

CHAPTER IV

RESULTS

4.1 Recovery test on the preconcentration techniques

4.1.1 Co-precipitation of As with Fe(OH)

The influence on the co-precipitation yield of As by acidity, Fe³⁺ concentration, the sample volume, As-concentration and the stirring time was respectively presented in table 4.1-4.5 as well as figure 4.1-4.5.

The optimum conditions were thus obtained as following :-

The pH Value : 4 - 9

Fe³⁺ concentration : > 20 mg./l.

Volume of sample : ≤ 100 ml.

As concentration : < 50 µg.As/l.

The stirring time : > 2 minutes.

4.1.2 Adsorption of APDC-chelates of Co, Cd, Cr(VI), Mo, Sb, W, Zn, and Hq on activated charcoal

The influence on the adsorption yield of APDC-chelates of these elements by the acidity, APDC-concentration, amount of activated charcoal, the sample volume, the stirring time and the salinity of sample was respectively shown in table 4.6-4.11 as well as in figure 4.6-4.26. The optimum conditions were thus obtained as shown in table 4.12.

Table 4.12	Optimum condition on adsorption of Metal-APDC chelates on	
	activated charcoal.	

Element		APDC (mg./1.)	(mg.)	Volume (ml.)	Stirring time (min.)	Salinity %.
Co	4-9	20	>, 5	100-500	no effect	no effect
Cd	6.5-8.5	30	> 5	100-500	no effect	no effect
Cr(VI)	2-3	40	» 4 0	varied	> 20	varied
Мо	1-4	20	» 20	100-500	no effect	no effect
Sb	0.75-1.25	100	3, 20	100-500	no effect	no effect
Zn	7.5-8	20	≤ 10	100-500	≤ 20	no effect
Нд	0.5-2	10	>, 20	100-500	no effect	no effect
W	1-2	20	> 20	100-500	> 30	no effect

According to the optimum values obtained, the group elemental APDC chelates could be performed as following:-

- a) Co, Cd, and Zn at pH 7.5
- b) Sb, W, Mo, and Hg at pH < 1.0
- c) Cr(VI) at pH 2.5

4.1.3 Adsorption of elemental Se on activated charcoal

The influence on the adsorption yield of selenium by .

acidity, concentration of L—ascorbic acid, amount of activated charcoal, reaction time of reduction of selenite to elemental selenium, the sample volume and salinity was respectively indicated in table 4.13—

4.18 as well as in figure 4.27-4.30. The optimum conditions were thus obtained as following

The pH value : 2-2.75

Concentration of L-ascorbic acid : > 1 mg./ml.

amount of activated charcoal : > 75 mg.

the reaction time :> 7 min.

the sample volume : up to 500 ml.

the salinity : no effect.

4.2 Recovery test on the chemical seperation

4.2.1 Adsorption of 76 As on acid Al₂0₃

The recovery yield up to 98.0±6% could be obtained according to the data presented in table 4.19.

4.2.2 Seperation of 197 Hq from 82 Br interference

The recovery yield obtained from the analysis of a Standard Reference Material "Lake Sediment SL-1" as shown in table 4.20 was satisfactory comparison with the recommended value.

4.3 The Riliability test on the developed techniques

The results on the analysis of a biological Standard Reference Material "Orchard leaves SRM 1571" using the developed techniques, as shown in table 4.21 was in agreement with the certified values.

4.4 Some application of the developed techniques

4.4.1 The determination of As in tap- canal- and sea-water

The arsenic contant in tap- canal- and sea-water was shown in table 4.22.

4.4.2 Leaching behaviour of some trace elements from an alkaline ash in contact with sea water

Table 4.23 indicated the trace elements concentration found in sea water where as table 4.24 described the physical property and chemical property as determined by INAA of the ash [23].

Table 4.25 and 4.26 presented the percentage leaching of the ash in sea water and fresh water respectively. The acidity of the leachates was indicated in table 4.27 and also in fig. 4.31.

The leaching behaviour of As, Sb, Se and Mo in sea water as compare with in fresh water was presented in fig. 4.32-4.35 respectively.

4.4.3 The determination of some trace elements in water and related samples from the Western Scheldt estuary.

Table 4.28 presented some physical properties of the water in the estuary at various places as mentioned in fig. 3.6.

The concentration of As, Sb, W and Mo in water samples, fractionated particulate matter and sediment at various sampling stations was shown in table 4.29—4.31 respectively.

Additionally, fig. 4.36 and 4.37 showed the relation between the salinity of the water with acidity and oxygen content. Fig. 4.38-4.41 presented the distribution of dissolved As, Sb, Mo and W in relation with the salinity respectively.

The photographs of the four size-fractions of particulate matter obtained by centrifugation was presented in Fig.4.42.

Fig. 4.43-4.44 showed the distribution of As and Sb in fore size fractionated particulate matter as well as in sediment in relation to the salinity.

Table 4.1 The influence of acidity on the co-precipitation of As with Fe(OH)3.

рН	Count	% Recovery	Standard
2	3340	8.0	40585
3	20929	50.1	42850
4	40229	96.3	41892
5	40565	97.1	X=41775 <u>+</u> 928
6	41023	98.2	
7	41070	98.3	
8	41150	98.5	
9	40942	98.0	

Table 4.2 The influence of Fe^{3+} concentration on the co-precipitation of As with $Fe(OH)_3$.

Concentration of Fe ³⁺ (mg./1.)	counts	Recovery	Standard (X+SD)
4	20260	48.5	
8	29327	70.2	
10	31754	76.0	
16	38851	93.0	
20	40730	97.5	41775 <u>+</u> 928
40	40965	98.1	
60	41072	98.3	

Table 4.3 The influence of the sample-volume on the co-precipitation of As with $Fe(OH)_3$.

Volume of sample (ml.)	counts	% Recovery	Standard $(X+SD)$
50	41092	98.3	
100	41330	98.9	
150	37723	93.3	
200	27571	66.0	41.775 200
300	16932	40.5	41775+298

Table 4.4 The influence of the As-concentration on the coprecipitation of As with Fe(OH)3.

Concentration of As (pg./l.)	counts	Recovery	Standard (X+SD)
10	41232	98.7	
50	41092	98.3	
75	32751	78.4	41775+298
100	22433	53.7	
150	8856	21.2	

Table 4.5 The influence of the stirring-time on the co-precipitation of As with $Fe(OH)_3$.

(min.)	counts	Recovery	Standard (X+SD)
0	39812	95.3	
2 ·	40688	97.4	
4	40772	97.6	41775 <u>+</u> 298
6	41023	98.2	
8	40731	97.5	
10	41107	98.4	Î.

Table 4.6 The influence of acidity on the recovery of Metal-APDC chelates by activated charcoal.

Nuclide	(counts)								tivity (counts) and % Recovery				
	X	(<u>X+</u> SD)	1	2	3	4	5	6	7	8			
19 7	228 4 7 22286	22527+288	22121	21851	19395	17728	i						
, ,	22450		98.2 %	97.0 %	86.1 %	78.7 %	1		• • • • • • • • • • • • • • • • • • •				
115 115m Cd(In)	20 375 20 4 00	20316 <u>+</u> 123	*		7395	11580	16151	18690		19706			
	20174				36.4 %	57.0 %	79.5 %	92.0 %	97.3 %	97.0 %			
60 _{Co}	33135 33175	33256 <u>+</u> 176		15730	27070	32358		32724		32591			
	33459			47.3 %	81.4 %	97.3 %	100	98.4 %		98.0 %			
65 _{Zn}	24903 24747	24870 <u>+</u> 111		4	1120	3556	6839	12683	21661	24198			
	24961				4.5 %	14.3 %	27.5 %	51.0 %	87.1 %	97.3 %			
51 _{Cr}	22947 22701	22818 <u>+</u> 123	10838	19486	18254	13941	8784	3263	844				
	22805		47.5 %	85.4 %	80.0 %	61.1 %	38.5 %	14.3 %	3.7 %				
99 99m Mo(Tc)	18732 18229	18503 <u>+</u> 243	17633	17892		17207	11934	241					
	18529		95.3 %	96.7 %	95.0 %	93.2 %	64.5 %	1.3 %					
187 _W	14192 14471	1430+147	13674	13216	11543	1359	300	the second					
	14250		95.6 %	92.4 %	80.7 %	9.5 %	2.1 %		• • • • • • • • • • • • • • • • • • • •				
125 _{Sb}		13143 <u>+</u> 146	pHO.7 12893	13018		pH1.3 11816	pH1.5 10144	pH1.7 7022					
. x	13055		98.1 %	99.0 %	91.7 %	89.9 %	77.2 %	53.4 %					

Table 4.7 The influence of APDC-concentration on the recovery of Metal-APDC chelates by activated charcoal.

