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In this research, an inbound commodity collection system is studied. The 

system consists of a set of geographically dispersed suppliers that manufacture one or 

more non-identical items, and a central warehouse that stocks these items. The 

warehouse faces demands for the items from outside retailers. Both deterministic and 

stochastic demands are considered in a separate case. An economic order quantity 

(EOQ) inventory policy is applied to jointly replenish the items. The items are 

collected by a fleet of vehicles that are dispatched from the central warehouse. Each 

vehicle has an identical limited capacity and must also satisfy a frequency constraint. 

A policy in which each vehicle always collects the same set of items is adopted. The 

integrated inventory-transportation problem is formulated as a set partitioning 

problem and a mathematical programming approach is developed for coordinating 

inventory and transportation decisions with the objective of minimizing the long-run 

average inventory and transportation costs which are composed of an inventory 

holding cost, a fixed ordering cost, a minor ordering cost, a fixed dispatching cost, a 

stopover cost and a vehicle routing cost. A branch-and-price algorithm is developed to 

find the optimal assignment of items to vehicles and a lower bound on the total costs 

is determined by employing a column generation approach. In addition, several 

greedy heuristics and local search methods are proposed along with a very large-scale 

neighborhood (VLSN) search algorithm in order to obtain near-optimal solutions for 

the problem. 
 
Computational tests are also conducted on a set of randomly generated 

problem instances. The results indicate that the proposed heuristics perform 

satisfactorily in both deterministic and stochastic cases. 
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CHAPTER 1 
 

INTRODUCTION 
 

1.1 General Background 
A supply chain is a network of facilities that performs a series of activities: 

procuring raw material, transforming raw material into products or services, stocking 

finished goods and distributing products to customers [Lee and Billington, 1993]. 

From these mentioned activities, it is clearly seen that inventory control and 

transportation planning are important aspects of the supply chain management. In 

some industries such as the food industry, the logistics cost is a huge portion of the 

cost of products. Therefore, there are more opportunities to reduce the logistics cost 

than to decrease the production cost [Henkoff , 1994 and Nahmias, 1997]. 

 

Due to different sources of uncertainties existing along the supply chain, 

inventories are always kept to satisfy unexpected demands. When the inventory level 

drops, a replenishment may be needed in order to raise the inventory back to the 

desired level. Overstock inventories sometimes would be unprofitable rather than 

advantageous to an organization. Therefore, efficiency in inventory control is 

essential. There are many inventory models that can be adopted for efficient inventory 

management depending on the characteristics of the system. For instance, if the 

demand rate is constant, the economic order quantity (EOQ) model is appropriate in 

some degree. However, the fundamental purpose of all replenishment control systems 

is to resolve the following three issues [Silver, Pyke and Reterson, 1998]: 

How often should the inventory status be determined?  

When should a replenishment order be placed?  

How large should the replenishment order be?  

 

In a distribution process, commodity movement from one place to another 

involves transportation. For example, a warehouse sends a truck to collect raw 

materials at a supplier and a plant dispatches a fleet of vehicles to distribute goods to 

geographically dispersed retailers, etc. Costs of distributing products or collecting raw 
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materials are also considered as a major component of the logistics costs. For that 

reason, one of the main issues in transportation planning is to design optimal delivery 

or collection routes for the vehicle subject to restrictions. This problem is known as a 

vehicle routing problem (VRP) which is an extension of the traveling salesman 

problem (TSP). For a review of TSP and VRP exact and heuristic algorithms, see 

Laporte (1992a and 1992b).  

 

Inventory control and transportation planning of an organization are 

traditionally managed by different departments each of which has its own goal. 

Consequently, inventory and transportation costs are minimized separately by each 

department. In general, there is a trade off between the inventory cost and the 

transportation cost in the logistics system. When  attempting to decrease one cost, the 

other will normally increase. For instance, in an inbound material collection scenario 

using a simple EOQ inventory policy where a fixed ordering cost could be viewed as 

a fixed transportation cost, smaller order quantity leads to a lower inventory holding 

cost but a vehicle needs to be dispatched more frequently to collect materials which 

generates a higher transportation cost. However, the total inventory and transportation 

cost in the system can be greatly reduced if inventory control and transportation 

planning are closely coordinated and decision making in both aspects is cooperated in 

order to determine the best trade-off between both costs. 

 

In a multi-item inventory system, it is practical to combine groups of items in 

a single replenishment order to accomplish substantial cost savings [Peterson and 

Silver ,1979] due to the sharing of fixed replenishment costs. When these 

replenishment costs contain a transportation cost component, this cost sharing is often 

a consequence of the ability to share truck and loading equipment between the items. 

In addition, the design of a vehicle route for visiting a group of retailers (in the case of 

a distribution system) or a group of suppliers (in the case of a collection system) may 

have a significant effect on the magnitude of the replenishment costs. Hence, it is 

desirable to design an efficient joint replenishment strategy that coordinates both 

inventory control and transportation planning. 
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1.2 Statement of the Problem 
 This research involves an inbound commodity collection system that 

comprises a central warehouse with unlimited space for stocking inventories and 

geographically dispersed suppliers. Each supplier produces one or more non-identical 

items. The items face demands from outside retailers. When a manager of the central 

warehouse decides to replenish the inventories, a fleet of identical vehicles with 

limited capacity are sent to visit a set of dispersed suppliers for item collection. The 

frequency of dispatching each vehicle is limited due to the time required for 

maintaining vehicles and for other responsibilities, and the limited material handling 

capacity. When the item collection is completed, the vehicle returns to the central 

warehouse where the items are unloaded and stored.  

 

 The problem is to partition items into a number of subsets each of which 

consists of all different items so as to minimize the total cost per unit time of the 

integrated inventory-transportation system. For each item, the replenishment quantity 

and the replenishment interval, must be determined along with the efficient route for 

the vehicle. See Figure 1.1 for an illustration of the problem. Suppose that there are 

two groups of products according to a grouping strategy. Group one consists of item 

I1, I2, I3 and I5 while Group two composes of item I4, I6 and I7. When the 

replenishment of items in Group one is needed, a vehicle is dispatched to visit in 

order, according to the shortest distance, supplier S3 for collecting item I5, supplier 

S2 for item I2 and I3 and supplier S1 for item I1. After the vehicle completes its 

collection duty, it returns to the central warehouse. The replenishment of items in 

Group two may not occur at the same time as Group one’s. 
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Figure 1.1 Inventory-routing system with multiple items, multiple suppliers and a 

central warehouse 

 

 

1.3 Research Objective 
 The objective of this research is to develop mathematical programming 

models of the integrated inventory-vehicle routing problem, and propose an exact 

solution approach several grouping heuristics and improvement algorithms to 

determine an integrated multi-item replenishment strategy that coordinates inventory 

control and transportation planning in order to satisfy demands from outside retailers 

at the minimum average total inventory and transportation costs. 
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1.4 Research Scope 
 An integrated inventory-transportation system is studied in this research. This 

is an inbound commodity collection system that consists of a central warehouse and 

geographically dispersed multiple suppliers. Each supplier manufactures one or more 

non-identical items. Transshipment of items between suppliers is not allowed. That is 

each supplier cannot buy or stock any items produced by other suppliers. The central 

warehouse has its own fleet of identical capacitated vehicles and an unlimited area for 

stocking items that face demands from outside retailers. There is a frequency 

constraint on the number of vehicle dispatching in a given period because of time 

required for vehicle maintenance and for its other responsibilities and limited material 

handling capacity at the central warehouse. It is assumed further that each vehicle can 

be dispatched for item collection with an equal limited frequency. Moreover, the 

vehicle capacity is assumed to be comparatively larger than accumulated demands of 

any item in the replenishment interval. This assumption is made to avoid multiple 

visits for collecting the same product at a particular supplier in one period. 

 

When the inventory replenishment of a particular group of items is needed, the 

warehouse dispatches a vehicle to collect that group of items from the suppliers.  No 

time window for item collection is considered in the system because suppliers are 

assumed to operate 24 hours a day and there is no traffic problem. That is the vehicle 

can pick up the items at any time when it arrives at the location of each supplier. After 

visiting the suppliers for item collection as planned, the vehicle is driven back to the 

central warehouse. For each item, lead time is assumed to be fixed for any 

replenishment and the replenishment interval of any item is assumed to be longer than 

its lead time. When stock-out situation occurs, the manager of the central warehouse 

will not expedite any ordering or transporting processes. The model is treated from 

the viewpoint of the central warehouse and it is assumed that the central warehouse 

and the suppliers belong to different organizations so any charges to the suppliers 

from holding stock will not be considered.  
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The costs in the system are composed of two major costs: inventory costs and 

transportation costs. On the aspect of inventory costs, there are a joint fixed ordering 

cost, an item dependent minor ordering cost and an inventory holding cost at the 

central warehouse. The transportation costs include a fixed dispatching cost, a vehicle 

routing cost and a fixed stopover cost which is specific for each supplier. It is 

assumed that every supplier has responsibility of getting the items ready to be picked 

up at any time so that no shortage or delay occurs for each item collection at any 

supplier. In addition, the holding cost incurred when the products are in the vehicle is 

assumed to be very small and can be neglected. 

 

 Both deterministic and stochastic demands are studied in separate cases. At 

first, algorithms are developed for the deterministic problem and then they are applied 

to solve the stochastic problem. In the deterministic case, it is assumed that each item 

faces a constant and deterministic demand from outside retailers. As a result, an 

economic order quantity (EOQ) inventory policy can be adopted at the central 

warehouse which leads to a joint replenishment of items. In the stochastic case, 

demands from outside retailers are assumed to be independent, and identically and 

normally distributed due to a standard periodic review order-up-to level inventory 

policy adopted by these retailers. However, the stochastic problem is restricted to the 

case where the average demand of each item is approximately constant with time. The 

manager of the central warehouse chooses a periodic review fixed order quantity 

policy for inventory control and the safety stock is considered to prevent the stock-out 

situation under a given service level determined by management. 

 

All data used in this research ( locations of suppliers, demand rates, holding 

cost rates, minor ordering costs and stopover costs)  are randomly generated from 

uniform distribution. 

 
1.5 Research Contribution 

 There are various models of integrated inventory-transportation 

systems which have been studied for the past 20 years. To develop a model,   
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characteristics of the system must be considered. The system may involve a single 

item or multiple items. A distribution of demand for an item may be deterministic or 

stochastic. The number of destinations could be one or more. Unsatisfied demand may 

be backlogged or completely lost. Lead time of each replenishment may be zero, 

constant or variable. Vehicle capacity may be limited or unlimited. Transportation 

cost can be fixed or variable or both. A planning horizon may be single, multiple or 

infinite.  

 

Most researches on integrated inventory-transportation systems deal with a 

single item multi-retailer deterministic model or simplified ordering cost and 

transportation cost structures. For example, work of Daganzo, Barns, Hall and 

Blumenfeld (1985), Dror, Ball and Golden (1985), Chien, Balakrishan and Wong 

(1989), Gallago and Simchi-Levi (1990), Anily and Federgruen (1990&1993), Anily 

(1994) and Chan and Simchi-Levi (1998).  

 

For the case of stochastic demands for a single item, Federgruen and Zipkin 

(1984) study a single period problem but no ordering cost is included in the cost 

structure. Chaovalitwongse (2000) considers a single period distribution system with 

multiple capacitated suppliers. For the transportation problem, the author has linear 

and fixed charge costs but does not capture a vehicle routing cost. Cetinkanu and Lee 

(2000) deal with Vender-Managed Inventory (VMI) systems. They assume Poisson 

demands and zero lead time. Again no vehicle routing problem is considered. 

 

Viswanathan and Mathur (1997) study a multi-item multi-retailer distribution 

system with the case of deterministic demands for several products at multiple 

retailers. However, they assume that demands for items are constant and deterministic. 

Buffa and Munn (1990) analyze a multi-item single retailer stochastic model. They 

propose a grouping heuristic which is partly based on holding and shipping costs and 

no vehicle routing cost is considered due to a single destination. 
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This research is the most similar to that of W.Qu, Bookbinder and Iyogun 

(1999). They study an integrated inventory-transportation system for multiple items 

with stochastic demands. They integrate a modified periodic review inventory policy 

and transportation vehicle routing into one mathematical model. However, they 

simplify the integrated problem by assuming that a vehicle has unlimited capacity. 

 

An integrated inventory-transportation system considered involves multiple 

items, a single warehouse and multiple suppliers. Both deterministic and stochastic 

demands are studied. Furthermore, a vehicle routing problem is also presented in the 

model which is made more realistic by adding vehicle capacity and frequency 

constraints. A periodic review inventory policy with a fixed order quantity, which is 

modified from a simple EOQ model, is adopted for both deterministic and stochastic 

cases. The EOQ model is studied by Daganzo et al. (1985), Gallago and Simchi-Levi 

(1990), Anily and Federgruen (1990), Anily and Federgruen (1993) and Anily (1994) 

in the integrated inventory-transportation system in which there is only a single item. 

Cost structures which include a holding cost, a major ordering cost, a minor ordering 

cost, a fixed dispatching cost, a stopover cost and a variable routing cost are 

realistically captured.  

 

In this research, a branch-and-price algorithm is developed to determine the 

exact solution to the problem. Several greedy constructive heuristics and local search 

methods are proposed, and a very large-scale neighborhood (VLSN) search algorithm 

[see Ahuja et al. (2000) and Ahuja, Ergun, Orlin and Punnen (2002)] is developed to 

obtain near-optimal solutions for the problem. A column generation approach is 

applied to construct on the total costs a lower bound which is used to measure the 

effectiveness of proposed algorithms which can be utilized to solve both deterministic 

and stochastic problems. The computational results indicate that the proposed 

algorithms perform satisfactorily for both deterministic and stochastic cases. A 

developed model of the integrated inventory-transportation system can be applied to 

any organization that has similar environment to this problem.  
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1.6 Research Methodology 
At first, the integrated inventory-transportation system in the deterministic 

settings is studied. An exact solution approach and heuristics to find a near-optimal 

solution are developed. These methods are further applied to solve the stochastic 

problem. Figure 1.2 shows the research methodology. This research is conducted as 

the following steps. 

  

1.6.1. Model formulation 

Once getting a new idea from literature survey, an integrated inventory-

transportation problem is set up and then a single mathematical model in deterministic 

settings is developed. The stochastic model is developed after the solution approaches 

to the deterministic problem are obtained. Prior to formulating the model, decision 

variables which are the order quantity Q and the replenishment interval T as well as 

the route traveled, parameters, constraints and assumptions of the model are defined.  

 

1.6.2. Solution approach 

Firstly, a branch-and-price algorithm is developed and used to solve the 

inventory-routing problem to optimality. To determine near-optimal solutions, several 

greedy constructive heuristics are proposed to separate all the items into groups. Each 

group is replenished independently. Then one or two of neighborhood search methods 

(One Supplier Move, Supplier Exchange and VLSN) are employed to solve the 

integrated inventory-transportation problem for the order quantity and the 

replenishment interval that minimize the total cost of the system. The TSP tour is 

solved heuristically by using the Arbitrary Insertion heuristic [Rosenkrantz et al. 

(1977)] and then improved by applying the 2-opt exchange heuristic[Croes (1958), 

Lin (1965) and Lin and Kernighan (1973)]. 
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1.6.3. Performance measurement of heuristics 

The solutions obtained from the proposed heuristics are merely near optimal. 

Therefore, how well the proposed heuristics perform is not known. To measure the 

performance of the heuristics, a lower bound is constructed by employing a column 

generation approach and it is compared with the solutions obtained from the heuristics.  

 

1.6.4. Sensitivity analysis 

To analyze how model parameters effect the solution, the vehicle capacity, the 

maximum number of trips allowed and the fixed dispatching cost are varied. All the 

problem instances are randomly generated from a uniform distribution. In the 

stochastic case, it is assumed demands are normally distributed. Computer codes are 

written in C++ along with utilization of the CPLEX 8.1 solver. 

  

1.7 Thesis Structure 
 The outline of this thesis is as follows. The relevant literature is reviewed in 

Chapter 2. In Chapter 3, the integrated inventory and transportation model in the 

deterministic settings is formulated under the policy studied as a set partitioning 

problem. Based on the model formulated, a column generation and a branch-and-price 

algorithm are developed in Chapter 4, paying particular attention to the pricing 

subproblem, which is a very challenging optimization problem in its own right. 

Greedy construction heuristics, local search methods and the VLSN algorithms are 

proposed and developed  in Chapter 5.  

 

 In Chapter 6, the integrated inventory and transportation model in the 

stochastic settings is studied and analyzed. Computational experiments on both 

deterministic and stochastic problems are conducted in Chapter 7. The sensitivity 

analysis on some parameters is also carried out in this chapter. Finally, this research is 

summarized and future research directions are provided in Chapter 8. 
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CHAPTER 2 
 

LITERATURE REVIEW 
 

Firstly the integrated inventory-transportation systems are discussed focusing 

on characteristics of the systems, cost structures and model formation. The literature 

review of the integrated inventory-transportation systems is classified by the number 

of items: single and multiple. Secondly, the joint replenishment strategies are 

reviewed with classification of a characteristic of demand: deterministic and 

stochastic. In addition, grouping strategies for the multi-item joint replenishment and 

the integrated inventory-transportation system are also examined. For the review of 

integrated inventory-transportation deterministic models with both single item and 

multi-item cases, see Bertazzi and Speranza (1999).  

 

2.1 Integrated inventory-transportation systems 
2.1.1 Single item cases 

Inventory and transportation are two of the important elements in supply chain 

management which has recently emerged as a major and interesting topic in 

operations research and operations management. See Thomas and Griffin (1996) for 

review of coordinated supply chain management. In distribution systems, if inventory 

control and transportation planning are closely coordinated, the total system cost can 

be greatly reduced. The main interest in the past was to study inventory problems and 

transportation problems separately, without paying attention to the entire system. 

