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For aposet X, let OT(X ), OP(X) and OI(X ) denote respectively the full order-
preserving transformation semigroup on X, the order-preserving partial transformation
semigroup on X and the order-preserving one-to-one partial transformation semigroup
on X. The following facts of regularity of order-preserving transformation semigroups
are known. For any subchain X of Z, OT(X) isregular, and for an interval Xin IR, OT
(X) isregular if and only if X is closed and bounded. The semigroups OP(X) and OI(X
) are regular for any chain X. An interesting isomorphism theorem of full order-
preserving transformation semigroups is that for posets X and Y, OT(X) = OT(Y) if
and only if X and Y are either order-isomorphic or anti-order-isomorphic.

Our purpose is to give more results of regularity and isomorphism theorems of
order-preserving transformation semigroups. First, we show that for a nontrivial
interval X inasubfield F of IR, OT(X) isregularif and only if F =IR and X is closed
and bounded. Next, the following respective subsemigroups of OT(X), OP(X) and Ol
(X) areconsidered. OT(X, X") ={a € OT(X) |ran a < X"}, OP(X, X’) ={«a € OP
(X) |Jrana < X’} and OI(X, X)) ={a e OI(X) |ran « < X’} where X’ isa
subchain of achain X. We characterize when OT(X, X”) isregular in terms of X, X’
and the regularity of OT(X ). It is proved that X = X’ is necessary and sufficient for
OP(X, X”) and OI(X, X”) to be regular. The interesting isomorphism theorems of
order-preserving transformation semigroups obtained in this research are as follows:
If OT(X, X)) = OT(Y, Y’), then X” and Y’ are either order-isomorphic or anti-order-
isomorphic. If OP(X, X”) = OP(Y, Y’), then | X"|=|Y’|and X” and Y are either
order-isomorphic or anti-order-isomorphic. Moreover, for | X’|>1and |Y’| > 1, Ol
(X, X”) 2 OI(Y, Y”) if and only if thereis an order-isomorphism or an anti-order-
isomorphism @ : X — Y such that. X’ =.Y’. Our first isomorphism theorem is an
extension of the above known isomorphism theorem for the case of chains. We also
show that the converses of our first two isomorphism theorems are not generally true.
However, interesting consequences of these two isomorphism theorems are as follows:
Forany chains X'and Y, OP(X) = OP(Y) [OI(X) = OKY)] if andonly if Xand Y
are either order-isomorphic or anti-order-isomorphic.
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CHAPTER 1

INTRODUCTION AND PRELIMINARIES

Let R, Q, Z and N denote respectively the set of all real numbers, the set of
all rational numbers,; the set of all integers and the set of all natural numbers and
the partial order on any nonempty subset of R means the natural partial order
on R.

For a set X, let | X| denote the cardinality of X and P(X) denote the power
set of X. In this reseach, we use the Generalized Continuum Hypothesis. Then
for any sets X and Y, if |P(X)| = |P(Y)], then | X| = |Y|.

An element a of a semigroup is called an idempotent if a®> = a. The set of all

idempotents of a semigroup S is denoted by F/(.S), that is,
E(S)={z €S| z*=1z}

An idempotent semigroup or a band is a semigroup S in which 2? = z for every
x € S, that is, F(S) = 5. An element a of a semigroup S is said to be regular if
a = aba for some b € S and S'is called a reqular semigroup if every element of S is
regular. If a,b- €S are such that-e = aba; then a-= a(bab)a and bab = (bab)a(bab).
Hence for a € S, a is regular if and only if there is an element ¢ € S such that
a = aca and ¢ = cac, and c is called an inverse of a in S. Thus S is a regular
semigroup if and only if every element of S has an inverse in S. Then every idem-
potent semigroup is regular.

Let X be a set. We call a map « from a subset of X into X a partial trans-

formation of X, and if domain of o is X, then « is a transformation of X. We



let 0 denote the mapping with empty domain. Then 0 is a partial transformation
of X which called the empty transformation.

The domain and the range of a partial transformation of X will be denoted
respectively by dom « and ran« and the image of x in the domain of o under « is
written by xa. The identity mapping on a nonempty set A is denoted by 14 and
forx € X and @ # A C X, let A, denote the constant map whose domain and
range are A and {x}, respectively.

Let P(X), T(X) and [(X) denote the set of all partial transformations of X,
the set of all transformations of X and the set of all 1-1 partial transformations

of X, respectively, that is,

PX) = {a:A— X | AC X},
T(X) = {ac P(X) | doma = X},

I(X) ={a€eP(X) | ais 1-1}.

We can see that all of P(X), T'(X) and I(X) contain 1x and 0 is contained in
P(X) and I(X) but not in T(X) if X # @& and T(X) and I(X) are subsets of
P(X).

For a, 8 € P(X), let-af be the composition of « and [, that is, af = 0

if rana N dom (G = &, and otherwise, af = the com-

O{l(ran andom B)a—1 /8‘(ran andom B3)7?
position of @ restricted to (rana-N dom 3)a~t and 3 restricted to rana N dom f3.
Then P(X) under the composition defined above is a semigroup having 7'(X') and

I(X) as subsemigroups. Observe that for a, f € P(X),

dom (o) = (rana N domp)a™! C doma,
ran (o) = (rana N domf3)F C ran g,

forx € X, x € dom(af) < z € doma and za € dom 3.



The semigroups P(X), T'(X) and I(X) are called the partial transformation semi-
group on X, the full transformation semigroup on X and the 1-1 partial transfor-
mation semigroup or the symmetric inverse semigroup on X, respectively. It is
well-known that all the semigroups P(X), T(X) and I(X) are regular ([3], page
4). Moreover, for a € P(X), a* = a if and only if rana C doma and za = x for
all z € rana. Hence X, € E(T(X)) for all @ € X and for a nonempty subset A

of X and z € X, A, € B(P(X)) if and only if x € A. In particular,

E(T(X)) = A{aeT(X) | za =z for all z € rana},

BI(X)) = {l| @ # A < X}U{0}.

For convenience, we may use a bracket notation to define a mapping in P(X).

For examples,

b
(a d> stands for «a € P(X) defined by doma = {a,b} and
c

ac = ¢ and ba = d,

if © € A,

S

A
( x) stands for g € T(X) defined by za =
a rEXNA

if e X A

8

By the above notation representing an element of P(X), we have that for any

x
€ P(X 0 = .
) ( )\{ }, t (ma)xedoma
The full transformation semigroup 7T'(X) is considered very important. In
1975, J. S. V. Symons [ 8] considered the semigroup T(X, X’), @ # X' C X,

under composition comprised of all mappings in 7°(X') whose ranges are contained

in X', that is,

T(X,X") = {aeT(X) | rana C X'}



Then T'(X, X') is a subsemigroup of T'(X) containing X, for every a € X’. Since
T(X,X)=T(X), T(X,X') can be counted as a generalization of T'(X). J. S. V.
Symons studied in [ 8] the automorphisms of 7'(X, X’) and being isomorphic of

two T'(X, X’). In fact, in 1966, K. D. Magrill Jr. [7] has studied the semigroup

T(X,X) = {a € T(X) | X'a C X'}

which clearly contains 7/(X, X”) defined above. Also, if X’ = X, then T(X, X') =
T(X), then T(X, X') can be also considered as a generalization of T'(X).
In this research, the semigroups P(X, X’) and (X, X’) are defined similarly,

that is,

P(X,.X') = {a€ P(X) | rana C X'},

I(X. X") = {ael(X)|rana C X'}

Then P(X, X’) and I(X, X') are respectively subsemigroups of P(X) and I(X)
containing 0 and 1x.. Also, since P(X, X) = P(X) and I(X, X) = I(X), we can
also count P(X, X") as a generalization of P(X') and (X, X') as a generalization
of I(X).

