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CHAPTER 1

INTRODUCTION

Sobelev type equations are equations of the form Lu; = Mu, where L : U — V
is a bounded linear operator, M : dom(M) CU — V is a closed operator, U,V are
Banach spaces (see Sviridyuk [I7]). If L is invertible, Sobelev type equations are
also called pseudoparabolic equations in the literatures (see Showalter and Ting
[16]). They play a main role to model many scientific and natural phenomena,
such as nonstationary in crystalline semiconductors [12], seepage of homogeneous
fluids through a fissured rock [3], and etc. (see Al’shin et al. [2] for more examples).

In this work, we study sign-changing solutions u = u(z, t) of a Cauchy problem

O(u — Au) — alu =V (x)|ul"u, = €R"t>0

(1.1)

u(z,0) = up(x), reR"

where «, 0 > 0 are constants and V,ug : R™ — R are given functions. We assume

a mild condition on the potential V(x) that it satisfies
V(z)] < Clz|* as |z] — o0

for some constant C' > 0 and a > 0. There are many studies on when R”
is replaced by a bounded domain and the potential V' is a constant or a bounded
function. These studies are based mostly on the usual Lebesgue or Sobolev spaces.

A particularly important problem in the history of nonlinear PDE theory oc-
curred when the viscosity term 0;Au is dropped from , V =1, and we are

looking for positive solutions. For an arbitrary V', the problem in this case, is the



Cauchy problem of nonlinear heat equation with power nonlinearity:

Ou — alu =V (x)|ulu, xR t>0
(1.2)

u(z,0) = up(x), x € R".
Let us first consider the case where V' = 1. Fujita [0], in 1966, showed that

(1.2) has a unique non-negative local solution for each uy € L>®°(R™) and ug > 0.

Furthermore, he found that

(1) if 0 < 0 < 2/n and wy is not the zero function, the solution always blows up

in a finite time;

(2) if 0 > 2/n, however, the solution can exhibit either globally in time if v is

sufficiently small, or is blowing up if ug is sufficiently large.

In the above context, a solution u is called blowing up in a finite time if

T fu(, ) = o

for a finite T' > 0. Later on, Hayakawa [10], in 1973, and Weissler [20], in 1981,
proved that the critical exponent ¢ = 2/n belongs to the blowing up case, when
n = 2 and for arbitrary n > 1, respectively. Now, let us consider the nonlinear
heat equation with a variable V. If either V(x) ~ |z|* with a > —2 or

0 < a(z) < |z|~2, Pinsky [14], in 1997, proved that

(1) if 0 < 0 < (24 a)/n and uy # 0, the problem (1.2) always blows up in a

finite time where either n <2 and o € (2,00),orn =1 and o € (—1, 00);

(2) if ¢ > (2 4 a)/n, the solution can be global, moreover, the result are also

held when n =1 and o € [-2, —1].

We now turn back to the nonlinear pseudoparabolic equation (1.1]). Basic

linear theory of the pseudoparabolic equation, for both initial and initial boundary



value problems, were developed by Showalter and Ting [16] in around 1970. The
linear theory of the pseudoparabolic equations is quite new compared to that of
the heat equations. There are certain similarities and dissimilarities for solutions
to the pseudoparabolic equation and that of the heat equations, this is why
is called pseudoparabolic [15].

Nonlinear pseudoparabolic equations with power nonlinearity were studied by
Kaikina et al. [9] in 2005, for the case V is a constant. It was shown that the
problem admits a unique global sign-changing solution for arbitrary uy when
n > 3, and the same is true when n € {1, 2} provided that w is sufficiently small.
Later, Cao et al. [4], in 2009, studied the positive solutions of the Cauchy problem
by using the contration mapping method and the two-normed approach
developed by Kato in his study of Navier-Stokes equations. The results in [4] are
similar to that of the heat equation with the same source. They proved that if
0 < 0 < 2/n, every nontrivial solution always blows up in a finite time, whereas,
if o > 2/n, the solution can be both global (for small u) and blowing up (for

large ) in a finite time.

Let us describe the plan and results of this work. We consider real value mild
solutions of the Cauchy problem ([1.1)). The phase spaces for the solutions are
chosen to be the weighted Lebesgue space L% := L7 (R"; (x)*), where 1 < ¢ < o0
and a € R. Thus, our solutions are continuous paths within some L%® that
satisfy an integral equation in the Banach space L%*. The formal definition is
given in Chapter 2. In the same chapter, some elementary results and inequalities
important to our study are given. For the pseudoparabolic equation, there are two
important linear operators, the Bessel potential B and Green operators G(t)(t > 0).
In the last part of Chapter 2, we prove the boundedness of B on the spaces L?°.

In Chapter 3, we give the first main result on the boundedness and interpolation



estimate for the Green operator that we extend the results from [9]. (These results
will be appeared in a recent work of Khomrutai in [I1]). We will employ these
results to establish the local and global existence of solutions. The local existence
of solutions is given in Chapter 4. There, we prove that for all n € N, if 0 > 0

and there is a positive constant C' and a > 0 such that for any x € R"
V(z) < Cla|*,
then the Cauchy problem has a unique mild solution
ue C([0,7);C(R") N LY R") N L**(R™)),

for some T' > 0 and b € R such that b > a/o. Our last result on the global
existence of solutions for small ugy is presented in Chapter 5. Specifically, if we

assume n € N and a, o satisfy

0<a<

and o > —,
o+ n

then the Cauchy problem ([1.1)) has a unique global solution
u e C(0,00); C(R) N LY(R") N L=4(R")),

where b = a/o and provided that ug is sufficiently small. The results in this work

extend parts of the result obtained in [9].



CHAPTER II

PRELIMINARIES

In this chapter, we introduce essential tools that will be used.

2.1 Notation

Let n € N, 1 < ¢ < o0, and a € R. We define the weighted Lebesgue norm by

1/q
( |<x>“w($)‘qu> 1 <q< oo,
[6lime = 163 ll0 = § Vo

sup ()| ()] g = oo,

where () := /1 + || is the Japanese bracket and the weighted Lebesque space
LER") = {¢ € LI(R") : [[¢]| o < 00}

Denote by C(I; B) the space of continuous functions from a time interval I =
[0, 7], where 0 < T' < o0, into a Banach space B.
The Fourier transform F and the inverse Fourier transform F~! are defined

by

(Fu)() = (2m) & / e () da,

n

(F19)(z) = (2n) % / ¢ 3(€) e

n

for sufficiently regular functions ¢ and ¢. For a function w(-,t), we denote w(-, ),

for fixed t, to be the function x — w(z, ).



