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CHAPTER I
INTRODUCTION

Self-reciprocal and self-reciprocal irreducible monic (SRIM) polynomials over fi-
nite fields have been studied and applied in various branches of Mathematics and
Engineering. SRIM polynomials were used for characterizing and enumerating Eu-
clidean self-dual cyclic codes over finite fields in [3] and for characterizing Euclidean
complementary dual cyclic codes over finite fields in [7]. In [2], SRIM polynomials
have been characterized up to their degrees. The order and the number of SRIM
polynomials of a given degree over finite fields have been determined in [8].

Self-conjugate-reciprocal irreducible monic (SCRIM) polynomials, a generaliza-
tion of SRIM polynomials, have been used for characterizing Hermitian self-dual
cyclic codes in [4]. However, properties of SCRIM polynomials have not been well
studied. Therefore, it is of natural interest to characterize and to enumerate such
polynomials.

In Chapter II, some useful properties of the minimal polynomial of an element
of a finite field and the order of a polynomial over finite field are recalled. Neces-
sary and sufficient conditions for a monic irreducible polynomial to be SRIM are
reviewed.

In Chapter III, we investigate SCRIM polynomials. Necessary and sufficient
conditions for a monic irreducible polynomial to be SCRIM are given. Moreover,
for any possible degrees, the order and the number of SCRIM polynomials over an
appropriate finite field have been determined.

In Chapter IV, the definitions and some basic properties of cyclic codes and
Hermitian complementary dual cyclic codes are recalled. We apply the results
from chapter III to characterize and to enumerate Hermitian complementary dual

codes over finite fields.



In Chapter V, remarks on definitions of SRIM and SCRIM polynomials are

given.



CHAPTER II
PRELIMINARIES

In Section 2.1, the minimal polynomials of all nonzero elements of a finite field are
given via the cyclotomic cosets. They are used for factorizing ™ — 1 as a product
of monic irreducible polynomials over a given finite field. SRIM polynomials and

their characterization are reviewed in Section 2.2.

2.1 Polynomials over Finite Fields and Their Orders

It is well-known that the multiplicative group F; of a finite field [, is cyclic. Its
generator is called a primitive element of the field. Hence, an element of a finite
field is a power of a primitive element of the field and it is a root of the polynomial
2971 — 1. Tt is interesting to determine, for each a € 7, a nonzero polynomial

f(x) € F,lz] of the least degree such that a is a root (i.e., f(a) = 0).

Definition 2.1. The minimal polynomial of an element o € Fym with respect to I,

is a nonzero monic polynomial f(z) of the least degree in F,[x] such that f(a) = 0.

In order to determine the minimal polynomial of each element in F;, we will

start with cyclotomic cosets.

Definition 2.2. Let n and ¢ be positive integers with ged(n,q) = 1. For each

0 < i < n, the cyclotomic coset of ¢ modulo n containing i is defined to be the set
Cl,(i) = {ig modn | j € Ny}.

The next theorem relates our two previous definitions:



Theorem 2.3 ([6, Theorem 3.4.8]). Let o be a primitive element of Fym. Then

the minimal polynomial of o with respect to Fy is

Mg)(@)= ] (@),
JECIq(3)
where Cl,(i) is the cyclotomic coset of ¢ modulo ¢™ — 1 containing nonnegative

nteger 1.

For any polynomial f(x) over F,, f(x) divides 2™ — 1 for some positive integer

n. The smallest of such integers is called the order of f(x), denoted by ord(f(z)).

Remark 2.4. It is well-known that if f(z) is an irreducible polynomial over F,,
then f(x) divides x°4U@) — 1. Moreover, z°4V@) — 1 = []'_, Mlé? (x), where t
is the cardinality of the complete set of representative of cyclotomic cosets of g
modulo ord(f(x)) [6, Theorem 3.4.11]. It follows that any irreducible polynomials

over F, can be viewed as MHSZ)(ZL') for some i.

Remark 2.5. MI&) (x) in Theorem 2.3 will be referred to as a minimal polynomial
defined corresponding to Cl,(i). It plays an important role later since a monic
irreducible polynomial over F, can be viewed as the minimal polynomial of an

element in an extension field of F,.

Example 2.1. Let a be a primitive element of Fi5. To determine the minimal
polynomial over Fy of a®, we begin with computing the cyclotomic cosets of 2
modulo 15.

Cly(0) = {0}, Cla(1) = {1,2,4,8},Cly(3) = {3,6,9,12}, Cly(5) = {5,10},
Cly(7) = {7,11,13,14}.

By Theorem 2.3, Mé‘:’) () = (z—a?)(z—ab)(z—a®)(z—a'?) = s +23+22 +a+1.

Next theorem gives the factorization of ™ — 1 as a product of irreducible

polynomials over the finite field of interest.

