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CHAPTER 1

INTRODUCTION

In 2004, Tao Luo and Tong Yang [I] studied some properties of solutions to
the flood wave equation in the space of BV functions. Let v > 0 and h > 0 be
the velocity and depth of the water at a point x € R and time ¢, respectively,
v o= % and g be the gravitational acceleration. Given that ¢ = gcosa and
S = tana, where 0 < o < 7'is'the angle between the river and the ground, and
p(v) = 1g'v™2. Let £ be the space variable. Let .z = fé(t) h(y,t)dy, where £(t) is
an arbitrary particle path satisfying f(t) = u(&(t),t). The motion of flood wave

can be modelled by the system.of conservation laws:

Vp—Uqp=0

'S = Csu’v
w o=

(1.1)

where C; > 0 is a constant frictional coefficient and § > 0 is a small relaxation
parameter. Normally, there is no general method for solving system of the form
(1.1) with a given initial data.

In [2], the vanishing viscosity method is explained. This method is an indirect
way to solve for solutions of a hyperbolic system of conservation laws in general.
It approximates the solution of a problem with a parabolic system by adding vis-
cosity terms. An important key step in applying the vanishing viscosity method
is to obtain L°°-bounds for solutions. The obtained L*°-bounds of the parabolic
system then lead to existence of weak solution to system (|1.1)).

In 1977, K.N. Chueh, C.C. Conley and J.A. Smoller [10] introduced the concept



of positively invariant regions for the study of reaction-diffusion systems. Exis-
tence of such regions lead to a priori bounds of solution. The obtained a priori
bounds can be used to derive the existence of solutions of the original conservation
laws systems using standard techniques. The method of invariant regions however
cannot be directly applied to the nonhomogeneous system due to the source
term. In 1997, Weifu Fang and Kazufumi Ito [11] extended the arguments from
[9] and [10] to the concept of expanding invariant region for general nonhomoge-
neous system. The method of expanding invariant region yields L*>*-bound of the
solution to nonhomogeneous system., The method of positively invariant region
and expanding invariant region-will be introduced in chapter 2.

In this work, we consider the model of the motion to flood wave (|1.1)) when

0 = 1. Hence we consider the equations

Vg — Uy =0,
(1.2)

ur ¥ p(v)y=9'S~ Cru’v.
The purpose of this thesis is-to prove a priori L*-bound of solution to the problem
consisting of the viscosity approximate parabolic system associating with
with initial condition.

The thesis is organized into five chapters as follows.

In Chapter 2, we introduce basic knowledge. Moreover, the positively invariant
region and the expanding invariant region are explained. In Chapter 3, we briefly
explain some characteristics of the flood wave equations . For convenient of
the reader, we prove that this system is strictly hyperbolic and give the right and
left eigenvectors of its Jacobian matrix. In addition, we show that the system
(1.2) is genuinely nonlinear. The Riemann invariant and a pair of an entropy-
entropy flux are given. In Chapter 4, we explain the vanishing viscosity method

which considers a viscosity parabolic system having solution (v¢(x,t),u®(x,t))



associating with the system . Our main results will be presented in the final
chapter, Chapter 5. Here, we prove an a priori L>*-bound for the solution v* and
also prove the positivity of the solution u® to the viscosity parabolic system. We
prove that the trajectory of the solution (v*(z,t),u®(z,t)) is inside an expanding
invariant region. Moreover, a priori bound which is an upper bound of solution

u®(z,t) and a lower bound of solution v*(z,t) are obtained.

Flood Wave Equation

We close the introduction with the physical reasoning behind the flood wave
equation.

Physically, in [12], the author explained a flood as a large body of water
increases and overflows onto/a dry land, or generally, according to hydrologists
a flood may be characterized as a discharge rate in a stream or a river which
exceeds an acceptable threshold value and is often an expression of the variability
of rainfall in the river.

In [13], the mathematical reasoning behinds the flood wave equation is given.
For a steady flow model in a river, the frictional force of the river bed and the
gravitational force are balanced. In an unsteady flow, we consider the case of a
broad rectangular channel of constant inclination a. Define  to be the space
variable and t the time variable. Let h be the depth of water and u the velocity
of water where both are functions of (x,t). The conservation of fluid in a unit
breadth is

—/ hda + [hu)"t = 0. (1.3)

Since the frictional force and the gravitational force may not balance in this case,

we must add a condition of the conservation of momentum. The appropriate



equation in hydraulic theory is
1 1

d 1 z1 x]
pr hudw—i—[huﬂ%—i—bgh%osa} —/ ghsinozdx—/ Crudr  (1.4)

x2
where zo < o < x; and (Y is a constant frictional coefficient. Assume that h

and u are continuously differentiable. Dividing by x; — x5 and taking the limit

x1 —xo — 0 to (1.3)) and (1.4), we obtain

(hu); + (hu* + 1g'0*) = ghS — Cpu?

where ¢’ = gcosa and S = tana. The system (|1.1)) is obtained from changing a

form of (1.5 in Lagrangian coordinates.



CHAPTER II

PRELIMINARIES

In this chapter, we give basic knowledge which will be used in this thesis.
The concept of positively invariant region and the expanding invariant region are

explained.

2.1 Basic knowledge and notations

In this section, we give necessary definitions and important theorems for study-
ing this work. Examples of strictly hyperbolic equations and systems will also be

given.

Definition 1. ([2], Systems of Conservation Laws)
Let Q) be an open subset of R" and f : Q"= R"™ a smooth function. A 1-

dimensional system of conservation laws has the following form

w+ f(u)y =0 (x,t) € R x [0,00) (2.1)

where u = (uy, g, ..., Up )T

is a vector-valued function from R x [0, 00) into 2 and
the flur-functions are f(u) = (fi(u), fo(u), ..., fu(uw))t. When the right hand side
of (2.1) is a nonzero function, it is called a nonhomogeneous system. The system

(2.1) can be written in a nonconservative form:
u + A(u)u, =0 (2.2)

where

a0 = (5ow) 23




is the Jacobian matrixz of the map u— f(u).

Definition 2. ([2], Cauchy problem) Let 2 be an open subset of R" and u :
R x [0,00) — Q. The problem, consisting of the system (2.1)) with an initial

condition

u(z,0) = ug(x) reR (2.4)

where uy is a given function from R into 2, is called a Cauchy problem or an

initial value problem (IVP).

Definition 3. ([3], Hyperbolic Systems of Conservation Laws)

The system (2.2)) is called hyperbolic if the matriz A(u) has n real eigenvalues

X () £2600) < . LA (u)

and n linearly independent corresponding right eigenvectors r;(u) and left eigen-

vectors lj(u), i.e., for any 1 < j <,

Alwyri(u) = X;(u)ri(u) (2.5)

and

() A(w) = Aj(w)l(w) (2.6)
respectively. It is called strictly hyperbolic if, for any 1 < j < n, the eigenvalues
A (u) are all distinct. If X\i(u) = \j(u) for some 1 <1i,j <n, then 1s called

nonstrictly hyperbolic or hyperbolically degenerate.

Example 1. ([2], The p-system)
A model for one-dimentional isentropic gas dynamics in Lagrangian coordi-
nates is given by

v — Uy =0
(2.7)

Uy +p<v>x =0



where v is the specific volume, u is the velocity and the pressure p(v) = Av~7 for
some constants A > 0 and v > 1. The system ([2.7)) is a system of conservation

laws because it can be written as

v —u
where U = , F(U) = and Q = {(v,u) € R? : v > 0}. The Jacobian
u p(v)
matrix of F(U) is
0, -1
A) =
pe) 8

The characteristic equation for the matrix A(U) is

=)\ 1
det(A — XI) = det =X\ +p'(v) =0.

