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CHAPTER 1
INTRODUCTION

Orchids are highly valued for their beautiful and characteristic flowers.
Moreover, orchids were also used medicinally for centuries. China has the oldest
history of using orchid in medical treatment for as long as 4,800 years ago. Medicinal
use of orchids was first reported in ‘Materia Medica’ of Chinese emperor ‘Shen-nung’.
In India and several countries in other continents there are also long history of
therapeutic uses for orchids (Hossain, 2011).

Paphiopedilum is an Asian genus of slipper orchids within the subfamily
Cypripedioideae of the family Orchidaceae and Paphiopedilum exul (Ridl.) Rolfe (Thai
name: Rongthao nari lueang krabi) is a terrestrial lady’s slipper orchid endemic to
southern Thailand. The flower of this orchid species is single. Its large, pure white dorsal
outer perianth has several maroon spots upon central lime green-veined patch. The
inner perianth consists of two wavy, green ones and a glossy, yellow green pouch
(labellum). There was no previous report of its medicinal use and chemical
constituents. Although several molecular researches for the phylogenetic study of
subfamily Cypripedioideae have been performed, its phytochemicals have rarely been
investigated. There was only one previous report on the chemical constituents of a
member of this genus i.e. P. godefroyae (Lertnitikul et al, 2016). Therefore,
phytochemical study of Paphiopedilum exul is a very enticing topic for phytochemists
aiming to explore and gather detailed chemical data on these slipper orchids.

Cancer is a leading cause of death in all countries. In Thailand, statistics from
Bureau of Policy and Strategy, Ministry of Public Health revealed that the ratio of
mortality from cancer per 100,000 population was 87.6 in 2008 and increased to 98.5
in 2012. Moreover, data from World Health Organization (WHO) indicated that the

number of new cases tend to increase from 14 to 22 million in the next 20 years. Major
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aim of cancer treatment is to eradicate the malignant cells and extend the survival of
patients. Chemotherapy is one of the potential treatments of cancer and plants are
an alternative source of chemotherapeutic agents. Several well-known anticancer
drugs currently used are derived from phytochemicals or their derivatives including
Vinca alkaloids from Catharanthus roseus, taxanes from Taxus brevifolia,
podophyllotoxin  from Podophyllum peltatum, and camptothecin and its
semisynthetic derivatives from Camptotheca acuminata (Fabricant and Farnsworth,
2001).

Preliminary evaluation the methanolic extract of P. exul roots demonstrated
that it had potential to inhibit growth of cancer cells in vitro. The extract was thus
subjected to the process of isolation and evaluation of cytotoxicity to identify the
bioactive compounds which might have potential to be developed as anticancer
agents.

The purposes of this research were as follows:

1. Isolation of compounds from the roots of P. exul

2. ldentification of the chemical structures of isolated compounds

3. Evaluation of cytotoxicity of the isolated compounds
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CHAPTER 2
LITERATURE REVIEW

2.1.  Historical review of Paphiopedilum exul
2.1.1. Family Orchidaceae

Orchidaceae, commonly known as the orchid family, is a family of
monocotyledonous flowering plants belonging to the order Asparagales (Bremer et al.,
2009). It is one of the two largest families of angiosperms, along with Asteraceae, and
consists of about 900 genera and more than 27,000 accepted species (The Plant List,
2013). Because of its diversity, orchid family has been divided into five subfamilies, i.e.
subfamily Apostasioideae, Cypripedioideae, Epidendroideae, Orchidoideae and
Vanilloideae (Lin et al., 2015). Orchids are perennial herbs which can be found growing
as terrestrial, epiphytic or lithophytic plants all over the earth especially in tropical
areas. Their stems grow in two patterns: monopodial and sympodial, which have
different directions of new leaf growth. The monopodial growth provides new leaf
added to the apex, growing upward from a single bud, while sympodial plants make
new leaf adjacent to an old one, so they often grow laterally. The roots of terrestrial
orchids may be rhizome, corm or tuber, whereas epiphytic ones have modified aerial
roots and some can form pseudobulbs. The leaves of orchids are simple leaves with
leaf sheath, but with no stipule. The leaf venation is parallel-veined, except for some
orchids in the subfamily Vanilloideae. The leaf shape can be ovate, lanceolate or
orbiculate. The phyllotaxy is alternate. The flowers usually are zygomorphic and can
occur as simple or inflorescence. They have two whorls of perianth, 3 inner and 3
outer ones. The medial inner perianth was modified to be a lip-like element called
‘labellum’, which is the important characteristic of orchid flower distinguishing them
from other plants. Orchid flowers usually have 1 stamen, but those in subfamily

Cypripedioideae and genus Apostasia have 2 stamens, whereas 3 stamens are found
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only in genus Neuwiedia. The stamens are fused together with pistil to form a
cylindrical structure called column or gynostegium. The ovaries are inferior, with
parietal placentation (or axile in the subfamily Apostasioideae). The fruits are capsules
containing numerous, very small seeds. Its unique flower shape, the size and number
of its seeds and its pollination mechanism are the reasons why Orchidaceae family is
diverse, widespread and comprised of enormous number of species (Dressler, 1981).
Orchids have high ornamental value because of their magnificent,
characteristic flowers. In addition to decorative purpose, orchids were used as
medicines for centuries. Medicinal use of orchid was first reported in China about 2,800
years B.C. in ‘Materia Medica’ of Chinese emperor ‘Shen-nung’. Bletilla striata,
Gastrodia elata and Dendrobium species are well known orchids in Chinese medicine.
There are also long history of orchids for therapeutic uses in India, Europe, America,

Australia and Africa (Hossain, 2011).

2.1.2. Subfamily Cypripedioideae

The subfamily Cypripedioideae is monophyletically classed as a group
of slipper orchids consisting of five genera including Cypripedium, Mexipedium,
Phragmipedium, Selenipedium and Paphiopedilum. The members of this subfamily
are unique because of their distinct morphological characteristics. The most obvious
one is the slipper-shaped, pouch-like labellum. Their flowers have two fertile stamens
and a shield-like staminode. The lateral, outer perianths are fused to be synsepal
(Lindley, 1840).

A small number of reports have mentioned folk medicinal uses of some
members of this subfamily. In Indian traditional medicine, the roots of Cypripedium
pubescens (Cypripedium parviflorum var. pubescens) was used to treat diabetes,
diarrhea, dysentery, paralysis, impotence and malnutrition (Khory, 1982). C. pubescens
was also employed as an antispasmodic and a sedative in both Indian and American
folk medicine. Interestingly, its dried, powdered roots or fluidextract was official listed

in United States Pharmacopoeia (USP) and used in the treatment of many ailments
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(Singh and Duggal, 2009). C. parviflorum, or yellow lady’s slipper, is another important
medicinal herb in North America. Its root powder was used as drinking preparation for
the treatment of insomnia, anxiety, fever, headache, neuralgia and many other
diseases (Sievers, 1930). Roots of C. elegans, an Asian Cypripedium species found in
China and Nepal, was used as nerve tonic in psychological disorders, epilepsy and
rheumatism. Powdered roots of C. calceolus, a slipper orchid widely distributed from
Europe to Asia, were boiled in hot water, sweetened with sugar and drunk as pain
reducing agent (Singh and Dey, 2005). Moreover, seed capsules of Selenipedium chica,
another slipper orchid of a different genus, are occasionally used as substitute of

Vanilla (Duggal, 1971).

2.1.3. Genus Paphiopedilum

Paphiopedilum Pfitzer is a genus of lady’s slipper orchids native to
subtropical and tropical Asia (Cox et al.,, 1997). The name of this genus comes from
two Greek words: ‘paphos’ which means Venus and ‘pedilon” which means pouch,
thus it is often called Venus slipper orchid. There are about 130 accepted species
belonging to this genus. Most of them are terrestrials, some are epiphytes and
lithophytes. They grow in sympodial pattern lacking pseudobulbs. The new shoot takes
over when the old one dies. Each plant has several leaves which are fleshy and glossy.
The leaf shape can be short and rounded, or long and narrow. Some species have
mottled leaves. Their roots are thick and fleshy. The flowers can be simple ones or in
inflorescences (Braem et al., 1999).

There are 14 valid species, including 17 taxa, found growing in Thailand.
They have been recorded as follows (Office of the Forest Herbarium, 2014):

1. Paphiopedilum appletonianum (Gower) Rolfe

2. Paphiopedilum bellatulum (Rchb. f.) Stein

3. Paphiopedilum callosum (Rchb. f.) Stein var. callosum

4. Paphiopedilum callosum (Rchb. f.) Stein var. potentianum (O.

Gruss & Roeth) P. J. Cribb



10.

11.
12.
13.
14.
15.
16.
17.
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Paphiopedilum callosum (Rchb. f.) Stein var. sublaeve (Rchb. f.) P.
J. Cribb

Paphiopedilum charlesworthii (Rolfe) Pfitzer

Paphiopedilum concolor (Lindl. ex Bateman) Pfitzer
Paphiopedilum esquirolei Schltr. or Paphiopedilum hirsutissimum
(Lindl. ex Hook.) Stein var. esquirolei (Schltr.) K. Karas. & K. Saito
Paphiopedilum godefroyae (God.-Leb.) Stein

Paphiopedilum godefroyae (God.-Leb.) Stein var. ang-thong
(Fowlie) Braem

Paphiopedilum exul (Ridl.) Rolfe

Paphiopedilum niveum (Rchb. f.) Stein

Paphiopedilum parishii (Rchb. f.) Stein

Paphiopedilum sukhakulii Schoser & Senghas

Paphiopedilum thaianum lamwir.

Paphiopedilum vejvarutianum O. Gruss & Roellke

Paphiopedilum villosum (LindL.) Stein
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2.1.4. Paphiopedilum exul

Paphiopedilum exul (Ridl.) Rolfe was first described in the Gardeners’
Chronicle as Cypripedium insigne var. exul by Ridley in 1891 and transferred to the
genus Paphiopedilum in 1896 (Cribb and Robbins, 1993). It is a terrestrial lady’s slipper
orchid endemic to Peninsular Thailand. It was found in rock crevices at sea level up to
50 meters. Its leaves are oblong, 1.8-3 cm in width and 25-30 cm in length, suberect,
clear green in colour, fleshy and glossy. The flower is single, with hairy peduncle, 15-
20 cm long. The large dorsal outer perianth is cuspidate, pure white with central lime
green-veined and maroon spotted. The lateral inner perianths are wavy green and the

central one is a glossy, yellow green pouch (Nanakorn and Watthana, 2008).

Figure 1 Paphiopedilum exul (Ridl.) Rolfe (Nanakorn and Watthana, 2008)

2.2.  Chemical constituents of orchids in the subfamily Cypripedioideae

The Orchidaceae has been reported as sources of many bioactive secondary
metabolites including alkaloids, flavonoids, lignans, terpenoids and stilbenoids.
However, phytochemical and pharmaceutical studies of slipper orchids have rarely
been performed. The chemical constituents found in orchids of the subfamily

Cypripedioideae are shown in Table 1 and Figure 4.
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2.2.1. Stilbenes

Stilbenes are a subtype of stilbenoids which consist of five categories:
stilbenes, oligostilbenes, bibenzyls, bisbibenzyls and phenanthrenes. The skeletal
structure of stilbenes is 1,2-diphenylethylene, that is, two phenyl rings conjugated by
a double bond (Figure 2). They have two possible isomers, trans-and cis-configuration,
and are called (E)- and (2)-stilbenes, respectively. Biosynthetically, they are originated
from 4-coumaryl-CoA or cinnamoyl-CoA in the phenylpropanoid pathway. From 1995
to 2008, about 125 stilbenes had been reported in plant kingdom including
marchantiophytes (Hepaticae and Lejeuneaceae), pteridophytes (Ophioglossaceae),
gymnosperms (Gnetaceae), monocots (Iridaceae, Liliaceae, Orchidaceae, Stemonaceae
and Zingiberaceae) and dicots (Aceraceae, Asteraceae, Burseraceae, Combretaceae,
Cyperaceae, Dipterocarpaceae, Euphorbiaceae, Leguminosae, Meliaceae, Moraceae,

Polygonaceae, Rosaceae and Vitaceae) (Shen et al., 2013).

Although there are limited reports of stilbenes in family Orchidaceae,
some studies showed that slipper orchids are rich sources of this type of compounds.
Twenty-four stilbenes have been isolated from orchid species in the subfamily
Cypripedioideae. Thirteen stilbenes (1-2, 7-11, 13-15, 17-19) were isolated from
Phragmipedium calurum. Some of them exhibited antiproliferative activity against
several human cancer cell lines. Ten stilbenoid constituents (1-3, 10-11, 13-14, 17-18,
21) were present in Phragmipedium longifolium. Phragmipedium hybrid, a hybrid of P.
longifolium and P. lindleyanum, afforded nine stilbenoid compounds (2, 6, 10-12, 16,
18, 20-21); some of them are substituted with one or two, rather unusual 4-
hydroxybenzyl moieties (Garo et al., 2007; Starks et al.,, 2012). In addition, nine
stilbenes (2, 4-8, 22-24) were found in Paphiopedilum godefroyae and were shown to
be cytotoxicity against NCI-H187 cell line (Lertnitikul et al., 2016).
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Figure 2 Structure of 1,2-diphenylethylene

2.2.2. Flavonoids

Flavonoids are an important group of plant secondary metabolites

derived from phenylpropanoid pathway. Characteristic structure of flavonoids is Y-
benzopyrone nucleus carrying a phenyl B ring attached to 2-position, or 3-position for
isoflavonoids (Figure 3). Flavonoids have been found abundantly in plant kingdom,
but only two of them have previously been reported from slipper orchids. Chrysin (25)
was found in Cypripedium macranthos var. rebunense and was demonstrated to
possess antifungal activity (Shimura et al., 2007). Another flavonoid, pinocembrin, has
been isolated from the roots of Paphiopedilum godefroyae from Thailand (Lertnitikul
et al., 2016).