Theorem 2.6 ([6, Theorem 3.4.11]). Let n and q be positive integer with ged(q,n) =
1. Let m € N satisfy n|(¢™ —1) and a be a primitive element of Fym and let Mlg) (x)



be the minimal polynomial of o@ with respect to F,. Let {sy,s2,...,5:} be a com-
plete set of representatives of cyclotomic cosets of ¢ modulo n. Then the polynomial

2" — 1 has a factorization into monic irreducible polynomials over F, of the form

t (@M —1)s;

" —1= HM]F(q " )(iL')
i=1
Example 2.2. We will factor 22! — 1 over Fy. Since 21 is a divisor of (2° — 1), we
consider the field Fgq. The cyclotomic cosets of 2 modulo 63 containing 0, 3,9, 15, 21

and 27 are as follows:
Cly(0) = {0}, Cly(3) = {3,6,12,24,48, 33},
Cly(9) = {9,18,36}, Cly(15) ={15,30,60,57,51, 39},
Cly(21) = {21,42}, Cly(27) = {27,54,45}.

By Theorem 2.6, 2% — 1 = M]b(-i)(x)MIé‘:’) (:E)M]g) (:E)M]g‘r’)Mgl)Mg?),

where

Mﬂgi)(l’) =xz—1,

MP @)= ] (@-o)=1+2%+a"+2°+2",
JECI2(3)

ME(‘Z)(:IJ) = H (x—a?)=1+z+2°
JEC2(9)

M @)= [ @—o)=1+z+2*+2"+2°
j€Cla(15)

Mgl)(:ﬁ) = H (r—a’) =14z +2* and
jECIy(21)

Mlg)(x) = H (x—al) =1+2° +2°
JECI(27)

The order of f(z) has been used for studying self-reciprocal irreducible poly-
nomials over finite fields in [7]. It will be our important tool for investigating

self-conjugate-reciprocal irreducible polynomials in the next chapter as well. The



property of the order of an irreducible polynomial has been mentioned in [7] with-

out proof. For completeness, the proof is given now.

Lemma 2.7. If f(x) is an irreducible polynomial of degree n over F,, then ord(f(z))

is the order of any root of f(x) in the multiplicative group ..

Proof. Let a be a root of f(x) in F}.. For convenience, denote by o(a) the order
of «, the smallest positive integer ¢ such that o = 1. Then the distinct roots
of f(z) are a,a9,...,09" ", Since f(a) = 0 and f(z)|(z*4¢@) — 1), we have
(/@) — 1 = 0. Then o(a)|ord(f(z)). Since o(a)|(¢g" —1) and {a,a?,...,a?" '}

is the set of distinct roots of f(x), we have (z—a?)|(z°®—1) foralli = 0,...,n—1.

n—1

Then f(z) = H(:p —a®) is a divisor of 2°®) — 1. Therefore, ord(f(z)) =
i=0
o(a). O

2.2 SRIM Polynomials over Finite Fields

In this section, we review the results of SRIM polynomials. For more details, please
see [8].

Let f(z) = fo+ fix + -+ + fu2™ be a polynomial in F [z] with f; # 0 and
fn # 0. The reciprocal polynomial of f(x), denoted by f*(z), is defined by f*(z) :=
"o f (L), f(z) is said to be self-reciprocal if f(z) = f*(z). If, in addition, f(z)
is monic and irreducible, f(z) is refered to as a self-reciprocal irreducible monic
(SRIM) polynomial.

Next lemma gives a relationship between a root of a polynomial and a root of

its reciprocal.

Lemma 2.8 ([8]). Let « be an element in an extension field of F, and let f(z) €
F,[x]. Then « is a root of f (x) if and only if o~ is a root of f*(x).

Proof. Let f(z) = ap+a1x+---+a,2™ € F,[z] and a be an element in an extension



field of IF,. Then

ffla)=a" aolf( 7)
= a™"ag ' f().
Hence, the proof is complete. O

Next proposition gives a characterization of a SRIM polynomial. By Remark

2.5, it suffices to focus on Mxé? (x).

Proposition 2.9. Let Mléi) (x) be a monic irreducible polynomial defined corre-

sponding to Cl,(i). Then M]éiq) (x) is self-reciprocal if and only if Cl,(i) = Cl,(—1).

Proof. Assume M ( ) =M, *(l)( ). Let o be a primitive element in an extension
field of F,. Then o' is a root of M];si) (x). Since Cl,(—i) is a class corresponding
to Mgii)(:p), by Theorem 2.3, i € Cl,(—i). Hence,

Cl,(i) = Cly(—i).
Conversely, assume Cl,(i) = Cl,(—i). Then

MO @) =[] (@-o),

JECIq(3)

= H ($ - aj)7
JECIq(—1)

= H (z —a™).
FECI,(4)

Since a7 is a root of M[é? (z) for all j € Cl,(i), it follows that o/ is a root of
Mgsz)(x) for all j € Cl,(7). Therefore, M]éi) (x) = Mﬂ:ji) (x) as desired. O

Example 2.3. The cyclotomic cosets of 3 modulo 8 are Cl3(0) = {0}, Cl3(1) =
{1,3}, Cl3(2) = {2,6}, Cl3(4) = {4} and Cl3(5) = {5, 7}. Then, we have Cl3(2) =
Cl3(—2). Let a be a root of 222 + 2x 4+ 1. We verify that « is a primitive element



of Fy. Consider the minimal polynomial corresponding to Cl3(2), we have

M) = JT (e =-a)

JjeCI3(2)
= (x — a2)(:£ — a6)

=22+ 1.
Since Cl3(2) = Cl3(—2), by Theorem 2.9,
M (2) = Mg ().

