000
Product 21	N/A	15000
Product 22	N/A	15000
Product 23	N/A	15000
Product 24	N/A	15000

• Switching Cost(s	s _{ij})
--------------------	-------------------

11.5	11	10.5	10	9.5	9	8.5	~	7.5	7	6.5	6	5.5	5	4.5	4	3.5	3	2.5	2	1.5	1	0.5	
11	10.5	10	9.5	6	8.5	~	7.5	7	6.5	9	5.5	5	4.5	4	3.5	3	2.5	2	1.5	1	0.5		21
10.5	10	9.5	6	8.5	8	7.5	٢	6.5	9	5.5	5	4.5	4	3.5	9	2.5	5	1.5	1	0.5		20.5	20.5
10	9.5	6	8.5	~	7.5	7	6.5	9	5.5	5	4.5	4	3.5	9	2.5	2	1.5	1	0.5		20	20	8
9.5	6	8.5	~	7.5	7	6.5	9	5.5	5	4.5	4	3.5	m	2.5	2	1.5	1	0.5		19.5	19.5	19.5	19.5
6	8.5		7.5	7	6.5	6	5.5	5	4.5	4	3.5	6	2.5	2	1.5	1	0.5		19	19	19	19	19
8.5	~	7.5	7	6.5	9	5.5	5	4.5	4	3.5	e	2.5	5	1.5	1	0.5		18.5	18.5	18.5	18.5	18.5	18.5
	7.5	7	6.5	9	5.5	5	4.5	4	3.5	9	2.5	2	1.5	1	0.5		18	18	18	18	18	18	18
7.5	7	6.5	9	5.5	5	4.5	4	3.5	6	2.5	5	1.5	-	0.5		17.5	17.5	17.5	17.5	17.5	17.5	17.5	17.5
7	6.5	9	5.5	5	4.5	4	3.5	e	2.5	2	1.5	1	0.5		17	17	17	17	17	17	17	17	17
6.5	9	5.5	5	4.5	4	3.5	6	2.5	2	1.5	1	0.5		16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5	16.5
9	5.5	5	4.5	4	3.5	в	2.5	2	1.5	1	0.5		16	16	16	16	16	16	16	16	16	16	16
5.5	5	4.5	4	3.5	9	2.5	2	1.5	1	0.5		15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5	15.5
5	4.5	4	3.5	9	2.5	2	1.5	1	0.5		15	15	15	15	15	15	15	15	15	15	15	15	15
4.5	4	3.5	9	2.5	2	1.5	1	0.5		14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5	14.5
4	3.5	9	2.5	2	1.5	1	0.5		14	14	14	14	14	14	14	14	14	14	14	14	14	14	14
3.5	в	2.5	2	1.5	1	0.5		13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5	13.5
9	2.5	2	1.5	1	0.5		13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
2.5	2	1.5	1	0.5		12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5	12.5
2	1.5	1	0.5		12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12
1.5	1	0.5		11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5	11.5
1	0.5		11	11	11	11	11	11	11	11	11	11	=	11	11	11	11	11	11	11	11	11	Ξ
0.5		10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5	10.5
	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10	10
I	9	<i>۳</i>	Ą	5	ø	5	89	0	10	11	12	13	14	15	91	17	18	61	20	21	77	23	7
	<i>I</i> 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5	I 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 2 10 0.5 1 1.5 2 3 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 2 10 0.5 1 7.5 8 8.5 9 9.5 10 10.5 11 11.5	I 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 2 10 0.5 1 1.5 2 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 2 10 10.5 1 1.5 2 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 3 10 10.5 1 1.5 2 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 3 10 10.5	I 0.5 1 1.5 2 2.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 2 10 0.5 1 1.5 2 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 3 10 10.5 1 1.5 2 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 3 10 10.5 11 1.5 2 3.5 4 4.5 5 5.5 6 6.5 7 7.7 8 8.5 9 9.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 <th>I 0.5 1 1.5 2 2.5 3 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 2 10 1.5 1 1.5 2 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 3 10 10.5 1 1.5 2 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 4 10 10.5 11 1.5 2 2.5 3 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 4 10 10.5 1 1.5 2 3.5 4 4.5 5</th> <th>1 0.5 1 1.5 2 2.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 2 10 1.5 1 1.5 2 3 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 3 10 10.5 1 1.5 2 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.</th> <th>I 0.5 1 1.5 2 2 3 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 10 10.5 11 11.5 2 10 1.5 1 1.5 2 3 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 10.5 11 10.5 11 10.5 11 10.5 10</th> <th>1 0.5 1 1.5 2 2.5 3 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 2 10 1.5 1 1.5 2 3 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 10.5 10 10.5 10 10.5 11 11.5 2 2.5 3 3.5 4 4.5 5 5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10<</th> <th>I 05 1 15 2 25 4 45 55 6 65 7 75 8 85 9 95 10 105 11 115 1 10 15 1 15 2 2 3 35 4 45 5 56 65 7 75 8 85 9 95 10 105 11 10 105 11 15 2 3 35 4 45 5 56 65 7 75 8 85 9 95 10 105 10 10 105 11 115 12 2 2 3 35 4 45 5 5 6 65 7 75 8 85 9 95 10 105 10 105 11 115 12 15 2 2 2 2 5 <</th> <th>1 0.5 1 1.5 2 2 3 3 4 45 5 6 65 7 75 8 85 9 10 105 11 11.5 1 10 1 15 1 15 2 25 4 45 5 5 6 65 7 75 8 85 9 95 10 105 11 4 10 105 11 15 2 3 4 45 5 5 6 65 7 75 8 85 9 95 10 105 11 4 10 105 11 115 12 2 2 2 3 4 45 5 5 6 65 7 75 8 8 9 95 10 105 10 105 10 105 10 105 10 105 10 <</th> <th></th> <th></th> <th>1 0.5 1 1.5 2 2 3 4 4.5 5 5 6 6 7 7 8 8 9 9 10 10.5 11 11 1 10.5 1 1.5 2 3 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10 10 10 10 10 10 10<!