2.2 Basic Results

Theorem 2.1 (Cauchy-Schwarz inequality, [5]). Let z1,..., 20, y1...,yn € R.

2] < (2) (1),

Theorem 2.2 (Young’s inequality, [5]). Let 1 < p,q,r < oo with 1 + 1/r =

Then,

1/p+1/q. Then,
[¢ = ollr < (19l 1]l e

for ally € LP(R™) and p € LY(R™). Here, (Y ¢)(x) = [pn ¥(y)p(x —y)dy is the

convolution.
Theorem 2.3 (Hoélder inequality, [3]). Let 1 < p,q < oo with 1/p+1/q = 1.
Then,

[Pl < [[9l e[l el a

for all ¢ € LP(R™) and ¢ € LIY(R").

Lemma 2.4 (Peetre’s Inequality, [1]). Let a € R and x,y € R™. Then,

() < 21z — y)ll(y)®.

Proof. Note that |wl||z| < Jw|* + |2|? for w, 2z € R™

If a > 0, then by the Cauchy-Schwarz inequality, we have

(@) = (I+]z—y+yP)?
= (I+le—yP+2@—y) -y+y*)?
< (Lo =yl + 20z —yllyl + [y*)?
< (L+4z—yl +4y*)?
< (A+dlr -y + 4o —yPlyl + 4ly)?

= 2°(L+ |z —yP + |z — ylPly)* + ly|P)2



= 2°(L+ [z —y[)E(1+ |yP)2.
If a < 0, then —a > 0. By using the above case, we have
()" <27z —y) " (y) "

We multiply (x)?(y)® on the both side of (2.1)), this implies

()" <27z —y)~*(x)".
Lemma 2.5. Let a € R and x,y € R". Then,
()" < 29((z = )" + ()"

Proof. If a > 0, then by the Minkowski inequality ([5]), we obtain

(z) < VA+y+ (z—y)

Thus,
@) < (VA+ly+ @—yP)"
< ({z—y)+ ()
< 2%(max{(z —y), (y)})"
< 2°({z — ) + (y)*)
If a < 0, then

() <1T<(z—y) "+ <27z —y) "+ (1))

Lemma 2.6. Let p >0 and a,b € R. Then,
lalal” = bJo’| < 27+ (max{]al, [b[})"|a — b].
Proof. 1f a,b > 0, then |a| = a and |b| = b. Thus,

jalal” = bbfP| = la™" — [b|"]

(2.1)



= ‘(p+1)/abxpdx

< (p+1)(max{a,b})?

b
/dm

= (p+ 1)(max{a,b})’|a —b|

< 2" (max{a,b})?|a — b|,

where we have used that p +1 < 2P*! for all p > 0. The case a,b < 0 follows
similarly.
If a <0,b>0, then |a| = —a and [b| = b. Thus,
lalal” = blb["| = [al"*" + (b
< 2(max{]al, [b[})"*"
< 2(la| + [p])"*
= 2(lal + [o])*(lal + [o])
< 2" (max{]al, [b[})?(|al + [b])

< 2" (max{al, |b|})"|a — b|
and similarly, for the case a > 0,0 < 0. m

Theorem 2.7 (Contraction mapping principle, [5]). Let (X, d) be a non-empty
complete metric space. Assume that M is a contraction mapping on X, i.e.,
M X — X and there ezists k € (0,1) such that d(M(x), M(y)) < kd(z,y) for

x,y € X. Then, there is a unique w € X such that M(w) = w.

Theorem 2.8 (Faa di Bruno’s identity, [§]). Let f,g : R — R be k times differ-

entiable functions and h(z) = (f o g)(z). Then,

k

(X | S O @) ) 1 (o)

=1 B=(B1,-.8k

where B! = B!... B! and the sum are taken over all By,..., B, are nonnegative

k k
integers solutions of Y 18 =k and > 5 = i.
i=1 =1



Corollary 2.9. Leti € {1,...,n},r € R, and k be a positive integer. Then, there

exist a positive constant C' = C(r, k) such that for any & = (&1,...,&,) € R™

|0£(€)" < (&),

T

where OF (€)" is the r times partial derwative of (§)" with respect to &;.

Proof. First, we let g(&) = |£|? and f(z) = (1+2)™/2, then (fog)(&) = (£)". We
know that £ (x) = (r/2)(r/2 = 1).... (r/2 b+ 1)(1 + 2~ and
2677%, ke {1,2},

Ot g(&) =
0 k> 3.

Using the Faa di Bruno’s identity, we obtain

CAGUEDY cl,k<2fi)2”“2’”<g) (g—kﬂ)mm?)%l

<k
<C Y lEPTr e
<k
<C > Lj_k@“k
S C<€>T_k,

where we have used that 5 = (2l — k,k — [) is the solution of algebraic system
BiL+2By =k, B+ Py = [, and that |&|**/(1+|£|?)"*/2 is bounded for all §; € R.

Therefore, this proof is complete. O
Lemma 2.10. Let n € N and ¢, > 0. Then,

feele| (1>
La(R") aq

Proof. By a straightforward calculation and the fact that

/ e*midxj =7

o0
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for all j € {1,2,3,...,n}, we get

1
—alz|? _ —qalz|? !
He HL‘Z(R”) — (\/Rne q df)
= ( / e~ a@ A T) .da:n>
n—OO N — 00 l
q
()
j=177%

= (aq) "% (ﬁ /_Oo e—“?duj); (2.2)

Q=

j=17 e
7\ %
=\ag)
where we have used the substitution u; = |/gaz; in (2.2)). O

2.3 Bessel potential and Green operator

In this section, we recall the linear theory for the pseudoparabolic equation. Con-

sider the linear Cauchy problem

O(u— Au) —alu = f(x,t) = e€R"t>0,
(2.3)
u(z,0) = ug(x) r € R™.

If up and f are sufficiently regular functions, then by using the Fourier transform

and the variation of parameter technique, we obtain
t
u(et) = G(thule) + [ Gt~ DBl (@ Rt >0)
0

where G(t) is the Green operator for the Cauchy problem above (2.3) and B is

Bessel potential operator. Precisely, G(t) is given by

i ok tk
G(t)yi(x) = F (e O ) = et 30 LB () = / Glr =y, (y)dy,

where



11

and B = B!. For any s > 0, B® is the generalized Bessel potential operator

B*(z) = (2m) % / By(z — y)d(y)dy,

n

and B,(z) = (2m) ™2 [, (&) 72 dE.