Hence, the minimal polynomial corresponding to Cl3(2) is a SRIM polynomial.

The next theorem has been mentioned in [8] without proof. Hence, we provide

a proof of the theorem.

Theorem 2.10 ([8]). If an irreducible polynomial f(x) is a SRIM polynomial, then

the degree of f(x) must be 1 or even.

Proof. Let f(x) be a SRIM polynomial of degree n defined corresponding to C1,(7).
Suppose n # 1. Then, by Proposition 2.9, we have Cl,(i) = Cl,(—i) and |Cl,(i)| =

n > 1. Then there exists 0 < j < n such that

—i = i¢’ modn

= (—i¢’)¢’ modn.
It follows that 1 = ¢* modn. Hence,
n|2j.
Then,

n < 2j < 2n.



Hence, n = 25 which is even.



CHAPTER III
SELF-CONJUGATE-RECIPROCAL IRREDUCIBLE
POLYNOMIALS

In this chapter, we investigate SCRIM polynomials, a generalization of SRIM poly-
nomials.

Let f(z) = fo + fix 4+ --- + f,2™ be a polynomial of degree n over F, with
fo # 0. The conjugate of a polynomial f(z) = Y1, fiz" over Fp is defined to be
m = fo+fiz+- -+ fo2", where ™ : Fp2 — Fp2is defined by a = o forall o € F.
The polynomial f(z) over F2 (with f(0) # 0) is said to be self-conjugate-reciprocal
if f(x) equals its conjugate-reciprocal polynomial ff(z) := f*(x). If, in addition,
f(z) is monic and irreducible, it is said to be self-conjugate-reciprocal irreducible
monic (SCRIM). SCRIM polynomials have been used for characterizing Hermitian
self-dual cyclic codes in [4]. However, the properties of SCRIM polynomials have
not been well studied. Therefore, it is of natural interest to characterize and to

enumerate such polynomials.

We begin with giving a relationship between roots of f(z) and fT(z).

Lemma 3.1. Let a be an element in an extension field of F 2 and let f(x) € Fp[x].

Then o is a root of f (x) if and only if a=% is a root of f(z).

Proof. Let f(z) = ao+ a1(z) + - -+ + ay2™. Then

=a May(ap + aa+ -+ + a,a”)?

= a "0 (f(a)".

Therefore, a is a root of f (z) if and only if a7 is a root of f(x). O
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Next lemma gives necessary and sufficient conditions for an irreducible poly-

nomial to be SCRIM. By Remark 2.5, it suffices to concentrate on Mlél)z (x).

Proposition 3.2. Mlél)z (x) is self-conjugate-reciprocal if and only if Clp(i) =
Clp(—qi).

Proof. Assume M]éi)z (x) = M];(? (x). Then ' is a root of M];(? (x). Since Cl2(—qi)
is a class corresponding to MI;(? (). By Theorem 2.3, we have i € Cl,a(—qi).
Hence,

Clp(i) = Cigp(—qi).
Conversely, assume that Cl2(i) = Cl,2(—gi). Then

D= 1] @-o)

JECL2(0)

- I -

JECI 2 (~qi)

= H (x —a~%).

JECI2 (i)

Since a~% is a root of M]é')z (z) for all j € Clpe(i), it follows that o/ is a root of

MI;(? (z) for all j € Clp(—qi). Therefore, M]éz)z () = MI;(? (x) as desired. O

Example 3.1. The cyclotomic cosets of 4 modulo 63 are

CL(0) = {0}, Cly(1) = {1,4, 16},
Cly(2) = {2,8,32}, Cly(3) = {3,12, 48},
CL(5) = {5,20,17},  Cl4(6) = {6,24,33},
CL(7) = {7,28,49},  Cl4(9) = {9, 36,18},
Cl4(10) = {10,40,34}, Cl,(11) = {11, 44,50},
Cly(13) = {13,52,19}, Cly(14) = {14,56,35},
Cly(15) = {15,60,51}, Cly(21) = {21},
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ClLi(22) = {22,25,37}, Cl4(23) = {23,29,53},

Cl(26) = {26,41,38}, Cl4(27) = {27,45,54},

Cl(30) = {30,57,39}, Cly(42) = {42},

Cl,(43) = {43,46,58}, Cl4(47) = {47,62,59} and
(61) =

Cl,(61) = {61,55,31}.