By a subchain of a poset X we mean a subposet of X which is also a chain.

For posets X and Y, the map ¢ : X — Y issaid to be order-preserving if
forall a,be X, a<bin X = ap <bpin Y,

and we call ¢ an order-isomorphism of X onto Y 'if ¢ is a bijection of X onto
Y and both ¢ and ¢! are order-preserving. Hence a bijection ¢ : X — Y is an

order-isomorphism if and only if
forall a,be X, a<bin X & ap<bpinY.

The posets X and Y are said to be order-isomorphic if there is an order-isomorphism

of X onto Y. It is clear that if X and Y are chains, then ¢ is an order-isomorphism



of X onto Y if and only if ¢ is an order-preserving bijection of X onto Y. Natu-

rally, a bijection ¢ : X — Y satisfying the condition
for a,be X,a<bin X & bp<apiny

is called an anti-order-isomorphism. We say that X and Y are anti-order-isomorphic
if there is an anti-order-isomorphism from X onto Y.

For a poset X, we say that a € P(X) is order-preserving if
for a,b € doma, a <b = aa < ba

and let OP(X) denote the set of all order-preserving transformations in P(X),
that is,

OP(X) = {a € P(X) | ais order-preserving}.

Then OP(X) is clearly a subsemigroup of P(X) containing 0 and 1x and OP(X)
is called the order-preserving partial transformation semigroup on X. Similarly,

we define

OT'(X)={a e T(X) | ais order-preserving},

OI(X) ={a € I(X) | «is order-preserving}.

Also, OT(X) and OI(X) are respectively subsemigroups of 7'(X) and I(X), 1x €
OT(X) and 0,1x € OI(X). The semigroups OT'(X) and OI(X) are called the
full order-preserving transformation semigroup on X and the order-preserving 1-1
partial transformation semigroup on X, respectively.

Intervals in a chain are defined naturally as follows : A nonempty subset Y of
a chain X is called an interval in X if for a, b, x € X, a,be Y anda <z <b
imply that x € Y. We say that an interval Y in X is a nontrivial interval if
Y contains more than one element. Since every subfield ' of R contains Q, it

follows that every nontrivial interval X of F' is infinite.



It is well-known [3, page 203] that the semigroup OT'(X) is regular if X is a
finite chain. In 2000, Y. Kemprasit and T. Changphas [5] extended this results
by showing that OT(X) is regular for any chain which is order-isomorphic to a

subchain of Z. In particular, the following result is obtained.

Theorem 1.1. ([5]). For any nonempty subset X of Z, OT(X) is a reqular

Semigroup.

Moreover, they also proved that for an interval X in R, being closed and bounded
of X is necessary and sufficient for OT'(X) to be regular and for any chain X,

OP(X) and OI(X) arc always regular.

Theorem 1.2. ([5]). For an interval X in R, OT(X) is a reqular semigroup if

and only if X s closed and bounded.

Theorem 1.3. ([5]). For any chain X, the semigroups OP(X) and OI(X) are

reqular.

The following example shows that Theorem 1.3 need not be true if X is a poset

which is not a chain.

Example 1.4. Let X bea poset defined by the Hasse diagram as follows :

a\/_b
C
Define o = (a Z) Then a € OI(X) and suppose that @« = afa for some
c

B € OP(X). Then ¢ = aa = aafa = (¢f)a and b = ba = bafa = (bf)«q, so
by the definition of «, ¢ = a and b3 = b. But ¢ < b and ¢ and b3 are not
comparable, so ( is not order-preserving. This is a contradiction. This shows
that both OP(X) and OI(X) are not regular.

In passsing, we note here that in 1970, J. M. Howie [4 ] showed that if X



is a finite chain, OT(X) is also idempotent generated or equivalently, for every
a € OT(X), a = d109...0 for some 01,0,...,0, € E(OT(X)). In 1981, C. C.
Edwards and M. Anderson [ 1] considered the semigroup S(X) consisting of all
order-preserving transformations « whose domains are final segments in a chain
X, that is, x € doma and =z <y € X imply y € dom « and they observed that
S(X) need not be regular. V. H. Fernandes noted in [2] in 1997 that OI(X) is
a regular semigroup if X is a finite c¢hain. This result becomes a special case of
Theorem 1.3.

An important isomerphism theorem of full order-preserving transformation
semigroups given in the book named “ Semigroups ” written by E. S. Lyapin [6]

is as follows :

Theorem 1.5. ([6, page 222-223]) For posets X and Y, OT(X) = OT(Y) if

and only if X and Y are either order-isomorphic or anti-order-isomorphic.

The converse of Theorem 1.5 is obtained from the following natural fact. It is
mentioned that it is easy in [ 6], page 222 and the isomorphism of OT'(X) onto

OT(Y) is not provided.

Proposition 1.6. Let X and Y be posets and-p : X — Y. If ¢ is either an
order-isomorphism. or an. anti-order-isomorphism, then the map o +— @ law is

an isomorphism.-of OT(X) onto OT(Y).

Proof. Let o« € OT(X) and let a,b € X be such that a < b. If ¢ is an order-
isomorphism, then ¢!, o and ¢ are order-preserving, and thus ¢~'ay is order-
preserving. If 8 € OT(Y), then pBp~! € OT(X) and = (¢pBp~')p = 3. Since

© is a bijection, a +— ¢ ' is a 1-1 map.



For the case that ¢ is an anti-order-isomophism, we have that for « € OT(X),

forc,deY,c<d = cp ' >dp?
= cp la>dpla

= cp tap < dptap.

Hence a — o lay is a map from OT(X) onto OT(Y). We show analogously as

above that map is also onto and 1-1 O

It is easily seen that for finite chains X and Y, X and Y are order-isomorphic

lanti-order-isomorphig] if and only if | X| = |Y|. Hence from Theorem 1.5, we have

Corollary 1.7. For finite chains X and Y, OT(X) = OT(Y) if and only if

[ X|=1Y].

Example 1.8. (1) For n € N, the map =z — nz [x — —nz| is an order-
isomorphism [anti-order-isomorphism| of Z onto nZ, so by Theorem 1.5, OT(Z) =
OT(nZ).

(2) Let Z* and Z~ be the set of positive integers and the set of negative
integers, respectively (that is, Z* = N). Since the map x — —z is an anti-order-
isomorphism of Z* onto Z-, from Theorem 1.5, OT(Z") = OT(Z").

(3) Since Z has neither a maximum nor a minimum while Z* has a minimum,
we deduce that Z and Z* are neither order-isomorphic nor anti-order-isomorphic.
Hence OT(Z) and OT(Z7) are not isomorphic.

(4) Let X, Y and Z be posets as shown by the following Hasse diagrams.