Here, we gives a boundedness of B on the weighted Lebesgue spaces.

Theorem 2.11 ([I1]). Let s > 0,1 < ¢ < 00, and a € R. Then, there is a positive

constant C = C(n, s,q) such that

1B o < C[¢h]] o

In this work, we are interested in a sign-changing mild solution of the Cauchy

problem ({1.1f) which is defined as follows.

Definition 2.12. Let a,0 > 0 be constants and V,ug : R® — R be given func-
tions. A function u : R™ x [0,7) — R is said to be a mild solution, on [0,T), of
the Cauchy problem (1.1)), if w € C([0,T); L2*(R")) for some 1 < g < 00,a € R

and it satisfies for any x € R™ and ¢t € (0,7)
¢
u(z,t) = G(t)uo(x) + / Gt — 7)B[V(x)|u(x, 7)|7u(x, 7)]|dT.
0

If T'= oo, u is said to be a global mild solution.



CHAPTER III

GREEN OPERATOR

Theorem 3.1 (Boundedness of the Green operator). Let 1 < g < oo and a,m €

R. Then, there is a positive constant C = C(«,q,a,m,n) such that for any

e LY(R™) and t > 0

1G]l pae < CLEY' 2+ e

To prove this theorem, we express

—at - aktk —at - aktk —1 —2k
G(z,t)=e o Drla) =e ZT}— (™).
k=0 k=0
Taking the Fourier transformation, we get
~ a > oktk _ ot tale) =2
Glet) = ety L) = ematerd
k=0
t = akth 2k
= Y —— () * + Ru(& )
k=0
where
I3 et~ O
V) = e —e 3

k=0

and N is a positive integer to be specified.

Lemma 3.2. Let | € {0,1,2,...,N 4+ 2} and m € R. Then, there is a positive
constant C' = C(a, N, 1, m) such that for any{ € R",t >0 andj € {1,2,3,...,N}
we have

yaéjﬁw(ﬁ,tﬂ < Ct%<t)m6_%t|f‘2 + Ce—%ttN+1<5>—2N—2’

where 8éj Ry (E,t) is the | times partial derivative of Ry (€,t) with respect to &
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Proof. First, we assume that || > 1 or 0 < ¢ < 1. Note that

~ -2 Ozktk
Ry(&,t) = e <eat<§> — Z 7@‘2’“).

N
k=0

N ~
Let g(&) = (§)? and f(z) = e™* — %zk, thus, Ry = e **fog. By Corollary
k=0

9| there exists C; > 0 such that [¢'(&;)| < C;(€)727 for all i > 0. For a fixe
5.9, there exists C; > 0 such that | (¢;)| < Cy(€)~>" for all i > 0. For a fixed

2o > 0, we define h : [0, z9) — R by

We can compute that

Nz k+i N+1,N+1—i
(%) _ i atz (Oét) kE (at) < otz
hO() = (at)fer = "= Nrioi ¢

k=0

and R(0) = 0 for all i € {0,1,2,...,N}. Moreover, for i = N + 1 we get

RINFD(2) <0 for all z € [0, 29]. We have
/ O (u)du = bV (2) = BD(0) = hV(2), 1<i<N+1
0

by the fundamental theorem of calculus, and ANV (2) < 0 for all z € [0, ).
Thus, A% (2) < 0 for all z € [0, 9] and i € {0,..., N}. Hence,

. QNHNFL
O< 7 < +1—17 _atzg
S RS T
for all z € [0, 2] and 7 € {0,1,2,..., N + 1}.

For ¢« = N + 2, we differentiate f with respect z directly to get
f(N+2)(Z) — aN+2tN+26atz > 0, 0 S > S 2.
Note that 0 < (£)72 < 1 for |£] > 0, thus by taking zo = g(&;) = z we get

FO(g(&))] < OFYHH(g) 2V-22igeri 3
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fori €{0,1,2,...,N +1} and
[FV (g(&)] < V207 < O ()20t (3:2)

For | € {0,1,2,...,N + 1}, by the Faa di Bruno’s identity applying with f o g
and (3.1)), we get
I

0L Bu(et)] < e““Z(ZC "L—l(“m”’")f@(g(s»)

=1

1 l
Z 2+m)/3m . _
oot 2 : (2 : C(g) m= ) {tN+1<£>2N2+2z€at(§> 2}

i=1
l
< Cle—ot Z<£>f2ifltN+1 <€>72N72+2i€at(§>_2
i=1
< Ce—%&ttNH <€>—2N—2€at(§>*2

IN

In particular, for [ = N 42, we have by (3.2)) and the Fad di Bruno’s identity that

N+1

Ryt < —‘“Z(ZC ST ()

e (c<s>:fj(“m””)f N2 (g(5)))
- e_g,ftNZH <ZC<§>—:é?(2+m)ﬁm> {tzv+1<§> IN—242i _at(€) }
i=1 8
re ft(zc<§>:ij(2+m’ﬁ”){ g
B
= Ji (Zc<£>‘:i(“mm’”>{ Nl {g) T eier@ }
Z:1\1/+2 ’

< Cef%‘t Z <€>72i72N72tN+1 <£>72N72+2i6at<§)*2

i=1

< Ce*%t Z <€>72itN+1<£>72N72+2i€at(§>_2
i=1
< Qe TN g TN 2t

If t <1, then t(¢)~2 < 1. Thus,

0L (6, )] < Ce H1¥H () 2V 20 < Ce iVl V2 (33
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and if || > 1, then (£)~2 < 1/2. These imply that
|aéj§N(£;t>’ < Cef%o‘ttN+1<€> 2N-2,%t _ (e~ 4ttN+1<€>72N72_

For t > 1 and |¢| < 1. We rewrite Ry = A — B with

N o kik
at|€|?(g)—2 —at _ot{€)~2 —o _O[ ¢ -
A = 0l — p—atat(l) and B=e ™ g i () 2,
k=0

For the term B, since |¢| < 1, we have (£)? € [1/2,1]. By Corollary2.9]and ¢ > 1,

then we have

N ok N ok
%,B] < Z—k (67 < Cemt Yy — (O
k= k=0 ’
N o kk
t
S Cefat O{T <CefattN+1
k=0

< Ce~ TN+1 <£>72N72'

For the term A, we write A = e *'p o ¢, where p(z) = e*¥/(1+2) and ¢(¢;) = |¢|*.
Next, we consider p(z). For convenience, we express p(z) in the form p = no-~y

where 7(z) = e*”* and v(z) = 1/(1 + z). Note that for each i € NU {0},
nD(2) = (at)e®” and ~9(2) = (=1)4!(1 + 2)~ 04D,

Using the Faa di Bruno’s identity with 7 o v, we obtain
k

Op(2) =Y Crp(YD)7 - (70O (y(2))

i=0 B

= Z E(_1)61+"'6k(1 4 Z)7(261+---+(k+1)5k)a¢tieﬁrftz

k k"
= 2D G0+ ) e
225

= (=1)ke= (1 + 2) '“ZZ '(1+Z>i.