Pw) 1 —A

Thus the two eigenvalues are A\j = —/(—p/(v)) and Ay = /(—p/(v)). If p'(v) < 0,
then \; < A\y. Hence ([2.7)) is strictly hyperbolic when p'(v) < 0.

Definition 4. (Gradients)
Let 2 be an open subset of R™ and let f be a function from € into R™. The

gradient of a function f is defined by

of of
Vf=— n
f au1€1 + ...+ 3 ne
where each f = (fi,..., fn) is expressed in a row matriz and e;, 1 < j < n,

denotes the column vector with a 1 at the j coordinate and 0 elsewhere. We

denote Df = VfT.

Definition 5. ([{l/, Genuinely nonlinear systems)

The system (2.2)) is called genuinely nonlinear in the \; characteristic field if

V)\f'f’]#o



If V)\;F -r; = 0 for some 1 < j < n, then the system (2.2) is called linearly

degenerate in the \; characteristic field.

Definition 6. ([, Riemann invariants)
Let Q2 be an open subset of R™ and w; be functions from ) into R for j =
1,2,...,n. Then the function w; = w;j(u) is called Riemann invariants of system

(2.2) corresponding to \;, if the following equation holds:
Vw;r -r; = 0.

Definition 7. ([2], Entropy-entropy fluzes)
Suppose Q) is a convexr open subset of R™. Then a convex function n: Q — R
is called an entropy for-the system of conservation laws (2.1)) if there exists a

function q : Q — R called an entropy flux such that
V! () A{u) = V" (u) (2.8)

where A(u) is the Jacabian matriz (2.3). In particular, if (2.8) holds, then all
classical solution of (2.1) satisfies the following equation

0 0
ot (u) + %Q(U) =0. (2.9)

Definition 8. ([6], LP Spaces)

Let (X, 0, 1) be a measure space. Suppose f is a measurable function on X

1/p
Ity = | 1#Pan]

and 0 < p < 0o. Define

The LP space is defined by
IP(X)={f: X — C: f is measurable and ||f||, < oo}.

Define

| flloe = inf{a >0 p({z : [f(2)| > a}) = 0}



The L™ space is defined by
L®(X)={f: X — C: f is measurable and ||f||s < c0}.

Proposition 1. ([6]) If f € L'(X), then

’/fdu‘ < /\f!du-

Theorem 1. ([6], Héolder’s inequality)

1 1
Let (X,9M, 1) be a measure space. Suppose 1 < p,q<oo and —+—-=1. If f
p q

and g are measurable functions on X, then

gl < Hittiptglly
In particular, if f € LP(X) and'g € L4(X), then fg € L'(X).

Theorem 2. ([7], Fubini’s/theorem,)
Let (X, M, u) and (Y, Mv) be a—finite measure spaces. Suppose f: X XY —

C 1s an M x N—measurable function. If

[ bt =so—or— [ 17ldudv < .
XxY Chutal X ( fxdy) feR /Y (/X fydu> v
I

where fo(y) = f(z,y) and f(x) = f(z,y).

then

Definition 9. ([§], Sobolev spaces)
The space WH5P(Q) consists of all locally summable functions w : Q — R such
that D*w exists in the weak sense and belongs to LP(S2) for each multiindex o with

la| < k. It is called a Sobolev space. If p =2, we denote
H*(Q)=W*(Q) (k=0,1,2,..)

and it is a standard result that H*(Q) are Hilbert space for all integers k. In

particular, if u € H'(R x (0,7T]), then
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/ |u]2dtd1:,/ |Oyul*dtdr  and / |0, u|*dtdx
RX (0,7 Rx(0,T] Rx (0,T]

are finite.

Lemma 1. ([§/, Cauchy’s inequality with €)
Let a,b >0 and € > 0. Then

b2
ab < ea® + —.
4e

Lemma 2. ([§/, Gronwall’s inequality; integral form)

Let € be a nonnegative and continuous function on [0,T]. If

t
giy<c / E(s)ds
0
for some constant C > 0 for all 0-< ¢ <11, then

E(t) =0 foriall 0 <t <T.

2.2 Positively invariant regions and expanding invariant

regions

In this section, we give definitions of positively invariant regions and quasi-
convexity. We also explain the concept of an expanding invariant region and state
the main theorem.

In [9], they consider the smooth solution u(x,t) € R" of the following nonlinear

systems of reaction-diffusion
u = eD(u, )y, + M(u, x)u, + H(u,t) (x,t) € Q x [0, 00), (2.10)

with the initial data

u(z,0) = ug(x) zr € (2.11)
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where € > 0, € is an open interval in R, D(u,x) and M (u,x) are matrix-valued
functions defined on an open subset U x V.C R" x Q, D > 0 and H(u,t) is a
smooth mapping from U x [0, 00) into R™.

Assume that this problem has a local (in time) solution on some set X of
smooth functions from Q to R™. In other words, given a function ug(z) in the set
X, there is a positive number § and a smooth solution u(x,t) of and

defined for x € Q and t € [0,0) such that u(-,t) € X for all 0 < ¢ < 4.

Definition 10. ([9/, Positively invariant regions)
Let X be a closed subset-of R™. If-a solutionu(x,t) of (2.10) and (2.11) having
initial and boundary values 'S, satisfies u(x, t) € ¥ for all x € Q and t € [0, 6),

then X is called a positively invariant region for the local solution defined by (2.10))
and (21).

According to [9], the invariant regions 3 of (2.10]) and (2.11)) has the form

i ﬁ{u c U G,(w)yx 0} (2.12)

J=1

where G are certain smooth real-valued functions depending on D, M, and H.

Now, we recall the definition of quasi-convexity.

Definition 11. ([9/, Quasi-convezity)
The smooth function G : R™ — R s called quasi-convex at v if whenever

dG,(n) =0, then d*G,(n,n) > 0.

Theorem 3. ([9]) Let ¥ be defined by (2.12)). Suppose that for allt € [0,00) and
for every ug € 0% (so Gj(ug) =0 for some j), the following conditions hold:

(1) VGT is a left eigenvector of D(ug, ) and M (ug, ) for all x € Q;

(2) If VG D(ug, x) = pVG] with i # 0, then G is quasi-conves at ug;

(3) VG - (H) <0 at ug, for allt € RY.
Then ¥ is invariant for (2.10)), for every t € [0, 00).
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This invariant region enables us to get an L°°-bound which constitutes an
important key step in applying the vanishing viscosity method.

In [I1], they study a problem consisting of a system of a form
Up = Uy + M (u, z)u, + H(u, x,t) (x,t) e R x [0,T), (2.13)

with the initial data

u(z,0) = up(x) reR (2.14)
where € > 0, M (u,z) is matrix-valued function defined on R" x R and H (u, x,t)
is a smooth mapping from R™ x R x [0,7) into R™. Since the method of invariant
regions cannot be applied to this nonhomogeneous system, [I1] extended the con-

cept of invariant region (2.12)) from [9] and [10] to the expanding invariant region

which depending on ¢ of general nonhomogeneous system
k
S(t) A [ € R Gi(u) < Ae*'} (2.15)
j=1
where w and A are two constants.
The following theorem'states-under-certain-circumstances that the solution of

(2.13) with initial data (2.14)) stay inside the expanding invariant region ([2.15).

This theorem will be used to prove our main theorem.

