CHAPTER V CONCLUSION AND OPEN PROBLEMS

5.1 Conclusion

We have studied properties of glued graphs which do not have a new clique for any original graphs. We also have investigated clique covering numbers of glued graphs at clone which is an induced subgraph of both original graphs, K_{n} and K_{2}. The results are as follows:

A trivial bound of clique covering numbers of glued graphs:

$$
1 \leq c c\left(G_{1} \triangleright G_{2}\right)-c c\left(G_{1}\right)+c c\left(G_{2}\right) .
$$

Clique covering numbers of glued graphs without new cliques:

1. If $G_{1} \triangleleft G_{2}$ does not have a new clique with at least 3 vertices for any original graphs, then $c c\left(G_{1} \triangleleft G_{2}\right) \geqq \max \left\{c c\left(G_{1}\right), c c\left(G_{2}\right)\right\}$:SITY
2. For $G_{H} \stackrel{\rightharpoonup}{H} G_{2}$ which does not have a new clique for any original graphs, $c c\left(G_{1}\right)+c c\left(G_{2}\right)-2 c c(H) \leq c c\left(G_{1} \stackrel{\rightharpoonup}{H} G_{2}\right) \leq c c\left(G_{1}\right)+c c\left(G_{2}\right)$.

Clique covering numbers of glued graphs at induced clone:
For a glued graph at induced clone $G_{1} \stackrel{\rightharpoonup}{H} G_{2}$,

$$
c c\left(G_{1}\right)+c c\left(G_{2}\right)-2 c c(H) \leq c c\left(G_{1} \stackrel{H}{H} G_{2}\right) \leq c c\left(G_{1}\right)+c c\left(G_{2}\right) .
$$

Clique covering numbers of glued graphs at clone K_{n} :
For any graphs G_{1} and G_{2} containing K_{n} as a subgraph:

1. $c c\left(G_{1}\right)+c c\left(G_{2}\right)-2 \leq c c\left(\left(_{1} \stackrel{G_{1} \bowtie G_{2}}{K_{n}}\right) \leq c c\left(G_{1}\right)+c c\left(G_{2}\right)\right.$.
2. If there exists a minimum clique covering of $G_{1} \triangleleft G_{2}$ containing a nontrivial subgraph of the clone K_{n}, then $c c\left(G_{1} \triangleright G_{2}\right)=c c\left(G_{1}\right)+c c\left(G_{2}\right)-1$.
3. If $c c\left(G_{1} G_{K_{n}} \otimes G_{2}\right)=c c\left(G_{1}\right)+c c\left(G_{2}\right)-1$ then there exists a minimum clique covering of G_{1} or G_{2} containing the clone K_{n}.
4. If $c c\left(G_{1} \stackrel{K}{n}^{K_{n}} G_{2}\right)=c c\left(G_{1}\right)+c o\left(G_{2}\right)-2$ then there exists minimum clique coverings of G_{1} and G_{2} both containing the clone K_{n}.
5. $c c\left(G_{1}\right)+c c\left(G_{2}\right)-2 \leq c c\left(\underset{K_{n}}{G_{1} \triangleleft G_{2}}\right) \leq c c\left(G_{1}\right)+c c\left(G_{2}\right)-1$ if and only if there exists a minimum clique covering of G_{1} or G_{2} containing the clone K_{n}.

Chulalongkorn UNIVERSITY

6. $c c\left(\underset{K_{n}}{G_{1} \triangleleft G_{2}}\right)=c c\left(G_{1}\right)+c c\left(G_{2}\right)$ if and only if there is no minimum clique covering of G_{1} or G_{2} containing the clone K_{n}.
7. $c c\binom{G_{1} \triangleleft G_{2}}{K_{n}}=c c\left(G_{1}\right)+c c\left(G_{2}\right)-2$ if and only if there exist minimum clique coverings of G_{1} and G_{2} where both contain the clone K_{n} and the union of them deleting the clone K_{n} is a clique covering of $G_{1} \stackrel{K_{n}}{ } G_{2}$.