It is easy to see that

, 26270 i€ {1,2},
dag) =3 "

0 otherwise,
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for i € N. Applying the Faa di Bruno’s identity to p o ¢, we obtain

dpoql&) = D> Cialg™) - (¢")pM (q(&))
8

k=1

- Cl,kéfk‘l{( 1)k e (14 [¢[2) ZO’“ (1+|§|2)}

<k<I

— T Z Cri(— 5‘% l{ 1+ 1€)?%) ’“ZC’,“ (TW) }

L<k<i

|~

In above equation, we have used that the algebraic system 5, +8s = k, 1 +208s =1
has a unique solution (31, 52) = (2k — [, — k) and 2k — [,l — k > 0.

Since t > 1 and 1/2 < 1/(1 + [£]?) < 1, we have

k 3 k
, t .
< (1 + |€’2)_k g Ck,ial (TMP) < C E t < Ck’tk
i=1 i=1

Next, we write [ = 2m+d with d € {0,1} and m > 0. Using the above inequality,

t > 1 and [£] <1, we can estimate (9éjA by

at
0L A < Cem®eTi® 3™ g ik
L<k<i

l
< C«efateﬁ Z ‘fy%fltk

k=m+d
m
— Ce—ateﬁ § :|£|2i+dti+m+d

m

— Ce™ atem&\?tz (t|e]?) %Z (t€[?)!

=0

N~

< Cete TPt (1 4 t¢[2)3.

If |€]? < 2/3, then —1/(1 + [£]*) < —3/5 and it follows that

0L Al < Ce e %(1+t|§| )z
< Ce 5P a1l (1 4 ¢]¢]?)2

< Ce TPz (gym
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< Cem TPz ()™ 4 Cem TN (£) 2N -2,

On the other hand, if 2/3 < |¢[2 < 1, then we have |£[2/(1 + |£[2) > 2/5. Since

[<N+22/3<|f*<1andt>1, we can estimate 8éjA by

‘aéjA\ < Ce_%t%(l —l—t]§|2)é
< Ce™ %43 (1 + ez
< Cem 5 N T2
< Ce= TNl

< Cef%ttNJrl <£>72N72

< Cem TP (tym 4+ Cem TN () N2,
From the estimations of (’3éjA and 8éjB , we obtain
0 R (€, 8)] < Cem FIEPe (1) 4 Cem 41 (g) =202
as desired. O

Remark. Tt can be seen that the above lemma is true for all | € NU{0} in general.

Now we start to prove Theorem

Proof of Theorem[3.1 First, we can choose N € N such that N > n + |a| — 2.
Note that

Ry(z,t) = F 1 (Ry(&,1)).

We consider two cases.

First, assume that |z| > v/t. Then, 1 < |z|*#~'. Hence,
2|t <1+ |2t <2t

This implies that |z|t~Y/2 < (Jz[t~1/2) < /2|z|t~/2. Since |z| > v/t > 0, we can

choose j € {1,2,3,...n} such that |z;| = max{x; : i € {1,2,3,...,n}} > 0. Also
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note that
|z;] < |x] < V/nlay).

By using the integration by parts with respect to &;, we have

[Ry(z.t)] = (2n)°%

/ e Ry (&, t)dg‘

= (2m) 2|z

/ emfagj EN(&) t)d§’
Rn

< Vn(2m) 3 2|

/ "0, Ry (&, t)dg’.
Integrating by parts N + 2 times and use Lemma |3.2] we get

[Ry(z,t)] < Cla|V7

/Reixfagﬂﬁw(f,t)df‘

< Cla| ™25 ™ e TPy 4 Cla =V 2e TN ()T
< O(laft™2) N2 R 4 Ola TN R ()™

< Cllalt=2) 2 E

< Olalt™ 2y N2 (),

Now we assume that |z| < v/£. Then, |z|*#~! < 1 and hence,

(oft™2) = T+ [aftT < V2.

By Lemma [3.2] we have

[Ry(z,t)] = (2m)7%

/ e Ry(&, t)dg‘

Ol R (1)1,

IN

IN

mi . — et lg2 _at _aN—
Oty e~ %42 1y + Cem T V()22

IN

Ct s ()™ + Ct 2 ()™

= Calt™2) N2 ()™,
Combining the preceeding two cases, we conclude that

Ry (2, t)] < Claft™2) V25 ()™, (3.4)



19

for all z € R™ and ¢ > 0.

We decompose

aktk
Gt) =G t)xp = e > ——B%+ R(-,1) .

For the first term, by using the Cauchy-Schwarz inequality, we can estimate its

norm.
N N O{ktk
HZ k, < e 30 B e
k=0 La-e k=0
N o kik
_ ot
<Ce ) TH@/JHL%G
k=0

v :
gcwt(zkm) (Zt%) 00

< Cem ™ ()Y ]| Lo

< W) 5| . (3.5)

For the second term, we use the Young’s inequality, Lemma , and (3.4)), to get

IR(t) % PlLae <

() / Rz — y)b(y)dy

q

< | [ =i irate - v 0l ol

< ClBRNG O[]l oe

L3

< O35 ()| () (||t =2 ) N2

|9 Lasa
Li

It remains to estimate the term on the right hand side of the last inequality.