O

(@) Y-benzopyrone nucleus
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O

(b) flavonoid skeleton

O

() isoflavonoid skeleton

Figure 3 Skeletal structures of flavonoids

2.2.3. Miscellaneous

In addition to stilbenes and flavonoids, other classes of phytochemicals
have also been reported as constituents of the orchids in subfamily Cypripedioideae.
Lusianthrin (27), a phenanthrene, was found in Cypripedium macranthos var.
rebunense with antifungal activity (Shimura et al,, 2007). A dihydrophenanthrene,
orchinol (28), and a skin sensitizing quinone, cypripedin (29), have been isolated from
the leaves of Cypripedium calceolus (Schmalle and Hausen, 1979). An alkylresorcinol,
5-(2-acetoxynonyl) resorcinol (30), was isolated from Phragmipedium calurum during

an anticancer screening (Starks et al., 2012).
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2.3.  Anticancer and topoisomerase-targeted drug development
2.3.1. Cancer and drug discovery

Cancer is a group of diseases with uncontrolled cell growth as an
important pathological feature. The abnormal cells grow in unknown direction and
have potential to spread to other parts of the body (De Martel et al., 2012). Currently,
over 100 types of cancer have been found (National Cancer Institute, 2016). Several
treatments have been used to cure cancer including surgery, chemotherapy, radiation
therapy, hormonal therapy, targeted therapy and palliative care, depending on the
type of cancer. Chemotherapy is one of major cancer treatment in order to decrease
the number of abnormal cells. Development of chemotherapeutic drugs focuses on
chemical agents that have potential to kill cancerous cells. Plants are one of
alternative sources of anticancer agents and many anticancer drugs used in clinical
treatment are derived from plant metabolites including Vinca alkaloids (vincristine,
vinblastine) from Catharanthus roseus, taxanes (paclitaxel, docetaxel) from Taxus
brevifolia, podophyllotoxin from Podophyllum peltatum, and camptothecin and its
semi-synthesized derivatives (topotecan, irinotecan) from Camptotheca acuminata

(Fabricant and Farnsworth, 2001).

2.3.2. Topoisomerase-targeted anticancer agents

Research on the underlying mechanisms of anticancer drugs is one of
important steps in drug development. DNA topoisomerase (Top) enzymes are
important for the process of cell proliferation and play essential roles in DNA
replication and transcription. They are also the targets of several currently used
anticancer drugs (Forterre, 2012). Two types of DNA topoisomerase-targeted drugs are
known: Top | inhibitors such as topotecan and irinotecan and Top Il inhibitors such as
etoposide and tenoposide. Mechanistically, both types of topoisomerase inhibitors can

be distinguished, based on their mechanism of enzyme inhibition, into two distinct
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categories. The first category is “poison” which stabilizes the covalent enzyme-DNA
complex, known as cleavage complex, and thus preventing DNA relegation. The second
one is “catalytic inhibitor” which interferes other steps in the catalytic cycle of
topoisomerase enzymes. The majority of currently used topoisomerase-targeted
anticancer drugs are ‘poison’ because of their potent cytotoxicity. However,
application of catalytic inhibitors in cancer treatment has also been investigated.
Catalytic inhibitors can be used as adjunctive treatment (Makeyev et al., 2012; Mir et
al,, 2012). An example is dexarazoxane, an approved topoisomerase Il catalytic
inhibitor, which is used for preventing cardiotoxicity and minimizing extravasation
following tissue damage from anthracyclines treatment (Xiang et al., 2009;
Schulmeister, 2011; Kushwah, 2013). Furthermore, a topoisomerase | catalytic inhibitor,
evodiamine, has been reported to enhance inhibiting activity in camptothecin-resistant

cancer cell lines (Pan et al., 2012).
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CHAPTER 3
EXPERIMENTAL

3.1. Source of Plant Materials

The whole plants of Paphiopedilum exul (Ridl.) Rolfe were purchased from
Chatuchak market, Bangkok, in January 2015. It was identified by comparison with
authentic specimen (OBG No. 13143) at the herbarium of the Botanical Garden
Organization, Ministry of Natural Resources and Environment, Thailand. The fresh roots
were separated from the plants, cleaned and dried at temperature not more than

50 °C.

3.2.  General Techniques

3.2.1. Analytical Thin Layer Chromatography (TLC)

Technique: One dimension, ascending

Adsorbent: Silica gel 60 F254 (E. Merck) pre-coated plates
Layer thickness: 0.2 mm

Distance: 5acm

Temperature: Laboratory temperature (30-35 °C)

Detection: 1. Ultraviolet light (254 and 365 nm)

2. Anisaldehyde reagent and heating at 105 °C for 10 minutes
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3.2.2. Column Chromatography

3.2.2.1. Conventional Column Chromatography

Adsorbent:

Packing method:

Sample loading:

Detection:

Silica gel 60 number 7734 (particle size 0.063-0.200 mm) and
number 9385 (particle size 0.040-0.063 mm) (E. Merck)

Wet packing: The adsorbent was mixed with the eluent into
slurry, then poured into a column and allowed to settle.

The sample was dissolved in a small amount of the eluent, and
then applied gently on top of the column.

Fractions were examined by TLC technique, as described in 3.2.1.

3.2.2.2. Size-Exclusion Column Chromatography

Gel filter:

Packing method:

Sample loading:

Detection:

Sephadex LH-20 (Pharmacia Biotech AB)

Gel filter was suspended in the eluent and left standing to swell
for 24 hours before it was poured into the column and allowed
to set tightly.

The sample was dissolved in a small amount of the eluent, and
then applied gently on top of the column.

Fractions were examined by TLC technique, as described in 3.2.1.
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3.2.3. Spectroscopic Techniques
3.2.3.1. Ultraviolet (UV) Spectra

UV  spectra were obtained on a Shimadzu UV-160A
spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of

Pharmaceutical Sciences, Chulalongkorn University). Methanol was used as solvent.

3.2.3.2. Infrared (IR) Spectra

IR spectra (KBr disc) were recorded on a Perkin Elmer FT-IR
1760X spectrometer (Scientific and Technological Research Equipment Center,

Chulalongkorn University).

3.2.3.3. Mass Spectra

Electrospray lonization (ESI) mass spectra were obtained on a
Bruker micrOTOF mass spectrometer (Department of Medical Sciences, Ministry of

Public Health).

3.2.3.4. Proton and Carbon-13 Nuclear Magnetic Resonance

(*H and *C NMR) Spectra

'H (300 MHz) and >C (75 MHz) NMR spectra were recorded on a
Bruker DPX-300 FT-NMR spectrometer (Pharmaceutical Research Instrument Center,

Faculty of Pharmaceutical Sciences, Chulalongkorn University).

The solvents used were CDCls;, acetone-d; or DMSO-dy. The

solvent signals were used as reference for the calibration of chemical shifts.
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3.2.4. Optical Rotation

Optical rotation was measured on a Perkin-Elmer 314 polarimeter using
a sodium lamp operating at 589 nm (Pharmaceutical Research Instrument Center,

Faculty of Pharmaceutical Sciences, Chulalongkorn University).

3.3.  Extraction and Isolation of Compounds from Paphiopedilum exul Roots

Dried roots of P. exul (380 ¢) were ground and macerated three times with
MeOH 3 L at room temperature. The combined MeOH extract was concentrated under
reduced pressure to give 100 ¢ of dried MeOH extract. A portion of the extract (50 g)
was separated on a silica gel column (1.25 kg, 10 x 40 cm), washed down with n-
hexane/acetone (3:1). Eighty three fractions (200 ml each) were collected and washed
down with MeOH, and combined into eight major fractions (A-H) after comparison of

their TLC profiles, as shown in Table 2.
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Table 2 Combined fractions from MeOH extract

Fraction code from fraction number Weight (g)
A 1-4 0.40
B 5-16 1.12
C 17-30 291
D 31-38 0.56
E 39-68 9.90
F 69-74 1.53
G 75-83 1.28
H Wash down with MeOH 31.59

3.3.1. Isolation of compounds PEO1 and PEO2

An amount (16.7 mg) of compound PEO1 was obtained from fraction C
when it crystallized from the eluated solution of this fraction. The remaining fraction
C (2.91 @) was chromatographed on a silica gel column (150 g, 4.5 x 19 cm), eluted
with CH,Cl,/acetone (40:1), to provide one hundred and seventy two subfractions (20
ml each). All subfractions were combined according to their TLC profiles to yield six
major subfractions (C1-C6), as shown in Table 3. Crystals of compound PE0O1 (87.5 mg)
was obtained from subfraction C6, making its total yield to be 104.2 mg. (0.00208%
yield). Another compound, PE02 (90.7 mg, 0.00181% vyield) crystallized from

subfraction C5.
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Table 3 Combined fractions from fraction C

from fraction
Subfraction code Weight (¢)
number
C1 1-16 0.20
2 17-40 0.90
c3 41-50 0.04
ca 51-57 0.02
c5 58-72 0.58
Cé6 73-172 1.23

3.3.2. lIsolation of compounds PEO3 and PEO4

Subfraction C2 (890 mg) was subjected to a Sephadex LH-20 CC using
MeOH as the eluent, to yield three subfractions (C21-C23). Subfraction C23 (300 mg)
was separated by sephadex LH-20, using MeOH as the eluent, gave two subfractions
(C231-C232). Subfraction C22 and C232 (649 mg) were pooled and loaded on silica gel
column (30 g, 2.5 x 14 cm), eluted with CH,Cl, to provide three subfractions (C221-
C223). Silica gel CC of subfraction C221 using CH,Cl, as an eluent yielded four
subfractions (C2211-C2214). Separation of subfraction C2211 on a silica gel column (15
g, 1.5 x 17 cm) eluting with hexane/ CH,Cl, (1:1) provided five subfractions (C22111-
C22115). Compounds PE03 (9.0 mg) and PEO4 (6.7 mg) were obtained from subfractions
C22111 and C22115 after evaporation of eluting solvent, respectively. Subsequent
purification of subfraction C22112 over a silica gel column (10 g, 1.5 x 11 cm), using
hexane/ CH,Cl, (1:2) as the mobile phase, afforded compound PE03 (19.8 mg) from

subfraction C221121. Subfraction C22113 was subjected to silica gel CC (10 g, 1.5 x 11



46

cm), washed down with hexane/ CH,Cl, (1:2), to yield five subfractions (C221131-
C221135). Compound PE03 (24.9 mg) was obtained from subfraction C221131,
providing a total amount of 53.7 mg (0.00107% yield). The other compound, PEO4 (7.7
mg) was obtained from subfraction C221135. Silica gel CC (10 g, 1.5 x 11 cm) of
subfraction 22114, using CH,Cl, as an eluent, gave four subfractions (C221141-
C221144), and compound PEO4 (7.0 mg) was obtained from subfraction C221143.
Subfractions (€222, (2212, (C221134 and (221142 were combined and
chromatographed on a silica gel column (10 g, 1.5 x 11 cm), eluted with CH,Cl,, to give
two subfractions (C2221-C2222), and compound PE04 (18.4 mg) was obtained from
subfraction C2222. Purification 0f subfraction C2221 over a silica gel column (10 g, 1.5
x 11 cm), eluting with hexane/ CH,Cl, (1:2), afforded compound PEO4 (40.0 mg). The
total yield of compound PE04 was 79.8 mg (0.00160% vyield).

3.3.3. Isolation of compound PE0Q5

Fraction E (9.90 ¢) was separated on a silica gel column (300 g, 4.5 x 40
cm), washed down with n-hexane/acetone (2:1), to provide one hundred and twenty
subfractions (30 ml each). After verifying their TLC profiles, these collected subfractions
were combined into six subfractions (E1-E6), as shown in Table 4. Size exclusion
chromatography of fraction E5 (780 mg) on a Sephadex LH-20 column eluted with
MeOH vyielded four subfractions (E51-E54). Subfraction E53 (290 mg) was
chromatographed on a silica gel column (15 g, 2 x 14 cm), eluted with CH,Cl,/acetone
(20:1), to give five subfractions (E531-E535). Compound PEO05 (58.0 mg, 0.00116% yield)

was obtained from subfraction E534.



Table 4 Combined fractions from fraction E

from fraction
Subfraction code Weight (¢)
number
El 1-30 0.31
E2 31-42 0.67
E3 43-66 3.75
E4 67-82 0.49
E5 83-102 0.78
103-120 and wash
E6 2.31
down with MeOH

3.3.4. lIsolation of compound PE0O6

a7

Subfraction E532 (102 mg) was subjected to silica gel CC (10 g, 2 x 10

cm) eluted with CH,Cl,/EtOAc (9:1) to give three subfractions (E5321-E5323).