SN

Then X is neither order-isomorphic nor anti-order-isomorphic to Y and Z but

Y and Z are anti-order-isomorphic. We therefore have from Theorem 1.5 that



OT(X) 2 OT(Y) = OT(Z). Observe that |X| = |Y| = |Z] = 3. This example
also shows that Corollary 1.7 is not generally true for finite posets.

Based on the semigroup 7'(X, X’) introduced by J. S. V. Synmons [8] and those
P(X,X’) and I(X, X") mentioned previously for a set X and @ # X' C X the
following semigroups OT'(X, X'), OP(X, X’) and OI(X, X') are defined similarly
to generalize OT(X), OP(X) and OI(X), respectively where X’ is a subposet of

a poset X. That is,
OT(X, X" = {a e OT(X) | rana C X '},
OP(X,X") = {a€OP(X) |rana C X'} and
OI(X,X") = {a cOI(X) | rana C X'}

which are respectively subsemigroups of OT(X), OP(X) and OI(X). Also,
OT(X,X) = OT(X), OP(X,X) = OP(X) and OI(X,X) = OI(X). No-
tice that X, € OT(X,X’) for every a € X', 0 € OP(X,X’), 0 € OI(X, X'),
A, € OP(X,X') for every nonempty subset A of X and every x € X’ and
A, € OI(X, X') if and only if |A] = 1.

Due to Theorem 1.1 and Theorem 1.2, it is natural to ask when OT'(X) is
regular if X is an interval in Q. To answer this question, a more extensive result
is obtained in our study. We extend Theorem 1.2 by showing that for a nontrivial
interval X in a subfield F' of R, OT(X) is regular if and only if ' = R and X
is closed and bounded. An interesting consequence is that OT'(X) is not regular
for any nontrivial interval X in Q. This is our first purpose of Chapter II. A
characterization of when OT'(X, X’) is regular is given in terms of X and X’ and
the regularity of OT'(X) is our second purpose of Chapter II where X is a chain
and X' is a subchain of X. From Theorem 1.3, one might expect that for any
chain X and any subchain X’ of X, OP(X, X’) and OI(X, X') are regular. We

show in the last part of this chapter that this is not true except X = X'. It is
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shown that X = X’ is a necessary and sufficient for OP(X, X’) and OI(X, X’) to
be regular. Note that the sufficiency part is Theorem 1.3.

In Chapter III, many isomorphism theorems of OT'(X, X’), OP(X, X’) and
OI(X,X') are provided where X’ is a subchain of a chain X. The main iso-
morphism theorems obtained in this chapter are as follows : If OT(X,X’) &
OT(Y,Y’), then X’ and Y’ are either order-isomorphic or anti-order-isomorphic.
This result generalizes Theorem 1.5 for chains. If OP(X, X') 2 OP(Y,Y’), then
| X| = |Y| and X’ and Y’ are either order-isomorphic or anti-order-isomorphic.
Also, OI(X, X") =2 O1(Y,Y") if and only if either | X| = |Y| and |X'| = |Y'| =1
or there is an order-isomorphism or an anti-order-isomorphism 6 : X — Y
such that X'60 = Y’. The converse of the first two isomorphism theorems are
also shown to be not generally true. Some interesting consequences of our sec-
ond and third isomorphism theorems are as follows : For chains X and Y,
OP(X) = OP(Y)[OI(X) = OI(Y)] if and only if X and Y are either order-

isomorphic or anti-order-isomorphic.



CHAPTER I1
REGULAR ORDER-PRESERVING

TRANSFORMATION SEMIGROUPS

This chapter deals with the regularity of our target order-preserving transfor-

mation semigroups. We characterize when they are regular.

2.1 Regularity of O7(X) with X an Interval in a Subfield

of R

The purpose of this section is to extend Theorem 1.2 by showing that for a
nontrivial interval X in a subfield F' of R under usual addition and multiplication,
OT(X) is regular if and only if ' = R and X is closed and bounded. Notice that
if | X| =1, then |OT(X)| = 1, so OT(X) is trivially regular. First, we note that
every subfield of R with usual addition and multiplication contains Q and there
are infinitely many subfields of R, namely, Q(,/p) = { z+y/p | ,y € Q } where
p € P and P is the set of all positive prime numbers. In particular, the set of all
algebraic numbers in R is & well-known proper subfield of R.

To obtain the main result mentioned above, Theorem 1.2 and the following

lemma are our main tools.

Lemma 2.1.1. If F' is a proper subfield of R and X is a nontrivial interval in

F, then the semigroup OT(X) is not reqular.

Proof. Let X be an interval in a proper subfield F' of R such that |[X| > 1.
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Let a,b € X such that a < b. Since Q C F C R, there exists an irrational
number ¢ € RN F. Thena—c<b—c¢,and so a—c < d < b—c for some
d € Q. Consequently, a < c+d<b. Butde QC Fandc¢ F,soc+d¢ F.
Put e=c+d. Then

X = ((—o0,a) N X) U ([a,e) N X) U ((e,00) N X) (1)

andaTH<e. Define a«: R — R by

x o

T80 ==

if a <z <e,

5 if x> e.

a+e
2

B = a, the restriction of o to X. Then 3 is 1-1 and order-preserving. Also,

Then « is a 1-1 order-preserving map and ran a = (—oo, | U (e,00). Let

from (1) and (2), we have
ran 3 = ((=o0,a)NX)aU([a,e) N X)aU((e,00) N X))

= ((—o0,a) N X) U (Ja,e) N X)a U ((e,00) N X). (3)

a+x

Since F'is a field, @ C F and a € F, it follows that
a+e

, 26 —a € F for all

x € F. We claim that ([a,e) N X)a = |[a,

)N X. Let x € [a,e) N X. Then

a<zr<e<bandz e X CF,so

a+x at+e a+b
< =R < b
<l—g et b ¥
C . a+e : : : :
which implies that za € |a, ) N X since X is an interval in F'. Thus ([a,e€)
NX)a C |[a, ot e) NX. For the reverse inclusion, let y € |a, ot e) NX. Then

a <2y—a<e<b and hence 2y — a € [a,e) NX and (2y — a)a = y by (2).
Therefore we have the claim. It then follows from (3) that

a+te
2

ran § = ((—o0,a) N X) U ([a, )N X) U ((e,00) N X). (4)
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Hence we have that 5 € OT(X). Suppose that 5 = py3 for some v € OT(X).

Since [ is 1-1, By = 1x. Consequently,

(ran B)y = X, (5)

Vivan 5 = 7 which is a 1-1 map from ran 3 onto X. (6)

a—+e

Let f e ( ,e)ﬂ@.Thena<GT—i_e<f<e<bandf€F,sof€X.We

have from (5) that

gy = fv for some g € ranj. (7)
From(4),g<a+e or g > e.
Casel:g<a+e.Theng<a——2tf<f. Letpe(@besuchthatg<p<&;_€.

Thus p € X since f,g € X. By (4), p € ran . Since v is order-preserving,
gy < py < fv. We have from (7) that g = py which is contrary to (6) because

of g,p € ran g with g < p.