Until early 1980's, Federgruen and Zipkin (1984), to the best of our knowledge, are 

the first to integrate the allocation and routing problems in a single model. They study 

the allocation of a scarce resource from a central depot to many retailers using a fleet 

of capacitated vehicles and consider random demands in a single period model. The 

problem is formulated as a nonlinear integer program. Interchange heuristics for the 

deterministic vehicle routing problem are modified to solve the problem. They also 

derive an exact algorithm for the problem using Benders' decomposition method 

which decomposes the main problem into one nonlinear inventory allocation 

subproblem and a number of traveling salesman subproblems. With this approach, 
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substantial cost saving can be achieved. The decomposition method presented by 

Federgruen and Zipkin provides the basis for the solution algorithm to the model 

developed by Qu et al (1999). 

 

An analytic approach for minimizing the distribution freight by capacitated 

trucks from a supplier to many customers is developed by Burns, Hall, Blumenfeld 

and Daganzo (1985) whose work is the first one to integrate transportation and 

inventory costs explicitly in decision making over an infinite time horizon. 

Nevertheless, their cost structure, opposed to our model, does not include ordering. In 

their paper, two distribution strategies, direct shipping and peddling, are analyzed and 

compared. The analysis for direct shipping is consistent with EOQ model. For 

peddling, formulas derived require the spatial density for customers, rather than the 

precise customer locations. The results show that the optimal shipment size for direct 

shipping is the economic order quantity while the one for peddling is a full truck. 

 

A direct shipping strategy is studied by Gallego and Simchi-Levi (1990) as 

well. Their system includes a single warehouse, a single item and multiple retailers. In 

contrast to the proposed model here, demand is assumed to be constant with retailer 

specific rate. They show the benefits of direct shipping.  

 

With the assumption of a single commodity with deterministic demands in a 

multi-period setting, Dror, Ball and Golden (1985) describe and computationally 

compare two algorithms, the assignment routing approach and the modified routing 

approach for a distribution system that consists of  a central depot and multiple 

customers who process a known capacity and have a constant consumption rate. The 

authors present two formulations of the problem, the vehicle assignment formulation 

and the day assignment formulation. Cost structures include the routing cost and the 

future costs associated with the inventory. The future costs are used for consideration 

of assigning customers to a vehicle on a particular day in the vehicle assignment 

problem and assigning customers to days in the day assignment problem. No 

inventory costs are expressed in the models. 
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Dror and Ball (1987) study the inventory routing problem similar to the one of 

Dror, Ball and Golden (1985). Unlike the previous work, they formulate the problem 

in short duration, not in an annual period. Single customer deterministic and 

stochastic models are derived and then extended to the multi-customer problem. They 

present a procedure for reducing the annual distribution problem to a single period 

problem by including penalty costs within the single-period model that reflects the 

long term effect of decisions made during that period. 

 

One of interesting work under a single item deterministic demand model is 

presented by Chien, Balakrishnan and Wong (1989). They develop an integrated 

inventory allocation and vehicle routing model with the objective of maximizing 

profit, unlike other models that have the objective of minimizing total costs. However, 

they do not capture inventory ordering costs. The integrated problem is formulated as 

a mixed integer program and then decomposed into two subproblems: the inventory 

allocation subproblem and the customer assignment/vehicle utilization subproblem. 

The authors use a Lagrangian relaxation approach and a heuristic method to generate 

upper bounds and lower bounds respectively. 

 

Anily and Federgruen (1990) consider single item distribution systems  with 

one depot and many geographically dispersed retailers who keep inventories. The 

planning horizon is infinite. Unlike our model, no ordering cost is included in the cost 

structure. In addition, the demand rate is constant and assumed to be integer multiples 

of some base rate. The problem is studied within a specific class of replenishment 

strategies in which there is a collection of regions covering all retailers, each of which 

may belong to several regions and each region satisfies a faction of total demand. 

When a vehicle visits a retailer in a particular region, it must visit every retailer in that 

region as well. This scheme is also adopted in our work. The authors apply the 

Modified Circular Regional Partitioning Scheme to partition the set of demand points 

and propose the Combined Routing and Replenishment Strategies Algorithm to 

compute lower and upper bounds for total costs.  
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Anily and Federgruen (1993) develop a two-echelon distribution system from 

their previous work. The extension is that inventory can be kept at retailers as well as 

at a central warehouse while other main assumptions are not changed. Earlier methods 

are extended to manage this more complicated problem. 

 

Anily (1994) also extends the work of Anily and Federgruen (1990) by 

employing general holding cost rates. One different aspect from the previous work is 

that the assignment of retailers to routes in the previous work is based merely on their 

geographical location while this one is based on both the geographical location of 

retailers and holding cost rates. An experiment study for both capacitated and 

uncapacitated systems is presented to demonstrate the algorithm's efficiency. 

 

Chan, Federgruen and Simchi-Levi (1998) investigate the asymptotic 

effectiveness of the Zero Inventory Ordering and Fixed Partition Policies for a one 

origin multi-destination single item network in an infinite planning horizon and a 

deterministic setting. Vehicle capacity and frequency constraints are imposed. Only 

holding cost with an identical rate for all retailers is captured in the inventory problem. 

Computational results are given to show the effectiveness of the proposed strategy. 

The proposed policy in this research bears some resemblance to the class of Fixed 

Partition policies introduced by Bramel and Simchi-Levi (1995&1997) for an 

inventory-routing problem in which a single item is distributed among retailers. Under 

this policy, a group of retailers are partitioned into a number of regions each of which 

is served separately and independently and when a retailer in a region is visited by a 

vehicle, every retailer in the same region is visited as well. Although such policies are 

generally not optimal, they are important from a practical standpoint, as they are easy 

to implement. In particular, they allow for efficient integration of several business 

functions.  

 

Chan and Simchi-Levi (1998) study a three-level distribution system which 

consists of a single outside vendor, a number of warehouses and multiple retailers. 

They simplify the problem by considering a single item with a constant, retailer 
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specific demand rate. Plus, only a holding cost is involved in the inventory cost 

structure. An efficient algorithm for the integrated inventory control and vehicle 

routing problem is proposed. They show that, in an effective strategy which 

minimizes the asymptotic long run average cost, each warehouse receives fully loaded 

trucks from the outside vendor but never holds of deliveries to the retailers and that 

each retailer is served by exactly on warehouse. 

 

One of the most recent works in the integrated inventory-transportation system 

is presented by Chaovalitwongse (2000). The author analyzes a single-period 

distribution system where multiple capacitated warehouses supply multiple retailers 

with a single commodity. Like this research to some degree, demands are assumed to 

be stochastic. Nevertheless, a vehicle routing is not incorporated in the model. The 

transportation costs include linear and fixed charge costs. The linear transportation 

cost model is solved by the Lagrange multiplier approach while the fixed charge cost 

model is solved by the developed dynamic slope scaling procedure (DSSP) scenario-

based heuristic. The Lagrangian relaxation based DSSP heuristic that generates better 

solutions is also proposed for the fixed charge cost model. 

 

An interesting concept in supply chain management is that a supplier has 

responsibility for managing inventories at retailers by reviewing the retailer's 

inventory levels and making decisions regarding the quantity and timing of resupply. 

This is called a Vendor-Managed Inventory (VMI) system which is studied by 

Cetinkaya and Lee (2000). They develop for the case of a single item with Poisson 

demands an analytical model coordinating inventory and transportation decisions for a 

VMI supplier who employs a special kind of (s, S) policy with s= 0 for inventory 

replenishment. Zero lead time is assumed and no vehicle routing cost is considered in 

the model.  

 

2.1.2 Multi-item cases 

Now the case of multiple items is discussed. The number of researches on 

multi-item inventory-transportation systems is much smaller than the one in a single 
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item case.  Among those are Buffa and Munn (1990), Ben-Khedher and Yano (1994), 

Chanda and Fishr (1994), Viswanathan and Mathur (1997), Beertazzi and Speranza 

(1999), Fumero and Vercellis (1999) and Qu, Bookbinder and Iyogun (1999). 

 

One of the work which is most similar to this research belongs to Qu, 

Bookbinder and Iyogun (1999). In fact, the idea of this research is motivated by their 

paper.  Qu, Bookbinder and Iyogun (1999) develop an integrated inventory and 

transportation system for joint replenishment with a modified periodic policy in which 

each replenishment period is an integer multiple of a base period. Like our problem in 

some aspects, this is an inbound material-collection problem with a central warehouse 

sending an uncapacitated vehicle to collect multiple items at geographically dispersed 

suppliers in multiple periods and a stochastic setting. A heuristic decomposition 

method is proposed to solve the problem by separating the model into two 

subproblems namely conventional inventory and vehicle routing models. The 

inventory subproblem is solved item by item while the transportation one is solved 

period by period. A lower bound is also constructed to test the effectiveness of the 

heuristic which performs satisfactorily. 

 

The problem studied here differs from the work of Qu, et al. (1999) in that a 

periodic review inventory policy with a fixed order quantity is exploited instead of a 

modified periodic policy with an order-up-to level. This allows a vehicle capacity 

constraint to be included in the mathematical model. Another major difference is that 

it is assumed that each vehicle has identical limited capacity. Moreover, a frequency 

constraint is also encompassed in the model. 

 

Under a modified periodic policy with an order-up-to level and unlimited 

vehicle capacity, it is known that at the time of review, order must be placed to raise 

the inventory up to the maximum level and a vehicle is dispatched to collect items no 

matter what total order quantity is. In the case when the combined order quantity is 

very small compared to the actual vehicle capacity, this policy does not seem to work 

efficiently. In other words, when the inventory level of every item at the time of 
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review is not much below the order-up-to level, it is likely that this replenishment 

strategy will not lead to cost saving due to high transportation costs per unit 

replenished. This policy can’t be used in our problem because of the capacity 

constraint incorporated in the model. That is it is not guaranteed that the total order 

quantity of items in the group will not exceed the vehicle capacity. 

 

The first multi-stage grouping algorithm for a stochastic model with both 

inventory and transportation costs realistically modeled is proposed by Buffa and 

Munn (1990). Firstly, they rank items based on holding and shipping costs, then test if 

additional grouping is economic and finally apply a grouping heuristic to form the 

groups. They model transportation cost sensibly as a function of cycle time, shipping 

distance and weight. In addition, lead time is assumed to be dependent on transit time. 

However, they simplify the problem by considering a single destination. Moreover, no 

vehicle routing problem is included in the model. The total logistic cost of the groups 

obtained by the proposed algorithm is compared with the minimum one determined 

by a complete enumeration. 

 

Ben-Khedher and Yano (1994) combine a bin-packing problem with a multi-

item joint replenishment problem. The system considered is composed of a single 

supplier, an assembly facility and multiple items which face deterministic demands 

and are packed into containers shipped by identical capacitated trucks. Opposed to 

this research, they assume zero lead time and only a fixed cost proportional to the 

number of trucks shipped is included in the transportation cost structure. They 

develop a heuristic solution procedure starting by relaxing container integrality 

constraints. The solution to the relaxed problem is then modified by sequentially 

considering each item and optimally scheduling the fractional containers. 

 

Viswanathan and Mathur (1997) integrate a vehicle routing problem and 

inventory decisions in a single warehouse multi-retailer multi-item distribution system 

with deterministic demands. The cost structure of their model is similar to the one of 

our proposed model. In addition to the holding cost, major and minor ordering costs 
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are associated with three components of the transportation cost: fixed dispatching, 

stopover and variable routing costs. They propose a stationary nested joint 

replenishment policy (SNJRP) heuristic to solve the problem where replenishment 

intervals are power of two multiples of a base planning period. 

 

 Bertazzi and Speranza (1999) extend the single supplier single customer multi-

item environment to the multistage supply chain networks where multiple items are 

shipped from a common origin to a common destination through one or several 

intermediate nodes. A periodic shipping strategy is determined to minimize the total 

inventory and transportation costs based on shipping frequencies on each link that 

may be the same or different. In this more global setting, the supply and demand rates 

are assumed to be constant and equal for each item. Plus, no stock-out is allowed. 

They concentrate on the formulation and evaluation of the total inventory cost. On the 

other hand, unlike our proposed model, they don't capture a vehicle routing cost. Six 

heuristic algorithms are presented and evaluated.  

 

Interesting work on integrated production and distribution systems belongs to 

Chanda and Fisher (1994) and Fumero and Vercellis (1999). Chanda and Fisher (1994) 

investigate the value of coordinating production and distribution planning in a multi-

period setting whereas Fumero and Vercellis (1999) consider a multi-period system 

that consists of a single plant producing multiple items with limited resource. Items 

face constant demand rates and are distributed to several customers by a fleet of 

capacitated vehicles. The problem is formulated as a mixed integer program and 

solved by Lagrangean relaxation to obtain both lower bounds and heuristic feasible 

solutions. To demonstrate the effectiveness of the proposed solution scheme that 

separates the production and distribution decisions, computational results on 

randomly generated problems are provided. 

 
2.2 Multi-item joint replenishment inventory systems 

In addition to the integrated inventory-transportation literature, inventory 

literature that is related to this work is also surveyed. Multi-item joint replenishment  
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inventory systems is concentrated. Most of the work in this area involves 

deterministic models. For example, Shu (1971), Nocturne (1973), Silver (1976), 

Goyal and Belton (1979), etc. In a stochastic setting, more work on a continuous 

review system than on a periodic review system is explored, especially on a 

continuous can-order policy considered closely by Goyal and Satir (1989) who review 

joint replenishment inventory models for both deterministic and stochastic cases. We 

start this section with review in deterministic models.  

 

2.2.1 Deterministic models 

Shu (1971) and Nocturne (1973) analyze a deterministic model which is 

applicable to the batch processing industry where a batch of item is blended and 

subsequently packaged into various types of containers. This can be viewed as a joint 

replenishment. Under an infinite planning horizon and a continuous time model, Shu 

(1971) finds the conditions under which the total set-up and holding cost is minimized 

by packaging the smallest demand item with less frequency of packaging than the rest 

of the group. However, Nocturne (1973) demonstrates that Shu’s solution does not 

always lead to an optimal solution. In addition, Nocturne formulates a multi-item joint 

replenishment problem and also provides a graphical solution of optimal ordering 

frequencies for the two-item case. 

 

Silver (1976) studies a multi-item lot sizing problem when item demands are 

constant over a finite horizon. The cost structure includes a major setup cost for each 

replenishment, a minor setup cost for each item included in the replenishment and a 

carrying cost. The author uses the EOQ concept to propose a simple procedure of 

determining order quantities, a group replenishment interval and replenishment 

periods of each item. Goyal and Belton (1979) improve performance of Silver’s 

method by modifying the item selection rule. 

 

For a multi- item deterministic demand single supplier system, Goyal (1974) 

develops an algorithm for determining the optimal ordering quantity and the relative 
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ordering frequency for each item. Like our proposed policy, this optimal ordering 

policy may be viewed as a periodic review policy with a fixed order quantity. 

 

Another interesting inventory policy is a power-of-two policy. Work related to 

the power-of-two policy is studied by Jackson, Maxwell and Muckstadt (1985), 

Mucktadt and Roundy (1987) and Iyogun and Atkins (1993). 

 

Jackson, Maxwell and Muckstadt (1985) develop a model for the joint 

replenishment problem over a finite planning horizon in a manufacturing system 

under the restriction that constant reorder intervals must be power-of-two multiples of 

a base planning period.  

 

Mucktadt and Roundy (1987) apply a power-of-two policy and a stationary 

nested policy for a multi-echelon distribution system while Iyogun and Atkins (1993) 

propose a power-of-two heuristic for a multi-stage multi-item distribution network 

which is decomposed into facilities-in-series problems to obtain a lower bound. 

 

2.2.2 Stochastic models 

For a joint replenishment inventory system in a stochastic setting, several 

inventory policies, both in continuous and periodic reviews, have been investigated.  

 

For a continuous review model, Pantumsinchai (1992) and Cheung (1998) 

study QS policies where all items are replenished to their base stock levels Si 

whenever the combined usage of all items reaches Q while Balintfy (1964), Silver 

(1974) and  Federgruen, Groenevelt and Tijms (1984) study the can-order (S, c, s) 

policy where inventory levels are continuously reviewed. Whenever the inventory 

position of item i drops to its must order point si or lower, a replenishment is triggered 

to raise its inventory position to an order-up-to-level Si. At the same time, any other 

items with inventory positions at or below their individual can-order point c are 

included in this replenishment in order to raise their inventory levels to the order-up-

to-levels. 
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Federgruen, Groenevelt and Tijms (1984) present an algorithm to search for an 

optimal can-order (S, c, s) coordinated control rule. The proposed algorithm differs 

from Silver (1974) and Thompstone and Silver (1975) in that it can handle nonzero 

lead times for the case of compound Poisson demands. 

 

The can-order (S, c, s) policy is compared with a simple periodic (Ri, Ti) 

policy proposed by Atkins and Iyogun (1988). For this simple periodic (Ri, Ti) policy, 

item i is raised to Ri every Ti period. The computational study shows that the simple 

periodic policy seems to show considerable promise over the can-order one. 

 

Pantumsinchai (1992) compares the QS policy with the can-order policy and 

with the simple periodic policy. The computational results indicate that no one policy 

is superior to the others and in the situation where the stock-out cost is low and the 

major setup cost is high relative to the minor setup cost, the QS policy performs 

significantly well. 

 

Like Atkins and Iyogun (1988), Chakravarty and Martin (1988) and Eynan 

and Kropp (1998) also work on periodic review inventory policies. Chakravarty and 

Martin (1988) develop the item grouping strategy for a coordinate inventory 

replenishment under a normally distributed demands environment whereas Eynan and 

Kropp (1998) propose simple heuristics for solving the multi-item joint replenishment 

problem under stochastic demands with normal distribution. 

