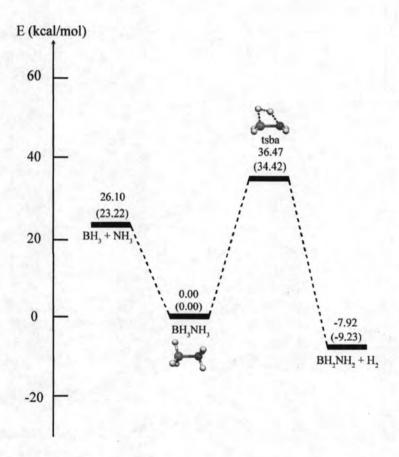
CHATER IV

RESULTS AND DISCUSSION

In the present study, we studied the molecular mechanism of hydrogen release from the borane amine (BH₃NH₃), alane amine (AlH₃NH₃), borane phosphine (BH₃PH₃) and alane phosphine (AlH₃PH₃) in systems without and with the borane (BH₃), ammonia (NH₃), alane (AlH₃) and phosphine (PH₃).

All energies, rate constant and equilibrium constant presented in this discussion were calculated at the MP2/6-311++G(d,p) level. Due to the calculated results from B3LYP/6-311++G(d,p) corresponds to those from MP2/6-311++G(d,p) level. The calculated results and discussion of each system described below:

4.1 Molecular mechanism of hydrogen release from BH₃NH₃ system


Table 4.1 lists the relative energies, rate constants and thermodynamic properties calculated at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in parenthesis) levels of theory for hydrogen release from the BH₃NH₃ without and with the BH₃, NH₃, AlH₃ and PH₃. The reaction pathways for hydrogen release from the BH₃NH₃ system are shown in Figures 4.1-4.5.

4.1.1 Reaction pathway for synthesis of BH₃NH₃ and hydrogen release from BH₃NH₃

The schematic energy profile for hydrogen release from the borane amine without the BH₃, NH₃, AlH₃ and PH₃ is shown in Figure 4.1. The relative energies calculated at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in parenthesis) levels of theory for hydrogen release from the BH₃NH₃ are listed in Table 4.1. The reaction pathway for hydrogen release from the BH₃NH₃ is composed of two reaction steps. The first step is the barrierless reaction and the spontaneous and exothermic reaction. The second step is the rate-determining step. The transition state structure, **tsba** for loss of hydrogen from the BH₃NH₃ is similar to that for loss of hydrogen from the C₂H₆ [13]. The shape and geometrical parameter for **tsba** is shown in Figure

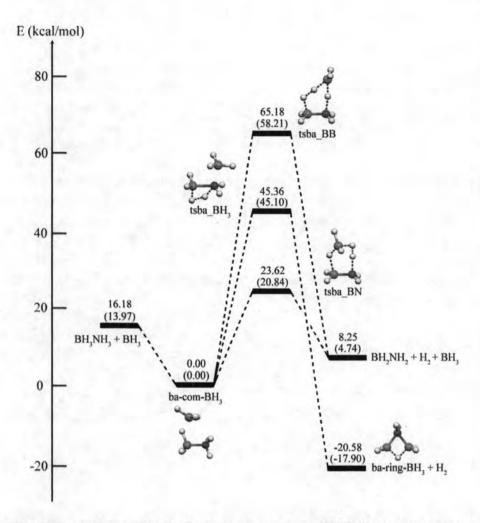
A-1(a), one H-atom from BH₃ and other H-atom from NH₃ will eventually form the hydrogen molecule. The H-H distance of 0.99 Å, see Figure A-1(a) is substantially shorter than that of 1.2 Å in the transition state structure of ethane [13]. The energy barrier of **tsba** was calculated to be 36.47 kcal/mol.

We performed a kinetic analysis using the thermodynamic formulation (TST, transition state theory) and included a tunneling correction from the Wigner [19] expression, given by equations (3.43) and (3.44). For hydrogen elimination, the rate constant, k is 2.52×10^{-13} s⁻¹, in gas phase. The reaction is exothermic by 7.92 kcal/mol. In addition, we performed the equilibrium constant using by equation (3.45). The equilibrium constant (K) for hydrogen release from BH₃NH₃ is 1.27×10^{11} .

Figure 4.1 Reaction pathway for synthesis of BH_3NH_3 and hydrogen release from BH_3NH_3 . Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

Table 4.1 Relative energies, rate constants and thermodynamic properties of hydrogen release from BH₃NH₃ without and with BH₃, NH₃, AlH₃ or PH₃ catalyst, computed at the B3LYP/6-311++G(d,p) (in the parenthesis) and MP2/6-311++G(d,p) levels of theory

Reaction	$\Delta^{\ddagger}E^{a.b}$	k ₂₉₈ c	ΔE^{α}	ΔH_{298}^{a}	$\Delta G_{298}^{\ a}$	K_{298}
BH ₃ NH ₃ reactant:						
$BH_3+NH_3 \rightarrow BH_3NH_3$	-	1.4	-26.10	-27.92	-17.84	1.19×1013
			(-23.22)	(-25.03)	(-14.98)	(9.51×10 ¹⁰
$BH_3NH_3 \rightarrow tsba \rightarrow BH_2NH_2+H_2$	36.47	2.52×10 ⁻¹³	-7.92	-6.15	-15.15	1.27×10 ¹¹
	(34.42)	(7.46×10^{-12})	(-9.23)	(-7.52)	(-16.42)	(1.08×10 ¹²
BH ₃ NH ₃ and BH ₃ reactants:		1000	().20)		9 3235	
$BH_3NH_3+BH_3 \rightarrow BH_3NH_3\cdots BH_3$	-	4	-16.18	-17.35	-8.05	7.98×105
	2	-	(-13.97)	(-14.97)	(-6.17)	(3.35×10 ⁴
$BH_3NH_3\cdots BH_3 \rightarrow tsba-BN \rightarrow BH_2NH_2+H_2+BH_3$	23.62	2.37×10 ⁻⁵	-7.92	11.20	-7.10	1.60×10 ⁵
	(20.84)	(1.95×10^{-3})	(-9.23)	(7.45)	(-10.24)	(3.22×10 ⁷
$BH_3NH_3\cdots BH_3 \rightarrow tsba-BH_3 \rightarrow NH_2BH_2BH_3(ring)+H_2$	45.36	2.25×10 ⁻²⁰	-36.75	-19.64	-26.01	1.18×10 ¹⁵
	(45.10)	(8.11×10^{-21})	(-31.87)	(-17.13)	(-23.43)	(1.50×10 ¹⁷
$BH_3NH_3\cdots BH_3 \rightarrow tsba-BB \rightarrow BH_2NH_2+H_2+BH_3$	65.18	3.36×10 ⁻³⁵	-7.92	11.20	-7.10	1.60×10 ⁵
	(58.21)	(2.55×10 ⁻³⁰)	(-9.23)	(7.45)	(-10.24)	(3.22×10 ⁷
BH ₃ NH ₃ and NH ₃ reactants:	(50.21)	(2.55-10)	(-9.23)	(1.45)	(-10.24)	(3.22×10
$BH_3NH_3+NH_3 \rightarrow BH_3NH_3\cdots NH_3$		1.2	-8.48	-8.82	-1.75	1.93×101
	J.Yu.		(-7.26)	(-7.58)	(-0.51)	(2.38)
$BH_3NH_3\cdots NH_3 \rightarrow tsba-NN \rightarrow BH_2NH_2+H_2+NH_3$	106.50	5.34×10 ⁻⁶⁷	-7.92	2.67	-13.40	6.61×109
	(99.45)	(1.66×10^{-61})	(-9.23)	(0.06)	(-15.90)	(4.54×1011
$BH_3NH_3\cdots NH_3 \rightarrow tsba-NH_3 \rightarrow BH_2NH_2+H_2+NH_3$	40.74	1.53×10 ⁻¹⁶	-7.92	2.67	-13.40	6.61×109
	(38.43)	(7.75×10 ⁻¹⁵)	(-9.23)	(0.06)	(-15.90)	(4.54×10 ¹¹
$BH_3NH_3\cdots NH_3 \rightarrow tsba-NB \rightarrow BH_2NH_2+H_2+NH_3$	30.30	1.81×10 ⁻¹¹	-7.92	2.67	-13.40	6.61×10°
	(29.01)	(4.05×10 ⁻¹⁰)	(-9.23)	(0.06)	(-15.90)	(4.54×1011
BH ₃ NH ₃ and AlH ₃ reactants:						********
$BH_3NH_3+AIH_3 \rightarrow BH_3NH_3\cdots AIH_3$			-16.36	-17.26	-8.03	7.65×10 ⁵
		-	(-14.30)	(-15.14)	(-6.06)	(2.79×10^4)
$BH_3NH_3\cdots AlH_3 \rightarrow tsba-AlN \rightarrow NH_2BH_2AlH_3(ring)+H_2$	18.51	1.30×10 ⁻¹	-36.67	-19.10	-26.28	1.85×10 ¹⁵
	(17.38)	(9.27×10^{-1})	(-31.56)	(-16.10)	(-23.14)	(9.17×1016
$BH_3NH_3\cdots AlH_3 \rightarrow tsba-AlH_3 \rightarrow NH_2BH_2AlH_3(ring)+H_2$	42.78	6.66×10 ⁻¹⁹	-36.67	-19.10	-26.28	1.85×1015
	(42.25)	(2.50×10^{-18})	(-31.56)	(-16.10)	(-23.14)	(9.17×10 ¹⁶
$BH_3NH_3\cdots AlH_3 \rightarrow tsba-AlB \rightarrow BH_2NH_2+H_2+AlH_3$	61.49	2.00×10 ⁻³²	-7.92	11.11	-7.12	1.67×10 ⁵
Althor III was to	(54.89)	(1.28×10^{-27})	(-9.23)	(7.62)	(-10.35)	(3.87×10^7)
BH ₃ NH ₃ and PH ₃ reactants:				12.12		
$BH_3NH_3+PH_3 \rightarrow BH_3NH_3\cdots PH_3$	7		-38.30	-38.12	-32.26	4.47×10 ²³
$BH_3NH_3\cdots PH_3 \rightarrow tsba-PN \rightarrow BH_2NH_2+H_2+PH_3$	-		(-35.10)	(-35.29)	(-28.90)	(1.53×10 ²¹
$BH_3 \cap H_3 \rightarrow ISDA-FIN \rightarrow BH_2 \cap H_2 + H_2 + FH_3$	61.00	3.37×10 ⁻³⁴	-7.92	31.97	17.11	2.85×10 ⁻¹
DUNII DU . 4-4- DU . DUNII II IDU	(55.12)	(1.03×10 ⁻²⁹)	(-9.23)	(27.76)	(12.48)	(7.06×10 ⁻¹
$BH_3NH_3\cdots PH_3 \rightarrow tsba-PH_3 \rightarrow BH_2NH_2+H_2+PH_3$	38.25	1.36×10 ⁻¹⁴	-7.92	31.97	17.11	2.85×10 ⁻¹
DUALL DU	(35.87)	(5.23×10 ⁻¹²)	(-9.23)	(27.76)	(12.48)	(7.06×10 ⁻¹⁰
$BH_3NH_3\cdots PH_3 \rightarrow tsba-PB \rightarrow BH_2NH_2+H_2+PH_3$	45.83	2.07×10 ⁻²²	-7.92	31.97	17.11	2.85×10 ⁻¹³
	(47.83)	(1.64×10^{-24})	(-9.23)	(27.76)	(12.48)	(7.06×10 ⁻¹⁰

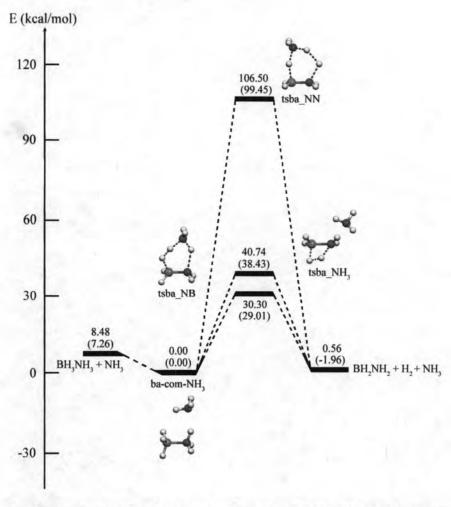

^a In kcal/mol. ^b Activation energy. ^c In s⁻¹

4.1.2 Reaction pathway for hydrogen release from BH₃NH₃ in the presence of BH₃

The potential energy profile for hydrogen release from the BH₃NH₃ in the presence of BH₃, computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in parenthesis) are shown in Figure 4.2. The relative energies, rate constants and thermodynamic properties of hydrogen release system of BH₃NH₃ in the presence of BH₃ are listed in Table 4.1. Figure 4.2 shows that the first step is the complexation of BH₃NH₃ and BH₃ resulting the ba-com-BH₃, this step is the barrierless and its reaction is the spontaneous and exothermic process. The second step is composed of three reaction pathways via the transition-state structures tsba BN, tsba BH3 and tsba_BB as shown in Figure A-2. The activation energies of three pathways in the second step via tsba_BN, tsba_BH₃ and tsba_BB are 23.62, 45.36 and 65.18 kcal/mol, respectively. The most favorable pathway is therefore the pathway via the transition-state structure, tsba_BN. The hydrogen release process of the second most favorable pathway via the transition state of tsba BH₃ seems to be similar to its corresponding process in system without of any catalyst. This pathway results the three-membered ring, ba-ring-BH₃ which the BH₃ is never released from its complex-state. Therefore, the BH₃ does not behave as the catalyst.