Case 2: g > e Then f < e < g. Let ¢ € Q be such that e < ¢ < g¢.
Therefore ¢ € X since f < g < g and f,g € X, and so ¢ € ran 3 from (4). Hence

fv < qvy < gysince v € OT(X) and hence ¢y = gy by (7). This contradicts (6).

This shows that /7 is not a regular element of O7'(X), and hence OT(X) is not a

regular semigroup. [

Theorem 2.1.2. For a nontrivial interval X in a subfield F' of R, OT(X) is a

reqular semigroup if and only if F =R and X is closed and bounded.

Proof. Let F be a subfield of R and X a nontrivial interval in F. Assume that
the semigroup OT'(X) is regular. By Lemma 2.1.1, F' = R, and hence X is closed
and bounded by Theorem 1.2.

The converse follows directly from Theorem 1.2. O]
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The following corollary is a direct consequence of Theorem 2.1.2.

Corollary 2.1.3. The semigroup OT(X) is not reqular for any nontrivial interval

X mn Q.

2.2 Regularity of OT (X, X/)

For a poset X, we let min X and max X denote respectively the minimum and
the maximum of X if they exist.

We give necessary and sufficient conditions for OT'(X, X') to be regular where
X is a chain and X" is a subchain of X. For our required result, the following

lemmas are needed.

Lemma 2.2.1. If X is a poset whose minimum and mazimum exist, then

OT(X, {min X, max X'}) is an idempotent semigroup (band).

Proof. Let a € OT(X, {min X, max X}). Then ran @ = {min X}, ran o =
{max X} or ran & = {min X, max X}. If ran @ = {min X}, then o = X, x-
Also, @ = Xpax x if ran @ = {max X}. If ran @ = {min X, max X}, then
(min X )a = min X and (max X)a = max X since a is order-preserving. These

imply that xa = z for all € rana, and hence o? = a. O

Lemma 2.2.2. Let X be a chain. If X' C X and |X'| > 3, then the semigroup

OT(X, X'") is not reqular.

Proof. Let a, b, ¢ € X’ be such that a < b < ¢ and let d € X ~ X’. Define

a: X — X' by
(
a if x<d,
T = b if v=d
| ¢ if ©>d.
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Then o € OT(X, X’). Let 5 € T'(X) be such that @« = afa. Thus
b = da = dafa = (bf)a
which implies by the definition of « that b3 = d. But d € X ~ X', so ¢

OT (X, X"). Hence « is not a regular element of OT'(X, X'). O

Lemma 2.2.3. Let X be a chain and assume that X has no minimum or maxi-

mum. If X' C X and |X'| = 2, then the semagroup OT (X, X") is not regular.
Proof. Let X' = {a,b} be such that a < b.

Case 1 : X has no minimum. Then there is an element ¢ € X such that ¢ < a.
Let o : X — X' be defined by
a if v<a,
To=
b if ©>a.
Then oo € OT(X, X'). If § € T(X) is such that « = afa, then

a = ca = cafa = (af)a,

so a8 < a from the definition of & and hence ran 3 ¢ X'. This shows that « is

not a regular element of OT'(X, X').

Case 2 : X has no maximum. Then b < d for some d € X. Let A : X — X’ be

defined by
a if ©<b,
TN =
b if v >0b.
Then A € OT (X, X"). If p € T(X) is such that A = AuA, then we have

b = d\ = d\uh = (bp)A,
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which implies that by > b and thus ran g € X’. We thus deduce that A is not a

regular element of OT(X, X'). O

Lemma 2.2.4. Let X be a chain whose minimum and mazimum exist, X' C X

and | X'| > 2. If the semigroup OT (X, X') is regular, then min X, max X € X'.

Proof. Let a,b € X’ be such that a < b. Define o, 5 : X — X’ by

a if @=min X, a if r<maxX,
TO = ) zf =

b if x> min X, b if x=maxX.
Then «, § € OT(X, X'). By the regularity of OT(X, X'), « = ada and 3 = fuf

for some A\, u € OT(X, X'). Consequently,

a = (minX)a = (min X)ada = (a))a,

b = (maxX)8 = (maxX)Bu = (b)B.

We therefore deduce from the definitions of @ and § that aA = min X and by =
max X . But since ran A\ C X’ and ran u C X', it follows that min X, max X € X',

as required. O

Theorem 2.2.5. Let X be a chain and X' a subchain of X'. Then the semigroup
OT(X, X'") is regular if and only if one of the following statements holds.

(i) |X'|=1.

(ii)) X' =X and OT(X) is regular.

(i1i) The minimum and the mazimum of X exist and X' = {min X, max X }.

Proof. 1f (i) holds, then |OT(X, X")| = 1, so OT(X, X’) is regular. If (ii) holds,
then OT(X, X') = OT(X) which is regular. It follows from Lemma 2.2.1 that

OT (X, X") is regular if (iii) is true. Therefore the sufficiency part is proved.
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To prove neccessity, assume that the semigroup OT'(X, X’) is regular and (i)

and (ii) are false. Then |X'| > 2 and either X’ C X or OT(X) is not regular.

Case 1: |X'| > 2 and X' € X. Since OT(X, X') is regular, it follows from
Lemma 2.2.2 that | X'| < 3 and thus | X'| = 2. We therefore deduce from Lemma

2.2.3, the minimum and the maximum of X must exist. Also, by Lemma 2.2.4,

min X, max X € X’. Since | X'| =2, X' = {min X, max X }. Hence (iii) holds.

Case 2 : |X'| > 2 and OT(X) is not regular. Since OT(X, X’) is regular and
OT(X) is not regular, it follows that X’ C X. Thus |X’| < 3 because of Lemma
2.2.2. Hence | X'| = 2. Since OT'(X, X') is regular, we conclude from Lemma 2.2.3
that both the minimum and the maximum of X must exist. Then by Lemma 2.2.4,
min X, max X € X'. But |X’| = 2, thus X’ = {min X, max X} and hence (iii)
holds. O

The following corollary is a direct consequence of Theorem 1.1 and Theorem

2.25

Corollary 2.2.6. Let X and X' be nonempty subsets of 7. such that X' C X.
Then the semigroup OT(X, X') is reqular if and only if one of the following state-
ments holds.

(i) |X'|=1.

(i) X' =X.

(11i) X is finite and X' = {min X, max X }.

Also, Theorem 2.1.2 and Theorem 2.2.5 yield the following result.

Corollary 2.2.7. Let X be a nontrivial interval of a subfield F of R and X' a
nonempty subset of X. Then OT (X, X') is a reqular semigroup if and only if one

of the following statements holds.
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W) X =1
(ii)) X'=X, F=R and X is closed and bounded.

(i1i) The minimum and the mazimum of X exist and X' = {min X, max X }.

Example 2.2.8. By Corollary 2.2.7, we have that OT'([0,1]NQ, {3}) and

OT([0,1] N Q,{0,1}) are regular while OT'([0,1] N @, {0, 3} ) is not regular.

2.3 Regularity of OP(X, X’) and OI(X, X')

Recall that for any chain X, OP(X) and OI(X) are always regular (Theorem
1.3). We shall show that for any proper subchain X’ of X, both OP(X, X’) and

OI(X, X') are not regular semigroups.

Theorem 2.3.1. . Let X be a chain and X' a nonempty subchain of X and let
S(X,X") be OP(X, X") or OI(X, X"). Then the semigroup S(X, X') is reqular if

and only if X'=X.

