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Chapter 1  

 

Chapter 1: Introduction 

Manufacturing, operations require several planning levels, including an 

operational plan, tactical plan, and strategic plan. Strategic planning is the core of the 

planning process as it has to match the business strategy.  Actions resulting from such 

planning require long term implementation, i.e. building facilities, re-locating facilities 

and procuring machinery. Tactical planning includes taking into account supply and 

demand for each product, as well as choosing appropriate raw materials. The benefits 

received by one’s business depend heavily on this level of planning. Operational 

planning deals with cost considerations, and as such, the main objective of operational 

planning is to minimize operating costs while still complying with tactical planning 

goals to pursue the ultimate goal of maximizing margins for the business.  

Production scheduling is one of the essential tasks of operational planning. This 

process must indicate actions required on a daily or hourly basis, together with the types 

and quantity of the products required for production, according to fluctuation in 

demand, operational configuration, and production capacity. The inventory carried over 

the period serves as a buffer for demand that might exceed the production capacity in 

each period. Cost minimization has to be considered in this planning to ensure that the 

carrying cost of the inventory is as low as possible, while the demand can still be met. 

The production scheduling process is a straightforward and effective technique that can 

be applied to improve cost minimization. This process can be formulated based on a 

linear programming formulation, which considers demand, inventory carrying cost, and 

production capacity. Solving this problem is straightforward and effective in real 

business situations using the linearity assumption of the formulation. 

 For continuous production, the Changeover Cost is an important variable of the 

production planning, as converting from production of one product to another product 

might increase the cost of the operation. Changeover Cost can be defined as the 

additional cost incurred when a production sequence is altered as the cost for a skipped 

or reversed sequence is normally higher than maintaining the regular sequence. The 

production scheduling has to be carefully considered to reduce unnecessary changeover 

from period to period.  
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The minimum lot size of the production is another factor in continuous 

production. The minimum size of production for each product must be determined 

before changeover to a different product. According to this limitation, the inventory 

helps to minimize the production cost by carrying over the product that exceeds the 

current demand to the next period. 

Adding lot-size and sequence considerations into production scheduling leads 

to transformation of calculations from Linear Programming (LP) to Mixed Integer 

Programming (MILP). The setting up status for each period is defined as the binary 

variables and also for the min-lot consideration which is cast as the integer variable. 

Both sets of the discrete variables add complexity into the formulation. The General 

Lotsizing and Scheduling Problem (GLSP), classified as a Non-Deterministic 

Polynomial-time hard Problem (NP-hard), requires substantial computational time to 

solve. The exact methodology to solve the problem involves taking into account the 

fractionality of the binary variables during computation. This fractionality is the cause 

of a weak bound in branch-and-bound technique that influents the branching technique 

in an appropriate direction and results in a large number of iterations in the computation. 

Enormous resources such as memory and computational time are required for finding 

the solution.  

  
1Figure 1-1: Sample of the Production Scheduling 

 

 

 
2Figure 1 2: Changeover Cost from product i to project (sij) 
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An example of the Production Schedule is shown in Figure 1.1. The number of 

production in each period is indicated in 𝑥𝑗𝑠. In micro-period 𝑠0, the planned production 

was of product 𝑗0 with the amount of 𝑥00. In these 6 periods in the example, the planned 

production was of product 𝑗0, 𝑗2, 𝑗3, 𝑗0, 𝑗1 and 𝑗2 respectively. The plan shows that the 

changeover from product 𝑖 to product 𝑗 was assigned orderly. The Changeover Cost 

from product 𝑖 to product 𝑗 (𝑠𝑖𝑗)  is illustrated in Figure 1.2. The solid line shows the 

minimum changeover cost from one product to another product. The dashed line shows 

the more expensive changeover from product to product.  

 

 
3Figure 1-3: Changeover Variable from product i to product j in time s (zijs) 

 

The large number of binary variables is the Changeover variable (𝑧𝑖𝑗𝑠). This 

binary variable indicates the changeover stage from product i to product j in time s. The 

number of 𝑧𝑖𝑗𝑠 is equal to the number of the product squared multiplied by number of 

micro-period (|𝐽|2×|𝑆|). This set of variables will increase exponentially when the 

number of the product is increased. The increasing of this variable adds to the 

complexity of the problem. During the LP relaxation, this set of variables will face 

fractionality, the part that results in a weak bound in the problem.  

 

This study proposes GLSP improvement by formulating a model by tackling the 

important part of the formulation and the bound from LP relaxation that is used for 

determining the solution gap of the incumbent solution. The tighter bound may lead to 

the calculation of exact methodology to effectively answer this sophisticated problem 

with less memory usage and computational time.    
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1.1 Background and Motivation 

The production scheduling process influences how much of a product is 

supplied and how much inventory will be needed due to demand, limited capacities, 

limited resources or production characteristics. As many constraints are considered in 

scheduling, the development of the optimal production scheduling is difficult to 

perform manually. In addition, many binary variables must be considered which adds 

to the complexity for setting up the computational model. 

 In the previous studies, this problem is categorized as a NP-hard problem. The 

NP-hard problem has characteristics that obstruct computation, increasing in the 

number of parameters, such as time slot or number of product, and generates dramatic 

changes in the number of both linear variables and binary variables. Also, when some 

binary variables increase, they can affect the model in both of size and time consumed.  

 Improvement of the solution methodology for practical implementation can be 

beneficial for a business due to the optimization of the planning process and efficient 

management of the time and material consumed. 

 

1.2 Dissertation Objective 

This dissertation aims to develop a heuristics methodology for the production 

scheduling problem that considers the production lot-size, capacity and sequence in the 

computational model.  In previous studies, researchers have introduced an exact 

methodology for handling the problem; however, this computational model is not 

appropriate for computing as it is considered a NP-hard problem based model that 

generates numerous binary variables, resulting in high time consumption and inaccurate 

calculation.  

Current commercial software with the heuristics methodology was used to 

tackle this problem. If this problem can be overcome by the methodology introduced in 

this study with an acceptable computing time, this study can be useful for the business 

planning in real situations with optimum output. 

 

 

 

 

 

 

 

 

 



 

 

5 

1.3 Dissertation Scope 

 This dissertation focuses on production scheduling with consideration of the 

production lot-size, capacity and sequence characterized as: 

• single machine 

• finite time of production  

• limited capacity in given time (𝐾𝑡) 

• setup cost/time from product 𝑖 to 𝑗 have constant cost/time for each direction 

of transition 

 

Data used in this dissertation, including the capacity (𝐾𝑡) and demand (𝑑𝑗𝑡), were 

obtained from random generation and were used in the model for computing the results. 

 

1.4 Anticipated Benefit 

 This dissertation is expected to introduce a modified formulation to address the 

production scheduling problem that has a tighter bound and is more tractable and 

solvable to use in practical situations. 
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Chapter 2 

 

Chapter 2: Literature Review 

2.1 Formulation 

Production scheduling with lot-size and capacity relaxation was introduced by 

Chen and Thizy (1990). This problem was referred as an NP-hard problem, which 

determined the magnitude of the operational timing of durable results. Their 

formulation is shown in formulation 2.1 to 2.4 with following sets and parameters. 

 

Sets: 

𝐼  : Number of product 
𝑇  : Number of production period  

Parameters: 

𝑠𝑖𝑡   : Production setup cost for product i in period t  

𝑝𝑖𝑡   : Unit of production cost of product i in period t 

ℎ𝑖𝑗   : Inventory cost of one unit of product i between periods t and t+1  

𝑐𝑡   : Production capacity in period t 

𝑎𝑖   : Capacity consume by the production of one unit of product i 

𝑑𝑖𝑡   : Demand of product i in period t 

𝑑𝑖𝑡𝜏   =∑ 𝑑𝑖𝑗
′𝜏

𝑗=𝑡  in which 𝑑𝑖𝑗
′  is the demand for production i in   

 period j adjusted for initial and final inventories  

𝑧𝑖
0  : The pre-specified initial inventory of product i 

𝑧𝑖
𝑇  : The pre-specified final inventory of product i 

 

Variables: 

𝑥𝑖𝑡    : the amount of product i produced in period t 
𝑧𝑖𝑡    : the inventory of product i carried from period t to period t+1 

𝑦𝑖𝑡 ∈ {0,1}  : The variable that has value 1 if 𝑥𝑖𝑡 > 0, 0 if 𝑥𝑖𝑡 = 0. 
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Formulation: 

 

   

The Objective Function (2.1) is a function that minimizes production and 

inventory costs which considers demand and inventory carried to the next period in 

Constraint 2.2, capacity in Constraint 2.3 and production setup in Constraint 2.4. 

Number of discrete variable is [I × T]. The Chen and Thizy (1990) model does not 

allow for backlog and production sequences. 

Fleischmann and Meyer (1997) studied higher complexity in the production 

scheduling problem by adding sequence considerations into the formulation, known as 

the General Lotsizing and Scheduling Problem (GLSP). In each setup, changing from 

one product to other products altered the production cost which depends on the 

differences between two products. With the sequence consideration included, the 

discrete variables were introduced into the formulation by defining and setting up the 

variable between the changing groups. The sets of data, variables and formulation are 

shown below. 