In the transition-state structure, **tsba_BB** and **tsba_BN**, the reaction pathways via either **tsba_BB** or **tsba_BN** result the same products as BH₂NH₂, H₂ and BH₃. This result is in the agreement with a previous theoretical study [13]. The activation energy of the most favorable path, via the **tsba_BN** is lower than its corresponding hydrogen release compound in system without BH₃ by 12.85 kcal/mol.

The tunneling factor (κ) of the most favorable path based on the Wigner expression, calculated imaginary frequency for **tsba_BN**, $v_i = 810i$ cm⁻¹ at the MP2/6-311++G(d,p) level is $\kappa = 1.64$ as listed in Table B-1. Moreover, we can apply the TST theory to predict the rate constant for hydrogen release of **ba-com-BH₃**, via **tsba_BN**. By use of the equations (3.43) and (3.44), the TST rate constant of $k = 2.37 \times 10^{-5}$ s⁻¹ is obtained. The tunneling factors and reaction constants of all hydrogen release compound systems are shown in Tables B-1 and 4.1, respectively. The equilibrium constant (K) calculated from equation (3.45) of the reaction via **tsba-BH₃** is 1.27×10^{11} . It was found that the product **ba-ring-BH₃** is the most favorable product because its structure is more stable than the product BH₂NH₂.

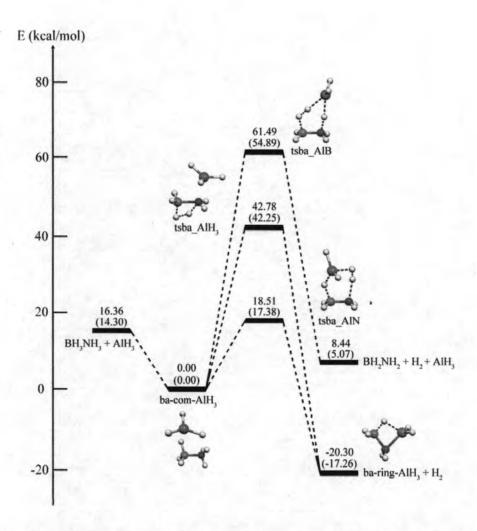

Figure 4.2 Reaction pathways for hydrogen release from BH₃NH₃ in the presence of BH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

4.1.3 Reaction pathway for hydrogen release from BH₃NH₃ in the presence of NH₃

The reaction pathways for hydrogen release from the BH₃NH₃ with NH₃ are given in Figure 4.3. Table 4.1 lists the relative energies, rate constants and thermodynamic properties of hydrogen release from the BH₃NH₃ in the presence of NH₃. The process of hydrogen release from the BH₃NH₃ with NH₃ is similar to the hydrogen release from the BH₃NH₃ with BH₃ discussed. The first step is the complexation between BH₃NH₃ and NH₃ resulting the **ba-com-NH₃**. The complexation energy of **ba-com-NH₃** is -8.48 kcal/mol. The second step, the transition-state structures have been located via **tsba_NN**, **tsba_NH₃** and **tsba_NB** as shown in Figure A-3. The transition-state structure, **tsba_NH₃** corresponds to the

transition-state structure, **tsba_BH₃** described above, the energy barrier based on the transition-state structure, **tsba_NH₃** of 40.74 kcal/mol is found. The transition-state structures, **tsba_NB** and **tsba_NN** correspond to the processes in which **tsba_BB** and **tsba_BN**, respectively. Relative to the separated reactants, the energy of **tsba_NB** and **tsba_NN** are calculated to be 21.82 kcal/mol and 97.02 kcal/mol, respectively. Thus, the structure of **tsba_NB**, is more stable than of **tsba_NN**. The energy barrier of the transition-state structure, **tsba_NB** represents a reduction of 6.17 kcal/mol with respect to the energy barrier of 36.47 kcal/mol in the monomer via **tsba**, see Figure A-1(a). Three pathways result the same fragmented products as BH₂NH₂, H₂ and NH₃, the energy of reaction was calculated to be -7.92 kcal/mol below the reactants. All reaction energies via **tsba_NN**, **tsba_NH₃** and **tsba_NB** are negative that indicate over all reaction become exothermic processes.

The rate constants of the catalytic processes can be evaluated by equations (3.43) and (3.44). The rate constants via **tsba_NB** and **tsba_NN** are $k = 1.81 \times 10^{-11} \text{ s}^{-1}$ and $k = 5.34 \times 10^{-67} \text{ s}^{-1}$, respectively. These values show that the transfer of two H-atoms from the BH₃NH₃ should be significantly faster in **tsba_NB** than in **tsba_NN**. In addition, the tunneling factors (κ) and reaction constants of all hydrogen release compound systems are listed in Tables B-1 and 4.1, respectively.

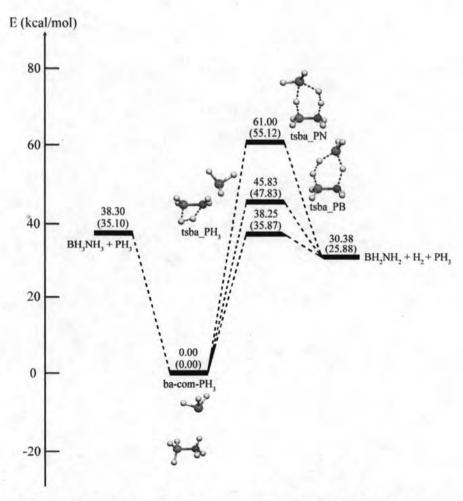

Figure 4.3 Reaction pathways for hydrogen release from BH₃NH₃ in the presence of NH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

4.1.4 Reaction pathway for hydrogen release from BH₃NH₃ in the presence of AlH₃

We have studied whether an alane molecule could participate as a catalyst. For the BH₃NH₃ + AlH₃ reaction, we located three different transition-state structures, bond length are displayed in Figure A-4. The corresponding energy profile is illustrated in Figure 4.4. The shape and characteristics of the transition-state structures involving AlH₃ are similar in many respects to those involving BH₃ and NH₃ discussed above. The relative energies, rate constants and thermodynamic properties of hydrogen release from the BH₃NH₃ in the presence of AlH₃ computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in parenthesis) are listed in Table 4.1. The reaction pathways for this system are composed of two reaction steps such as

the hydrogen release from the BH₃NH₃ with BH₃ and NH₃. The first step, BH₃NH₃ + AlH₃ leads to the complex, **ba-com-AlH₃**. The energy of **ba-com-AlH₃** is calculated to be 16.36 kcal/mol. The second step, three transition-state structures for hydrogen release have been found, via **tsba_AlN**, **tsba_AlH**₃ and **tsba_AlB** (Figure A-4). In the transition-state structure, **tsba_AlB**, the process via **tsba_AlB** proceeds with high energy because both H-atoms are negatively charged, the repulsion results in a substantial energy barrier of 61.49 kcal/mol. This pathway results the fragmented products, the BH₂NH₂, H₂ and AlH₃. For the transition-state structure, **tsba_AlH₃**, the activation energy is 42.78 kcal/mol. The three-membered ring with Al-H-B bridge is found to be the most stable product, and with the product H₂, this energy reaction is 36.66 kcal/mol below the reactants. The most favorable pathway is therefore the pathway via **tsba_AlN**. The H-H distance of 0.82 Å, see Figure A-4(a) shows that the departing H₂ is formed at the transition state. The energy barrier via **tsba_AlN** is 18.51 kcal/mol. The same separated products as that described above have been generated.

Table 4.1 lists the calculated rate constants, including tunneling correction, using TST for each process in this system from equations (3.43) and (3.44). Table B-1 shows the tunneling factors (κ) for all reaction of hydrogen release from the BH₃NH₃ with AlH₃ molecule. The rate constant (k) of reaction via **tsba_AlN** is 1.30×10^{-1} s⁻¹. Although the rate constant from **tsba_AlN** is higher than those from **tsba_AlH**₃ and **tsba_AlB**, the AlH₃ molecule cannot be put back into the system. From this reason, the AlH₃ molecule cannot serve as catalyst in the hydrogen elimination reactions of BH₃NH₃ with AlH₃. Furthermore, the equilibrium constants were calculated from equation (3.45) as shown in Table 4.1. The equilibrium constant (K) of the reaction via **tsba-AlH₃** of 1.85×10^{19} is obtained. It is found that the product **ba-ring-AlH₃** is more favorable product than the product BH₂NH₂ because its structure is more stable than the product BH₂NH₂.


Figure 4.4 Reaction pathways for hydrogen release from BH₃NH₃ in the presence of AlH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

4.1.5 Reaction pathway for hydrogen release from BH₃NH₃ in the presence of PH₃

The schematic energy profile for hydrogen release from the borane amine with PH₃ is shown in Figure 4.5. Table 4.1 lists the relative energies calculated for hydrogen release from the BH₃NH₃ system computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in parenthesis). The initial energy interaction of BH₃NH₃ and PH₃ gives the **ba-com-PH₃**, which is 38.30 kcal/mol below the separated reactants BH₃NH₃ and PH₃. Starting from the **ba-com-PH₃**, three transition-state structures have been located, each representing a different type of hydrogen elimination are also shown in Figure A-5. The activation energies of three pathways in the second step via **tsba_PN**, **tsba_PH₃** and **tsba_PB** are 61.00, 45.83 and 38.25 kcal/mol, respectively.

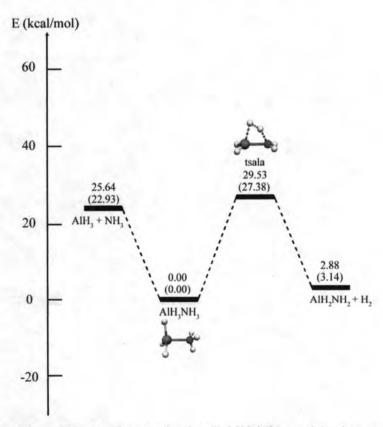
The most favorable pathway is therefore the pathway via the transition state tsba_PH₃. However, the energy barrier via tsba_PH₃ is higher than that found for the transition-state structure, tsba. As a result, the PH₃ molecule cannot play the role of a catalyst for hydrogen release from the borane amine with PH₃. Overall process gives the same separated products as BH₂NH₂, H₂ and PH₃. From all reaction energies via tsba_PN, tsba_PH₃ and tsba_PB are negative that indicate over all reaction become exothermic processes.

For the hydrogen release via $tsba_PH_3$, we obtained $k = 1.30 \times 10^{-1} \text{ s}^{-1}$, this value include tunneling correction, see Table 4.1. In comparison with the rate constant of hydrogen release reaction via tsba, it is found that the rate constant is more than that via $tsba_PH_3$. In addition, the tunneling factors (κ) are listed in Table B-1, and the reaction constants are shown in Table 4.1.