 

A new class of policies called Periodic Review (s, S) Policies for joint 

replenishment inventory systems in a stochastic setting is proposed by Viswanathan 

(1997). Under this policy, Inventories of all items are reviewed once every t units of 

time. Item i is ordered up to the level Si, if its inventory position is less than or equal 

to si at  time of review.  

 

The author compares the (s, S) policy with other four policies suggested in the 

literature: MP, QS, Can-order and Independent Control policies. From computational 
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results, although the P(s, S) policy is only marginally better than the MP policy, 

unlike the MP policy, the P(s, S) policy generally dominates all the other policies over 

wide range of problem parameters. 

 

2.3 Grouping Strategy 
In this section, grouping strategies of previous work in the multi-item joint 

replenishment and the integrated inventory-transportation system are discussed. 

 

2.3.1 Multi-item joint replenishment 

When a distribution system consists of multiple items that can be jointly 

replenished, a question of which items should be grouped together in order to 

minimize total related costs is arisen. In fact, the optimal grouping set of items can be 

determined by completely enumerating every possible group but when the number of 

multiple items is high, it is impractical to perform a complete enumeration due to the 

combinatorial nature of this grouping problem [Buffa and Munn, 1990]. 

 

In a multi-item system, how items are partitioned into groups and jointly 

replenished partly relies on an inventory policy adopted. Under a can-order policy 

(S,c,s) studied by Federgruen, Groenevett and Tijms (1984), Balintfy (1964) and 

Silver (1974), an item whose inventory position continuously reviewed drops to a 

must order point s triggers a replenishment to build up its inventory position to an 

order-up-to level S and other items whose inventory positions are at or below their 

can order points c will be replenished as well. Therefore, under this policy, the can 

order point of each item determines whether it will be added in the joint 

replenishment or not. It is clearly seen that a group of items in each replenishment 

may vary.  

 

Another joint ordering inventory policy with a continuous review presented by 

Pantumsinchai (1992) is a QS policy where a group reorder point is a device to 

initiate a replenishment to raise the inventory position of each item to its base stock 
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level Si. As a result, any item that has an inventory position below its base stock level 

at the time an order is demanded will be incorporated in the group refilled.  

 

Some previous literature in the joint replenishment concentrates on a periodic 

review inventory policy. Among them are Jackson, Maxwell and Muckstadt (1985), 

Muckstadt and Roundy (1987), Chakravarty and Martin (1988), Viswanathan (1997) 

and Eynan and Kropp (1998). 

 

Jackson, Maxwell and Muckstadt (1985), Muckstadt and Roundy (1987) and 

Eynan and Kropp (1998) adopt a power of two policy where a reorder interval of each 

item must be a power of two multiple of the base planning period. Consequently, in 

each replenishment, items will be grouped for joint ordering according to their reorder 

intervals. Items that have lower reorder intervals are included in a group of  items that 

are replenished and have larger reorder intervals. 

 

Eynan and Kropp (1998) also study the case where an item’s replenishment 

interval is an integer multiple of the base cycle which is acquired by taking a 

derivative on the cost function. The iteration of solving the basic cycle continues until 

a marginal difference of the total cost between consecutive iterations is succeeded. 

Similar to the case of the power of two policy, items are grouped for joint ordering 

according to their replenishment intervals.  

 

Chakravarty and Martin (1988) propose a grouping strategy for the stochastic 

demand environment by assuming consecutiveness in all individual optimal 

replenishment intervals that are then ranked in non-decreasing order. The shortest-

path approach and the ranking process of replenishment intervals are repeatedly 

employed to determine the minimum cost grouping system. 

 

Viswanathan (1997) introduce a Periodic Review (s,S) Policy for a multi-item 

inventory system where inventory of every item is reviewed every constant period t. 

At the time of the review, any items whose inventory levels are at or below their own 
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s are grouped together for a single order and replenished up to their highest levels S. 

By originating a value of a review interval and assuming that the item yields only the 

minor setup cost, the order-up-to level S and the reorder point s of each item are 

calculated independently from others. Then the best review interval is searched in the 

small step. Under this policy, the items are possibly different in each replenishment 

relying on their inventory levels at the review time. 

 

Goyal (1974) and Silver (1976) apply the EOQ concept for the multi-item 

single supplier joint replenishment in a deterministic setting. Goyal (1974) determines 

the economic order quantity of each item from the economic number of purchase 

whereas Silver (1976) obtains the economic order quantity from the time interval 

between replenishments of the group. However, they use the same idea that the 

replenishment interval of each item is an integer multiple ki of the base interval. 

Therefore, the item’s integer multiple ki which is solved by differentiating the total 

cost function decides which items will be combined in the single order. 

 

2.3.2 Integrated Inventory-Transportation System 

 In the integrated inventory-transportation model, retailers, suppliers or 

products can be categorized in the grouping strategy depending on the characteristics 

of the integrated system. For example, for a single product multi-retailer system 

studied by Federgruen and Zipkin (1984) and Anily and Federgruen (1990), retailers 

are grouped. On the other hand, for a multi-item integrated system presented by Buffa 

and Munn (1990), Viswanathan and Mathur (1997) and Qu, Bookbinder and Iyogun 

(1999), the items are partitioned into groups. 

 

Federgruen and Zipkin (1984) formulate the integrated inventory-routing 

problem as a non-linear integer program and then solve the inventory allocation 

problem first to determine the amount of the scarce item shipped to each customer in 

the group assigned to each vehicle. A modified interchange heuristic is utilized to 

alter the partition of customers among vehicles. 
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Anily and Federgruen (1990) use the EOQ policy for a single-item multi-

retailer distribution system where each retailer receives a fixed quantity of the item 

every constant time interval. A Modified Circular Regional Partitioning Scheme is 

applied to separate demand points of retailers into groups. In this scheme, the circle 

that encloses all demand points and has the radius as the distance between the depot 

and the furthest demand point are divided into K successive sectors each of which 

contains the equal number of demand points mq and possibly one extra sector having 

a fewer number of demand points. Then using circular cuts, each sector is partitioned 

into subregions each of which encompasses m equal demand points. As we see, only 

geographical locations of retailers are considered for this grouping strategy but no 

inventory or transportation cost involved. 

 

An inbound consolidation for a multi-item replenishment with stochastic 

demands is examined by Buffa and Munn (1990). They practically model the 

integrated inventory and transportation costs and present the grouping algorithm 

which is composed of a ranking procedure, a continue rule and a grouping heuristic. 

In the ranking procedure, firstly each item is reordered separately. Then they are 

arranged in a non-decreasing order of the amount reflecting the sum of holding cost 

and shipping cost. In the continue rule, the combination of groups is performed if the 

shipping weight of each group falls in the elastic range of the unit freight rate function 

and if the primary trade-off in acquiring the optimal cycle time of each group is 

between shipping and holding costs. In the grouping heuristic, the selection of groups 

for merging is based on the physical characteristics of value and weight as well as the 

value of marginal holding-shipping cost ratio (MHSR). At each stage, the receptor 

group which is the group with the largest MHSR is merged with the donor group, the 

adjacent group in the ranking scheme with the lowest MHSR. It is observed that the 

holding and shipping costs are taken into account for grouping items. Nevertheless, no 

vehicle routing cost is involved as a result of a common carrier considered in this 

system. 
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A stationary nested joint replenishment policy (SNJRP) is proposed by 

Viswanathan and Mathur (1997) for distribution systems with one warehouse and 

multiple retailers who keep multiple items that face deterministic demands. Under this 

policy, the replenishment intervals of items are power of two multiple of the base 

planning period. Accordingly, the items are grouped based on their replenishment 

intervals which are computed using a modification of the standard EOQ formula 

where the marginal cost incurred if an item is collectively replenished with the items 

already embraced in the nested set of items is employed as the setup cost. The items 

that have equal replenishment intervals are kept in the same group and replenished 

simultaneously. Both uncapacitated and capacitated cases are examined. For the 

uncapacitated case, all items are included in a single cluster consisting off several 

groups each of which has the nested replenishment interval. On the other hand, for the 

capacitated case, several clusters are created and there are several groups in each 

cluster. 

 

An integrated inventory-transportation model dealing with an inbound 

material collection for a multi-item multi-supplier system with unlimited vehicle 

capacity in a stochastic setting is developed by Qu, Bookbinder and Iyogun (1999). 

With the modified periodic inventory policy, the authors separate items into two 

types, base items and non-base items, and group them based on an item’s 

replenishment cycle which is adjusted to be an integer multiple of a base planning 

period. The replenishment interval of the non-base items is calculated using the 

shared transportation cost along with minor ordering cost, holding cost and 

backlogging cost while the one of the base items which are restocked every 

replenishment period is determined using the joint fixed ordering cost in addition to 

those costs considered for the non-base items. The non-base items that possess an 

identical replenishment cycle are grouped and replenished together with the base 

items and sometimes with other non-base items at equally space epochs according to 

their replenishment period. 
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CHAPTER 3 

AN INTEGRATED INVENTORY-
TRANSPORTATION SYSTEM UNDER 

DETERMINISTIC DEMANDS 
 

3.1 A description of the problem 
 In this chapter, an inbound commodity collection system in a deterministic 

setting is considered. The system consists of a central warehouse and a set of 

geographically dispersed suppliers. Each supplier produces one or more non-identical 

items, each of which faces constant and deterministic demand from outside retailers. 

The central warehouse has an unlimited area for stocking items and uses a fleet of 

vehicles to collect the items from its suppliers. These vehicles have limited capacity, 

and they are also subject to frequency constraints that limit the number of trips that 

each vehicle can make per time unit. The frequency constraint may, for example, be 

caused by the time required for vehicle maintenance and other responsibilities, or by 

the fact that material handling capacity is limited. Lead time of each replenishment is 

constant and the replenishment interval of any item is assumed to be longer than its 

lead time. 

 

 It seems unlikely that it is possible to identify an optimal strategy for this 

problem. But more importantly, even if such an optimal strategy could be found 

efficiently, it would likely be too complex to be implementable in practice. 

Nevertheless, some progress has been made in this direction recently with the work of 

Adelman (2003), who develops an approximate dynamic programming approach that 

finds high quality policies without imposing any a priori policy structure for inventory 

routing problems where only the routing costs are taken into account. Due to the 

difficulty, as well as perhaps the undesirability from the point of view of 

implementability, of finding truly optimal policies, it is common practice in 

inventory-routing problems to consider a given policy structure up front, and focus on 

finding optimal parameters for that policy. 
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 A policy where the set of items is partitioned into disjoint groups is adopted. 

Each group of items is assigned to a vehicle. The vehicle leaves the central warehouse, 

visits the set of suppliers corresponding to the items in its group, and returns to the 

warehouse, where the items are unloaded and stored. It is assumed that no item can be 

assigned to more than one group, i.e. the orders cannot be split across multiple 

vehicles. However, it is not necessary for items produced by the same supplier to be 

in the same group, i.e., a supplier can be visited by multiple vehicles. Finally, the fact 

that the central warehouse faces a constant demand for each item leads to a joint 

replenishment of all items in a group using an economic order quantity (EOQ) policy. 
 

3.2 Notation 
 All notation used in chapter 3 for the deterministic model is defined as follows. 

 S         set of items in the system (stored by the central warehouse). 

S         subset of items ⊆S S. 

m         number of available vehicles. 

n          total number of items. 

i           index for vehicles ),...,2,1( mi = . 

k          index for vehicles ),...,2,1( mk = . 

j          subscript denoting item ),...,2,1( nj = . 

jD       demand rate for item j . 

jh        inventory holding cost rate for item j . 

jQ          replenishment quantity of item j . 

K           fixed joint ordering cost plus fixed dispatching cost. 

C           vehicle capacity. 

F           maximum number of trips allowed for each vehicle. 

)(STSP  optimal vehicle rout for visiting suppliers of items in subset S . 

)(SL      fixed transportation costs plus fixed joint ordering cost. 

)(SD     aggregate demand rate for all items in subset S . 

)(Sh      weighted average unit holding cost for items in subset S . 

)(ST      replenishment interval for items in subset S . 

)(SQ     aggregate replenishment quantity for all items in subset S . 
*
jQ         optimal replenishment quantity of item j . 
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)(* SQ   optimal aggregate replenishment quantity for all items in subset S . 

)(* ST   optimal replenishment interval for all items in subset S .  
)(iS       subset of items assigned to vehicle i . 

)(Sc      total inventory-transportation cost for all items in subset S . 

 

3.3 Costs 
In the deterministic problem, it is assumed that the costs of the integrated 

inventory-routing system include the inventory holding cost at the central warehouse, 

the joint ordering cost, the vehicle dispatching cost, and the vehicle routing cost.  

 

3.3.1 Inventory Holding Cost 

The inventory holding cost is proportional to the average inventory kept at the 

central warehouse and incurred at a constant rate per unit item per year. The inventory 

holding cost rate of each item may be different. The model is treated from the 

viewpoint of the central warehouse and it is assumed that the central warehouse and 

the suppliers belong to different organizations. Therefore, any charges to the suppliers 

from holding stock will not be considered.   

   

3.3.2 Joint Ordering Cost 

This joint ordering cost is fixed for every replenishment, regardless of which 

items and what quantity are replenished. It’s assumed to be associated only with the 

ordering process and charged when a manager of the central warehouse decides to 

replenish the stock. 

 

3.3.3 Vehicle Dispatching Cost 

The vehicle dispatching cost is constant and equal for all the vehicles. It is 

incurred whenever a vehicle is dispatched to collect a set of items assigned to it. Wage 

of a driver per trip could be viewed as this cost. 

 

 

 



 
 

 

31

3.3.4 Vehicle Routing Cost 

 This component of transportation costs is a variable cost depending on the 

distance traveled by a vehicle. However, it is constant for a specific set of items 

assigned to the vehicle. That is it is fixed for replenishment of the same set of items. 

An example of this cost is gas expenses. 

 

3.4 Model Formulation 
 In the integrated inventory-transportation system, it is assumed that there are 
the set of items stored by the central warehouse which is denoted by S. Item j ( ∈j S) 

faces a deterministic demand rate jD . The items are collected from the suppliers using 

a fleet of m  vehicles. The total system costs consist of the holding costs associated 
with each item, which are incurred at a constant rate of jh  per unit per year for item 

j ( ∈j S), as well as fixed costs. These fixed costs include fixed ordering costs and 

fixed vehicle dispatching costs, as well as the total vehicle routing costs associated 

with a trip, which is the cost of a Traveling Salesman Problem (TSP) where the cities 

are the warehouse and the suppliers of the items collected in the trip. For convenience, 

the fixed joint ordering and dispatching costs are combined in a single term K  per 

vehicle per trip. Using a policy where each item is assigned to a single group that is 

replenished repeatedly using a given vehicle, the inventory-routing problem is then to 

determine the subsets of items that are replenished with a single vehicle, as well as the 

corresponding replenishment quantities, the replenishment interval and the optimal 

vehicle routes, that minimize the average total inventory and transportation cost per 

unit time. 