Theorem 4. ([11]) Let u(x,t) be a smooth solution to with initial data
(2.14), and X(t) be defined by for some constants A and w. Suppose for
(to,up) such that ug € 9%(tg) (i.e. G;(ug) = Ae*™ for some j), the following
conditions hold:

(1) VGT at ug is a left eigenvector of M (uo, x) for all x;

(2) G, is quasi-conver at ug;

(3) VGT - (H) < wAe“™ for all x € R and at (t,u) = (to, uo)-

Then the tragectory u(x,t) is inside 3(t) for all time t > 0; that is,

Gi(u(z,t)) = Ae** for all j =1,2, .., k.



CHAPTER III
CHARACTERIZATION OF THE SYSTEM OF
HYPERBOLIC CONSERVATION LAWS FOR

A MOTION OF FLOOD WAVE

In this chapter, we characterize the system of conservation laws which is
the main system of this work.“We prove that the flood wave equations are strictly
hyperbolic and give the right and left eigenvectors of the Jacobian matrix to this
system expressed in noncongervative form. We use the right eigenvectors to prove
genuine nonlinearity and to' find the Riemann invariants of the our system. In
addition, a pair of entropy-entropy flux is given. These results are standard and
can be found in the lituratures. However, for completeness and for convenience

of the reader we shall provide the derivations.

3.1 Main system

The system ([1.2]) can be written in the vector equation form as follow:

U+ FU),=HU) (x,t) € R x [0, 00) (3.1)
v —u 0
where U = , F(U) = and H(U) =
u p(v) gS — Cpuv

The nonconservative form of the system (3.1)) is

U, + A(U)U, = H(U) (z,1) € R x [0, 00) (3.2)
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where
on, oh 0o -1
AU) = :; ;: = (3.3)
5 o —gv 0
Fi(v,u) —u
is the Jacobian matrix of F'(U) = =
Fy(v, u) p(v)

3.2 Strict hyperbolicity

We show that the system ({3.2)) is strictly hyperbolic.
Proposition 2. The system (3.2) is strictly hyperbolic if and only if 0 < v < 0.

Proof. We want to find the eigenyalues of the Jacobian matrix A(U). From (3.3),

we have
0 =7 A0 . -1
A—- )M = - =
—gv3 0 0 A\ —g'v3 =)\
Then
=2 1
det(A — AXI) = det =\ g3
—g'?)fg' YD

Hence the two eigenvalues \;, j = 1,2, which satisfy det(A — \;I) =0, are

A = —/g'v 32 (3.4)

and

Ao = /gv 32 (3.5)
where ¢’ = g cos « is a positive constant. Since the assumption 0 < v < 0o and a
constant /¢’ > 0, A\; and )\, are two real distinct eigenvalues. Hence the system
(3.2)) is strictly hyperbolic. Conversely, if the system (3.2) is strictly hyperbolic,

then \; # \y. It is clear that 0 < v < oc. O
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3.3 Eigenvectors

In this section, we want to find the right and left eigenvectors of the Jacobian
matrix (3.3 corresponding to the eigenvalues \; and Ao. The right eigenvectors
will be used to prove genuine nonlinearity and to find Riemann invariants of the

system (3.2) in the next section.

T
Proposition 3. Let U = (v u) . The two right eigenvectors of the Jacobian

matriz (3.3)) are

1
T{U))= (3.6)
NG
and
1
7o (U) = : (3.7)

gt
Proof. For the eigenvalue \; = —y/g/v 22 by (2.5)), the right eigenvector r; satis-

fies
0 —1
r(U) = —/gv**r(U).
30
That is
! YT ) = hen)
= a7 T1 = loxal1 .
_ —3/2
\/EU _glv—f} 0
Thus

RN e
T L

a
Let a,b € R and r1(U) = . (3.8) becomes
b

-1 1/y/gv=3/? a
g 1 |\
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Then we get b = /g'v—3/2a. Hence

1
Vg

Tl(U) =

is a right eigenvector corresponding A;. For the eigenvalue Ay = /g'v=%/2, we

repeat the same procedure to get a right eigenvector

1
o

TQ(U) ==

corresponding \s. O

Proposition 4. Let U = (v U)T. The two left eigenvector of the Jacobian
matriz are

I(U) = (1 1/\/g7v_3/2>
and

Y= {1 1z

Proof. For the eigenvalue A, = =y/g/v=%% by (2.6]), the right eigenvector [; satis-

fies

0 1

1L(U) = —\/gv 3P (U).
—gv3 0

That is

I N

ll(U) - ll<U)[2><2.
g VT 0

Thus

_ /U73/2
L(U) ! YV ~0 (3.9)

N
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Let a,b € R and [;(U) = <a b). (3.9) becomes

Cof e

N I

Hence we get b = Therefore,

no) = (1 1)

For the eigenvalue Ay = /g'v™%/2, we repeat the same procedure to get a left

eigenvector

W01 i)

corresponding A,. O

3.4 Genuine nonlinearity

In this section, we prove that the system (3.2)) is genuinely nonlinear in the A,

and Ay characteristic field where \; and X, satisty (3.4) and (3.5)), respectively.

Proposition 5. The strictly hyperbolic system (3.2)) is genuinely nonlinear in the
A1 and Ay characteristic field where Ay and Ay satisfy (3.4) and (3.5)), respectively.

Proof. If \y = —/¢g'v=3/2, consider

O\ O SVgv 0 SVgv

V)\l = —€1 + ——— €y = + =
ov ou 0 0 0

Then

1

3
= 5 ﬂv_5/2.
/g’v_3/2

Since g’ = g cosa where 0 < o < 7,

0<g <g. (3.10)
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We have

Vg #0. (3.11)
Since the system is strictly hyperbolic, by Proposition , 0 < v < oo. Hence
VA .p) = g\/?v_w 2 2 0. Therefore, the system is genuinely nonlinear in
the \; characteristic field.

If Ay = +/g'v=3/2, consider

=3 /77, —5/2 =3 Jaly—5/2
15)) 3D Vg'v 0 Vg'v
VA = (’3_261 + 8_262 = + =17

v u 0 0 0

Then

1

-3
3/2 T2 \/3075/2'
V=g

VA; -1y = (:2-3\/?@*5/2 0)

3
From (3.11)) and 0 < v < og, VAL 1y = ~2—\/Ev_5/2 # 0. Hence (3.2)) is also

genuinely nonlinear in the Ay characteristic field. O

3.5 Riemann invariants

The Riemann invariants are useful for obtaining the expanding invariant re-
gion which leads to obtaining the L —bound. In this section, we will find the two

Riemann invariants of the system (3.2)) corresponding to the eigenvalues A\ and A.

Proposition 6. The two Riemann invariants of the system (3.2)) corresponding

to A\ and X\g are

r(U) = u+ 2y/gv /2
and

s(U)=u— 2\/?1)_1/2,

respectively.
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Proof. Since the Jacobian matrix (3.3) have two eigenvalues, we will consider two

cases.

1
If \y = —/g'v™3/% we have r(U) = . By Definition |6], the Rie-

Viiak

mann invariant r which corresponds to \; satisfying

V’I“T-T’lz(& &) ! =0.
ov Ou Vv 32

That is

or //0»3/2?1

oo VI ou

v =0

From [2], we have

r(U) =u— / VgmT dm = u + 2y/g'v V2 (3.12)

1
If Ay = /g'v™%/2, we have rs(U) = . By Definition |6], the Rie-

T

mann invariant s which corresponds to X5 satisfying
{)
Vst g = (_8_3 %> . =0.
ov Ou _ \/?,0_3/2
That is

s /U—3/2%

Ov g ou 0

From [2], we have

s(U) =u+ / Vom ™ Pdm = u — 2y/gv 2, (3.13)

3.6 Entropy-entropy fluxes

In [2], having a pair of an entropy-entropy flux for the system of conservation

laws ([2.1)) is a required condition of the vanishing viscosity theorem. It is a main
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theorem used to prove existence of weak solution to the system of conservation

laws ([2.1]). In this section, we give a pair of an entropy-entropy flux for our system

B2).