Figure 4.5 Reaction pathways for hydrogen release from BH₃NH₃ in the presence of PH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

The results show that the transition states **tsba_BN**, **tsba_NB** and **tsba_AIN** are stabilized by the BH₃, NH₃ and AlH₃, respectively and their structures are formed as the B···H···H···N, N···H···H···B and Al···H···H···N configurations respectively. The reason is that the strong electrostatic attraction between the positively charged H_N atom and the negatively charged H_B (or H_{Al}) atom. The **tsba_PH₃** is stabilized by the PH₃ as the most favorable transition state of which the structure of the four-membered framework is formed. This reason is that the PH₃ is the soft base [29] of which the hydrogen atom is not released. As the hydrogen release reaction via the transition state **tsba_AIN** affords the **ba-ring-AIH₃** which the AlH₃ is never released from its complex-state, therefore the AlH₃ is not a catalyst for this reaction process. For comparison with the experiment, the activation energy is 14.81 kcal/mol for the hydrogen release from BH₃NH₃ with the Co/γ-Al₂O₃ catalyst which is lower than the activation energy of 23.62 kcal/mol for the BH₃ catalyst from theoretical calculation.

4.2 Molecular mechanism of hydrogen release from AlH₃NH₃ system


Table 4.2 lists the relative energies, rate constants and thermodynamic properties calculated at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory for hydrogen release from the AlH₃NH₃ without and with the BH₃, NH₃, AlH₃ and PH₃. The reaction pathways for hydrogen release from AlH₃NH₃ system are illustrated in Figures 4.6-4.10.

4.2.1 Reaction pathway for synthesis of AlH₃NH₃ and hydrogen release from AlH₃NH₃

The corresponding energy profile for hydrogen release from the alane amine is shown in Figure 4.6. The relative energies, rate constants and thermodynamic properties of hydrogen release from the AlH₃NH₃ computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in parenthesis) are listed in Table 4.2. The reaction pathway for hydrogen release from BH₃NH₃ is composed of two reaction steps. The first step is the barrierless reaction, the spontaneous and exothermic reaction. The second step is the rate-determining step. The transition-state structure geometry, **tsala** for loss of hydrogen from the AlH₃NH₃ is similar to that for loss of

hydrogen from the BH₃NH₃. The shape and bond length for **tsala** is shown in Figure A-1(b). The energy barrier of the transition-state structure, **tsala** is calculated to be 29.53 kcal/mol. For hydrogen release from AlH₃NH₃, the AlH₃NH₃ monomer has a lower barrier than that found for BH₃NH₃ system. The reaction is endothermic by 2.88 kcal/mol.

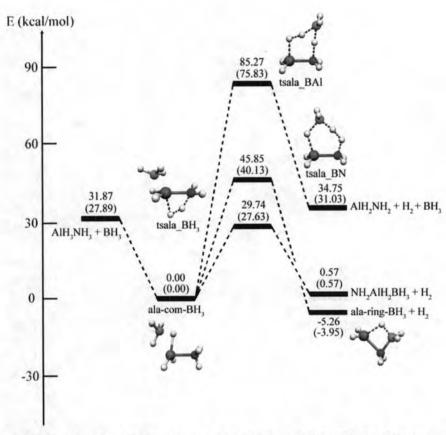
We obtained the rate constants applying the TST and included a tunneling correction from equations (3.43) and (3.44). For hydrogen release from AlH₃NH₃, the rate constant (k) is 2.37×10^{-5} s⁻¹ which is higher than that calculated for BH₃NH₃ system. Besides the equilibrium constants that calculated from equation (3.45) are listed in Table 4.2 and the tunneling factors (κ) are listed in Table B-2.

Figure 4.6 Reaction pathway for synthesis of AlH₃NH₃ and hydrogen release from AlH₃NH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

Table 4.2 Relative energies, rate constants and thermodynamic properties of hydrogen release from AlH₃NH₃ without and with BH₃, NH₃, AlH₃ or PH₃ catalyst, computed at the B3LYP/6-311++G(d,p) (in the parenthesis) and MP2/6-311++G(d,p) levels of theory

Reaction	$\Delta^{\ddagger}E^{a.b}$	k ₂₉₈ c	ΔE^a	ΔH_{298}^{a}	ΔG_{298}^{a}	K_{298}
AlH ₃ NH ₃ reactant:						
$AIH_3+NH_3 \rightarrow AIH_3NH_3$		-	-25.64	-26.90	-17.57	7.54×1012
			(-22.93)	(-24.15)	(-14.89)	(8.24×1010
$AlH_3NH_3 \rightarrow tsala \rightarrow AlH_2NH_2+H_2$	29.53	1.45×10 ⁻⁸	2.88	4.47	-4.12	1.05×10 ³
	(27.38)	(4.72×10 ⁻⁷)	(3.14)	(4.61)	(-3.76)	(5.74×10 ²)
AlH ₃ NH ₃ and BH ₃ reactants:		32342.333.9		(/	(10.00
$AIH_3NH_3+BH_3 \rightarrow AIH_3NH_3\cdots BH_3$	-		-31.87	-17.35	-8.05	3.71×1017
			(-27.89)	(-14.97)	(-6.17)	(2.92×1014
$AIH_3NH_3\cdots BH_3 \rightarrow tsala-BN \rightarrow NH_2AIH_2BH_3(ring)+H_2$	45.85	1.92×10 ⁻²¹	-37.12	-4.52	-10.61	6.04×107
	(40.13)	(3.40×10 ⁻¹⁷)	(-31.84)	(-3.16)	(-9.53)	(9.75×106)
$AIH_3NH_3\cdots BH_3 \rightarrow tsala-BH_3 \rightarrow NH_2AIH_2BH_3+H_2$	29.74	7.32×10 ⁻¹⁰	-31.30	2.15	-5.83	1.89×10 ⁴
	(27.63)	(3.58×10^{-8})	(-27.32)	(2.02)	(-5.79)	(1.76×10 ⁴
$AlH_3NH_3\cdots BH_3 \rightarrow tsala-BAl \rightarrow AlH_2NH_2+H_2+BH_3$	85.27	3.23×10 ⁻⁵⁰	2.88	37.33	19.85	2.82×10 ⁻¹⁵
	(75.83)	(3.45×10^{-43})	(3.14)	(33.57)	(15.97)	(1.97×10 ⁻¹²
AlH ₃ NH ₃ and NH ₃ reactants:			(/		(
$AIH_3NH_3+NH_3 \rightarrow AIH_3NH_3NH_3$		-	-8.63	-9.02	-1.57	1.42×10 ¹
AULAUL AUL . C. L. NA . AULAUL . II . AUL		-	(-7.45)	(-7.87)	(-0.36)	(1.83)
$AlH_3NH_3NH_3 \rightarrow tsala-NN \rightarrow AlH_2NH_2+H_2+NH_3$	131.32	6.00×10 ⁻⁸⁵	2.88	13.49	-2.55	7.38×10 ¹
AUTOUR AND A PART AND	(120.24)	(1.81×10 ⁻⁷⁶)	(3.14)	(12.47)	(-3.41)	(3.14×10^2)
$AIH_3NH_3NH_3 \rightarrow tsala-NH_3 \rightarrow AIH_2NH_2+H_2+NH_3$	33.63	1.10×10 ⁻¹¹	2.88	13.49	-2.55	7.38×10 ¹
AULANI AUL - 4-1- NAC - 100 NOT - 11 AUG	(31.43)	(8.85×10^{-10})	(3.14)	(12.47)	(-3.41)	(3.14×10^2)
$AIH_3NH_3NH_3 \rightarrow tsala-NAI \rightarrow AIH_2NH_2+H_2+NH_3$	24.52	6.87×10 ⁻⁷	2.88	13.49	-2.55	7.38×10 ¹
AIU NU and AIU assessments	(24.04)	(1.21×10^{-6})	(3.14)	(12.47)	(-3.41)	(3.14×10^2)
AIH ₃ NH ₃ and AIH ₃ reactants: AIH ₃ NH ₃ +AIH ₃ \rightarrow AIH ₃ NH ₃ ···AIH ₃			-20.86	-21.67	-12.39	1.20×109
Autgraty Autg-Autgraty Autg	1	1.2	(-18.23)	(-18.97)	(-10.01)	(2.19×10^7)
$AlH_3NH_3\cdots AlH_3 \rightarrow tsala-AlN \rightarrow NH_2AlH_2AlH_3(ring)+H_2$	16.11	5.64	-39.45	-17.66	-24.17	5.23×10 ¹⁷
	(10.37)	(6.18×10 ⁴)	(-34.10)	(-15.01)	(-21.17)	(3.33×10 ¹⁵
$AlH_3NH_3\cdots AlH_3 \rightarrow tsala-AlH_3 \rightarrow NH_2AlH_2AlH_3+H_2$	29.85	8.61×10 ⁻¹⁰	-22.87	-0.75	-8.28	1.17×10 ⁶
	(28.34)	(5.39×10 ⁻⁹)	(-19.06)	(0.57)	(-6.98)	(1.30×10 ⁵)
$AIH_3NH_3\cdots AIH_3 \rightarrow tsala-AIAI \rightarrow AIH_2NH_2+H_2+AIH_3$	70.30	8.91×10 ⁻³⁹	2.88	26.14	8.27	8.69×10 ⁻⁷
	(61.70)	(1.09×10^{-32})	(3.14)	(23.57)	(6.25)	(2.62×10 ⁻⁵
AlH ₃ NH ₃ and PH ₃ reactants:	3	1	10.3.7	1,000	(0.50)	(2.02 10
$AIH_3NH_3+PH_3 \rightarrow AIH_3NH_3\cdots PH_3$		-	-38.36	-38.16	-32.23	4.27×10^{23}
The same with a series of the second	- 31	7.30	(-33.57)	(-34.83)	(-30.27)	(1.54×10^{22})
$AIH_3NH_3\cdots PH_3 \rightarrow tsala-PN \rightarrow AIH_2NH_2+H_2+PH_3$	63.01	4.01×10 ⁻³⁵	2.88	42.63	28.12	2.45×10 ⁻²¹
and the same of th	(56.75)	(4.17×10^{-32})	(3.14)	(39.44)	(26.50)	(3.71×10 ⁻²⁰
$AlH_3NH_3\cdots PH_3 \rightarrow tsala-PH_3 \rightarrow AlH_2NH_2+H_2+PH_3$	31.19	4.71×10 ⁻¹⁰	2.88	42.63	28.12	2.45×10 ⁻²¹
All the same of th	(28.93)	(1.36×10^{-8})	(3.14)	(39.44)	(26.50)	(3.71×10 ⁻²⁰
$AIH_3NH_3\cdots PH_3 \rightarrow tsala-PAI \rightarrow AIH_2NH_2+H_2+PH_3$	46.04	4.61×10 ⁻²³	2.88	42.63	28.12	2.45×10 ⁻²¹
	(35.24)	(9.50×10^{-16})	(3.14)	(39.44)	(26.50)	(3.71×10 ⁻²⁰)

^a In kcal/mol. ^b Activation energy. ^c In s⁻¹

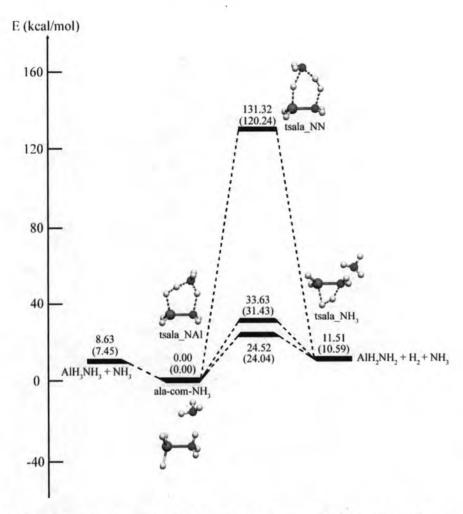

4.2.2 Reaction pathway for hydrogen release from AlH₃NH₃ in the presence of BH₃

This pathway is also relevant to hydrogen production in that decomposition of AlH₃NH₃ is now assisted by borane. The geometries for this set of reaction paths are given in Figure A-6, and the energy profile for hydrogen release from the alane amine with borane is shown in Figure 4.7. Their relative energies, rate constants and thermodynamic properties of hydrogen release from AlH₃NH₃ with BH₃ computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) are listed in Table 4.2. The reaction pathways for hydrogen release from AlH₃NH₃ in presence with BH₃ are composed of two reaction steps. The first step is the barrierless reaction, the complex ala-com-BH3 is stable relative to the reactants by 31.87 kcal/mol. The second step, the three transition-state structures have been located via tsala BN. tsala BH₃ and tsala BAI as shown in Figure A-6. Normal mode for the imaginary frequencies of tsala BN, tsala BH₃ and tsala BB are shown in Table B-2. In transition-state structures, tsala_BN, the energy barrier is calculated to be 45.85 kcal/mol. It is of interest that the product of this process is the three membered-ring resulting the ala-ring-BH₃, which the BH₃ is never released from its complex-state. Therefore, the BH₃ cannot act as the catalyst. The rate constants of this reaction can be evaluated by equations (3.43) and (3.44), $k = 1.92 \times 10^{-21} \text{ s}^{-1}$.