 

3.4.1 No vehicle capacity and frequency constraints 

 Firstly, the average total inventory and transportation costs per unit time for a 

given set of items ⊆S S assigned to a vehicle, and under the simplifying assumption 

that the vehicle is uncapacitated and does not face a frequency constraint, is 

determined. It is assumed that the fixed cost associated with this set is of the form 

 

)()( STSPKSL +=  
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where )(STSP  denotes the cost of the optimal TSP route for visiting the suppliers 

corresponding to the items in S , and K  represents any other fixed costs associated 

with using the vehicle plus the fixed joint ordering cost. If the time between 

replenishments of the items in S  is denoted by )(ST , then the corresponding 

replenishment quantities are given by  

 
)(STDQ jj =  

 
for all items j  in S . The total inventory-transportation costs per unit time incurred 

for replenishing the items in S  as a function of the replenishment interval )(ST  is 

equal to 

 

∑
∈

+
Sj

jj STDh
ST
SL )(

2
1

)(
)(  

 

It is convenient to define the aggregate demand and weighted average unit holding 

costs for subset S  as follows: 

 
                                                        ∑

∈

=
Sj

jDSD )(    

)(
)(

SD

Dh
Sh Sj jj∑ ∈=  

 

The cost function can then be rewritten as 

 

       )()()(
2
1

)(
)( STSDSh

ST
SL

+  

 

which is a standard EOQ-type cost function and thus immediately yields that the 

optimal replenishment time for set S  is equal to 

 

)()(
)(2)(*

SDSh
SLST =  
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Alternatively, the total cost function can be formulated in terms of the aggregate 

replenishment quantity 

 
∑
∈

=
Sj

jQSQ )(  

Note that the individual item replenishment quantities have to satisfy 

 

                                                     
)()( SD

D
SQ

Q jj =      for  Sj∈  

or 

                                                     )(
)(

SQ
SD

D
Q j
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Since )(STDQ jj = for all Sj∈ , it is clear that )()()( STSDSQ = . The total 

inventory-transportation costs per unit time incurred for replenishing the items in S  

can now equivalently be written as 

 

)()(
2
1

)(
)()( SQSh

SQ
SDSL +  

 

This is again a standard EOQ-cost function, and leads to the optimal aggregate 

replenishment quantity for subset S  

 

)(
)()(2)(*

Sh
SLSDSQ =  

Using either approach, we obtain that the optimal replenishment quantities for the 

individual items are equal to 
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The corresponding optimal inventory-transportation costs are equal to 

 
)()()(2)( ShSLSDSc =  
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The integrated inventory-routing problem can now be formulated as a set partitioning 

problem: 

 

min∑
=

m

i

iSc
1

)( )(  

subject to  

                                       =
=

)(

1

i
m

i

SU   S 

 

                                 φ=∩ )()( ki SS       for all ;,...,2,1, mki =   .ki ≠  

 

3.4.2 Vehicle capacity constraint 

In the capacitated case where each vehicle has identical limited capacity C , if 

the optimal aggregate replenishment quantity obtained from the EOQ formula is 

larger than the vehicle capacity, it has to be reduced to be equal to the vehicle 

capacity in order to satisfy the capacity constraint. As a result, a similar partitioning 

problem can be obtained but with 
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and corresponding optimal inventory-transportation costs equal to 
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3.4.3 Frequency constraint 

 The vehicles may face only a frequency constraint. In other words, the 

vehicles cannot travel more than a maximum number of trips allowed per year F  due 

to the time required for vehicle maintenance and other responsibilities, or the limited 

material handling capacity. This means that the number of trips per year is bounded 
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from above or, equivalently, the replenishment interval is bounded from below. The 

minimum length of the replenishment interval would be F/1 . If the optimal 

aggregate replenishment quantity obtained from the EOQ formula is smaller than the 

smallest aggregate replenishment quantity FSD /)(  that still satisfies the frequency 

constraint, then the optimal aggregate replenishment quantity collected by the 
vehicles must be increased to become FSD /)( . That is 
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and corresponding optimal inventory-transportation costs equal to 
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3.4.4 Vehicle capacity and frequency constraints 

In the case where the vehicles face both vehicle capacity and frequency 

constraints, the aggregate replenishment quantity must be larger than or equal to 

FSD /)( , and smaller than or equal to C . It is clearly seen that the set ⊆S S is a 

feasible subset of items only if 

 

CFSD ≤)(  

 

With both the vehicle capacity and frequency constraints included in the model, the 

aggregate replenishment quantity for the items in a feasible subset S  can be 

determined from 
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In this case, the set partitioning problem becomes 
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CHAPTER 4 

AN EXACT SOLUTION APPROACH USING 
BRANCH-AND-PRICE 

 

 An exact solution approach, the Branch-and-Price algorithm, is developed in 

this chapter. The branch-and-price algorithm can be used to solve our inventory-

routing problem to optimality. This algorithm is based on a column generation 

approach to the set partitioning formulation of the problem. After formulating this 

problem as an integer programming problem, its LP-relaxation is then solved via 

column generation. In this approach, the problem is solved iteratively with only a 

limited number of candidate subsets for the vehicles. In each iteration, a subproblem, 

called the pricing problem, is solved. Each subproblem will either verify that the 

current solution is optimal for the entire problem, or identify one or more subsets that 

should be added to the limited model. This solution method for solving the LP-

relaxation of the set partitioning problem is incorporated in a branch-and-bound 

algorithm if the optimal solution of the LP-relaxation is fractional. The procedure of 

the branch-and-price algorithm is summarized in Figure 4.1. Applications of this 

methodology have been applied to other set partitioning problems, such as the 

generalized assignment problem [see Savelsbergh (1997)], the multi-period single-

sourcing problem [see Freling et al. (1999)], a continuous-time version of that model 

[see Huang et al. (2003)], a joint location-inventory model [see Shen et al. (2003)], 

and the crew scheduling problem [see Barnhart et al. (1998)]. 

 

4.1 Notation 
 Here is additional notation mentioned in this chapter. 

iN         number of feasible subsets of items that can be assigned to vehicle i . 

l            superscript denoting subsets of items. 
l
ijα         1=l

ijα    if item j  is in subset l of items for vehicle i  and 0=l
ijα  otherwise. 

l
iα          binary vector representing subset l of items for vehicle i . 
l
iy          1=l

iy    if subset l of items is assigned to vehicle i and 0=l
iy  otherwise. 

)( l
iic α    total inventory-transportation cost of subset l of items assigned to vehicle i . 
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jµ          dual variable associated with item constraints ),...,2,1( nj = . 

iδ           dual variable associated with vehicle constraints ),...,2,1( mi = . 

jµ̂         optimal dual solution associated with item constraints ),...,2,1( nj = . 

iδ̂          optimal dual solution associated with vehicle constraints ),...,2,1( mi = . 

z            feasible subset of items. 

jz          1=jz    if item j  is in subset (column) z  and 0=jz  otherwise. 

iC          vehicle capacity for vehicle i . 

iF           maximum number of trips allowed for each vehicle i . 
0J          set of items whose jz is fixed to 0. 
1J          set of items whose jz is fixed to 1.   

J          set of items whose jz has not been fixed. 
)(zc

−
     lower bound of total inventory-transportation cost of subset z  of items. 

 

4.2 A column generation approach to the set partitioning formulation 
 At the beginning, the set partitioning problem will be formulated as an integer 

programming problem. Without loss of generality, it is assumed that there are n  items, 
and { }n,...,2,1S = . Then, let iN  denote the number of feasible candidate subsets of 

items that can be assigned to vehicle i . Each of these subsets is represented by a 

binary vector 

 
Tl

in
l
i

l
i ),...,( 1 ααα =  

 
where 1=l

ijα  if item j  is in candidate subset l  for vehicle i , and 0=l
ijα  otherwise. 

Letting (.)ic  denote the cost function for vehicle i  (as derived in Chapter 3 for a 

generic vehicle), the cost of subset l  of vehicle i  can be obtained by )( l
iic α . Note 

that a binary incidence vector of a subset of S is used rather than the subset itself as 
the argument of ic . When it is convenient, this also will be done for all set functions 

introduced in Chapter 3. Finally, with the introduction of a binary variable l
iy  that 

takes on the value 1 if subset l  is chosen for vehicle i , and 0 otherwise. The set 

partitioning problem can then be reformulated as 
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                                       1
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l

l
iy                      mi ,...,2,1=                               (4.2) 

                                            { }1,0∈l
iy                 miNl i ,...,2,1,,...,2,1 ==  

 

 The first n  constraints (item constraints) ensure that each item is collected by 

exactly one vehicle, while the next m  constraints (vehicle constraints) state that only 

one feasible subset of items can be assigned to each vehicle. It is clear that the number 

of variables in this problem grows extremely rapidly in the number of items 

considered, which would make even solving the LP-relaxation of (P) a daunting task. 

However, since it is expected that most variables will have a value of zero in the 

optimal solution, a column generation approach is applied to solving LP(P), the LP-

relaxation of (P). 

 

 In this approach, at first only a small number of subsets (columns) for each 

vehicle are considered. These can, for example, be obtained using a heuristic. After 

obtaining the solution to the master problem, a subproblem called the pricing problem 

is solved in order to either identify columns that would provide a better objective 

value if they would be added to the problem, or conclude that the current solution is 

optimal. This process is then repeated iteratively until the optimal solution is indeed 

obtained. To check for optimality of an intermediate solution we consider the dual 
problem (D) of LP(P). Letting jµ  denote the dual variables associated with 

constraints (4.1) ),...,2,1( nj =  and iδ  the dual variables associated with constraints 

(4.2) ),...,2,1( mi = , and noting that the binary constraints are replaced by 

nonnegativity constraints in the LP-relaxation of (P), we obtain 
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 Now suppose that we have the optimal primal and, in particular, dual solution 

to a restricted version of LP(P) and (D) in which only a subset of the columns has 

been taken into account. Extending the primal optimal solution with the implicit zero 

values of all omitted variables, we find that if the corresponding dual solution is 

feasible for the entire dual problem (D), then the current solution is optimal. 

 

4.3 The pricing problem 
 The pricing problem aims to find, for each vehicle i , the feasible subset 
(represented by a binary vector iα ), for which the corresponding constraint in (D) is 

most violated. Denoting the decision variable representing a feasible subset for 

vehicle i  by z , and the optimal dual solution to the restricted version of LP(P) by 

)ˆ,ˆ( δµ , the pricing problem for vehicle i  can be formulated as follows: 
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where iC  denotes the capacity of vehicle i , and iF  denotes its maximum frequency. 

If the optimal solution value of (PP i ) is no more than - iδ̂ , then all dual constraints for 

vehicle i  are satisfied. If the optimal solution value of (PP i ) exceeds - iδ̂ , the 

corresponding optimal solution yields a subset for vehicle i  that may improve the 

solution if added to the limited set partitioning problem. 

 

 In the remainder of this section, a branch-and-bound algorithm that can be 

used to solve the pricing problem (PP i ) to optimality will be developed. For 

notational convenience, we will omit the index i  indicating the vehicle, and consider 

a general pricing problem (PP). Similar to often used branch-and-bound strategies for 
the knapsack problem [see, e.g., Martello and Toth (1990)], the binary variables jz  

will be branched. Therefore, each node of the branch-and-bound tree is characterized 

by a partition of the items in S into the following three sets: 0J , 1J , and J : 

   
{ }0  tofixedbeen  has  : S0

jzjJ ∈=  

{ }1  tofixedbeen  has  : S1
jzjJ ∈=  

{ }fixedbeen not  has  : S jzjJ ∈=  

 
 Note that jz  can be set to 0 for all items j  such that 0ˆ <jµ  without loss of 

optimality, which may significantly reduce the size of the problem. So, these items 

will be assumed to always be included in the set 0J . Now an upper bound on the 

objective function value of (PP) in a node of the tree can be found as follows. 

 

 Note that the function c  given in equation (3.2) in Chapter 3 can be bounded 

by noting that the fixed costs are given by 

  
)()( zTSPKzL +=  

 

so that we can bound these from below by 

 

)()( 1JTSPKzL +≥  
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to obtain 
)()( zczc

−
≥  
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If the number of items in J  are small, the following problem may be efficiently 

solved 
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n

j
jj CFzD
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                                             0=jz                 for  0Jj∈  

                                             1=jz                 for  1Jj∈   

                                             { }1,0∈jz            for  Jj∈  

 

by complete enumeration, which will clearly provide a valid upper bound in the 

current node of the branch-and-bound tree. However, in general we will need to find 

an upper bound that can be computed more efficiently. 

 

 Clearly, an alternative lower bound on the costs can be found by, in addition to 

using the lower bound on )(zL , ignoring the capacity and frequency constraints, 

which yields 
)())()((2)( 1 zhJTSPKzDzc +≥  
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Recalling the definition of the aggregate demand and inventory holding cost functions, 

the lower bound may be rewritten as 
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1 ))((2)(  

 

 An upper bound on the solution value of (PP) given the sets 0J  and 1J  can 

now be determined by solving the following optimization problem 
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subject to                                                                                                       )PP( 2  

                                             0=jz                for  0Jj∈  

                                             1=jz                 for  1Jj∈   

                                             { }1,0∈jz            for  Jj∈  

 

where the capacity and cardinality constraints have also been ignored. This problem 

can now be solved efficiently using a result from Huang et al. (2003). This result says 

that, if the | J | relevant items are renumbered and sorted in non-increasing order of the 

ratio 

                                                                     
jj

j

Dh
µ̂

                                                (4.4) 

the optimal solution will be of the form 
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 Since our relaxation yields an integral solution, this solution cannot be used to 

guide the branching. We will instead use a strategy that has been successfully applied 

to many knapsack and related problems. This is a depth-first-search strategy that first 
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explores the subtree in which the variable corresponding to the most promising item is 

set to one. For this problem, it means that the subproblem in which the unassigned 

item with the largest positive ratio (4.4) is added to 1J  will be considered first. 

 

 Since any feasible solution to the pricing problem for vehicle i  with a value 
that exceeds - iδ̂  provides a subset of items that is attractive, it is not strictly necessary 

to solve the pricing problem to optimality, especially in the early stages of the column 

generation procedure. Therefore, the branch-and-bound procedure for (PP) usually is 

implemented heuristically by finding an approximate bound in each node. That is, we 

find a value that will often, but not necessarily, be an upper bound to the objective 

function value in the current node of the tree. This approximation is based on 

considering solutions by sequentially adding items according to the ranking scheme 

given by the ratio (4.4). Observing the capacity and cardinality constraints, we then 

choose the solution that maximizes the objective function of )PP( 1 . Since this 

procedure does not necessarily find the optimal solution to )PP( 1 , the corresponding 

bound is not exact, and therefore the solution to the pricing problem obtained is not 

necessarily optimal. 
 

4.4 Branching 
 We now return to our main problem (P). If the optimal solution of LP(P) 

obtained by using the column generation approach is not integral, we need to use 

branch-and-price. It remains to discuss the corresponding branching strategy. As has 

been mentioned by several authors [e.g., Freling et al. (1999)], branching on the 
subset selection variables l

iy  in the set partitioning formulation is problematic, since 

excluding a subset from consideration would require finding the second best solution 

to the pricing problem. However, the subset selection variables can be transformed to 

assignment variables that indicate the fraction of an item that is included in a subset: 

 

∑
=

=
iN

l

l
i

l
ijij yx

1
α  

 



 
 

 

45

 Clearly, x  is integral if y  is integral. In a node of the branch-and-price tree, 

we can now branch on fractional assignment variables. This corresponds to requiring 
or disallowing an item to be replenished by vehicle i . Item j  is assigned to vehicle i  

if the fractional assignment variable ijx  is fixed to 1. On the other hand, item j  

cannot be assigned to vehicle i  if the fractional assignment variable ijx  is fixed to 0. 

To solve the problem at the branching node, the column generation and pricing are 

applied as before.  

 
 If the solution to the problem contains l

iy  with a value that is negative or 

greater than one, this means that the set partitioning problem is infeasible in that node. 

This may be because there are not enough subsets of items included in the problem to 

allow for a feasible solution. In this case, at least one subset of items needs to be 

added to the existing ones to obtain a feasible solution and then the column generation 

and pricing are repeated in that node. 
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Figure 4.1 Branch-and-Price Algorithm for the integrated inventory-transportation 
problem 

 

Start

Generate an initial 
feasible solution/columns 

by using any heuristic. 

Formulate the problem as 
a set partitioning IP 

problem. 

Solve LP-relaxation 
of the problem. 

Formulate the pricing 
problem from the dual 

constraints. 

Solve the pricing problem 
using the Branch-and-

Bound algorithm. 

Is the solution 
integral? 

Transform subset selection 
variables to assignment 

variables. 

Branch on a fractional 
assignment variable. 

Stop 

Is the solution to the LP-
relaxation optimal? 

Identify one or 
more new columns 

and add them to 
existing columns in 
the LP-relaxation. 

No 

Yes

No 

Yes



 
 

 

47

CHAPTER 5 
 

CONSTRUCTIVE HEURISTICS AND 
IMPROVEMENT ALGORITHMS 

 

 In Chapter 4, a branch-and-price algorithm has been developed to solve the 

inventory-routing problem described in Chapter 3. Clearly, only relatively small 

problem instances can be solved to find an exact solution in reasonable time. The 

computational effort is likely to increase rapidly when the number of items, suppliers, 

and/or the vehicle capacities increase. Therefore, heuristic approaches to the problem 

are focused in this chapter. In particular, two constructive heuristics will be described. 

These heuristics can be used to find an initial feasible solution by constructing routes 

for the vehicles either sequentially or simultaneously. In addition, several 

neighborhood search algorithms that can be used to improve a solution found by the 

constructive heuristics will also developed.. 

 

5.1 Constructive Heuristics 
5.1.1 Distance Ratio (DR) heuristic 

 The first heuristic constructs routes sequentially for one vehicle at a time. The 

idea of the heuristic is to add items to a vehicle whose supplier is (a) located far away 

from the warehouse, but (b) close to at least one supplier that is already visited in the 

route. In that case, it is attractive to add the item to the vehicle under consideration 

rather than supplying this item with another vehicle. Items are added until no more 

items can be added without violating the capacity and/or frequency constraints. 

Initially, when the route for a vehicle is empty, this criterion says that the item that is 

located furthest away from the warehouse should be chosen. 

 

 When a group of items is assigned to a vehicle and no more items can be 

added, the cost associated with the vehicle is estimated by solving its associated TSP 

heuristically. Firstly, a TSP tour is constructed by using the Arbitrary Insertion (AI) 

heuristic [see Rosenkrantz et al. (1977)]. To improve the vehicle tour, the 2-opt 
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exchange heuristic studied by Croes (1958), Lin (1965), and Lin and Kernighan (1973) 

is utilized. 

 
 In the remainder, let 

21 jjd  denote the distance (cost) from the supplier of item 

1j  to the supplier of item 2j , for all 1j , 2j  ∈  S. Similarly, let jd0  and 0jd  denote 

the distance from the warehouse to the supplier of item j  and from the supplier of 

item j  to the warehouse. The procedure of the DR heuristic is described as follows. 

 

DR heuristic 

Step0.  Initialize an empty route for the next vehicle. 

Step1. For each of ungrouped items that can be added to the vehicle without 
 violating its capacity constraint, say j , determine its  distance-ratio as the 
 minimum value of  jjj dd 0/'  over all items 'j  served by the current vehicle. If 

 the current vehicle does not contain any items, let the distance-ratio be jd0/1 . 

 If no such items exist, go to Step 3. 

Step2. Find the item with the smallest distance-ratio, assign it to the vehicle, and 

 return to Step 1. 

Step3.  If all items have been assigned to a vehicle, go to Step 4. Otherwise, if there 

 are available vehicles left, return to Step 0. 

Step4.  Find a TSP tour for all vehicles using the AI heuristic to construct a route and 

 the 2-opt exchange heuristic to improve the tour. 

 

 As an alternative, we have explored the possibility of choosing the first item in 

the vehicle to be the unassigned item that has the smallest replenishment interval 

when replenished individually. In this case, Steps 0 and 1 in the algorithm are 

replaced by 

 

Step0. Initialize an empty route for the next vehicle, and find the ungrouped item 

 with the smallest individual replenishment interval that can  be added to this 

 vehicle without violating its capacity constraint. Add that item to the vehicle. 
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Step1.  For each ungrouped item that can be added to the vehicle without violating its 

 capacity constraint, say j , determine its distance-ratio as the minimum value 
 of jjj dd 0/'  over all items 'j  served by the current vehicle. If no such items 

 exist, go to Step 3. 