Using the polar coordinates integration, we have

(@)l (|zft=2) N2

L

:/J )il ()N 2dz
= a3V N2y Al pli=3-N-24,
/rISx/i<><Ht> do [ el )

lel> v
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\/i 1 > 1
/ (rylal(pt=2) =N =2pn=1gp 4 / (rylel(rt=2 >N2r"1dr) do
0

NG

— 02843 ((max{1, vi})! / 1 ()N 2qp
/ (max{1, vVtw})! " (w)~ N_de), (3.6)

where in , we substitute w = rt~'/2. There, wy, := [, , do and do is a stan-
dard measure on the unit sphere S"~!. It is easy to see that fol w1 (w) "N 2dw
is finite since n — 1 > 0. This implies that w" ! {w)~"=2 is bounded on [0, 1].
Next, since 0 < wl®#7=1 () =N=2 < glal+n=N=3 for all w > 1 and |a| +n— N —
3 < —1, it follows that floo wlet=N=3qy is also finite. By the comparison test for

integral, we conclude that [ w!®*"~1(w)~N~2dw is convergent. If ¢ < 1, then

1 o)
< an%‘t% (/ wn—1<w>—N—2 + / w|a|+n—l<w>—N—2> )
L 0 1

|R( ) % $llzae < CEREE™ [¢llzae < O8] 0o (3.7)

(@)l (|alt=2) N2

Thus,

Ift>1, then

la] a]

1 00
< wﬂQ?t%"'T </ wn—1<w>—N—2+/ w|a+n—1<w>—N—2).
Ll 0 1

IR(-,) %] pae < CESEH5 ()™ 1] pow < C)Z T[]l g, (3.8)

(o)l 4) N2

Therefore, we have

where we have used that ¢ < (t) for all ¢ > 0. Combining estimations (3.5]), (3.7)

and (3.8)), we conclude that

1G(£)e]|pae < CLE)'5 ™[] pae,

which is our desired result. O
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Theorem 3.3 (Interpolation). Let 1 < p < ¢ < oco,n € Nya > 0 and a € R.
Then, there is a positive constant C' = C(«, p, q,a,n) such that for any t > 0

1_1

16 0e < CeF [llae + O3 G ol e + )3 G5 ) o

Proof. First, let 1 < r < oo be such that 1/p = 1/¢ — 1/r + 1 and we choose
N € N such that r(la] = N —2) +n < 0. By the estimation (3.4)) in the proof of

Theorem (3.1} we immediately obtain
IRy(z,t)] < C{zlt™2) V275 (z €R™¢t>0).

Note that,

N
aktk

Gt =G, t) v p = e > ——B"+ R(-,1) x .

k!
k=0

We estimate the first term . By the proof of Theorem |3.1},

La:a

t N btk 4ok
e Y B
k=0

we have

N

kik
—at a't k
Y B

k=0

< Ce " ()N |[)|| pae < Ce™F ||| Lo (3.9)

La.a

We estimate the second term by dividing into 2 cases. If 0 < ¢ < 1, then by the

estimation (3.3]) in the proof of Lemma 3.2 we have
0k B (€. )] < Cem 81T g2

for all ¢ € R* and [ € {0,1,2,...,N +2}. If |[z| > 1, then |z| < (z) < v/2|7]

which implies that

[Ry(z )] < Claf™77

< C|x|—N—26—%ttN+1||<€>—2N—2||L% < C<x>_N_26_%ttN+1.
If || < 1, then 1 < 2(N+2/2(2)=N=2_ Hence,

rxten] < of [ es<Rulena
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< Ce TN

S C<.Z‘>_N_2€_%ttN+1.
By the Young’s inequality for convolution and Lemma [2.4] we get

[R(+ 1) % Y|l ae <

@ [ Rte =ty

L3

< 0| [ o= st - v 0l ks

L3

< Ol Bn (1)

ol [[9] Lo

S CtN+2€_%t <I’> la]-N—-2

nel_ 1
[l re < ()22 ||| e,y

L‘L

(3.10)

where we have used that

1
= ( / <$>T(a|N2)d:v>r
Lr n
1 1 00 1
— wﬁ(/ <S>r(|a|N2)Sn1dS+/ <S>r(a|N2)Sn1dS>
0 1

which is finite because n > 1 and r(Ja|] = N —2) +n < 0.

<$>|a|fN72

If t > 1, then t < (t) < v/2t. Then, by Lemma , the Young’s inequality for

convolution, and Lemma [2.4] again, we obtain

[R(, 1) * ]| Lo

@) [ Bla - yuiiy

Li

<¢

/n<x — Ry (z -y, t)(y)dy

+C|

/ Ru(e —y.)(y)"0(y)dy

L Ll

< ClBN GOl e [9]ze 4+ [1BN (5 Ol 1] 2o

< Ot g |[(@) (|2t 2) N2 [l + CEE|| (2|t V2 llee (311)
Ly Ly
n n \a\ n n
< Ct 2tz 2 ||))||p + Ot~ 2tz ||| o (3.12)

nel_1yylal nel_1
<O @l + O 29| o (3.13)
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Notice that (3.12]) follows from (3.11)) by

()t 2) 72

Ly

1
= (/ <x>r|a|<|x|t—§>—r(N+2)dx>
1
= (/ <x>r|a|<]x|té>r(N+2)dx+/ <x>r|a<’$‘t§>r(N+2)d$)
lz| <Vt 2| >E

\/z 1
N (/ (/ (s)rlal(st=2) T (N+2) gn=1 g
sn—1 \Jo

1

+ / <S>r|a| <St$>r(N+2)8n1d8) do’> r

Vit

1 \/E
< wy (/ max{1, vV}l (st72) T N+2) gn=1 g
0

+/ max{l,3}7"'“'<st_é)_T(N+2)s"_1ds)T
Vit

+ / max{1, ﬂw}ra|w”_1<w)_T(N+2)dw> '
1

1

1 o0 p
Swﬁthr;(/ wn—1<w>—r(N+2)dw+/ wra|+n—1<w>—r(N+2)dw> ,
0 1

where the right hand side is finite since n — 1 > 0 and r(Ja] — N —2) +n < 0.

Combined estimations (3.9),(3.10) and (3.13) we obtain the estimation for the

Green operator.

1_

_at n(l_1 n 1) lal
1G]l zan < Cem % [l 0o + O G5 e + 01y G2+ 5
as needed. ]

We close this chapter with the following result which will be crucial in the

study of global existence.
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Lemma 3.4. Letn € Nk > 1,1 < g < n/k. Then, there is a positive constant

C = C(n,q, k) such that for any t >0

(

E 1—k k
O 2 10l i + CO A+ i) 7 [l s 52 = gk
[¥llzs < <

k L 1-1 n _k
|2 DN a9l poh + C )22 [ oot ;n > gk.