Proposition 7. A pair of an entropy-entropy fluz of the system (3.2)) is

/ /

=, 14
- and q(U) = 2 (3.14)

s

2
u
U(U)—TJF

(\]

Proof. We want to find (n(U), q(U)) such that V' (U)A(U) = V¢ (U) where
A(U) is the Jacobian matrix (3.3]).  We multiply the first equation of (1.2]) by

—p(v) and the second equation of (1.2) by z. Then we have
=p(v)vy+ ple)u, =0
wu A4 ap(0)e=ni (g'S — Cruv) .
Adding these two equations together, we obtain
—p(v)v; + p(v)i,; Fuuy Fup(v); = (g'S — Cru’v).

That is

2 (BOREY LAt

where P(v) is a primitive of p(v). We see that (3.15]) is nonhomogeneous form of

P(v) = /p(v) = /%g'v‘de = _25/
Let n(U) = v P(v) = u; + % and ¢(U) = p(v)u. We have
T _ g, —2
Vi (U) = (511 u) (3.16)

and

V¢ (U) = (—g’uv_3 %M) : (3.17)



By (3.16]) and (3.17)), we have

’ 0
Vi () AW) — (im—2 u)
2 g
=Vq'(U)

Hence a pair of an entropy-entropy flux of (3.2)) is

U2 g/
M) =+ L q(U) =

21



CHAPTER IV

VANISHING VISCOSITY METHOD

In this chapter, the vanishing viscosity method is introduced. In addition, we

give the viscosity parabolic system of flood wave equations.

4.1 Introduction

The vanishing viscosity method;is explained in [2]. This method is useful for
studying weak solutions of hyperbolic systems. For this method we shall consider
a parabolic system which is' obtained from the hyperbolic system by adding an
additional viscosity term with a small parameter ¢ > 0. Explicitly, given a small

parameter ¢ > 0, a parabolic system associating.with (2.1)), (2.4)) is
u; + f(u®), = eu,, (4.1)

us (2,0) = ug(x) (4.2)

where euZ, is called a viscosity term and uf(z) — ug(z) as € — 0.

The following theorem is taken from [2].

Theorem 5. [2] Assume that (2.1) admits an entropy V with entropy fluzes F.

Let (u®). be a sequence of sufficiently smooth solutions of (4.1) with
|[uf || oo xr+) < C, (4.3)

w—u as €—0 ae in RxRT,



23

where C' > 0 is a constant independent of . Then u is a weak solution of ({2.1))

and it satisfies the entropy condition

0 0

<
5 F(u) <0

in the sense of distributions on R x RT.

According to the theorem, there are three basic ingredients for the vanishing

viscosity method

(1) Establishing a priori bound for viscosity system (4.1)), (4.2)),
(2) Proving existence of smooth solutions for (4.1)), (4.2)) and

(3) Studying structure propertiesof entropy pairs for the hyperbolic system (2.1)).

4.2 The Viscosity Parabolic System of Flood Wave
Equations
The viscosity parabolie-system-associating-with the flood wave equations (|1.2)

18

€ g €
Vg = Uy = €V

(4.4)
ui + p(v°), = eus, + ¢'S = Cp(u)*®
where € > 0 and (z,t) € R x [0,00). In a vector equation form it is
Ui + F(U®), =eU;, + H(U?) (4.5)
v° —uf 0
where U = | F(U) = and H(U?) =
u® p(v°) g'S — Cp(uf)?v®

Since we will apply the expanding invariant region method, we write the system

(4.5)) in the form (2.13)) of Theorem {4] as

U =eU:, + M(U*)(U), + H(U?) (4.6)
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where

M(U?) = . (4.7)
g/(va)—S 0

In the next chapter we shall prove an a priori bound for the solution U*®

independent of €.



CHAPTER V

MAIN RESULTS

This chapter contain our main results. Let (v,u) be solution of (4.6)). We will

consider the parabolic system (4.6) with initial data
(v, u)(2;0) = (vo(x)7upla)) reR (5.1)

where vy and ug € L*(R). We prove an L>-bound of solutions v(x,t) and prove
that u(z,t) is a nonnegative/solution., Then we show that a trajectory of the
solution (v(x,t),u(z,t)) is‘ingide the expanding invariant region. In addition, we

give a priori bound of solution (v(z,t); u(z,t)).

5.1 L*™-bound of the solution v(r,1)

In this section, we prove an L>-bound of the solution v(x,t) to the viscosity
system (|4.6) with initial condition. The obtaining L>*-bound of the solution v(z, t)

will be used in the next section.
Theorem 6. Suppose v,u € H'(R x (0,T]) and the solution (v,u) satisfies
Vp — Uy = EVgy (5.2)

for all (z,t) € R x (0,T] and € > 0 with initial condition (5.1). Then v(z,t) has

the following L°°-bound:

T
@ )] < lvolloo + / 5—lluallzs,. (5:3)
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Proof. Let € > 0 and (z,t) € R x (0,7]. Define
fi(z,t) = ug(x,t). (5.4)
From and , we have the heat problem
Uy = €Uy + f1(7,1)

with the initial condition
v(x,0) = vo(x)

where vy € L>(R). By the Green’s function, we obtain the solution v(x,t) of this
heat problem to be

—(z—y)?

y
e 4= uy (y7 S)dyds

7(17
4et

vo (y)d -I—//
\/471'8 o)y \/47r5t—s

By the triangle inequality, we have

v(z,t) =

2

—(z—9)% —(z—y)
v(x, t)| < .= voly)d e == u,(y, s)dyds| .
(a1 < ‘m s | [ e iy
(5.5)
—(l »)?
Now, we consider et dy. Since vy € L= (R),
lvo(y)| < Jlvo] | (y €R). (5.6)
r—y (- ) -1
Let wy = . Then we have —w? = ———= and dw, = dy. Thus
" Vet ! det YT Vet Y
/ 7(iaty) dy = —\/4_gt/ e_“’%dwl.
By the gaussian integral, we have / e Yl dw, = —+/7. So, we obtain that

/ _(zsty) dy = V4net. (5.7)

By (5.6) and (5.7]), we have

1 * _@y? v ] s
e 1=t wg(y)d vVimet = ||vol|oo- 5.8
‘\/4%57& /oo o) y‘ 4met ool (58)

T
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—(z—y)?
e 5= u,(y, s)dyds. Let

t [e’s) 1
Next, we consider / / _
0 J—o0 \/47T€(t—8)

1 —(2—y)?
fo(z,y,t,8) = ——e¢ 1) (x,y e R,0<t,s <T). (5.9)
dme(t — s)

By (5.4) and (5.9), we can write

—(@—y)?

t o0
e 1=0=s7 u,(y, )dydsz// fa(x,y,t,5) fi(y, s)dyds.
0 —00
(5.10)