Since Cly(7) = Cly((=2)7), Cly(14) = Cly((—2)14), Cl4(21) = Cl4((—2)21) and
Cly(42) = Cly((—2)42), we have that MIEZ)(:E) = (z — a")(z — a®)(z — o),
M (2) = (z—a') (z—a™) (—a®), M} () = (z—a?) and M{} (z) = (z—a?)
are SCRIM.

Theorem 3.3. The degree of a SCRIM polynomial must be odd.

Proof. Assume that MIE?Z (x) has degree t. If t = 1, then the degree of Mﬁl (x) is
odd. Suppose ¢t # 1. Then, by Proposition 3.2, we have Clp2(i) = Cl,2(—qi) and
|Clp2(i)] =t > 1. Then there exists 0 < j < t such that

= (—qi)q® modt.
It follows that

—qi = (—¢)(—qi)¢* mod t

= ig* ™ modt,

and hence,

i =i¢¥ 2 ¢¥ modt

= i¢®@+Y mod t.

It follows that

11(25 + 1).
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Then t < 2j 4+ 1 < 2t. Hence, t = 25 4+ 1 which is odd. O
Next, we determine the number of SCRIM polynomials of degree 1.
Proposition 3.4. There are ¢ +1 SCRIM polynomials of degree 1 over Fp.

Proof. Let f(x) be a polynomial of degree 1 over F2. Then f(z) = 2+ a for some
a € Fe. Thus fi(z) = x + a9 The polynomial f(z) is SCRIM if and only if
a = a 9. Equivalently, a9t = 1.

Since (¢ + 1)||F},| and F, is a cyclic group, there exists a unique subgroup H
of order ¢+ 1 of Fe. Clearly, 4™ = 1 if and only if @ € H. Hence, the number of
SCRIM polynomials of degree 1 over [F 2 is ¢ + 1. O

Example 3.2. By Proposition 3.4, there are 6 SCRIM polynomials of degree 1
over Fas. In order to list all of them, we assume that Fj. = («). It can be easily
seen that 1° =1 = (a*)% = (a®)® = (a'?)% = (a'%)5 = (a?)°.

Hence, all SCRIM polynomials of degree 1 over Fo5 are x + 1,  + o, x + b,

r+a'? x4+ o' and x + o,

From now on, we assume that the polynomials have odd degree n > 3. We
determine the number of SCRIM polynomials of degree n > 3 by using the orders
of SCRIM polynomials of degree n over Fp. The following three lemmas are

important tools for determining the orders of SCRIM polynomials.

Lemma 3.5 ([8, Proposition 2|). Suppose a,r and k are positive integers with r

r/2%

even. If a divides ¢" — 1 and a divides ¢* + 1, then a divides ¢"/* + 1 for some

positive integer s.

Lemma 3.6 ([8, Proposition 1]). Let a be a positive integer with a > 2. If m is the
smallest positive integer such that a divides ¢ + 1, then, for any positive integer

s, the following statements hold.
(i) a divides ¢° + 1 if and only if s is an odd multiple of m.

(i1) a divides ¢° — 1 if and only if s is an even multiple of m.
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Lemma 3.7. Let f(x) be an irreducible polynomial of degree n over Fp2 and a €

F,2n be a root of f(x). If k divides n and o(«) divides ¢* + 1, then k = n.

Proof. Since o(a) divides ¢* + 1, o(a) divides ¢** — 1. Hence o € For. Let f(z) =
[Tio (x—a®) = g(a)h(x) where g(z) = [[~g (x—a®") and h(z) = [[{; (z—a®").
For1 <j<n-—1,letT;:Fpar — Fp bethe j-th trace map defined for o € For
by
Tj(a) = Z Q™ g
T;(«) is the coefficient of 2¥7177 of g(z). It follows that g(z) € F,2[x]. Moreover,
h(z) € Fpa. If k < n, then f(z) is reducible. This is a contradiction.
g

Lemma 3.8. If f(x) is an irreducible polynomial of degree n over F,, then

ord(f(x)) is the order of any root of f(x) in the multiplicative group Fa,.

Proof. Let a be a root of f(x) in F},,. For convenience, denoted by o(«), the
order of «, is defined to be the smallest positive integer ¢ such that o' = 1.
Then the set of all distinct roots of f(x) is {o.a?, ..., a? }. Since f(a) =0
and f(z)|(z°*4V @) — 1), we have a4¢@) — 1 = 0. Then o(a)|ord(f(z)). Since

2(n—1)

o(a)|g” —1 and {a,a?, ..., a®" "} is the set of all distinct roots of f(z), we have
(z — a”)|z°@ — 1 foralli=0,...,n — 1.
n—1
Then f(z) = H(:E — o). Therefore, ord(f(z))[o(a). O
i=0

Let D, be the set of all positive divisors of ¢" + 1 which do not divide ¢* + 1

forall 0 <k <n.

Proposition 3.9. Let f(x) be a SCRIM polynomial of degree n over Fp. Then
ord(f(z)) € D,. Moreover, if a € Fpen is a root of f(x), then o is a primitive d-th

root of unity for some d € D,,.