Set: 

 𝑆𝑡    : Set of micro-periods 𝑠 belonging to macro-period 𝑡  

𝐽  : Set of products 
𝑇  : Set of Macro-Period  

𝑆  : Set of Micro-Period 

Parameters: 

𝐾𝑡    : Capacity (time) available in macro-period 𝑡  

𝑎𝑗    : Capacity consumption (time) needed to produce one unit of 𝑗 

𝑚𝑗    : Minimum lot-size of product 𝑗 

ℎ𝑗    : Holding costs of product 𝑗 (per unit and per macro-period) 

𝑠𝑖𝑗    : Setup costs of changeover from product 𝑖 to product 𝑗  

𝑠𝑡𝑖𝑗    : Setup time of changeover from product 𝑖 to product 𝑗  

𝑑𝑗𝑡    : Demand of product 𝑗 in macro-period 𝑡 (units) 

𝑀𝑖𝑛 𝑧 = ∑(𝑝𝑖𝑡𝑥𝑖𝑡 + 𝑠𝑖𝑡𝑦𝑖𝑡 + ℎ𝑖𝑡𝑧𝑖𝑡)

𝑖,𝑡

  (2.1) 

Subject to:   

𝑧𝑖𝑡 = 𝑧𝑖,𝑡−1 + 𝑥𝑖𝑡 − 𝑑𝑖𝑡 ∀𝑖 ∈ 𝐼, ∀𝑡 ∈ 𝑇 (2.2) 

∑ 𝑎𝑖𝑥𝑖𝑡 ≤ 𝑐𝑡

𝑖

 ∀𝑡 ∈ 𝑇 (2.3) 

𝑥𝑖𝑡 ≤ 𝑑𝑖𝑡𝑇𝑦𝑖𝑡 ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽  (2.4) 
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𝐼𝑗0   : Initial inventory of product 𝑗 at the beginning of the planning horizon 

(units) 

𝑦𝑗0   : Equal to 1 of the machine is set up for product 𝑗 at the beginning of 

the planning horizon (0 otherwise) 

Variables: 

𝐼𝑗𝑡 ≥ 0   : Inventory of product 𝑗 at the end of the planning horizon (units) 

𝑥𝑗𝑠 ≥ 0  : Quantity of item 𝑗 produced in micro-period 𝑠 (units) 

𝑦𝑗𝑠 ∈ {0,1} : Setup state: 𝑦𝑗𝑠 = 1, if the machine is set up for product 𝑗 in micro- 

period 𝑠 (0 otherwise) 

𝑧𝑖𝑗𝑠 ∈ {0,1}  : Take on 1, if a changeover from product 𝑖 to product 𝑗 takes place at 

the beginning of micro-period 𝑠 (units) 

 

Formulation: 

 

 

  

𝑀𝑖𝑛 𝑧 = ∑ ∑ ℎ𝑗𝐼𝑗𝑡

𝑡∈𝑇

+ ∑ ∑ ∑ 𝑠𝑖𝑗𝑧𝑖𝑗𝑠 

𝑠∈𝑆𝑗∈𝐽𝑖∈𝐽𝑗∈𝐽

  (2.5) 

Subject to:   

𝐼𝑗𝑡 = 𝐼𝑗,𝑡−1 + ∑ 𝑥𝑗𝑠 − 𝑑𝑗𝑡

𝑠∈𝑆𝑡

 ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽 (2.6) 

∑ ∑ 𝑎𝑗𝑥𝑗𝑠

𝑠∈𝑆𝑡𝑗∈𝐽

+ ∑ ∑ ∑ 𝑠𝑡𝑖𝑗𝑧𝑖𝑗𝑠 ≤ 𝐾𝑡

𝑠∈𝑆𝑡𝑗∈𝐽𝑖∈𝐽

 ∀𝑡 ∈ 𝑇 (2.7) 

𝑥𝑗𝑠 ≤
𝐾𝑡

𝑎𝑗
𝑦𝑗𝑠 ∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆𝑡, ∀𝑗 ∈ 𝐽 (2.8) 

𝑥𝑗𝑠 ≥ 𝑚𝑗(𝑦𝑗𝑠 − 𝑦𝑗,𝑠−1) ∀𝑠 ∈ 𝑆, ∀𝑗 ∈ 𝐽 (2.9) 

∑ 𝑦𝑗𝑠 = 1

𝑗∈𝐽

 ∀𝑠 ∈ 𝑆 (2.10) 

𝑧𝑖𝑗𝑠 ≥ 𝑦𝑖,𝑠−1 + 𝑦𝑗𝑠 − 1 ∀𝑠 ∈ 𝑆, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (2.11) 

𝐼𝑗𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽 (2.12) 

𝑥𝑗𝑠 ≥ 0 ∀𝑠 ∈ 𝑆, ∀𝑗 ∈ 𝐽 (2.13) 

𝑦𝑗𝑠 ∈ {0,1} ∀𝑠 ∈ 𝑆, ∀𝑗 ∈ 𝐽 (2.14) 

𝑧𝑖𝑗𝑠 ∈ {0,1} ∀𝑠 ∈ 𝑆, ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽 (2.15) 
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The GLSP proposed by Fleischmann and Meyer (1997) contains an Objective 

Function (2.5) which consists of two parts. The first part is the inventory holding cost 

of each product in each macro-period. The second part is the setup cost of production 

changeover from product i to product j in each micro-period (if needed).   

Subject to Constraint 2.6 is the cover demand volume of each product to be 

fulfilled in each macro-period with the number of inventory to be carried to the next 

macro-period. Constraint 2.7 is capacity constraint, which covers how much machine 

time is required in each macro-period and machine time used for production. This 

constraint calculates how much machine time is needed to produce each product in each 

macro-period, and how much machine time used in production setup to change from 

product i to product j. 

 Constraint 2.8 is used to determine which product has been set up for product j 

in micro-period s. Constraint 2.9 is used to set each production lot needed to produce 

at least the minimum run for each product. Constraint 2.10 is used to set up only one 

product in each micro-period. Constraint 2.11 is used to determine when the production 

changeover from product i to product j should occur.  

With GLSP, the discrete variable required is [|𝐽|2×|𝑇|]. This formulation also 

does not cover backlogging but does cover production sequence. 

 

2.2 Solution Methodology 

Production scheduling has been categorized into 5 groups by Drexl and Kimms: 

(1997) 1) the capacitated lot sizing problem, 2) the discrete lot sizing and scheduling 

problem, 3) the continuous setup lot sizing problem, 4) the proportional lot sizing and 

scheduling problem, and 5) the general lot sizing and scheduling problem. They also 

concluded that complexity can be addressed by casting as multi-level lot sizing and 

scheduling. Their study noted that the production scheduling problem has limitations 

such as gaps to approach, more complex setup time, setup with sequence dependent, 

parallel machines and backlog, and that tackling the scheduling problem can be done 

using 2 methodologies, the exact and the heuristics methodologies. The Capacitated 

Lotsizing Problem with sequence dependent Setup Cost (CLSD) was introduced by 

Haase Knut (1996) and discrete lotsizing problem with sequence dependent setup cost 

(DLSDSD). The CLSD is quite close to Fleishmann and Meyr’s formulation (1997), 

the General Lotsizing and Scheduling Problem (GLSP) but the setup state can be 

preserved over idle time for Fleishmann. Haase also used the heuristics methodology 

to solve his CLSD and DLSDSD with priority rules on local searching in parameter 

space for lower solution costs. Besides providing an exact methodology, Fleishmann 

also introduces a heuristics methodology for approaching this problem by using various 

techniques including: 1) threshold accepting, 2) neighborhood search, and 3) backward 
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oriented lot-sizing for a given setup pattern (Greedy-Sim, Greedy-Mod and Greedy-

Cap). The GLSP has been used in many recent studies in which researchers have 

introduced improvements in both the exact and heuristics approach.  

The improvements of the exact methodology were introduced in many aspects 

for example the Lagrangian Relaxation method was used by Chen and Thizy (1990) on 

several constraints such as setup, demand and capacity constraints. This method is also 

involved with the subgradient optimization and column generations in node-arc 

formations using the shortest path technique. The lower bound improvement by adding 

cutting plane to the formulation, was introduced by Belvaux and Wholsey (2001). By 

categorized the startup and changeover into four parts: 1) Small bucket model, 2) one 

setup per period, 3) two setup per period, and 4) big bucket model with changeovers. 

In addition, they also introduced the minimum production runs and full-capacity 

production. However, the drawback of this formulation is the changeover variable that 

uses a discrete variable that makes the model more complex. The modified branch and 

bound enumeration method, which was introduced by Haase and Kimms (2000). It 

stated that in period T, perform a branching step by choosing a sequence and doing 

calculations to choose whether the model needs to move on to period one step by step 

by doing backtracking in-between if necessary. The multi-level MILP formulation for 

Medium-Range Production Scheduling of a Multiproduct Batch Plant was introduced 

by Lin Xiaoxia et al (2002).  by decomposition of the entire period into short time 

horizons using an exact methodology to solve the problem. Multiple intermediate due 

dates were used in each time horizon to enable the consolidation of the short time 

horizon in addressing the larger problem. 