1	activated								7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	-		
Nuclide		y of standard ounts)					ts) and % Lon of API		C (mg./l.)			
	x	(X+SD)	5	10	15	20	30	50	80	100		
197 _{Hg}	228 47 22286 22 4 50	22527 <u>+</u> 288	20756 92.1 %	21918 97.3 %		22324		22189 98.5 %	22279 98.9 %	الإج		
115 _{Cd(In)}	20375 20400 20174	20316 <u>+</u> 123	10848 53.4 %	16273 80_1 %	10		19828 97.6 %	19767 97.3 %		19909 98.0 %		
60 _{Co}	33135 33175 33459	33256 <u>+</u> 176	21117 63.5 %	32358 97.3 %	32690 98.9 %		32790 98.6 %					
65 _{Zn}	24903 24746 24961	24870 <u>+</u> 111	23974 96.4 %	23875 96.0 %			22955 92.3 %	22383 90.0 %		22283 89.6 %		
⁵¹ cr	22947 22701 22805	22818 <u>+</u> 123	14694 64.4 %	15995 70.1 %		17410 76.3 %	17912 78.5 %	18300 80.2 %	18094 79.3 %			
99m Mo(Tc)	18732 18247 18529	18503 <u>+</u> 243	17892 96.7 %	18169 98.2 %		18225 98.5 %		18022 97.4 %	18188 98.3 %			
187 _W	14192 14471 14250	14304 <u>+</u> 147	11743 82.1 %	12916 90.3 %		13517 94.5 %		13846 96.8 %	13889			
¹²⁵ Sb	13012 13220 13055	13143 <u>+</u> 146		5020 38.2 %		5927 45.1 %		7623	11920 90.7 %	12919 98.3 %		

Table 4.8 The influence of amount of charcoal on the recovery of Metal.APDC chelates.

Nuclide		y of standard counts)		7-	Activity (counts) and % Recovery The amount of activated charcoal (mg.)							
	х	$(\overline{X} + SD)$	5	10	15	20	25	40	50	60		
197 _{Hg}	22847 22286 22450	22527 <u>+</u> 288	20497 90.9 %	21501 95.4 %	21731 96.5 %	22017 97.8 %		22071 97.9 %		2		
115 115m Cd(In)	20375 20400 20174	20316 <u>+</u> 123	19645 96.7 %	19808 97.5 %	19909 98.0 %	19970 98.3.%	19828 97.6 %					
60 _{Co}	33135 33175 33459	33256 <u>+</u> 176	32424 97.5 %	32624 98.1 %	32823 98.7 %	32524 97.8 %	32690 98.3 %			10 10		
65 _{Zn}	24903 24746 24961	24870 <u>+</u> 111	22706 91.3 %	24148 97.1 %	23228 93.8 %	20492 82.4 %	19075 76.7 %					
⁵¹ Cr	22947 22701 22805	22818 <u>+</u> 123	13987 61.3 %	16657 73.0 %		17889 78.4 %		19418 85.1 %		19326 84.7 %		
99 Mo(Tc)	18732 18247 18529	18503 <u>+</u> 243	15579 84.2 %	16930 91.5 %		18096 97.8 %		18133 98.0 %	232, 00	18188 98.3 %		
187 _W	14192 14471 14250	14304 <u>+</u> 147	10056 70.3 %	12172 85.1 %		13360 93.4 %		13674 95.6 %		13918 97.3 %		
125 _{Sb}	13012 13220 13055	13143 <u>+</u> 146	7675 58.4 %	9620 73.2 %		12631 96.1 %		12893 98.0 %	12709 96.7 %			

Table 4.9 The influence of sample-volume on the recovery of Metal-APDC chelates by activated charcoal.

Nuclide	Activity of standard	Act The	Activity (counts) and % Recovery The Volume of sample (ml.)						
	(X+SD)	100	200	300	400	600			
197 _{Hg}	22527 <u>+</u> 288	22180 98.5 %	21918 97.3 %	21530 95.6 %	21081	20905			
115 _{Cd}	33256 <u>+</u> 123	19934 98.1 %	20011 98.5 %	19869 97.8 %	19760 97.3 %	19711 97.0 %			
60 _{Co}	33256 <u>+</u> 176	32358 97.3 %	32624 98.1 %	32457 97.6 %	32690 98.3 %	31591 95.0 %			
65 _{Zn}	24870 <u>+</u> 111	23990 96.5 %	23751 95.5 %	23871 95.9 %	23620	22380 89.9 %			
⁵¹ Cr	22818 <u>+</u> 123	18710 82.0 %	16874 73.9 %	15978 70.1 %	13016	12276 53.8 %			
⁹⁹ Mo	18503 <u>+</u> 243	1813() 98.3 %	18059 97.6 %	18130 97.9 %	18225 98.5 %	17578 95.0 %			
187 _W	14304 <u>+</u> 147	13946 97.5 %	13689 95.7 %	13836 96.7 %	13870 97.9 %	13020			
125 _{Sb}	13143 <u>+</u> 146	12854 97.8 %	12754 97.1 %	12906 98.2 %	12724 96.8 %	12316 93.7 %			

Table 4.10 The influence of the stirring time on the recovery of Metal.APDC chelates by activated charcoal.

Nuclide	Standard		The Sti	rring Ti	me (min.)
	(<u>X+</u> SD)	10	20	30	50	60
197 _{Hg}	22527 <u>+</u> 288	22071 98.0 %	21918 97.3 %	21810 96.8 %	22031 97.8 %	22014 97.7 %
115 _{Cd}	20316 <u>+</u> 123	19828 97.6 %	19930	19585 96.4 %	19647 96.7 %	19767 97.3 %
60 _{Co}	33256 <u>+</u> 176	32358 97.3 %	32225 96.9 %	32624 98.1 %	32457 97.6 %	32391 97.4 %
65 _{2n}	24870 <u>+</u> 111	23303 93.7 %	22258 89.5 %	19398 78.0 %	18752 75.4 %	14452 58.1 %
⁵¹ Cr	22818 <u>+</u> 123	14718 64.5 %	18962 83.1 %	19167 84.0 %	18596 81.5 %	
99 _{Mo}	18503 <u>+</u> 243	18040 97.5 %	17911 96.8 %	18188 98.3 %	18133 98.0 %	
187 _w	1430 <u>+</u> 147	11500 80.4 %	13217 92.4 %	13989 97.8 %	14019 98.0 %	
125 _{Sb}	13143 <u>+</u> 146	12921 98.3 %	12854 97.8 %	12880	12854 97.8 %	

Table 4.11 The influence of the salinity on the recovery of Metal-APDC chelates on activated charcoal.

Nuclide			Activity	(counts		Recovery	
	4	8	12	- 16	20	28	32
197 _{Hg}	22099	21964	22031	22144	21964	22212	21874
	98.1 %	97.5 %	97.8 %	98.3 %	97.5 %	98.6 %	97.1 %
¹¹⁵ Cd	19727	19808	19970	19930	19869	19828	19910
	97.1 %	97.5 %	98.3 %	98.1 %	97.8 %	97.6 %	98.0 %
⁶⁰ Co	32426	32191	32624	32458	32691	32225	32492
	97.5 %	96.8 %	98.1 %	97.6 %	98.3 %	96.9 %	97.7 %
65 _{Zn}	23800	24149	24074	23776	23950	24124	24074
	95.7 %	97.1 %	96.8 %	95.6 %	96.3 %	97.0 %	96.8 %
51 _{Cr}	20605	19030	18597	18254	18140	18163	18186
	90.3%	83.4 %	81.5 %	80.0 %	79.5 %	79.6 %	79.7 %
99 _{Mo}	18151	18077	18188	17929	18003	18151	17855
	98.1 %	9 7. 7 %	98.3 %	96.9 %	97.3 %	98.1 %	96.5 %
125 _{Sb}	12854	12893	12920	12801	12828	12880	12841
	97.8 %	98.1 %	98.3 %	97.4 %	97.6 %	98.0 %	97.7 %
187 _w	13946	14032	13975	14061	13946	14018	13918
	97.5 %	98.1 %	97.7 %	98.3 %	97.5 %	98.0 %	97.3 %

Table 4.13 The influence of acidity on the recovery of Selenium on activated charcoal.