Proof. By the definition of L¢ norm and the Holder inequality, we have

40 = ( /| s /| ) mwu)wdx)
<(/ ) m<x>-qk<x>q’f|w<x)|qczx)q ([ ) mquﬂxwﬂwmwdx)

<(/. m<x>—qkdx)i||w||w co( [ e W)
= (wn /om<r>_qkrn_ldx) EH?/)HLoo,k (72| por

1

1 . L \/@ . 1 % k 1 1—-1
Swz( [ [Ty ) Fbll e + (O 0l
0 1

q

1

q

1 1 P V) o1 7 X 1 -1
< w! (/ (ry=tkpn= +/1 phake ) [l e 4 (62 1l 1 1] pocte-
0

If n = gk, then
v
/ PR e = 1ln(t)
. 2
which implies that
1 1 P 1 ¢ X 1 1-1
Iollr < ([ 040+ 31000 Wolls + 0l ol
k _k : -2
< C(L 4+ In(@)) = [[9] oo + (O 2 (IO 101 ok

If n > gk, then 1 < (t)"9 for all t > 0. Thus,

n—gk
/mrn—qk—ldr _ <t> 2 — 1
1

n — qk

and this implies



7 ' (t)
1]l e < wn (/ <7”>_qk7“n_1dr LE =l
0 n —

n—qk

-1

qk
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% K 1 1—1
[l oo + 72 [P Ll g

n_k & 1 1-1
< O 22|l oo + () 72U fa w11 oo O



CHAPTER IV

EXISTENCE OF LOCAL SOLUTIONS

In this chapter, by adapting the approach used in [4] and [9], we can prove
the local existence of solutions to (1.1)). The results in both papers, however, are
obtained under the assumption that V' is a constant. Thus, the result in this

chapter can be regarded as a non-trivial generalization of those papers.

Theorem 4.1 (The existence of local solutions). Let o > 0,a > 0 be constants
and V : R" — R be given function. Assume that there exists a positive constant
C such that for any v € R"

[V (2)] < O],

If the initial condition ug € C(R™) N LY (R™) N L°*(R™) where b > a/o, then

there exists T' > 0 such that the Cauchy problem has a unique mild solution
w € C([0,T); C(R™) N LY*(R™) N L>b(R™)).
Proof. Let T' > 0 to be speified and
X = {w € C([0,T|; C(R") N LY (R™) N L=*(R™)) : [Jw]lx < oo}
with the mixed norm

|w[lx == sup {IIw(-J)IILl,b(Rn) + IIw(-,t)IILm,bmn)}-
te[0,7

We define the operator M on X by

M(w)(z,t) = G(t)uo(x) + /o Gt —7)B[V(x)|w(x, 7)|°w(x, 7)]dr
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for all w € X. We will show that M maps X" to itself. Let w € X. Then,
Jw(- D)l pre, [[w( D)l per < [lwllx < oo, > 0.

Note that a < bo and b > 0. First, we consider ||[M(w)(z,t)||zes. By Theorems
and [3.1] with ¢ = oo, we obtain
b o
IG@OBIV ()w(, 7)[7w(, 7| < CE2 BV ()w(, 7)|7w(, 7)]| oo
CLYI()P 7w () 1oe
= c<t>%uw<-m>uz:ib. (4.1)

By Theorem (3.1 again and (4.1)), we have

[M(w)(; D)l oo < NG (o) | Lor + (t = 7)BV ()w(, 7)|7w(-, 7)]dr

[,oo,b

< [1G(#)uo( )l oer + /Ot 1G(t = 7)BIV ()w(-, 7w, 7| jwsdr
< O Hluolsms + [ (6= )l lgEhdr
< C(T)3 [Jug | g + C{T) T ||| 5. (4.2)
This implies that M(w)(:,t) € L>**(R") for ¢t € [0,T]. Next, we consider
|M(w) (-, t)||p16. By Theorems and [3.1) with ¢ = 1 and the Holder’s inequal-
ity, we obtain
GBIV (Yw(, )| 7w(-, 7)o < CEYE BV Olw(-, 7)[7w(-, 7)) pro
CO= |V Ol D) w7l
CY2I ()PP 7w (o, 7)o
< C(ﬂg|!<'>bw('>T)HL1|\<'>I"’@U”(',T)HLoo
= )2 w(, ) allw, 7§ (4.3)
Finally, by Theorem again and , we have

M) )l e < (1GE)uo ()l +
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t
< G (o) o + / 16t — 7BV (), 7)Fw (e, )|
t
< Ot luoll g + C / (t = 1) () psllwl ) [Gmndr
< C(T)? |Jug|| o + C(T) 2 T w5 (4.4)

This implies that M(w)(-,t) € LY*(R") for all ¢t € [0,T]. Also, M(w)(-,t) €
C(R™). Moreover, by the semigroup property of Green’s operator, we can conclude
that M(w)(-,t) € C([0,T]). Thus, we conclude that M(w) € X as required.

Next, let § > 0 be a sufficiently large number to be specified. We define
Xs={we X :||w|xr <}
By and (4.4), we have, for w € Xj,
[M(w)|lx = sup {HM(w)('?t)Hleb(R”) + HM(w)('7t>||L°°’b(R”)}

t€[0,T]

b o
< CUT) 2 (Juo]| 1o + lluoll oo + Tllw]|F)

SIS

< CUT)2([[uollpre + lluollpoes + T37*)

<.

Therefore, we choose § > 0 and 7" > 0 such that

) b 1
1o, 0, < d C T 7T < .
max{|[uo|[p1s, [[uo|[poer } < o ™ T T < o

Indeed, we fixed T' = 1, then there exists 6 > 0 such that
C125%2 max{[|uo|| 1.6, ||to || e} < 6.

Next, since lim;_, t(t)g = 0, there exists T} > 0 such that

1
T 3T < 250

and then we choose "= min{1,7}}. If ' =1, then

b b
AC(T)3 max] ||uo|| 1o, [0l oes} = C1252 maxc{|[uo| 110, ||tto|| poos } < 6
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and

CUT)2T < CL{T})e Ty < —.

If T =T, then
b b
401(T) 2 max{||uol| L1, |10l peer } < C125 2 max{ ||uol 10, ||to]| oes } < 6

and

1
T, < —.
1= 950

(Sl

C{T):T = Cy(Ty)

Our objective is to find 7" > 0 and 6 > 0 such that the map M : X — X is a

contraction. Let wy,ws € Xs. Then, ||wy(-,t)| g, [|[wa(:,t)||fecr < 6 and
(M(wr) = M(ws)) (2, 1)
t
= / G(t = )B[V (2)(lwi(, 7) 7w (z, 7) = |wa(z, 7)|7ws (2, 7))ldT
0
= K(x,t)

for z € R" and t € [0,7]. First, we consider ||K(-,?)||z~s. By Lemma [2.6]