There are many techniques to approaching the NP-Hard problem. In the survey 

of Woeginger (2003) it was shown that the researcher used Dynamic Programming, 

Pruning the Search Tree, Preprocessing the Data and Local Search depending on the 

characteristics of the problem. The Mixed Integer Dynamic Optimization (MIDO) was 

used by researchers such as Held, Michael (1962), Bansal Vikrant et al. (2003), Prata, 

Adrian et al. (2008) and Chu Yunfei (2013). Prata, Oldenburg et al. (2008) was cast the 

problem as the MIDO and used a validated differential-algebraic model to represent the 

polymerization behavior. The key idea of implementation was to be the standard 

solution method for continuous process scheduling which has clear process. The 

Mixed-Integer Linear Fractional Programming (MILFP) also introduced for the cycle 

process scheduling problem by You Fengqi (2009). They also used the Dinkelbach’s 

algorithm for solving large-scale MILFP formulation with continuous time Resource-

Task Network (RTN). The result of the proposed solution was less computational 

resources used with greater optimality and efficiency. The Searching over Separator 

Strategy also was introduced by Hwang R. Z (1993) by dividing the problem into two 

subproblems in which the results from both subproblems were combined as an optimal 

solution. Furthermore, Drori Limor (2002) proposed an algorithm recursively 
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partitioned the problem domain and eliminated some branches during calculations. All 

techniques have been used for tackling the optimization of the complex and time 

consumed problem. 

The heuristics methodology was used by various researchers. Meyr (2000, 

2002) also improved his methodology by using the dual network flow to re-optimize 

the sub-problem. This methodology evaluated the new candidate added back to the 

current solution to find the better solution using dual price. This methodology also used 

in both single machine consideration and the multi machines scheduling. Karimi et al. 

(2003) introduced heuristics approaches such as tabu search, simulated annealing, and 

other meta-heuristics for solving the capacitated lot-size production scheduling 

problem. They also added complexity into an exact approach by adding backlogging as 

well as the setup times and carryover. The three steps of heuristics were published by 

Gupta and Magnusson (2005) Their formulation considered the capacitated lot-sizing 

and scheduling problem with sequence-dependent setup cost and time. The flexibility 

of this approach provides a feasible optimal solution. Their heuristics is divided into 

three steps: Initialize, Sequence and Improve. The initialize step is used to find initial 

solutions by determining production quantities without sequence consideration. The 

sequence step is finding the least-costly production within each period. The last step, 

the improve step, is to refine production quantities and production sequence in respect 

to decreasing total cost. The hybrid of the mathematical programming and the local 

search methods were published by De Araujo, Arenales et al. (2007). This hybrid 

method is called the relax-and-fix methodology. It divides the problem into two levels: 

1) solving some relaxed integer variables and solving relaxed problems, and 2) re-

specifying some integer variables and then solving partially fixed problems. The 

heuristics methodology is used to solve both steps to find feasible solutions. Almada-

Lobo and Klabjan (2007) addressed the production lot-size capacity and sequence-

dependent problem by adding setup carryover. Five-steps heuristics were introduced to 

find an appropriate solution for the initial problem using the local search procedure. 

Their first step is lot-for-lot pass, allocating production volume to each demand period 

without considering the capacity constraint. The second step is doing a sequencing and 

amending procedure called the minmax algorithm. The third step is to try to improve 

the quality of the initial solution from first and second steps by backwards pass in time 

that seeks to avoid the cost and capacity consumption of a setup. Although this step can 

affect feasibility, fixing feasibility will be recovered at the end. The fourth step is a 

forward pass that seeks to reduce inventory holding cost by shifting forward a fraction 

or an entire lot of production which has the possibility to reduce total cost. The last step 

looks for improvements in the links between adjacent periods in a forward pass. 

Salomon, Solomon et al. (1997) introduced dynamic programming for solving the 

discrete lot-sizing scheduling problem with sequence dependent setup cost and time. 

This methodology was performed by reformulating the problem as a travelling 

salesman problem with time windows. Solving a reformulated problem using dynamic 
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programming algorithm was introduced by Dumas, Desrosiers et al. (1995). Salomon 

and Solomon et al found that their approach performance depended on problem 

dimensions, inventory holding cost, setup time and production capacity utilization. The 

dynamic programming and heuristics technique that focus on binary variables related 

to sequences was introduced by Kovács, Brown et al. (2009) while running a pre-

processer to determine the items that should appear in an optimal solution. This 

technique focuses on the binary variables related to the sequences by using heuristics 

and dynamic programming to give tight LP-relaxation. Kämpf and Köchel (2006) 

introduced a new idea to approach the capacitated lot-sizing and the scheduling 

problem. The sequence-dependent setup time and cost were used in this approach with 

the combination of simulation and optimization. The simulation was used to find the 

optimal parameters before providing feedback for optimizing and assessing the value 

from the simulator for the possibility of optimality. The simulation was used to find the 

optimal parameters before feedback. The decomposition of integrated scheduling for 

chemical processes by tailoring the decomposition method based on generalized 

Blenders decomposition was put forth by Chu and You (2013). Dynamic optimization 

was used in master problem separated by the processing unit by collaboratively 

optimizing to improve the performance of the batch production from sequential 

methodology. 

 To summarize, the exact and heuristics methodologies were used to solve the 

production scheduling problem. As the problem is defined as an NP-hard problem, the 

exact methodology is a time-consuming approach due to the large number of the binary 

variables generated. Therefore, most of the previous studies applied the heuristics 

methodology to tackle this problem using various technics with more specified 

applications. Improvement on the GLSP still be the gap. Nowadays the processing 

power is much more enhancement, some technics can gain benefit from this 

enhancement. Due to the generalized problem can modify to use in various application, 

the improvement on GLSP also can accommodate in many applications. 
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Chapter 3 

 

Chapter 3:  Methodology 

  This chapter consists of 3 parts to describe the methodology of this study. The 

first part is entitled the Dissertation Process, which outlines the steps used in this study. 

The second part is Data Used. This part describes the data used in testing and analyzing 

the model including the scenarios in the test. The third part is Tools and Technology 

Used, which includes the software and hardware used in this study. 

 

3.1 Dissertation process 

This dissertation was conducted in 7 steps starting from literature review, 

implementing the GLSP, analyzing the gap and finding the direction for improvement, 

formulating and implementing 2-phase formulation, testing & fine tuning the model, 

verifying and validating, and analyzing results & developing a report as shown in 

Figure 3-1. 

 

 

4Figure 3-1: Dissertation Process 
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14 

 

Literature review 

In this step, researching the current and relevant studies related to production 

scheduling with lot-size, capacity and production sequences was performed, as well as 

finding a possible research gap. According to the current studies, an exact methodology 

has not been developed since 2001. The node-arc type formulation obtained from this 

methodology causes weak bounds when doing LP relaxation in each iteration. This 

leads to difficulty in finding a solution gap to determine the optimality on each integer 

solution found. After 2001, the heuristics methodology with various algorithms was 

used to approach this problem. 

 

Implementing the GLSP 

In this step, the GLSP was implemented with C# and CPLEX using concert 

technology for a connector. The test results were collected and used for gap analysis to 

find the improvement direction in the next step. The notation and formulation are: 

 

Set: 

 𝑆𝑡    : Set of micro-periods 𝑠 belonging to macro-period 𝑡  

𝐽  : Set of products 
𝑇  : Set of Macro-Period  

𝑆  : Set of Micro-Period 

Parameters: 

𝐾𝑡    : Capacity (time) available in macro-period 𝑡  

𝑎𝑗    : Capacity consumption (time) needed to produce one unit of 𝑗 

𝑚𝑗    : Minimum lot-size of product 𝑗 

ℎ𝑗    : Holding costs of product 𝑗 (per unit and per macro-period) 

𝑠𝑖𝑗    : Setup costs of changeover from product 𝑖 to product 𝑗  

𝑠𝑡𝑖𝑗    : Setup time of changeover from product 𝑖 to product 𝑗  

𝑑𝑗𝑡    : Demand of product 𝑗 in macro-period 𝑡 (units) 

𝐼𝑗0   : Initial inventory of product 𝑗 at the beginning of the planning   

horizon (units) 

𝑦𝑗0   : Equal to 1 of the machine is set up for product 𝑗 at the beginning of 

the planning horizon (0 otherwise) 
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Variables: 

𝐼𝑗𝑡 ≥ 0   : Inventory of product 𝑗 at the end of the planning horizon (units) 

𝑥𝑗𝑠 ≥ 0  : Quantity of item 𝑗 produced in micro-period 𝑠 (units) 

𝑦𝑗𝑠 ∈ {0,1} : Setup state: 𝑦𝑗𝑠 = 1, if the machine is set up for product 𝑗 in micro- 

period 𝑠 (0 otherwise) 

𝑧𝑖𝑗𝑠 ≥ 0  : Take on 1, if a changeover from product 𝑖 to product 𝑗 takes place at 

the beginning of a micro-period 𝑠 (units) 

Formulation: 

 

𝑀𝑖𝑛 𝑧 = ∑ ∑ ℎ𝑗𝐼𝑗𝑡

𝑡∈𝑇

+ ∑ ∑ ∑ 𝑠𝑖𝑗𝑧𝑖𝑗𝑠 

𝑠∈𝑆𝑗∈𝐽𝑖∈𝐽𝑗∈𝐽

 
 (3.1) 

Subject to:   

𝐼𝑗𝑡 = 𝐼𝑗,𝑡−1 + ∑ 𝑥𝑗𝑠 − 𝑑𝑗𝑡

𝑠∈𝑆𝑡

 ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽 (3.2) 

∑ ∑ 𝑎𝑗𝑥𝑗𝑠

𝑠∈𝑆𝑡𝑗∈𝐽

+ ∑ ∑ ∑ 𝑠𝑡𝑖𝑗𝑧𝑖𝑗𝑠 ≤ 𝐾𝑡

𝑠∈𝑆𝑡𝑗∈𝐽𝑖∈𝐽

 ∀𝑡 ∈ 𝑇 (3.3) 