//vﬁﬁz

We show that fi(y, s) and fo(z,y,t,s) € L*(R x [0,t)). Since u € H'(R x (0,T)),

lo9) i
/ / |uz(y, 5)*dsdy < oo.
—o0J 0

By Theorem [2

t 00 t 00
/ / | fL(yds)|Pdyds = / / [u, (y, 8)|*dyds < oc.
0 J—o0 0" J -0

Then
t poo 1/2
{//‘m@gmw4 e @xion) < oo (5.11)
0 —00
Thus
fi € LZ(R x [0,t)).
Consider
t 0 t [e’s)
| [ intvtspaas = [ [ et sds
0 J—oo 0 J—oo
t [ee) 1 —(a—y)?
— 26(t s) d d
/0 /Oo dre(t — s) yas:
r—Y o —(@— y)? —1
Let wg = ——~——. Then —w5s = ———~— and dw, = ———dy. Hence
NR2EED 27 2t —s) 2T o)

Y 1 —(e—y V/2¢e(t —
/ / e 2e(t=s) S> dyds = / U / e S dw, | ds.
o J o Ame(t —s) dre(t —s) \J_o
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Since / e “Sdw, = /7, we get that

[ET (o [

Ae(t — s dre(t — s
= ds
\/8%8/0 Vt—s
- t
V 2r7e
Thus
e i [
t. dyds = | —.
J A
t T
Since 0 <t < T, 4/ =— < 4/ . Hence
2me 27
t oo 1/2 T
t,s)|*dyd =\ — . 5.12
|:/0 /OOIfQ(xvyv )S)l Y S:| ore < 0 ( )

Thus

for€ LA(Rx [0,1)).

Since fi and fo € L*(R x [0,)); by Theorem [1| fof1 € LY(R x [0,¢)) and

2

/Ot /_Zlfzflldydsﬁ Uot /_:!f2|2dydsl = [/Ot/_(:\fﬂ?dyds} " (5.13)

Since fafi € LY(R x [0,1)), by Propositionl]
t 00 t 00
0 J—-oo 0 J—-o0
By (5.14)) and (5.13f), hence
2

< { / t /- |f2|2dyds} " { / t /- |f1|2dyds} e

By (5.15), (512) and (5.I1), we obtain that
< 4wl

— gl 2 .

- 2me Lys

0/_ fg(ﬂi,y,t,S)fl(y,S)dde
< {omllull,. (610

t 00
/ fofrdyds
0 —00

From (j5.10)), that is

—(z—y)?

45(t 9) ux y’ dyds

47r5(t —3)

By , and , hence
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T
@ )] < loolloe + 4/ 5 —lluallz3 .-

5.2 The non-negativity of the solution u(z,1t)

In this section, we prove that the solution u(x,t) of the viscosity system (4.6

is nonnegative.

Theorem 7. Suppose the solution v,u & C*([0,T];HY(R)) satisfy
Ut + p(v)r =€ty f(v,w) (x,t) € R x (0,T] (5.17)

1
where e > 0, p(v) = Qg’zf2 and f(vyu) = ¢'S—Cyu*v with initial condition (5.1]).
Suppose that u(x,t) = 0 at ¥ = £oo, u(x,0) > 0, u(x,0) has compact support and
K = max / p(v(z,t))?da/is finite. There is Ty > 0 such that u(z,t) > 0 for all

t€[0,T]

(z,t) € R x (0, T].

—00

Proof. Let
¢(z,s) = min{0, u(z,s)}

for all (z,s) € R x (0,77]. Since u(x,0) > 0,
¢(x,0) =0 forall zeR. (5.18)

Suppose for any Ty > 0, there is (z,s) € R x (0, ] such that u(z,s) < 0. We will
consider as two cases.

Casel : u(x9,0) = 0 and us(z0,0) < 0 for some zy € R.

Since u(zo,0) = 0,

¢(20,0) =0 (5.19)

and there is 0 < T} < T such that

é(xo, s) = u(xo, s) (s € (0, T1]). (5.20)
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From ((5.19) and (5.20]), we have
o(z0, 8) = u(xg, s) (s € [0,T1]).
Thus
os(xg, 8) = us(wg, 9) (s € 10,T1]). (5.21)
Hence ¢4(z0,0) = us(xo,0). Since us(zo,0) < 0, ¢s(x9,0) < 0. That is
¢s(10,0) # 0. (5.22)

Let (z,s) € R x [0,T}] where 0. <77 <7 and
D(s) = /00 »*(z,5)dx.
By , for each x € R, we have
B(0) = /Oo 2z, 0)dz = 0

and

o0

o'(0) = { / Y s)qbs(x,s)dx} = [ 26(x,0)s(, 0)dx = 0.

—0o0 s=0 (0.¢]
In addition, we have

0 (0) < | [ 20t o) + 2o )]

'] s=0

_ / " 26(2, 0) s, 0) + 262(, 0)

= / 20(x,0)¢ss(x,0)dx +/ 2¢2(x,0)dx.
From (5.18)), we obtain / 2¢(x,0)pss(x,0)dz = 0. By (5.22)), we get

" (0) = /Oo 2¢2(x,0)dx # 0.

[e.9]

By the Taylor’s theorem, then there exists a function hy : R — R such that

(I)//(O)SQ
2!

®(s) = (0) + 2'(0)s + + ha(s)s”



31

and lin(l) ha(s) = 0. Since ®(0) = 0 and ¥'(0) = 0, it follows that
5—

B @”(0)82
2!

P(s) + Rs(s). (5.23)

where ®"(0) = / 2¢2(x,0)dx # 0 and Ry(s) = hy(s)s? is the remainder term.
o —2K

e®”(0)

Let € > 0 and ¢ € (0,7}]. Multiplying the equation (5.17)) with ¢(z, s)- e+ where

Let ¢ > 0. Choose A to be a finite negative number satisfying A <

0 < s <T; <T and then integrating over R x (0,t) yields
t 00 5 L 00 \
/ / us(x, 8)p(x, s)estedrds + / / p(v(x, s))0(x, s)es+edrds
0 J-o0 0 J—o0

:E/Ot/_(:uxx(a:,8)¢>(x,s)e$d:1:ds+/Ot/_Zf(v(x,S),U(a:,s))qﬁ(x,s)es_édxds,
(5.24)

t 00

Step 1 : Consider/ / us(2, s)p(r, s)eﬁédﬂcds.
0 J—-o0

We have

/Ot/ius(w,s)ﬁb(x,s)es;édxdsz/Ot/qus(x’s)ﬂx,s)esﬁd;pds (5.25)

t o8]

Consider / / qbs(x,s)(b(x,s)e%dxds. We will show that ¢4(x,s),d(x,s) €
0 J—-oo

L2(R x [0,1)) and 77+ € L®(R x [0,1)).

(i) To show that ¢s(z,s) € L*(R x [0,t)), since u(x,s) € H'(R x (0,T1]),

00 t
/ / lus(, s)[Pdsdy < oo.
—o0 JO
t 00
/ / |us(z, 5)|*drds < oco.
0 J—-oo

Since ¢(z, s) = min{0, u(z, s)},

t o0
/ / |ps(, 8)|*dxds < oo
0 J—-oo

By Theorem [2, we have



and hence
1/2

||ps|]2 = [/0 / |ps(, 5)|*dxds < 0.

bs(x,5) € L*(R x [0,1)).

That is

(ii) To show that ¢(x,s) € L*(R x [0,t)), since u € HY (R x (0,Ty]),

[e§) t

/ / lu(x, 8)|Pdsdz < oo.
—00 J0

/ / wlx, s)Pdwds < co.

Since ¢(z,s) = min{0, u(zr, s)},

/ / )Pdyds < oo
||]]2 = U / (@,s deds] " < 0.

¢(z,s).€ L*(R x [0,t)).