рН	counts	Recovery ·	Standard
1.0	1676	5.5	30464
1.5	9344	31.0	30310
1.8	1853	59.7	29912
2.0	26057	86.2	
2.3	29593	97.9	X= 30228+284
2.5	29654	98.1	
2.8	19400	64.2	
3.0	7155	23.7	

Table 4.14 The influence of L-ascorbic acid concentration on the recovery of selenium on activated charcoal.

Concentration of L-ascorbic acid (mg./ml/)	counts	% Recovery	Standard
0.5	15604	41.7 %	37089
0.75	25496	68.2 %	37975
1.0	30043	98.7	37134
1.25	36658	98.0	X=37399+499
1.50	35945	96.1	

Table 4.15 The influence of amount of activated charcoal on the recovery of Se.

of charcoal(mg.)	counts		% Recovery	Standard (X+SD)
10	20543		54.9	
25	26931		72.0	
50	31102		83.1	37399 <u>+</u> 499
75	35914	1	96.0	
100	36295	ř	97.0	
125	36377	7	97.3	

Table 4.16 The influence of stirring time on the recovery of Se on activated charcoal.

Stirring time (min.)	counts	% Recovery	Standard (X+SD)
1	32425	86.7	
3	33435	89.4	
5	34070	91.1	37399 <u>+</u> 499
7	36576	98.8	
10	36838	98.5	
15	36912	98.7	

Table 4.17 The influence of the sample volume on the recovery of selenium on activated charcoal.

(ml.)	counts	% Recovery	Standard
100	36838	98.5	
200	36690	98.1	37399 <u>+</u> 499
300	36576	97.8	
400	36651	98.0	
500	36460	97.3	

Table 4.18 The influence of the salinity on the recovery of Se on activated charcoal.

Salinity %.	counts	% Recovery	Standard (X+SD)
4	32696	97.5	
8	32495	96.9	
12	32897	98.1	33534 <u>+</u> 904
16	32760	97.7	
20	32361	96.5	
24	32630	97•3	
28	32864	98.0	

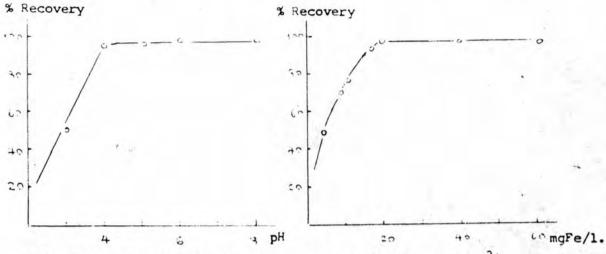


Fig. 4.1 Effect of acidity on the recovery of As by co-precipitation with Fe(OH)3.

Fig. 4.2 Effect of Fe³⁺ concentration on the co-precipitation of As with Fe(OH)₃.

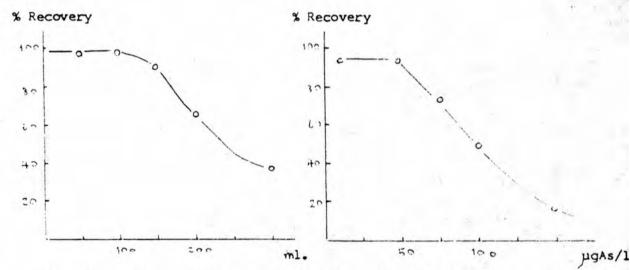


Fig. 4.3 Effect of the sample volume on the coprecipitation of As with Fe(OH)3.

Fig. 4.4 Effect of As concentration on the co-precipitation of As with Fe(OH)3.

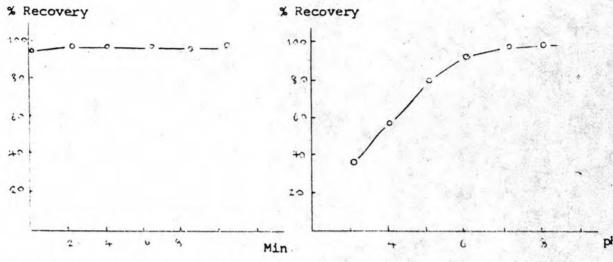


Fig. 4.5 Effect of the stirring time on the coprecipitation of As
with Fe(OH)3.

Fig. 4.6 Effect of the acidity on the recovery of Cd-APDC chelate on activated charcoal.

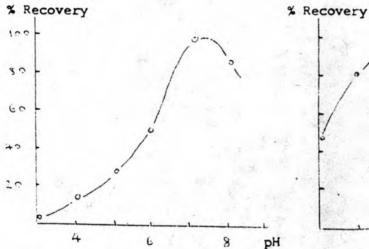


Fig. 4.7 Effect of the acidity on the recovery of Zn-APDC chelate on activated charcoal.

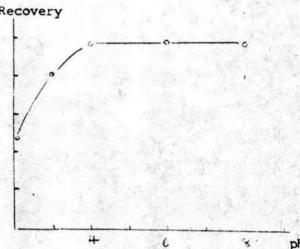


Fig. 4.8 Effect of the acidity on the recovery of Co-APDC chelate on activated charcoal.

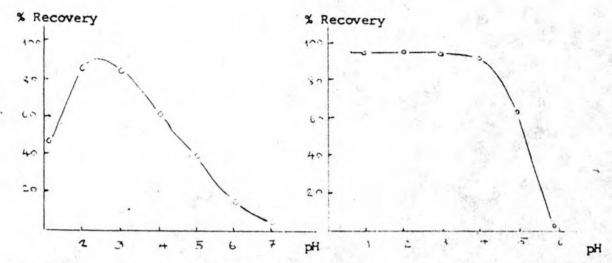


Fig. 4.9 Effect of acidity on the Fig. 4.10 Effect of acidity on the recovery of Cr(VI)-APDC chelate on activated charcoal.

recovery of Mo-APDC chelate on activated charcoal.

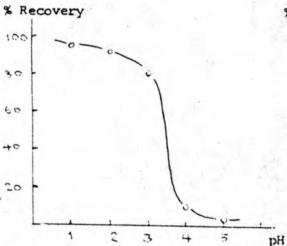


Fig. 4.11 Effect of acidity on the recovery of W-APDC chelate on activated charcoal.

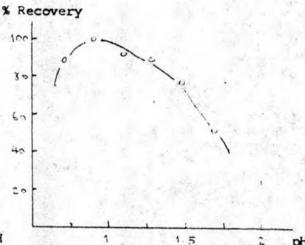


Fig. 4.12 Effect of acidity on the recovery of Sb-APDC chelate on activated charcoal.

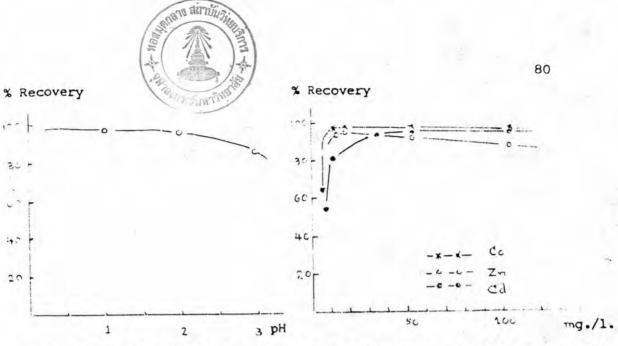
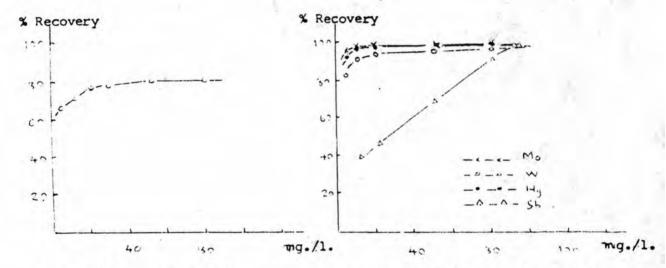
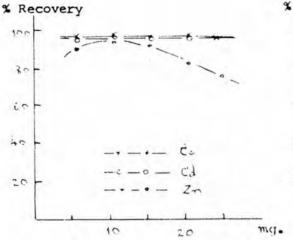
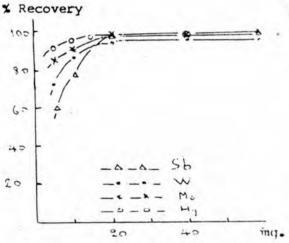
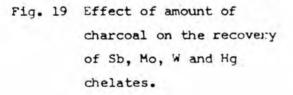


Fig. 4.13 Effect of acidity on the Fig. 4.14 Effect of APDC-concentration recovery of Hg-APDC on the recovery of Co, Cd, chelate on activated Zn on activated charcoal.