 

5.1.2 Arbitrary Item Insertion (AII) heuristic 

 This heuristic is based on the Arbitrary Insertion (AI) heuristic for the TSP 

[see Rosenkrantz et al. (1977)]. This heuristic starts with an empty route for each 

vehicle. On each iteration, given a partial route for each vehicle, the total insertion 

costs are calculated for each unassigned item and each possible slot in each partial 

route. The insertion costs estimate the additional total inventory-transportation costs 

to be incurred if an item is inserted in a given slot in a route. This estimation is 

obtained by first finding the traditional TSP insertion costs associated with inserting 

the item in a route, and next computing the total costs incurred by the vehicle with 

this additional item. More formally, consider a vehicle, say i , and a given pair of 

items, say  1j  and 2j , that are visited consecutively in the current route for that 

vehicle. Moreover, let )( )(iSL  denote the current costs associated with the route for 

assigned items in )(iS . Then, ignoring for simplicity the capacity and frequency 

constraints, the corresponding insertion costs are: 

 
)()()(2}){())(})({(2 )()()()()()(

2121

iiii
jjjjjj

ii ShSLSDjShdddSLjSD −∪−++∪  

 

Analogously, the insertion costs can be derived in the presence of capacity and 

frequency constraints. 

 

AII heuristic 

Step0.  Initialize an empty route for each vehicle. 

Step1.  Randomly select an unassigned item for insertion, and determine its insertion 

 costs corresponding to each slot in each vehicle's partial route, for each vehicle 

 to which the item can feasibly be assigned.  
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Step2. Find the minimum insertion cost for this item, and insert the item in the 

 corresponding slot. 

Step3. If all items have not been assigned, return to Step 1. Otherwise, improve, if 

 possible, the TSP tour for each vehicle by applying a 2-opt exchange heuristic 

 and stop. 

 

5.2 Improvement Algorithms 
 Neighborhood search algorithms are often the most effective approaches 

available for solving partitioning problems which is a difficult class of combinatorial 

optimization problems. They usually begin with an initial feasible solution which is 

then repeatedly replaced by an improved solution until no further improvements can 

be found or some termination criterion is satisfied. For the problem studied, five 

different neighborhood search algorithms are proposed to improve the solutions 

obtained from constructive heuristics. The first two, which are called One Supplier 

Move (OSM) and Supplier Exchange (SE), are based on 1- and 2-exchange heuristics 

for the Vehicle Routing Problem (VRP) [see, e.g., Toth and Vigo (2002)]. The third 

and fourth are combination of OSM and SE. The last neighborhood search algorithm 

that will be considered is the very large scale neighborhood (VLSN) search algorithm. 

 

5.2.1 One Supplier Move (OSM) 

 In the OSM method, a supplier is moved from one vehicle to another one. That 

is, all items from a supplier that are replenished using a given vehicle are moved to 

another vehicle. A move is only performed when it is feasible and results in a cost 

savings, and the search continues until no more solution improvement can be obtained. 

To reduce the computational time, the involved TSP problem is not solved to 

optimality, but the insertion heuristic will be utilized to estimate the cost change 

resulting from the move. 
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                              V1                                                           V2 
 
 
 
 
 
 
 
  Figure 5.1  Illustrating a One Supplier Move 
 

 In Figure 5.1, an example of OSM is illustrated. Items I1 and I2 from supplier 

S1 that are replenished by vehicle V1 are moved to vehicle V2 which also visits 

supplier S1 for collecting item I6. As a result, vehicle V1 collects item I5 from 

supplier S2 and items I4 and I7 from supplier S3 while vehicle V2 collects items I1, 

I2 and I6 from supplier S1 and items I3 and I8 from supplier S4. 

 

OSM improvement heuristic 

Step0. Sequentially select the next vehicle to consider. If all vehicles have been 

 considered without making any improving move, stop. Otherwise, return to 

 the first vehicle. 

Step1. Sequentially select the next supplier in the current vehicle to consider for 

 moving. If all suppliers have been considered, go to step0. 

Step2. Consider only a feasible move. Determine the (approximate) cost changes of 

 moving this supplier along with its items, which are replenished with the 

 current vehicle, to each of the other vehicles.  

Step3. Perform the move that results in the largest cost savings, if any, and go to 

 Step1. 

 

5.2.2 Supplier Exchange (SE) 

 In the SE approach, in each step, a group of items with a common supplier 

currently replenished by one vehicle are exchanged with a group of items with a 

common supplier that is currently replenished by another vehicle. The exchange 

occurs only when it is feasible and incurs cost reduction. 
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                              V1                                                           V2 
 
 
 
 
 
 
 
             Figure 5.2  Illustrating a Supplier Exchange 

 

 As shown in Figure 5.2, Items I1 and I2 from supplier S1 that are replenished 

by vehicle V1 are moved to vehicle V2. At the same time, items I3 and I8 from 

supplier S4 that are replenished by vehicle V2 are moved to vehicle V1. Note that 

vehicle V2 will finally visit only supplier S1 for items I1, I2 and I6 while vehicle V1 

will visits all other suppliers for collecting their items. 

 

SE improvement heuristic 

Step0. Sequentially select the next vehicle to consider. If all vehicles have been 

 considered without making any improving move, stop. Otherwise, return to 

 the first vehicle. 

Step1. Sequentially select the next supplier in the current vehicle to consider for 

 moving. If all suppliers have been considered, go to step 0. 

Step2. Consider only a feasible exchange. Determine the (approximate) cost changes 

 of exchanging this supplier along with its items that are replenished with the 

 current vehicle with any group of items with a common supplier currently 

 replenished by another vehicle. 

Step3. Perform the exchange that results in the largest cost savings, if any, and go to 

 Step1. 

 

5.2.3 One Supplier Move-Supplier Exchange (OSM-SE) 

 The OSM-SE improvement method combines the OSM approach with the SE 

approach. In this algorithm, the OSM method is applied first to improve an initial 

feasible solution obtained from constructive heuristics. Then, the improved solution is 

further improved by applying the SE method. 
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5.2.4 Supplier Exchange- One Supplier Move (SE-OSM) 

 This improvement algorithm also combines the OSM approach with the SE 

approach. However, the SE-OSM approach starts with the SE method which is then 

followed by the OSM approach , in contrast to the OSM-SE method. 

     

5.2.5 Very Large-Scale Neighborhood Search (VLSN) 

 As mentioned before, One Supplier Move (OSM) and Supplier Exchange (SE), 

are based on 1- and 2-exchange heuristics. The 1- and 2-exchange heuristics have 

been developed and applied to the traditional vehicle routing problem with some 

success. However, these methods search for an improved solution in a relatively small 

neighborhood of the current solution. Much better results may be expected if larger 

neighborhoods can be searched. Rather than extending the 1- and 2-exchange 

heuristics to our inventory-routing problem, a Very Large-Scale Neighborhood 

(VLSN) Search algorithm will be developed. Using this technique, very large 

neighborhoods can be explored implicitly through solving a subproblem, rather than 

explicitly by enumeration, as is common practice with small neighborhood search 

methods. This technique has relatively recently been developed and applied with 

much success to several hard combinatorial optimization problems. For example, the 

technique has been applied to vehicle routing problems [see Thompson and Psaraftis 

(1993), Gendreau et al. (1998), and Fahrion and Wrede (1990)], minimum makespan 

machine scheduling [see Frangioni et al. (2000)] and other scheduling problems [see 

Thompson and Psaraftis (1993)], the capacitated minimum spanning tree problem [see 

Ahuja et al. (2001-2 and 2001-3)], and several single-sourcing problems [see Ahuja et 

al. (2002) and Huang et al. (2003)]. Surveys of VLSN can be found in Ahuja et al. 

(2000) and Ahuja, Ergun, Orlin and Punnen (2002). 

 The VLSN algorithms that we propose can be viewed as extensions of 1- and 

2-exchange heuristics for VRPs. In the first algorithm, which is called Supplier-VLSN 

(S-VLSN), we consider a neighborhood of solutions that can be reached by moving 

groups of items with a common supplier that are currently replenished by one vehicle 

to another vehicle. In particular, we consider simultaneous moves of this form, where 

each of a subset of the vehicles exchanges one group of items by another. A solution 
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is called a neighbor of a given solution if it can be reached through a set of moves of 
the following form: for some sequence of distinct vehicles kii ,...,1  , a group of items is 

moved from vehicle 1i  to vehicle 2i , while simultaneously a group of items is moved 

from vehicle 2i  to vehicle ,...3i , a group of items is moved from vehicle 1−ki  to 

vehicle ki , and a group of items is moved from vehicle ki  to vehicle 1i . This type of 

exchange is called a cyclic exchange. An even larger neighborhood is obtained when 

sets of moves that do not include the last one are considered, that is, one vehicle 

``loses" a group of items without ``gaining" one, while another vehicle ``gains" a 

group of items without ``losing'' one. Those type of exchanges are called path 

exchanges. The second algorithm, which is called item-VLSN (I-VLSN), is similar to 

S-VLSN, with the distinction that groups of items with a common supplier are now 

not moved, but single items only. 

 

 Efficient methods for identifying an improving neighbor without explicit 

enumeration and evaluation of all neighbors in the neighborhood are based on a 

characterization of the neighborhood through a so-called improvement graph [see 

Ahuja et al. (2000 and 2002)], which captures all information needed to evaluate any 

exchange. The improvement graph for cyclic exchange can be constructed by creating 

a node corresponding to each item (or group of items) that is a candidate for exchange. 

Then, an arc is created from one node to another if it is possible to move the item(s) 

corresponding to the first node to the vehicle that currently replenishes the item(s) 

corresponding to the second node, while removing these latter items from their 

vehicle. The arc costs in the improving graph are defined to be the change in costs due 

to the move incurred by the ``receiving'' vehicle. To allow also path exchanges, the 

improvement graph is extended by a node for each vehicle as well as a dummy node. 

Then, an arc with appropriate cost is created from an item-node to a vehicle-node if it 

is possible to move the item(s) corresponding to the item-node to the vehicle 

corresponding to the vehicle-node without removing any items from that vehicle. 

Similarly, an arc with appropriate cost is created from the dummy node to each item-

node, modeling the fact that an item may leave a vehicle without being replaced by 

one. Finally, zero-cost arcs are created from the vehicle-nodes to the dummy node. 
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 Figure 5.3  Illustrating the Supplier-VLSN for the Cyclic Exchange 

 

 Each neighbor is now represented by a so-called subset-disjoint cycle in the 

improvement graph, that is, a cycle whose nodes correspond to distinct vehicles. 

(Note that a cycle that does not contain the dummy node corresponds to a cyclic 

exchange, and a cycle that does contain the dummy node corresponds to a path 

exchange.) Furthermore, the cost change from the current solution to the neighbor is 

equal to the total cost of the corresponding cycle in the improvement graph. As shown 

by Thompson and Orlin (1989) and Thompson and Psaraftis (1993), the problem of 

finding an improving neighbor therefore reduces to the problem of finding a negative-

cost subset-disjoint cycle in the improvement graph. However, the problem of 

determining whether there exists a subset-disjoint cycle in the improvement graph is 

NP-complete, and the problem of finding a negative cost subset-disjoint cycle is NP-

hard [see Thompson (1988), Thompson and Orlin (1989),and Thompson and Psaraftis 

(1993)]. We will employ heuristics for this problem that have been developed by 

Ahuja et al. (2001-1, 2001-2 and 2001-3), and appear to be highly effective in practice. 

 

 In Figure 5.3, the S-VLSN for the cyclic exchange is illustrated. In this cycle, 

items I1 and I2 from supplier S1 are moved from vehicle V1 to vehicle V2, items I3 

and I8 from supplier S4 are moved from vehicle V2 to vehicle V4 and item I9 from 
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supplier S2 is moved from vehicle V4 to vehicle V1.  The total cost of this cyclic 

exchange can be calculated from 
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 Figure 5.4  Illustrating the Supplier-VLSN  for the Path Exchange 

 

 Figure 5.4 shows the S-VLSN for the path exchange. In this path exchange, 

items I1 and I2 from supplier S1 are moved from vehicle V1 to vehicle V2 and items 

I3 and I8 from supplier S4 are moved from vehicle V2 to vehicle V4 while no item is 

moved out from vehicle V4 and no item is moved to vehicle V1. The total cost of this 

path exchange can be calculated from 
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CHAPTER 6 

AN INTEGRATED INVENTORY-
TRANSPORTATION SYSTEM UNDER 

STOCHASTIC DEMANDS 
 

6.1 Description of the problem 
 An inbound commodity collection system in a stochastic setting is studied in 

this chapter. Literature that studies the integrated inventory-transportation system with 

multiple items usually simplifies the problem with one of the following assumptions: 

Demand rates are constant and determinist [see Viswanathan and Mathur (1997)] and 

the vehicle capacity is unlimited [see Qu et al. (1999)]. In the problem studied, 

stochastic demands and capacitated vehicles will be considered simultaneously. The 

characteristics of the integrated inventory-transportation system studied here are 

mostly the same as the ones in the deterministic case. There is a central warehouse 

that dispatches a given number of capacitated vehicles to visit a set of geographically 

dispersed suppliers for collecting non-identical items. Each supplier manufactures at 

least one item. The frequency of dispatching each vehicle per unit time is limited. The 

vehicles return to the warehouse after completing their duty. In contrast to the 

deterministic case, demands from outside retailers are assumed to be independent and 

identically distributed because each retailer faces stochastic demands for its items 

from customers and a standard periodic review order-up-to level inventory policy is 

adopted at each retailer. The probability distributions of demands of all items are in 

the same form but the mean and standard deviation of demands for an item may be 

different from others’. The normal distribution will be examined. This problem is 

restricted to the case where the average demand of each item is approximately 

constant with time. With limited vehicle capacity and demand uncertainty, the 

manager of the central warehouse selects a periodic review fixed order quantity policy 

for inventory control to ensure that the replenishment quantity of items of any subset 

can be picked up by a single vehicle. In addition, the central warehouse will hold 

more inventories than in the deterministic case in order to prevent the stock-out 

situation under a given service level determined by management. These additional 
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inventories are called Safety Stock. Other assumptions, such as the central warehouse 

has unlimited space for stocking inventories, lead time is fixed for any replenishment 

and no shortage or delay occurs at any suppliers, remain unchanged.  

 

6.2 Notation 
 Notation mentioned in Chapter 3 will be used in this chapter and additional 

notation for the stochastic model is given below. 

 

jσ       standard deviation of demands for item j  in unit item per unit time. 

jSS     safety stock of item j . 

iT        replenishment interval of items collected by vehicle i . 

p        service level or probability of no stock out per replenishment cycle. 

pZ      random variable that has standard normal distribution at the service level p . 

in        number of items collected by vehicle i . 

)(SM aggregate minor ordering cost for items in subset S  .  

)(SO  aggregate stopover cost for items in subset S . 

)(Qf  average total inventory-transportation cost in term of aggregate order quantity   

 Q . 

)(/ Qf first derivative of )(Qf  

 

6.3 Additional Costs 
 In addition to the costs considered in the deterministic case, minor ordering 

and stopover costs will be incorporated in the stochastic model. However, in the 

model formulation, these two costs will be assumed to be zero for convenience. Then 

a special case where they are included in the cost structure will be studied. 

 

6.3.1 Minor Ordering Cost 

 An item dependent minor order cost is constant and incurred for any item 

included in the replenishment. It does not depend on the order quantity. 
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6.3.2 Stopover Cost 

 The stopover cost is considered as a part of transportation costs. It is charged 

when the vehicle stops at the supplier’s location for item collection. This cost is fixed 

but specific for each supplier. 

 

6.4 Model Formulation 
 In the integrated inventory-transportation system studied in this chapter, 

demands for each item from outside retailers are assumed to follow the normal 

distribution. The EOQ inventory policy which is the same as the one used in the 

deterministic problem can still be applied to the probabilistic problem. However, the 

modification of the total cost function is needed due to the uncertainty of demands. 

Under this policy, the review period of a particular subset of items is fixed and the 

fixed replenishment quantity for each item is determined with the objective of 

minimizing the total cost without violating vehicle capacity and frequency constraints 

and satisfying demands at a specific service level as well.  

 

 In general, when facing unknown and varied demands, the inventory manager 

always keeps the inventory level higher than the one when demands are deterministic 

in order to prevent the stockout situation. As a result, the inventory holding cost in the 

stochastic model is higher than the one in the deterministic model. The increasing 

inventory holding cost is incurred by safety stock. The safety stock is an average 

inventory just before the replenishment order arrives at the warehouse. There are 

many different ways to establish the safety stock. See Silver and Peterson (1985) for 

details. In this problem, the safety stock of each item is determined, based on the 

service level which is usually specified by management. The service level is the 

probability of no stockout per replenishment cycle. It is assume that the manager of 
the central warehouse sets the same service level p  for all items.  

 

6.4.1 No Minor Ordering and Stopover Costs 
 Now suppose the mean and the standard deviation of demands for item j  are 

jD  units per year and jσ  units per year respectively. Therefore, demands for item j  



 
 

 

60

picked up by vehicle i  over its replenishment interval iT  are also normally distributed 

with mean ijTD  and standard deviation ijTσ  or 

 
),( 2

ijij TTDN σ  

 
The safety stock SS of item j  can be calculated from the following : 

 

ijpj TZSS σ=  

 
Where pZ  is a random variable that follows the standard normal distribution with 

mean 0 and standard deviation 1 at the service level p . 