𝑥𝑗𝑠 ≤
𝐾𝑡

𝑎𝑗
𝑦𝑗𝑠 

∀𝑡 ∈ 𝑇, ∀𝑠 ∈ 𝑆𝑡, ∀𝑗 ∈ 𝐽  (3.4) 

𝑥𝑗𝑠 ≥ 𝑚𝑗(𝑦𝑗𝑠 − 𝑦𝑗,𝑠−1) ∀𝑠 ∈ 𝑆, ∀𝑗 ∈ 𝐽 (3.5) 

∑ 𝑦𝑗𝑠 = 1

𝑗∈𝐽

 ∀𝑠 ∈ 𝑆 (3.6) 

𝑧𝑖𝑗𝑠 ≥ 𝑦𝑖,𝑠−1 + 𝑦𝑗𝑠 − 1 ∀𝑠 ∈ 𝑆, ∀𝑖 ∈ 𝐼, ∀𝑗 ∈ 𝐽 (3.7) 

𝐼𝑗𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽 (3.8) 

𝑥𝑗𝑠 ≥ 0 ∀𝑠 ∈ 𝑆, ∀𝑗 ∈ 𝐽 (3.9) 

𝑦𝑗𝑠 ∈ {0,1} ∀𝑠 ∈ 𝑆, ∀𝑗 ∈ 𝐽 (3.10) 

𝑧𝑖𝑗𝑠 ∈ {0,1} ∀𝑠 ∈ 𝑆, ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽 (3.11) 

   

 The GLSP contains an Objective Function (3.1) which consists of two parts. 

The first part is the inventory holding cost of each product in each macro-period. The 

second part is the setup cost of production changeover from product i to product j in 

each micro-period (if needed).   

Subject to Constraint 3.2 is the cover demand volume of each product to be 

fulfilled in each macro-period with the number of inventory carried to next macro-

period. Constraint 3.3 is the capacity constraint that covers how much machine time is 

used in each macro-period and machine time used for production. This constraint 

calculates the machine time needed to produce each product in each macro-period, and 
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how much machine time is used in the production setup to switch from product i to 

product j. 

 Constraint 3.4 is used to determine which product has been set up for product j 

in micro-period s. Constraint 3.5 is used to set each production lot needed to produce 

at least a minimum run for each product. Constraint 3.6 is used to set up for only one 

product in each micro-period. 

 Constraint 3.7 is used to determine when the production changeover from 

product i to product j occurs. Constraint 3.8 and 3.9 are for non-negativity on variable 

Ijt and xjs. The binary constraint is on Constraint 3.10 and 3.11 on yjs and zijs. 

 

 

Analyzing the gap and finding the direction for improvement 

Based on the previous steps, this model provides a weak bound from binary 

variables (𝑦𝑗𝑠, 𝑍𝑖𝑗𝑠) when the LP relaxation is performed. The binary variables satisfied 

all constraints and became a fraction. This fraction and sense of formulation lead to the 

zero-objective value. This causes a weak bound in the most of iterations since initial 

optimization. The example of a bound that came from LP relaxation with a very large 

gap in most iterations as shown in Figure 3.2. In this example, the tolerance gap was 

set to 10% and most early iterations LP relaxation were 0 which caused the tolerance 

gap to be 100%. After many iterations, LP relaxation resulted in a better bound and an 

acceptable solution was achieved. 

 

 

5Figure 3-2: The example of bound behavior.  
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Another point of the problem is that it generates a substantial number of binary 

variables when we increase micro-periods and number of products (as shown in Figure 

3.3). This model contains two sets of binary variables: 𝑦𝑗𝑠 and 𝑧𝑖𝑗𝑠 .  The 𝑦𝑗𝑠  is the 

number of product multiplied by the number of micro-period (|𝑗|×|𝑠|). The 𝑧𝑖𝑗𝑠  is the 

number of product square multiplied by the number of micro-periods (|𝑗|2×|𝑠|). This 

increment required significant computational time in order to find a feasible solution in 

MIP solver. 

 

6Figure 3-3: The number of binary variables increased from increase production. 

 

A new formulation was proposed to tackle the weak bound, which is caused by 

fractionality of binary, targeting the set of set-up status ( 𝑦𝑗𝑠 ) which is the most of 

fractionality during LP relaxation process by dividing the formulation into 2 parts 

including pattern generation and production volume calculation. 

 Another improvement on the proposed formulation is adding external supply to 

cover the demand that exceeds the capacity and inventory used. External supply will 

fulfill demand that cannot be satisfied by the inventory and production volume during 

that period but it will reflect the total cost for the entire solution. 
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Formulating and Implementing 2-Phase Formulation 

 The previous formulation has a weak bound on the set of setup binary variables. 

To tackle this issue, the General Lotsizing and Scheduling Problem using Two Phases 

with External Supply (GLSP-TE) was proposed by separating computation steps into 

two phases.  

First phase of performing approximate optimization was to find a production 

pattern as shown in Formulation 3.12 to 3.20. Using the following notation to formulate 

problem: 

Set: 

 𝑆𝑡    : Set of micro-periods 𝑠 belonging to macro-period 𝑡  

𝐽  : Set of products 
𝑇  : Set of Macro-Period  

𝑆  : Set of Micro-Period 

Parameters: 

𝐾𝑠 
∗   : Modified Capacity (time) available in micro-period 𝑠  

𝑎𝑗    : Capacity consumption (time) needed to produce one unit of 𝑗 

ℎ𝑗    : Holding costs of product 𝑗 (per unit and per macro-period) 

𝐶𝑗𝑡    : External supply unit cost of product 𝑗 in macro-period 𝑡  

𝑠𝑖𝑗    : Setup costs of changeover from product 𝑖 to product 𝑗  

𝑑𝑗𝑡    : Demand of product 𝑗 in macro-period 𝑡 (units) 

𝐼𝑗0   : Initial inventory of product 𝑗 at the beginning of the planning     

horizon (units) 

𝑦𝑗0   : Equal to 1 of the machine is set up for product 𝑗 at the          

beginning of the planning horizon (0 otherwise) 

Variables: 

𝐼𝑗𝑡 ≥ 0  : Inventory of product 𝑗 at the macro-period 𝑡 (units) 

𝑊𝑗𝑡 ≥ 0  : Number of external supply of product 𝑗 in macro-period 𝑡  (units) 

𝑥𝑗𝑠 ≥ 0  : Quantity of item 𝑗 produced in micro-period 𝑠 (units) 

𝑦𝑗𝑠 ∈ {0,1}  : Setup state: 𝑦𝑗𝑠 = 1, if the machine is setup for product 𝑗 in micro- 

period 𝑠 (0 otherwise) 

𝑧𝑖𝑗𝑠 ∈ {0,1} : Take on 1, if a changeover from product 𝑖 to product 𝑗 takes place at 

the beginning of micro-period 𝑠 (units) 
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Phase One : Pattern Generations 

 

𝑀𝑖𝑛 𝑧 = ∑ ∑ ℎ𝑗𝐼𝑗𝑡

𝑡∈𝑇

+ ∑ ∑ 𝐶𝑗𝑊𝑗𝑡

𝑡∈𝑇𝑗∈𝐽

+ ∑ ∑ ∑ 𝑠𝑖𝑗𝑧𝑖𝑗𝑠 

𝑠∈𝑆𝑗∈𝐽𝑖∈𝐽𝑗∈𝐽

 
(3.12) 

Subject to:   

𝐼𝑗𝑡 = 𝐼𝑗,𝑡−1 + ∑
𝐾𝑠

∗

𝑎𝑗
𝑦𝑗𝑠 + 𝑊𝑗𝑡 − 𝑑𝑗𝑡

𝑠

 
∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽 (3.13) 

∑ 𝑦𝑗𝑠 = 1

𝑗∈𝐽

 ∀𝑠 ∈ 𝑆 (3.14) 

𝑧𝑖𝑗𝑠 ≥ 𝑦𝑖,𝑠−1 + 𝑦𝑗𝑠 − 1 ∀𝑠 ∈ 𝑆, ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽 (3.15) 

𝐼𝑗𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽 (3.16) 

𝑊𝑗𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽 (3.17) 

𝑦𝑗𝑠 ∈ {0,1} ∀𝑠 ∈ 𝑆, ∀𝑗 ∈ 𝐽 (3.18) 

𝑧𝑖𝑗𝑠 ∈ {0,1} ∀𝑠 ∈ 𝑆, ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽 (3.19) 

   

The Objective Function (3.12) consists of costs including inventory carrying 

cost of product 𝑗  and cost of external supply for product 𝑗 in macro-period 𝑡, and setup 

cost of change over from product 𝑖 to product 𝑗 micro-period 𝑠.  