Clique covering numbers of glued graphs at clone K_{2} :

For any graphs G_{1} and G_{2} containing K_{2} as a subgraph:

1. $\left.c c\left(G_{1}\right)+c c\left(G_{2}\right)-1 \leq c c\left(G_{1} G_{K_{2}}\right) G_{2}\right) \leq c c\left(G_{1}\right)+c c\left(G_{2}\right)$.
2. The following statements are equivalent:
(i) $c c\left(G_{K_{2}} \stackrel{G_{1}}{ } G_{2}\right)=c c\left(G_{1}\right)+c c\left(G_{2}\right)-1$.
(ii) There exists a minimum clique covering of G_{1} or G_{2} containing the clone K_{2}.
(iii) $c c\left(G_{1}-e\right)=c c\left(G_{1}\right)-1$ or $c c\left(G_{2}-e\right)=c c\left(G_{2}\right)-1$ where e is the edge of the clone K_{2}. \qquad
3. The following statements are equivalent:
(i) $c c\left(G_{1} \triangleleft G_{2}\right)=c c\left(G_{1}\right)+c c\left(G_{2}\right)$.
(ii) There is no minimum clique covering of G_{1} and G_{2} which contains the clone K_{2}.
(iii) $c c\left(G_{1}-e\right) \geq c c\left(G_{1}\right)$ and $c c\left(G_{2}-e\right) \geq c c\left(G_{2}\right)$ where e is the edge of the clone K_{2}. จุฬาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

In this thesis, we have obtained a characterization of all possible values of $c c\left(G_{1} G_{K_{2}} \triangleleft G_{2}\right)$, while we have obtained characterizations of some possible values of $c c\left(G_{1} \stackrel{G_{n}}{K_{n}} G_{2}\right)$ such as $c c\left(\underset{K_{n}}{G_{1} \triangleright G_{2}}\right)=c c\left(G_{1}\right)+c c\left(G_{2}\right)$ and $c c\left({ }_{1}^{G_{1} \triangleright G_{n}}\right)=c c\left(G_{1}\right)+$ $c c\left(G_{2}\right)-2$. When a glued graph does not have a new clique for any original graphs or its clone is an induced subgraph of both original graphs, we obtain only bounds of clique covering numbers of such glued graph.

5.2 Open problems

We have some open problems for future work as follows:

1. In Section 2.2, we have introduced a new clique of glued graphs. An open problem is to find values or improve bounds of the clique covering number of glued graphs with a new clique.
2. In Section 3.2, we have obtained $c c\left(G_{1}\right)+c c\left(G_{2}\right)-2 c c(H) \leq c c\left(G_{H} \stackrel{\rightharpoonup}{H} G_{2}\right) \leq$ $c c\left(G_{1}\right)+c c\left(G_{2}\right)$ where H is an induced subgraph of both G_{1} and G_{2}.

An open problem is to investigate a characterization of each possible values of $c c\left(\underset{H}{G_{1}} \stackrel{G_{2}}{2}\right)$.
3. In Section 4.1, we show characterizations of $\operatorname{cc}\left(G_{1} \triangleleft G_{n}\right)$ such that $c c\left(G_{K_{n}}^{\left(G_{1} G_{2}\right.}\right)=c c\left(G_{1}\right)+c c\left(G_{2}\right)$ and $c c\left(G_{1} \triangleright G_{K_{n}}\right)=c c\left(G_{1}\right)+c c\left(G_{2}\right)-2$.
An open problem is to inyestigate a chayacterization of $c c\left({ }_{1}^{G_{1} \triangleleft G_{n}}\right)=c c\left(G_{1}\right)+c c\left(G_{2}\right)-1$.
4. The related topic of a clique eovering of G is a clique partition of a graph G. A clique partition of a graph G is a set of cliques of G which together contain each edge of G exactly once. The clique partition number of a graph G, denoted by $c p(G)$, is the smallest cardinality of clique partitions of G. Many people have studied clique partitions of some graphs. This motivates a future work to study clique partitions of glued graphs.