Proof. Let o € Fpn be a root of f(x). Since f(x) is SCRIM, by Lemma 3.1,

1 1
f(—q) = 0 and we may write — = o for some positive integer t. Then a4t =1
a a
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and thus o(«) divides ¢* + ¢. Since ged(g,0(a)) = 1, we have o(a)|(¢g*~! + 1).
Since o € F2n, o(a) divides ¢** — 1. By Lemma 3.5, we have that o(«) divides
¢®™?" + 1 for some positive integer s. Since n is odd, it follows that s = 1. Then
o(a)[(g" +1).
Let ¢ be the smallest nonnegative integer such that o(«)|(¢*+1). Since deg(f(z)) >

3, we have o(«) > 3, and hence, ¢ > 1. By Lemma 3.6, n is an odd multiple of
t. Using Lemma 3.7, we have n = ¢t. Therefore, o(a) { (¢* 4+ 1) for all 0 < k < n.
Hence, by Lemma 3.8, ord(f(z)) = o(a) € D,,. From this, it implies that « is a

primitive d-th root of unity for some d € D,,. O

The following corollary is key to prove the next proposition.

Corollary 3.10. Let f(z) be a SCRIM polynomial of degree n over Fp. If o be a

primitive element of Fn and o is a oot of f(x), then

2n_1

) = e =1y

Proof. Let o be a primitive element of F 2. and o/ be a root of f(x). Then

q2n_1

FA S S
ole’) ged(g® —1,75)

From Lemma 3.8, we know that if f(z) is an irredeucible polynomial of degree n,
then ord(f(x)) is the order of any root of f(z) in the multiplicative group Fya,.
q2n -1
ged(g —1,5)
Proposition 3.11. Ifd € D,, and (3 is a primitive d-th root of unity, then the set

Then o(a?) = ord(f(x)). Hence, ord(f(x)) = o(a?) = O

{5, BT 7ﬁq2(n71)} s a collection of n distinct primitive d-th roots of unity.

Proof. Since d|(¢"+1), we have d|(¢*" —1). Let 0 <i < n—1. From d|(¢*" —1), it
follows that ged(d, ¢*) = 1 and 37" is a primitive d-th root of unity. If 5 = 377
for some 0 < i < j < n —1, then g7’ = 1 so that d divides ¢* — ¢% =
@*(?Y=) — 1). Since ged(d, ¢*) = 1, we see that d divides ¢>V~% — 1. Hence, by
Lemma 3.6, 2(j—i) = kn for some even positive integer k. But then j = k7n+2_ >n,

a contradiction. Hence, ﬂqzi for 0 <7 <n—1 are all distinct. O



16

Let d € D, and let 3 be a primitive d-th root of unity over F,.. Define the

n—1

polynomial fg(x) = H(:z: — 3.

1=0

Proposition 3.12. fs(x) is a SCRIM polynomial of degree n and order d.

Proof. Using the definition of fz(z) and the fact that n is odd, we have

n—1
i) =T~ oy
:l:_(i 2% 1 2141
=TT (s - )
:l:_(i 2i41 n 2141
=TI-o) [T - 5"
=0 =0

n—1 n—1

n—1
= H(_B—q21+1) H /quzﬂ H(ﬁ_qzzﬂ _ :E)
=0

=0

n—1

=[J@-5"". (3.1)
=0
We claim that {377 [0<j<n—1}={8 " |0<i<n—1}.
Let 77" € {4777 |0 <i<n—1}. Then

n+142s

ﬁ_q25+1 _ ﬁqzs(_q) _ (ﬂ_q)qzs _ (ﬁqn+1)q2s _ ,‘Bq

2s5+1 2s+1

Since n is odd, we have ¢ = 6‘12l for some 0 <[ < n — 1. Hence, 37¢
{8 [0<j<n—1}.

Let 87" € {ﬂqu | 0 <j <n—1}. Since n is odd, we have

2s

/8(121' _ /Bqn+1+25 _ (/Sqn-%—l)qu _ (/B_q)q _ /qus(_q) _ /{)}_q

2s+1

for some 0 < s < n — 1. Hence, ﬁq% € {,B‘qzi+1 | 0 < i < n—1}. Therefore,
(B 10<j<n—1}={37" | 0<i<n—1} as desired.
From (3.1) and the fact that {89” |0 <j <n—1}={377" |0<i<n—1},
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we have

Suppose that fs(x) is written as fs(x) = g(z)h(z), where g(z) is an irreducible
monic polynomial of degree r and h(z) is a monic polynomial of degree n —r. Let

a be a root of g(z). Then
i

Since « is a root of fz(z), av is a d-th root of unity. Hence,
dl(¢” — 1).

Since d divides ¢" + 1, by Lemma 3.6, 2r is an even multiple of n. Since r < n, we
have r = n and fs(x) = g(z) is irreducible. O

The construction of a SCRIM polynomial fs(x) can be illustrate as follows.