Compound PEO6 (1.1 mg, 0.00002% vyield) was obtained as colorless needle crystals

from subfraction E5323.

3.3.5. Isolation of compound PEO7

Subfraction E3 (3.4 g) was chromatograph on a silica gel column (175 g,

4.5 x 26 cm) eluted with CH,Cl,/acetone (30:1) to give nine subfractions (E31-E39).

Subfraction E38 yielded compound PEO7 (32.0 mg, 0.00064% vyield) after evaporation

of the eluting solvent.
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3.3.6. lIsolation of compounds PEO8 and PEQ9

Further purification of subfraction E34 (491 mg) on a silica gel column
(175 ¢, 4.5 x 26 cm), eluted with CH,Cl,/acetone (30:1), afforded five subfractions (E341-
E344). Compound PE08 (38.4 mg) was obtained from subfraction E344 after solvent
evaporation. Silica gel CC (5 g, 1 x 14 cm) of subfraction E343 yielded three subfractions
(E3431-E3433), and compound PE08 (5.2 mg) was also obtained from subfraction E3433.
Thus, the total amount of compound PE0O8 was 43.6 mg (0.00087% yield). The other
compound, PE09 (2.0 mg) was obtained from subfraction E3431. Subfraction E342 (15.3)
was further chromatographed on silica gel (6.5 g, 1 x 19 cm) to give three subfractions
(E3421-E3423), and compound PEQ9 (13.3 mg) was obtained from subfraction E3423.

Therefore, the total yield of compound PEQ9 was 15.3 mg (0.00031% vyield).
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3.4. Physical and spectral data of isolated compounds

3.4.1.

methanol.
uv

IR: Vo CM
HR-ESIMS

"H NMR

>C NMR

3.4.2.

uv

IR: Vo CM
HR-ESIMS
[a]ZOD

'H NMR

3C NMR

Compound PEO1

Compound PEO1 was obtained as yellow needle crystals, soluble in

: Anax (MeOH) nm (log €): 228 (4.26), 273 (4.24), 359 (4.23); Figure 14.

: 3141, 1655, 1606, 1306; Figure 15.

: [M+Na]* at m/z 293.0478; Figure 16.

- 8 ppm, 300 MHz, in DMSO-dg; 6.21 (1H, d, J = 2.1 Hz), 6.46 (1H, d, J =
2.1 Hz), 7.52 (1H, m), 7.55 (2H, m), 8.14 (2H, dd, J = 2.1, 1.5 Hz), 9.69 (1H,
brs), 10.87 (1H, br s), 12.36 (1H, s); Figure 17.

0 ppm, 75 MHz, in DMSO-dg; 93.7, 98.4, 103.3, 127.6, 127.6, 128.6,
128.6, 130.0, 131.0, 137.2, 145.8, 156.5, 160.9, 164.3, 176.4; Figure 18.

Compound PE02

Compound PE02 was obtained as orange crystals, soluble in acetone.

: Ao (MeOH) nm (log €): 228 (4.16), 257 (3.36), 286 (4.25); Figure 19.
13012, 1628, 1600, 1298; Figure 20.

: [M+Na]* at m/z 279.0664; Figure 21.

:-0.036

. 8 ppm, 300 MHz, in acetone-ds; 2.80 (1H, dd, J = 16.8, 3.0 Hz), 3.17
(1H, dd, J = 16.8, 12.6 Hz), 5.57 (1H, dd, J = 12.6, 3.0 Hz), 5.96 (1H, d, J
=2.1Hz),599 (1H, d, J = 2.1 Hz), 7.42 (1H, m), 7.45 (2H, m), 7.55 (1H, br
s), 7.58 (1H, br s), 9.63 (1H, s), 12.16 (1H, s); Figure 22.

o) ppm, 75 MHz, in acetone-dg; 43.3, 79.6, 95.6, 96.6, 102.9, 127.0, 127.0,

129.2,129.2, 129.2, 139.7, 163.9, 165.0, 167.0, 196.5; Figure 23.
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3.4.3. Compound PE03

Compound PEO3 was obtained as a brown semisolid, soluble in

dichloromethane.

uv

IR: Vo CM*
HR-ESIMS

'H NMR

>C NMR

3.4.4.

- Nnax (MeOH) nm (log €): 229 (4.29), 302 (4.47); Figure 24.

: 3376, 1605, 1587, 1144, 957, 825, 749, 690; Figure 25.

: [M+Na]* at m/z 249.0927; Figure 26.

- & ppm, 300 MHz, in CDCls; 3.80 (3H, s), 4.96 (1H, brs), 6.32 (1H, t, J =
2.1 Hz), 6.59 (1H, brs), 6.63 (1H, br s), 6.97 (1H, d, J = 16.3 Hz), 7.05 (1H,
d,J =163 Hz), 7.24 (1H, m), 7.3 (2H, t, J = 7.5 Hz), 7.48 (2H, d, J = 7.5
Hz); Figure 27.

6 ppm, 75 MHz, in CDCls; 55.4, 101.0, 104.9, 105.9, 126.6, 126.6, 127.8,
128.3, 128.7, 128.7, 129.4, 137.0, 139.7, 156.9, 161.1; Figure 28.

Compound PE04

Compound PEO4 was obtained as a brown semisolid, soluble in

dichloromethane.

uv

IR: Vinax cm’™®
HR-ESIMS
'H NMR

3C NMR

- Anax (MeOH) nm (log €): 230 (4.21), 314 (4.29); Figure 29.

: 3384, 1605, 1589, 1144, 962, 826, 748, 667; Figure 30.

: [M+Na]™ at m/z 279.1004; Figure 31.

e ppm, 300 MHz, in CDCls; 3.80 (3H, s), 3.87 (3H, s), 5.22 (1H, br s), 6.31
(1H, brs), 6.62 (1H, br s), 6.65 (1H, brs), 6.88 (1H, d, J = 8.3 Hz), 6.95 (1H,
t,J =16, Hz), 6.98 (1H, d, J = 16.4 Hz), 7.21 (1H, dd, J = 8.3, 7.6 Hz),
7.42 (1H, d, J = 16.4 Hz), 7.55 (1H, d, 7.6 Hz); Figure 32.

.0 ppm, 75 MHz, in CDCls; 55.4, 55.5, 100.7, 105.2, 105.9, 110.9, 120.7,
124.2, 126.2, 126.5, 128.7, 128.8, 140.3, 156.8, 156.9, 161.1; Figure 33.
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3.4.5. Compound PE05

in acetone.
uv

IR: Vo CM*
HR-ESIMS

"H NMR

3C NMR

3.4.6.

methanol.
uv

IR: Vo cM*
HR-ESIMS
[a*,

"H NMR

>C NMR

Compound PEQO5 was obtained as a white amorphous powder, soluble

- Nnax (MeOH) nm (log €): 227.5 (4.43), 322 (4.29); Figure 34.

13253, 1604, 1575, 1228, 1176, 1140, 962; Figure 35.

: [M+Na]* at m/z 371.1301; Figure 36.

e ppm, 300 MHz, in acetone-dg; 3.78 (3H, s), 4.00 (2H, s), 6.45 (1H, d, J
=2.1Hz), 6.66 (2H, d, J = 8.4 Hz), 6.79 (1H, br d, J = 7.6 Hz), 6.80 (1H, d,
J=21Hz), 686 (1H,t, J=7.8Hz), 7.01 (2H, d, J = 8.4 Hz), 7.07 (1H, td,
J=76,15Hz),7.29 (1H,d, J = 16.2 Hz), 7.46 (1H, br d, J = 7.8 Hz), 7.48
(1H, d, J = 16.2 Hz), 7.98 (1H, s), 8.19 (1H, s), 8.63 (1H, 5); Figure 37.

) ppm, 75 MHz, in acetone-dg; 30.0, 55.6, 99.0, 104.4, 115.5, 115.5,
116.4,119.7,120.4, 125.3, 125.7, 127.0, 127.3, 129.1, 129.7, 129.7, 133.3,
139.3, 155.5, 155.8, 157.3, 159.5; Figure 38.

Compound PE06

Compound PEO6 was obtained as colorless needle crystals, soluble in

- Ao (MeOH) nm (log €): 229.5 (3.21), 282.5 (3.25); Figure 40.

3228, 1655, 1604, 1592, 1203; Figure 41.

: [M+NH,]" at m/z 276.1164; Figure 42.

:-0.039

.6 ppm, 300 MHz, in DMSO-d; 2.60 (1H, dd, J = 16.5, 3.0 Hz), 2.96 (1H,
dd, J = 16.5, 12.3 Hz), 3.72 (3H, s), 5.46 (1H, dd, J = 12.3, 3.0 Hz), 5.97
(1H, d, J = 2.1 Hz), 6.04 (1H, d, J = 2.1 Hz), 7.37 (1H, m), 7.40 (2H, m),
7.47 (2H, m); Figure 43.

.0 ppm, 75 MHz, in DMSO-dg; 44.9, 55.7, 78.1, 93.5, 95.7, 104.5, 126.5,
126.5, 128.4, 128.6, 128.6, 139.3, 163.3, 164.1, 164.7, 187.4; Figure 44.
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3.4.7. Compound PEO7

Compound PEQ7 was obtained as a brown semisolid, soluble in

dichloromethane.

uv
IR: Vo CM*
HR-ESIMS

'H NMR

>C NMR

: Ao (MeOH) nm (log €): 227 (4.25), 295 (4.23); Figure 45.

13351, 1590, 1194, 1145, 962, 806, 732, 679; Figure 46.

: [M+Nal® at m/z 295.0973; Figure 47.

- & ppm, 300 MHz, in CDCls; 3.78 (6H, s), 6.32 (1H, t, J = 2.0 Hz), 6.60
(1H, d, J = 2.0 Hz), 6.62 (1H, d, J = 2.0 Hz), 6.69 (1H, dd, J = 8.7, 2.4 Hz),
6.72 (1H, d, J = 8.7 Hz), 6.95 (1H, d, J = 16.2 Hz), 7.02 (1H, d, J = 2.4 Hz),
7.28 (1H, d, J = 16.2 Hz); Figure 48.

: 0 ppm, 75 MHz, in CDCls; 55.4, 55.8, 101.1, 105.1, 105.9, 111.6, 114.7,
116.9, 123.6, 125.1, 129.7, 139.8, 147.3, 153.9, 156.9, 161.1; Figure 49.

3.4.8. Compound PE0O8

Compound PE08 was obtained as a brown semisolid, soluble in

dichloromethane.

uv
IR: Vinax cm™®
HR-ESIMS

'H NMR

3C NMR

: Anax (MeOH) nm (log €): 227.5 (4.35), 304.5 (4.42); Figure 50.

13364, 1584, 1144, 972, 826, 775, 681; Figure 51.

: [M+Na]" at m/z 295.0975; Figure 52.

o) ppm, 300 MHz, in CDCls; 3.79 (3H, s), 3.83 (3H, s), 6.32 (1H, t, J = 2.1
Hz), 6.48 (1H, d, J = 8.1 Hz), 6.52 (1H, d, J = 8.1 Hz), 6.60 (1H, t, J = 2.1
Hz), 6.62 (1H, t, J = 2.1 Hz), 7.08 (1H, t, J = 8.1 Hz), 7.09 (1H, d, J = 17.0
Hz), 7.23 (1H, d, J = 17.0 Hz); Figure 53.

: 8 ppm, 75 MHz, in CDCly; 55.4, 55.8, 100.9, 103.1, 104.9, 105.8, 108.8,

113.2, 121.3, 128.6, 132.2, 140.2, 154.2, 156.8, 158.5, 161.1; Figure 54.
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3.4.9. Compound PE09

Compound PE09 was obtained as brown amorphous powder, soluble
in acetone.

uv : Nax (MeOH) nm (log €): 228.5 (4.23), 299.5 (4.27); Figure 57.

IR: Vaxcm™ 1 3276, 1596, 1140, 957, 827, 747, 687; Figure 58.

HR-ESIMS : [IM+Nal" at m/z 355.1369; Figure 59.

'H NMR o) ppm, 300 MHz, in acetone-dy; 3.76 (3H, s), 4.00 (2H, s), 4.63 (1H, s),
4.83 (1H, s) 6.39 (1H, d, J = 2.1 Hz), 6.68 (2H, d, J = 8.6 Hz), 6.70 (1H, d,
J=21Hz),690(1H,d, J = 16.2 Hz), 7.01 (2H, d, J = 8.6 Hz), 7.24 (1H, ¢,
J=17.2Hz),730(1H, d,J = 16.2 Hz), 7.30 (2H, t, J = 7.2 Hz), 7.38 (2H, d,
J = 7.2 Hz); Figure 60.

3C NMR ) ppm, 75 MHz, in acetone-ds; 29.9, 55.7, 98.5, 104.2, 115.0, 115.1,
115.1,120.1, 126.4, 126.6, 126.6, 127.7, 128.7, 128.7, 129.2, 129.2, 130.9,
133.6, 137.4, 138.5, 153.4, 154.8, 159.0; Figure 61.

