

CHAPTER V CONCLUSION AND OPEN PROBLEMS

5.1 Conclusion

We have studied properties of glued graphs which do not have a new clique for any original graphs. We also have investigated clique covering numbers of glued graphs at clone which is an induced subgraph of both original graphs, K_n and K_2 . The results are as follows:

A trivial bound of clique covering numbers of glued graphs:

$$1 \le cc(G_1 \oplus G_2) \le cc(G_1) + cc(G_2).$$

Clique covering numbers of glued graphs without new cliques:

- 1. If $G_1 \Leftrightarrow G_2$ does not have a new clique with at least 3 vertices for any original graphs, then $cc(G_1 \Leftrightarrow G_2) \geq \max\{cc(G_1), cc(G_2)\}$.
- 2. For $G_1 \underset{H}{\diamondsuit} G_2$ which does not have a new clique for any original graphs, $cc(G_1) + cc(G_2) 2cc(H) \le cc(G_1 \underset{H}{\diamondsuit} G_2) \le cc(G_1) + cc(G_2)$.

Clique covering numbers of glued graphs at induced clone:

For a glued graph at induced clone $G_1 \oplus G_2$,

$$cc(G_1) + cc(G_2) - 2cc(H) \le cc(G_1 \overset{\Phi}{\to} G_2) \le cc(G_1) + cc(G_2).$$

Clique covering numbers of glued graphs at clone K_n :

For any graphs G_1 and G_2 containing K_n as a subgraph:

- 1. $cc(G_1) + cc(G_2) 2 \le cc(G_1 \oplus G_2) \le cc(G_1) + cc(G_2)$.
- 2. If there exists a minimum clique covering of $G_{1_{K_n}}^{\oplus G_2}$ containing a nontrivial subgraph of the clone K_n , then $cc(G_{1_{K_n}}^{\oplus G_2}) = cc(G_1) + cc(G_2) 1$.
- 3. If $cc(G_1 \Leftrightarrow G_2) = cc(G_1) + cc(G_2) 1$ then there exists a minimum clique covering of G_1 or G_2 containing the clone K_n .
- 4. If $cc(G_1 \underset{K_n}{\diamondsuit} G_2) = cc(G_1) + cc(G_2) 2$ then there exists minimum clique coverings of G_1 and G_2 , both containing the clone K_n .
- 5. $cc(G_1) + cc(G_2) 2 \le cc(G_1 \Leftrightarrow G_2) \le cc(G_1) + cc(G_2) 1$ if and only if there exists a minimum clique covering of G_1 or G_2 containing the clone K_n .
- 6. $cc(G_1 \oplus G_2) = cc(G_1) + cc(G_2)$ if and only if there is no minimum clique covering of G_1 or G_2 containing the clone K_n .
- 7. $cc(G_{1_{K_n}} G_2) = cc(G_1) + cc(G_2) 2$ if and only if there exist minimum clique coverings of G_1 and G_2 where both contain the clone K_n and the union of them deleting the clone K_n is a clique covering of $G_{1_{K_n}} G_2$.

Clique covering numbers of glued graphs at clone K_2 :

For any graphs G_1 and G_2 containing K_2 as a subgraph:

1.
$$cc(G_1) + cc(G_2) - 1 \le cc(G_1 \oplus G_2) \le cc(G_1) + cc(G_2)$$
.

2. The following statements are equivalent:

(i)
$$cc(G_1 \underset{K_2}{\diamondsuit} G_2) = cc(G_1) + cc(G_2) - 1.$$

- (ii) There exists a minimum clique covering of G_1 or G_2 containing the clone K_2 .
- (iii) $cc(G_1 e) = cc(G_1) 1$ or $cc(G_2 e) = cc(G_2) 1$ where e is the edge of the clone K_2 .
- 3. The following statements are equivalent:

(i)
$$cc(G_1 \Leftrightarrow G_2) = cc(G_1) + cc(G_2)$$
.

- (ii) There is no minimum clique covering of G_1 and G_2 which contains the clone K_2 .
- (iii) $cc(G_1 e) \ge cc(G_1)$ and $cc(G_2 e) \ge cc(G_2)$ where e is the edge of the clone K_2 .

In this thesis, we have obtained a characterization of all possible values of $cc(G_1 \overset{\bullet}{\curvearrowright} G_2)$, while we have obtained characterizations of some possible values of $cc(G_1 \overset{\bullet}{\leadsto} G_2)$ such as $cc(G_1 \overset{\bullet}{\leadsto} G_2) = cc(G_1) + cc(G_2)$ and $cc(G_1 \overset{\bullet}{\leadsto} G_2) = cc(G_1) + cc(G_2) - 2$. When a glued graph does not have a new clique for any original graphs or its clone is an induced subgraph of both original graphs, we obtain only bounds of clique covering numbers of such glued graph.

5.2 Open problems

We have some open problems for future work as follows:

- In Section 2.2, we have introduced a new clique of glued graphs. An open problem is to find values or improve bounds of the clique covering number of glued graphs with a new clique.
- In Section 3.2, we have obtained cc(G₁) + cc(G₂) 2cc(H) ≤ cc(G₁⊕G₂) ≤ cc(G₁) + cc(G₂) where H is an induced subgraph of both G₁ and G₂.
 An open problem is to investigate a characterization of each possible values of cc(G₁⊕G₂).
- 3. In Section 4.1, we show characterizations of $cc(G_1 \underset{K_n}{\diamondsuit} G_2)$ such that $cc(G_1 \underset{K_n}{\diamondsuit} G_2) = cc(G_1) + cc(G_2)$ and $cc(G_1 \underset{K_n}{\diamondsuit} G_2) = cc(G_1) + cc(G_2) 2$. An open problem is to investigate a characterization of $cc(G_1 \underset{K_n}{\diamondsuit} G_2) = cc(G_1) + cc(G_2) 1$.
- 4. The related topic of a clique covering of G is a clique partition of a graph G. A clique partition of a graph G is a set of cliques of G which together contain each edge of G exactly once. The clique partition number of a graph G, denoted by cp(G), is the smallest cardinality of clique partitions of G. Many people have studied clique partitions of some graphs. This motivates a future work to study clique partitions of glued graphs.