Example 3.3. Let n = 3 and ¢ = 3. Then D3 = {7, 14, 28}. Assume that
Fi = {a). Since the set {a®?, a%® 5™} is a collection of 3 distinct primitive

14-th roots of unity, it follows that

fasz (l’) = fa468 (l‘) = fa572 (l’) = (l‘ - (152)(17 — (,v468)(l’ - a572).

By Proposition 3.12, f,s2(x) is a SCRIM polynomial.

Lemma 3.13 ([5, Theorem 2.45]). Let F be a field of characteristic p, n be a

positive integer not divisible by p, and ¢ be a primitive d-th root of unity over F.
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Then

2" — 1 =[] Qalx), (3.2)

din

where Qq(x) = H (x —¢%).

s=1, ged(s,d)=1

Note that Q4(z) can be viewed as

Qulz) = [J (@ = n).

nebD
where D is the set of all primitive d-th roots of unity over F.

Lemma 3.14 ([5, Theorem 2.47)). The splitting field of x™ — 1 over a field F, with
¢(n)

ged(q,n) =1, Q.(z) factors into - distinct monic irreducible polynomial over

F, of the same degree d where d is the least positive integer such that ¢® = 1 mod n.

Theorem 3.15. Let f(x) be an irreducible monic polynomial of degree n over F .

Then the following statements are equivalent:
(1) f(x) is self-conjugate-reciprocal,
(i1) ord(f(x)) € Dy,
(111) f(x) = fa(x) for some primitive d-th root of unity 5 with d € D,

Proof. By Corollary 3.10 and Proposition 3.12, it remains to prove (ii) implies (ii7).
Assume ord(f(z)) € D,,. Let p be the characteristic of F 2. Since ged(p, ord(f(x))) =

1, by Lemma 3.13, we have z°4(/(@) 1 = H Q(z). Since f(x)|(xord @) —

£lord(f(z))
1), we have f(x)|Qq(z) for some divisor d of ord(f(z)). Then d|(¢" + 1).

We claim that d € D,,. Suppose d|(¢* + 1) for some k < n. Then d|(¢** — 1),
i.e., @ =1 mod d. From Lemma 3.14, n is the smallest positive integer such
that ¢ =1 mod d. Since k < n, we have a contradiction. Therefore, d € D,,.

Let v be a primitive d-th root of unity over Fp2. Since ¢** = 1 mod d and

¢** £ 1 mod d, for all 0 < k < n, it follows that v € Fypzn but 7 ¢ Fa for
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all 0 < k < n. Then the minimal polynomial of v has degree n. Since f(x) is
irreducible and f(x)|Qq(x), there exists a primitive d-th root of unity J such that
its minimal polynomial equals f(x).

Finally, we show that f(z) = fs(z). Since f5(z) and f(x) are monic irreducible

polynomials of the same degree n and § is a root of fs(z), we have f(x) = fs(x). O

In next theorem, we determine the number of SCRIM polynomials of a given

degree.

Theorem 3.16. Let n > 3 be an odd positive integer. Then following statements
hold.

d
(i) For each d € D,,, there are % SCRIM polynomials of degree n and order

d over Fp.

. ) o1
(ii) The number of SCRIM polynomials of degree n over F is - Z o(d).
deDy,

Proof. For each d € D, there are ¢(d) primitive d-th roots of unity. For each
primitive d-th root of unity 3, fs(x) has degree n by Lemma 3.14. Therefore,

¢(d)

there are SCRIM polynomials over F 2 of degree n and order d. Hence, () is
proved.

Next, we show that d = ord(fs(x)). From the proof of Theorem 3.15, we
know d < ord(fs(x)). Since fs(x)|Qa(x), we have fs(z)|(z? — 1). It follows that
ord(fs(z)) < d. Hence, d = ord(fz(z)).

The statement (i¢) follows from (i) and the equivalence (i) < (¢7) in Theorem

3.15. 0

Example 3.4. Let ¢ = 3 and n = 3. Then D3 = {7, 14, 28}. Let a be a primitive

element of Fg. Then, we have the following properties.

(i) If d = 7, there are 2 SCRIM polynomials over F32 of degree 3 and order 7

which are 23 + a®2? + a2z + 2, and 2 + ax? + a"v + 2.

(ii) If d = 14, there are 2 SCRIM polynomials over Fs2 of degree 3 and order 14

which are 23 + a®2% + a’2 + 1 and 2° + "2 + o’z + 1.
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(iii) If d = 28, there are 4 SCRIM polynomials over F32 of degree 3 and order 28
which are 23 4+ az? 4+ ax + ab, 23 4+ a®2? + a®v + a®, 2 + a®2? + ax + a? and

22 +a"z? + adx + ab.

Table 3.1 displays the number of SCRIM polynomials of degreen = 1,3,5,...,13

over F 2, where ¢ = 2,3,5,7.



q | n | The number of SCRIM polynomials of degree n over [F
211 3
3 2
5 6
7 18
9 56
11 186
13 630
3|1 4
3 8
5 48
7 312
9 2184
11 16104
13 122640
5] 1 6
3 40
5 624
7 1160
9 217000
11 4438920
13 93900240
711 8
3 112
5 3360
7 117648
9 4483696
11 179756976
13 7453000800
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Table 3.1": The number of SCRIM polynomials of a given degree over Fp.
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The orders of SCRIM polynomials of degree n = 11 over F, and Fy are listed
in Table 3.2 and Table 3.3, respectively, together with the number of SCRIM

polynomials of each order.