For tsala_BH₃, the transition state corresponds to tsba_BH₃ described above. The energy barrier involving tsala_BH₃ is calculated to be 29.74 kcal/mol. The process via tsala_BH₃ proceeds with lowest energy, however, the product of this process is the complex NH₂AlH₂BH₃ which is not AlH₂NH₂, H₂ and BH₃ then the BH₃ molecule cannot serve as a catalyst in this process. The transition state tsala_BAl, the shape and characteristics are similar in tsba_BB discussed above. The energy barrier of transition state, tsala_BAl is calculated to be 85.27 kcal/mol. The transition state, tsala_BAl is far more stable than tsala_BH₃, with energy difference of 55.53 kcal/mol.

In addition, the tunneling factors (κ) and rate constants of all hydrogen release compound systems are listed in Tables B-2 and 4.2, respectively. The equilibrium constants (K) calculated from equation (3.45) of the reaction via $tsala_BH_3$ and $tsala_BN$ are 1.89×10^4 and 6.04×10^7 , respectively. It was found that the product

ala-ring-BH₃ is more favorable product than the product NH₂AlH₂BH₃ because its structure is more stable than the product NH₂AlH₂BH₃.

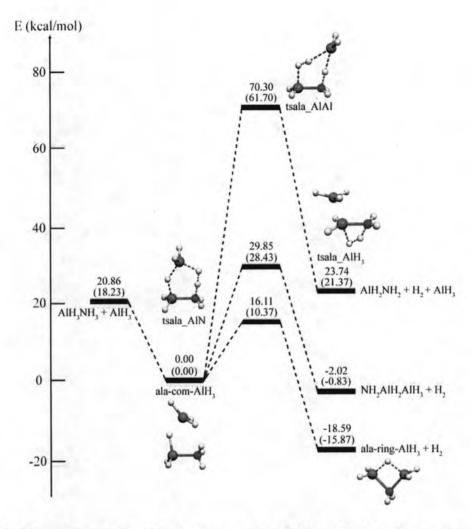

Figure 4.7 Reaction pathways for hydrogen release from AlH₃NH₃ in the presence of BH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

4.2.3 Reaction pathway for hydrogen release from AlH₃NH₃ in the presence of NH₃

The corresponding energy profile is illustrated in Figure 4.8 and Table 4.2 lists their relative energies, rate constants and thermodynamic properties of hydrogen release from AlH₃NH₃ in the presence of NH₃. For the AlH₃NH₃ + NH₃ reaction, we located three different transition-state structures such as the BH₃NH₃ +NH₃ reaction. The shape and characteristics of the stationary points involving NH₃ are similar in many respects to those involving BH₃ discussed above. The first step, the complex ala-com-NH₃ between AlH₃NH₃ and NH₃ is formed which of the reaction energy is 8.63 kcal/mol. The second step is composed of three transition-state structures via tsala_NN, tsala_NH₃ and tsala_NAl as shown in Figure A-7. The transition state

tsala_NH₃ corresponds to tsala_BH₃ described above, in which NH₃ now interacts with tsala of the monomer from outside of the four-membered ring and by H-bonding. Calculate the energy barrier involving tsala_NH₃ is 33.63 kcal/mol. The process via tsala_NN and tsala_NAI, the transition-state structures are similar in the process via tsala_BN and tsala_BAI, respectively. The transition-state structure, tsala_NAI is the lowest energy transition structure, with an energy barrier of 15.89 kcal/mol relative to the separated reactants, which represents a reduction of 13.64 kcal/mol with respect to the energy barrier of 29.53 kcal/mol in the AlH₃NH₃ monomer via tsala in system without the NH₃.

Furthermore, the rate constants of the catalytic processes, we can evaluate by equations (3.43) and (3.44). The rate constants (k) via $tsala_NN$, $tsala_NH_3$ and $tsala_NAl$ are 6.00×10^{-85} , 1.10×10^{-11} and 6.87×10^{-7} s⁻¹, respectively. From these values show that the transfer of two H-atoms from AlH₃NH₃ should be significantly faster in transition-state structures, $tsala_NAl$ than in $tsala_NN$ and $tsala_NH_3$. The tunneling factors (κ) and equilibrium constants (K) are listed in Tables B-2 and 4.2, respectively.

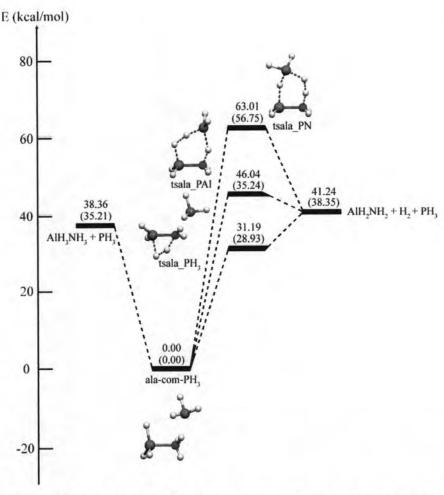

Figure 4.8 Reaction pathways for hydrogen release from AlH_3NH_3 in the presence of NH_3 . Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

4.2.4 Reaction pathway for hydrogen release from AlH₃NH₃ in the presence of AlH₃

For the AlH₃NH₃ + AlH₃ reaction, we located a complex and three transitionstate structures are displayed in Figure A-8. The corresponding energy profile for hydrogen release from the alane amine with the presence of AlH₃ is illustrated in Figure 4.9. Table 4.2 lists the relative energies, rate constants and thermodynamic properties calculated at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis). The reaction pathways for hydrogen release from AlH₃NH₃ with AlH₃ are composed of two reaction steps. Starting from ala-com-AlH₃, three transition state structures have been located, each representing a different type of hydrogen elimination. The transition-state structures, tsala_AlN, tsala_AlH₃ and tsala_AlAl are illustrated in Figure A-8. The activation energies of three pathways in the second step via **tsala_AlN**, **tsala_AlH**₃ and **tsala_AlAl** are 16.11, 29.85 and 70.30 kcal/mol, respectively. The least favorable pathway is therefore the pathway via the transition-state structure, **tsala_AlH**₃. The product from this process is aminodialane NH₂AlH₂AlH₃, which of the reaction energies are 22.88 kcal/mol below the reactants.

In the transition state **tsala_AlN**, the energy barrier is calculated to be 16.11 kcal/mol. The process via **tsala_AlN** is lowest energy. This pathway results the three-membered ring, **ala-ring-AlH**₃ which the AlH₃ is never released from its complex-state. Therefore, the AlH₃ molecule cannot act as a catalyst via this process because the AlH₃ molecule cannot be put back into the system.

Table 4.2 lists the calculated rate constants, including tunneling corrections, using TST for each process in this system from equations (3.43) and (3.44). Table B-2 shows the tunneling factors (κ) for all hydrogen storage compound systems. Furthermore, the equilibrium constants calculated are shown in Table 4.2. The equilibrium constants were calculated from equation (3.45) which the equilibrium constant (K) via **tsala-AlN** is 5.23×10^{17} . It is found that the product **ala-ring-AlH₃** is more favorable product than the product AlH₂NH₂ because its structure is more stable than the product AlH₂NH₂.


Figure 4.9 Reaction pathways for hydrogen release from AlH₃NH₃ in the presence of AlH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

4.2.5 Reaction pathway for hydrogen release from AlH₃NH₃ in the presence of PH₃

We have considered the hydrogen release mechanism from AlH₃NH₃ involving an additional phosphine molecule. Table 4.2 lists their relative energies, rate constants and thermodynamic properties of hydrogen release from AlH₃NH₃ in the presence of PH₃ and the corresponding energy profile is illustrated in Figure 4.10. The reaction pathways for hydrogen release from AlH₃NH₃ with PH₃ are composed of two reaction steps. The first step is the barrierless reaction which the complex ala-com-PH₃ is formed. The second step, the three transition-state structures have been located via tsala_PN, tsala_PH₃ and tsala_PAl as shown in Figure A-9. Normal modes for the imaginary frequencies of three transition states are listed in Table B-2.

The energies barrier via tsala_PN and tsala_PAI are 63.01 and 46.04 kcal/mol, respectively. The tsala_PH₃ corresponds to tsala_NH₃ described above which the energy barrier involving tsala_PH₃ is calculated to be 31.19 kcal/mol. The transition-state structure, tsala_PH₃ is the lowest energy transition structure. Nevertheless, the energy barrier via tsala_PH₃ is higher than that found for tsala in system without any catalyst. As a result, the PH₃ molecule cannot play the role of a catalyst for hydrogen release from alane amine with PH₃. Overall process gives the same separated products as AlH₂NH₂, H₂ and PH₃. From all reaction energies via tsala_PN, tsala_PH₃ and tsala_PAI are positive that indicate over all reaction become endothermic processes by 2.88 kcal/mol with respect the reactants.

The rate constants of these processes, we can evaluate by equations (3.43) and (3.44). The rate constants (k) via $tsala_PN$, $tsala_PH_3$ and $tsala_PAI$ are 4.01×10^{-35} , 4.71×10^{-10} and 4.61×10^{-23} s⁻¹, respectively. From these values show that the transfer of two H-atoms from AlH₃NH₃ should be significantly faster in the transition-state structure, $tsala_PH_3$ than in $tsala_PN$ and $tsala_PAI$. In addition, the tunneling factors (κ) and equilibrium constants (K) are listed in Tables B-2 and 4.2, respectively.

Figure 4.10 Reaction pathways for hydrogen release from AlH₃NH₃ in the presence of PH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

The results show that the transition states tsala_NAI and tsala_AIN are stabilized by the NH₃ and AlH₃, respectively and their structures are formed as the N···H···H···AI, and Al···H····H···N configurations respectively. The reason is that the strong electrostatic attraction between the positively charged H_N atom and the negatively charged H_{AI} atom. The tsala_PH₃ is stabilized by the PH₃ as the most favorable transition state of which the structure of the four-membered framework is formed. This reason is that the PH₃ is the soft base of which the hydrogen atom is not released. As the hydrogen release reaction via the transition states, tsala_BH₃ and tsala_AIN afford the complex NH₂AlH₂BH₃ and ba-ring-AlH₃, respectively which the BH₃ and AlH₃ molecules cannot be released as the free species, therefore these reaction pathways is not considered as the catalytic reactions.

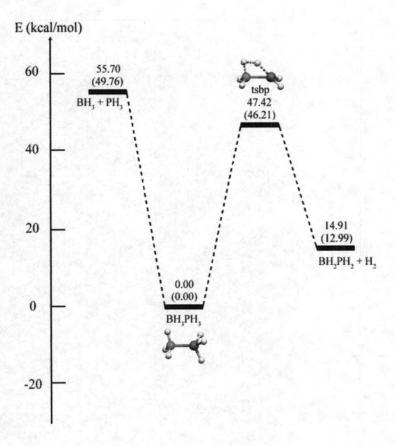

4.3 Molecular mechanism of hydrogen release from BH₃PH₃ system

Table 4.3 lists the relative energies, rate constants and thermodynamic properties calculated at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory for hydrogen release from BH₃PH₃ without and with the BH₃, NH₃, AlH₃ and PH₃. The reaction pathways for hydrogen release from BH₃PH₃ system are shown in Figures 4.11-4.15.