Proof. Assume that S(X, X') is a regular semigroup. To prove that X’ = X

suppose on the contrary that X' € X. Let a € X ~ X’ and b € X’. Then

(Z) € S(X, X", so0
a6 C)

a
b

ba = a. But a € S(X, X’), so a € rana C X’. This is a contrary to the choice of

for some o € S(X, X’): Thus <Z)a( ) #'0 which implies that b € dom o and
a.

The converse follows directly from Theorem 1.3. [

Remark 2.3.2. We can see from the proof of Theorem 2.3.1 that the following
result is true. For any posets X and any proper subposet X’ of X, the semigroups

OP(X,X’) and OI(X, X’) are not regular.
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The next theorem yields the result that the domain of every regular element
of OI(X, X") does not contain any element of X ~\ X’. Moreover, the set of all
regular elements of OI(X, X’) and the set of all regular elements of OI(X') are

identical.

Theorem 2.3.3. Let X be a poset and X' a subposet of X.
(i) For o € OI(X, X"), if ais a reqular element of OI(X,X'), then doma C X'.
(ii) {a € OI(X, X") | ais regular in OI(X, X")}
= {a@ € OI(X') | a is regular in OI(X")}.
Proof. (i) Let o € OI(X, X'). Assume that o = afa for some g € OI(X, X').

Then ranaf C X’ and

—1 -1
1d0ma - 840 R OdﬁOéOé 5 aﬁldoma-

Consequently,

doma = ran (lgoma)
= ran (a8lgom a)
= ((ranaf) Ndom (1gom o)) ldom o
= ((ramaf)N doma)lasma

= ranqaf Ndom«

N

ranaf C X',

Hence (i) is proved.

(ii) Let a € OI(X,X’) be a regular element. Then a has an inverse in
OI(X,X'"), say . Thus a = afa and # = faf. It then follows from (i) that
doma C X’ and dom § C X'. Hence § € OI(X'), so « is a regular in OI(X").

This shows that
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{a € OI(X, X") | « is regular in OI(X, X")}

C{a € OI(X’) | ais regular in OI(X")}.

The reverse inclusion is obvious since OI(X') C OI(X, X’), so (ii) is obtained. [

If X’ is a chain, then by Theorem 1.3, OI(X’) is a regular semigroup. Also, if
X' is isolated, that is, any two distinct elements of X’ are not comparable, then
OI(X') = I(X') which is a regular semigroup. Due to these facts and Theorem

2.3.3(ii), the following consequence is obtained.

Corollary 2.3.4. Let X be a poset and X' a subposet of X. Assume that X' is

a chain or X' is isolated. Then

{a € OI(X, X") | s regular in OI(X, X")} = OI(X').

We note that Theorem 2.3.3 is not true if we replace OI(X, X') by OP(X, X')

as shown by the following example.

Example 2.3.5. Let X be a poset and X’ a subposet of X as shown by the

following Hasse diagrams :

a b v
X \/. s X' I
c c
Define. « € OP(X,X’) by a = (b c)‘ Then dom « = {b,c} ¢ X' but
c c

(c) € OP(X,X') and
C

(o D=0
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Example 2.3.6. Let X and X’ be defined as in Example 2.3.5. Since X' is a
subchain of X, by Corollary 2.3.4, {a € OI(X, X') | ais regular in OI (X, X")} =

OI(X'). It is clear that

o) ={o, (2).().(2)- ()

so the number of all regular elements of OJ(X, X') is 6.

Remark 2.3.7. The assumption that X’ is a chain or X" is isolated in Corollary
2.3.4 cannot be omitted. This clearly follows from the fact if X is a poset which is
neither a chain nor an isolated poset, then OI(X) need not be regular. Example

1.4 is an example for this case.



CHAPTER III
ISOMORPHISM THEOREMS OF
ORDER-PRESERVING TRANSFORMATION

SEMIGROUPS

The purpose is to provide isomorphism theorems of any two of OT'(X, X '), of
OP(X,X") and of OI(X, X') for chains. In particular, Theorem 1.5 for chains is

extended.

3.1 Some Elementary Results

In this section, some elementary results are provided and they will be referred

later.

Proposition 3.1.1. Let X be a chain and X' a subchain of X. Then OT(X,X")

has an identity if and only if | X'| =1 or X = X.

Proof. Assume that OT/(X, X') has an identity, say n. Then an = na = a for all
o € OT(X,X'). Suppose that | X'| > 1 and X" C X. Let a € X ~ X. Then
an € X' ‘and either an < a or @ < an. Since |X'|'> 1, there is some b € X' such

that b # an. Then either b < an or an < b.

Case1: b<an<a. Let o € OT(X,X') be defined by

an if x> a,
T =

b if x<a.
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Then na = a,s0 b = (an)a = aa = an which is a contradiction.

Case 2: an<aandan<b. Let 3 € OT(X,X') be defined by

b if v >a,
xf =
an if r < a.

Thus 6 = [, and hence an = (an)f = af = b, a contradiction.

Case 3 : a <anand b <ay Let v € OT(X,X") be defined by

an if T > a,
Ty, =
b if v<a.
Then 7y = 7. This is contrary to that an = (an)y = ay = b.

Case 4 : a<an<b. Let A€ OT(X,X") be defined by

b i
TN =

an if x < a.

Therefore nA-= A\ This is a contradiction because b = (an)\ = aX = an.
The converse is trivial. O

Proposition 3.1.2. Let X be a poset and X' a subposet of X
(i) OP(X,X") has an identity if and only if X' = X.

(1) OI(X, X") has an identity if and only if X = X.

Proof. Let S(X,X') be OP(X,X") or OI(X,X') and let 1 be the identity of
S(X,X"). Then an = na = a for all @ € S(X,X'). Let a € X be fixed.

Then (2) € S(X,X') for all x € X, and hence 17(2) = <z) for every x € X.
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x
a
ran = X C X, that is, X = X .

This implies that z € dom 77( ) C domn and zn = «x for all x € X, thus

The converses of (i) and (ii) are trivial. O

Due to Proposition 3.1.2, it is natural to ask whether Proposition 3.1.1 is still

true if X is any poset. The following example gives a negative answer.
Example 3.1.3. Let X be a poset and X’ a subposet of X defined by the Hasse
diagram as follows :

b

a
X:\/
@

Define n, o € OT(X, X’) as follows :

n— <{a, b,c} {d, e})) Ll ({a,b, c} {d, e}>'

c - (& C

Qe
Qe

d
I AN
e

Clearly, OT (X, X") ={X;, X¢;n, ot Also, the multiplication on OT'(X, X’) is as

follows :
X | Xe| n o
Xe | Xe | Xe | Xe | Xe
X | Xo | Xo | X[ X,
| Xe | Xe| n |
a | Xe| Xe| a | n

This table shows that 7 is the identity of OT (X, X").

From the proof of Proposition 1.6, the following result is obtained similarly.
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Proposition 3.1.4. Let X and Y be posets, X' a subposet of X andY " a subposet
of Y. If ¢ : X — Y s an order-isomorphism or an anti-order-isomorphism
such that X' = Y', then the map B : OP(X,X') — OP(Y,Y") defined by
ap = ¢ ta for alla € OP(X, X'") is an isomorphism such that (OT(X, X ))p =

OT(Y,Y") and (OI(X, X))@ = OI(Y,Y").