3.5.  Evaluation of Cytotoxicity
3.5.1. Cytotoxicity against cancer cell lines

The cytotoxic activity of the isolated compounds against human cancer
cell lines was evaluated by the Bioassay laboratory of the National Center for Genetic
Engineering and Biotechnology (BIOTEQ). In this study, small cell lung carcinoma (NCI-
H187, ATCC CRL-5804), epidermoid carcinoma of oral cavity (KB, ATCC CCL-17) and
breast adenocarcinoma (MCF-7, ATCC HTB-22) cell lines were selected as
representative cancer cell lines. The assay was performed according to the method

described by O’Brien et al. (2000).

In brief, cell suspensions at appropriate concentrations (9 x 10° cells/ml
for NCI-H187 and MCF-7 cells and 7 x 10° cells/ml for KB cells) were plated and

incubated at 37°C supplemented with 5% CO, overnight. Then, the samples were
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added. After the incubation period (5 days for NCI-H187 cells and 3 days for KB and
MCF-7 cells) 12.5 pl of 62.5 pg/ml resazurin solution was added to each well, and the
cells were further incubated at 37°C for 4 hours. Fluorescence signal was then
measured at excitation and emission wavelengths of 530 nm and 590 nm, respectively.

Percent inhibition of cell growth was calculated as follows.
% Inhibition = [1-(FUT/FUC)] x 100

Whereas FUT and FUC are the mean fluorescent unit from treated and

untreated conditions, respectively.

Dose response curves were plotted from six concentrations of two-fold
serially diluted test compound and the sample concentrations that inhibited cell
growth by 50% (ICs, values) were derived using the SOFTMax Pro software (Molecular

Devices, USA).

3.5.2. Topoisomerase | inhibition using yeast cell-based assay
3.5.2.1. Construction of yeast

Saccharomyces cerevisiae strain RS190 (ATCC 208354, MATa,
top1A), genotype a top1-8 [topl LEU2] ade2-1 ura3-1 his3-11 trp1-1 leu2-3, 112 canl-
100, was purchased from American Type Culture Collection (ATCC). The gene of
Arabidopsis thaliana topoisomerase | was cloned into yeast vector by the Gateway
Cloning Technology (Invitrogen), and the integrity of the constructs was verified by DNA
sequencing. The Gateway™ expression vector pYES-DEST52 was used for the
expression for S. cerevisiae. This plasmid also contains URA3, selectable markers for
the selection and maintenance of plasmid bone sequences in auxotrophic yeast strain.
Furthermore, this plasmid has strong inducible promoter (pGAL1) which enables the

study of topoisomerase enzyme function.
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3.5.2.2. Media for yeast culture
3.5.2.2.1. Growth media (YPD media) (DifcoTM)

YPD agar and YPD broth were used for maintaining and
propagating yeasts in molecular microbiology procedures. The compositions of these

culture media are described in Table 20.

3.5.2.2.2. Synthetic complete media lacking uracil (S.C.

ura- media)

S.C. ura” media was used for selecting and maintaining transgenic

yeast. The composition of this culture media is described in Table 20.

3.5.2.3. Yeast cell-based assay of topoisomerase | inhibition

Topoisomerase | inhibitory activitiy of P. exul root extract and
isolated compounds was evaluated using transgenic yeast. The samples were
solubilized in dimethylsufoxide (DMSO), sonicated, and filtered through 0.25 pm
Millipore filter. Then, samples were diluted with S.C. ura media to give several
concentrations (400, 200, and 100 pg/ml of extract or 100 and 50 uM of isolated
compounds). Two different condition media were prepared, i.e. glucose and galactose
containing S.C. ura” media. Positive controls were 2.5, 5 and 10 pg/ml of camptothecin

(CPT), and vehicle control was 1% DMSO.

The suspension of yeasts in liquid S.C. ura™ media containing
glucose was incubated at 30°C for 18 hours with shaking (200 rpm). The culture was
adjusted to 0.3 of ODgy, and serial ten-fold ten-fold to 10° 10, 10? and 107 fold of
starting suspension. Aliquots (5 pl each) of each concentration of yeast suspension
were spotted on prepared plates. Spotted plates were incubated at 30°C for 48 hours,

and cell yeast viability was observed. The yeast survival was determined by comparing
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the viability of colonies in the vehicle control culture (DMSO plate) and positive control

culture (CPT plate) on glucose and galactose agar media.
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CHAPTER 4
RESULT AND DISCUSSION

The methanolic root extract of Paphiopedilum exul showed cytotoxicity against
several cancer cell lines, and topoisomerase | inhibitory activity. Then, its chemical
constituents were investigated. Twelve compounds (PEQ1-PE12) were isolated using
chromatographic techniques as described in Chapter 3. Identification and structure
elucidation of these compounds were achieved using spectroscopic techniques,
including UV, IR, MS and NMR. Isolated compounds were evaluated for their biological
activities, including cytotoxicity against three human cancer cell lines i.e. small cell
lung carcinoma (NCI-H187), epidermoid carcinoma of oral cavity (KB) and breast

adenocarcinoma (MCF-7). Their topoisomerase | inhibitory activity was also investigated.

4.1. Identification of compound PEO1 (galangin)

Compound PEO1 was obtained as yellow needle crystals (104.2 mg, 0.00208 %
yield). It appeared as a yellow spot on TLC plate upon spraying with anisaldehyde
reagent and heating at 105 °C for 10 minutes. According to the [M+Na]" peak at m/z
293.0478 in the mass spectrum (Figure 16), its molecular formula could be determined
as Cy5H10s.

The IR spectrum of compound PEO1 (Figure 15) showed absorption bands of
hydroxyl groups at 3141 cm™, conjugated carbonyl at 1655 cm™, C=C stretching at 1606
cm and C-C bending at 1306 cm™. These bands are commonly found in flavonoid
compounds.

The "H NMR spectrum of compound PEO1 (Figure 17 and Table 5) showed
seven aromatic proton signals and three hydroxyl singlets. The most downfield signal
at & 12.36 could be assigned to a hydroxyl substituent at position 5, which
intermolecularly hydrogen-bonded to the C-4 carbonyl group. Two doublet signals at

0 621 (1H, d, J = 2.1 Hz) and 6.46 (1H, d, J = 2.1 Hz) represented meta-coupled
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aromatic protons of positions 6 and 8, respectively, on ring A of the flavonoid structure.
No singlet signal of proton at position 3 was observed, suggesting that PEO1 might be
a flavonol. The proton signals at O 7.52 (1H, m, H-4"), 7.55 (2H, m, H-3"/H-5") and 8.14
(2H, dd, J = 6.9, 1.5 Hz, H-2'/H-6") represented aromatic protons of the unsubstituted B
ring. The broad hydroxyl proton signals at 8 9.69 and 10.87 could be assigned to 3-OH
and 7-OH, respectively.

The C NMR spectrum (Figure 18 and Table 5) exhibited thirteen peaks
including two double peaks in agreement with fifteen carbons of a basic flavonol
structure. The most downfield peak at 0 176.4 was assigned to C-4 carbonyl group.

Therefore, compound PEO1 was identified as 3,5,7-trihydroxyflavone (galangin)
and its structure was confirmed by comparison of its spectroscopic data with previous
reports (Wawer and Zielinska, 2001; De Souza and De Giovani, 2005).

Galangin was commonly found in honey and propolis (Cheng and Wong, 1996).
In addition, several plants, such as Alpinia officinarum (Zingiberaceae) (Zhang et al.,
2014), Piper aleyreanum (Piperaceae) (Facundo et al.,, 2012) and Helichrysum
aureonitens (Asteraceae) (Meyer et al., 1997), also contain this flavonoid. Galangin
exhibited various biological activities including anticancer, antimicrobial, antioxidant,
anti-inflammatory, enzyme modulating and effect on metabolic process (Patel et al,,

2012).

Figure 5 Chemical structure of galangin



63

Table 5 'H and ">C NMR spectral data of compound PEO1 (in DMSO-dy) and galangin

(*H NMR in CD50D and *C NMR in DMSO-d)

Compound PEO1 Galangin

Position

O, (mult,, J in Hz) O O, (mult,, J in Hz)? >
2 - 145.8 - 146.5
3 - 137.2 - 138.0
a4 - 176.4 - 177.1
5 - 160.9 - 161.6
6 6.21 (d, 2.1) 98.4 6.21 (d) 99.2
7 - 164.3 - 165.1
8 6.46 (d, 2.1) 93.7 6.43 (d) 94.4
9 - 156.5 - 157.3
10 - 103.3 - 104.1
T - 130.0 - 130.7
2 8.14 (dd, 6.9, 1.5) 127.6 8.20 (dd) 128.4
3 7.55 (m) 128.6 7.62 (dd) 129.3
& 7.52 (m) 131.0 7.53 (m) 131.8
5 7.55 (m) 128.6 7.62 (dd) 129.3
6 8.14 (dd, 6.9, 1.5) 127.6 8.20 (dd) 128.4
3-OH 9.69 (br s) - 9.59 (s) -
5-OH 12.36 (s) - 12.43 (s) -
7-OH 10.87 (br s) - 10.74 (s) -

#De Souza and De Giovani, 2005

® Wawer and Zielinska, 2001
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4.2. Identification of compound PE02 (pinocembrin)

Compound PE02 was obtained as orange crystals (90.7 mg, 0.00181% vyield). It
appeared as an orange spot on TLC plate upon spraying with anisaldehyde reagent

and heating at 105 °C for 10 minutes. Its specific optical rotation [0]*°; was found to

be -0.036° (c = 0.06, MeOH). According to the [M+Na]" peak at m/z 279.0664 in the
mass spectrum (Figure 21), its molecular formula could be deduced as C;5H;,0,. Its IR
spectrum (Figure 20) showed hydroxyl absorption bands at 3012 cm™, conjugated
carbonyl band at 1628 cm™, C=C stretching band at 1600 cm™ and C-C bending band
at 1298 cm'™’. These data suggested that PE02 might be a flavonoid derivative.

The 'H NMR spectrum of compound PE02 (Figure 22 and Table 6) was partially
similar to that of compound PEO1. The meta-coupled H-6 and H-8 of ring A could be
observed as a pair of doublets at 0596 (1H,d, J = 2.1 Hz) and 5.99 (1H, d, J = 2.1 H),
respectively. Five protons of the unsubstituted B ring resonated at O 7.42 (1H, m, H-
4'), 7.45 (2H, m, H-3'/H-5") and 7.56 (2H, d, J = 6.6 Hz, H-2'/H-6"). The hydrogen-bonded
5-OH appeared as the most downfield singlet at 0 12.16. The major difference was the
presence of additional aliphatic proton signals at 0 2.80 (1H, dd, J = 16.8, 3.0 Hz, H-
30, 3.17 (1H, dd, J = 16.8, 12.6 Hz, H—3B), 5.57 (1H, dd, J = 12.6, 3.0 Hz, H-2),
representing positions 2 and 3 of a flavanone skeleton. The other hydroxyl proton
signal at 0 9.63 could be assigned to 7-OH.

The °C NMR spectrum (Figure 23 and Table 6) showed thirteen peaks including
two double peaks from fifteen carbons of a flavanone derivative. The most downfield
peak at O 196.5 corresponded to the keto-carbonyl C-4. Two aliphatic carbon signals
at 8 433 and 79.6 represented C-3 and C-2, respectively.

Therefore, compound PE02 was identified as 5,7-dihydroxyflavanone
(pinocembrin), and its structure was confirmed by comparison of its spectroscopic data
with a previous report (Neacsu et al., 2007).

Pinocembrin has been found in many flowering plant families including
Zingiberaceae, Piperaceae, Lauraceae and Asteraceae (Rasul et al., 2013) and also

reported in some gymnosperms, i.e. Pinus massoniana (Pinaceae) (Zhang et al., 2013)
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and Ginkgo biloba (Ginkgoaceae) (Lopez-Gutiérrez et al., 2016). The flavanone
exhibited several interesting biological activities including anticancer, antimicrobial,

antifungal, anti-inflammatory and neuroprotective effects (Rasul et al., 2013).

Figure 6 Chemical structure of pinocembrin



Table 6 'H and ">C NMR spectral data of compound PE02 (in acetone-dg) and
pinocembrin (in CD;0D)
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Compound PE02 Pinocembrin?

Position
O, (mult,, Jin Hz) O O, (mult,, J in Hz) Oc

2 5.57 (dd, 12.6, 3.0) 79.6 5.44 (12.8, 3.1) 80.5
30 2.80 (dd, 16.8, 3.0) 43.3 2.76 (dd, 17.0, 3.1) 41.2
33 3.17 (dd, 16.8, 12.6) 3.07 (dd, 17.0, 12.8)
a4 - 196.5 - 197.3
5 - 165.0 - 165.5
6 5.96 (d, 2.1) 96.6 5.90 (d, 2.2) 97.2
7 - 167.0 - 168.4
8 599 (d, 2.1) 95.6 593 (d, 2.2) 96.2
9 - 163.9 - 164.7
10 - 102.9 - 103.4
i - 139.7 - 140.4
2 7.56 (d, 6.6) 127.0 7.48 (m) 1274
3 7.45 (m) 129.2 7.41 (m) 129.7
q 7.42 (m) 129.2 7.36 (m) 129.6
5 7.45 (m) 129.2 7.41 (m) 129.7
6 7.56 (d, 6.6) 127.0 7.48 (m) 1274
5-OH 12.16 (s) - - -
7-OH 9.63 (s) - - .