Theorem [2.11], Theorem and a < bo, we have

G )| oo < /OtHQ(t = BV ) (o 7)[7wi (- 7) = fwa (- 7)|7ws (-, 7)) || poendr
< C/0t<t =) BV ) (wn (D wn (- 7) = fwa(, 7 wa(, 7)) s
< C/Ot<t — 7Y (s (o, 7|70 (-, 7) = s (o, )| (-, 7)) e
<27 /0t<t — 7)) (max{wn, wo}) fwr (- 7) = wa(-, 7| edr

t
< CQ”+1<T)35”/ l|wy (-, 7) — wa (-, 7)|| poondT. (4.5)
0

Next, we consider ||K(-,?)|/z1s. By Lemma 2.6 Theorem [2.11] Theorem [3.1]

a < bo and the Holder inequality, we obtain

G )l e S/0Hg(t—T)B[V(')(|w1(nT)|"w1(‘77)—|%U2('7T)!°wz('>T))I\Llyde
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<0 [ = DBV () = hoste st ) e
<€ [t =T o 7)) = s ) s
< 02 [ =m0 o, ) o) = wale 7 e
< ez s [ maxun, i) = wste )l

t
< 02”+1<T>g(5”/ |wy (-, 7) — wa(s, 7)|| prsdT. (4.6)
0
Combining (4.5) and (4.6]) together, we obtain

I(M(1) = M) = sup {||K<~,t>|m n ||K<-,t>uLoo,b}

te[0,T

t
< Cy27T)267 sup / {le(»f) — wa (-, 7) || g1
0

t€[0,T]
+ ||’lU1(', ’7') — wg(', T)||Loo,b}d7'
< G2 HT)3 T8 ||wy — wo|x,

where we choose T' > 0 satisfying Co27+H(T)*/2T5° < 1. Indeed, since lim;_,o(t)"/?t =

0, there exists Tb > 0 such that (73)%2T, < 1/(C,2°+257). This implies
Cy27 167 (Ty)2 Ty <

Therefore, we choose T' = min{1,7},75} and it is easy to see that T satisfies
all of previous conditions. Hence, M is a contraction mapping on X. By the

contraction mapping principle, there exists u € X5 such that M(u) = u. O]



CHAPTER V

EXISTENCE OF GLOBAL SOLUTIONS

In this chapter, we prove the global existence of solutions to (1.1)) by modify-
ing the approach used in [4] and [9]. In the case V is a constant, this result found

in [4] and [9].

Theorem 5.1 (The existence of global solutions). Let n € N,

3
0<a< Co>2 and b=2
c+1 n o

be constants and V : R™ — R be a given function. Assume that there exists a

positive constant C' such that for any x € R™,
V()] < Cla|®.

If up € C(R™) N LYY (R™) N Lo (R™) with ||ug|| e + |[uol| s s sufficiently small,

then the Cauchy problem admits a unique global mild solution
u € C([0,00); C(R™) N LY (R™) N L=*(R™)).

Proof. Let Z = {w € C([0,00); C(R™) N LY"*(R™) N L>=*(R")) : |Jw||z < oo} with

the mixed norm
b
Julz = sup § @)l o + (07wt Ol |
for all w € Z where v =n/2 —b/2. Let 6 > 0 be to specified. We set

Zs={we 2 |u||s <8
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and the operator M on Z by
t
M(w)(z,t) = G(t)up(z) + / Gt —7)B[V(x)|w(x, )| w(x, 7)]dr
0
for all w € Z. First, we show that M maps Z; to itself. Let w € Z5. Then,
_b
(@) lw(, )| pooe, (62 [[w(- )] 1o < 6.

By Theorem Lemma 3.4 where ¢ = 1,k = b = a/o and the Holder inequality,

we obtain
IBIV ()w(-, )7 w(-, )]l e < ClEw (-, 6)7 |1

< Cllw( D[ Zesllw(, )| s

S 060+1 <t> 7'ya+g

_ C(Sa+1<t>ffy(a+l)+%’ (51)
1BV ()|w(-, )7 w(-, )] [ s < I H7w(, )7 [ e < Cllw(- )] 720
< Ot ()Tt (5.2)

and
IBIV ()w(-, )| 7w (-, )|z < CO2 BV () w(-, £)]7w(-, )] g
+ OBV () |w(-, ) w(-, )] e
< C(Sa+1(<t>—g~ya+% + <t>'yf'y(a+1))

< C87HHE) e, (5.3)

Next, from the conditions

0<a< and o > —,

o+ n
we have b < 1/(c+1), b/2<b<a+b<1and

no ba>na o >n0—1>1
c=———=>—— :
L S T BT P 2




First, we consider [|[M(w)(+,t)||z~s. By the triangle inequality, we have

where

and

We estimate K; by using Theorem where p =1 and ¢ = oo , we have

|M(w) (-, ) || Lot < Ky 4+ Ky + K,

K3 = ﬂ ||g(t — T)B[V<)|w(77—)|0w(7 T)]HLoo,de,

Ky < Ce™ % ||ug|| oo + C )% g 1o + CE) 7 |Jug| 11

< Ci(t) " (luoll Lo + lluol[Lre)-
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Next, we estimate Ky. By Theorem [3.3| with p = 1, ¢ = 0o and estimations ([5.1)),

and (E3).

-

K2§0/2
0

we obtain

(e 2BV ()w(, )7 w(, )| oo

+(t = 1) 2BV ()w(-, 7)"w(, 7]l e

+ (=) BV O)lw )[7w(, 7| )dr

o

< C«é‘a-l-l /2 ((t _ 7.)-% <7->—’Y(U+1) + <t _ T)‘% <7—>_’Y(U+1)+%
0

+ (t —7)"(1)7%)dr

|+

<ot [Nt =n)HE T 4 =) )N

[SIES

< o) / ((t— 1) 3 () 4 ()17

0

O

< ComHI / () dr

0
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< R8Tt 7.

