CHAPTER V

CONCLUSIONS

In the present theoretical study, the molecular mechanisms of hydrogen release from borane amine (BH₃NH₃), alane amine (AlH₃NH₃), borane phosphine (BH₃PH₃) and alane phosphine (AlH₃PH₃) in systems with and without the borane (BH₃), ammonia (NH₃), alane (AlH₃) and phosphine (PH₃) were theoretically investigated by the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) calculations. Each system, we were able to locate three different transition-state structures for hydrogen elimination with borane (BH₃), ammonia (NH₃), alane (AlH₃) and phosphine (PH₃) present. We can determine the details of each system as follows:

- For borane amine system, the activation energies in the catalytic pathway for hydrogen release from borane amine with the presence of borane (BH₃) and ammonia (NH₃) as the catalyst are 23.62 and 30.30 kcal/mol, respectively. But the alane (AlH₃) and phosphine (PH₃) molecule cannot serve as catalyst in the hydrogen elimination reactions of BH₃NH₃ system.
- For alane amine system, only NH₃ can play the role of a catalyst for hydrogen release from alane amine, the activation energy is 24.52 kcal/mol, but BH₃, AlH₃ and PH₃ cannot act as catalyst in this system.
- For borane phosphine system, the activation energy in the catalytic pathway for hydrogen elimination from borane phosphine with AlH₃ is 21.34 kcal/mol.
 The BH₃, NH₃ and PH₃ cannot act as catalyst in this system.
- For alane phosphine system, NH₃ can play the role of a catalyst for hydrogen release, the activation energy is 28.26 kcal/mol but BH₃, AlH₃ and PH₃ cannot act as catalyst in this system.

- From four systems of hydrogen release reactions, the calculated results demonstrate that the BH₃ and AlH₃ can play the role of a most efficiency in the hydrogen release from BH₃NH₃ and BH₃PH₃ systems, respectively. For the NH₃ can act as a most efficiency catalyst in the hydrogen release from AlH₃NH₃ and AlH₃PH₃ systems. But the PH₃ does not behave as a catalyst. As the PH₃ is the soft base, its hydrogen atoms dislike to be abstracted. Due to the large size of the PH₃, its molecular structure may destabilize the transition state of their hydrogen release reactions.
- All computational results obtained by the B3LYP/6-311++G(d,p) are in good agreement with by the MP2/6-311++G(d,p).

Suggestion for future work

The hydrogen storage compounds BH₃NH₃, AlH₃NH₃, BH₃PH₃ and AlH₃PH₃ in reaction with BH₃, NH₃ and AlH₃ catalysts studied in this work were found to be developed as the hydrogen energy resource. Dimers of hydrogen storage compounds studied in this work as (BH₃NH₃)₂, (AlH₃NH₃)₂, (BH₃PH₃)₂ and (AlH₃PH₃)₂ and their polymers are suggested to be studied for their hydrogen release abilities using the theoretical calculations.