--</th--><th>1 0.5 1 1.5 2.5 3.5 4.5 5.5 6 5.7 7.5 8 9.5 9.5 10 10.5 11 11.5 11.5 11.5 11.5 12.5 3.5 4.5 5.5 6 6.5 7 7.5 8 9 9.5 10 10.5 11.5 11.5 12.5 3.5 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5</th><th>1 1</th><th>1 0 1 1 2 2 3 3 4 45 5 5 5 7 7 8 9 95 10 105 11 113 1 10 10 1 15 2 2 3 4 45 5 6 65 7 75 8 95 95 10 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105</th><th>1 0 1</th><th>I 0.5 1 1.5 2 <th2< th=""> 2 2 2</th2<></th><th>I 0.5 1 1.5 2.5 3.5 4 4.5 <t></t></th><th>I 0.5 1 1.5 2.5 3.5 4.5 5.5</th><th>I 0.5 1 1.5 2.5 3.5 4 4.5 <th< th=""><th>111</th><th>111</th></th<></th></th>	I 0.5 1 1.5 2 2.5 3 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 2 10 1.5 1 1.5 2 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 3 10 10.5 1 1.5 2 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 4 10 10.5 11 1.5 2 2.5 3 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 4 10 10.5 1 1.5 2 3.5 4 4.5 5	1 0.5 1 1.5 2 2.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 2 10 1.5 1 1.5 2 3 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 3 10 10.5 1 1.5 2 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.	I 0.5 1 1.5 2 2 3 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 10 10.5 11 11.5 2 10 1.5 1 1.5 2 3 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 10.5 11 10.5 11 10.5 11 10.5 10	1 0.5 1 1.5 2 2.5 3 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 11.5 2 10 1.5 1 1.5 2 3 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 11 10.5 10 10.5 10 10.5 11 11.5 2 2.5 3 3.5 4 4.5 5 5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10 10.5 10<	I 05 1 15 2 25 4 45 55 6 65 7 75 8 85 9 95 10 105 11 115 1 10 15 1 15 2 2 3 35 4 45 5 56 65 7 75 8 85 9 95 10 105 11 10 105 11 15 2 3 35 4 45 5 56 65 7 75 8 85 9 95 10 105 10 10 105 11 115 12 2 2 3 35 4 45 5 5 6 65 7 75 8 85 9 95 10 105 10 105 11 115 12 15 2 2 2 2 5 <	1 0.5 1 1.5 2 2 3 3 4 45 5 6 65 7 75 8 85 9 10 105 11 11.5 1 10 1 15 1 15 2 25 4 45 5 5 6 65 7 75 8 85 9 95 10 105 11 4 10 105 11 15 2 3 4 45 5 5 6 65 7 75 8 85 9 95 10 105 11 4 10 105 11 115 12 2 2 2 3 4 45 5 5 6 65 7 75 8 8 9 95 10 105 10 105 10 105 10 105 10 105 10 <			1 0.5 1 1.5 2 2 3 4 4.5 5 5 6 6 7 7 8 8 9 9 10 10.5 11 11 1 10.5 1 1.5 2 3 3.5 4 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10 10 10 10 10 10 10 </th <th>1 0.5 1 1.5 2.5 3.5 4.5 5.5 6 5.7 7.5 8 9.5 9.5 10 10.5 11 11.5 11.5 11.5 11.5 12.5 3.5 4.5 5.5 6 6.5 7 7.5 8 9 9.5 10 10.5 11.5 11.5 12.5 3.5 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5</th> <th>1 1</th> <th>1 0 1 1 2 2 3 3 4 45 5 5 5 7 7 8 9 95 10 105 11 113 1 10 10 1 15 2 2 3 4 45 5 6 65 7 75 8 95 95 10 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105</th> <th>1 0 1</th> <th>I 0.5 1 1.5 2 <th2< th=""> 2 2 2</th2<></th> <th>I 0.5 1 1.5 2.5 3.5 4 4.5 <t></t></th> <th>I 0.5 1 1.5 2.5 3.5 4.5 5.5</th> <th>I 0.5 1 1.5 2.5 3.5 4 4.5 <th< th=""><th>111</th><th>111</th></th<></th>	1 0.5 1 1.5 2.5 3.5 4.5 5.5 6 5.7 7.5 8 9.5 9.5 10 10.5 11 11.5 11.5 11.5 11.5 12.5 3.5 4.5 5.5 6 6.5 7 7.5 8 9 9.5 10 10.5 11.5 11.5 12.5 3.5 4.5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10 10.5	1 1	1 0 1 1 2 2 3 3 4 45 5 5 5 7 7 8 9 95 10 105 11 113 1 10 10 1 15 2 2 3 4 45 5 6 65 7 75 8 95 95 10 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105	1 0 1	I 0.5 1 1.5 2 <th2< th=""> 2 2 2</th2<>	I 0.5 1 1.5 2.5 3.5 4 4.5 <t></t>	I 0.5 1 1.5 2.5 3.5 4.5 5.5	I 0.5 1 1.5 2.5 3.5 4 4.5 <th< th=""><th>111</th><th>111</th></th<>	111	111