 

 Apparently, adding the safety stock means increasing the inventory holding 

cost. Consequently, a mathematical model for this problem in the stochastic setting 

can be formulated by including the inventory holding cost incurred by the safety stock 

in the average total inventory-transportation cost function (3.2) derived in Chapter 3. 

For item j  in subset S  assigned to vehicle i , the average inventory cost due to its 

safety stock  is the inventory holding cost rate multiplied by the safety stock. That is  

 
                                                         ijpj TZh σ  

 

 The average total inventory holding cost of this subset of items with the 

service level p  can be formulated as 

 

                                        ∑
∈

+
Sj

jjP h
SD
SQZSQSh σ

)(
)()()(

2
1  

 

 Meanwhile, the assumptions about the transportation part remain the same as 

the ones in the deterministic case. The minor order cost and the stopover cost will not 

be taken into consideration. In the other words, they are assumed to be zero for now. 

As a result, the average total transportation cost can be derived in the same way as  
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)(
)()(

SQ
SDSL  

 

)(SL  can be determined after a subset of items assigned to the vehicle is known. 

Therefore, the average total integrated inventory-transportation cost of items in subset 

S  is 

                           ∑
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1

)(
)()()( σ            (6.1)    

 

Subject to:  
                                                      CFSD ≤)(    

                                                      0)( >SQ   

 

If there are m  vehicles available, the integrated inventory-transportation problem 

under stochastic demands can still be considered as a partitioning problem.  

 

                                                   ∑
=

m

i

iSc
1

)( )(min                         (PPP) 

Subject to:  

                                                      =
=

)(

1

i
m

i

SU S 

                                                    φ=∩ )()( ki SS    for all i  ≠ k .  

 
)(iS  denotes a subset of items collected by vehicle i . 

 

6.4.2 Minor Ordering Cost 

 Now the case when there are item dependent minor ordering costs is 

considered. The minor ordering cost is constant and incurred for any specific item 

included in the replenishment. )(SM  is denoted as an aggregate minor ordering cost 

which is the summation of minor ordering costs of all items in the subset S .  

Therefore, the aggregate minor ordering cost of a particular subset S  of items 

assigned to the vehicle is also constant for every replenishment interval. When a 

subset of items S  is determined for the vehicle i , the aggregate minor ordering cost 
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can be considered as one of components of fixed costs of that vehicle. So, from (6.1), 

we obtain  
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where  )()()( SMSTSPKSL ++=  

Subject to:  
                                                      CFSD ≤)(    

                                                      0)( >SQ   

 

6.4.3 Stopover Cost 

 Assume that there is a fixed cost incurred when the vehicle visits a supplier for 

item collection. This cost is called the stopover cost which is specific for each 

supplier and does not depend on items or quantities picked up. As a result, the 

aggregate stopover cost of a subset S  of items, denoted by )(SO , is also fixed for 

every replenishment interval. For a particular subset of items assigned to the vehicle, 

the aggregate stopover cost can be combined to the existing fixed costs in (6.2). 

Therefore, the average total integrated inventory-transportation cost of items in subset 

S  assigned to vehicle i  is 
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where   )()()()( SOSMSTSPKSL +++=  

Subject to:  
                                                      CFSD ≤)(    
                                                      0)( >SQ   

 

 If the minor ordering and stopover costs are included in the model, the 

integrated inventory-transportation problem under stochastic demands can still be 
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formulated as a set partitioning problem and the only difference is the term of the 

average integrated inventory-transportation cost of each subset of items )(Sc . 

 

6.5 Analysis of the Cost Function 
 For a purpose of analyzing the total cost function, a single subset of items S  

will be considered and the minor ordering and stopover costs are assumed to be zero. 

From the average total cost function (6.1) 
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and )(Qf  be the average total cost function in term of the aggregate order quantity 

Q . For convenience, the term S  will be omitted for now. Then, the total cost function 

(6.1) can be rewritten as  

                                           QCBQ
Q
AQf ++=)(               (6.4) 

 A, B and C can be viewed as constant terms if which items are in the subset is 

known. Then, the total cost function can be analyzed. Suppose there are three items, 
items 1, 2 and 3, in subset S  and )(SL =$50, p =0.975, 1D =120, 2D =150, 3D =200, 

1h =100, 2h =100, 3h =120, 1σ =24, 2σ =30 and 3σ =40. 

 

 Now A, B and C can be determined and A=23500, B=54.26 and C=922.16. 
Different values of the total cost function can be obtained by changing the value of Q  

without considering the capacity and frequency constraints. With these values, the 

graph of the relationship between the total integrated cost and the aggregate order 

quantity of items of that particular group can be obtained and shown in Figure 6.1. 
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 As seen from Figure 6.1, at the first stage, when the aggregate order quantity 

Q  increases, the total cost decreases rapidly and reaches the lowest point as  Q≈ 40. 

This is because A is much greater than both B and C. So when Q  increases, the 

decreasing rate of the cost associated with A/Q  is much more than the increasing rate 

of the costs associated with both BQ and C Q  combined. While Q  is increasing, the 

total cost continues falling down until the amounts of decreasing and increasing costs 

are equal which incurs the minimum total cost. After that, the total cost keeps raising 

up as Q  increases. This can be explained that when Q  is very large, the first term 

A/Q  becomes near zero while the other two terms, BQ  and C Q ,  keep increasing. 

This behavior is similar to the simple EOQ model. 
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               Figure 6.1. Relationship between the total cost and the aggregated order  
               quantity 

 

 From Figure 6.1, the total integrated cost function is convex in the range of 

Q =0 to Q≈40 which is the inflection point. This can be easily proved which is shown 

in Appendix A. After the inflection point, the cost function is concave. Now a 

question of “Is the local optimum also the global optimum?” has arisen. This question 

is answered by proving in Appendix A that the local optimal solution to the problem 

is also the global optimal solution. In Appendix B, the order quantity determined from 

(6.2) is compared with the EOQ. That the optimal order quantity Q  of the model 

studied is always smaller than the EOQ is proved. 
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6.6 Solution Approaches 
 In this section, the solution methods to solve the integrated inventory-

transportation problem under stochastic demands with the minor ordering and 

stopover cost components added are focused.  

 

6.6.1 Exact Solution Approach and Heuristics 

  As mentioned before, this problem can be formulated as the set partitioning 

problem. In addition, adding the minor ordering cost, the stopover cost and the 

inventory holding cost due to the safety stock to the deterministic model does not 

impact on the main concept of algorithms proposed in Chapters 4 and 5. As a result, 

the column generation, the branch-and-price algorithm, the constructive heuristics and 

the improvement algorithms including VLSN approaches developed in the 

deterministic case can still be applied to the problem. However, in determining the 

aggregate replenishment quantity )(SQ of each vehicle, the standard EOQ formula 

cannot be used because of the inventory holding cost term due to the safety stock. 

Therefore, the bisection method [see Kincaid and Cheney (1996)] known as the 

method of interval halving is adopted to solve for the optimal replenishment quantity 
)(* SQ . Because the local optimum is also the global optimum, )(* SQ  will be 

determined from the first derivative of the total cost function ))(( SQf . From the 

graph showing the relationship between the first derivative ))((/ SQf and )(SQ , it 

intersects the X-axis at only one point which provides the optimal replenishment 

quantity )(* SQ  as shown in Figure 6.2. As a result, the bisection method is easily 

applied to the stochastic problem. In Appendix B, it has been proved that )(* SQ  is 

always smaller than the EOQ which is BA / . Consequently, the initial interval for 

halving in the bisection method can be set to [0, BA / ].  

 If the vehicle capacity and frequency constraints are taken into consideration, 

the optimal total costs and the optimal aggregate replenishment quantity of items in 

subset S  assigned to vehicle i  can be obtained from 
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where   )()()()( SOSMSTSPKSL +++=  

Subject to:  
                                                      CFSD ≤)(    

                                                      0)( >SQ  

 

where                          
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and )(* SQ is the optimal replenishment quantity determined by the bisection method 

[see Kincaid and Cheney (1996)]. 
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                       Figure 6.2 Relationship between ))((/ SQf  and the aggregated order  
                       quantity )(SQ  
 

6.6.2 The pricing problem 

 All the same notations as in the deterministic part will be used. The procedures 

of the column generation approach and the branch-and-bound strategies used in both 

deterministic and stochastic models are unchanged so only how to bound on the 

function )(zc   will be discussed. In fact, )(zL  is still bounded from below by  

                      
                                     )()()()()( 11 JLzOzMJTSPKzL =+++≥  
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to obtain 
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The optimal )(* zQ is computed by using the bisection method.  

Now the following problem can be solved 
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by applying the same algorithms developed in the deterministic case.  
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CHAPTER 7 
 

COMPUTATIONAL EXPERIMENTS 
 

 In order to measure the performance of the proposed algorithms, 

computational experiments on both deterministic and stochastic models have been 

performed using a randomly generated set of test instances. In this chapter, the 

performance of the column generation and exact branch-and-price algorithm on a 

number of small instances will be discussed first. As was expected, the branch-and-

price method is very time-consuming. However, these tests can be used to assess the 

tightness of the lower bound obtained using the column generation solution to the LP-

relaxation of the set partitioning formulation. To reduce the computational time used 

in the branch-and-price method, the solution obtained from the I-VLSN algorithm is 

used as an upper bound at each node. In the remaining experiments, the performance 

of the proposed constructive and improvement heuristics will be compared, and the 

quality of the solutions obtained will be assessed by comparing the heuristic costs to 

the column generation lower bound on the optimal costs. 

 

7.1 Generation of the test instances and implementation 
 Both the deterministic and stochastic models are tested by using random 

generated data, like other literature [See Chan and Simchi-Levi (1998)]. For every 

experiment, random instances have been generated as follows: The demand rate 

(demand per unit time) for each item is randomly generated from the uniform 

distribution on [100,300], and the inventory holding cost rate (cost per unit per unit 

time) for each item is randomly generated from the uniform distribution on [1,15]. 

The items are randomly assigned to one of 10 suppliers, while ensuring that each of 

these suppliers manufactures at least one item. The locations of the warehouse and 
suppliers are generated uniformly in the square 22 R]20,0[ ⊂ , and Euclidean 

distances are used to measure transportation costs, with unit cost per unit distance 

traveled.  
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 A base case has been defined as follows: Each vehicle has a capacity of 

C =150 units, the fixed transportation cost is set to K =50, and the maximum number 

of trips allowed per time unit by each vehicle is F =10. The size of an instance is 

identified by the number of items, n , and the number of vehicles, m .  

 

 In the experiments on the deterministic model, four different sizes have been 

considered: 15 items and 3 vehicles, 30 items and 6 vehicles, 40 items and 8 vehicles, 

and 50 items and 10 vehicles, where the number of vehicles has been chosen to ensure 

that a solution with this number of vehicles indeed exists given the capacity 

constraints. In addition, a sensitivity analysis of the computational results has been 

performed for changes in the capacity, frequency, and fixed cost parameters, where 

the number of available vehicles has been adjusted accordingly. 

 

 For the stochastic case, the model with minor ordering and stopover costs 

included and the one without these costs are examined. For each model, four different 

sizes have been chosen: 15 items and 3 vehicles, 20 items and 4 vehicles, 25 items 

and 5 vehicles, and 30 items and 6 vehicles. The reason for testing on smaller 

problems for the stochastic model is that the column generation approach to obtain the 

lower bound takes much longer time than the one in the deterministic model. For the 

case with minor ordering and stopover costs, the minor ordering and stopover costs 

are randomly generated from the uniform distribution on [0,5]. The base case for this 

model is defined as follows: C =150, F =10, K =50, p =0.975 and the percent of 

demands for the standard deviation for all items is set to 20 %. In addition to 

analyzing the effect of varying the capacity, frequency, and fixed cost parameters, the 

changes in the service level and the standard deviation of demands are also examined. 

However, a sensitivity analysis has been conducted for only the stochastic model with 

the minor ordering and stopover costs included. 

 

 All the algorithms and heuristics have been implemented in the C++ 

programming language on a PC with a 1.80 GHz Intel Pentium 4 CPU and 240 MB of 

RAM. The CPLEX 8.1 solver is used to obtain the optimal solution to the TSP and 
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the solutions to the LP-relaxation of the set partitioning problem in the column 

generation procedure. 

 
7.2 Experiments on the deterministic model 
7.2.1 Performance of branch-and-price and quality of the lower bounding 

procedure 

 The goal of the first experiment is to test the computational efficiency of the 

branch-and-price algorithm and assess the quality of the lower bound obtained from 

the column generation procedure. For this experiment, the branch-and-price algorithm 

has been used to obtain optimal solutions for all 15-item instances, as well as the 

corresponding lower bounds. The results of this test on the 10 instances are given in 

Table 7.1. 

 

 It can be concluded that the branch-and-price algorithm is very time-

consuming, even for these small problem instances. However, the column generation 

procedure is able to find a reasonably tight lower bound to the optimal costs 

efficiently, with an average gap between the optimal cost and the lower bound of 

approximately 2.5 %, and an average computational time of 13.5 CPU seconds. 
 
 

Problem LB Optimal %deviation 

1 2778.1 2778.1 0.00 

2 2645.8 2645.8 0.00 

3 2545.2 2598.6 2.10 

4 2669.7 2761.2 3.43 

5 2557.6 2726.0 6.58 

6 2563.9 2699.3 5.28 

7 2511.3 2526.7 0.61 

8 2378.3 2426.2 2.02 

9 2556.2 2577.2 0.82 

10 2710.0 2825.5 4.26 

avg 2591.6 2656.4 2.51 

max 2778.1 2825.5 6.58 

Time(sec) 13.5 13571.3   

 
                             Table 7.1 Optimal cost vs. lower bound (n = 15, m = 3). 
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7.2.2 Performance of the constructive heuristics and improvement algorithms  

 In the second set of experiments on the deterministic model, the goal is to 

assess the quality of the solutions obtained by the constructive heuristics and 

improvement algorithms. Firstly, each instance is solved by using the constructive 

heuristics. Next, these initial solutions are improved by using the OSM, SE, OSM-SE, 

SE-OSM, I-VLSN and S-VLSN improvement algorithms. Then the objective function 

value found by the heuristic is compared to the lower bound for each instance using 

the column generation approach. In addition, for the instances with n =15 items the 

heuristic costs are also compared to the optimal costs. The results of these 

experiments are given in Tables 7.2-7.4. From Table 7.2, the DR heuristic combined 

with the I-VLSN algorithm provides the best solution to the problem with n =15 and  

m =3. The average cost is only 0.76% higher than the optimal solution.  

 

 The average and maximum cost deviations from the lower bound of the 

solutions obtained by both constructive heuristics and all the improvement algorithms 

are reported in Tables 7.2-7.4 and Figures 7.1-7.6. The results show that the DR 

heuristic outperforms the AII heuristic both with respect to the average and the 

maximum error over all 10 instances. In addition, the gap between the lower bound 

and the solution obtained from the DR heuristic improves with increasing problem 

size, while this effect is absent from the AII heuristic. This can be explained that in 

the AII heuristic items of the same supplier may not be assigned to the same vehicle 

because an item is randomly selected for insertion. When the number of items 

increases, it is more unlikely that all items of the same supplier are assigned to the 

same vehicle. On the other hand, in the DR heuristic, items of the same supplier are 

assigned to the same vehicle if the vehicle capacity is still satisfied. From Tables 7.2-

7.4, the solutions improved by the SE, OSM-SE and SE-OSM algorithms are not 

significantly different for the DR and AII heuristics. In other words, these 

improvement algorithms provide solutions with almost the same level of quality, 

regardless of constructive heuristics used to obtain the initial solutions. The SE 

approach seems to perform better than the OSM method. However, the OSM-SE and 

the SE-OSM approaches perform equally well. With respect to the VLSN 
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improvement algorithms, I-VLSN outperformed S-VLSN for all cases, except for the 

largest problem with n =50 and the starting solution found by AII. In fact, the I-

VLSN works better than any other improvement algorithms. The I-VLSN algorithm 

based on the DR solution on average provided the solution with smallest error, with a 

maximum average error of 3.28 %. Moreover, as for the DR heuristic, the gap 

between the lower bound and the solution obtained from the I-VLSN decreases when 

the number of items increases. 
 
 
 

Heuristics       

Error 
bound 

(%)         

    Heuristic OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

DR avg 5.29 3.51 3.66 2.11 2.41 0.76 2.37 

  max 14.11 14.11 9.04 9.04 9.04 5.26 9.04 

AII avg 7.31 5.23 3.13 2.29 2.49 1.05 2.89 

  max 15.99 15.70 8.37 6.73 6.73 6.04 9.04 

 
        Table 7.2 Error with respect to optimal solution of solutions obtained from the  
        constructive heuristics and improvement algorithms (n = 15, m = 3). 
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     Figure 7.1 Average error with respect to optimal solution of solutions obtained  
     from the constructive heuristics (H=heuristic) and improvement algorithms  
    (n = 15, m = 3). 
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     Figure 7.2 Maximum error with respect to optimal solution of solutions obtained  
     from the constructive heuristics (H=heuristic) and improvement algorithms  
     (n = 15, m = 3). 
 
 
 
 
 
 

Size         Error bound (%)       
n m   DR OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

15 3 avg 8.81 6.98 6.47 4.67 5.18 3.28 4.91 
    max 14.11 14.11 9.26 9.04 9.04 6.92 9.68 

30 6 avg 8.25 6.84 5.93 6.10 5.62 2.84 5.63 
    max 11.32 8.78 8.49 8.08 8.08 6.73 7.46 

40 8 avg 5.53 4.82 4.47 4.04 3.88 2.69 3.83 
    max 8.21 7.80 7.03 6.15 6.08 3.20 6.08 

50 10 avg 5.43 4.68 4.69 4.06 4.24 2.37 3.70 
    max 8.48 6.70 7.40 5.63 6.31 3.31 5.64 

 
Table 7.3 Error bounds of solutions obtained from the DR heuristic and improvement 
algorithms.   
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          Figure 7.3 Average error of solutions obtained from the DR heuristic and  
          improvement algorithms.   
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           Figure 7.4 Maximum error of solutions obtained from the DR heuristic and   
           improvement algorithms.   
 