The formulation is subject to 3 sets of constraints. First, conservation of flow to 

determine the inventory of each product 𝑗 and external supply needed which satisfies 

demand of product 𝑗 in macro-period 𝑡 Constraint 3.13. The 𝐾𝑠 
∗ is the modified 

capacity for each micro-period which is modified to relax real capacity for computing 

approximate production volume using pre-defined batch size for each product 𝑗. The 

second and third sets are responsible for setup state from product 𝑖 to product 𝑗 

Constraint 3.14 and Constraint 3.15. For Constraint 3.16 to 3.17 are for non-negativity 

on variable Ijt , Wjt  The binary constraints are on Constraint 3.18 and Constraint 3.19 

on yjs and zijs 

After optimizing the first step, the setup state variables (𝑦𝑗𝑠 ) are passed to the 

second step to be used as a setup state to calculate the amount of production units as in 

Formulations 3.20 to 3.29, using the following notation to formulate problem: 

Set: 

 𝑆𝑡    : Set of micro-periods 𝑠 belonging to macro-period 𝑡  

𝐽  : Set of products 
𝑇  : Set of Macro-Period  

𝑆  : Set of Micro-Period  
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Parameters: 

𝐾𝑡   : Modified Capacity (time) available in macro-period 𝑡  

𝑎𝑗    : Capacity consumption (time) needed to produce one unit of 𝑗 

ℎ𝑗    : Holding costs of product 𝑗 (per unit and per macro-period) 

𝐶𝑗𝑡    : External supply unit cost of product 𝑗 in macro-period 𝑡  

𝑠𝑖𝑗    : Setup costs of changeover from product 𝑖 to product 𝑗  

𝑠𝑡𝑖𝑗   : Setup time of changeover from product 𝑖 to product 𝑗  

𝑑𝑗𝑡    : Demand of product 𝑗 in macro-period 𝑡 (units) 

𝐼𝑗0   : Initial inventory of product 𝑗 at the beginning of the planning horizon 

(units) 

𝑦𝑗0   : Equal to 1 of the machine is set up for product 𝑗 at the beginning of 

the planning horizon (0 otherwise) 

Variables: 

𝐼𝑗𝑡 ≥ 0  : Inventory of product 𝑗 at the macro-period 𝑡 (units) 

𝑊𝑗𝑡 ≥ 0  : Number of external supply of product 𝑗 in macro-period 𝑡  (units) 

𝑥𝑗𝑠 ≥ 0  : Quantity of item 𝑗 produced in micro-period 𝑠 (units) 

𝑦𝑗𝑠 ∈ {0,1}  : Setup state: 𝑦𝑗𝑠 = 1, if the machine is set up for product 𝑗 in micro- 

period 𝑠 (0 otherwise) 

𝑧𝑖𝑗𝑠 ∈ {0,1} : Take on 1, if a changeover from product 𝑖 to product 𝑗 takes place at 

the beginning of micro-period 𝑠 (units) 

 

Phase Two: Production Allocation 

 

𝑀𝑖𝑛 𝑧 = ∑ ∑ ℎ𝑗𝐼𝑗𝑡

𝑡∈𝑇𝑗∈𝐽

+ ∑ ∑ 𝐶𝑗𝑊𝑗𝑡

𝑡∈𝑇𝑗∈𝐽

+ (∑ ∑ ∑ 𝑠𝑖𝑗𝑧𝑖𝑗𝑠 

𝑠∈𝑆𝑗∈𝐽𝑖∈𝐽

)

∗𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

 (3.20) 

Subject to:   

𝐼𝑗𝑡 = 𝐼𝑗,𝑡−1 + ∑  

𝑠∈𝑆𝑡

𝑥𝑗𝑠 + 𝑊𝑗𝑡 − 𝑑𝑗𝑡 ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽 (3.21) 

∑ ∑ 𝑎𝑗𝑥𝑗𝑠

𝑠∈𝑆𝑡𝑗∈𝐽

+ ∑ ∑ ∑ 𝑠𝑡𝑖𝑗𝑧𝑖𝑗𝑠 ≤ 𝐾𝑡

𝑠∈𝑆𝑡𝑗∈𝐽𝑖∈𝐽

 ∀𝑡 ∈ 𝑇 (3.22) 

𝑧𝑖𝑗𝑠 ≥ 𝑦𝑖,𝑠−1 + 𝑦𝑗𝑠 − 1 ∀𝑠 ∈ 𝑆, ∀𝑖 ∈ 𝐽, ∀𝑗 ∈ 𝐽 (3.23) 

𝐼𝑗𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽 (3.24) 

𝑊𝑗𝑡 ≥ 0 ∀𝑡 ∈ 𝑇, ∀𝑗 ∈ 𝐽 (3.25) 

𝑥𝑗𝑠 ≥ 0 ∀𝑠 ∈ 𝑆, ∀𝑗 ∈ 𝐽 (3.26) 
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The Objective Function in 3.20 considered inventory carrying cost and cost of 

external supply for product 𝑗 in each macro-period 𝑡, including setup cost for changing 

product 𝑖 to product 𝑗 in micro-period 𝑠. The sets of constraints cover demand 

satisfaction on Constraint 3.21. Capacity consideration takes place on Constraint 3.22 

and the switching cost is considered on Constraint 3.23. The minimum lot-size was 

already considered in the first phase. Constraint 3.24 to Constraint 3.26 are for non-

negativity on variable Ijt , Wjt and xjs.  

The calculation in each step focuses on different sets of variables. The first 

phase focuses only the production pattern using the 𝐾𝑠
∗, the pre-defined production size. 

The result from first phase is the blue line in Figure 3-4. The variable that passes to 

second phase is 𝑦𝑗𝑠 and 𝑧𝑖𝑗𝑠. Also, the changeover cost is settled in this phase. After the 

pattern is calculated in first phase, the second phase determines the production volume 

𝑥𝑗𝑠 with inventory carrying cost consideration as shown in green dots in Figure 3-4. The 

inventory carrying cost is settled in this phase combined with the changeover cost from 

the first phase which is the total cost consideration in the formulation. 

 

 

7Figure 3-4: Calculations in each phase 
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Verifying and Validating 

Results from the GLSP-TE in step 4 were used in this step to verify and validate 

the solvability and usability to ensure that GLSP-TE has the appropriate quality for 

analyzing in next step. The formulation was tested using 8 scenarios on 6 commodities 

with 720 micro-periods. In the first phase, each scenario was tested on 22 parameters 

(𝐾𝑠
∗) to adjust for cases including 3 solution gaps.  

 

 

Analyzing results & Developing report 

The last step is the resulting analysis and report development including results 

on the number of iterations, number of optimal runs, objective function value 

improvement and computational time. 
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3.2 Data used 

In order to test and analyze the developed model, data used for testing was obtained 

from random generation including: 

• Demand (𝑑𝑗𝑡) as random on normal distribution  

• Capacity on s period (𝐾𝑡) as random on uniform distribution 

For constant used in the main problem including;  

• Inventory carrying cost for product 𝑗 (ℎ𝑗) 

• Unit production time for product 𝑗 (𝑎𝑗) 

• Minimum lot-size of product 𝑗 (𝑚𝑗 ) 

• Setup time for changing production from product 𝑖 to 𝑗 (𝑠𝑡𝑖𝑗) 

 

The test scenarios were generated to test the behavior of the GLSP-TE in 8 scenarios 

grouped into 5 categories.  

• Adjacent Demand: The volume of demand in an adjacent period which 

illustrates that no production is needed in a certain period and build up 

inventory to satisfy demand in the next period. 

o Steady: The demand exists in every period  

o Interval Demand commodity: The demand for all commodities is 

missing in some periods  

• Missing Demand: The volume of demand is missing in some periods and some 

or all commodities which illustrate the skipping of a sequence and build up 

inventory to satisfy demand in the next period. 

o No: No missing demand for all commodities in all periods 

o Missing Middle demand / Skipped period: There is missing demand 

for a commodity in the middle of the sequence and there is a skipped 

period 

o One commodity in most periods: One commodity in the middle of the 

sequence is missing in most periods 

o All commodities in the same period: Missing demand for all 

commodities in some periods. 
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• Demand Fluctuation:  The fluctuation of demand in all periods which implies 

the pattern selection can skip a sequence to satisfy the demand when the 

fluctuation has an effect on the production capacity. Inventory is used to buffer 

the shortage of capacity in this case. The magnitude of the fluctuation is scaled 

in 3 levels.  

o Low: The ratio of top demand and lowest demand in each period less 

than 1.5  

o Moderate: The ratio of top demand and lowest demand in each period 

is between 1.6 and 2.2 

o High: The ratio of top demand and lowest demand in each period is 

more than 2.3 

o Very High: The ratio of top demand and lowest demand in each period 

is more than 10 

• Demand and Min-Lot: The relation between Demand and Min-Lot which 

points out the select scheduling pattern that can skip a sequence due to the 

minimum lot size and inventory carrying is used to satisfy demand in next 

period. The relation of Demand and Min-Lot can be categorized into: 

o Above: All demand in each period will be higher than minimum lot size 

of each commodity 

o Under and Above: All demand in each period can be lower or higher 

than minimum lot size of each commodity 

• Demand and Capacity: The relation between Demand and Production Capacity 

which signal the buildup of inventory to satisfy demand before the overcapacity 

demand period. The relation of Demand and Capacity can be categorized into:  

o Related: The demand in every single period is under production 

capacity. 

o No-Related: The demand in some periods can be over production 

capacity. 

Scenario 1 (SCN1) 

 This scenario is the normal scenario in which the demand is steady with no 

missing demand. The fluctuation of the demand is low, all demand is over min-lot and 

there is sufficient capacity to satisfy demand. This scenario is the ideal behavior that 

has everything in control. The expectation of this to show that the GLSP-TE can 

improve performance in the normal scenario. 
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Scenario 2 (SCN2) 

 SCN2 is a scenario that can happen in a real situation. Adding missing demand 

in the middle sequence and skipped period into the normal scenario (SCN1) can add 

more complexity into the model. The model needs to make a trade-off between 

switching cost that has skipped a sequence and inventory carrying cost on production 

in respect to the sequence and to keep it to satisfy demand in the next period.  The 

production pattern can be shifted to satisfy demand while the skipped demand is not 

reached by production sequence to avoid the production for storage and switching cost 

for the skipped sequence. 