•	Switching Time(st _{ij})
---	-----------------------------------

24	4.86	4.65	4.43	4.22	4.01	3.80	3.59	3.38	3.17	2.96	2.75	2.53	2.32	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21	
23	4.65	4.43	4.22	4.01	3.80	3.59	3.38	3.17	2.96	2.75	2.53	2.32	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		8.87
22	4.43	4.22	4.01	3.80	3.59	3.38	3.17	2.96	2.75	2.53	2.32	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		8.66	8.66
21	4.22	4.01	3.80	3.59	3.38	3.17	2.96	2.75	2.53	232	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		8.45	8.45	8.45
20	4.01	3.80	3.59	3.38	3.17	2.96	2.75	2.53	2.32	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		8.24	8.24	8.24	8.24
19	3.80	3.59	3.38	3.17	2.96	2.75	2.53	2.32	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		8.02	8.02	8.02	8.02	8.02
18	3.59	3.38	3.17	2.96	2.75	2.53	2.32	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		7.81	7.81	7.81	7.81	7.81	7.81
17	3.38	3.17	2.96	2.75	2.53	2.32	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		7.60	7.60	7.60	7.60	7.60	7.60	7.60
16	3.17	2.96	2.75	2.53	2.32	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		7.39	7.39	7.39	7.39	7.39	7.39	7.39	7.39
15	2.96	2.75	2.53	2.32	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		7.18	7.18	7.18	7.18	7.18	7.18	7.18	7.18	7.18
14	2.75	2.53	2.32	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		6.97	6.97	6.97	6.97	6.97	6.97	6.97	6.97	6.97	6.97
13	2.53	2.32	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		6.76	6.76	6.76	6.76	6.76	6.76	6.76	6.76	6.76	6.76	6.76
12	2.32	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		6.55	6.55	6.55	6.55	6.55	6.55	6.55	6.55	6.55	6.55	6.55	6.55
п	2.11	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		6.33	6.33	6.33	6.33	6.33	6.33	6.33	6.33	6.33	6.33	6.33	6.33	6.33
10	1.90	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		6.12	6.12	6.12	6.12	6.12	6.12	6.12	6.12	6.12	6.12	6.12	6.12	6.12	6.12
6	1.69	1.48	1.27	1.06	0.84	0.63	0.42	0.21		5.91	5.91	5.91	5.91	5.91	5.91	5.91	5.91	5.91	5.91	5.91	5.91	5.91	5.91	5.91
8	1.48	1.27	1.06	0.84	0.63	0.42	0.21		5.70	5.70	5.70	5.70	5.70	5.70	5.70	5.70	5.70	5.70	5.70	5.70	5.70	5.70	5.70	5.70
٢	1.27	1.06	0.84	0.63	0.42	0.21		5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49	5.49
9	1.06	0.84	0.63	0.42	0.21		5.28	5.28	5.28	5.28	5.28	5.28	5.28	5.28	5.28	5.28	5.28	5.28	5.28	5.28	5.28	5.28	5.28	5.28
9	0.84	0.63	0.42	0.21		5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07	5.07
4	0.63	0.42	0.21		4.86	4.86	4.86	4.86	4.86	4.86	4.86	4.86	4.86	4.86	4.86	4.86	4.86	4.86	4.86	4.86	4.86	4.86	4.86	4.86
3	0.42	0.21		4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65	4.65
2	0.21		4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43	4.43
1		4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22	4.22
ST_{ij}	1	2	ŝ	4	5	9	7	80	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24

The scenario based parameters	are the parameter that	changed in each s	cenario,	which
is demand (d_j)				