By Theorem [2

and hence
That is

From (i) and (ii), ¢s(2,s)s ¢(zy8) € L2 By Theorem [I} we obtain
bs(1,8)p(x,8) € LY(R x [0,1)).

Then
/t /OO |ps(z, 8)b(z, s)|drds < oc.
0 J—-oo

(iii) To show that e € L>, since € is fixed and 0 < s <717,

Then

32

(5.26)
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Since —\ is positive,

—A —A -
— >

> .
3 s+ Ti+¢

Hence

=X

eTire <ewr<e®. (5.27)
Since —A > 0 is finite and £ is fixed, e= is a constant. Thus
-
este € L™,
By (5.27) and (5.26]), we have

" loulw )o@ deds <= | [ 1ov(a,9)0(a,9)ldod
| st sstesiemtins <e= [ [ joutes)ota, 9 ldnds

< 00

By Theorem [2] we get that
t 00 A o0 t .
/ / Oz(x,8)P(x, s)esteduds = / / ¢z(x,8)0(x, s)es+edsdx (5.28)
0 J—-oo —00 JO
We have

/ / oz, 5)p(x, ) es+sdsd:v —/ / setdsda. (5.29)

Integrating by parts, we have

/ /( *(z,5)) setdsdy
/OO e / ~PP(x Fids| d
o 2° s—i—a) R e

_ /_oo {26 *(x,t) 567 ¢ (z,0) /O 5¢ (z,5) Gra ds} dz.
(5.30)

By (5.18]) and ([5.30)), we have

/ / )7 dsda
:5/;0061‘+);¢2(1’t x——/ /qb?a:s

- e+ dsdz. (5.31)
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00 t
Now, consider / / ¢*(z, s) - A __ . es¥dsdy.
o0 Jo (s +€)?

(iv) To show that ﬁ € L™, since € > 0 is fixed and 0 < s < 717,

g <(s+e)?<(Ti+o)>
Then

1 1
= > > :
g2 (s+¢&)? = (11 +¢&)?

Since A is negative,

o A
—= < . .32
2 S 8 T o)y (5.32)

Therefore,

A
(s/H&)?
From (i), we have ¢(z, s) € L? By Theorem [1} ¢?(z, s) € L*(R x [0,¢)). That is

& LX(R x[052)).

/: /Ot o2 sMdsdz < oo, (5.33)

By (5:27), (5:32) and (5.33), we obtain

o0 t )\ N [e%s} t
dsdx < —_eé/ / 2(z, s)|dsdx
[ el L) 19

< oQ.

A
(s+€)>

=A
- @ste

¢2($’ S) \

By Theorem [2, we have

00 t ) A S_TAE, B t 00 ) ‘ A ‘ :T/\g
/—oo/o ¢(9373)'(8+5)2-e~ dsdx—/o /_OO¢ (x,s) GroP estedxds (5.34)

From (j5.34) and (5.31)), we have
00 t 1 B

/ / (§¢2(x,s))se?2’dsdx
—00 J0

LT L[ s A =2
—2/_ooe+¢(x,t)dx—2/0/_ooqb(x,s) Gio? estedxds (5.35)
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By (5.25)), (5.28)), (5.29) and ([5.35)), then we obtain
t 00

/ / us(x,s)gzﬁ(x,s)e%dxds
0 —00

1 [~ 1 [t [ A -
= 5/_00 etTAéqbZ(x,t)dx— 5/0 /_OO *(z,s) - Gro? ez dads (5.36)

t 0 .
Step QConSider// p(v(z,s)).0(x, s)estedxds.
0 J—-oo
We have

A

[ ] tote oo easts 2L [ [~ pote, )otw, yaa] s
N h (5.37)

[e.e]
Now, we consider / p(u(x, 8))u0(x,s)dr. Integrating by parts, we get that

| plote asto. o A plota ot 12— [ pote.s)oue.s)de
Since u(x,s) = 0 at # = £o0;
olr,5) =0 at = Loo.
Thus p(v(z, 8)).¢(z, s)|2=<, = 0. Hence
| bl atsass S o g 639)
From (537) and (5:38), we have

[ ] et pstesans = [ [ [ ot oute ] as
= [ [ [ ptote oo s as.

(5.39)

Consider / p(v(z, $))¢.(x, s)dz. By Theorem we have

/Zp(v(x, 8))¢z(x, s)dx < %g/j;p(v(m, s))2dx + 5/2 gbi(m, s)dx.  (5.40)
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By (5.39)) and (5.40]), we obtain

t o0
—// p(v(x,s))xgb(x,s)eﬁé’dxds
0 J—-oo
_46// v(z,s) es+eda:ds+5// o2 (z, ses+sdxds (5.41)

Step 3 Consider 5/ / Uz (T, s)qS(x,s)eﬁAédmds. Then

s/ot /_Z Uz (T, 8)P(, s)e%édxds = E/Ot /:: Gra(, s)¢(:c,s)e$s‘dxds
= 5/0t /_Z(cﬁx)x(x, s)o(x, s)e%d:vds

by /O e /_ Z(@)m(gg, )6z, s)dads. (5.42)

Now, we consider / (0s)a() 8)p(x, s)dx. Integrating by parts, we obtain

[ 00t 0 0t oGz [ 90t
= o750 z=—00 / P2 (1, 8)

Since u(z,s) = 0 at v~=-£oo and ¢(z,s) = min{0,u(x,s)}, ¢(z,s) = 0 at

x = £oo. Hence ¢, (z, s)p(x, s)|2=>%, = 0.- Therefore,

33_*00

/_00 (0r)s(x, 8)p(x, 8)dxr =— /_OO 2 (x, s)dx. (5.43)

From (5.42) and (5.43), we have

t 00 t 00
5/ / Uz (T, 5)P(2, s)e%da:ds = —8/ / e%@i(aj, s)dxds. (5.44)
0 J—-o0 0 J—-oo

t 00
Step 4 Consider / / fv,u)é(x, s)e%e’dxds. We have
0 —00
t 00
/ / f(v,u)¢(a:,s)e$€dxds
0 J—-oo

:/t /OO (g'S—Cfu2(x,s)v(:p,s))gb(x,s)eﬁé’dxds
0 J—oo
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t 00 i
- / / g,ngS(;(;,s)e#)\é — Cfu2(x,8)v(x,s)¢(x, s)ei)\é dxds
0 —00 - ]

:/ /OO -g’qu(x,s)e% — Cp¢?(z, 8)v(z, 8)9 (2, s)eiké- dxds
0 —00 - -

t o0
= / / 9’5¢($,S)6$ — Co(z, 8)¢°(, s)e%é] dxds
0 —00 -

t o) t o)
:// g'Sgb(x,s)eHsd:z:ds—/ / C'fv(x,s)gb?’(x,s)e%dxds. (5.45)
0 J—oco 0/ J—o0

t 00
Consider/ / g’S(b(x,s)eiAédxds. Since ¢(xz, s) = min{0, u(z, s)} for all (x, s) €
0 J—oo
R x (0,77,
Bzss) < 0.

-
Since ¢’ > 0, S > 0 and es+/is nonnegative function for all 0 < s < T7,

g So(r, s)e%s’ <0.

Hence

t o}
/ / g Sé(x,s)estedrds < 0. (5.46)
0 J—-oo

t
We consider —/ / Cro(z, 8)¢°(z, s)eﬁé’dacds. By Theorem H, we have
0 J—oo

T
] < HUO|’oo+\4/%HuxHL§,S-

Since ¢(z,s) <0 for all (z,s) € R x (0,T1], $*(z,s) < 0. Thus

T
U&z(mmm+w5—mmgj¢?
e ’

Y
Since es+¢ is nonnegative for all 0 < s < 77,

=X T Y
v¢36s+5 > (H'UQHOO + \4/ —2 HUIHL%S) ¢36~+é.
e ’
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Since Cy > 0,

e (Hvol\oo Vo H%H%) BPere.