Order | The number of SCRIM polynomials of each order

99 4

331 22

993 44

2979 132

3641 220

10928 440

32769 1320

Total 2182

Table 3.2": The number of SCRIM polynomials of degree 11 over Fy.

Order | The number of SCRIM polynomials of each order
67 6
134 6
268 12
661 60
1322 60
2644 120
44287 3960
88574 3960

177148 7920
Total 16104

Table 3.3": The number of SCRIM polynomials of degree 11 over Fy.

“All the computation are prepared by using MAGMA [1].



CHAPTER IV
APPLICATIONS

In this chapter, it is shown how SCRIM polynomials are related to cyclic codes
over a finite field IF 2.

Let us begin with basic definitions and properties of cyclic codes over finite
fields. All properties are state without proof. For more details, please see [6].

A linear code C of length n and dimension k over F, is a k-dimensional subspace
of the vector space Iy over F,. It is known as an [n, k|, code. An element in C' is
called a codeword and written as a row vector ¢ = (¢, €1, ..., Cp_1).

An [n, k], code C'is called a cyclic code if for each codeword ¢ = (c,, ¢1, ..., ¢n—1)
in C, the vector (¢,—1, g, ..., ¢,—2) is also a codeword in C.

In order to convert the combinatorial structure of cyclic codes into an algebraic

one, we consider the following correspondence:

T Fy — F,[z]/(z" — 1), defined by 7(c,, c1, ..., Ch1) = Co + 127 + ... + Cpqx™ L.

(4.1)

It is easy to see that 7 is a linear transformation. Hence, as a vector space over

F,, they are isomorphic. On the other hand,
F[z]/(z" — 1) = {ag + ayx + -+ + ap,_12" " *|a; € F,}

is a ring under addition and multiplication modulo z™ — 1.

Theorem 4.1 ([6, Theorem 7.1.10]). For a finite field F, and for any positive

integer n, F,x]/(z" — 1) is a principal ideal ring.

Example 4.1. Let Fo[z]/(z® — 1) = {0,1,z,2%, x + 1,1 + 2, 2 + 2%, 1 + = + 2*}.
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All ideals in ring Fy[z]/{z® — 1) are

(0) = {0},
(1+z+2%) ={0,1+z+2%},
(1+z)=1{0,1+x,2+2*1+ 2%} and
)

(1) ={0,1, 2, 2% +21,1 + 2%, v + 2%, 1 + 2 + 2%}

Next theorem gives a structure of cyclic codes in the ring F,[z]/{z™ — 1).

Theorem 4.2 ([6, Theorem 7.2.1]). Let C C F} and 7 be a linear transforma-
tion defined in (4.1). Then C is a cyclic code if and only if w(C') is an ideal of
Folz]/{z" = 1).

Example 4.2. The code C' = {000, 111,222} is a cyclic code over Fs. The corre-
sponding ideal in F3[z]/{z* — 1) is 7(C) = {0, 1 + = + 22,2 + 2z + 22%}.

Definition 4.3. For a cyclic code C' of length n over F,, the unique monic poly-
nomial of the least degree in 7(C) is called the generator polynomial of C. The

code C' is said to be generated by g(z).

Theorem 4.4 ([6, Theorem 7.2.9]). There is a one-to-one correspondence between

the cyclic codes of length n and the nonzero diwvisors of ™ — 1 in Fy[x].

Example 4.3. All nonzero divisors of 23 — 1 in Fy[x] are 1,1+ z and 1+ z + 2%

Hence, there are three nonzero cyclic codes of length 3 as shown in the following

table.
ideals in Fy[z]/(z® — 1) cyclic codes C in F3
1) = {0,1,2,2%,1 + 2,1 + 22, {000, 100, 010, 001, 110, 101, 011, 111}

r+a2% 1+ x4+ 2%}
(1+z)={0,1+z,x+2%1+2%} | {000, 110, 011, 101}
1+z+2%) ={0,1+z+2%} {000, 111}

(0) = {0} {000}
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The Hermitian inner product of u = (u,, 41, ..., up_1) and v.= (v,, V1, ..., Up_1)

in FZZ is defined to be

n—1
(u,v)g := Z u; vy
The Hermitian dual of a linear code C' over F,2 is defined to be the set
CH ={ueFL | (u,v)y =0forallv e C}.

Theorem 4.5. Let C be a cyclic code of length n over Fp. Then

(i) C+1 is a cyclic code of length n over Fp,

n

(i1) if g(x) is a generator polynomial of C' and h(z) = z , then hi(z) is a

g(x)
generator polynomial of C+1.
Definition 4.6. A cyclic code C'is said to be a Hermitian complementary dual if

CNCHe = 0.