Fig. 4.15 Effect of APDC-concentra- Fig. 4.16 Effect of APDC concentration tion on the recovery of on the recovery of Sb, Mo, Cr(VI) on activated W and Hg on activated charcoal.



% Recovery 100-20 mg.

charcoal on the recovery of Co, Cd, and Zn chelates.

Fig. 17 Effect of amount of Fig. 18 Effect of amount of charcoal on the recovery of Cr(VI) chelate.

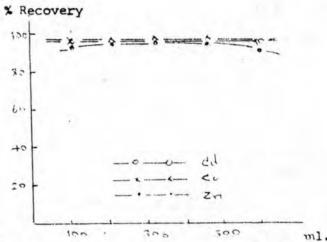


Fig. 20 Effect of the sample volume on the recovery of Co, Zn and Cd chelates on activated charcoal.

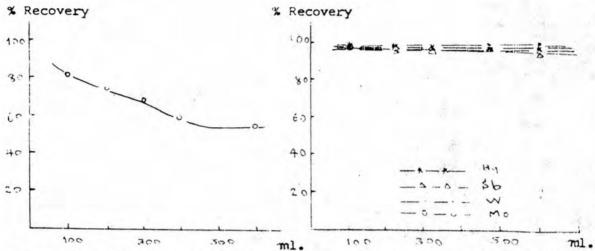


Fig. 4.21 Effect of sample volume Fig. 4.22 on the recovery of Cr(VI)-APDC chelate on activated charcoal.

Effect of sample volume on the recovery of Sb, Mo, W and Hg chelates on charcoal.

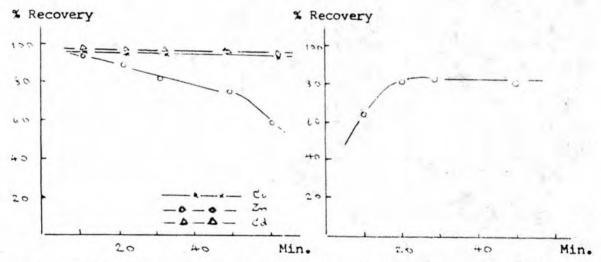


Fig. 4.23 Effect of stirring time Fig. 4.24 Effect of the stirring on the recovery of Co, Zn and Cd chelates on activated charcoal.

time on the recovery of Cr(VI) chelate on activated charcoal.

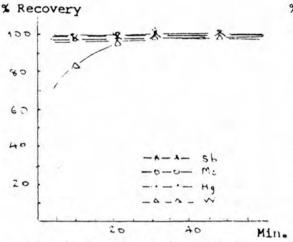


Fig. 4.25 Effect of stirring time on the recovery of Sb, Mo, Hg and W on activated charcoal.

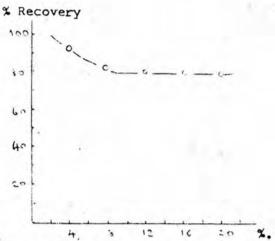


Fig. 4.26 Effect of the salinity
on the recovery of Cr(VI)APDC chelate on activated
charcoal.

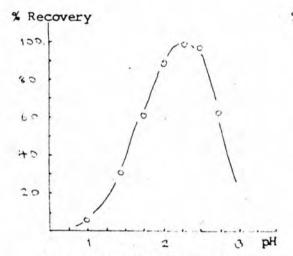


Fig. 4.27 Effect of acidity on the recovery of elemental Selenium on activated charcoal.

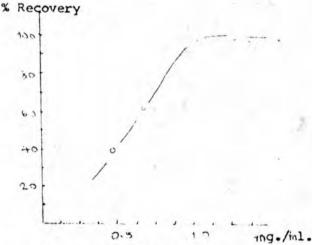


Fig. 4.28 Effect of L-ascorbic acid concentration on the recovery of Selenium on activated charcoal.

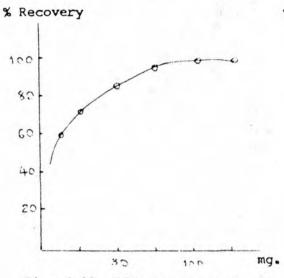


Fig. 4.29 Effect of amount of charcoal on the recovery of elemental Selenium.

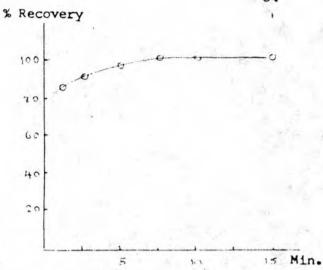


Fig. 4.30 Effect of the stirring time on the recovery of Se on activated charcoal.

Table 4.19 The recovery of 76 As on acid Al₂0₃.

	Counts	X+SD.	% Recovery
Standard	40585	41775 <u>+</u> 928	
Standard	42850	(2.2%)	d _x
Standard	41890		98.0+5.9
Sample	39229	40924+1572	
Sample	43016	(3.8%)	
Sample	40528		

Table 4.20 The recovery of 197 Hg purification

Identification	Weight (gm)	corrected activity (counts)	
Standard charcoal of	0.41140	13443	Specific activity
0.995 ppm Hg content	0.43755	16565	is 35444 <u>+</u> 2604 counts/µg•Hg
Lake Sediment	1.01110	3960	Concentration of
SL-1 which	0.95830	4878	Hg found is
has the Hg contant			0.127+0.02 ppm
of 0.13 ppm[21]			

Table 4.21 Data for SRM 1571 Orchard leaves
All in µg./g. (dry weight)

Element	Concentration	NBS certified value[22]	Other literature data. [15]
As	9.21+0.01	9.5+1.0	9.94 - 9.76
Нд	0.15+0.04	0.155+0.015	0.09 - 0.19
Zn	24.5 <u>+</u> 0.8	25 <u>+</u> 3	23 - 27
W	0.05+0.01	-	0.02
Sb	2.30 <u>+</u> 0.26	2.9+0.3	2.7 -3.7
Se .	0.14+0.09	0.08+0.01	0.08-0.11
Co	0.13+0.02		0.1 -0.21
Mo	0.4+0.03	0.3+0.1	0.33

Table 4.23 Concentration of some trace elements found in sea water used on the leaching experiment (all in µg./1/).

Element	Blanck value	Concentration found
Zn	8.77 <u>+</u> 1.37	23.42 ± 3.75
Нд	0.063+0.008	0.172 <u>+</u> 0.02
Со	0.283+0.04	0.282+0.06
Cr(VI)	14.03 <u>+</u> 1.22	N.D.
w	N.D.	N.D.
Sb	N.D.	0.528+0.025
Мо	N.D.	9.935 <u>+</u> 0.565
As	N.D.	2.92 <u>+</u> 0.16
Se	N.D.	N.D.

Table 4.24 Physical and chemical composition of the ash.

Bulk density (g/cm³) 1.12 Porosity 0.45 Ash fusion temperature (°C) 1350 Ratio (CaO+MgO/SO₃+0.04 Al₂O₃) 4.23 Cumulative weight below particle size (µm.) 5.0 µm 54.9 µm 95.5 % 44.8 % 17.7 µm 76.9 % 1.2 µm 14.9 %

10.5 µm 64.6 %

Element	Concentration	Element	Concentration
Si %	20.6	Ga	45
A1 %	10.5	H£	5.5
Fe %	6.2	Нд	0.62
Ca %	3.6	La	65
Mg %	2.1	Lu	1.15
Na %	0.43	Mn	1050
К %	2.35	Мо	25
Ti %	0.58	Nd	95
S	1.2	Ni	120
As	27	Pb	205
В	215	Rb	140
Ва	1700	Sb	14.5
Be	-	Sc	29
Br	1.4	Se	6.8

Table 4.24 (Cont.)