- T
—Cpudtert < —Cy <||vo||oo + {5z ) e
;)\
=y (Hvolloo Vo ||usc||L“> ¢ (—@)es.

Since ¢(z, s) = min{0, u(z, s)},

That is

0 +o < flulf:

- o T Y
_Cfv(ﬁe?é' < (HvoHoo -~ ZT—EHUIHL%S> ¢2”UH0063+/\5-
t poo 3 =2
—fo ffoo Crvpestedxds

t (o) T x
g/ / o <y|vo\1oo+ ,4/2—“%“%) |l |owe 7 dids. (5.47)
0 —0o0 e

By (5.46]) and (5.47)), we obtain

t 00 t o)
/ / g/S¢<£L‘,S)6S_‘*‘>\E—d£L‘dS—/ / C’fv(x,s)¢3(a:,s)e$s‘dxds
0 J—oo 0 J—-oo
t o) . T ) Y
S// Cr | |volloo + 2—||ux||ngcs *||ul|soe s+ dads. (5.48)
0 J—-oo me '

By (5.45)) and (5.48)), we have

t o0
// f(v,u)¢(a:,s)e%fd$ds
0 J—-oo
t 00 . T ) =y
< [ e[l { gz, ) #lulledods. (.09
0 J—oo e '

Step 5 From ([5.24]), we have

Hence

Thus
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/Ot/zus(:r,s)ﬁb(x,s)ewidxds:_/Ot/Zp(v(x,s))zqﬁ(x,s)eﬁﬁdms
5/0t/_zw(x,s)qb(x,s)esfsdxds+/Ot/_‘:f(v(a:,S),U(x,s))¢(x,s)es+ld;,;d5_

By (5.36)), (5.41)), (5.44)) and (5.49)), we have

1 [~ - I A A -
{5 /_Oo etv ¢ (x, t)dw — 5/0 /_OO ¢*(x,5) - EEE ‘esﬁsdxds}

< / / (2,5)) s+€d:1:ds—|-e/ / P2 ( s)es+6dxd$]
B t 0
- 5/ / emgzﬁi(a:,s)dxds]
L 0 —00
t o] ) T _
/0 /_oo Cr | Hoolloo + éﬂ—gH“ﬂvHL%,s ¢*||ul|soesFe dads | .
That is

1 [ _
5/ et+s¢2(a: t)d / / *(z, 5) ) . e+t duds
b [ bt syt
= ), 7oop v(z,s)) es+edrds
t o) . T ) x
+/ / Cr | Ivol|so + Q_HUzHLg | |u|| o€+ dads. (5.50)
0 —00 e '

Taking limit £ — 0 in ((5.50]), we have

3] P
_2// qb:lcs —dxds—}-—// eedxds

t 0 . T a
v @QMM+V7WMQJ&WMHMM- (5.51)
0 —00 TE ’
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K
Recall that A < ————. Then

e®”(0)
(0 1
—2)\5L = ——Xed"(0) > K.
4 2
Since s > 0 and e= > 0,
(0 ~
—2s esA)@# > s2 5 K. (5.52)

If 77 > 0 is sufficiently small, then 0 < s < 77 is also small. Since lin% ha(s) =0
s5—

and 0 < s < T1; by definition of limit,

o"(0
tha(s)| < 4( )
That is
(D// O @// O
/ RIS ) €O (5.53)
4 4
. @//(O> /
Adding 5 to the equation (5.53)), then
(p//(o) @//(O) @//(0) (b//(o) @//(O)
2—4<2+h2(s)< +4.
That is
o"(0)  D"(0) 307(0)
1 < 5 + h2(8) < T
Since s > 0, e_TA, —A >0 and € > 0, we have
_ @// _ "
—25% Ae [T(O) + hg(S):| > —QSQesAAs#. (5.54)
By (5.52)) and (5.54)), we have
B (0 B
— 2527 e [ () + hg(s)} > s2e v K. (5.55)
Since K = max / p(v)*dr < oo,
s€[0,T] ) _
25 K > 826_8)\/ p(v)*dzx (5.56)
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for all 0 < s < T7. From (j5.55)) and (5.56)), we have

_ (P// _ [oe]
—25% Ae { 2(0) + h2(8>:| > 826?/ p(v)*dz.

—00

That is
—2Ne [@”(2(3)32 + Rg(s)] > s%e /00 p(v)ide. (5.57)
By (5.58)) and (5.23)), we obtain
_26)\65)\(1)(8) = —26)\6%)\(13(5) > s% s /_Zp(v)zdx.
That is
i;\GSA—CI)(S) - s 28 /OO p(v)?dz > 0.
Then

46)\6% 9 =2 X 9
3 D(s) + 5% p(v)°de < 0.

Since 4 > 0 and s® > 0,
Ae s B(s) VAR .
) < 0.
52 + I /oop(@) dr <0
Since ®(s) :/ *(z, s)dw,
AR A (@ss)es TITRY] PR 2
ZYHULALONGKORN © Sdr < 0. .
5 /_OO = dx + ™ _Oop(v) esdr <0 (5.58)

From ((5.58)), (5.51]) becomes

1 co t [e%e) T B
3 oenas [ o (”“”’w ) z—mlluAug,S) 3 [ulloce ™ dads.

That is
[e%¢) . . T t o] 5 =A
/ et ¢*(x,t)dr < 2C¢||ul|so | ||volloe + 2—||u$||L§S / / ¢°es duds.
—00 e ' 0 J—-oo
(5.59)
Define
f(s):/ e_TAng(x,s)dxds. (5.60)
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By (5.59)) and ([5.60)), we have

t
e <c [ e
0
where C' = 2C%||ul| <||v0||oo + 4 2lm||uw||L§s> By Theorem ,

£(t) = 0. (5.61)

By (5.60)) and (5.61)), we obtain

/OO e_TAng(m,t)dx =0

o0

which implies that

d(x,t) =0
for all 0 < t < T. This is a contradiction. Therefore, we conclude that ¢(x,t) =0
for all (z,t) € R x (0,7]. Hence u(x,t) > 0 for all (z,t) € R x (0,Tp] for some
To > 0.
Case 2 : Either u(zg,0) > 0 or u(z;.0) >0 for all 5 € R.

In this case, for all 25 € R, either u(xg, 0) > 0 or u(xg,0) = 0 and us(zq,0) > 0.
Fix 2o € R. First, we suppose that u(zg,0) = 0 and us(z,0) > 0. Note that
xo ¢ suppu(x,0). Consider

us(2o,0) + p(v(x0,0))r = ety (z0,0) + f(v(20,0), u(xg,0)).
Since f(v,u) = ¢'S — Cru?v,
(9, 0) = —p(v(x,0)) s + e (w0, 0) + ¢'S — Cpu? (g, 0)v(zg, 0).
Since u(xg,0) = 0, Uz (x0,0) = 0. Hence
US<$0, 0) = —p(U(.’Eo, O)):p + g/S

By assumption wu,(zg,0) > 0, we obtain

p(v(20,0)), < ¢'S.
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Integrating over (a,x) for (a,z) € R \ suppu(z, 0) yields

p(v(0, 0))[F < / §/Sdz.