® Neacsu et al., 2006
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4.3. Identification of compound PE03

Compound PE03 was obtained as a brown semisolid (44.0 mg, 0.00088% vyield).
It appeared as a reddish purple spot upon spraying with anisaldehyde reagent and
heating at 105 °C for 10 minutes. Its molecular formula could be determined as
Cy5H140, based on the [M+Na]" peak at m/z 249.0927 in the ESI mass spectrum (Figure
26). Its IR spectrum (Figure 25) displayed absorption bands of hydroxyl groups at 3376
cmt C=C stretching at 1605 and 1587 cm, C-O stretching at 1144 cm’l trans-double
bond C-H bending at 957 cm™ and C-H out-of-plane bending of meta-substituted
benzenoid compound at 825, 749 and 690 cm™. The number of carbon atoms in the
molecule, which could be deduced as 14 from its molecular formula and NMR data,
suggested that this compound is a stilbene derivative.

The 'H NMR spectrum of compound PE03 (Figure 27 and Table 7) revealed
signals of eight aromatic protons, two olefinic protons and one methoxy group. Two
one-proton doublets U = 16.3 Hz) occurring at 8 6.79 (H-O) and 7.05 (H—B), represented
olefinic protons of the trans-double bond between two benzene rings of a stilbenoid.
A group of meta-coupled aromatic proton signals appearing at 0 632(1H,t,J = 2.1
Hz, H-4), 6.59 (1H, br s, H-2) and 6.63 (1H, br s, H-6) were indicative of the 1,3,5-
trisubstituted ring A. A methoxy signal at 0 3.80 (3H, s, 3-OCH,) and a hydroxyl broad
singlet at O 496 (1H, s, 5-OH) represented those substituents at positions 3 and 5,
respectively. The rest of the aromatic proton signals at 0724 (1H, m, H-4"), 7.34 (2H,
t,J = 7.5 Hz, H-3/H-5) and 7.48 (2H, d, J = 7.5 Hz, H-2"/H-6") could be assigned to the
unsubstituted ring B of the stilbene PE03.

The C NMR spectrum (Figure 28 and Table 7), which showed fifteen carbon
signals representing twelve aromatic carbons (including two oxygen-substituted ones
at O 161.1 and 156.9), two olefinic carbons (at O 128.3 and 129.4) and a methoxy
carbon (at & 55.4), suggested a trans-stilbene structure substituted with one methoxy
group and one hydroxyl group consistent with the 'H NMR spectral data. Therefore,
compound PE03 was identified as (£)-5-hydroxy-3-methoxystilbene (pinosylvin
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monomethylether), and its structure was confirmed by comparison of the
spectroscopic data with literature values (Ngo and Brown, 1998).

(E)-5-Hydroxy-3-methoxystilbene has been found as a constituent in
pteridophytes, gymnosperms and flowering plants including Orchidaceae (Starks et al.,
2012) and has been reported to possess various activities including anti-inflammatory
(Laavola et al., 2015), antimicrobial (Plumed-Ferrer et al., 2013), antifungal (Araujo et
al., 2009), antiproliferation, inhibition of NF-KB and NO production (Sobolev et al,
2011).

Figure 7 Chemical structure of (E)-5-hydroxy-3-methoxystilbene



Table 7 'H and ">C NMR spectral data of compound PE03 and (£)-5-hydroxy3-

methoxystilbene (in CDCl,)
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PEO3 in CDCl,

(E)-3-methoxy-5-hydroxystilbene?

Position

O, (mult,, Jin Hz) O O, (mult,, J in Hz) Oc
1 - 139.7 - 139.6
2 6.59 (br s) 104.9 6.60 (s) 104.7
3 - 161.1 - 160.9
q 6.32 (t, 2.1) 101.0 6.37 (s) 101.2
5 - 156.9 - 157.3
6 6.63 (br s) 105.9 6.62 (s) 106.3
a 6.97 (d, 16.3) 128.3 6.93 (d, 16.3) 128.4

7.05 (d, 16.3) 129.4 6.99 (d, 16.3) 129.2
N - 137.0 - 137.1
2 7.48 (d, 7.5) 126.6 7.42 (d, 7.5) 126.6
3 7.34 (t, 7.5) 128.7 7.30 (t, 7.5) 128.6
ik 7.24 (m) 127.8 7.21 (t, 7.5) 127.7
5 7.34 (t, 7.5) 128.7 7.30 (t, 7.5) 128.6
6 7.48 (d, 7.5) 126.6 7.42 (d, 7.5) 126.6
5-OH 4.96 (br s) - - B}
3-OMe  3.80 (s) 55.4 3.74 (s) 55.3

® Ngo and Brown, 1998
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4.4. Identification of compound PEO4

Compound PE04 was obtained as a brown semisolid (79.8 mg, 0.0016% yield).
It appeared as a violet spot on TLC plate when sprayed with anisaldehyde reagent and
heated. Its molecular formula was determined to be Ci4HicO5 based on the sodium
adduct molecular ion [M+Na]" peak at m/z 279.1004 in the mass spectrum (Figure 31).

The IR spectrum of compound PE04 (Figure 30) showed absorption bands of
hydroxyl groups at 3384 cm™!, C=C stretching at 1605 and 1589 cm™, C-O stretching at
1144 cm™, trans-double bond C-H bending at 962 cm™ and C-H out-of-plane bending
of meta-substituted benzenoid compound at 826, 748 and 677 cm™ which are
commonly found in stilbenoid compounds.

The "H NMR spectrum of compound PE04 (Figure 32 and Table 8) exhibited
signals of seven aromatic protons, two olefinic protons of a trans-double bond at o)
6.98 (1H, d, J = 16.4 Hz, H-Q) and 7.42 (1H, d, J = 16.4 Hz, H-B) and two methoxy
groups (at O 3.80 and 3.87). The differences from that of compound PE03 were an
additional methoxy signal at & 3.87 (2-OCH;) and the signals for four adjacent protons
on ring B of this compound at 0 6.88 (1H, d, J = 8.3 Hz, H-3), 6.95 (1H, t, J = 7.6 Hz, H-
5), 7.21 (1H, dd, J = 8.3, 7.6 Hz, H-4) and 7.55 (1H, d, J = 7.6 Hz, H-6"). The signals of
H-3" and H-5" were shifted upfield from those of PEO3 as a result of the electron

donating effect of the 2'-methoxy substituent.

The >C NMR spectrum (Figure 33 and Table 8) showed sixteen carbon signals
including twelve aromatic carbons, two olefinic carbons (at O 124.2 and 128.8) and
two methoxy carbons (at & 55.4 and 55.5), supportive of a trans-stilbene basic
structure substituted with two methoxy groups and one hydroxyl group as determined
by 'H NMR spectral data. The three most downfield signals of the oxygen-substituted
carbon atoms at O 161.1, 157.0 and 156.8 were assignable to C-3, C-5 and C-2,

respectively, based on comparison with reported values (Lertnitikul et al., 2016).
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Therefore, compound PEO4 was identified as (E)-5-hydroxy-3,2-
dimethoxystilbene and confirmed by comparison of its spectroscopic data with a
previous study on another species of Venus slippers’ orchid, Paphiopedilum
godefroyae. The compound was shown to be cytotoxic against human small cell lung

cancer cell line (NCI-H187) with an ICs, value of 77.30 uM (Lertnitikul et al., 2016).

Figure 8 Chemical structure of (E)-5-hydroxy-3,2"-dimethoxystilbene



Table 8 'H and ">C NMR spectral data of compound PE04 and (£)-5-hydroxy-3,2'-
dimethoxystilbene (in CDCls)

(E)-3,2-dimethoxy-5-
Compound PEO4

Position hydroxystilbene®
O, (mult,, J in Hz) O O, (mult., J in Hz) O
1 . 140.3 - 140.3
2 6.65 (br s) 105.0 6.64 (br s) 105.0
3 - 161.1 - 161.0
4 6.31 (br s) 100.7 6.31 (br s) 100.7
5 - 157.0 - 156.9
6 6.62 (br s) 105.9 6.62 (br s) 105.9
a 6.98 (d, 16.4) 128.8 6.98 (d, 16.4) 128.8
B 7.42 (d, 16.4) 124.2 7.42 (d, 16.4) 124.2
1 - 126.2 2 126.1
2 - 156.8 - 156.8
3 6.88 (d, 8.3) 111.0 6.88 (d, 8.3) 110.9
4 7.21 (dd, 8.3, 7.6) 128.7 7.24 (dd, 8.3, 7.6) 128.7
5 6.95 (t, 7.6) 120.7 6.95 (d, 7.6) 120.7
6 7.55(d, 7.6) 126.5 7.55(d, 7.6) 126.5
5-OH 5.22 (brs) - - -
3-OMe  3.80 (s) 55.4 3.80 (s) 55.4
2-OMe  3.87 (s) 55.5 3.87 (s) 55.5

@ Lertnitikul et al., 2016
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4.5. Identification of compound PEO5

Compound PEO5 was obtained as a white powder (58.0 mg, 0.00116% vyield). It
appeared as a reddish brown spot o TLC plate upon spraying with anisaldehyde
reagent and heating at 105 °C. Based on the sodium adduct molecular ion [M+Na]*
peak at m/z 371.1301 in the mass spectrum (Figure 36), its molecular formula was
identified as CyH,004. The IR spectrum of compound PEO5 (Figure 35) showed
absorption bands of hydroxyl groups at 3253 cm™, C=C stretching at 1604 and 1575
cmt C-O stretching at 1228, 1176 and 1140 cm! and trans-double bond C-H bending
at 962 cm™.

The ">C NMR spectrum of compound PEO5 (Figure 38 and Table 9) revealed
twenty-two carbon resonances (including one methoxyl carbon signal), suggesting a
stilbene substituted with a benzyl moiety. The 'H NMR spectrum (Figure 37 and Table
9) exhibited resonances of a trans-double bond at & 7.29 (1H, d, J = 16.2 Hz, H-Ql) and
7.48 (1H, d, J = 16.2 Hz, H—B), a methoxyl group at 63.78 (3H, s, 3-OCH,), four adjacent
aromatic protons of a 1,2-disubstituted phenyl moiety at 6 6.79 (1H, brd, J = 7.6 Hz,
H-3), 6.86 (1H, t, J = 7.8 Hz, H-5), 7.07 (1H, td, J = 7.6, 1.5 Hz, H-4") and 7.46 (1H, br d,
J = 7.8 Hz, H-6), and two meta-coupled signals at 0 6.45 (1H, d, J = 2.1 Hz, H-4) and
6.80 (1H, d, J = 2.1 Hz, H-6). Moreover, one methylene singlet at & 4.00 (2H, s, H-1")
and a pair of two-proton doublets at 0 6.66 (2H, d, J = 8.4 Hz, H-4"/H-6") and 7.01 (2H,
d, J = 84 Hz, H-3"/H-7") were suggestive of a para-substituted benzyl group.
Additionally, three hydroxy singlets were observed at & 7.98 (5"-OH), 8.19 (5-OH) and
8.63 (2-OH).

The long-range heteronuclear correlation, HMBC (Figure 39 and Table 10),
confirmed the linkage between a para-substituted benzyl group and the trans-stilbene
basic structure, and substitutions on the aromatic rings. The H-1" methylene singlet of
the para-hydroxy benzyl moiety (at 0 4.00) showed HMBC cross-peaks with the carbon
signals at § 119.7 (C-2), 129.7 (C-3"/C-7), 133.3 (C-2"), 139.3 (C-1) and 159.5 (C-3), giving

supporting evidence for its linkage to C-2. HMBC correlation between methoxy protons
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at & 3.78 and C-3 (& 159.5) confirmed its position at this carbon, whereas two- and
three-bond correlations between 2'-OH signal at 0 8.63 and C-1 (O 125.3) and C-2' (O
155.5), between 5-OH signal at & 8.19 and C-5 (O 157.3) and between 5”-OH signal at

0 7.98 and C-47/C-6" (8 115.5) and C-5" (& 155.8) helped in assigning these signals.

Therefore, compound PEO5 was identified as (F)-2-(4"-hydroxybenzyl)-5,2"-
dihydroxy-3-methoxystilbene, previously found in Phragmipedium calurum (Garo et

al., 2007).