Demand of Scenario 1 (Demand in Ton)

-period	15	397	445	455	441	397	445	
Macro	14	397	389	455	412	397	389	
	13	397	389	455	412	397	389	
	12	441	389	412	412	441	389	
	11	441	389	390	412	441	389	
	10	441	397	429	455	441	397	
	6	441	397	445	455	441	397	
	8	412	397	389	455	412	397	
	7	412	397	389	455	412	397	
	6	412	441	389	412	412	441	
	5	412	441	389	390	412	441	
	4	455	441	397	429	455	441	
	3	455	441	397	445	455	441	
	2	455	412	397	389	455	412	
	1	455	412	397	389	455	412	
		Product 1	Product 2	Product 3	Product 4	Product 5	Product 6	

pq		~		~	~	~	
o-peri	30	412	44]	389	412	412	44]
Macr	29	412	441	389	390	412	441
	28	455	141	397	429	455	441
	27	455	141	397	445	455	441
	26	455	412	397	389	455	412
	25	455	412	397	389	455	412
	24	412	412	441	389	412	412
	23	390	412	441	389	390	412
	22	429	455	441	397	429	455
	21	445	455	441	397	445	455
	20	389	455	412	397	389	455
	19	389	455	412	397	389	455
	18	389	412	412	441	389	412
	17	389	390	412	441	389	390
	16	397	429	455	441	397	429
		Product 1	Product 2	Product 3	Product 4	Product 5	Product 6

14 15		397 397	389 445	455 455	412 441	397 397	389 445	
	13	397	389	910	412	0	389	
	12	441	389	412	412	441	389	
	11	441	778	390	0	441	389	
	10	441	397	429	455	441	397	
	9	441	794	0	455	441	397	
	8	412	397	389	455	412	397	
	7	412	397	389	455	412	397	
	6	412	441	778	412	0	441	
	5	412	441	389	390	412	441	
	4	455	882	397	0	455	441	
	3	455	441	397	445	455	441	
	2	455	824	0	389	455	412	
	1	455	412	397	389	455	412	
		Product 1	Product 2	Product 3	Product 4	Product 5	Product 6	

														Macro	-period
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Product 1	397	389	389	389	389	445	429	390	412	455	455	455	455	412	412
Product 2	858	390	824	455	455	455	455	824	412	824	412	441	441	882	441
Product 3	0	412	412	412	824	441	441	0	441	397	397	794	397	0	389
Product 4	441	441	0	397	397	397	397	389	389	0	389	445	429	390	412
Product 5	397	389	389	389	0	445	429	390	412	455	455	0	455	412	412
Product 6	429	390	412	455	455	455	455	412	412	412	412	441	441	441	441

Demand of Scenario 2 (Demand in Ton)

-period	15	397	445	455	441	0	842	-period	30	412	441	801	412	412	441
Macro	14	794	389	455	412	0	389	Macro	29	412	441	389	802	412	441
	13	397	389	852	412	397	389		28	455	441	852	429	0	441
	12	882	389	412	412	0	389		27	455	441	852	445	0	441
	11	441	389	390	412	0	830		26	910	412	397	389	0	412
	10	441	397	429	455	0	838		25	910	412	397	389	0	412
	6	441	397	445	455	0	838		24	824	412	441	389	0	412
	8	824	397	389	455	0	397		23	390	412	831	389	0	412
	7	412	809	389	455	0	397		22	858	455	441	397	0	455
	6	412	441	801	412	0	441		21	890	455	441	397	0	455
	5	412	441	801	390	0	441		20	389	844	412	397	0	455
	4	455	441	852	429	0	441		19	389	455	412	786	0	455
	3	455	441	397	445	0	896		18	389	801	412	441	0	412
	2	910	412	397	389	0	412		17	389	390	412	441	0	6 <i>LL</i>
	1	455	412	852	389	455	412		16	397	429	852	441	0	429
		Product 1	Product 2	Product 3	Product 4	Product 5	Product 6			Product 1	Product 2	Product 3	Product 4	Product 5	Product 6

Demand of Scenario 3 (Demand in Ton)
														INTEGLO	-herron
	1	2	3	4	5	6	7	8	6	10	11	12	13	14	15
Product 1	455	455			412	412	412		441	441	441		397	397	397
Product 2	412	412			441	441	397		397	397	389		389	389	445
Product 3	397	397			389	389	389		445	429	390		455	455	455
Product 4	389	389			390	412	455		455	455	412		412	412	441
Product 5	455	455			412	412	412		441	441	441		397	397	397
Product 6	412	412			441	441	397		397	397	389		389	389	445
														Macro	-period
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Product 1	397		389	389	389		429	390	412	455		455	455	412	412
Product 2	429		412	455	455		455	412	412	412		441	441	441	441
Product 3	455		412	412	412		441	441	441	397		397	397	389	389
Product 4	441		441	397	397		397	389	389	389		445	429	390	412