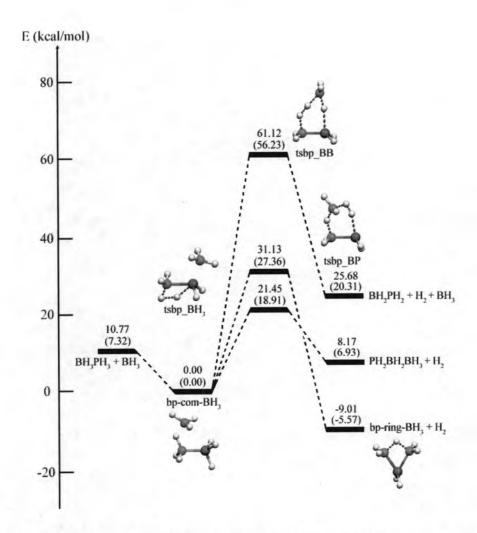
4.3.1 Reaction pathway for synthesis of BH₃PH₃ and hydrogen release from BH₃PH₃

The calculated results for the decomposition of borane phosphine are summarized in Figure 4.11 and Figure A-1(c). The relative energies, rate constants and thermodynamic properties of hydrogen release from BH₃PH₃ computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory are listed in Table 4.3. The reaction pathway for hydrogen release from BH₃PH₃ is composed of two reaction steps. The first step is the barrierless reaction and exothermic reaction. The second step is the rate-determining step. The transition-state structure geometry, **tsbp** for loss of hydrogen from BH₃PH₃ is similar to that for loss of hydrogen from BH₃NH₃ and AlH₃NH₃. The H–H distance of 1.24 Å, see Figure A-1(c) is substantially longer than that of 0.99 Å in the transition state structure of borane amine. The energy barrier of the transition-state structure, **tsbp** was calculated to be 47.42 kcal/mol.

We performed the rate constants using the TST and included a tunneling correction from equations (3.43) and (3.44). For hydrogen release from BH₃PH₃, the rate constant is $k = 5.01 \times 10^{-21}$ s⁻¹ which is lower than that calculated for BH₃NH₃ system. Moreover the equilibrium constants that calculated from equation (3.45) and the tunneling factors (κ) are list in Tables 4.3 and B-3, respectively.

Figure 4.11 Reaction pathway for synthesis of BH₃PH₃ and hydrogen release from BH₃PH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

Table 4.3 Relative energies, rate constants and thermodynamic properties of hydrogen release from BH₃PH₃ without and with BH₃, NH₃, AlH₃ or PH₃ catalyst, computed at the B3LYP/6-311++G(d,p) (in the parenthesis) and MP2/6-311++G(d,p) levels of theory

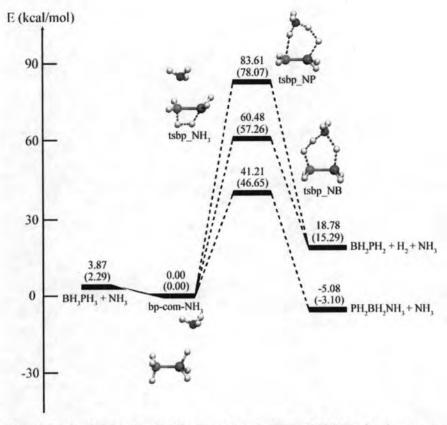

Reaction	$\Delta^{\ddagger}E^{a,b}$	k ₂₉₈ c	ΔE^{a}	$\Delta H_{298}^{\ a}$	ΔG_{298}^{a}	K_{298}
BH ₃ PH ₃ reactant:						7.47
$BH_3+PH_3 \rightarrow BH_3PH_3$		-	-55.70	-57.17	-47.67	8.88×1034
		-	(-49.76)	(-51.17)	(-41.78)	(4.24×10 ³⁰
$BH_3PH_3 \rightarrow tsbp \rightarrow BH_2PH_2+H_2$	47.42	5.01×10 ⁻²¹	14.91	16.59	7.59	2.73×10 ⁻⁶
	(46.21)	(2.66×10^{-20})	(12.99)	(14.63)	(5.71)	(6.54×10 ⁻⁵
BH ₃ PH ₃ and BH ₃ reactants:				10000		
$BH_3PH_3+BH_3 \rightarrow BH_3PH_3\cdots BH_3$	-		-10.77	-12.03	-2.34	5.17×10 ¹
	-		(-7.32)	(-8.42)	(0.86)	(2.33×10 ⁻¹
$BH_3PH_3\cdots BH_3 \rightarrow tsbp-BP \rightarrow PH_2BH_2BH_3(ring)+H_2$	31.13	1.08×10 ⁻¹⁰	-19.78	-7.83	-14.71	6.03×10 ¹⁰
	(27.36)	(3.99×10^{-8})	(-12.89)	(-4.52)	(-11.03)	(1.22×108
$BH_3PH_3\cdots BH_3 \rightarrow tsbp-BH_3 \rightarrow PH_2BH_2BH_3+H_2$	21.45	2.29×10 ⁻³	-2.60	10.11	0.99	1.89×10 ⁻¹
	(18.91)	(9.89×10 ⁻²)	(-0.39)	(8.70)	(0.03)	(9.50×10 ⁻¹
$BH_3PH_3\cdots BH_3 \rightarrow tsbp-BB \rightarrow BH_2PH_2+H_2+BH_3$	61.12	6.01×10 ⁻³²	14.91	28.62	9.93	5.27×10-
	(56.23)	(2.24×10^{-28})	(12.99)	(23.05)	(4.85)	(2.80×10
BH ₃ PH ₃ and NH ₃ reactants:						
$BH_3PH_3+NH_3 \rightarrow BH_3PH_3\cdots NH_3$		-	-3.87	-3.79	2.40	1.73×10
DILDIL AIL . 4-1- NO . DILDIL II AIII	12.3		(-2.29)	(-2.03)	(2.53)	(1.39×10
$BH_3PH_3\cdots NH_3 \rightarrow tsbp-NP \rightarrow BH_2PH_2+H_2+NH_3$	83.61	1.79×10 ⁻⁵⁰	14.91	20.38	5.19	1.57×10
DU DU ANI AL ANI DU DU ANI	(78.07)	(9.82×10 ⁻⁴⁸)	(12.99)	(16.66)	(3.18)	(4.70×10
$BH_3PH_3\cdots NH_3 \rightarrow tsbp-NH_3 \rightarrow BH_2PH_2+H_2+NH_3$	60.48	1.35×10 ⁻³²	14.91	20.38	5.19	1.57×10
	(57.26)	(1.12×10 ⁻³⁰)	(12.99)	(16,66)	(3.18)	(4.70×10
$BH_3PH_3\cdots NH_3 \rightarrow tsbp-NB \rightarrow PH_2BH_2NH_3+H_2$	41.21	1.16×10 ⁻¹⁹	-8.95	-4.96	-9.28	6.32×10 ⁶
	(46.65)	(1.26×10^{-24})	(-5.40)	(-5.19)	(-5.88)	(2.06×10^4)
BH ₃ PH ₃ and AlH ₃ reactants:			11.17	11.76	2.26	2.46102
$BH_3PH_3+AIH_3 \rightarrow BH_3NH_3\cdots AIH_3$			-11.16 (-7.90)	-11.75 (-8.39)	-3.26 (-0.28)	2.46×10^{2} (1.60)
$BH_3PH_3\cdots AlH_3 \rightarrow tsbp-AlP \rightarrow PH_2BH_2AlH_3(ring)+H_2$	21.34	4.39×10 ⁻⁴	-20.03	-7.71	-14.52	4.40×10 ¹⁰
	(18.14)	(1.04×10 ⁻¹)	(-15.46)	(-6.49)	(-12.94)	(3.08×10 ⁹
$BH_3PH_3\cdots AlH_3 \rightarrow tsbp-AlH_3 \rightarrow BH_2PH_2+H_2+AlH_3$	29.26	4.17×10 ⁻⁹	14.91	28.34	10.85	1.11×10 ⁻⁴
2.13.13 · 1.13 · 1.13 · 1.12·12·12·113	(25.16)	(2.83×10 ⁻⁶)	(12.99)	(23.01)	(5.98)	(4.10×10°
$BH_3PH_3\cdots AlH_3 \rightarrow tsbp-AlB \rightarrow BH_2PH_2+H_2+AlH_3$	60.14	3.29×10^{-32}	14.91	28.34	10.85	1.11×10°
	(52.21)	(2.52×10^{-26})	(12.99)	(23.01)	(5.98)	(4.10×10
BH ₃ PH ₃ and PH ₃ reactants:	(32.21)	(2.32.10)	(12.55)	(23.01)	(3.70)	(4.10-10
$BH_3PH_3+PH_3 \rightarrow BH_3NH_3\cdots PH_3$	(-)	75	-36.52	-36.11	-30.97	5.02×10 ²
	-		(-33.47)	(-32.74)	(-30.25)	(1.50×10^{2})
$BH_3PH_3\cdots PH_3 \rightarrow tsbp-PP \rightarrow BH_2PH_2+H_2+PH_3$	66.61	8.32×10 ⁻³⁹	14.91	52.70	38.56	5.44×10 ⁻²
	(60.80)	(2.78×10^{-36})	(12.99)	(47.36)	(35.96)	(4.36×10 ⁻²
$BH_3PH_3\cdots PH_3 \rightarrow tsbp-PH_3 \rightarrow BH_2PH_2+H_2+PH_3$	52.45	2.82×10 ⁻²⁶	14.91	52.70	38.56	5.44×10 ⁻²
	(44.82)	(6.87×10^{-21})	(12.99)	(47.36)	(35.96)	(4.36×10 ⁻²
$BH_3PH_3\cdots PH_3 \rightarrow tsbp-PB \rightarrow BH_2PH_2+H_2+PH_3$	57.59	1.71×10 ⁻³¹	14.91	52.70	38.56	5.44×10 ⁻²
	(51.72)	(3.56×10 ⁻²⁹)	(12.99)	(47.36)	(35.96)	(4.36×10 ⁻²

^a In kcal/mol. ^b Activation energy. ^c In s⁻¹

4.3.2 Reaction pathway for hydrogen release from BH₃PH₃ in the presence of BH₃

Table 4.3 lists the relative energies calculated at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in parenthesis) levels of theory for hydrogen release from BH₃PH₃ in the presence of BH₃. The first step is the complexation of BH₃PH₃ and BH₃ resulting the bp-com-BH₃, this step is the barrierless and its reaction is the spontaneous and exothermic process. The second step, from complex, bp-com-BH₃, three transition state structures have been located, each representing a different type of hydrogen elimination are also shown in Figure A-10. The transition-state structure, tsbp-BH₃ corresponds to a process in which the BH₃ interacts with the tsbp of the BH₃PH₃ monomer. For the transition states via tsbp BB and tsbp BP, the energies barrier are 61.12 and 31.13 kcal/mol, respectively. The product via tsbp BP is the three membered-ring resulting the bp-ring-BH₃. The energy barrier via transition state, tsbp-BH₃ of 21.45 kcal/mol is found. The product of this process is the complex, PH2BH2BH3. Thus, the most favorable pathway is therefore the pathway via the transition-state structure, tsbp BH₃. The activation energy of the most favorable path, via the tsbp BH₃ is lower than its corresponding hydrogen storage compound in system without BH₃ by 15.97 kcal/mol. Because the BH₃ molecule cannot be put back into the system, the BH₃ molecule cannot act as a catalyst via this process.

In addition, the tunneling factors (κ) and rate constants are listed in Tables B-3 and 4.3, respectively. The equilibrium constants can be calculated by equation (3.45) as shown in Table 4.3. For the transition-state structures, **tsbp_BH**₃ and **tsbp_BP**, the equilibrium constants (K) are 1.89×10^{-1} and 6.03×10^{10} , respectively. It is found that the product **bp-ring-BH**₃ is more favorable product than the product PH₂BH₂BH₃ because its structure is more stable than the product PH₂BH₂BH₃.