Element	- Concentration	Element	Concentration
Ce	176	Sm	15.4
Cd	2.5	Sr.	820
Co	56	Ta	1.30
Cr	165	Tb	2.2
Cs	16	Th	26
Cu	170	U	10.2
Dy		V	209
Eu	2.5	W	6.0
F	690	Yb	5.1
Cl	< 50	Zn	430

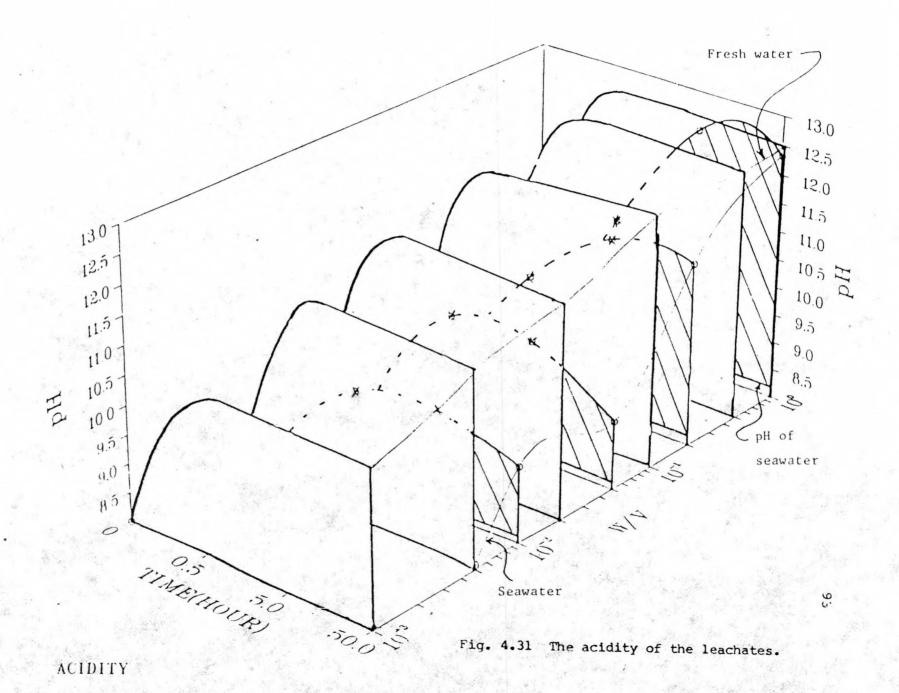
All concentrations in ug.g -1 wiless stated otherwise.

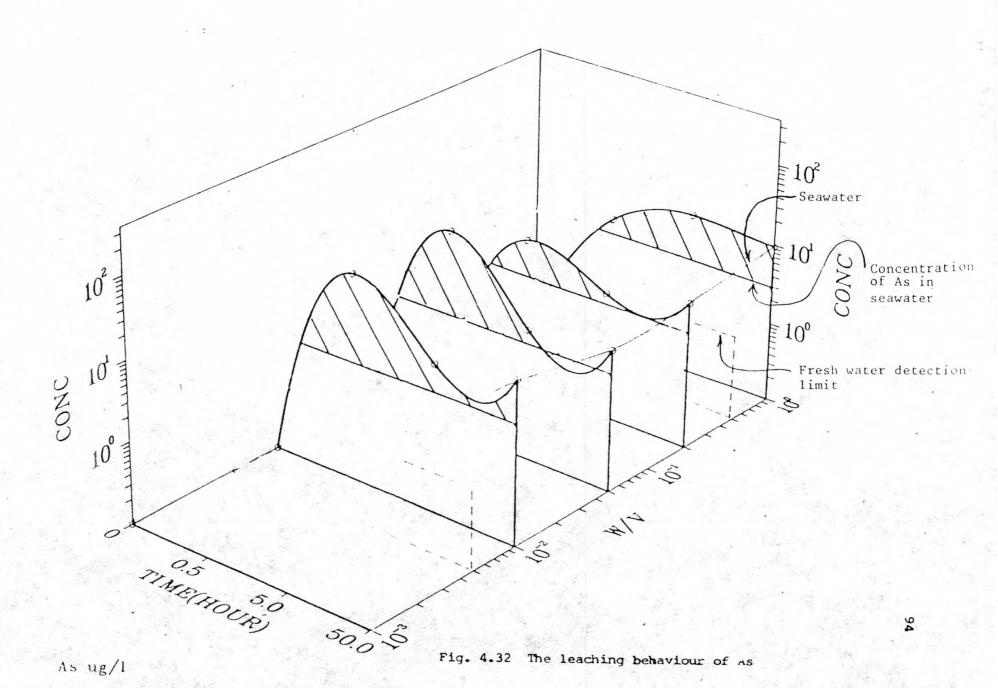
Table 4.25 Percentage leaching of the ash in sea water.

Time	Element		Solid to	liquid ratio	0
(h)		1/100	1/20	1/5	1/1
	Cr(VI)	3.4	1.6	1.1	0.32
	Со	0.16	0.035	0.023	0.003
	Sb	7.5	2.9	1.4	0.31
0.5	Se	72.	61.	34.	9.5
	Мо	33.	14.	6.5	3.2
	W	23.	11.	5.9	0.89
	Zn	0.71	0.26	0.14	0.06
	As	13.	2.4	0.16	0.017
	Нд	9.3	4.6	3.4	0.08
	Cr(VI)	2.9	2.0	1.1	0.27
	Со	0.13	0.04	0.023	0.007
	Sb	12.	3.6	1.5	0.02
5.0	Se	94.	52.	9.2	4.4
	Мо	39.	10.6	3.2	5.2
	W	30.	10.7	2.3	0.67
	Zn	0.77	0.25	0.13	0.044
	As	2.5	0.33	0.07	0.04
	Нд	2.4	3.11	0.99	- 0.06
	Cr (VI	5.3	6.2	3.4	1.,3
	Co	0.08	0.027	0.013	0.0067
	Sb	25.	16.	0.73	0.02
0.0	Se	83.	31.	0.21	029
	Мо	44.	18.	7.3	7.5
	W	38.	23.	8.3	0.11
	Zn	0.78	0.21	0.10	0.048
	As	3.8	0.43	0.13	0.036
	Нд	0.87	0.16	0.34	- 0.03

Table 4.26 Percentage leaching of the ash in fresh water.

Time	Element		soli	d to li	quid ra	tio	
(h)		1/1000	1/200	1/50	1/20	1/2	1/1
	Cr(VI) Co Sb	14.	8.5	5.5	0.23	0.68	1.4
0.5	Se Mo		100 40.	66	23.	11.	5.3
	W		37		9.0		0.75
	Zn As	3.49	0.47	0.29	0.02	0.05	0.015
	Cr(VI)	61.	19	7.9		0.85	0.92
	Sb	27.	21	4.5	0.14	3 8	1
5.0	Se Mo W		59.	18.	2.9	0.59	1.32
	Zn As	3.5	0.93 <1	0.29	0.05	0.009	0.002 K0.01
	Cr (VI)					0.60	0.12
	Sb	14.	12.	2.0	0.07	100	
50	Se			77.00			0.1
	Mo W				5.0	2.2	1.6
	Zn	1.2	0.23	0.41	7.0	0.02	0.03
	As		1		0.02	0.02	0.01


Table 4.27 pH values of the leachates.


The ash in sea water.

2.7.	pH values at various contact time			
Ratio .	0.5 h	5 h	50 h	
1/100	9.5	9.7	9.3	
1/20	10.0	10.1	9.2	
1/5	10.0	10.2	11.2	
1/1	10.3	12.3	12.3	

The ash in fresh water

Ratio	pH values at various contact time			
	0.5 h	5 h	50 h	
1/1000	10.8	10.8	10.8	
1/200	11.4	11.3	11.4	
1/50	11.7	11.8	11.7	
1/10	11.9	12.1	12.2	
1/2	12.2	12.3	12.3	
1/1	12.3	12.4	12.4	