For the term K3, if b > 0, by Theorem and Lemma with ¢ = n/bk =
b = a/o and estimations (5.1)), (5.2)) and (5.3), we obtain

IBIV (-, )7l )],
< (& H BV Q) w DI wl O BV O Dl w(- )]
T+ O+ () HIBIV (-, 07w, D] e
< CHTHH ) TIO)  C57F (1 + Inft))# (1) T

< OO (In(t)) (1) D), (5.4)
Moreover, we have the estimation for the weighted L™/® norm as shown below

1BV ()w(-)7w( )]l 50 < CIO 7wl )7 5

3o

=0 e ol 015 ) o, )

3o

n

n n b
< O (YHEEHD-1 (. gy RrD-1)F </

or1-2 b
= Cllw( Ol s " w0l £

(o, )

< 050—1—1 <t>—7(0+1—%)+%
_ 0504—1 <t> —y(0+1)+% (55)

since v =n/2 — b/2. If b = 0, then we use ¢ = co. Thus, we have

1BV ()lw(-, )[7w(, )|z < IBV()w(, 7wl t)]| oo

< olias <t> —y(o+1) _ 5o+l <ln<t>>%<t> —y(o+1)
and

IBIV (Vw(:, )] w(e, 1) s < CO7F (1)1 = Co7H (1) DT,
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By Theorem with p = n/b,q = oo and estimations (5.2)), (5.4) and (j5.5),

we have the estimation for K3 as follow.

zgscﬂ@“%ﬂwwommﬂmemm¢

2

+ (t =) E BV D wl, )]l g
H BV O)lw( 1)7w( ) 3 )dr

t
<cott [ty Hr) e g -y e

+ (In(r)) = () ) dr

t t
< 050“( (t — 1) "3 (r) DTy 4 / <ln<7>>z<7>7("“)d7)

t

S 050+1 ( <t _ 7_>—% <7_> —’Y(U+1)+gd7- + <t>—"/)

o

t

<coni(y e [ tar+ ()

t

ol

< OF (1) (1) / (s)"5ds + 1) (5.6)

0

since t/2 < 7 < ¢t implies (t)/2 < (1) < (t) and there is a constant C' > 0 such
that

[t<1n<7>>3<7>_”(”“)d7 <Ot).

2

for all ¢ > 0. Indeed,

[ ey var < oty [ ngryt ey

m\w\.'
o~

and ftt/2<ln<7')>b/"<7'>*wd7 is bounded on [0, c0) since
0 < (In(r))7 (1) < C(lnV2r)nr "

for 7 > M where M is sufficiently large. Next, we choose 0 < k < n(yo — 1)/,

thus, we have

(Inv27)s77°  (Inv/27)=
kb

o = —+0 as 7—o00

T Tn
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and ;7 7777 */ndr < oo. This implies

/0 T n(r) i) dr < oo,

and we substitutes s =t — 7, in (5.6). Note that 0 < b < 1, thus,

and we have

K3 < CO7MHH ({177 4 1) < C367HH () 7.

Next, we consider [|[M(w)(+,t)||z1.+. By using the triangle inequality, we obtain
[M(w)(, ) < Ty + o,

where J; = ||G(t)uo(:)|| 10 and Jo = fotHg(t—T)B[V(-ﬂw(-,7‘)|‘7w<-,7'>”|L1,de. By

Theorem [3.3| with p = ¢ = 1, we get
_at b b
J1 < Ce 2 lul[pre + Clluol[pre + C ()2 [luol[r < Calt)[Juol| 11,

where C} is a positive constant. Next, we estimate J; by using Theorem with

p =g =1 and estimations and , we obtain
b au=n) .
R < C [ BV Ol Dl
BV ) w(, 7w, )l e + (= T E BV )w(, 7)|7w(, 7]l )dr
t
i / (r)y OO 4 (Y () ) dr
0
t
<ceit [ ryrar
0

< 05504—1 <t>%

since 0 < 7 <t implies 1 < (1) < (¢t) and 1 < (t — 7) < (t). Moreover,

t
(T)779d1 < 0.

S~
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Thus, we choose 0 > 0 be such that K67 < 1/6 and ug has a sufficiently small
norm, i.e.,

1)
|wol oot + |Juo || pre < 6L’

where K = max{C, Cy, C3,Cy, C5} and L = max{C}, Cy}. Therefore, we combine

K, Ky and K3 together, we have

M) 1) lms < 47+ 247 + 27T < D)7

for all t > 0. Similarly, we have

d, b b 0, s 0,5 0,
M@0l < S+ 2t < St Syt < Dt

Thus,
[M(w)|z = sup {(ﬂ‘gl\/\/l(w)(-, e + @7 |M(w)(, t)HL“””} <9

and this implies that M(w) € Z;.
Next, we find 6 > 0 such that M is a contraction on Z5. Let wy,wy € Zj.

Then, {6) /2 ( )l zson (5 (Bl s < 6 for i € {1,2} and
K(z,t) == (M(wn) — M(wn))(z, £) = /Ot G(t — 7P (x, 7)dr,
where
Pz, 1) = B[V (z)(Jwi(z, 7)|["wi(z, 7) — [wa(z, 7)[ w2 (z, T))].

By Lemma [2.6] Theorem R.11] @ = bo and v = n/2 — b/2 > 0, we have the

estimation as follow.

IPC e < CHES (un ()l (7) = hea(, ) 7w (-, 7)o
< O (max{uwn, wa ) (- 7) = wa(-, 7]l

< C)()" max{w, wa | Toe w1 (-, 7) = w2, 7)[[ 10
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< CO%(m) " lwi (5 7) = wa - 7)1
< OO7(rY T Jwy — w2
< OOy 5 ||wy — wo|z,
PG zeer < CNEYPHP(fwr (-, ) Twi (- 7) = wa (e, 7)|7wa (-, 7)) || oo
< O (max{wr, wa})7 [wi (-, 7) = wa (-, 7)| || e
< O max{wr, wa}|Foo[[wi (- 7) = wa (e, 7) || oo
< CO%T) 7w, 7) — wale, )| poos

< O6% (1) |wy — w2,
and

1P < CE) 72 PE ) e + CEPCT) |

< C67 (1) " [Jwy — w2,

b

_b b 1-2 b
IPCIL e < AT 2PN 7P T o + C(L+ Indr)) = [P 7) || pooo

L

< Co7 (R () E s (4 7) — wa (e, D[ llws (- 7) — e, P
+ O+ In(r))n wi (-, 7) — wa (e, )| o)

< Co7(r) D In(r))

wy, — wz”z-

Consider ||KC(+,t)||zb, By the triangle inequality, we split ||KC(-, )| . into 2

parts as below

t t
2
V() oo < / 1G(t — )P, )l psdr + / 1G(t — 7YP(,7) | .
0
As the calculation of Ky, K3 and J,, we have

/0 16 (t — TYP( 1) e

< Csd7(t) 7 ||wr — we| 2

t
[ 1G(t — 7YP(-, 1) |
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and
t b
[ 160 = 1P lsadr < Co 0 fun — sl
0
where Cg and C; are positive constants. Thus, we obtain
b
IMan) = Mwa)llz = sup 01Ol + (0 EC Dl |
< M7 ||lwy — wel|z,

where M = max{Cg, C;}. Therefore, we choose 6 > 0 be such that Mds7 < 1/2.
Hence, M is a contraction mapping on Z;5. By the contraction mapping principle,

there exists u € Z; such that M(u) = u O
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