Scenario 3 (SCN3) 

 The SCN3 is the more complex than SCN2 due to the skipped demand which 

occurs in one commodity in most periods. The missing pattern forces the switching cost 

for the skipped sequence to happen. The model needs to consider the branching between 

skipping the sequence or production of stock. This is a trade-off between switching cost 

and inventory carrying cost.  

Scenario 4 (SCN4) 

 The SCN4 is the extreme case. The missing demand for all commodities in the 

same period is the obvious case but for the formulation that allows to maintain 

switching stage in idle time which might not impact the complexity of the formulation. 

The test also adds more fluctuation in this case to add more complexity into the test. 

Scenario 5 (SCN5) 

 The SCN5 is the scenario that tests the GLSP-TE in the fluctuation situation. 

The level or fluctuation is “high” with the possibility of overcapacity, while the other 

parameters are still in control. The Adjacent demand is steady, there is no missing 

demand, and all demand exceeds the minimum lot size. The decision is majority on 

what commodity should be produced and kept in inventory to satisfy demand in the 

next period. 

 

Scenario 6 (SCN6) 

 The SCN6 is the scenario that tests the GLSP-TE in the moderate level of 

fluctuation. The level or fluctuation is “moderate” with the possibility of overcapacity, 

while the other parameters are still in control. The Adjacent demand is steady, there is 

no missing demand, and all demand exceeds the minimum lot size. The decision is 

which commodity should be produced and kept in inventory to satisfy demand in the 

next period. 
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Scenario 7 (SCN7) 

 The SCN7 is the scenario that tests the GLSP-TE in the high level of fluctuation. 

The demand can be under the minimum lot size and overcapacity might occur. The 

level or fluctuation is “high”. The Adjacent demand is steady, there is no missing 

demand, and some demand can be under the minimum lot size. The decision is which 

commodity should be produced to be kept in inventory to satisfy demand in the next 

period and what commodity should be skipped due to the minimum lot size. 

Scenario 8 (SCN8) 

 The SCN8 is the scenario that tests the GLSP-TE in the high level of fluctuation. 

The demand can be under the minimum lot size and overcapacity might occur. The 

level or fluctuation is “very high”. The Adjacent demand is steady, there is no missing 

demand, and some demand can be under the minimum lot size. The decision is which 

commodity should be produced to be kept in inventory to satisfy demand in the next 

period and what commodity should be skipped due to the minimum lot size. 

 

3.3 Tools and technology used 

 This study used the IBM CPLEX Optimizer x64 v.12.4.0 to solve the Mixed 

Integer Linear Programming (MILP). In the implementation of the model, C# on Visual 

Studio 2012 with .NET framework 4.0 in a 64 bits environment was used. In the .NET 

environment, the IBM ILOG Concert Technology was used as the interface for 

wrapping IBM CPLEX functionality into .NET class in the C# environment. All tests 

were performed on IBM compatible PC with an intel i7 3770 processer, which has 4 

cores with hyper thread technology to perform 8 threads with 3.9GHz maximum 

frequency. The memory capacity of the machine is 16GB RAM and 1TB Storage to 

swap the memory. Assessment of the stated hardware and software was done to ensure 

that the proposed formulation could be performed and be tractable and solvable in 

practical situations.  
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Chapter 4 

 

Chapter 4: Results 

 The GLSP was tested using 8 scenarios with 5 angles Adjacent Demand, 

Missing Demand, Demand Fluctuation, Demand and Min-Lot. Finally, Demand and 

Capacity were also determined as shown in Table 4-1.  

Each scenario was tested with the same parameters. The adjusted 𝐾𝑠
∗, the 

Modified Capacity in Micro-period s, was scaling from min-lot more than two times of 

the min-lot itself in 22 values to test the solvability and tractability of proposed model.  

The 𝐾𝑠
∗ was initiated as a pre-defined lot-size of each commodity used in the 

first phase to determine the production pattern and pass the production pattern to second 

phase to calculate the real production volume in each Micro-period with lot-size 

consideration. 

Table 4-1: Testing Scenarios 

Scenario 

Code 

Adjacent 

Demand 

Missing Demand Demand 

Fluctuation 

Demand and 

Min-Lot 

Demand and 

Capacity 

SCN1 Steady No Low Above Related 

SCN2 Steady 

Missing middle 

demand/ Skipped 

period 

Low Above Related 

SCN3 Steady 
One commodity in 

almost all periods 
Low Above Related 

SCN4 

Interval 

Demand 

commodity 

All commodity in 

some periods 
Moderate Above Related 

SCN5 Steady No High Above Not-related 

SCN6 Steady No Moderate Above Not-related 

SCN7 Steady No High 
Under and 

Above 
Not-related 

SCN8 Steady No Very High 
Under and 

Above 
Not-related 
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4.1 Model Validity 

 The GLSP-TE was tested by reducing the size of problem to make sure that 

GLSP-TE could provide the same optimal quality as GLSP. The reduced size of the 

problem contains three commodities with three Macro-Periods with a total of nine 

Micro-Periods. The same objective value was reached by both of GLSP and GLSP-TE, 

which can validate that GLSP-TE can provide the same optimal quality as GLSP. The 

Computational time improved 17.65% and the number of iterations improved 17.88% 

as shown in Figure 4-1. 

 

 

8Figure 4-1: Model Quality of GLSP-TE 
 

 

4.2 Results by Test Scenario 

Scenario 1 (SCN1) 

 In this scenario, the demand is steady with no missing demand. The fluctuation 

of the demand is low, all demand is over min-lot and there is sufficient capacity to 

satisfy demand.  

 The runs on Scenario 1 have a minimum time of 0.06 hours. The first quantile 

is 0.43 hours, the median is 0.78 hours, the third quantile is 2.01 hours and the 

maximum time is 2.07 hours as shown in Table 4-2. 

 The distribution of iterations can be grouped into 2 sets with less time 

consumption and near timeout set. Most of the runs have less time consumption as 

shown in Figure 4-2, which means that majority of the test runs found the optimal 
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solution within a 5% gap in a defined timeout. The results also show that 86% of runs 

reach the optimality as seen in Figure 4-3. Finally, the optimal result improved from 

GLSP about 40% as shown in Figure 4-18. 

Table 4-2: Computational time Result for Scenario 1 

 Computational Time 

MIN 0.06 

Q1 0.43 

Median 0.78 

Q3 2.01 

Max 2.07 

  

 

9Figure 4-2: Distribution of Iteration numbers on Scenario 1 

 

10Figure 4-3: Number of Optimal runs on Scenario 1 
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Scenario2 (SCN2) 

 For Scenario 2, the missing demand occurred in the middle of a sequence and 

there is a skipped period.  

The runs on Scenario 2 have a minimum time of 0.23 hours, the first quantile is 

0.70 hours, the median is 1.12 hours, the third quantile is 2.01 hours and the maximum 

time is 2.04 hours as shown in Table 4-3. 

The distribution of iterations can be grouped into 2 sets with less time 

consumption and near timeout set. Most of the runs have less time consumption as 

shown in Figure 4-4, which means that the majority of the test runs found the optimal 

solution within a 5% gap in a defined timeout. The results also show that 82% of runs 

reach the optimality as seen in Figure 4-5. Finally, the optimal result improved from 

GLSP about 35% as shown in Figure 4-18. 

 

Table 4-3: Computational time Result for Scenario 2 

  
Computational Time 

MIN 0.23 

Q1 0.70 

Median 1.12 

Q3 2.01 

Max 2.04 

 

11Figure 4-4: Distribution of Iteration numbers on Scenario 2 
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12Figure 4-5: Number of Optimal runs on Scenario 2 

 

Scenario3 (SCN3) 

In this scenario, the skipped demand occurs in one commodity in most periods. 

The runs on Scenario 3 have a minimum time of 0.08 hours, the first quantile is 0.63 

hours, the median is 1.47 hours, the third quantile is 2.08 hours and the maximum time 

is 2.18 hours as shown in Table 4-4. 

The distribution of iterations can likely be spread along the defined timeout with 

more runs that reach the timeout as shown in Figure 4-6, which means that the majority 

of the test runs found the optimal solution within a 5% gap in a defined timeout. The 

results also show that 68% of runs reach the optimality as seen in Figure 4-7. Finally, 

the optimal result improved from GLSP about 42% as shown in Figure 4-18. 

 

Table 4-4: Computational time Result for Scenario 3 
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Max 2.18 

 

82%

18%

Number of Optimal runs on Scenario 2

Optimal

Timeout



 

 

32 

 

13Figure 4-6: Distribution of Iteration on Scenario 3 

 

 
14Figure 4-7: Number of Optimal runs on Scenario 3 
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Scenario4 (SCN4) 

 In this scenario, the missing demand for all commodities in the same period is 

the obvious case.  

The runs on Scenario 4 have a minimum time of 0.34 hours, the first quantile is 

1.05 hours, the median is 1.95 hours, the third quantile is 2.14 hours and the maximum 

time is 2.20 hours as shown in Table 4-5. 

The distribution of iterations can likely be spread along the defined timeout with 

more runs that reach the timeout as shown in Figure 4-8, which means that the majority 

of the test runs still found the optimal solution within a 5% gap in a defined timeout. 