Necessary and sufficient conditions for a cyclic code to be Hermitian comple-
mentary dual is given in the following theorem.

Lemma 4.7. Let C be a cyclic code of length n generated by g(x) and h(x) =
" —1
g(x)
Proof. By Theorem 4.5(ii), C1# is generated by Af(x). Thus CNC# is generated

by f(z) = lem(g(z), h'(x)). Hence,

. Then C is Hermitian complementary dual if and only if gcd(g(z), hi(z)) = 1.

C is a Hermitian complementary dual < f(z) = 2" — 1 & ged(g(x), hi(x)) = 1.
]

Next proposition gives a very convenient tool to construct Hermitian comple-

mentary dual codes over a finite field.

Proposition 4.8. Let c be a cyclic code of length n over Fp with generator poly-
nomial g(z). Assume that the characteristic of Fp2 does not divide n. Then C' is

Hermitian complementary dual if and only if g(z) = g'(x).
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Proof. Write 2™ — 1 = g(x)h(z). Then
g(2)h(z) = 2" —1 = g'(x)h'(2) (4.2)

Assume that C'is Hermitian complementary dual. By Lemma 4.7, ged(g(z), hf(z)) =
1. Tt follows from (4.2) that g(x) divides g'(x). Since g(x) and g'(x) are monic
polynomial of the same degree, g(z) = ¢'(z).

Conversely, assume that g(z) = ¢g'(z). By (4.2), h(z) = h'(x). Since the char-
acteristic of ;2 does not divide n, every irreducible factor of " —1 has multiplicity

1. Consequently,

1 = ged(g(x), hi(2)) = ged(g(@)!, h(z))

By Lemma 4.7, C' is Hermitian complementary dual. O

Example 4.4. The polynomial 27 — 1 over Fg = {0,1,,...,a"} can be factored

as
27— 1= (z—1)(2*+ ax® + "z +2)(2* + *2® + o’ + 2).

Since z — 1, 2% + az? + o’z + 2 and 2® + o*z* + o’z + 2 are SCRIM polynomials.
Then, all Hermitian complementary dual of length 7 over Fq are (0), ((x — 1)),
(2% + ax® + o’z + 2)), ((z* + 322 + o5z + 2)), ((x — 1)(23 + az? + o’z + 2)),
{(z —1)(23 + 322 + Pz +2)) and (23 + ax? + oz + 2) (23 + o322 + o’z + 2)).
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In this thesis, the definition of a SRIM polynomial is slightly different from that

of Yucas and Mullen [8]. To be more precise, the reciprocal polynomial of f(z) =
1

fot fiz+- -+ foz™ with fo # 0 is defined to be f*(z) := 2" f; ' f(=). Where as in
x

1
8], f*(z) := 2™ f(—). This makes no harm to all work done on SRIM polynomials.
x

We will show that these two definitions are equivalent.
Lemma 5.1. If Cl,(i) = Cl,(—i), then —i = iqICla®l/2,

Proof. Since —i € Cl,(i) = Cl,(—i), —i = i¢/ for some j € {0,1,...,]|Cl,(7) — 1|}.
Thus i = —(—i) = —(i¢/) = ig*, it follows that |Cl,(i)| | 2j. Hence, 2j = |C1,(i)|
because 0 < 2j < 2|C1,(7)]. Therefore, j = |Cl,(7)|/2. O

Theorem 5.2. If f(z) = fo+ fix+- -+ fuz" is a SRIM polynomial over F,, then
Jo=1.
Proof. By [8, Theorem 8|, f*(z) = f(x) = falz) = H (x — o) for some

JECL,(4)
primitive d-th root of unity o with d € D,,.

Claim H o’ = 1.By Proposition 2.9, we have
JECIG(3)

i(g"—1) . —i(g"—1)
o T = H o) = H of =a T

JEC4(7) keClg(—1)

. i(g" -1\ 2
Le., (a ¢-1 ) =1

i(g"—1)
Hence, o o7 € {1,—-1}.
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Case 1, q is even. We are done.

Case 2, ¢ is odd. Since C,(i) = C,(—1i), it follows that i = —ig(). Then,

i+¢%i=0mod(¢"—1)

(¢'3) +1)i = 0 mod( ¢" — 1).

Thus, i = 0 mod (¢{2) — 1).
i(g"—1)

Hence, ¢ = 0 mod (¢ — 1). Therefore o =17 = (oﬂ"‘l)ﬁ = 1.

O

However, if f(z) is SCRIM, fy does not need to be 1 as shown in the next

example.

Example 5.1. Consider the polynomial f(z) = 2* + a over F; = {0,1, a, a?}.
Then

fh= x"fo_lf(é) =a}(zd+1)=a’+ 2 ="+
Hence, f(z) is SCRIM and the constant term of f(x) is not 1.

1
For this reason, we define the reciprocal polynomial of f(x) to be z"fy ' f(=)
x

instead of x”f(l)
x



[7]
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