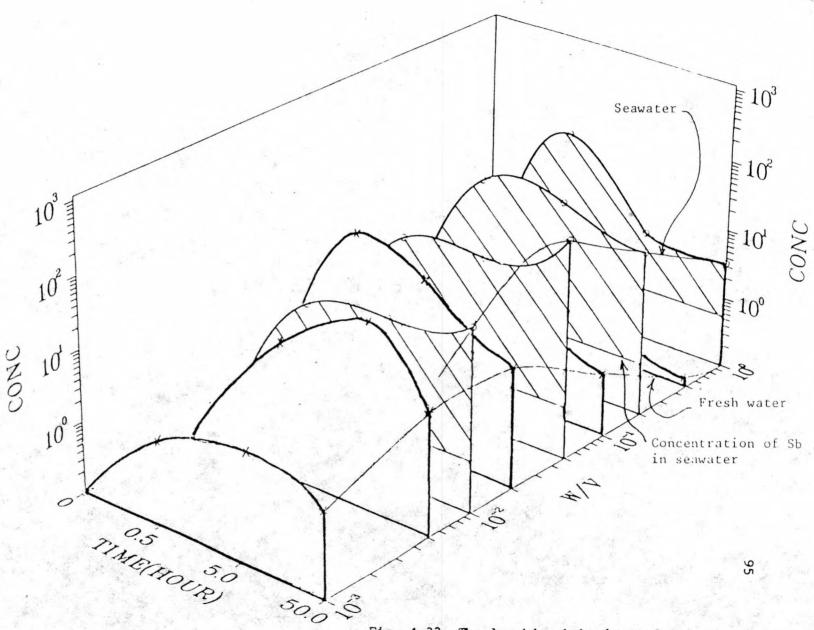
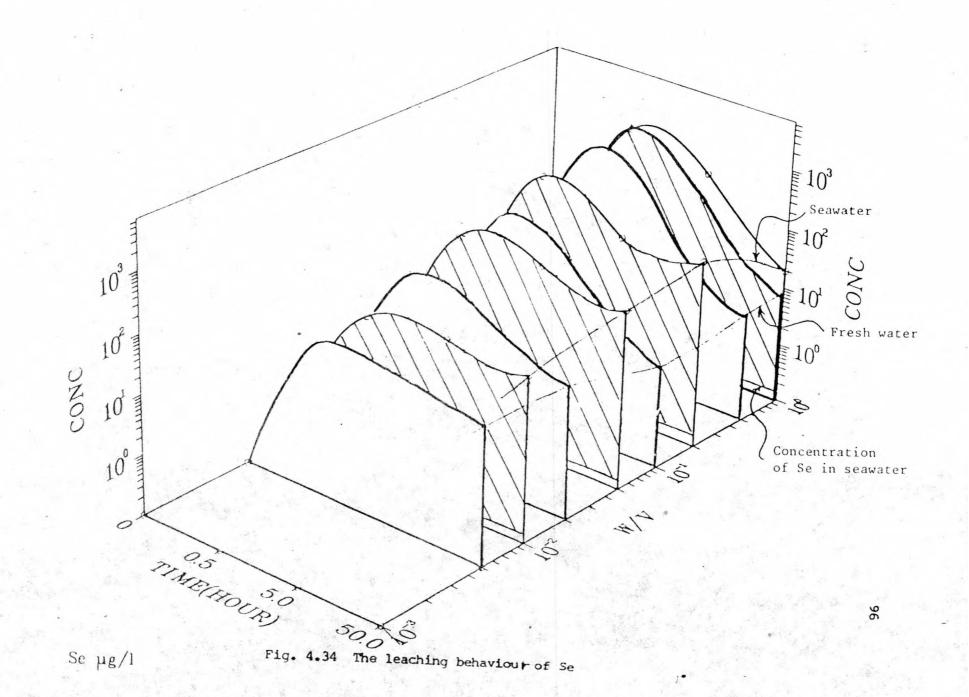



Fig. 4.33 The leaching behaviour of Sb

Sb pg/l

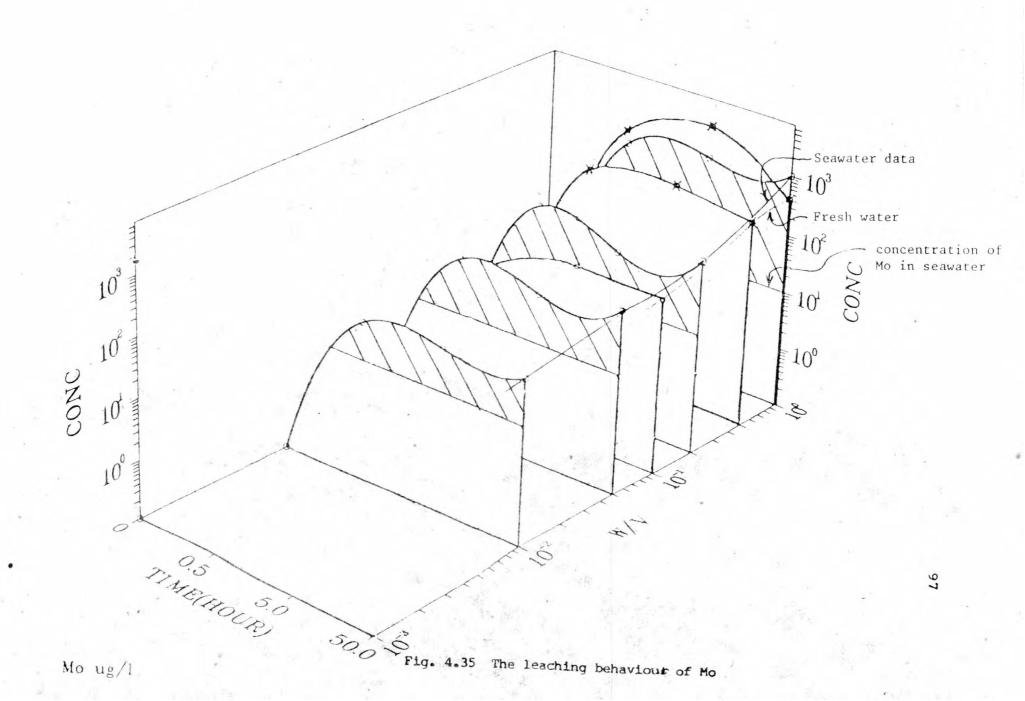


Table 4.28 Physical properties of sea water in the Western Scheldt estuary.

Station	Temperature	Salinity	Oxygen	pH	
No.	°c	%.	content(ppm)	=	
1	1.7.0	31.3	8.90	8.00	
2	17.6	29.0	8.25	7.95 7.86	
3	17.4	26.8	8.40		
4	17.2	25.2	8.00	7.75	
5	17.4	22.6	7.78	7.69	
6	17.6	20.0	6.77	7.52	
7	17.6	17.6	6.48	7.35	
8	17.9	15.7	4.87	7.20	
9	18.2	14.0	3.62	7.25	
10	18.3	12.1	2.11	7.23	
11	18.4	9.6	1.46	7.29	
12	18.4	8.0	1.29	7.30	
13	18.4	5.6	1.19	7.40	
14	18.7	4.0	0.59	7.48	
15	18.0	2.0	0.59	7.40	
16	•			**	
17	17.0	1.0	0.68	7.51	
18					
19	17.2	0.75	1.40	7.55	
20	17.4	0.65	0.85	7.56	
21					
22	17.5	0,60	1.25	7.55	
23	•				
24	18.1	0.60	2.00	7.55	
25	16.0	32.6	8.90	7.92	

Not measured, only the sediment was taken.

Table 4.29 Concentration of dissolved As, Sb, W and Mo in the Western Scheldt estuary. (All in µg./1.)

Station	As	Sb	W	Mo
No.	(n=1)	(n=2)	(n=3)	(n=2)
1	3.36	0.44+ .005	0.068+ .015	8.81 <u>+</u> 0.5
2	4.84	0.73+0.03	0.087 <u>+</u> 0.052	9.28+0.07
3	5.06	0.69+0.09	0.065+0.001	7.30+0.36
4	6.06	0.73+0.02	0.057+0.0	7.61+0.42
5	-	1.23+0.05	0.203+0.07	8.44+0.19
6	8.60	0.34+0.004	0.081	8.15+0.36
7	8.64	0.23+0.002	N.D.	7.07+0.49
8	10.30	-	N.D.	-
9	10.10	1.45+0.18	0.76+0.02	7.19+0.11
10	10.40	1.52+0.03	0.83+0.01	6.47+0.13
11	-	2.07+0.05	1.60+0.07	6.41+0.18
12	11.69	1.91+0.10	1.70+0.04	6.30+0.18
13	14.40	1.31+0.11	0.99+0.10	3.36+0.6
14	12.79	0.84+0.09	1.40+0.10	2.93+0.3
15	9.89	0.43+0.02	1.55+0.06	3.42+0.06
17	8.73	0.31+0.02	1.04+0.08	3.00+0.24
20	7.67	1.15+0.01	0.32+0.11	3.00+0.3
22	5.26	1.35+0.06	0.36+0.03	3.89+0.3
24	5.33	1.046+0.0	0.40+0.09	4.13+0.00
25	2.82	0.21+0.08	N.D.	7.00+2.4

^{- =} not determined.

Table 4.30 Concentration of As and Sb in suspended matter from the Western Scheldt estuary. (All in µg./g.)