Demand of Scenario 4 (Demand in Ton)

412 441

412 441

455 441

455 412

Product 5 Product 6

riod	15	01	10	97	21	60	84	riod	30	52	77	29	35	26	29
ro-pei		3	2	7	4	4	2	ro-pei		6	3	3	3	7	7
Mac	14	343	306	774	209	621	283	Mac	29	236	760	266	338	309	724
	13	594	592	363	211	217	536		28	609	253	677	263	454	288
	12	708	676	706	568	477	682		27	212	709	301	660	651	446
	11	636	566	755	312	552	317		26	445	696	524	271	761	593
	10	212	386	319	690	582	542		25	324	375	646	415	321	428
	6	760	517	203	567	276	676		24	243	426	306	668	413	211
	8	707	596	302	745	520	614		23	737	666	646	611	458	659
	7	617	246	365	238	493	232		22	268	768	780	249	530	317
	6	685	561	672	582	475	415		21	756	234	581	698	374	430
	5	216	401	206	758	501	634		20	627	726	313	371	341	738
	4	651	751	343	758	265	768		19	399	246	421	672	512	598
	3	763	407	551	494	259	551		18	443	669	528	206	736	539
	2	411	475	394	485	722	399		17	306	632	707	665	341	482
	1	579	516	588	425	249	607		16	425	653	411	726	529	785
		ct 1	ct 2	ct 3	ct 4	ct 5	ct 6			ct 1	ct 2	ct 3	ct 4	ct 5	ct 6
		Produ	Produc	Produ	Produc	Produ	Produc			Produ	Produ	Produ	Produc	Produ	Produc

Demand of Scenario 5 (Demand in Ton)

-period	15	267	215	238	298	343	324	-period	30	258	294	209	266	400
Macro	14	316	322	346	249	317	359	Macro	29	274	266	314	254	242
	13	228	284	351	329	257	226		28	328	276	353	291	333
	12	207	209	305	232	296	309		27	279	400	373	203	223
	11	202	334	221	352	312	356		26	399	270	262	231	342
	10	393	260	226	400	286	368		25	391	205	381	375	378
	6	262	253	302	297	227	294		24	262	271	378	326	364
	8	289	213	365	270	273	249		23	234	354	212	357	203
	7	329	223	388	379	697	344		22	306	668	210	325	262
	6	305	278	400	364	385	320		21	244	356	288	296	253
	5	311	211	267	206	267	285		20	289	334	281	370	378
	4	390	375	395	210	333	366		19	365	60£	330	268	349
	3	285	288	275	343	281	290		18	267	355	340	204	291
	2	206	210	243	328	343	231		17	366	219	205	291	251
	1	314	300	342	384	389	350		16	259	208	210	286	332
		Product 1	Product 2	Product 3	Product 4	Product 5	Product 6			Product 1	Product 2	Product 3	Product 4	Product 5

Demand of Scenario 6 (Demand in Ton)

Product 6

								_							
15	1	197	168	313	129	204	378	o-period	30	281	226	295	201	59	67
14	1+	22	39	383	389	<i>L</i> 67	183	Macro	29	49	117	372	367	336	224
12	CI	355	127	172	378	85	386		28	147	271	116	280	22	375
13	14	15	291	363	309	347	106		27	386	193	158	309	150	143
11	11	346	395	320	147	342	125		26	398	56	246	40	144	197
10	Γſ	36	301	4	400	200	391		25	261	394	226	243	357	257
0	٧	103	211	235	239	226	276		24	322	107	257	336	364	382
0	0	179	120	49	11	209	77		23	366	359	249	322	48	76
Ľ	,	196	292	176	105	363	149		22	288	280	144	159	220	121
y	0	393	133	244	119	70	82		21	82	379	318	62	118	30
¥	n	338	53	200	80	142	143		20	292	246	174	120	49	123
Y	t	373	22	96	103	40	26		19	282	173	236	306	179	352
6	n	173	149	103	192	279	207		18	353	63	81	90	295	17
ç	7	92	103	66	108	391	194		17	152	348	4	365	289	361
-	1	190	1	313	95	228	14		16	307	317	383	220	130	48
		Product 1	Product 2	Product 3	Product 4	Product 5	Product 6			Product 1	Product 2	Product 3	Product 4	Product 5	Product 6

Demand of Scenario 7 (Demand in Ton)

														Macro	-period
	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15
Product 1	181	412	536	339	567	244	348	180	368	689	487	524	147	416	286
Product 2	374	521	128	495	290	361	72	316	721	440	250	568	530	82	510
Product 3	59	561	133	211	635	337	671	52	793	490	743	734	72	718	538
Product 4	753	517	465	426	503	186	759	718	181	131	34	201	588	634	206
Product 5	LL	177	70	403	462	530	869	126	525	27	638	599	119	750	84
Product 6	539	741	492	479	451	674	345	76	639	246	643	640	498	138	1
														Macro	-period
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
Product 1	505	377	517	281	255	624	776	434	480	762	123	649	316	291	200
Product 2	498	314	4	732	197	12	252	65	756	63	574	109	475	240	48
Product 3	237	754	761	478	198	509	607	724	769	137	234	784	482	698	682
Product 4	208	572	775	216	268	243	771	306	439	694	286	414	107	101	697
Product 5	710	340	140	391	395	4	613	101	194	717	602	582	67	732	230
Product 6	707	456	588	305	574	125	293	561	781	623	748	748	692	674	433