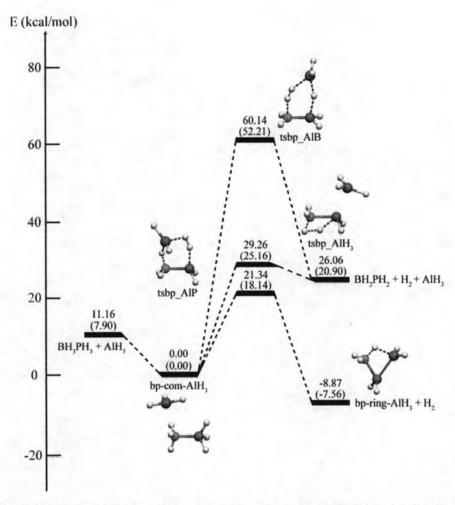

Figure 4.12 Reaction pathways for hydrogen release from BH₃PH₃ in the presence of BH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

4.3.3 Reaction pathway for hydrogen release from BH_3PH_3 in the presence of NH_3

The relative energies, rate constants and thermodynamic properties of hydrogen release from BH₃PH₃ with NH₃ system computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory are listed in Table 4.3. The reaction pathways for hydrogen release from BH₃PH₃ with NH₃ molecule are composed of two reaction steps as shown in Figure 4.13. The first step is the barrierless reaction and exothermic process. The complexation energy of **bp-com-NH₃** is 3.87 kcal/mol with respect from the reactants. The second step, the transition-state structures have been located and the energy profile is given in

Figure 4.13. The transition-state structures have been located via tsbp_NB, tsbp_NH₃ and tsbp_NP as shown in Figure A-11. The activation energies of three pathways in the second step via tsbp_NB, tsbp_NH₃ and tsbp_NP are 41.21, 60.48 and 83.61 kcal/mol, respectively. Based on the NH₃ catalytic reaction, for hydrogen release from BH₃PH₃, the most favorable pathway for this hydrogen release process is therefore the reaction via transition state tsbp_NH₃ and affords the products BH₂PH₂, H₂ and NH₃ catalyst. Even though, the activation energy due to the transition state tsbp_NB is the lowest energy, the NH₃ molecule cannot be released as the free species but formed as the complex PH₂BH₂NH₃. As the NH₃ does not behave as the catalyst, this reaction pathway is not considered as the hydrogen energy resource.

In addition, the tunneling factors (κ) and rate constants are listed in Tables B-3 and 4.3, respectively. The equilibrium constants can be calculated by equation (3.45) as shown in Table 4.3. For the hydrogen release reaction via **tsbp_NB** and **tsbp_NP**, the equilibrium constants (K) are 6.32×10^6 and 1.57×10^{-4} , respectively. It is found that the product PH₂BH₂NH₃ is more favorable product than the product BH₂PH₂ because it is more stable than the product BH₂PH₂.

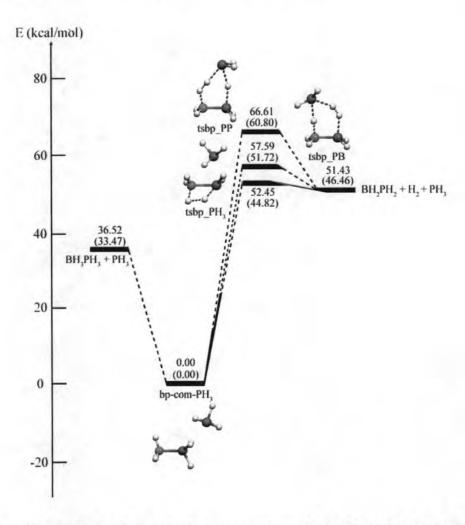

Figure 4.13 Reaction pathways for hydrogen release from BH₃PH₃ in the presence of NH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

4.3.4 Reaction pathway for hydrogen release from BH₃PH₃ in the presence of AlH₃

The corresponding energy profile is illustrated in Figure 4.14 and Table 4.3 lists the relative energies, rate constants and thermodynamic properties of hydrogen release from BH₃PH₃ in the presence of AlH₃. For the BH₃PH₃ + AlH₃ reaction, we located three different transition-state structures such as the BH₃NH₃ +AlH₃ reaction. The shape and characteristics of the stationary points involving AlH₃ are similar in many respects to those involving BH₃ discussed above. The first step, the complex **bp-com-AlH₃** between BH₃PH₃ and AlH₃ is formed. The second step is composed of three transition-state structures via **tsbp_AlP**, **tsbp_AlH₃** and **tsbp_AlB** as shown in Figure A-12. The activation energies of three pathways in the second step via **tsbp_AlP**, **tsbp_AlH₃** and **tsbp_AlB** are 21.34, 29.26 and 60.14 kcal/mol, respectively. In transition states, **tsbp_AlH₃** and **tsbp_AlB** result the same separated products as BH₂PH₂, H₂ and AlH₃. Although the hydrogen release from BH₃PH₃ with

the AlH₃ via **tsbp_AlP** is the lowest energy, the AlH₃ molecule cannot be released from the complex-state but formed as the **bp-ring-AlH₃**. Therefore, the AlH₃ does not behave as the catalyst for hydrogen release via the transition state **tsbp_AlP**. The second most favorable pathway is therefore the pathway via the transition state **tsbp_AlH₃** shows that the AlH₃ molecule can serve as a catalyst for hydrogen release from borane phosphine with AlH₃.

The rate constants of these processes, we can evaluate by equations (3.43) and (3.44). The rate constants (k) via $tsbp_AlP$, $tsbp_AlH_3$ and $tsbp_AlB$ are 4.39×10^{-4} , 4.17×10^{-9} and 3.29×10^{-32} s⁻¹, respectively. The rate constants calculated show that the hydrogen release reaction from BH₃PH₃ with the AlH₃ via $tsbp_AlP$ is faster than that via $tsbp_AlH_3$ and $tsbp_AlB$. In addition, the tunneling factors (κ) and the equilibrium constants from equation (3.45) are listed in Tables B-3 and 4.3, respectively.


Figure 4.14 Reaction pathways for hydrogen release from BH₃PH₃ in the presence of AlH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

4.3.5 Reaction pathway for hydrogen release from BH₃PH₃ in the presence of PH₃

The energy profile for hydrogen release from BH₃PH₃ in the presence of PH₃ computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory are shown in Figure 4.15. Table 4.3 lists the relative energies, rate constants and thermodynamic properties of hydrogen release from BH₃PH₃ in the presence of PH₃. Figure 4.15 shows that the first step is the complexation of BH₃PH₃ and PH₃ resulting the **bp-com-PH₃**. The second step is composed of three reaction pathways via the transition states **tsbp_PB**, **tsbp_PH₃** and **tsbp_PP** as shown in Figure A-13. The activation energies of three pathways via **tsbp_PB**, **tsbp_PB₃** and **tsbp_PB**, **tsbp_PB₃** and **tsbp_PB**, **tsbp_PB₃** and

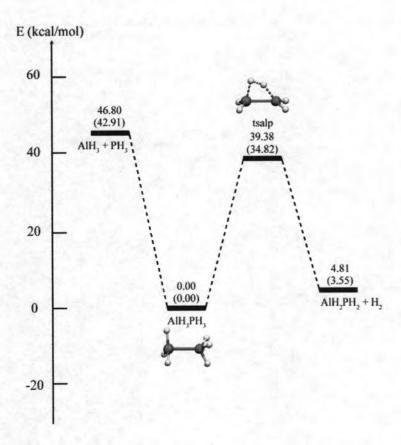
pathway is therefore the pathway via the transition state **tsbp_PH₃**. However the energy barrier via **tsbp_PH₃** is higher than that found for **tsala** system, the PH₃ molecule cannot act as a catalyst for hydrogen release from borane phosphine with PH₃. Overall process gives the same separated products as BH₂PH₂, H₂ and PH₃. From all reaction energies via **tsbp_PB**, **tsbp_PH₃** and **tsbp_PP** are positive that indicate over all reaction become endothermic processes by 14.91 kcal/mol with respect the reactants.

Table 4.3 lists the calculated rate constants, including tunneling corrections, using TST for each process in this system from equations (3.43) and (3.44). The rate constants (k) via **tsbp_PB**, **tsbp_PH₃** and **tsbp_PP** are 1.71×10^{-31} , 2.82×10^{-26} and 8.32×10^{-39} s⁻¹, respectively. In addition, the tunneling factors (κ) and the equilibrium constants from equation (3.45) are listed in Tables B-3 and 4.3, respectively.

Figure 4.15 Reaction pathways for hydrogen release from BH₃PH₃ in the presence of PH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

The results show that the transition states **tsbp_NB** and **tsbp_AIP** are stabilized by the NH₃ and AlH₃, respectively and their structures are formed as the N···H···H···B, and Al···H···H···P configurations respectively. The reason is that the strong electrostatic attraction between the positively charged H_N (or H_P) atom and the negatively charged H_B (or H_{AI}) atom. The **tsbp_PH₃** is stabilized by the PH₃ as the most favorable transition state of which the structure of the four-membered framework is formed. This reason is that the PH₃ is the soft base of which the hydrogen atom is not released. As the hydrogen release reaction via the transition states, **tsbp_BH₃** and **tsbp_NB** afford the complex PH₂BH₂BH₃ and PH₂BH₂NH₃, respectively which the BH₃ and NH₃ cannot be released from its complex-state, therefore the BH₃ and NH₃ do not behave the catalyst for these reaction processes.

4.4 Molecular mechanism of hydrogen release from AlH₃PH₃ system


Table 4.4 lists the activation energies, rate constants and thermodynamic properties calculated at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory for hydrogen release from AlH₃PH₃ without and with the BH₃, NH₃, AlH₃ and PH₃. The reaction pathways for hydrogen release from AlH₃PH₃ system are presented in Figures 4.16-4.20.

4.4.1 Reaction pathway for synthesis of AlH₃PH₃ and hydrogen release from AlH₃PH₃

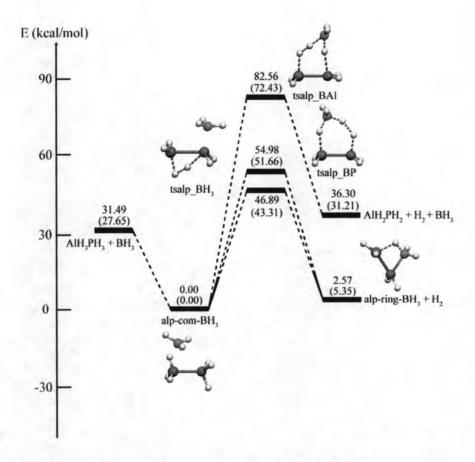
The schematic energy profile for hydrogen release from the alane phosphine is shown in Figure 4.16. The relative energies, rate constants and thermodynamic properties of hydrogen release from AlH₃PH₃ system computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory are listed in Table 4.4. The reaction pathway for hydrogen release from AlH₃PH₃ is composed of two reaction steps. The first step is the barrierless reaction and the spontaneous reaction. The second step is the rate-determining step. The transition state structure geometry, **tsalp** for loss of hydrogen from AlH₃PH₃ is similar to that for loss of hydrogen from BH₃NH₃, AlH₃NH₃ and BH₃PH₃. The shape and bond length for **tsalp** is shown in Figure A-1(d). The energy barrier of the transition-state

structure, **tsalp** was calculated to be 39.38 kcal/mol. For hydrogen release from AlH₃PH₃, the activation energy of hydrogen release reaction of AlH₃PH₃ higher than the reaction of AlH₃NH₃ by 9.85 kcal/mol. This reaction pathway is found to be an endothermic process.

We calculated the rate constants using the TST from equations (3.43) and (3.44). For hydrogen release from AlH₃PH₃, the rate constant is $k = 1.47 \times 10^{-15}$ s⁻¹ which is lower than that calculated for AlH₃NH₃. In addition, the equilibrium constants that calculated from equation (3.45) are listed in Table 4.4 as $K = 3.32 \times 10^{1}$ and the tunneling factors (κ) are listed in Table B-4.