Figure 9 Chemical structure of (£)-2-(4"-hydroxybenzyl)-5,2"-dihydroxy-3-

methoxystilbene
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Table 9 'H and ">C NMR spectral data of compound PEQ5 (in acetone-dg) and (£)-2-
(4"-hydroxybenzyl)-5,2"-dihydroxy-3-methoxystilbene (in CDCl,)

(E)-2-(4"-hydroxybenzyl)-3,5'-
Compound PEO5

Position dimethoxy-5,2"-dihydroxystilbene®
6H(mult., Jin Hz) 6c 5H(mult., Jin Hz) 6C
1 - 139.3 - 140.4
2 - 119.7 - 120.5
3 - 159.5 - 160.3
4 6.45 (d, 2.1) 99.0 6.40 (d, 2.1) 99.4
5 - 157.3 - 157.7
6 6.80 (d, 2.1) 104.4 6.74 (d, 2.1) 105.1
o 7.29 (d, 16.2) 125.7 7.22 (d, 16.2) 126.7
B 7.48 (d, 16.2) 127.0 7.35(d, 16.2) 127.9
iy - 1253 - 116.7
2 - 155.5 - 156.3
3 6.79 (brd, 7.6) 120.4 6.77 (m) 116.8
a4 7.07 (td, 7.6, 1.5) 129.1 7.04 (t, 7.1) 129.6
5 6.86 (t, 7.8) 116.4 - 120.9
6 7.46 (brd, 7.8) 127.3 7.32 (brd, 7.4) 127.7
1" 4.00 (s) 30.0 3.96 (s) 30.8
2" - 133.3 - 134.3
37" 7.01 (d, 8.4) 129.7 6.96 (d, 8.4) 130.3
a7/6" 6.66 (d, 8.4) 115.5 6.63 (d, 8.4) 116.0
5" - 155.8 - 156.1
5-OH 8.19 (s) - - -
2-OH 8.63 (s) - - -

5"-OH 7.98 (s) - - -
3-OMe 3.78 (s) 55.6 3.78 (s) 56.2

4 Garo et al., 2007



Table 10 HMBC spectral data of compound PEO5 (in acetone-dj)

'H signal

HMBC correlations with

H-4

H-6

H-aL

H-

H-3'

H-¢'

H-5'

H-6

H'l”

H-3"/ H-T"

H-4"/ H-6"

5-OH

2'-OH

5"-OH

3-OMe

C-2, C-5, C-6
C-4, C-5
C-B, c-6, C-1
c-a, C-1, C-2, C-6
C-1, C-5
C-2,C-6
C-1,C-3
C-2, C-4
C-1,C-2, C-3,C-2", C-3"/ C-T"
C-1", C-3"/ C-1", C-5"
C-2", C-4"/ C-6", C-5"
C-4, C-5, C-6
ey e
C-4"/ C-6", C-5"

C-3

76



7

4.6. Identification of compound PE06 (alpinetin)

Compound PE06 was obtained as colorless crystals (1.1 mg, 0.00002% vyield). It
appeared as a yellow spot on TLC plate upon spraying with anisaldehyde reagent and
heating at 105 °C for 10 minutes, suggestive of its flavonoid structure. Its specific optical
rotation [012% was found to be -0.039° (c = 0.07, MeOH). According to the [M+NH,]*
peak at m/z 276.1164 in its mass spectrum (Figure 42), the molecular formula of PE06
was deduced as CygHi4O4. The IR spectrum (Figure 41) showed absorption bands of
hydroxyl groups at 3228 cm™, conjugated carbonyl at 1655 cm™, C=C stretching at 1604
and 1592 cm™ and C-C bending at 1203 cm™.

The 'H NMR spectrum of compound PE06 (Figure 43 and Table 11) was similar
to that of compound PE02, especially the upfield signals of H-2 at O 5.46 (1H, dd, J =
12.3, 3.0 Hz) and H,-3 at 5 2.96 (1H, dd, J = 16.5, 12.3 Hz, H-3QL) and 2.60 (1H, dd, J =
16.5, 3.0 Hz, H—3[3), indicating that it is a flavanone. A notable difference was the
absence of the downfield singlet at about 12-13 ppm of the commonly found,
hydrogen-bonded hydroxy group at position 5. The meta-coupled H-6 and H-8
resonated at O 5.97 (1H, d, J = 2.1 Hz) and 6.04 (1H, d, J = 2.1 Hz), respectively, while
the unsubstituted ring B was represented by a set of multiplet signals, integrated for
five protons, at b 7.37-7.47. Moreover, a methoxy peak, which appeared at 6372 (3H,
s, 5-OCH,), suggested that position 5 was substituted by a methoxy instead of a

hydroxyl group.
The ®C NMR spectrum (Figure 44 and Table 11) displayed fourteen peaks

including two double peaks representing sixteen carbons in the molecule of PEO6.

Most carbon peaks were similar to those of compound PE02, with an additional

methoxy signal at O 55.7 (5-OCH;). The most downfield signal, which is characteristic
peak of carbonyl group of flavanones (C-4), occurred at a more upfield chemical shift

(6 187.4) compared to pinocembrin (PE02).
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Therefore, compound PE06 was identified as 7-hydroxy-5-methoxyflavanone
(alpinetin) and its spectroscopic data were in agreement with previously reported
values (Itokawa et al., 1981).

Alpinetin has previously been reported as a constituent of various plants,
including monocots such as Alpinia mutica (Zingiberaceae) (Malek et al., 2011), and
dicots such as Helichrysum forskahlii (Asteraceae) (Al-Rehaily et al., 2008) and Vitex
leptobotrys (Lamiaceae) (Pan et al., 2014). This flavanone exhibited various significant
therapeutic activities including antiproliferation, antibacterial, and anti-inflammation

(Huo et al., 2012).

Figure 10 Chemical structure of alpinetin


https://scifinder.cas.org/scifinder/references/answers/943A5522X86F35098X4310F55F41923CDC7F:94BFF527X86F35098X5629F2C460A77BDA52/19.html?nav=eNpb85aBtYSBMbGEQcXSxMnNzdTIPMLCzM3Y1MDSIsLUzMjSzcjZxMzA0dzcycXR1AioNKm4iEEwK7EsUS8nMS9dzzOvJDU9tUjo0YIl3xvbLZgYGD0ZWMsSc0pTK4oYBBDq_Epzk1KL2tZMleWe8qCbiYGhooCBgUEaaGBGCYO0Y2iIh39QvKdfmKtfCJDh5x_vHuQfGuDp5w5UkV9cyFDHwAxUz1jCwFRUhuoCp_z8nNTEvLMKRQ1X5_x6B3RBFMwFBQwAt_5D3w&key=caplus_2008:692993&title=Rmxhdm9ub2lkcyBhbmQgdGVycGVub2lkcyBmcm9tIEhlbGljaHJ5c3VtIGZvcnNrYWhsaWk&launchSrc=reflist&pageNum=1&sortKey=ACCESSION_NUMBER&sortOrder=DESCENDING
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Table 11 'H and >C NMR spectral data of compound PE06 and alpinetin (in DMSO-
dg)

Compound PE06 Alpinetin®

Position

O, (mult,, Jin Hz) O O, (mult,, J in Hz) Oc
2 546 (dd, 12.3,3.0)  78.1 5.44 (dd, 12, 4) 78.1
3a 2.96 (dd, 16.5,12.3)  44.9 2.98 (dd, 14, 12) 45.0
3B 2.60 (dd, 16.5, 3.0) 2.59 (dd, 14, 4)
4 - 187.4 - 187.4
5 - 164.1 - 164.1
6 597 (d, 2.1) 95.7 5.98 (d, 2) 95.8
7 - 164.6 S 164.4
8 6.04 (d, 2.1) 93.5 6.06 (d, 2) 93.5
9 - 162.3 - 162.2
10 - 104.5 - 104.6
1 - 139.3 k 139.2
2 7.47 (m) 126.5 7.40 (m) 126.4
3 7.40 (m) 128.6 7.40 (m) 128.5
4 7.37 (m) 128.4 7.40 (m) 128.3
5 7.40 (m) 128.6 7.40 (m) 128.5
6 7.47 (m) 126.5 7.40 (m) 126.4
50Me  3.72(s) 55.7 3.72 (s) 55.7

° ltokawa et al., 1981
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4.7. Identification of compound PEQO7

Compound PEO7 was obtained as a brown semisolid (32.0 mg, 0.00064% vyield).
It appeared as a violet spot on TLC plate upon spraying with anisaldehyde reagent and
heating at 105 °C for 10 minutes. According to the [M+Nal* peak of this compound at
m/z 295.0973 in the mass spectrum (Figure 47), its molecular formula was established
as CigHi604. Its IR spectrum (Figure 46) showed absorption bands of hydroxyl groups
at 3351 cm™, C=C stretching at 1590 cnt C-O stretching at 1194 and 1145 cm’t trans-
double bond C-H bending at 962 cm™ and C-H out-of-plane bending of meta-
substituted benzenoid compound at 806, 732 and 679 cm™. From these data, together
with the observation of two methoxyl functions in its NMR data, PEO7 was identified
as a trans-stilbene.

The 'H NMR spectrum of compound PEO7 (Figure 48 and Table 12) exhibited
signals of six aromatic protons, two olefinic protons and two methoxy groups. These
were similar to those of compound PEO4, in particular the signals for the 1,3,5-
trisubstituted ring A which resonated at b 3.78 (3H, s, 3-OCH,), 6.32 (1H, t, J = 2.0 Hz,
H-4), 6.60 (1H, t, J = 2.0 Hz, H-6) and 6.62 (1H, t, J = 2.0 Hz, H-2). The protons of the
trans-double bond resonated at slightly different chemical shifts of O 6.95 (1H, d, J =
16.2 Hz, H-OL) and 7.28 (1H, d, J = 16.2 Hz, H—B). The major difference resulted from
changes in the substitution pattern of ring B. Two ortho-coupled protons appeared at
8 6.72 (1H, d, J = 8.7 Hz, H-3) and 6.69 (1H, d, J = 8.7, 2.4 Hz, H-4), while the latter
signal was also meta-coupled with the proton at O 7.02 (1H, d, J = 2.4 Hz, H-6)

indicated 1,2,5-trisubstitution on this ring.

The C NMR spectrum (Figure 49 and Table 12) showed sixteen carbon signals
including those of twelve aromatic carbons (six of them are quaternary carbons), two
olefinic carbons and two methoxy carbons corresponding to a stilbene substituted
with two methoxy groups and two hydroxy groups. Comparison of these NMR data

with literature values revealed that while ring A of this compound was identical to
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those of PE0O3 and PEO4, ring B was substituted with a hydroxyl group at C-2" and a
methoxy group at C-5" (Garo et al., 2007).
Therefore, compound PEO7 was identified as (E)-5,2-dihydroxy-3,5-

dimethoxystilbene. Previously, it was found in Phragmipedium hybrid, a slipper orchid

hybrid of P. longifolium and P. lindleyanum (Garo et al., 2007).

Figure 11 Chemical structure of (E)-5,2"-dihydroxy-3,5-dimethoxystilbene



Table 12 'H and ">C NMR spectral data of compound PE07 (in CDCls) and (E)-5,2*
dihydroxy-3,5-dimethoxystilbene (in CD;0D)

(E)-3,5"-dimethoxy-5,2"-

PEOY
Position dihydroxystilbene®
O, (mult,, J in Hz) O O, (mult,, J in Hz) O

1 - 139.8 - 141.6
2 6.62 (t, 2.0) 105.1 6.59 (br d, 2.2) 107.1
3 - 161.1 - 162.8
4 6.32 (t, 2.0) 101.1 6.27 (t, 2.0) 101.9
5 - 156.9 - 159.8
6 6.60 (t, 2.0) 105.9 6.60 (br d, 2.0) 107.7
a 6.95 (d, 16.2) 129.7 7.02 (d, 16.4) 129.8
B 7.28 (d, 16.2) 123.7 7.38 (d, 16.4) 125.5
1 - 125.1 S 126.3
2 - 147.3 - 150.4
3 6.72 (d, 8.7) 116.9 6.74 (d, 8.7) 117.6
iy 6.69 (dd, 8.7, 2.4) 114.7 6.68 (dd, 8.7, 2.9) 115.8
5 . 153.9 - 154.7
6 7.02 (d, 2.4) 111.6 7.08 (d, 2.8) 112.0
3-OMe 3.78 (s) 554 3.77 (s) 55.6

5-OMe 3.78 (s) 55.8 3.78 (s) 56.0

# Garo et al., 2007
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4.8.  Structure elucidation of compound PE08

Compound PE08 was obtained as a brown semisolid (43.6 mg, 0.00087% vyield).
It appeared as a red spot on TLC plate upon spraying with anisaldehyde reagent and
heating. Based on the sodium adduct molecular ion [M+Nal" peak at m/z 295.0975
(cald. 295.2856) in the mass spectrum (Figure 52), its molecular formula was
established as CigH1404, requiring 9 degrees of unsaturation common to a trans-stilbene.
Its IR spectrum (Figure 51) also exhibited absorption bands commonly found in
stilbenoid compounds including those of hydroxyl groups at 3364 cm™, C=C stretching
at 1584 cm™!, C-O stretching at 1144 cm™, trans-double bond C-H bending at 972 cm’™
and C-H out-of-plane bending of meta-substituted benzenoid compound at 826, 775
and 681 cm™.

The 'H NMR spectrum of compound PEO8 (Figure 53 and Table 13) revealed
the presence of a trans-double bond at O 7.09 (1H, d, J = 17.0 Hz, H-QU) and 7.23 (1H,
d,J=17.0 Hz, H—B), two methoxy groups at 6 3.79 (3H, s, 3-OCHs) and 3.83 (3H, s, 2’-
OCHs) and two sets of three protons from each aromatic ring of the stilbene. These
data suggested a trans-stilbene structure bearing four substitutions: two hydroxy and
two methoxy groups. One phenyl ring of the stilbenoid structure was identical to other
stilbenes isolated from this orchid, that is, it was substituted with a hydroxyl group at
C-5 and a methoxy group at C-3, as evidenced by three meta-coupled proton signals
at 8 6.32 (1H, t, J = 2.1 Hz, H-4), 6.60 (1H, t, J = 2.1 Hz, H-6) and 6.62 (1H, t, J = 2.1 Hz,
H-2). The other set of aromatic proton signals at 0 6.48 (1H, d, J = 8.1 Hz, H-3), 6.52
(1H,d, J = 8.1 Hz, H-5) and 7.08 (1H, t, J = 8.1 Hz, H-4"), suggested the 1,2,3-trisubstituted
pattern of the other phenyl ring.