The results also show that 55% of runs reach the optimality as seen in Figure 4-9. 

Finally, the optimal result improved from GLSP about 18% as shown in Figure 4-18. 

 

Table 4-5: Computational time Result for Scenario 4 

  
Computational Time 

MIN 0.34 

Q1 1.05 

Median 1.95 

Q3 2.14 

Max 2.20 

 

 

15Figure 4-8: Distribution of Iteration numbers on Scenario 4 
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16Figure 4-9: Number of Optimal runs on Scenario 4 

 

Scenario5 (SCN5) 

In this scenario, the level or fluctuation is “high” with the possibility of 

overcapacity. The runs on Scenario 5 have a minimum time of 0.15 hours, the first 

quantile is 1.23 hours, the median is 1.79 hours, the third quantile is 2.14 hours and the 

maximum time is 2.19 hours as shown in Table 4-6. 

The distribution of iterations can be spread along the defined timeout with about 

the half of runs reaching the timeout as shown in Figure 4-10, which means that about 

the half of the runs could find the optimal solution within a 5% gap in a defined timeout. 

The results also show that 50% of runs reach optimality as seen in Figure 4-11. Finally, 

the optimal result improved from GLSP about 6% as shown in Figure 4-18. 

 

Table 4-6: Computational time Result for Scenario 5 

  
Computational Time 

MIN 0.15 

Q1 1.23 

Median 1.79 

Q3 2.14 

Max 2.19 

 

55%

45%

Number of Optimal runs on Scenario 4

Optimal

Timeout
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17Figure 4-10: Distribution of Iteration numbers on Scenario 5 

 

 
18Figure 4-11: Number of Optimal runs on Scenario 5 
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Scenario6 (SCN6) 

Scenario 6 has moderate level of fluctuation with the possibility of overcapacity. 

The runs on Scenario 6 have a minimum time of 0.16 hours, the first quantile is 1.34 

hours, the median is 2.01 hours, the third quantile is 2.14 hours and the maximum time 

is 2.22 hours as shown in Table 4-7. 

The distribution of iterations shows that more runs reached the timeout as shown 

in Figure 4-12, which means that the majority of the test runs only found a feasible 

solution in a defined timeout. The results also show that 45% of runs reach optimality 

as seen in Figure 4-13. Finally, the optimal result did not improve from GLSP as shown 

in Figure 4-18. 

 

 

Table 4-7: Computational time Result for Scenario 6 

  
Computational Time 

MIN 0.16 

Q1 1.34 

Median 2.01 

Q3 2.14 

Max 2.22 

 

 

19Figure 4-12: Distribution of Iteration numbers on Scenario 6 
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20Figure 4-13: Number of Optimal runs on Scenario 6 

 

Scenario7 (SCN7) 

In this scenario, which has a high level of fluctuation, the demand can be under 

the minimum lot size and overcapacity might occur. The runs on Scenario 7 have a 

minimum time of 0.30 hours, the first quantile is 0.50 hours, the median is 0.85 hours, 

the third quantile is 1.21 hours and the maximum time is 2.06 hours as shown in Table 

4-8. 

The distribution of iterations is clustered in less than the defined timeout as 

shown in Figure 4-14, which means that the majority of the test runs still found the 

optimal solution within a 5% gap in a defined timeout. The results also show that 95% 

of runs reach the optimality as seen in Figure 4-15. Finally, the optimal result improved 

from GLSP about 67% as shown in Figure 4-18. 

 

Table 4-8: Computational time Result for Scenario 7 

  
Computational Time 

MIN 0.30 

Q1 0.50 

Median 0.85 

Q3 1.21 

Max 2.06 

 

43%

57%

Number of Optimal runs on Scenario 6

Optimal

Timeout
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21Figure 4-14: Distribution of Iteration numbers on Scenario 7 

 

22Figure 4-15: Number of Optimal runs on Scenario 7 
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Scenario8 (SCN8) 

In Scenario 8, the level or fluctuation is “high” with some demand under the 

minimum lot size. The runs on Scenario 8 have a minimum time of 0.09 hours, the first 

quantile is 0.27 hours, the median is 0.44 hours, the third quantile is 0.97 hours and the 

maximum time is 2.12 hours as shown in Table 4-9. 

The distribution of iterations is clustered in less than the defined timeout as 

shown in Figure 4-16, which means that the majority of the test runs still found the 

optimal solution within a 5% gap in a defined timeout. The results also show that 91% 

of runs reach optimality as seen in Figure 4-17. Finally, the optimal result improved 

from GLSP about 70% as shown in Figure 4-18. 

 

Table 4-9: Computational time Result for Scenario 8 

  
Computational Time 

MIN 0.09 

Q1 0.27 

Median 0.44 

Q3 0.97 

Max 2.12 

 

 

23Figure 4-16: Distribution of Iteration numbers on Scenario 8 
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24Figure 4-17: Number of Optimal runs on Scenario 8 
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4.3 Model Results 

In this section, the GLSP-TE tested the improvement by running the 

optimization with 2 hours timeout and a 5% solution gap on the same settings of 

software and hardware. Phase One was tested by sampling 𝐾𝑠 
∗ up to 22 values in each 

run. The production pattern was passed to Phase Two to do the final calculation, using 

the average of the objective function value compared with the objective function value 

of GLSP in each scenario. 

Most of the runs of GLSP do not reach optimality before timeout but a feasible 

solution can be found, except SCN5, in which the optimal solution can be reached. The 

GLSP-TE improved on SCN SCN1, SCN2, SCN3, SCN4, SCN5, SCN7, and SCN8, 

which improved to 40%, 36%, 43%, 15%, 5%, 69%, and 72%, respectively, as shown 

in Fig 4-27. Only SCN6 did not have an improvement of the objective function value. 

 

 
25Figure 4-18: Objective Value Improvement 
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4.4 Model Stress Test 

The stress test of the GLSP and GLSP-TE tested the worst and best scenarios, 

the sixth scenario (SCN6) and the eighth scenario (SCN8). The tests were performed in 

2 sets, first, a scaling product from 4 products to 30 products, and second, scaling 

number of a micro-period from 4 to 24 micro-periods in each macro-period in the 

scenarios that have 4 products. Both used a 2 hours timeout and 5% solution gap except 

𝐾𝑠
∗, which has only GLSP-TE which used 10 parameters and the best result for 

comparison.  

 The GLSP result in first set shows the timeout with more than a 99% gap for all 

runs but GLSP-TE can perform most of the runs in optimality in SCN6 and all 

optimality in SCN8 as shown in Figure 4-19 and Figure 4-20.  

 

26Figure 4-19: Result Gap Comparison between GLSP and GLSP-TE on SCN6 

 

27Figure 4-20: Result Gap Comparison between GLSP and GLSP-TE on SCN8 
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The second set shows that GLSP in SCN6 cannot reach the optimal solution for 

all runs. For SCN8, the runs that have total binary variable less than 10,000 variables 

can perform the optimality, but the GLSP-TE can perform all runs up to the optimality 

stage as shown in Figure 4-21 and Figure 4-22. 

 

 

28Figure 4-21: Result Gap Comparison between GLSP and GLSP-TE on SCN6 
 

 

29Figure 4-22:  Result Gap Comparison between GLSP and GLSP-TE on SCN8 
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In summary, the GLSP-TE was validated by performing calculations compared 

with GLSP(Fleischmann & Meyr, 1997) in a reduced problem. The result is GLSP-TE 

performs with the same optimality result as GLSP(Fleischmann & Meyr, 1997) but uses 

less computational time and a lower number of iterations. The result from these 

scenarios also shows that in most of the runs the GLSP-TE can perform better in terms 

of computational time, percentage of optimality runs and percentage of objective value 

improvement compared with GLSP(Fleischmann & Meyr, 1997).  
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Chapter 5  

 

Chapter 5: Conclusions 

In this chapter, the results by scenario from the previous chapter were used to 

analyze the results of GLSP-TE compared with GLSP(Fleischmann & Meyr, 1997) to 

draw conclusions on the proposed formulation (GLSP-TE) in terms of improvement 

from GLSP, limitations and gaps for further study. This chapter includes 3 parts, 

Performance categories, Discussion and Gaps for further study. 

 

5.1 Performance categories 

 The results of all scenarios are shown in 3 categories: Computational Time, 

Objective function value improvement and Percentage of optimal runs as shown in 

Table 5-1. The computational time shows brief time consumed in runs with the 

minimum runtime, the first quantile, the median, the third quantile and the maximum 

runtime to reflect the behavior of the GLSP-TE. 

 

Table 5-1: Computational Results of all Scenarios 

 

 
SCN1 SCN2 SCN3 SCN4 SCN5 SCN6 SCN7 SCN8 

Computational Time (Hr.) 

MIN 0.06 0.23 0.08 0.34 0.15 0.16 0.30 0.09 

Q1 0.43 0.70 0.63 1.05 1.23 1.34 0.50 0.27 

Median 0.78 1.12 1.47 1.95 1.79 2.01 0.85 0.44 

Q3 2.01 2.01 2.08 2.14 2.14 2.14 1.21 0.97 

Max 2.07 2.04 2.18 2.20 2.19 2.22 2.06 2.12 

Objective Function Value     *improvement from GLSP 

Improvement 40% 36% 43% 15% 5% 0% 69% 72% 

Optimality Results               *compared with all runs in 

scenario 

% of 

Optimality 
86% 82% 68% 55% 50% 43% 97% 91% 
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A comparison of the results in each scenario is described in this section. The 

outcome can be grouped in 3 classes according to the distribution of iteration number, 

the objective value improvement, the value of the median, the value of the first quantile, 

the value of the third quantile and the percentage of optimal result, which are shown in 

Figure 5-1, Figure 5-2, Figure 5-3, Figure 5-4, Figure 5-5 and Figure 5-6, respectively. 