Figure 4.16 Reaction pathways for synthesis of AlH₃PH₃ and hydrogen release from AlH₃PH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

Table 4.4 Relative energies, rate constants and thermodynamic properties of hydrogen release from AlH₃PH₃ without and with BH₃, NH₃, AlH₃ or PH₃ catalyst, computed at the B3LYP/6-311++G(d,p) (in the parenthesis) and MP2/6-311++G(d,p) levels of theory


Reaction	$\Delta^{\ddagger}E^{a.b}$	k ₂₉₈ c	ΔE^{a}	ΔH_{298}^{a}	ΔG_{298}^{a}	K_{298}
AlH ₃ PH ₃ reactant:						
$AlH_3+PH_3 \rightarrow AlH_3PH_3$			-46.80	-47.56	-39.22	5.63×10 ²⁸
	-	-	(-42.91)	(-43.59)	(-35.39)	(8.82×10 ²⁵
$AlH_3PH_3 \rightarrow tsalp \rightarrow AlH_2PH_2+H_2$	39.38	1.47×10 ⁻¹⁵	4.81	6.22	-2.08	3.32×101
	(34.82)	(3.13×10 ⁻¹²)	(3.55)	(4.90)	(-3.29)	(2.59×10 ²
AlH ₃ PH ₃ and BH ₃ reactants:				7	******	
$AIH_3PH_3+BH_3 \rightarrow AIH_3PH_3\cdots BH_3$	-	200	-31.49	-32.46	-23.60	1.99×1012
		-	(-27.65)	(-28.61)	(-19.82)	(3.39×10^{14})
$AlH_3PH_3\cdots BH_3 \rightarrow tsalp-BP \rightarrow PH_2AlH_2BH_3(ring)+H_2$	54.98	1.36×10 ⁻²⁸	-28.92	3.39	-2.64	8.58×101
	(51.66)	(1.03×10^{-25})	(-22.30)	(6.16)	(0.24)	(6.66×10 ⁻¹
$AlH_3PH_3\cdots BH_3 \rightarrow tsalp-BH_3 \rightarrow PH_2AlH_2BH_3(ring)+H_2$	46.89	6.73×10 ⁻²²	-28.92	3.39	-2.64	8.63×10 ¹
	(43.31)	(8.81×10 ⁻²⁰)	(-22.30)	(6.16)	(0.24)	(6.66×10 ⁻¹
$AlH_3PH_3\cdots BH_3 \rightarrow tsalp-BAl \rightarrow AlH_2PH_2+H_2+BH_3$	82.56	9.61×10 ⁻⁴⁹	4.81	38.68	21.52	1.67×10 ⁻¹⁶
	(72.43)	(5.96×10^{-41})	(3.55)	(33.51)	(16.53)	(7.66×10 ⁻¹³
AlH ₃ PH ₃ and NH ₃ reactants:						
$AlH_3PH_3+NH_3 \rightarrow AlH_3PH_3\cdots NH_3$			-4.90	-5.08	2.04	3.18×10 ⁻²
			(-2.58)	(-2.98)	(3.94)	(1.30×10 ⁻³
$AlH_3PH_3\cdots NH_3 \rightarrow tsalp-NP \rightarrow AlH_2PH_2+H_2+NH_3$	95.38	2.34×10 ⁻⁵⁸	4.81	11.30	-4.12	1.04×10^{3}
mile all a color of metals for	(85.34)	(1.31×10 ⁻⁵¹)	(3.55)	(7.88)	(-7.23)	(2.00×10^5)
$AlH_3PH_3\cdots NH_3 \rightarrow tsalp-NH_3 \rightarrow AlH_2PH_2+H_2+NH_3$	28.26	1.14×10 ⁻⁹	4.81	11.30	-4.12	1.04×10^3
	(24.70)	(3.08×10^{-7})	(3.55)	(7.88)	(-7.23)	(2.00×10^5)
$AIH_3PH_3\cdots NH_3 \rightarrow tsalp-NAI \rightarrow AIH_2PH_2+H_2+NH_3$	38.45	2.68×10 ⁻¹⁷	4.81	11.30	-4.12	1.04×10^{3}
Service Annual A	(37.16)	(1.08×10^{-16})	(3.55)	(7.88)	(-7.23)	(2.00×10^5)
All PH All All All All All All All All All Al			1676	17.50	0.44	1.52.106
$AIH_3PH_3+AIH_3 \rightarrow AIH_3PH_3\cdots AIH_3$			-16.76 (-13.54)	-17.50 (-14.20)	-8.44 (-5.42)	1.53×10 ⁶ (9.48×10 ³
$AlH_3PH_3\cdots AlH_3 \rightarrow tsalp-AlP \rightarrow PH_2AlH_2AlH_3(ring)+H_2$	18.53	3.91×10 ⁻²	-28.18	-10.39	-16.74	1.86×10 ¹²
, may 1,						
$AIH_3PH_3\cdots AIH_3 \rightarrow tsalp-AIH_3 \rightarrow PH_2AIH_2AIH_3+H_2$	(14.04) 35.10	(1.36×10^2) 5.83×10^{-14}	(-24.03)	(-9.51)	(-15.61)	(2.80×10 ¹¹
Autis 113 Autis 7 tomp-Autis 7 Thi2Auti2Autis 112			-26.19	-8.26	-15.48	2.24×10 ¹¹
$AlH_3PH_3\cdots AlH_3 \rightarrow tsalp-AlAl \rightarrow AlH_2PH_2+H_2+AlH_3$	(30.52)	(8.34×10 ⁻¹¹) 1.29×10 ⁻³⁵	(-23.30)	(-8.73)	(-15.53)	(2.42×10 ¹¹ 2.16×10 ⁻⁵
All 3 113 All 3 7 toalp-Al Al 12 112 All 3	65.08	(1.97×10 ⁻²⁸)	4.81	23.72	6.36	
AlH ₃ PH ₃ and PH ₃ reactants:	(55.09)	(1.97*10)	(3.55)	(19.10)	(2.13)	(2.73×10^{-2})
AlH ₃ PH ₃ +PH ₃ → AlH ₃ PH ₃ ···PH ₃			-36.93	-36.59	-31.14	6.77×10 ²²
		-	(-33.57)	(-32.86)	(-30.04)	(1.05×10 ²²
$AlH_3PH_3\cdots PH_3 \rightarrow tsalp-PP \rightarrow AlH_2PH_2+PH_3$	65.56	3.98×10 ⁻³⁸	4.81	42.81	29.07	4.91×10 ⁻²
	(57.69)	(4.27×10 ⁻³⁴)	(3.55)	(37.76)	(26.74)	(2.48×10 ⁻²⁰
$AlH_3PH_3\cdots PH_3 \rightarrow tsalp-PH_3 \rightarrow AlH_2PH_2+H_2+PH_3$	40.62	1.20×10 ⁻¹⁵	4.81	42.81	29.07	4.91×10 ⁻²²
	(35.25)	(2.38×10 ⁻¹³)	(3.55)	(37.76)	(26.74)	(2.48×10 ⁻²⁰
$AlH_3PH_3\cdots PH_3 \rightarrow tsalp-PAI \rightarrow AlH_2PH_2+H_2+PH_3$	51.42	1.13×10 ⁻²⁶	4.81	42.81	29.07	4.91×10 ⁻²²
and the state of t	(38.71)	(1.14×10 ⁻¹⁹)	(3.55)	(37.76)	(26.74)	(2.48×10 ⁻²⁰

^a In kcal/mol. ^b Activation energy. ^c In s⁻¹

4.4.2 Reaction pathway for hydrogen release from AlH₃PH₃ in the presence of BH₃

We have predicted the hydrogen release mechanism from alane phosphine involving an additional borane molecule. Table 4.4 lists the relative energies, rate constants and thermodynamic properties of hydrogen release from AlH₃PH₃ in the presence of BH₃ and the corresponding energy profile is illustrated in Figure 4.17. The reaction pathways for hydrogen release from AlH₃PH₃ are composed of two reaction steps. The first step is the complexation between AlH₃PH₃ and BH₃ resulting the alp-com-BH₃. The second step is composed of three transition-state structures via tsalp_BP, tsalp_BH₃ and tsalp_BAl as shown in Figure A-14. The activation energies of three pathways via tsalp_BP, tsalp_BH₃ and tsalp_BAl are 54.98, 46.98 and 82.56 kcal/mol, respectively. The process via tsalp_BH₃ proceeds with the lowest energy. In the transition-state structures, tsalp_BP and tsalp_BH₃ give the same separated products as the three-membered ring, alp-ring-BH₃. Even though the tsalp_BH₃ is the lowest energy transition-state structure, the BH₃ molecule cannot play the role of a catalyst for hydrogen release from alane phosphine with BH₃. Because of the BH₃ molecule cannot be put back into the system.

We can apply the TST to predict the rate constant for hydrogen release of **alp-com-BH₃**, via **tsalp_BH₃**. By use of the equations (3.43) and (3.44), the TST rate constant of $k = 6.73 \times 10^{-22}$ s⁻¹ is obtained. The tunneling factors (κ) and reaction constants of all hydrogen release compound systems are shown in Tables B-4 and 4.4, respectively. The equilibrium constants (K) calculated from equation (3.45) of the reaction via **tsalp_BH₃** and **tsalp_BAl** are 8.63×10^{1} and 1.67×10^{-16} , respectively which show that the product **alp-ring-BH₃** is more favorable product than the product AlH₂PH₂ because its structure is more stable than the product AlH₂PH₂.

Figure 4.17 Reaction pathways for hydrogen release from AlH₃PH₃ in the presence of BH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

4.4.3 Reaction pathway for hydrogen release from AlH₃PH₃ in the presence of NH₃

For the AlH₃PH₃ + NH₃ reaction, the corresponding energy profile is illustrated in Figure 4.18 and Table 4.4 lists the relative energies, rate constants and thermodynamic properties of hydrogen release from AlH₃PH₃ in the presence of NH₃. The first step is the complexation of AlH₃PH₃ and PH₃ resulting the **alp-com-NH**₃. The second step is composed of three transition-state structures via **tsalp_NP**, **tsalp_NH**₃ and **tsalp_NP**, the activation energies of three pathways via **tsalp_NP**, **tsalp_NH**₃ and **tsalp_NAl** are 95.38, 38.45 and 28.26 kcal/mol, respectively. The **tsalp_NH**₃ is the lowest energy transition structure which represents a reduction of 11.12 kcal/mol with respect to the energy barrier of 39.38 kcal/mol in the AlH₃PH₃ monomer via **tsalp**, see Figure A-1(d). All processes via three transition state structures give the same separated products as AlH₂PH₂, H₂ and

NH₃. From all reaction energies via **tsalp_NP**, **tsalp_NH₃** and **tsalp_NAI** are positive that indicate over all reaction become endothermic processes by 4.81kcal/mol with respect the reactants.

The rate constants of these processes, we can evaluate by equations (3.43) and (3.44). The rate constants (k) via **tsalp_NP**, **tsalp_NH**₃ and **tsalp_NAl** are 2.34×10^{-58} , 1.14×10^{-9} and 2.68×10^{-17} s⁻¹, respectively. In addition, the tunneling factors (κ) and reaction constants of all hydrogen storage compound systems are shown in Tables B-4 and 4.4, respectively.

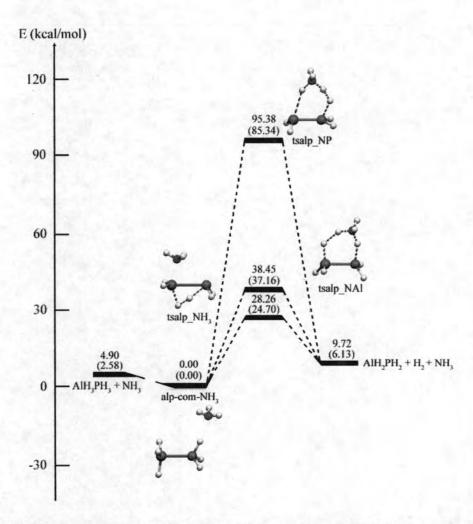
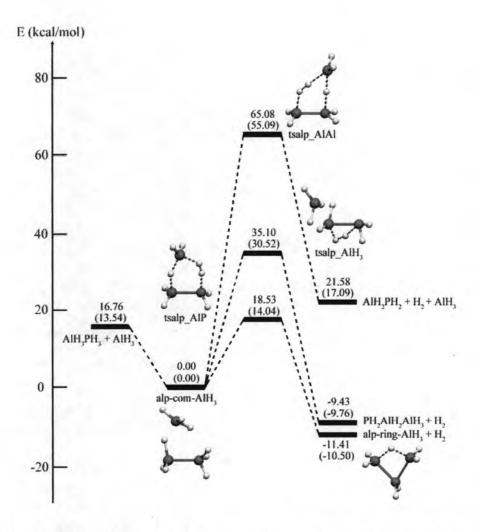
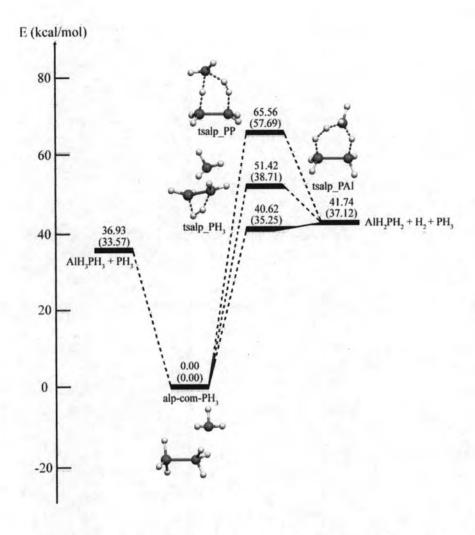



Figure 4.18 Reaction pathways for hydrogen release from AlH₃PH₃ in the presence of NH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

4.4.4 Reaction pathway for hydrogen release from AlH₃PH₃ in the presence of AlH₃

The corresponding energy profile is illustrated in Figure 4.19 and Table 4.4 lists the relative energies, rate constants and thermodynamic properties of hydrogen release from AlH₃PH₃ in the presence of AlH₃. For the AlH₃PH₃ + AlH₃ reaction, we located three different transition structures such as the AlH₃PH₃ +BH₃ reaction. The shape and characteristics of the stationary points involving AlH₃ are similar in many respects to those involving BH₃ discussed above. The first step, the complex alp-com-AlH₃ between AlH₃PH₃ and AlH₃ is formed. The second step is composed of three transition-state structures via tsalp AIP, tsalp AIH3 and tsalp AIAI as shown in Figure A-16. The activation energies of three pathways via tsalp AIP, tsalp AlH₃ and tsalp AlAl are 18.53, 35.10 and 65.08 kcal/mol, respectively. In transition-state structure, tsalp AlH₃ has the separated products as PH₂AlH₂AlH₃ and H₂. The most favorable pathway is therefore the pathway via the transition state tsalp_AIP. The product from this process is alp-ring-AIH3 and H2. Although the hydrogen release from AlH3PH3 with the AlH3 via tsalp_AlP is lowest energy, the AlH₃ molecule cannot serve as a catalyst for hydrogen release from alane phosphine with AlH₃. Due to the AlH₃ molecule cannot be put back into the system.