 
 
 



 
 

 

75

 
 
 
 
 
 
 

Size         Error bound (%)       
n m   AII OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

15 3 avg 9.98 7.84 5.69 4.84 5.05 3.57 5.45 
    max 16.94 15.70 9.39 9.82 9.39 6.58 9.33 

30 6 avg 12.18 10.21 6.06 5.21 5.55 3.89 4.94 
    max 16.71 13.97 9.11 7.35 9.11 6.51 6.46 

40 8 avg 13.00 9.80 4.78 5.14 4.74 3.64 4.30 
    max 16.19 14.45 7.46 6.04 7.44 4.58 6.16 

50 10 avg 13.31 11.24 4.24 4.24 4.17 4.04 3.76 
    max 17.74 14.07 5.71 6.61 5.71 7.44 5.00 

 
Table 7.4 Error bounds of solutions obtained from the AII heuristic and improvement 
algorithms.   
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            Figure 7.5 Average error of solutions obtained from the AII heuristic and  
            improvement algorithms.   
 

 
 
 
 
 
 



 
 

 

76

0.00
2.00
4.00
6.00
8.00

10.00
12.00
14.00
16.00
18.00
20.00

AII OSM SE OSM-
SE

SE-
OSM

I-VLSN S-
VLSN

Heuristics(AII)

M
ax

im
um

 E
rr

or
 B

ou
nd

 (%
)

n=15

n=30

n=40

n=50

 
 
           Figure 7.6 Maximum error of solutions obtained from the AII heuristic and   
           improvement algorithms.   
 
 

 Finally, the computation time needed for finding the lower bound as well as 

for the heuristics is provided in Tables 7.5-7.6. It is immediately seen that the 

heuristics are extremely efficient, finding a solution in usually less than a second. On 

the other hand, the time needed for computing the lower bound is very time-

consuming, increasing dramatically as the problem size increases. However, as seen 

in Tables 7.3-7.4, the solution quality of the heuristics is very good, and improves as 

the problem size increases. Therefore, the need for computing the lower bound in 

practice decreases as the problem size increases. In the view of the VLSN algorithms, 

the I-VLSN requires more computational time than the S-VLSN does. This is because 

there are more nodes in the I-VLSN. As a result, constructing and updating the 

improvement graph in the I–VLSN takes more computational effort. 
 
 
 

Size       Average computational time (sec)     

n m LB DR OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

15 3 13.5 0.000 0.000 0.000 0.000 0.005 0.017 0.006 

30 6 849.5 0.000 0.036 0.002 0.037 0.003 0.136 0.008 

40 8 14207.6 0.002 0.009 0.000 0.011 0.000 0.217 0.011 

50 10 48672.0 0.003 0.002 0.003 0.005 0.005 0.433 0.016 

 
Table 7.5 Average computational time for the column generation method (LB), the 
DR heuristic and the improvement algorithms.  
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Size       Average computational time (sec)     

n m LB AII OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

15 3 13.5 0.000 0.034 0.002 0.036 0.003 0.027 0.011 

30 6 849.5 0.000 0.008 0.002 0.011 0.002 0.235 0.038 

40 8 14207.6 0.002 0.014 0.002 0.022 0.003 0.525 0.081 

50 10 48672.0 0.006 0.013 0.006 0.019 0.006 1.378 0.133 

 
Table 7.6 Average computational time for the column generation method (LB), the 
AII heuristic and the improvement algorithms.  
 
 
 

7.2.3 Sensitivity analysis 

 In order to investigate the impact of changing some of the problem parameters 

on the computational performance of the proposed heuristics and improvement 

algorithms, a third set of experiments have been conducted. Using the 40-item 

instances as a base case, the vehicle capacityC , the maximum number of trips per 

vehicle F  and the fixed (dispatching and joint ordering) costs K  have been varied 

from 100 to 200, from 8 to 12, and from 0 to 100 respectively. In each case, the 

number of vehicles is adjusted to suit the capacity constraints. Based on the results in 

Tables 7.3-7.4, the best constructive heuristic, DR, and all the improvement 

algorithms have been chosen for performing the sensitivity analysis. 

 

 The results in Tables 7.7-7.9 and Figures 7.7-7.12 show that the gap between 

the lower bound and the solution obtained from almost all methods decreases on 

average for problems with smaller vehicle capacity, smaller maximum number of trips 

per time unit, or smaller fixed transportation cost. However, the error of the solution 

obtained from the I-VLSN method decreases as the fixed transportation cost increases. 

The error bound also seems to be more stable across instances when the vehicle 

capacity or the maximum number of trips is smaller. In addition, the changes of the 

maximum number of trips allowed seem to have less impact on the average error. As 

for the changes in the fixed costs K , it is surprising that the I-VLSN approach is 

outperformed by the OSM-SE, SE-OSM and S-VLSN algorithms when K = 0. 
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C m       

Error 
bound 

(%)         

      DR OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

100 12 avg 5.34 4.52 4.47 4.23 4.28 1.91 4.39 

    max 6.66 5.97 5.83 5.83 5.83 3.05 5.97 

150 8 avg 5.53 4.82 4.47 4.04 3.88 2.69 3.83 

    max 8.21 7.80 7.03 6.15 6.08 3.20 6.08 

200 6 avg 7.45 7.07 6.46 6.24 6.21 2.89 5.63 
    max 11.25 11.25 8.99 8.38 8.38 4.59 8.00 

 
Table 7.7 Error bounds when the vehicle capacity C is varied. 
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         Figure 7.7 Average error bounds when the vehicle capacity C is varied. 
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         Figure 7.8 Maximum error bounds when the vehicle capacity C is varied. 
 
 
 
 
 
 
 

F m       

Error 
bound 

(%)         

      DR OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

8 10 avg 5.45 4.12 4.72 3.83 4.11 2.24 4.02 

    max 6.63 5.79 5.81 5.35 5.46 2.67 5.35 

10 8 avg 5.53 4.82 4.47 4.04 3.88 2.69 3.83 

    max 8.21 7.80 7.03 6.15 6.08 3.20 6.08 

12 7 avg 5.12 4.35 4.14 4.09 3.82 2.94 3.76 

    max 10.00 6.41 4.97 6.08 4.94 4.50 4.89 

 
Table 7.8 Error bounds when the maximum number of trips allowed F is varied. 
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 Figure 7.9 Average error bounds when the maximum number of trips allowed 
 F is varied. 
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 Figure 7.10 Maximum error bounds when the maximum number of trips 
 allowed F is varied. 
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K       

Error 
bound 

(%)         

    DR OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

0 avg 4.34 3.07 2.53 1.99 2.12 3.49 2.42 

  max 7.07 4.93 5.88 3.76 4.08 5.96 4.36 

20 avg 5.26 4.77 4.04 3.83 3.65 3.29 3.36 

  max 7.93 7.93 5.77 5.68 5.68 5.95 5.12 

50 avg 5.53 4.82 4.47 4.04 3.88 2.69 3.83 

  max 8.21 7.80 7.03 6.15 6.08 3.20 6.08 

100 avg 4.06 3.55 3.47 3.00 3.03 2.04 2.98 

  max 6.79 5.64 5.94 5.06 5.06 2.95 5.04 

 
             Table 7.9 Error bounds when the fixed transportation cost K is varied. 
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      Figure 7.11 Average error bounds when the fixed transportation cost K is varied. 
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      Figure 7.12 Maximum error bounds when the fixed transportation cost K is varied. 
 
 

 

7.3 Experiments on the stochastic model 
7.3.1 Performance of branch-and-price and quality of the lower bounding 

procedure 

 In this experiment, the case where the minor ordering and stopover costs are 

not considered and the case where the minor ordering and stopover costs are included 

in the model are investigated and for each case, ten of 15-item instances are tested. 

The results of both cases are shown in Tables 7.10-7.11. The branch-and-price 

algorithm is still very time-consuming for determining the optimal solution to the 

problem of the stochastic model. However, the column generation approach can find a 

tighter lower bound, with an average gap between the optimal cost and the lower 

bound of approximately 1.7 % for the case without the minor ordering and stopover 

costs and only 1.31 % for the case with the minor ordering and stopover costs.  
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Problem LB Optimal %deviation 

1 6193.9 6193.9 0.00 

2 5501.6 5501.6 0.00 

3 5332.2 5412.0 1.50 

4 5612.8 5766.4 2.74 

5 5676.9 5866.1 3.33 

6 5270.1 5477.1 3.93 

7 5480.8 5498.7 0.33 

8 4927.4 5006.9 1.61 

9 5658.3 5681.6 0.41 

10 5743.0 5921.8 3.11 

avg 6193.9 5632.6 1.70 

max 5539.7 6193.9 3.93 

Time(sec) 14.9 14357.9   

  
                             Table 7.10 Optimal cost vs. lower bound for the stochastic case   
                             without minor ordering and stopover costs (n = 15, m = 3). 
 
 
 

Problem LB Optimal %deviation 

1 6852.4 6852.4 0.00 

2 6279.4 6279.4 0.00 

3 5990.5 6056.1 1.10 

4 6202.8 6316.4 1.83 

5 6340.9 6519.1 2.81 

6 5970.3 6172.2 3.38 

7 6106.9 6116.2 0.15 

8 5481.0 5549.9 1.26 

9 6278.6 6292.7 0.23 

10 6453.8 6602.3 2.30 

avg 6195.7 6852.4 1.31 

max 6852.4 6275.7 3.38 

Time(sec) 36.9 5499.7   

 
                             Table 7.11 Optimal cost vs. lower bound for the stochastic case   
                             with minor ordering and stopover costs (n = 15, m = 3). 
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7.3.2 Performance of the constructive heuristics and improvement algorithms 

 Firstly, the model without the minor ordering and stopover costs is tested. The 

purpose of these experiments is the same as the one for the deterministic model. In 

Table 7.12 and Figures 7.13-7.14 showing the error with respect to optimal solution 

for small problem instances with n =15, the AII heuristic seems to outperform the DR 

heuristic. The solution obtained from the AII heuristic and improved by the I-VLSN 

algorithm is only 0.36 % over the optimal solution. However, with the same reason 

mentioned before, when the problem size gets larger, the AII heuristic is 

outperformed by the DR heuristic as shown in Tables 7.13-7.14 and Figures 7.15-7.18 

but its performance in the stochastic model is better than in the deterministic model. 

For the improvement algorithms, the I-VLSN is still the best algorithm. It provides 

the solution with maximum average error of  5.07 %. The SE-OSM performs better 

than the OSM-SE but its performance is approximately as well as the S-VLSN. In 

contrast to the deterministic model, when the problem size increases, the gap between 

the lower bound and the solution obtained from the heuristics and improvement 

algorithms seem to increase.  

 
 
 
 
 

Hueristic       

Error 
bound 

(%)         

    Heuristic OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

DR avg 3.71 2.63 2.60 1.48 1.11 0.51 0.64 

  max 8.09 8.09 5.85 5.44 5.60 3.88 2.66 

AII avg 2.77 2.32 0.85 0.80 0.76 0.36 0.98 

  max 6.68 6.68 2.10 2.10 2.10 0.95 2.37 

 
       Table 7.12 Error with respect to optimal solution of solutions obtained from the  
       constructive heuristics and improvement algorithms for the stochastic case   
       without minor ordering and stopover costs (n = 15, m = 3). 
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     Figure 7.13 Average error with respect to optimal solution of solutions obtained    
     from the constructive heuristics and improvement algorithms for the stochastic   
     case without minor ordering and stopover costs (n = 15, m = 3). 
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    Figure 7.14 Maximum error with respect to optimal solution of solutions obtained    
    from the constructive heuristics and improvement algorithms for the stochastic   
    case without minor ordering and stopover costs (n = 15, m = 3). 
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Size         Error bound (%)       
n m   DR OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

15 3 avg 5.45 4.36 4.31 3.19 2.82 2.21 2.36 
    max 8.09 8.09 5.85 5.7 5.7 3.93 6.69 

20 4 avg 3.59 3.51 2.9 2.77 2.73 2.14 2.39 
    max 6.3 6.3 5.34 5.34 5.34 3.4 4.53 

25 5 avg 4.26 4.03 3.64 3.48 3.52 3.19 3.42 
    max 6.31 5.89 5.4 5.4 5.4 4.19 5.31 

30 6 avg 4.99 4.44 3.78 3.62 3.58 3.27 3.96 
    max 6.97 5.77 5.19 5.19 4.86 5.07 6.61 

 
Table 7.13 Error bounds of solutions obtained from the DR heuristic and 
improvement algorithms for the stochastic case without minor ordering and stopover 
costs.  
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            Figure 7.15 Average error bounds of solutions obtained from the DR heuristic   
            and improvement algorithms for the stochastic case without minor ordering  
            and stopover costs.  
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            Figure 7.16 Maximum error bounds of solutions obtained from the DR   
            heuristic and improvement algorithms for the stochastic case without minor   
            ordering and stopover costs.  
 
 
 
 
 
 
 

Size         Error bound (%)       
n m   AII OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

15 3 avg 4.52 4.06 2.56 2.51 2.47 2.06 2.7 
    max 9.6 9.6 5.28 5.28 5.28 3.93 5.56 

20 4 avg 4.67 3.57 2.14 2.05 2.11 2.7 2.44 
    max 8.19 5.88 4.38 4.68 4.38 4.82 5.39 

25 5 avg 8.01 6.2 3.66 3.71 3.65 3.31 3.95 
    max 10.47 9.77 5.52 5.52 5.52 4.55 7.56 

30 6 avg 7.45 6.14 3.43 3.41 3.17 3.16 3.76 
    max 8.92 7.74 4.95 5.68 4.75 4.48 6.37 

 
Table 7.14 Error bounds of solutions obtained from the AII heuristic and 
improvement algorithms for the stochastic case without minor ordering and stopover 
costs.  
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            Figure 7.17 Average error bounds of solutions obtained from the AII heuristic   
            and improvement algorithms for the stochastic case without minor ordering  
            and stopover costs.  
 
 
 
 
 
 

 

0

2

4

6

8

10

12

AII OSM SE OSM-
SE

SE-
OSM

I-VLSN S-
VLSN

Heuristics(AII)

M
ax

im
um

 E
rr

or
 B

ou
nd

 (%
)

n=15

n=20

n=25

n=30

 
 
            Figure 7.18 Maximum error bounds of solutions obtained from the AII   
            heuristic and improvement algorithms for the stochastic case without minor   
            ordering and stopover costs. 
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 Tables 7.15-7.16 report the average computation time needed for finding the 

lower bound and for obtaining solutions by the heuristics and improvement 

algorithms. All the algorithms still perform very efficiently. The longest average time 

to compute a near-optimal solution by the I-VLSN is only 0.0842 second for instances 

with n =30 and m =6. However, the time needed for determining the lower bound is 

much longer than the one in the deterministic model, especially when the problem 

size increases. 

 
 
 

Size       Average computational time (sec)     

n m LB DR OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

15 3 14.9 0.0102 0.0007 0.0095 0.012 0.014 0.0111 0.0072 

20 4 161.6 0.0423 0.0062 0.0095 0.0201 0.0126 0.0235 0.0104 

25 5 3834.2 0.022 0.0045 0.019 0.0313 0.0221 0.0418 0.0188 

30 6 11222.5 0.0155 0.0079 0.0191 0.0171 0.0222 0.0842 0.0153 

 
Table 7.15 Average computational time for the column generation method (LB), the 
DR heuristic and the improvement algorithms for the stochastic case without minor 
ordering and stopover costs. 
 
 
 

Size       Average computational time (sec)     

n m LB AII OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

15 3 14.9 0.0116 0 0.0009 0.0011 0.0012 0.0106 0.0082 

20 4 161.6 0.0141 0.0015 0.0032 0.0015 0.0032 0.0328 0.0281 

25 5 3834.2 0.0156 0.0016 0.0077 0.0064 0.0077 0.0796 0.0532 

30 6 11222.5 0.0469 0.0062 0.0031 0.0094 0.0047 0.1937 0.0767 

 
Table 7.16 Average computational time for the column generation method (LB), the 
AII heuristic and the improvement algorithms for the stochastic case without minor 
ordering and stopover costs. 
 

 

 Now the results of the experiments on the stochastic model with the minor 

ordering and stopover costs included are discussed. From Table 7.17 and Figures 

7.19-7.20 reporting average and maximum errors of the heuristic costs compared with 

the optimal costs for the instances with n =15 and m =3, the VLSN algorithms, 

especially the I-VLSN, work very well. The I-VLSN gives the smallest error of 0.34 
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% over the optimal cost when applied to the solutions obtained from the AII heuristic. 

Like the results in the model not considering the minor ordering and stopover costs, 

the DR heuristic outperforms the AII heuristic in most cases as shown in Tables 7.18-

7.19 and Figures 7.21-7.24. In addition, the I-VLSN still performs better than any 

other improvement algorithms, with a maximum average error of 2.99 % when 

working with the AII heuristic. As for the combination of the one and two exchange 

algorithms, both the OSM-SE and the SE-OSM perform equally and reasonably well, 

with an average error of less than 3.00 % in almost every case. However, it cannot be 

concluded at this point that the gap between the lower bound and the solution 

obtained from the constructive heuristics and all improvement algorithms decreases 

when the number of items increases. 