3.2 Isomorphism Theorems of OT(X,X")

The purpose of this section is to generalize Theorem 1.5. To obtain the required

theorem, the following lemma is required.

Lemma 3.2.1. Let X and Y be posets, X a subposet of X and Y’ a subposet
of Y. If ¢ is an isomorphism of OT(X, X ') onto OT(Y,Y"), then the following
statements hold.

(i) For every a € X', there is an element @ € Y such that X, = Ya.

(i) The map a — @ is a bijection of X onto Y.

Proof. (i) Let a € X'. Then X, € OT(X,X') and X,p € OT(Y,Y'). Let
@ € ran (X,p). Therefore @ € Y’ and Yz € OT(Y,Y"), so ap = Yy for some o €
OT(X,X"). Hence aX, = X,. Since X, € E(OT(X,X")), Xop € E(OT(Y,Y")).

But @ € ran (X,p), so a(X,p) =@. Consequently, Yz(X,p) = Yz and thus
Xop = (aXo)p = (a9)(Xep) = Ya(Xap) = Va,

(ii) Since ¢ is one-to-one, the map a — @ is a one-to-one map of X' into Y.
Because ¢! : OT(Y,Y") — OT(X, X') is an isomorphism, from (i), we have that
for any b € Y', Yo' = X, for some a € X', so Y, = X, = Yz which implies

that @ = b. Hence (ii) holds. O
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Theorem 3.2.2. Let X and Y be chains, X a subchain of X and Y’ a subchain
of Y. If OT(X, X' ) =2 OT(Y,Y"), then X' and Y are either order-isomorphic or

anti-order-isomorphic.

Proof. Let ¢ : OT(X,X') — OT(Y,Y') be an isomorphism. By Lemma 3.2.1,
for each a € X/, there is an element @ € Y’ be such that Xop = Yz, Define
0 : X — Y by a0 =a for all @ € X'. Then by Lemma 3.2.1(ii), 0 is a
bijection from X onto ¥'. To show that @ is either order-isomorphism or anti-
order-isomorphism, let @, b, ¢, d € X' such that @ < b and ¢ < d. Since X' and YV’
are chains and 6 is one-to-one, it follows that @ < bora >band ¢ < d or ¢ > d.

Define a: X — X' by

c if x <b,
xa. =

d iof x>0
Then o € OT(X, X'), X, = X, and Xpor = X5 Consequently,
Yalap) = (Xap)ap) = (Xat)p = Xew = Y5,
Yi(ap) = (Xp)(ap) = (Xa)p = Xap = Y3,

which imply that-@(ap) = ¢ and -b(aw) = d.-Sinee aup-is order-preserving, we

deduce that @ < b implies ¢ < d and @ > b implies ¢ > d.
Therefore the theorem is proved. O

Theorem 1.5 for chains follows directly from Theorem 3.2.2 and Proposition

3.1.4.

Corollary 3.2.3. For chains X and Y, OT(X) = OT(Y) if and only if X and YV

are either order-isomorphic or anti-order-isomorphic.
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The converse of Theorem 3.2.2 is not generally true as shown by the following

example.

Example 3.2.4. Let X be any chain and X a proper subchain of X containing
more than one element. By Proposition 3.1.1, OT(X, X') has no identity. But

OT(X',X') = OT(X") has an identity, thus OT (X, X') 2 OT(X') = OT(X', X).

From this example, it is natural to ask whether it is true that for a chain X
and subchains X, X, of X, if X; and X, are either order-isomorphic or anti-
order-isomorphic, then OT(X, X;) = OT (X, X,). The following example gives a
negative answer. The map x + 2x is an order-isomorphism from Z onto 27Z. Also,
x — —2z is an anti-order-isomorphism from Z onto 27Z. Since OT(Z, 2Z) has

no identity by Proposition 3.1.1, it follows that OT(Z, Z) = OT(Z) 2 OT(Z, 2Z).

In fact, Example 3.2.4 follows from the following general fact.

Corollary 3.2.5. Let X and Y be chains and X a subchain of X. Then
OT(X,X") = OT(Y) if and only if
(i) X' |=Y|=1or

(ii) X' = X ~and X and Y ‘are cither order-isomorphic or-anti-order-isomorphic.

Proof. Suppose that OT(X,X") = OT(Y). We then have from Theorem 3.2.2
that X' and Y are either order-isomorphic or anti-order-isomorphic.-Then | X'| =
|Y|. Since OT(X,X') must have an identity, by Proposition 3.1.1, |X'| = 1 or
X' = X. Hence [ X'| = |[Y| =1 or X' = X and X and Y are either order-
isomorphic or anti-order-isomorphic.

If (i) holds, then |OT(X,X")| = |OT(Y)| = 1, and thus OT(X, X") = OT(Y).

From Corollary 3.2.3, (i) implies that OT(X, X') = OT(Y). O
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3.3 Isomorphism Theorems of OP(X,X')

The aim of this section is to show that for chains X and Y, a subchain X' of
X and a subchain Y of Y, if OP(X,X") =2 OP(Y,Y"), then |X| = |Y| and X’
and Y’ are either order-isomorphic or anti-order-isomorphic.

The following two lemmas are required.

Lemma 3.3.1. Let X and Y be posets, a € X and b € Y. Then OP(X, {a}) =

OP(Y,{b}) if and only if |X| = |Y].

Proof. Assume that |X| =[Y|. Then | X \ {a}| = |Y ~ {b}|. Let ¢ : X — Y be

a bijection such that apy = b. Then

PY) = {Ap | Ac P(X)} where Ap = {zp |z € A},

and for A€ P(X), a€e A & be Ap. (1)
It is clearly seen that

OP(X,{a}) = {Aa | A€ P(X)~{o}} U{0}, (2)

OP(Y,{b}) = {(Ap)y | A€ P(X) x {¢o}} U{0}.
Define @ : OP(X,{a}) — OP(Y,{b}) by
0 = 0and A, p = (Ap), forall Ae P(X)~ {¢}.
Then @ is a bijection by (2) and we have from (1) that for A, B € P(X) \ {¢},

a € B= A,B, = A, and (Ap)y(Bp)s = (Ap)s,

a¢ B= A,B, =0 and (Ap),(By), = 0.

Hence ¥ is an isomorphism.

For the converse, assume that OP(X, {a}) = OP(Y,{b}). Then |OP(X,{a})| =
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|OP(Y,{b})|. We therefore deduce from (1) and (2) that |P(X)| = |P(Y)|. This

implies that | X| = |Y]. O

Lemma 3.3.2. Let X and Y be posets, X a subposet of X and Y’ a subposet

of Y. If v : OP(X,X') — OP(Y,Y") is an isomorphism, then the following

statements hold.

(i) For each a € X', there is an elementa € Y' such that OP(X,{a})p =
OP(Y,{a}).

(i) The map 0 : X' — Y defined by af = @ for all a € X' is a bijection.

(iii) For each nonempty subset A of X, there is a unique nonempty subset A of Y

such that Aqp = Az for everya e X'

Proof. (i) Let a € X'. Then X,p € E(OP(Y,Y")) ~ {0}. Let @ € ran (X,¢).