Station	As			Sb fraction				
	1	2	3	4	1	2	3	4
1	34.0	40.1	43.0	32.5	1.47	N.D.	N.D.	N.D.
4	34.0	45.9	54.4	49.2	1.56	1.94	N.D.	N.D.
6	48.7	69.1	76.5	76.1	3.07	2.70	1.97	N.D.
8	61.9	80.3	83.5	87.6	4.31	3.55	3.41	3.67
11	69.4	105.	115.	103.	4.56	5.15	3.67	4.64
13	76.6	160.	158.	135.	5.32	4.99	4.85	4.24
17	66.8	76.2	69.7	83.7	10.9	72.1	10.5	12.2
20	57.2	69.0	67.3	64.5	11.5	12.2	11.4	10.4
22	51.4	57.9	57.4	60.2	8.4	8.21	7.4	7.7
24	31.0	31.7	34.6	32.5	4.7	3.94	4.01	3.8
25	23.3	36.5	38.2	38.2	1.06	N.D.	N.D.	0.7

Table 4.31 Concentration of As, Sb, W, and Mo in sediment sample from the Western Scheldt estuary. (All in µg./g.)

Station No.	As	Sb	W	Мо	
1	15.4 <u>+</u> 1.7	0.50+0.2	N.D.	N.D.	
2	7.43+0.42	N.D.	N.D.	N.D.	
3	9.49+0.53	N.D.	N.D.	N.D.	
4	7.73+0.57	0.40+0.13	N.D.	N.D.	
5	6.16+0.48	N.D.	N.D.	N.D.	
6	22.0 +2.1	N.D.	N.D.	N.D.	
7	=	-	-	-	
8	55.7 +4.0	4.80+ .44	3.21+1.14	N.D.	
9	6.95+0.44	N.D.	N.D.	N.D.	
10	7.2 +0.48	N.D.	N.D.	N.D.	
11	12.1 +0.5	0.69+0.11	N.D.	2.66+0.81	
12	89.2 +2.8	3.61+0.43	1.49+0.9	6.34+1.86	
13	53.0 +2.5	4.06+0.40	2.53+1.21	N.D.	
14	9.05+0.34	1.41+0.12	N.D.	N.D.	
15		-	-	-	
16	12.9 +0.4	1.86+0.15	0.49+0.29	N.D.	
17	47.1 +2.0	8.23+0.50	2.29+0.96	N.D.	
18	6.85+0.21	0.50+0.06	N.D.	N.D.	
19	44.8 +1.7	6.42+0.42	2.33+0.80	N.D.	
20	6.91 <u>+</u> 0.26	0.69+0.10	N.D.	N.D.	
21	9.17+0.36	0.79+0.11	N.D.	N.D.	
22	97.6 +2.1	4.27+0.56	1.0 +0.8	N.D.	
23	11.5 ±0.40	1.06+0.13	N.D.	N.D.	
24	1.93+0.19	0.25+0.06	N.D.	N.D.	
25	18.8 +1.1	0.57+0.17	N.D.	N.D.	

⁻ Not determined.

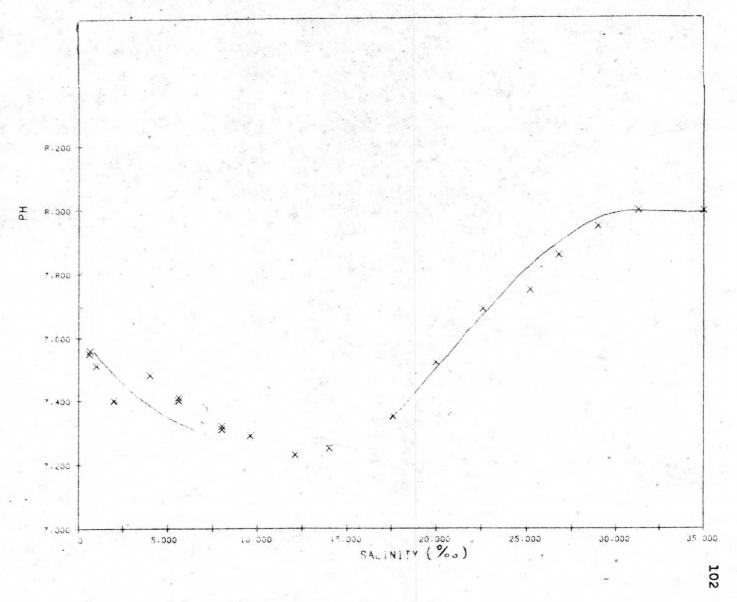


Fig. 4.36 The relation between acidity and Salinity of the water in the Western Scheldt estuary.

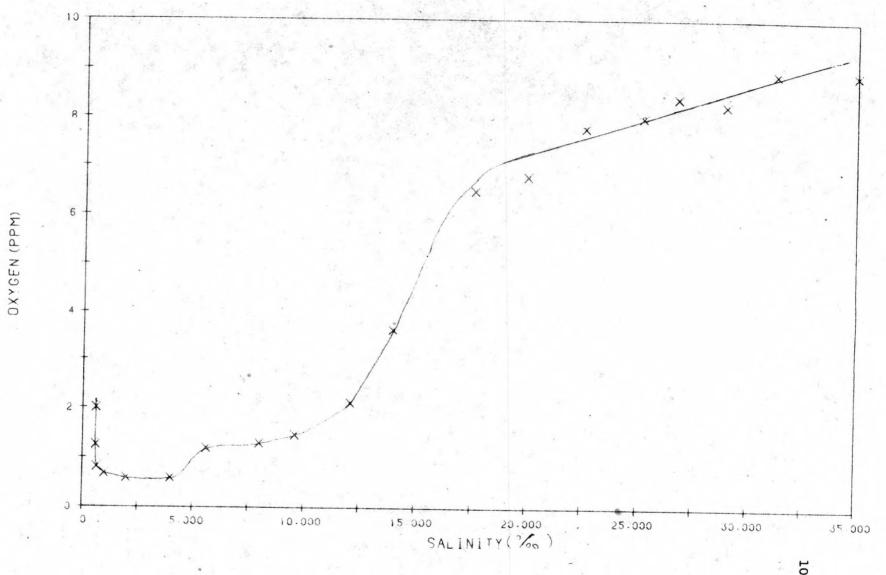


Fig. 4.37 The relation between Oxygen content and Salinity of the water in the Western Scheldt estuary.

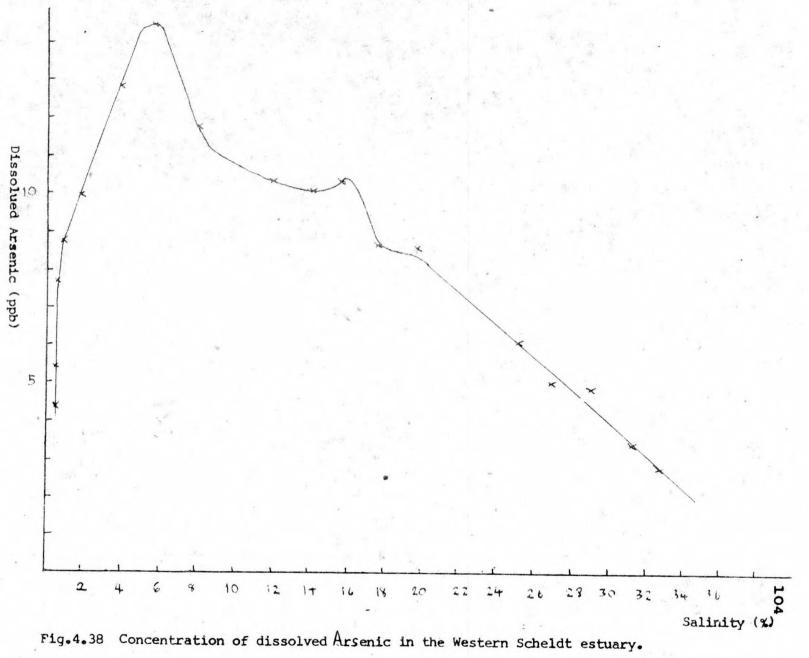


Fig. 4.38 Concentration of dissolved Arsenic in the Western Scheldt estuary.

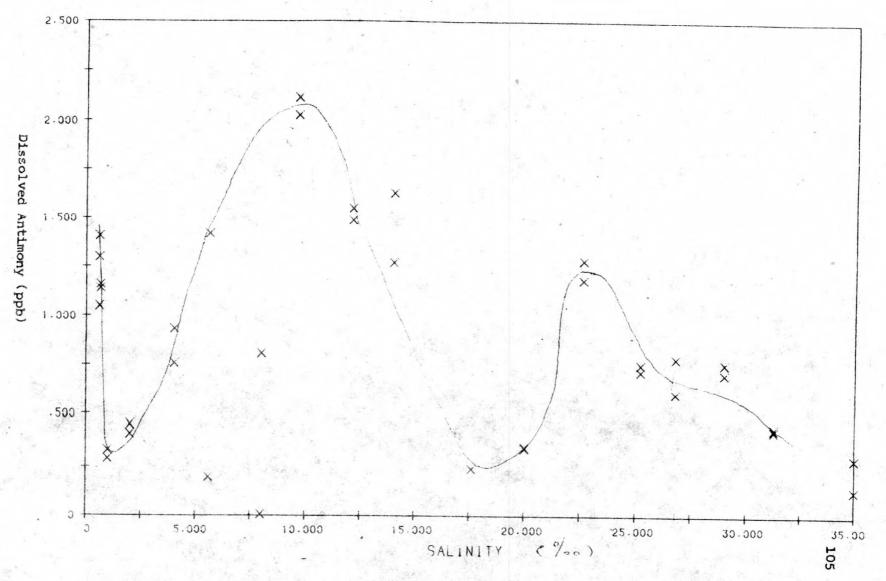


Fig. 4.39 Concentration of dissolved Antimony in the Western Scheldt estuary.