Then

p(v(x,0)) — p(v(a,0)) < ¢'Sz. (5.62)
1
Since p(v) = §g'v_2, 5.62)) becomes

1 1
59/1)72(1,7 0) - 59/2}72(@, O) < glsx

Then
1
— <28 . 5.63
v2(250) T N (563)
1 U4 2
where C = 2 0) If £ < G e have 2S5z + Cy < 0. By (5.63), v*(z,0) <0
v?(a,

which is undefined. This is & contradiction. Hence u(zo,0) > 0 for all zy € R

which is contradiction. O

5.3 Expanding invariant region

The expanding invariant region is introduced in Chapter 2. In this section,
we establish an expanding invariant region and prove that the trajectory of the

solution to the system (4.6 is inside this expanding invariant region.

Theorem 8. Let U(x,t) be the smooth solution to (4.6), K = max / p(v)3dx

te(0,7)

— 00

is finite and S < 4Cy. Suppose u(x,0) > 0, u(x,t) = 0 at v = £oo and u(x,0)

has compact support. Define the expanding invariant region
2
S(t) = [ {U € R*: G,(U) < Ae*'} (5.64)
j=1

where w = 4Cg, A = e, G1(U) = u+ 2\/gv"Y? and Go(U) = —u + 2y/gv1/2
are Riemann invariants. Then the trajectory U(x,t) is inside X(t) for all time

t > 0; that is, G;(U(z,t)) < Ae*" for all j =1, 2.
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Proof. We will apply Theorem 4| to prove this theorem. Suppose that U(z,ty) €
O%(to). That is G;(U(w,ty)) = Ae*™ for some j = 1,2. From Proposition [6] we
have two Riemann invariants G1(U) = u+2/g’v""/? and Go(U) = —u+2,/g'v"1/2.
Then
VGT = <_\/£71,—3/2 1) (5.65)
and
VGE = (_\/@,—3/2 _1) : (5.66)
Step 1 We will show that VG, at U(z, ty)isa left eigenvector of M for all j = 1,2.
By (5.65)) and (4.7)), we have
. AN 0 1
gvy° 0
7 <g’v‘3 Vg 2)
TR (—ﬁvw 1)
— oG

— MVGT

Hence VGT at U(x,ty) is a left eigenvector of M.

By (5.66) and (4.7)), we have

T —3/2 0 1
VG, M= |{_-/q -1

gv= 0
= <_g/,U—3 _\/577}—3/2>
= Vg <—@03/2 _1>

— Vg Vel

— \VGL.
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Hence VG at U(x,ty) is a left eigenvector of M.
Step 2 We will show that G; is quasi-convex at U(z,t) i.e. at U(z,ty) whenever
VGT -r=0, V2Gj(r,r) >0 for all j = 1,2.

By (5.65)) and (3.6]), we have

1
VG{ T = (_\/?U_:)’/Q 1) =0.
Vs

Consider

092Gy - 0%3,
2 vou

V2G1(T1,T’1) :’I"T 2 o N T
0°Gy. 092G,
Oudu Au?

3

*\/E’U_5/2 0 1
= (1 \/§71)~3/2> 2
0 0 /g/U—3/2

1

= <§\/EUA5/2 O)
2 \/EU—?,/z

=3 —2—\/g7v_5/2.

By Proposition [2, we have 0 < v < oo for all (z,t) € R x [0,00). Since ¢’ > 0 and
v >0, V2Gi(r1,m1)(v,u) = 2/gv7"/2 > 0. So G is quasi-convex at U(z, ).

By (5.66) and (3.7]), we have

VGQ T = (_ﬁv3/2 _1) = 0.
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Consider
826*22 392G
VQGQ(TQ,TQ):rg vt dudu ry.
92Gs  82Go
Oudv ou?
5 /gv% 0 1
=1 _\/?Ufg/z
0 0] \ —/gv=3/?
1

VY

_ ;\/EU—E)/z

Since ¢’ > 0 and v > 0, V2G5 (rs,79) (v, u) = 3/¢v~>/* > 0. So G, is quasi-convex
at U(x,to).

Step 3 We will show that VG; - H < wAe“ for all z € R and at (¢,U) =
(to, U(z,tp)).

Step 3.1: Gy = u + 2¢/qv Y2 =Ae¥o= A We want to show that VG, - H <

wAe* . Consider

0
VG H = <—\/g7v‘3/2 1)

gS — Cruv
=4S — Cyuv.
Since Cy > 0, v > 0 and u? >0, C'fu% > 0. Thus —C'fu% < 0 and hence
VG,-H<{8S.
Since S < 4C; and 1 < e < ee!Cr9'to,

VG, - H < 4C;¢ < (4C1g")eel 9N — At = WA,

Step 3.2: Gy = —u+ 2/gv /2 = Ae®o = A. We want to show that VGs- H <
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wAe“t . Consider

0

VG, H = (_\/yva/z _1)
qS — Cpuv

= —g¢'S + Cruv.
Since ¢ > 0 and S > 0, —¢'S < 0. Hence
VGQ -H < CfUQU.

Since —u + 2/g'v"1/2 = A,

Thus

1G] PR Ot T
(A+u)?

Since A > 0, A+ u > w. By Theorem E], we have u > 0. So (fl +u)? > u? and

(5.67)

hence
1 1
e ———— (5.68)
(A+u)? v
By (5.67)) and (5.68]), we have
4¢/
VG, - H < cfvﬂ? =4Cg (5.69)

From (5.69) and 1 < e < ee*C79'% we have
VG- H < (4C;g")eel4Cr9) — At = WA,

Hence VG- H < wAe*" for all x € R and at (t,U) = (to, U(z,t)). From Step 1,
Step 2 and Step 3, by Theorem [d] the trajectory U(z,t) is inside X(t) for all time

t > 0; that is, G;(U(x,t)) < Ae?! for all j = 1,2. O
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5.4 A priori bound of solution (v, u)

In this section, we give the upper bound of the solution u and the lower bound

of the solution v of the system (4.6)).

Theorem 9. Let (v,u) be a solution to the system (4.6|) that satisfies all of con-
dition to the Theorem[8. Then
g g’

0 <u(z,t) < Ae*t —2 — and v(z,t) > (Aewt)?

for all (x,t) € R x (0,T] where w = 4Csg' and A = e.

Proof. By Theorem [§, we have

G (0, ) =a + 2 % < Aett (5.70)
and
Gy(v/u) = ~u 124/ A < Aet. (5.71)
v

From (j5.70) and (5.71)), we obtain

7
u < Ae*t — 24/ g_
g/

0 <wu(x,t) < Ae® —24/=.
v

By Theorem [7], we have

Adding (5.70) and (5.71)), we have

~

4L <246,

)
Then

q < Aevt

v 2
and hence

4q'
>
vz (Aewt)2



CHAPTER VI

CONCLUSION

The initial aim of this thesis is to prove existence and uniqueness of weak
solutions to the system of hyperbolic conservation laws for a motion of flood
wave with initial condition by the vanishing viscosity method. The idea of
the vanishing viscosity method is to establish solutions for the viscosity parabolic
system and then apply Theorem . In this work, we can prove a priori
bounds for solutions of given in Theorem @L that is

0 < wu(z,t) < A =2 g and  v(z,t) > 19
R A —
= U = 4 )= (At

for all (z,t) € R x (0,7] where w = 4Cyg¢ and A = e. Using these estimates,
the author believes that we can prove an a priori bound of the form for the
solution v® as well. Combining the obtained estimates with a standard (local)
existence of smooth solutions for parabolic systems, we obtain by Theorem [5| the

existence and uniqueness of weak solution to the flood wave equations (3.1).
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