 The first class, in which GLSP-TE showed its best result, contains SCN7 and 

SCN8. The model was able to calculate the optimal solution with improvement from 

GLSP at 69% (SCN7) and 72% (SCN8) as shown in Figure 5-2. The computational 

time of this class is better than others. The distribution of the iteration and computation 

time, which is shown in Figure 5-1 annotated as “Green Dot,” has low iterations and 

computational time used in calculation. The percentage optimal results are also low at 

97% (SCN7) and 91% (SCN8) as shown in Figure 5-6.  

 The second class is the class in which GLSP-TE was able to perform with a 

good result and contains SCN1, SCN2 and SCN3. The model was able to calculate the 

optimal solution with improvement from GLSP at 40% (SCN1), 36% (SCN2) and 43% 

(SCN3) as shown in Figure 5-2. The computational time of this class was up to timeout 

but the median and the first quantile were better than the third class. The distribution of 

the iteration and computational time, which is shown in Figure 5-1 annotated as 

“Yellow Rectangle,” shows that the distribution of the computational time is spread in 

the defined timeout range. The percentage of the optimal results are 86% (SCN1) 82% 

(SCN2) and 68% (SCN3) as shown in Figure 5-6. 

 The third class is the class, in which GLSP-TE was able to perform with a 

moderate result, contains SCN4, SCN5 and SCN6. The model improved the optimal 

result from GLSP at 15% (SCN4), 5% (SCN5) with no improvement on SCN6 as shown 

in Figure 5-2. The computational times of this class are mostly up to the defined 

timeout, which is shown in Figure 5-1 annotated as “Red Triangle.” Also the median, 

the first quantile and the third quantile are very high. The percentage of the optimal 

results is 55% (SCN4), 50% (SCN5) and 43% (SCN6) as shown in Figure 5-6. 
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30Figure 5-1: Distribution of Iteration Numbers group by Performance 

 

 

31Figure 5-2: Objective Value by Percentage of Improvement 
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32Figure 5-3: Computational time on each scenario using 5% solution gap 

 

 

33Figure 5-4: Computational time on each scenario using 10% solution gap 
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34Figure 5-5: Computational time on each scenario using 20% solution gap 

 

35Figure 5-6: Percentage of the Optimal result in each Scenario  
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5.2 Discussion 

 This study proposed model with improvement on tractability and solvability by 

tackle fractionality issue of variable 𝑦𝑗𝑠. Decomposition technic was used by separating 

the changeover variables in Phase one, Pattern Generation using a modified 

capacity (𝐾𝑆
∗) was used in a model to perform an approximate optimization in 

calculating the production pattern. Since the modified capacity was implemented using 

this technique, some of the feasible solutions might be removed by pattern generation 

causing an infeasible solution in Phase Two. For the reason stated, multiple modified 

capacities were used in the formulation testing in each scenario to ensure the feasible 

solution was obtained from testing. All the results show the least feasible solutions 

without any single feasible solution.  

 In Phase Two, the setup pattern that was calculated in Phase One was used to 

calculate the production volume with demand, inventory carrying cost and capacity 

consideration to minimize setup cost and inventory carrying cost in the setup pattern 

specifically. 

 The quality of GLSP-TE was tested with a small problem size due to the 

limitation of the GLSP. The same optimality with less computational time and number 

of iterations resulted with GLSP-TE: therefore, it can be concluded that the GLSP-TE 

can provide the optimality level up to GLSP. The GLSP-TE also performed well with 

a larger problem size. The total computational time of both phases was less than GLSP 

with better objective function values in most tested scenarios. The objective function 

value can improve up to 72% compared with GLSP. The percentage of optimality run 

can be up to 97% of test runs in each scenario.   

Based on all tests performed, it can be concluded that the GLSP-TE provides a 

better optimality level with less computational time than GLSP. The GLSP-TE also 

provided solution, which is the feasible solution in GLSP with more tractable and 

solvable. Finally, the GLSP-TE performed better performance in high demand 

fluctuation with more possibility of switching over.  
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5.3 Gaps for further study 

 The GLSP-TE is an exact methodology improvement of the GLSP achieved by 

separating the calculation into 2 phases. The separation focuses on the most 

complicated part of the formulation.  Production pattern generation was done by using 

a pre-defined production size and production volume calculation on generated pattern 

with minimum lot-size and inventory carrying cost consideration.  

 The most important gap is the pre-defined production size in each micro-period. 

The 𝐾𝑠
∗, in this study did not include the relationship between the size of 𝐾𝑠,

∗ which 

affects the model behavior. This parameter is very important for the pattern generation 

procedure, and also affects the changeover cost which is one of the important costs of 

the problem.  

 Multiple production lines is also one of the gaps in this study. Due to actual 

configurations in business, the production lines will involve more than one production. 

More complicated production planning involves planning across multiple production 

lines.  

 In addition, one of the key factors is the allowance of the setup stage in idle 

time, which means that in idle time the setup stage is maintained with no changeover 

from one commodity to another commodity. But in some production lines, the idle 

period is available for the changeover to the next stage. A shutdown or other overhead 

cost required for the idle period can also be considered a gap in the foundation of the 

model. 

 

(Fleischmann & Meyr, 1997) (Drexl & Kimms, 1997) (Haase, 1996) (Belvaux & 

Wolsey, 2001) ) (Haase & Kimms, 2000) (Lin, Floudas, Modi, & Juhasz, 2002) 

(Woeginger, 2003)  (Bansal, Sakizlis, Ross, Perkins, & Pistikopoulos, 2003; Held & 

Karp, 1962) (Chu & You, 2013) (Almada-Lobo, Klabjan, Antónia carravilla, & 

Oliveira, 2007; de Araujo, Arenales, & Clark, 2007; Drori & Peleg, 2002; Gupta & 

Magnusson, 2005; Hwang, Chang, & Lee, 1993; Karimi, Ghomi, & Wilson, 2003; 

Meyr, 2000, 2002; Prata, Oldenburg, Kroll, & Marquardt, 2008; Salomon, Solomon, 

Van Wassenhove, Dumas, & Dauzère-Pérès, 1997; You, Castro, & Grossmann, 2009) 

(Chu & You, 2013; Dumas, Desrosiers, Gelinas, & Solomon, 1995; Kämpf & Köchel, 

2006; Kovács, Brown, & Tarim, 2009) (Prata et al., 2008) 
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APPENDIX I: Data usage 

The data used in this study can be categorized in 2 sets  

• The fixed parameters 

• The scenario based parameters  

 

The fixed parameters are the parameters that fixed for all test scenarios including 

• Inventory Handling Cost(ℎ𝑗) 

• Capacity consumption of each production unit (𝑎𝑗),  

• Minimum Lot-size(𝑚𝑗),  

• Cost of External Supply (𝐶𝑗)  

 

 

 

 

 

 

 

 

 

 

 

 ℎ𝑗 𝑎𝑗 𝑚𝑗 𝐶𝑗 

Product 1 15% 1 100 200 

Product 2 15% 1 100 250 

Product 3 15% 0.85 120 230 

Product 4 15% 0.85 120 200 

Product 5 15% 1.2 90 230 

Product 6 15% 1.2 90 250 
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• Capacity (𝐾𝑡)  

 

 

 

 

 

 

 

 

 

 

 

  

 SCN 1-8 
Stress 

Test 

Product 1 2400 15000 

Product 2 2700 15000 

Product 3 2400 15000 

Product 4 2700 15000 

Product 5 2400 15000 

Product 6 2700 15000 

Product 7 N/A 15000 

Product 8 N/A 15000 

Product 9 N/A 15000 

Product 10 N/A 15000 

Product 11 N/A 15000 

Product 12 N/A 15000 

 SCN 1-8 
Stress 

Test 

Product 13 N/A 15000 

Product 14 
N/A 15000 

Product 15 
N/A 15000 

Product 16 N/A 15000 

Product 17 N/A 15000 

Product 18 N/A 15000 

Product 19 N/A 15000 

Product 20 N/A 15000 

Product 21 N/A 15000 

Product 22 N/A 15000 

Product 23 N/A 15000 

Product 24 N/A 15000 
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• Switching Cost(𝑠𝑖𝑗) 
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• Switching Time(𝑠𝑡𝑖𝑗) 
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The scenario based parameters are the parameter that changed in each scenario, which 

is demand (𝑑𝑗) 

Demand of Scenario 1 (Demand in Ton) 
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Demand of Scenario 2 (Demand in Ton) 
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Demand of Scenario 3 (Demand in Ton) 
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Demand of Scenario 4 (Demand in Ton) 
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Demand of Scenario 5 (Demand in Ton) 
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Demand of Scenario 6 (Demand in Ton) 
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Demand of Scenario 7 (Demand in Ton) 
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Demand of Scenario 8 (Demand in Ton) 
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Demand of Scenario 6: Stress Test (Demand in Ton) 
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Demand of Scenario 6: Stress Test (Demand in Ton) 
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