The >C NMR spectrum of this compound (Figure 54 and Table 13) exhibited
sixteen carbon signals including eight methine carbons at 0 100.9 (C-4), 103.1 (C-3),
104.9 (C-2), 105.8 (C-6), 108.8 (C-5), 121.3 (C-P), 128.6 (C-4) and 132.2 (C-QU), six
quaternary carbons at & 113.2 (C-1), 140.2 (C-1), 154.2 (C-6), 156.8 (C-5), 158.5 (C-2)

and 161.1 (C-3) and two methoxy carbons at & 55.4 (3-OCH,) and 55.8 (2-OCHs).
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Confirmation of the methoxy substitutions was done through an HMBC
experiment (Figure 56). For ring A, HMBC cross-peaks were observed between the 3-
methoxy singlet at 0 3.79 and C-3 signal (6 161.1) and between H-OL signal at 0 7.09
and those of C-1 (O 140.2), C-2 (O 104.9) and C-6 (& 105.8). For ring B, correlations
observed between 2'-methoxy singlet at 0 3.83 and C-2' signal (8 158.5), and between
the signals of H-B at & 7.23 and C-1" (& 113.2), C-2' (O 158.5) and C-6' (O 154.2)
established the 2-OCH; and 6-OH positions. Therefore, the molecular structure of
compound PE08 was elucidated as a new natural product, (E)-5,6-hydroxy-3,2-

dimethoxystilbene.

Figure 12 Chemical structure of (£)-5,6-hydroxy-3,2-dimethoxystilbene
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Table 13 'H, °C NMR and HMBC spectral data of compound PEO8 or (E)-5,6-hydroxy-

3,2'-dimethoxystilbene (in CDCls)

Position O (mult., J in Hz) O HMBC

1 - 140.2 ;

2 6.62 (t, 2.1) 104.9 3,4,6,0
3 - 161.1 -

q 6.32 (t, 2.1) 100.9 2,3,5

5 - 156.8 -

6 6.60 (t, 2.1) 105.8 2,4,5, 0
a 7.09 (d, 17.0) 132.2 1,26 B, 1

7.23(d, 17.0) 121.3 1,0Q,2,6

X - 113.2 -
2 - 158.5 -

3 6.48 (d, 8.1) 103.1 1,2,5
i 7.08 (t, 8.1) 128.6 2,6
5 6.52 (d, 8.1) 108.8 1,3,6
6 - 154.2 -
3-OMe  3.79 (s) 55.4 3
2-OMe  3.83(s) 55.8 2
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4.9. lIdentification of compound PE09

Compound PE09 was obtained as a white powder (15.3 mg, 0.00031% vyield). It
appeared as a reddish brown spot on TLC plate after being sprayed with anisaldehyde
reagent and heated at 105 °C. Its molecular formula was analyzed as Cy,H,00s5
according to the [M+Na]" peak at m/z 355.1369 in the mass spectrum (Figure 59).

The IR spectrum of compound PEQ9 (Figure 58) showed similar absorption
bands to the other stilbenoids previously isolated from this orchid including those of
hydroxyl groups at 3276 cm™, C=C stretching at 1596 cm™, C-O stretching at 1140 cm’
! trans-double bond C-H bending at 957 cm™ and C-H out-of-plane bending of meta-
substituted benzenoid compound at 827, 747 and 687 cm’™.

The 'H NMR spectrum of compound PEQ9 (Figure 60 and Table 14) displayed
resonances similar to those observed for compound PEQ5, especially those of the
para-hydroxybenzyl moiety and ring A of the trans-stilbene skeleton. A methylene
singlet at & 4.00 (H-17) and a pair of two-proton doublets (J = 8.6 Hz) at & 6.68 (H-
4"/H-6") and 7.01 (H-3"/H-7") represented the hydroxybenzyl group, whereas a pair of
meta-coupled doublets (U = 2.1 Hz) at & 6.39 (H-4) and 6.70 (H-6) and a methoxyl
singlet at 8 3.76 (3-OCHs) represented ring A of PE09. Compared to those of PEO5, the
signals of trans-double bond shifted upfield to 0 6.90 (1H, d, J = 16.2 Hz, H-B) and
7.30 (1H, d, J = 16.2 Hz, H-QL). Significant differences were the signal pattern of ring B
aromatic protons at O 7.24 (IH, t, J = 7.2 Hz, H-4"), 7.30 (2H, t, J = 7.2 Hz, H-3'/H-5") and
7.38 (2H, d, J = 7.2 Hz, H-2'/H-6") which suggested an unsubstituted phenyl moiety.

The >C NMR spectrum (Figure 61 and Table 14) exhibited resonances of three
quaternary carbons attached to oxygen atoms at 8 153.4 (C-57), 154.8 (C-5), 159.0 (C-
3). Four double peaks representing four pairs of symmetric carbons appeared at 0
115.1 (C-47/C-6"), 126.6 (C-2'/C-6)), 128.7 (C-3/C-5) and 129.2 (C-3"/C-7"). These data
were supportive of a molecular structure similar to compound PEO5 but with one less

hydroxyl substituent and an unsubstituted phenyl ring.
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Therefore, compound PE09 was identified as (E)-2-(4"-hydroxybenzyl)-5-
hydroxy-3-methoxystilbene and its spectroscopic data were in agreement with
reported values (Garo et al., 2007).

(E)-2-(4"-Hydroxybenzyl)-5-hydroxy-3-methoxystilbene was also found in other
lady slipper orchids including Phragmepedium calurum and P. longifolium. Its cytotoxic
activity against several cell lines such as NCI-H460 (large cell lung carcinoma), NCI-H226
(lung squamous cell carcinoma), NCI-H522 (non-small cell lung adenocarcinoma), PC-
3 (prostate adenocarcinoma), M14 (amelanotic melanoma) and A549 (non-small cell

lung adenocarcinoma), has been reported as moderate (Starks et al., 2012).

Figure 13 Chemical structure of (F)-2-(4"-hydroxybenzyl)-3,5-dimethoxy-5-
hydroxystilbene



Table 14 'H and >C NMR spectral data of compound PE09 (in CDCls) and (F)-2-(4"-

hydroxybenzyl)-5-hydroxy-3-methoxystilbene (in CD;0D)
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Compound PE09

(E)-2<4’’-hydroxybenzyl)-3,5’-

Position dimethoxy-5-hydroxystilbene®
O, (mult,, Jin Hz) O, (mult,, J in Hz)
1 - 138.5 - 140.4
2 - 120.2 - 120.5
3 - 159.0 - 160.6
4 6.39 (d, 2.1) 98.5 6.42 (d, 2.0) 99.6
5 - 154.8 - 158.2
6 6.70 (d, 2.1) 104.2 6.71 (d, 2.0) 104.9
o 7.30 (d, 16.2) 126.4 7.31(d, 16.2) 128.4
B 6.90 (d, 16.2) 130.9 6.91 (d, 16.2) 130.7
iy - 137.4 - 139.5
2 7.38(d, 7.2) 126.6 7.39 (d, 7.5) 127.5
3 7.30 (t, 7.2) 128.7 7.30 (t, 7.3) 130.1
q 7.24 (t, 7.2) 127.7 7.20 (t, 7.3) 128.7
5 7.30 (t, 7.2) 128.7 7.30 (t, 7.3) 130.1
6 7.38(d, 7.2) 126.6 7.39(d, 7.5) 127.5
1 4.00 (s) 29.9 3.98 (s) 30.2
2" - 133.6 - 134.5
37 7.01 (d, 8.6) 129.2 6.94 (d, 8.4) 130.4
47/6” 6.68 (dt, 8.6) 1151 6.63 (d, 8.4) 115.7
5" - 1534 - 156.5
5-OH 4.83 (s) - - -
5-OH  4.63(s) - - -
3-OMe  3.76 (s) 55.7 3.78 (s) 55.9

# Garo et al., 2007



Table 15 HMBC spectral data of compound PEQ9 (in acetone-dy)

'H signal

HMBC correlations with

H-4

H-6

H-aL

H-

H-2"/ H-6’

H-3/ H-5’

H-¢'

H-1"

H-3"/ H-7"

H-4"/ H-6"

5-OH

5"-OH

3-OMe

C-2,C-3,C-5,C-6
C-2,C-4
C-1,C-2, C-6, C-1'
c-Q, C-1, C-2/ C-6
B, c3/c5
-3/ C-5
C-2/ C-6
C-1,C-2, C-3,C-2", C-3"/ C-T"
C-17, C-3/ C-1", C-5
C-2", C-4"/ C-6", C-5"
C-5
C-5"

C-3
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4.10. Taxonomic significance

The trans-stilbenes isolated in this study represented interesting
chemotaxonomic significance. Among these six trans-stilbenes, (£)-3-methoxy-5-
hydroxystilbene (PE03) is the most widely found in nature: it has been reported as a
constituent of pteridophytes, gymnosperms, monocots and dicots. Its wide distribution
might be due to its basic trans-stilbene structure with biosynthetically typical
oxygenations at positions 3 and 5 of ring A, matching the carbonyl positions of acetate
units used in the formation of the stilbenoid skeleton. The 2-para-hydroxybenzyl
substitution on ring A, found in both (E)-3-methoxy-2-(4-hydroxybenzyl)-5,2'-
dihydroxystilbene (PEO5) and (E)-2-(4"-hydroxybenzyl)-3,5-dimethoxy-5-
hydroxystilbene (PE09), occurs limitedly in some members of Orchidaceae (Garo et al.,
2007; Starks et al., 2012) and gymnosperm (Li et al., 2001). Another common feature
in the structures of PE05 and four other trans-stilbenes isolated from P. exul, i.e. (E)-
3,2'-dimethoxy-5-hydroxystilbene  (PE04), (E)-3,5-dimethoxy-5,2"-dihydroxystilbene
(PEQT7), (F)-3,2-dimethoxy-5,6"-hydroxystilbene  (PE08) and  (E)-3-methoxy-5,2'-
dihydroxystilbene (PE11) is the 2-hydroxy or 2-methoxy substitution. Based on the
phenylpropanoid unit which is the biological origin of ring B and double bond of
stilbenes, the position of this hydroxy or methoxy group is more difficult to occur than
the frequently found 4'-oxysubstitution. Previously, the presence of compounds PEO4,
PEO5 and PE11 has been reported only once from the genera Paphiopedilum
(Lertnitikul et al., 2007) and Phragmipedium (Garo et al., 2007), and PEO7 has been
found twice in orchids of the same subfamily Cypripedioideae. The new compound
in this study, (£)-3,2'-dimethoxy-5,6-hydroxystiloene (PE08), also has this feature. It
should be noted that the presence of a hydroxy group at this position is suitably
located for the formation of furan ring in the 2-phenylbenzofuran stilbenes found in
the roots of another Paphiopedilum species, P. godefroyae (Lertnitikul et al., 2007).

Three flavonoids were isolated from Paphiopedilum exul roots including
galangin (PEO1), pinocembrin (PE02) and alpinetin (PE06). PEO1 is a flavonol, whereas
PEO2 and PEO6 are flavanones. However, they all possess unsubstituted B ring, which

is a feature of flavonoids abundantly found in plants of the families Zingiberaceae and



91

Asteraceae. Interestingly, alpinetin has 5-O-methylation, which is relatively rare in

flavonoids and limitedly occurs in some woody plants (Harborne, 1977).

4.11. Cytotoxicity of isolated compounds

Resazurin microtiter assay (REMA) plate method was employed to examine the
in vitro cytotoxicity of compounds isolated from the roots of P. exul against three
cancer cell lines including small cell lung carcinoma (NCI-H187, ATCC CRL-5804),
epidermoid carcinoma of oral cavity (KB, ATCC CCL-17) and breast adenocarcinoma
(MCF-7, ATCC HTB-22) and a normal cell line, African green monkey kidney epithelial
cells (Vero). Percent inhibition of cell growth was used for screening of the cytotoxic
potential of these compounds. Isolated compounds, at a concentration of 50 pg/ml,
were assayed and percent inhibition of more than 50% was considered to be cytotoxic.
Only eight isolated compounds (PE01-05, PEO7-09) were subjected to cytotoxicity
evaluation due to their limited amount and the results are shown in Table 16.
Compounds PEO4, PEO5, PEO7, PEO8 and PEQ9 were cytotoxic against all three cancer
cell lines, and compounds PEO1 and PEO3 were cytotoxic against only two cell lines:
NCI-H187 and KB. All stilbenes were cytotoxic against normal cell line (Vero cells), but
galangin, which is a flavonoid, was not cytotoxic to this cell line. Some of their ICs
values are shown in Table 17.