Demand of Scenario 8 (Demand in Ton)

	-period	15	267	215	238	298	343	324	278	255	353	223	237	330	387	338	262
	Macro	14	316	322	346	249	317	359	303	250	298	396	233	291	336	388	244
		13	228	284	351	329	257	226	269	271	309	390	400	353	314	223	265
		12	207	209	305	232	296	309	364	352	204	276	298	210	298	226	329
		11	202	334	221	352	312	356	236	273	288	354	257	257	387	346	239
		10	393	260	226	400	286	368	205	256	320	351	352	271	276	349	397
		6	262	253	302	297	227	294	364	340	261	236	214	296	375	361	333
		8	289	213	365	270	273	249	347	326	400	338	278	336	375	287	379
		7	329	223	388	379	269	344	357	328	335	203	348	349	316	249	206
		9	305	278	400	364	385	320	288	355	334	312	231	339	292	378	297
		5	311	211	267	206	267	285	309	364	387	258	307	343	232	241	308
		4	390	375	395	210	333	366	235	203	301	244	300	286	203	358	272
,		3	285	288	275	343	281	290	328	296	393	306	302	316	206	274	370
		2	206	210	243	328	343	231	311	290	275	376	213	283	266	254	244
		1	314	300	342	384	389	350	361	351	387	360	273	286	277	214	321
			Product 1	Product 2	Product 3	Product 4	Product 5	Product 6	Product 7	Product 8	Product 9	Product 10	Product 11	Product 12	Product 13	Product 14	Product 15

Demand of Scenario 6: Stress Test (Demand in Ton)

-period	30	267	215	238	298	343	324	348	371	262	203	322	234	396	372	336
Macro	29	316	322	346	249	317	359	361	369	208	243	371	352	216	317	277
	28	228	284	351	329	257	226	302	240	302	211	326	322	304	303	357
	27	207	209	305	232	296	309	318	329	322	341	349	299	379	341	248
	26	202	334	221	352	312	356	382	230	394	313	329	367	348	357	301
	25	393	260	226	400	286	368	220	240	208	273	242	308	370	371	279
	24	262	253	302	297	227	294	229	314	275	284	339	341	281	320	301
	23	289	213	365	270	273	249	207	375	395	295	377	279	380	386	258
	22	329	223	388	379	269	344	247	391	220	312	211	201	368	343	203
	21	305	278	400	364	385	320	349	353	316	267	395	262	320	220	375
	20	311	211	267	206	267	285	213	248	267	301	374	287	388	290	400
	19	390	375	395	210	333	366	277	283	387	291	287	330	297	274	353
	18	285	288	275	343	281	290	300	279	301	364	325	233	333	398	370
	17	206	210	243	328	343	231	350	330	240	365	267	232	299	328	359
	16	314	300	342	384	389	350	290	246	260	264	333	294	260	227	302
		Product 1	Product 2	Product 3	Product 4	Product 5	Product 6	Product 7	Product 8	Product 9	Product 10	Product 11	Product 12	Product 13	Product 14	Product 15

-period	15	374	209	282	328	363	236	243	219	270
Macro	14	330	331	284	292	247	365	245	331	365
	13	273	367	223	216	333	233	357	244	370
	12	250	232	270	381	333	347	252	285	310
	11	244	390	301	308	215	370	381	324	322
	10	277	374	375	384	217	253	291	268	247
	6	347	344	387	341	374	210	230	307	259
	8	232	225	287	237	344	292	356	228	203
	7	259	303	399	350	248	292	240	341	268
	9	360	266	245	258	219	247	277	240	301
	5	359	240	220	238	311	378	249	213	272
	4	381	351	392	329	216	301	273	257	301
	3	296	252	336	236	331	395	394	310	237
	2	395	397	386	243	368	325	288	366	316
	1	325	328	358	226	264	286	357	343	342
		Product 16	Product 17	Product 18	Product 19	Product 20	Product 21	Product 22	Product 23	Product 24