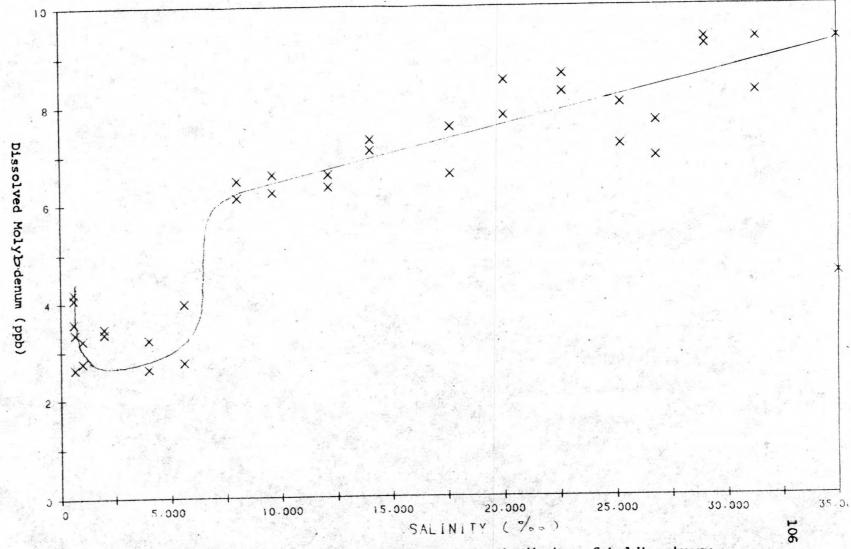


Fig. 4.40 Concentration of dissolved Molybdenum in the Western Scheldt estuary.

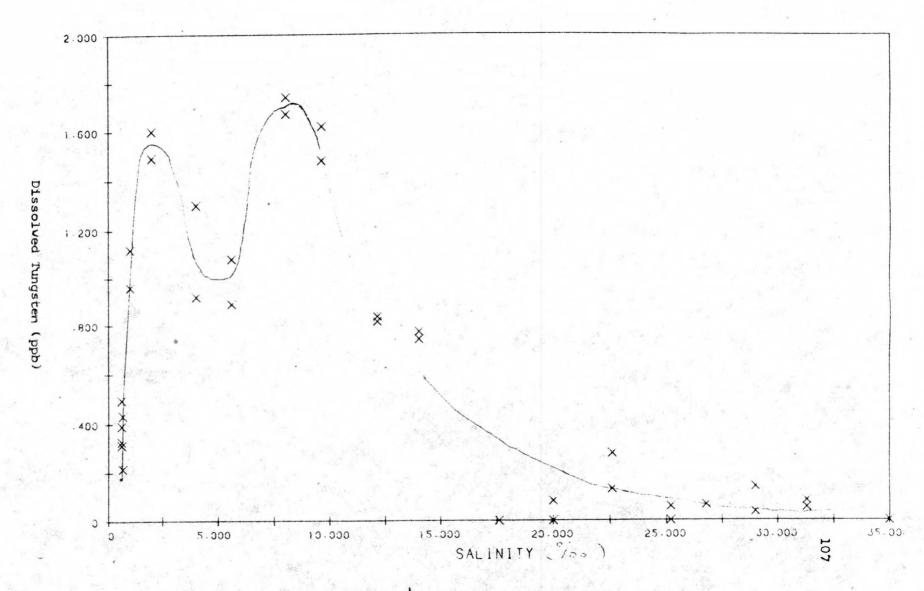
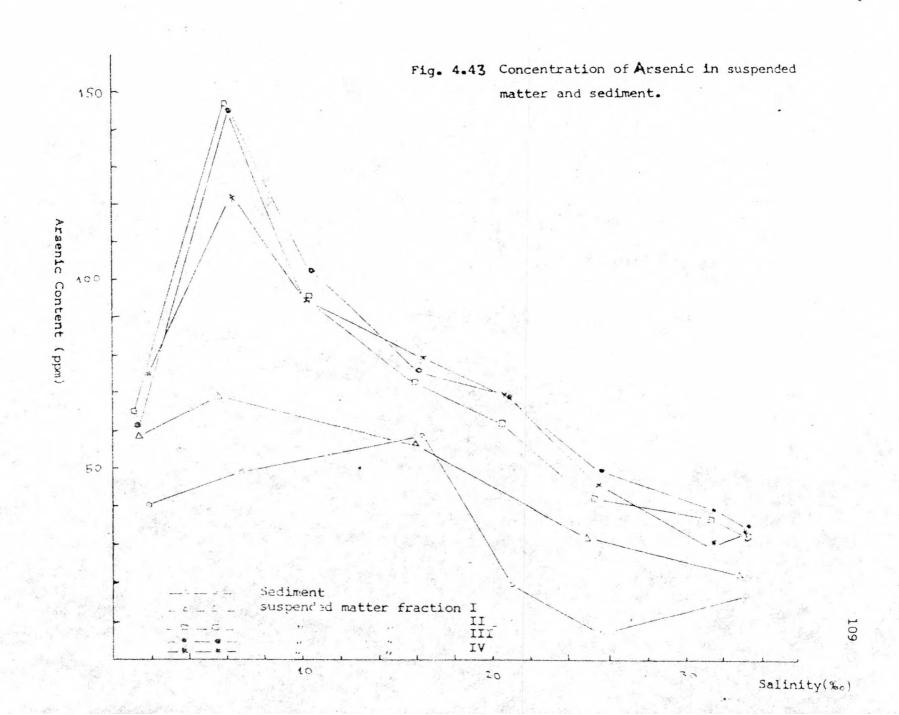
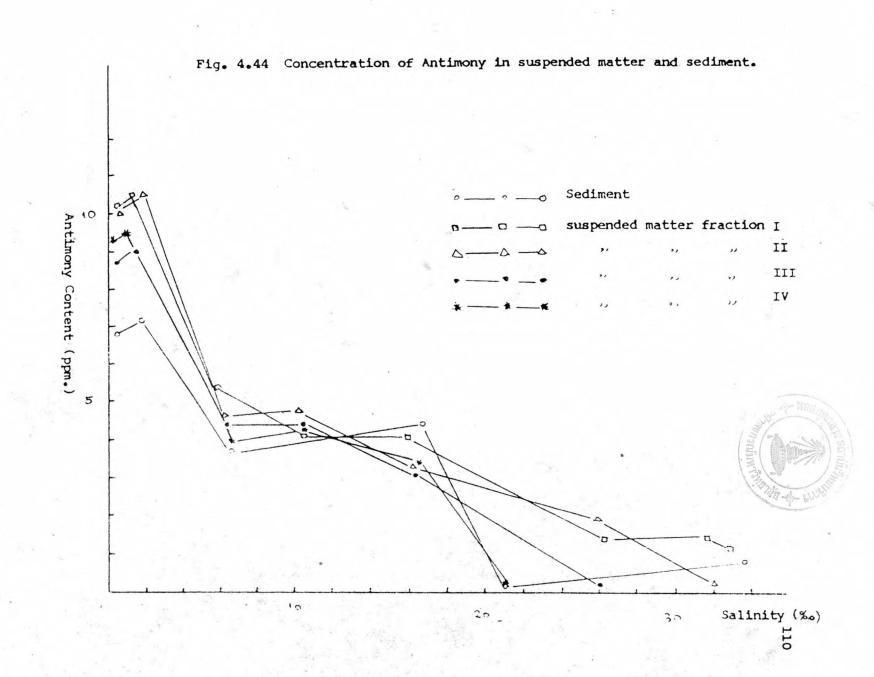




Fig. 4.41 Concentration of dissolved tungsten in the Western Scheldt estuary.

Fig. 4.42 Photographs of the four size-fractions obtained by centrifugation.