Topoisomerase | inhibitory activity of these isolated compounds was
investigated using the yeast cell-based assay. The budding yeast Saccharomyces
cerevisiae has been a valuable model for the study of underlying anticancer
mechanism including the inhibition of topoisomerase enzyme. For the RS190 strain,
wild type topl gene of the yeast cell was deleted and Top/ gene of Arabidopsis
thaliana was inserted into expression vector containing strong inducible promoter,
PGAL1, so that galactose can promote the production of topoisomerase | enzyme from
this gene (Sirikantaramas et al., 2008). To evaluate topoisomerase | inhibitory activity,
survival of the gene-engineered yeast was determined by comparison to the viability
of yeast colonies in the vehicle control culture (DMSO plate) and positive control

culture (CPT plate) on agar media containing glucose and galactose. The
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pharmacological effect of topoisomerase-targeted anticancer drugs results from the
formation of enzyme/DNA cleavage complex called topoisomerase poison (Pommier
and Osheroff, 2012). Therefore, the parallel models between glucose and galactose
cultures were established to compare yeast cell viability in the absence or presence
of topoisomerase | enzyme, respectively. In the presence of topoisomerase | poison
compound, the enzyme which is plentiful in galactose culture would be trapped in
the form of enzyme/DNA cleavage complex. This complex is cytotoxic to yeast cells
and can cause cell death. On the other hand, yeast cells in glucose culture do not
produce topoisomerase | enzyme, thus the cells can survive in the presence of poison
compound (Woo et al., 2001). As can be seen from the result presented in Table 18
and 19, both compounds PEO1 and PE02 caused cell death in galactose culture but
not in glucose culture, suggesting their action as topoisomerase | poison. On the other
hand, compounds PEO3, PEO4, PEO8 and PEQ9 inhibited yeast cell growth in both
cultures but displayed less potential in the g¢lucose culture. Therefore, these
compounds might act as topoisomerase | poison in combination with other
mechanisms of cytotoxicity.

Galangin (PE01) has been reported to be cytotoxic against several cell lines
including OE33 human oesophageal adenocarcinoma (Wang et al., 2011), A549 human
lung carcinoma (Ludwiczuk et al., 2011) and PANC-1 human pancreatic cell lines (Li et
al., 2010). Many underlying cytotoxic mechanisms of galangin has been investigated.
Previous reports revealed that galangin inhibited TNF- alpha gene expression
(Ludwiczuk et al., 2011), induced apoptotic cell death, decreased Bcl-2 level in cells,
caused cell arrest in GO-G1 phase (Tolomeo et al., 2008) and inhibited topoisomerase
| activity (Zhao and Zhang, 2015). This study provides supporting data for its
topoisomerase | inhibitory activity and suggests that the flavonol could act as an
enzyme poison. Furthermore, galangin displayed no cytotoxic effect on normal cell
line in this study. Based on numerous reports and the result from this study, among
the compounds isolated from P. exul, galangin appears to have the most potential to
be developed as an anticancer. Other compounds including compounds PEO4, PEO5,

PEO7, PEO8 and PE09 have been rarely investigated for their biological activities and
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these data will hopefully be useful for further study on drug discovery from natural

sources.

Table 16 Cytotoxicity of isolated compounds (reported in percent inhibition of cell

growth)
% inhibition
Compound

KB MCF-7 NCI-H187 Vero
PEO1 90.57 43.27 80.61 15.49
PEO2 7.10 -15.87 8.88 n.d.
PEO3 92.12 45.60 99.36 97.89
PEO4 98.81 66.76 100.05 98.41
PEO5 99.00 99.89 100.43 93.71
PEO6 n.d. n.d. n.d. n.d.
PEO7 98.71 98.83 100.17 99.37
PEO8 96.86 92.92 100.00 95.63

PEO9 98.95 98.38 99.95 95.42




Table 17 Cytotoxicity of isolated compounds (reported in ICs, values)

ICso = SD (uUM)

Compound
KB MCF-7 NCI-H187

PEO1 102.25 + 29.12 Inactive 57.02 + 2.27
PEOZ Inactive Inactive Inactive
PEO3 124.11 + 21.54 Inactive  118.67 + 30.21
PEO4 49.08 + 19.29 74.85 + 3.71 46.70 + 11.52
PEO5 n.d. n.d. n.d.
PEO6 n.d. n.d. n.d.
PEQO7 n.d. n.d. n.d.
PEO8 n.d. n.d. n.d.
PEO9 n.d. n.d. n.d.
Doxorubicin 4.38 + 1.34 15.69 + 1.75 0.24 + 0.06
Ellipticine 2.68 £ 0.41 n.d. 11.41 + 0.85
Tamoxifen n.d. 18.52 + 0.89 n.d.
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Table 18 Topoisomerase | inhibitory activity of vehicle control (1% DMSO) and

positive control (camptothecin 10 pg/ml) evaluated by yeast cell-based assay

Compound

Glucose-containing

culture

Galactose-containing

culture

Vehicle control

(1% DMSO)

Positive control

(Camptothecin 10 pg/ml)

Positive control

(Camptothecin 5 pg/ml)

Positive control

(Camptothecin 2.5 pg/ml)
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Table 19 Topoisomerase | inhibitory activity of isolated compounds evaluated by

yeast cell-based assay

Tested Glucose-containing culture Galactose-containing culture

compounds 100 UM 50 uM 100 pM 50 uM

PEO1

PEO2

PEO3

PEO4

PEO5

PEO7

PEO8

PEO9




CHAPTER 5
CONCLUSION

The methanolic extract of the roots of Paphiopedilum exul, a lady’s slipper
orchid native to the south of Thailand, was cytotoxic against small cell lung cancer
cell line (NCI-H187). Isolation process for the determination of its cytotoxic constituents
yielded one new compound, (E)-5,6"-hydroxy-3,2"-dimethoxystilbene, and eight known
compounds including five stilbenes, (£)-5-hydroxy-3-methoxystilbene, (£)-5-hydroxy-
3,2'-dimethoxystilbene, (£)-2-(4"-hydroxybenzyl)-5,2"-dihydroxy-3,5-dimethoxystilbene,
(E)-5,2-dihydroxy-3,5"-dimethoxystilbene and  (E)-2-(4"-hydroxybenzyl)-5-hydroxy-3-
methoxystilbene, and three flavonoids: galangin, pinocembrin and alpinetin. The 2'-
hydroxy substitution observable in three isolated trans-stilbenes appears to be
characteristic of orchids in the subfamily Cypripedioideae and might be
chemotaxonomically significant.

In vitro cytotoxicity of the isolated compounds was evaluated by rezasurin
microtiter method against three cancer cell lines (NCI-H187, KB and MCF-7) and a
normal cell line (Vero). Results of the assay showed that (£)-5-hydroxy-3,2-
dimethoxystilbene, (E)-2-(4"-hydroxybenzyl)-5,2"-dihydroxy-3,5-dimethoxystilbene, (E)-
5,2-dihydroxy-3,5-dimethoxystilbene, (E)-5,6-hydroxy-3,2"-dimethoxystilbene and (£)-
2-(4"-hydroxybenzyl)-5-hydroxy-3-methoxystilbene, at 50 ug/ml, were cytotoxic against
all three cancer cell lines, whereas galangin and (£)-5-hydroxy-3-methoxystilbene were
cytotoxic against only NCI-H187 and KB cell lines. All stilbenes were cytotoxic against
Vero cells, but the flavonoid galangin, which was cytotoxic to both KB and NCI-H187
cell lines, was not cytotoxic to normal cell line. Furthermore, topoisomerase |
inhibitory activity of these compounds was examined using the yeast cell-based assay.
The results demonstrated that galangin and pinocembrin might act as topoisomerase
| poison, while (E)-5-hydroxy-3-methoxystilbene, (E)-5,6"-hydroxy-3,2'-
dimethoxystilbene and  (£)-2-(4"-hydroxybenzyl)-5-hydroxy-3-methoxystilbene, in

addition to acting as topoisomerase | poison, might possess other mechanisms of
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cytotoxicity. This study is the first report of chemical constituents of P. exul and their

cytotoxicity.
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Figure 44 °C NMR (75 MHz) spectrum of compound PE06 in DMSO-dj

+1.584a T $ t
6.200
CASDIV.> T 1
| ,
e Y,
+8.8684 - . , M ok
200 .8 S58.0¢(HM-DIV. ) 580 .0
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Figure 46 IR spectrum of compound PEQ7
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Table 20 Media formula for yeast culture

concentration
Ingredients
(g/L)
1. Growth media (YPD media) (Difco™)

1.1.  Broth
Yeast extract 10.0
Peptone 20.0
Dextrose 20.0

1.2.  Agar
Yeast extract 10.0
Peptone 20.0
Dextrose 20.0
Agar 15.0

2. Synthetic complete media lacking uracil (S.C. ura” media)

2.1.  Glucose containing agar medium
Yeast nitrogen base (Difco) 6.7
Amino acid mixture lacking uracil (Sigma) 1.92
Bactro™ agar (Difco) 20.0
Dextrose (Difco) 20.0

2.2.  Galactose containing agar medium
Yeast nitrogen base (Difco) 6.7
Amino acid mixture lacking uracil (Sigma) 1.92
Bactro™ agar (Difco) 20.0
Galactose (Difco) 20.0




136

VITA

Miss Naphatsawan Pooreecharirot was born on January 23, 1991 in
Bangkok, Thailand. She received her Bachelor’s degree in Pharmaceutical Sciences

from Chulalongkorn University in 2013.
Poster Presentation:

Naphatsawan Pooreecharurot, Nonthalert Lertnitikul, Rutt Suttisri and
Suchada Sukrong. Stilbenes from Paphiopedilum exul roots. 32nd International
Annual Meeting in Pharmaceutical Sciences “Pharmaceutical research for the local
needs and international collaborations”, March 10 - 11, 2016, Faculty of

Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.



	THAI ABSTRACT
	ENGLISH ABSTRACT
	ACKNOWLEDGEMENTS
	CONTENTS
	LIST OF TABLES
	LIST OF SCHEMES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS AND SYMBOLS
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 LITERATURE REVIEW
	2.1. Historical review of Paphiopedilum exul
	2.1.1. Family Orchidaceae
	2.1.2. Subfamily Cypripedioideae
	2.1.3. Genus Paphiopedilum
	2.1.4. Paphiopedilum exul

	2.2. Chemical constituents of orchids in the subfamily Cypripedioideae
	2.2.1. Stilbenes
	2.2.2. Flavonoids
	2.2.3. Miscellaneous

	2.3. Anticancer and topoisomerase-targeted drug development
	2.3.1. Cancer and drug discovery
	2.3.2. Topoisomerase-targeted anticancer agents


	CHAPTER 3 EXPERIMENTAL
	3.1. Source of Plant Materials
	3.2. General Techniques
	3.2.1. Analytical Thin Layer Chromatography (TLC)
	3.2.2. Column Chromatography
	3.2.2.1. Conventional Column Chromatography
	3.2.2.2. Size-Exclusion Column Chromatography

	3.2.3. Spectroscopic Techniques
	3.2.3.1. Ultraviolet (UV) Spectra
	3.2.3.2. Infrared (IR) Spectra
	3.2.3.3. Mass Spectra
	3.2.3.4. Proton and Carbon-13 Nuclear Magnetic Resonance (1H and 13C NMR) Spectra

	3.2.4. Optical Rotation

	3.3. Extraction and Isolation of Compounds from Paphiopedilum exul Roots
	3.3.1. Isolation of compounds PE01 and PE02
	3.3.2. Isolation of compounds PE03 and PE04
	3.3.3. Isolation of compound PE05
	3.3.4. Isolation of compound PE06
	3.3.5. Isolation of compound PE07
	3.3.6. Isolation of compounds PE08 and PE09

	3.4. Physical and spectral data of isolated compounds
	3.4.1. Compound PE01
	3.4.2. Compound PE02
	3.4.3. Compound PE03
	3.4.4. Compound PE04
	3.4.5. Compound PE05
	3.4.6. Compound PE06
	3.4.7. Compound PE07
	3.4.8. Compound PE08
	3.4.9. Compound PE09

	3.5. Evaluation of Cytotoxicity
	3.5.1. Cytotoxicity against cancer cell lines
	3.5.2. Topoisomerase I inhibition using yeast cell-based assay
	3.5.2.1. Construction of yeast
	3.5.2.2. Media for yeast culture
	3.5.2.2.1. Growth media (YPD media) (DifcoTM)
	3.5.2.2.2. Synthetic complete media lacking uracil (S.C. ura- media)

	3.5.2.3. Yeast cell-based assay of topoisomerase I inhibition



	CHAPTER 4 RESULT AND DISCUSSION
	4.1. Identification of compound PE01 (galangin)
	4.2. Identification of compound PE02 (pinocembrin)
	4.3. Identification of compound PE03
	4.4. Identification of compound PE04
	4.5. Identification of compound PE05
	4.6. Identification of compound PE06 (alpinetin)
	4.7. Identification of compound PE07
	4.8. Structure elucidation of compound PE08
	4.9. Identification of compound PE09
	4.10. Taxonomic significance
	4.11. Cytotoxicity of isolated compounds

	CHAPTER 5 CONCLUSION
	REFERENCES
	APPENDIX
	VITA