Macro-period	29 30	04 395	81 283	20 244	316 316	363 363	309	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	56 393	256 393 256 393 203 286
1	28	280 2	276 2	273 2	219 2	319 2	292		265 2	265 2
	27	382	336	391	371	367	247		288	288 326
	26	229	316	277	240	352	358		383	383 324
	25	247	244	219	344	295	234		282	282 224
	24	301	272	238	352	389	289		230	230 326
	23	349	283	383	302	287	241		226	226 240
	22	331	322	305	353	274	227		268	268 395
	21	386	265	240	329	265	274		326	326 369
	20	215	357	348	294	219	202		271	271 258
	19	242	399	266	217	362	280	000	787	282
	18	317	252	246	320	330	327	000	000	268
	17	245	342	347	237	267	254	786	207	210
	16	383	356	209	277	245	334	385	222	365
		Product 16	Product 17	Product 18	Product 19	Product 20	Product 21	Product 22		Product 23

	period	15	286	510	538	206	84	1	680	357	649	468	126	45	512	647	293
	Macro	14	416	82	718	634	750	138	429	211	517	100	380	522	33	195	464
		13	147	530	72	588	119	498	447	248	405	503	743	734	493	262	218
		12	524	568	734	201	599	640	234	560	412	723	469	714	304	783	724
		11	487	250	743	34	638	643	479	101	153	44	352	229	140	372	77
		10	689	440	490	131	27	246	699	535	728	235	565	646	237	648	89
		6	368	721	793	181	525	639	567	648	461	446	594	64	522	359	481
		8	180	316	52	718	126	76	262	607	739	345	604	717	635	279	160
		7	348	72	671	759	698	345	41	262	396	619	230	607	30	106	486
		6	244	361	337	186	530	674	68	611	566	378	547	410	112	88	433
;		5	267	290	635	503	462	451	212	631	379	415	398	438	636	06	648
		4	339	495	211	426	403	479	696	314	391	373	498	123	681	602	361
		3	236	128	133	465	0/	492	520	141	88	257	323	899	86	333	23
		2	412	521	561	517	177	741	762	722	306	411	697	917	285	663	513
		1	181	374	59	753	77	539	379	482	366	5	137	610	287	613	37
			Product 1	Product 2	Product 3	Product 4	Product 5	Product 6	Product 7	Product 8	Product 9	Product 10	Product 11	Product 12	Product 13	Product 14	Product 15

Demand of Scenario 6: Stress Test (Demand in Ton)

Macro-period	29 30	291 200	240 48	698 682	101 697		732 230	732 230 674 433	732 230 674 433 776 285	732 230 674 433 776 285 621 792	732 230 674 433 776 285 621 792 541 126	732 230 674 433 776 285 621 792 541 126 269 642	732 230 674 433 776 285 621 792 541 126 269 642 482 201	732 230 674 433 674 433 776 285 621 792 621 792 541 126 269 642 482 201 185 482	732 230 674 433 776 285 621 792 621 792 541 126 269 642 282 201 185 482 185 483 106 483	732 230 674 433 776 285 621 792 641 126 541 126 542 201 185 482 185 483 106 483 660 347
	28	316	475	482	107	;	67	67 692	67 692 111	67 692 111 712	67 692 111 712 99	67 692 111 712 99 318	67 692 712 712 99 318 278	67 692 111 712 99 99 318 318 88	67 692 111 712 99 99 318 318 278 88 88 635	67 692 111 712 99 99 99 318 318 318 88 88 88 88 88 535 635
	27	649	109	784	414	1	582	582 748	582 748 370	582 748 370 658	582 748 370 658 278	582 748 370 658 278 787	582 748 370 658 278 787 101	582 748 370 658 658 278 787 787 787 787	582 748 370 658 658 278 787 787 101 101 738	582 748 370 658 658 658 787 101 101 72 72 738 738 738
	26	123	574	234	286	502	700	748	748 386	002 748 386 267	002 748 386 267 298	2002 748 386 267 298 298 465	2002 748 386 267 267 298 298 465 514	002 748 386 267 267 298 465 514 514	748 748 386 267 267 298 465 714 767 726	002 748 386 267 267 298 298 514 767 767 726 228
	25	762	63	137	694	717		623	623 109	623 109 73	623 109 73 484	623 109 73 484 650	623 623 73 73 484 650 103	623 623 73 73 484 650 103 740	623 623 73 73 484 650 650 103 740 12	623 109 73 484 650 650 103 103 103 740 720 571 571
	24	480	756	769	439	194		781	781 90	781 90 245	781 90 245 762	781 90 245 762 507	781 90 245 762 507 87	781 90 245 762 507 87 643	781 90 245 762 507 87 87 643 365	781 90 245 762 507 87 87 87 87 87 8365 303
	23	434	65	724	306	101		561	561 184	561 184 723	561 184 723 4	561 184 723 4 360	561 184 723 4 360 507	561 184 723 4 360 507 501	561 184 184 723 723 723 723 723 723 723 723 723 723 723 723 723 723 723 723 723 723 723 724 725 727 732	561 184 723 4 360 507 507 501 732 446
	22	776	252	607	771	613		293	293 549	293 549 9	293 549 9 275	293 549 9 275 394	293 549 9 275 394 715	293 549 9 275 394 715 281	293 549 9 275 394 715 715 281 341	293 549 9 275 275 394 715 715 341 341
	21	624	12	509	243	4		125	125 221	125 221 245	125 221 245 76	125 221 245 76 782	125 221 245 76 782 619	125 221 245 76 782 619 619 291	125 221 245 76 782 619 619 291 61	125 221 221 76 76 782 619 619 291 61
	20	255	197	198	268	395		574	574 419	574 419 702	574 419 702 461	574 419 702 461 580	574 419 702 461 580 9	574 419 702 461 580 9 479	574 419 702 702 580 9 9 613	574 419 461 702 580 580 9 9 613 613 340
	19	281	732	478	216	391		305	305 441	305 441 364	305 441 364 349	305 441 364 349 335	305 441 364 349 335 277	305 441 364 364 335 335 335 277 614	305 441 364 349 349 335 277 614 614	305 441 441 364 354 355 335 335 335 277 275 275 275 275 275 275
	18	517	4	761	775	140		588	588 61	588 61 617	588 61 617 49	588 61 617 49 724	588 61 617 49 724 30	588 61 617 617 49 724 30 629	588 61 617 49 724 30 629 16	588 61 617 617 49 49 724 30 629 539
	17	377	314	754	572	340		456	456 277	456 277 308	456 277 308 40	456 277 308 40 371	456 277 308 40 371 213	456 277 308 308 40 371 213 413	456 277 308 40 371 213 213 713 733	456 277 308 40 40 371 213 213 713 733
	16	505	498	237	208	710		707	707 482	707 482 5	707 482 5 308	707 482 5 308 717	707 482 5 308 717 320	707 482 5 308 717 717 320 678	707 482 5 308 308 717 320 678 678	707 482 5 308 308 717 717 320 678 678 564 127
		Product 1	Product 2	Product 3	Product 4	Product 5		Product 0	Product 0 Product 7	Product 0 Product 7 Product 8	Product 0 Product 7 Product 8 Product 9	Product 0 Product 7 Product 8 Product 9 Product 10	Product 0 Product 7 Product 8 Product 10 Product 10	Product 0 Product 7 Product 8 Product 10 Product 11 Product 12	Product 0 Product 7 Product 8 Product 10 Product 11 Product 11 Product 12 Product 13	Product 0 Product 7 Product 8 Product 10 Product 11 Product 12 Product 13 Product 13 Product 14