Then a(X,p) = a and
((YESO_l)Xa>90 = Ya(Xwp) = Yo
Hence (Yzo ') X, = Yo ! which implies that ran (Yz¢ ') = {a}. Thus Yz~ ! =
Z, for some ¢ # Z C X with a € Z, and so Z,p = Y5. It then follows that
(Xap)Yz = (Xop)(Zap) = (XaZa)p = Xap.

This implies that ran (X,¢) = {a}. Next, toshow that OP(X, {a})p = OP(Y, {a}),
let ¢ # A C X. Since A, X, = Aoy (Aap)(Xap) = Aup. But ran (X,p) = {a}, so
ran (A,p) = {a@}. We therefore have that 4,9 = Ay for some ¢ # A C Y. This
proves that

OP(X, {ah)y € OP(Y. {a)). g
Since ¢! : OP(Y,Y’) — OP(X, X’) is an isomorphism, from (1), we can deduce

that there is an element b € X' such that

OP(Y,{a})p™" C OP(X,{b}). (2)
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It then follows from (1) and (2) that
OP(X {a})p C OP(Y,{a}) € OP(X {b})e. (3)
But ¢ is a one-to-one map, so OP(X, {a}) € OP(X,{b}). Consequently, a = b,
and hence (3) yields
OP(X, {a})p = OP(Y,{a}). (4)

(ii) If a, b € X are such that @ = b, from (i), OP(X,{a}) = OP(X,{b}) since
@ is one-to-one. Thus a = b. This shows that 6 is a one-to-one map from X’ into
Y'. Since ¢! : OP(Y,Y") — OP(X,X') is an isomorphism, from (i), we have

similarly that
for every c € Y', there is an element ¢’ € X’'such that
OP(Y {c})p " = OP(X,{c}). (5)
If d € Y', then from (5), we have OP(Y,{d})po~' = OP(X,{d'}), so
OP(X {d'})p = OP(Y,{d}). (6)
Since d' € X', we have from (i) that
OP(X {d})p = OP(Y,{d}). (7)

Hence (6) and (7) yield OP(Y,{d}) = OP(Y,{d'}); and thus d = d’ = d'0. This
proves that 0 : X’ — Y’ is a bijection, as required.

(iii) Let A be a nonempty subset of X and a € X’. Since OP(X, {a})¢ = OP(Y,
{a}) by (i) and A, € OP(X,{a}), there is a nonempty subset A of Y such
that A,p = Az, Let b € X'. We then have similarly that Ayp = Bj for
some ¢ # B C Y. We shall show that B = A. Since A, X, = A,, we have
(Aup)(Xpp) = App. Thus Az(Xyp) = B; which implies that @ € dom (X3p) and
a(Xpp) = b. Hence A; = By, so B = A.

Therefore the proof is complete. m
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Theorem 3.3.3. Let X and Y be chains, X  a subchain of X and Y a subchain
of Y. If OP(X,X") = OP(Y,Y"), then |X| = |Y] and X and Y are either

order-isomorphic or anti-order-isomorphic.

Proof. Let ¢ : OP(X,X') — OP(Y,Y') be an isomorphism. From Lemma
3.3.2(i), for each a € X', thereis an element @ € Y’ such that OP(X,{a})p =
OP(Y,{a}) and by Lemma 3.3.2(ii), ¢ : X' — Y’ defined by af = @ for all a € X'
is a bijection. It then follows that for a € X', OP(X,{a}) = OP(Y,{a}). By
Lemma 3.3.1, | X| = [V |.

Next, we shall show that 6 is an order-isomorphism or an anti-order-isomorphism.

Let a,b,c,d € X' be such/that'a <band ¢ < d. Then <a
C

2) € OP(X,X'). We

have from Lemma 3.3.2(iii) that there are nonempty subsets A and B of Y such

that
a a b b
- G e ()
But
aa b _ [a nd b\ a b B b
al\c -d c) bN\e d)  \d)’
so we have
a b b
4§ D)) Fladad m (T 1)e) + 2
Consequently,

(2 3)e) = e mas((C 0) =

b
Since X’ and Y’ are chains, 6 is one-to-one and (a d)gp € OP(Y,Y’), it follows
c

that @ < b implies ¢ < d and @ > b implies & > d. This shows that @ is either an
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order-isomorphism or an anti-order-isomorphism of X onto Y, as required. [

The following interesting isomorphism theorem is a direct consequence of Pro-

prosition 3.1.4 and Theorem 3.3.3.

Corollary 3.3.4. For chains X and Y, OP(X) =2 OP(Y) if and only if X and

Y are either order-isomorphic or anti-order-isomorphic.
The next example shows that the converse of Theorem 3.3.3 need not be true.

Example 3.3.5. The maps « +— 2z and r — —2x are respectively an order-
isomorphism and an anti-order-isomorphism from Z onto 2Z. Since OP(Z) and
OP(2Z) have an identity and by Proposition 3.1.2, OP(Z,2Z) has no identity,
we deducd that OP(Z) 2 OP(Z,27Z) 2 OP(2%Z). In fact, OP(Z) = OP(2Z) by

Corollary 3.3.4.

The following corollary gives a general fact of Example 3.3.5 . It is obtained

directly from Proposition 3.1.2(i) and Corollary 3.3.4.

Corollary 3.3.6. Let X -and Y be chains and X a subchain of X . Then
OP(X,X") 2 OP(Y) if and only if X' = X and X and Y are either order-

1somorphic or and anti-order-isomorphic.

Remark 3.3.7. From Theorem 3.3.3 and Proposition 3.1.4 one might expect
that the if part of Proposition 3.1.4 may be neccessary and sufficient conditions
for OP(X, X") and OP(Y,Y") to be isomorphic for chains X and Y, @ # X' C X
and @ # Y C Y. Lemma 3.3.1 shows that this is not true . For example,
OP([0,2],{1}) = OP((0,2),{1}) by Lemma 3.3.1 since |[0,2]| = |(0,2)] = N;.

Since [0, 2] has a minimum and a maximum while (0,2) has neither a minimum
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and a maximum, we have that [0,2] and (0,2) are neither order-isomorphic nor

anti-order-isomorphic.

3.4 Isomorphism Theorems of OI(X,X)

Our purpose of this section is to give neccessary and sufficient conditions for
OI(X,X') and OI(Y,Y") being isomorphic where X and Y are any chains, X' is
a subchain of X and Y is a subchain of Y.

The following lemma is a main tool to obtain our required result. We first note
that for a subposet X' of a poset X and for a € OI(X, X'), a € E(OI(X, X")) if

and only if & = 0 or @ = 14 for some nonempty subset A C X’.

Lemma 3.4.1. Let X and Y be posets, X a subposet of X and Y’ a subposet
of Y. If v : OI(X,X') — OLY,Y') is an isomorphism, then the following
statements hold.

(i) For every x € X, there is defined an element T € Y subject to :

($>go: (f) forallz € X and a € X'
a a

(i) The map 0 : X — Y defined by x0 =7 for all x € X is a bijection such
that X'0 =Y.