The rate constants of these processes, we can evaluate by equations (3.43) and (3.44). The rate constants (k) via $tsalp_AlP$, $tsalp_AlH_3$ and $tsalp_AlAl$ are 3.91×10^{-2} , 5.83×10^{-14} and 1.29×10^{-35} s⁻¹, respectively. In addition, the tunneling factors (κ) are listed in Table B-4 and the equilibrium constants can be calculated by equation (3.45) as shown in Table 4.4. For the hydrogen release reaction via $tsalp_AlP$ and $tsalp_AlAl$, the equilibrium constants (K) are 1.86×10^{12} and 2.16×10^{-5} , respectively. It is found that the product $alp-ring-AlH_3$ is more favorable product than the product AlH_2PH_2 because its structure is more stable than the product AlH_2PH_2 .

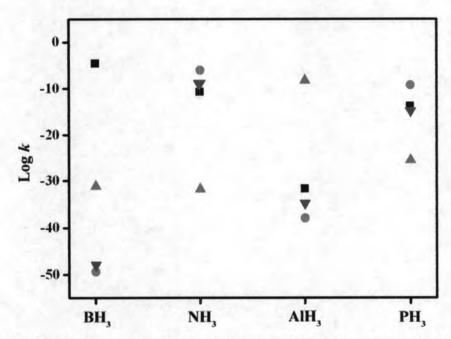

Figure 4.19 Reaction pathways for hydrogen release from AlH₃PH₃ in the presence of AlH₃. Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

4.4.5 Reaction pathway for hydrogen release from AlH₃PH₃ in the presence of PH₃

Table 4.4 lists the relative energies, rate constants and thermodynamic properties of hydrogen release from AlH₃PH₃ with the presence of PH₃ computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory. The schematic energy profile for hydrogen release from the alane phosphine with PH₃ is shown in Figure 4.20. The reaction pathways for hydrogen release from AlH₃PH₃ with PH₃ are composed of two reaction steps. The complex **alp-com-PH₃** between AlH₃PH₃ and PH₃ is initially formed and is -36.93 kcal/mol more stable than the AlH₃PH₃ + PH₃. Starting from **alp-com-PH₃**, three transition-state structures have

been located, each representing a different type of hydrogen elimination are also shown in Figure A-17. Normal modes for the imaginary frequencies of three transition states are listed in Table B-4. The activation energies of three pathways in the second step via **tsalp_PP**, **tsalp_PH3** and **tsalp_PA1** are 65.56, 40.62 and 51.42 kcal/mol, respectively. The most favorable pathway is therefore the pathway via the transition state **tsalp_PH3**. Although the **tsalp_PH3** is the lowest energy transition structure, the energy barrier via **tsalp_PH3** is higher than that found for **tsalp** system without catalyst. As a result, the PH3 molecule cannot play the role of a catalyst for hydrogen release from alane phosphine with phosphine. Overall process gives the same separated products as AlH₂PH₂, H₂ and PH₃. From all reaction energies via **tsalp_PP**, **tsalp_PH3** and **tsalp_PA1** are positive which indicate that the overall reaction become endothermic processes by 4.81 kcal/mol with respect the reactants.

The rate constants of these processes can be calculated by equations (3.43) and (3.44). The rate constants (k) via **tsalp_PP**, **tsalp_PH₃** and **tsalp_PAI** are 3.98×10^{-38} , 1.20×10^{-15} and 1.13×10^{-26} s⁻¹, respectively. Furthermore, the tunneling factors (κ) are listed in Table B-4, and equilibrium constants are shown in Table 4.4.


Figure 4.20 Reaction pathways for hydrogen release from AlH_3PH_3 in the presence of PH_3 . Relative energies in kcal/mol computed at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) (in the parenthesis) levels of theory.

The results show that the transition state **tsalp_AIP** is stabilized by the AlH₃ and its structure is formed as the Al···H···H···P configuration. The reason is that the strong electrostatic attraction between the positively charged H_P atom and the negatively charged or H_{Al} atom. As the hydrogen release reaction via the transition states, **tsalp_BH₃** and **tsalp_AIP** afford the **alp-ring-BH₃** and **alp-ring-AIH₃**, respectively which the BH₃ and AlH₃ are never released from its complex-state, therefore these reaction pathways is not considered as the hydrogen energy source.

4.5 The catalytic ability of BH₃, NH₃, AlH₃ and PH₃ in the reaction of hydrogen storage compounds

The collection rate constants for hydrogen release reactions of BH₃NH₃, AlH₃NH₃, BH₃PH₃ and AlH₃PH₃ using the BH₃, NH₃, AlH₃ or PH₃ catalysts is tabulated in Table 4.5.

Based on the catalytic reactions of hydrogen release from the hydrogen storage compounds, the relation between their rate constants and their corresponding catalysts is plotted as shown in Figure 4.21.

Figure 4.21 Relation between $\log k$ of hydrogen release reactions of BH₃NH₃ (\blacksquare), AlH₃NH₃ (\bullet), BH₃PH₃ (\blacktriangle) and AlH₃PH₃ (\blacktriangledown) and various BH₃, NH₃, AlH₃ and PH₃ catalyst.

Figure 4.21 shows that the BH₃, NH₃ and AlH₃ compounds are the best catalysts in the hydrogen release reactions of BH₃NH₃, AlH₃NH₃ and BH₃PH₃, respectively. For the hydrogen release reaction of AlH₃PH₃, the NH₃ compound is found to be the best catalyst. The PH₃ does not behave as a catalyst in any studied reaction. As the PH₃ is the soft base, its hydrogen atoms dislike to be abstracted. Due to the large size of the PH₃, its molecular structure may destabilize the transition state of their hydrogen release reactions.

Table 4.5 Rate constants (k) of the hydrogen release reactions of hydrogen storage compounds in the presence of the BH₃, NH₃, AlH₃ or PH₃, computed at the B3LYP/6-311++G(d,p) (in the parenthesis) and MP2/6-311++G(d,p) levels of theory

	Rate constant, s ⁻¹											
Catalyst	BH ₃ NH ₃			AlH ₃ NH ₃			BH ₃ PH ₃			AlH ₃ PH ₃		
BH_3	tsba_BN a,b	tsba_BH ₃	tsba_BN	tsala_BH ₃ a	tsala_BN	tsala_BAl b	tsbp_BH ₃ a	tsbp_BP	tsbp_BB b	tsalp_BH ₃ a	tsalp_BP	tsalp_BAl b
	2.37×10 ⁻⁵	2.25×10 ⁻²⁰	3.36×10 ⁻³⁵	7.32×10 ⁻¹⁰	1.92×10 ⁻²¹	3.23×10 ⁻⁵⁰	2.29×10 ⁻³	1.08×10 ⁻¹⁰	6.01×10 ⁻³²	6.73×10 ⁻²²	1.36×10 ⁻²⁸	9.61×10 ⁻⁴⁹
	(1.95×10 ⁻³)	(8.11×10 ⁻²¹)	(2.55×10^{-30})	(3.58×10^{-8})	(3.40×10^{-17})	(3.45×10^{-43})	(9.89×10 ⁻²)	(3.99×10 ⁻⁸)	(2.24×10 ⁻²⁸)	(8.81×10^{-20})	(1.03×10^{-25})	(5.96×10^{-41})
NH_3	tsba_NB a,b	tsba_NH ₃	tsba_NN	tsala_NAl a,b	tsba_NH ₃	tsala_NN	tsbp_NB a	tsbp_NH3 b	tsbp_NP	tsalp_NH ₃ a,b	tsalp_NAl	tsalp_NP
	1.81×10 ⁻¹¹	1.53×10 ⁻¹⁶	5.34×10 ⁻⁶⁷	6.87×10 ⁻⁷	1.10×10 ⁻¹¹	6.00×10 ⁻⁸⁵	1.16×10 ⁻¹⁹	1.35×10 ⁻³²	1.79×10 ⁻⁵⁰	1.14×10 ⁻⁹	2.68×10 ⁻¹⁷	2.34×10 ⁻⁵⁸
	(4.05×10^{-10})	(7.75×10^{-15})	(1.66×10^{-61})	(1.21×10 ⁻⁶)	(8.85×10^{-10})	(1.81×10^{-76})	(1.26×10 ⁻²⁴)	(1.12×10 ⁻³⁰)	(9.82×10 ⁻⁴⁸)	(3.08×10 ⁻⁷)	(1.08×10^{-16})	(1.31×10^{-51})
AlH_3	tsba_AIN a	tsba_AlH ₃	tsba_AlB b	tsala_AlN a	tsba_AlH ₃	tsala_AlAl b	tsbp_AlP a	tsbp_AlH ₃ b	tsbp_AlB	tsalp_AlP a	tsalp_AlH ₃	tsalp_AlAl b
	1.30×10 ⁻¹	6.66×10 ⁻¹⁹	2.00×10 ⁻³²	5.64	8.61×10 ⁻¹⁰	8.91×10 ⁻³⁹	4.39×10 ⁻⁴	4.17×10 ⁻⁹	3.29×10^{-32}	3.91×10 ⁻²	5.83×10 ⁻¹⁴	1.29×10 ⁻³⁵
	(9.27×10 ⁻¹)	(2.50×10 ⁻¹⁸)	(1.28×10 ⁻²⁷)	(6.18×10^4)	(5.39×10 ⁻⁹)	(1.09×10 ⁻³²)	(1.04×10 ⁻¹)	(2.83×10 ⁻⁶)	(2.52×10^{-26})	(1.36×10^2)	(8.34×10 ⁻¹¹)	(1.97×10 ⁻²⁸)
PH_3	tsba_PH ₃ a,b	tsba_PB	tsba_PN	tsala_PH3 a,b	tsala_PAl	tsala_PN	tsbp_PH3 a,b	tsbp_PB	tsbp_PP	tsalp_PH3 a,b	tsalp_PAl	tsalp_PP
	1.36×10 ⁻¹⁴	2.07×10 ⁻²²	3.37×10 ⁻³⁴	4.71×10 ⁻¹⁰	4.61×10 ⁻²³	4.01×10 ⁻³⁵	2.82×10 ⁻²⁶	1.71×10 ⁻³¹	8.32×10 ⁻³⁹	1,20×10 ⁻¹⁵	1.13×10 ⁻²⁶	3.98×10^{-38}
	(5.23×10 ⁻¹²)	(1.64×10^{-24})	(1.03×10 ⁻²⁹)	(1.36×10 ⁻⁸)	(9.50×10 ⁻¹⁶)	(4.17×10^{-32})	(6.87×10 ⁻²¹)	(3.56×10^{-29})	(2.78×10 ⁻³⁶)	(2.38×10 ⁻¹³)	(1.14×10^{-19})	(4.27×10^{-34})

^a The highest rate constants for each system of hydrogen storage compounds.

^b The highest rate constants for each system of hydrogen storage compounds based on the BH₃, NH₃, AlH₃ and PH₃ as catalyst.