-period	15	16	545	394	711	544	266	237	135	708
Macro	14	76	511	296	745	63	632	528	339	441
	13	591	367	29	699	6L	107	564	634	335
	12	782	325	552	26	125	361	384	96	139
	11	39	693	351	653	619	6 <i>LL</i>	31	332	45
	10	491	625	754	642	330	614	69	60	126
	6	432	300	544	239	1	590	341	169	770
	8	146	508	11	740	492	525	278	723	641
	7	393	190	104	404	36	249	611	780	578
	9	298	308	692	161	143	359	497	403	703
	5	760	713	740	626	06	44	46	756	279
	4	266	21	413	680	387	729	571	578	719
	3	632	271	252	678	215	385	314	75	248
	2	486	511	492	444	178	25	26	354	214
	1	457	145	713	85	620	586	592	272	60
		Product 16	Product 17	Product 18	Product 19	Product 20	Product 21	Product 22	Product 23	Product 24

Macro-period	30	752	361	611	345	300	488	590	247	341
	29	513	528	86	895	636	487	885	572	331
	28	20	425	56	207	321	614	256	214	382
	27	151	491	612	23	579	111	137	780	555
	26	435	68	187	316	394	226	37	572	197
	25	11	591	244	177	723	163	108	99	226
	24	637	695	317	388	116	374	550	223	121
	23	2	580	151	232	84	263	290	<i>611</i>	747
	22	125	6	82	538	62	38	635	219	141
	21	743	545	062	202	367	686	491	350	467
	20	778	737	519	40	329	549	118	630	120
	19	291	665	330	169	723	652	547	260	529
	18	233	140	099	154	782	<i>LSL</i>	104	181	<i>L</i> 67
	17	109	26	114	151	513	449	406	572	332
	16	539	247	104	323	584	769	286	483	428
		Product 16	Product 17	Product 18	Product 19	Product 20	Product 21	Product 22	Product 23	Product 24

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

VITA

The researcher, Rattapon Patikarnmonthon, was born on 22 May 1981. In 2003, he finished his bachelor's degree in Computer Engineering (B.Eng) from King Mongkut Institute of Technology Ladkrabang, Thailand. In 2009, he earned his Masters of Science degree in Logistics Management (M.Sc.) from Chulalongkorn University, Thailand. Since earning his bachelor's degree, Rattapon has worked in various fields such as Information Technology, Information Systems, Computer Hardware, Software Development, Supply Chain Management, Business Process Improvement, Business Optimization, and Transportation and Business Consulting. He is particularly interested in integrating knowledge across fields to obtain new perspectives and solutions in business and in life.