(iii) For every o € OI(X,X"), ap = <i) .
T z€dom «

(%)

Proof.(i) Let ap € X be fixed. Since 0 # < ) € E(OI(X, X)), 0+ (a0)¢ c
ap

E(OI(Y,Y")). Then (ao)w = 1p for some nonempty subset B of Y. Let

Qo

Qo

by € B. Then 0 # <Zo>go_1 e E(OI(X,X")). But
0
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SO

G = G = (G ) )
Consequently, dom ((ﬁjg)w) L1/ V- ((ﬁjg)w). Hence (gg)@l _

(ao)’ and so (ao)go = (b0>. This also proves the following fact.
Qo Qo bo

For every a € X |, <a)<,0 = <z) for some be Y’ (1)
a

Next, let x € X. Then

o+ (= L) (CH6)

T =
so ran (< >g0> = {bo}. Since ( )(p is one-to-one, there exists an element
ao Qo

T T

>¢ — (b ) Now, we have that for every © € X, there
0

exists an element Z € Y subject to :

(;)go 3 (li) for allz € X. 2)

To prove that (x)gp = (f) foralle Xandae X' let € Xanda € X'
a a

T € Y such that (
Qo

Qo bo

() = ()= (GX)e = (CRIG)

This implies that @ € dom ((a)@) and @ € ran (<a><p> CY'. It then follows
a a

from (1) that

be arbitrary fixed. Then (a ) p = (a) by (2) and hence
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Since

by (3), we have that ran <(x)gp) = {a}. Also, since
a

() =7 QD)= (0))

from (2), it follows that T € dom <<x)g0> Consequently, <x)<p = (f) because
a

v © is a one-to-one map.
(ii) Since (x)go = (f) for all 2 € X and a € X’ from (i), we deduce that
a a

0:X — Y isamap with X'0 C Y’ If x1,20, € X are such that T; = T», then

(k= () =)= (o)

SO 1 = &y since ¢ is one-to-one. Finally, let y € Y and b € Y'. Then (?Z) €

OI(Y,Y"). Since ¢7' : OI(Y,Y") — OI(X,X') is an isomorphism, from (i) by

v\, -1 _

considering ¢! instead of ¢, (b) © for some z € X and a € A. Thus

(x) = ($>gp = <?;>, and hence 7 = y.and @ = b. This proves that 0 : X — Y

a a

is a bijection such that X 6 = ¥~ as required:

(iii) Let o € OI(X,X") and = € dom a. Then

() - () o

x . .
= %) since «v 1s one-to-one
To

- (;) from (i)
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which implies that Z € dom (o) and T (ap) = Ta.

Next, let y € dom (). By (ii), y = T and y () = @ for some x € X and

a € X and so () ( ) and ( ) (zgzg) Hence
G - ()l

QI

> since y € dom () and ay is one-to-one

Since ¢ is one-to-one, <x> = a(a>, so x € doma and T = y € dom (agp). This
a a

r
ap = .
T zedom «

Therefore the lemma is completely proved. O

proves that

12

Lemma 3.4.2. Let X and Y be posets, a € X andb €Y. Then OI(X,{a})

OI(Y;{b}) if and only if | X| = |Y]|.

Proof. Assume that |X| = |Y|. Then | X \{a}| =Y ~ {b}|. Let ¢ : X — Y be

a bijection such that ap = b. Observe that

OI(X,{a}) = {(Z) |z € X} u {0},
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orv.(t) = {(}) 1wev}uw = {(7) 1ee x1u i},

Define g : OI(X,{a}) — OI(Y,{b}) by

0p = 0 and (Z)@ = (:U;p) for all z € X.

Then P is a bijection and for all 1, x5 € X,

wp\wap\ | (r1p\b) _ (11
b b b Na b )’

To # a0 = XY 20 and (TP P) =0 since o # b.
a )\ a b b

Hence © is a homomorphism.

Conversely, assume that OI(X,{a}) = OI(Y,{b}). Then |OI(X,{a})| =
|OI(Y,{b})|. But z — (Z) is clearly a bijection from X onto OI(X,{a}) \ {0},
so | X| +1=|0I(X,{a})| = |OI(Y,{b})| = |Y| + 1. Hence | X|=|Y|. O

Theorem 3.4.3. Let X and Y be chains, X a subchain of X andY' a subchain
of Y. Then OI(X,X") = OI(Y,Y") if and only if one of the following statements
holds.

(i) 1X] = W] and | X |=]Y/] = L.

(ii) There exists an order-isomorphism or an anti-order-isomorphism 6 : X —'Y

such that X'0 =Y.

Proof. Let ¢ : OI(X,X') — OI(Y,Y") be an isomorphism. By Lemma 3.4.1(i),

for each x € X, there is an element = € Y satisfying the following property.

(x><p= (f) forallz € X anda € X'.

a a
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By Lemma 3.4.1(ii), the map 6 : X — Y defined by 20 =7 for all x € X isa
bijection such that X' = Y'. Then |X|= |Y|and [X'| = |Y].

First, we claim that 9|X/ : X' — Y is either an order-isomorphism or an anti-
order-isomorphism. Let a,b,¢,d € X be such that ¢ < b and ¢ < d. Since 0 is
a one-to-one map and Y’ is a chain, @ < bor @ > b and ¢ < d or ¢ > d. Define

c d c d
OI(Y,Y"). Consequently, @ < b implies ¢ < d or @ > b implies ¢ > d. Hence we

b , a b
a = (a ) Then o € OI(X, X" ), so by Lemma 3.4.1(iii), ap = <C_L ) €

have the claim. Suppose that (i) is fault. Since |X| = |Y| and | X'| = |Y'], we

have | X'| = [Y'| > 1. Let a,b € X’ be such that a < b.

Case 1 : 6’|X/ : X' — Y’ is an order-isomorphism. Since a < b, we have @ < b.

If 21,29 € X are such that zy < z9, then <x1 al;2> € 0OI(X, X'), then by Lemma
a

3.4.1(iii), (x_l xg) € OI(Y,Y") which implies that Z; < T3 since @ < b. We
a

deduce that 6 is an order-isomorphism from X onto Y.

Case 2 : 9|X/ : X' — Y’ is an anti-order-isomorphism. Then @ > b since a < b.

If 21,25 € X are such that z; < a5, then <x1 :22> € OI(X,X"), then by Lemma

a

3.4.1(iii), (qil 9%2) € OI(Y,Y"), so T3 < T since b < a. Consequently, 6 is an
a

anti-order-isomorphism from X onto Y.

The converse follows directly from Lemma 3.4.2 and Proposition 3.1.4.
Therefore the theorem is proved, as desired. O
A direct interesting consequence of Theorem 3.4.3 is the following.

Corollary 3.4.4. For chains X and Y, OI(X) =2 OI(Y) if and only if X and YV

are either order-isomorphic or an anti-order-isomorphic.

Also, we have
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Corollary 3.4.5. Let X and Y be chains and X a subchain of X. Then
OI(X,X') = OI(Y) if and only if X' = X and X and Y are either isomorphic or

anti-order-isomorphic.

Proof. Assume that OI(X,X") = OI(Y). We have by Proposition 3.1.2(ii) that
X' = X, and hence from Corollary 3.4.4, X and Y are either order-isomorphic or
anti-order-isomorphic.

The converse follows from Corollary 3.4.4. [
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