 
 
 
   

Hueristic       

Error 
bound 

(%)         

    Heuristic OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

DR avg 3.26 2.36 2.01 1.09 0.83 0.35 0.57 

  max 7.58 7.58 4.30 4.28 4.08 2.38 2.17 

AII avg 5.49 2.50 1.43 0.93 1.42 0.34 0.60 

  max 11.56 5.54 5.81 2.38 5.81 0.84 2.57 

 
       Table 7.17 Error with respect to optimal solution of solutions obtained from the  
       constructive heuristics and improvement algorithms for the stochastic case   
       with minor ordering and stopover costs (n = 15, m = 3). 
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       Figure 7.19 Average error with respect to optimal solution of solutions obtained    
       from the constructive heuristics and improvement algorithms for the stochastic  
       case with minor ordering and stopover costs (n = 15, m = 3). 
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       Figure 7.20 Maximum error with respect to optimal solution of solutions obtained    
       from the constructive heuristics and improvement algorithms for the stochastic  
       case with minor ordering and stopover costs (n = 15, m = 3). 
 
 
 



 
 

 

92

 
 
 
 
 

 
Table 7.18 Error bounds of solutions obtained from the DR heuristic and 
improvement algorithms for the stochastic case with minor ordering and stopover 
costs.   
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Figure 7.21 Average error bounds of solutions obtained from the DR heuristic and 
improvement algorithms for the stochastic case with minor ordering and stopover 
costs.   
 
 
 
 
 
 
 
 

Size         Error bound (%)       
n m   DR OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

15 3 avg 4.59 3.69 3.33 2.4 2.14 1.66 1.88 
    max 7.58 7.58 4.95 4.95 4.95 3.71 5.18 

20 4 avg 3.68 2.44 2.6 1.97 2.16 1.57 1.79 
    max 6.55 3.92 4.62 3.92 3.92 2.81 3.3 

25 5 avg 3.38 3.12 2.62 2.5 2.48 2.16 2.47 
    max 5.26 4.68 3.95 3.95 3.95 3.26 3.95 

30 6 avg 4.62 3.57 2.91 2.97 2.75 2.62 2.83 
    max 5.96 4.72 4.09 4.39 3.88 4.06 3.52 
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Figure 7.22 Maximum error bounds of solutions obtained from the DR heuristic and 
improvement algorithms for the stochastic case with minor ordering and stopover 
costs.   
 
 
 
 
 

Size         Error bound (%)       
n m   AII OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

15 3 avg 6.86 3.84 2.75 2.25 2.73 1.65 1.92 
    max 11.56 9.11 5.81 4.55 5.81 3.73 4.93 

20 4 avg 6.32 4.14 1.81 4.14 1.72 1.99 2.2 
    max 8.82 7.29 4.22 7.29 4.22 4.16 7.58 

25 5 avg 8.4 5.17 2.75 2.75 2.51 2.84 3.09 
    max 10.81 7.16 5.03 4.51 5.03 3.86 8.4 

30 6 avg 9.16 5.15 3.35 2.82 3.16 2.99 3.41 
    max 10.43 6.2 4.16 3.88 3.76 4.49 5.57 

 
Table 7.19 Error bounds of solutions obtained from the AII heuristic and 
improvement algorithms for the stochastic case with minor ordering and stopover 
costs.   
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Figure 7.23 Average error bounds of solutions obtained from the AII heuristic and 
improvement algorithms for the stochastic case with minor ordering and stopover 
costs.   
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Figure 7.24 Maximum error bounds of solutions obtained from the AII heuristic and 
improvement algorithms for the stochastic case with minor ordering and stopover 
costs.   
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 The average computation times corresponding to the tests on the stochastic 

problems that the minor ordering and stopover costs are included are given in Tables 

7.20-7.21. It appears that the average computation time for all heuristics is still small, 

with less than 0.2 second for all cases. However, for this model, finding the lower 

bound by the column generation approach takes longer time than in the deterministic 

model and the stochastic model without these costs included. 
 
 

Size       Average computational time (sec)     

n m LB DR OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

15 3 36.9 0.0126 0.0016 0.0156 0.014 0.022 0.0116 0.0078 

20 4 254.7 0.0187 0.0031 0.0171 0.0156 0.0202 0.0485 0.05577 

25 5 1579.2 0.0141 0.0063 0.0158 0.0233 0.0173 0.0398 0.0095 

30 6 16258.2 0.0251 0.0046 0.0328 0.0203 0.0376 0.0905 0.0124 

 
Table 7.20 Average computational time for the column generation method (LB), the 
DR heuristic and the improvement algorithms for the stochastic case with minor 
ordering and stopover costs. 
 
 
 

Size       Average computational time (sec)     

n m LB AII OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

15 3 36.9 0.0158 0.0359 0 0.0374 0 0.0176 0.0121 

20 4 254.7 0.0127 0 0.0093 0.0062 0.0109 0.0391 0.0374 

25 5 1579.2 0.0591 0 0.0032 0.0015 0.0032 0.0624 0.0579 

30 6 16258.2 0.0547 0.0048 0.0047 0.0108 0.0063 0.1515 0.1124 

 
Table 7.21 Average computational time for the column generation method (LB), the 
AII heuristic and the improvement algorithms for the stochastic case with minor 
ordering and stopover costs. 
 

7.3.3 Sensitivity analysis 

 In the sensitivity analysis, only the stochastic model with the minor ordering 

and stopover costs included is considered. The 30-item instances are used as a base 

case. In addition to changing the vehicle capacityC , the maximum number of trips 

per vehicle F  and the fixed costs K  as in the deterministic case, the impact of 
varying the service level p and the standard deviation jσ of demands for item j  on 

the performance of the proposed heuristics and improvement algorithms is also 

investigated. The service level and the percent deviation of demands for the standard 
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deviation have been varied from 0.90 to 0.975 and 10% to 30% respectively. The DR 

heuristic and all the improvement algorithms have been chosen for conducting the 

sensitivity analysis. 

 

 The results in Table 7.22 and Figures 7.25-7.26 reveal that varying the service 

level has small impact on the performance of all the heuristics. The error bound of the 

solution obtained from the heuristics slightly decreases when the service level 

increases. Based on the results in Table 7.23 and Figures 7.27-7.28, it is implied that 

increasing the standard deviation of demand seems to decrease the gap between the 

lower bound and the solution obtained from the heuristics. It may be said that the 

proposed heuristics and improvement algorithms will perform better in a situation that 

demand uncertainty is high. 

 

 The results in Tables 7.24-7.26 and Figures 7.29-7.34 indicate that the gap 

between the lower bound and the solution obtained from the DR heuristic and 

improvement algorithms decreases as the vehicle capacity, maximum number of trips 

per time unit, or fixed transportation cost decreases. These results are the same as the 

ones in the deterministic model. It can be observed further that the changes of the 

maximum number of trips allowed and the vehicle capacity have less impact on the 

error bound than the changes of the fixed cost K  does. In addition, the I-VLSN 

approach is outperformed by the OSM-SE, SE-OSM and S-VLSN algorithms as the 

fixed cost K  decreases. 
 
 

service       

Error 
bound 

(%)         
level 
p     DR OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

0.9 avg 5.15 3.84 3.46 3.11 3.19 2.52 2.81 
  max 6.47 5.40 4.81 4.81 4.67 4.35 3.69 

0.95 avg 4.86 3.52 3.32 3.08 3.04 2.58 2.83 
  max 6.21 5.15 4.63 4.63 4.48 4.22 3.62 

0.975 avg 4.62 3.57 2.91 2.97 2.75 2.62 2.83 

  max 5.96 4.72 4.09 4.39 3.88 4.06 3.52 

 
Table 7.22 Error bounds for the stochastic case with minor ordering and stopover 
costs when the service level p is varied. 
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        Figure 7.25 Average error bounds for the stochastic case with minor ordering     
        and stopover costs when the service level p  is varied. 
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        Figure 7.26 Maximum error bounds for the stochastic case with minor ordering     
        and stopover costs when the service level p  is varied. 
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% of demand      

Error 
bound 

(%)         
for standard 

deviation  DR OSM SE 
OSM-

SE 
SE-

OSM 
I-

VLSN 
S-

VLSN 

10 avg 5.38 3.95 3.11 3.28 2.83 2.81 3.03 

  max 6.61 5.59 4.98 4.98 4.10 4.44 4.08 

20 avg 4.62 3.57 2.91 2.97 2.75 2.62 2.83 

  max 5.96 4.72 4.09 4.39 3.88 4.06 3.52 

30 avg 3.96 3.03 2.62 2.54 2.38 2.28 2.66 

  max 5.17 4.13 3.68 3.47 3.46 3.67 4.51 

 
Table 7.23 Error bounds for the stochastic case with minor ordering and stopover 
costs when the standard deviation is varied. 
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         Figure 7.27 Average error bounds for the stochastic case with minor ordering   
         and stopover costs when the standard deviation is varied. 
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         Figure 7.28 Maximum error bounds for the stochastic case with minor ordering   
         and stopover costs when the standard deviation is varied. 
 
 
 
 
 
 

C m       

Error 
bound 

(%)         

      DR OSM SE OSM-SE SE-OSM I-VLSN S-VLSN 

100 9 avg 3.48 2.55 2.64 2.13 2.21 1.97 2.10 

    max 5.25 3.41 4.55 3.05 2.97 2.57 2.84 

150 6 avg 4.62 3.57 2.91 2.97 2.75 2.62 2.83 

    max 5.96 4.72 4.09 4.39 3.88 4.06 3.52 

200 5 avg 3.90 3.46 2.80 2.92 2.64 2.26 2.66 

    max 6.49 5.59 5.14 5.14 5.14 3.29 4.25 

 
Table 7.24 Error bounds for the stochastic case with minor ordering and stopover 
costs when the vehicle capacity C is varied. 
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         Figure 7.29 Average error bounds for the stochastic case with minor ordering        
         and stopover costs when the vehicle capacity C is varied. 
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         Figure 7.30 Maximum error bounds for the stochastic case with minor ordering  
         and stopover costs when the vehicle capacity C is varied. 
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F m       

Error 
bound 

(%)         

      DR OSM SE 
OSM-

SE 
SE-

OSM I-VLSN 
S-

VLSN 
8 8 avg 3.32 2.59 2.46 2.21 2.11 2.36 2.25 
    max 4.54 3.56 3.21 3.21 3.06 3.60 3.52 

10 6 avg 4.62 3.57 2.91 2.97 2.75 2.62 2.83 
    max 5.96 4.72 4.09 4.39 3.88 4.06 3.52 

12 5 avg 4.19 3.52 3.03 2.75 2.76 2.29 2.49 
    max 5.05 4.72 3.86 3.79 3.63 3.47 2.82 

 
Table 7.25 Error bounds for the stochastic case with minor ordering and stopover 
costs when the maximum number of trips allowed F is varied. 
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            Figure 7.31 Average error bounds for the stochastic case with minor ordering     
            and stopover costs when the maximum number of trips allowed F is varied. 
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            Figure 7.32 Maximum error bounds for the stochastic case with minor  
            ordering and stopover costs when the maximum number of trips allowed F is    
            varied. 
 
 
 
 
 
 

K       

Error 
bound 

(%)         

    DR OSM SE 
OSM-

SE 
SE-

OSM 
I-

VLSN 
S-

VLSN 
0 avg 2.25 1.32 0.97 0.77 0.71 1.34 0.57 
  max 3.35 2.23 1.49 1.48 1.39 1.93 1.53 

20 avg 3.26 2.25 2.25 2.07 1.85 1.97 1.64 
  max 4.29 3.17 3.32 2.47 2.39 3.50 2.24 

50 avg 4.62 3.57 2.91 2.97 2.75 2.62 2.83 
  max 5.96 4.72 4.09 4.39 3.88 4.06 3.52 

100 avg 5.26 4.24 3.10 3.16 3.07 2.31 2.93 
  max 6.47 5.66 4.65 4.65 4.65 4.02 4.04 

 
Table 7.26 Error bounds for the stochastic case with minor ordering and stopover 
costs when the fixed costs K is varied. 
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      Figure 7.33 Average error bounds for the stochastic case with minor ordering and   
      stopover costs when the fixed costs K is varied. 
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      Figure 7.34 Maximum error bounds for the stochastic case with minor ordering   
      and stopover costs when the fixed costs K is varied. 
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CHAPTER 8 
 

CONCLUSION AND FUTURE RESEARCH 
 

8.1 Conclusion 
 In this research, the integration of the inventory replenishment and 

transportation decisions for an inbound commodity collection system with one 

warehouse, multiple suppliers, and multiple items has been studied. In this system, a 

fleet of capacitated vehicles are dispatched from the central warehouse to collect a set 

of items at suppliers’ locations and then return to the central warehouse. Each vehicle 

also faces a frequency constraint. The problems in both deterministic and stochastic 

settings are considered. For each problem, a mathematical formulation model has 

been developed. 

 

 In the deterministic model, the central warehouse faces constant and 

deterministic demands for its items. It is assumed that the items are jointly replenished 

according to an economic order quantity policy. In order to find the optimal operating 

parameters for this assumed policy, a set partitioning formulation for the problem is 

developed and a column generation approach that can be used to obtain a lower bound 

on the objective function value is proposed. In order to solve the small size instances, 

a branch-and-price algorithm is also developed. Since the branch-and-price algorithm 

is not scalable, i.e., the solution time requirement increases very quickly as the size of 

the instance increases, constructive as well as improving heuristics that efficiently 

find near-optimal solutions for the problems are proposed. 

 

 The computational analysis of this model indicates that the constructive 

heuristics used in conjunction with one of the proposed VLSN algorithms, the I-

VLSN, can find near-optimal solutions very efficiently. The sensitivity analysis has 

shown that this behavior is robust under changes in various key problem parameters. 

In addition, the OSM-SE and SE-OSM algorithms that are based on the one and two 

exchange heuristics for the VRP also perform reasonably well. For smaller instances 

or with some more time investment, the column generation algorithm may be used to 
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provide a bound on the deviation of the cost of the heuristic solution from the optimal 

cost. 

 

 In the stochastic model, it is assumed that demands at the central warehouse 

from outside retailers are assumed to be independent and identically distributed. A 

periodic review fixed order quantity policy is adopted to ensure that the vehicle 

capacity is not exceeded for each collection. In addition to inventory holding, joint 

fixed ordering, vehicle dispatching and routing costs that are incorporated in the 

deterministic model, the minor ordering and stopover costs are also taken into account 

to make the problem more realistic. The mathematical model is formulated by adding 

to the deterministic model the inventory holding cost due to the safety stock for a 

specific service level. The constructive heuristics and the improvement algorithms as 

well as the branch-and-price algorithm developed for the deterministic model can still 

be employed to solve the problem in the stochastic setting with satisfactory 

performance even when one of problem parameters has been varied. 

 

 The conclusion of this research is depicted in Figures 8.1-8.2 
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                                    Figure 8.1 Research Conclusion 

-Constant and deterministic
demand. 
-Assume no minor ordering
and stopover costs. 
-Formulate a standard EOQ-
type cost function and a set
partitioning problem. 

-Independent and identically
distributed demand (Normal
distribution). 
-Add safety stock based on
service level. 
-Add inventory holding cost
due to safety stock to the EOQ-
type cost function.

Problem 

-An inbound material collection system. 
-A central warehouse, multiple suppliers and
non-identical multiple items. 
-Demand from outside retailers. 
-A fleet of capacitated vehicles with frequency
constraint.  
-A periodic review with fixed order quantity
policy (EOQ). 
-Inventory holding, joint ordering, minor
ordering, stopover, vehicle dispatching and
routing costs. 

Deterministic 
Model 

Stochastic 
Model

Solution 
Approaches
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                                    Figure 8.2 Research Conclusion (continued) 

Solution 
Approaches 

Exact Solution 
Method  

Heuristics 

Branch-and-Price 
algorithm 

Constructive 
Heuristics 

-Generate an initial feasible
solution. 
-The DR heuristic considers a
distance ratio for partitioning
items into groups. 
-The AII heuristic is based on
the arbitrary insertion heuristic
for the TSP.  
-The TSP is solved using the
arbitrary insertion heuristic and
the 2-opt exchange heuristic. 

Improvement 
Methods 

-Improve an initial feasible
solution. 
-Based on 1-and-2 exchange
heuristics. 
-OSM, SE, OSM-SE, SE-OSM,
VLSN (I-VLSN and S-VLSN).
-OSM moves a group of items
of a common supplier from one
vehicle to another. 
-SE exchanges a group of items
of a common supplier between
two vehicles. 
-The VLSN algorithms explore
very large neighborhoods
implicitly. 
-The I-VLSN method considers
simultaneous moves of an item
from one vehicle to another in a
subset of vehicles.  
-The S-VLSN algorithm
considers simultaneous moves
of a group of items from one
vehicle to another in a subset of
vehicles.  

-Formulate an IP problem. 
-Iteratively solve the LP-
relaxation using column
generation. 
-In each iteration, use a branch-
and-bound algorithm to solve a
pricing problem (sub-problem)
in order to verify that the
current solution is optimal, or
identify subsets that may
improve the objective function. 
-If the optimal solution is
fractional, transform subset
selection variables into
assignment variables, branch on
a fractional assignment variable
and solve the LP-relaxation
again. 

Computational 
Experiments 

-The branch-and-price algorithm is very time consuming. 
-The heuristics perform efficiently, especially the DR followed by 
the I-VLSN, for both deterministic and stochastic cases. 
-The DR heuristic outperforms the AII heuristic. 
-The I-VLSN performs better than any other improvement methods.
-The heuristics perform reasonably well under various parameters. 
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8.2 Future Research 
 This research studies an inbound commodity collection system which is only 

one segment of the supply chain. A multi-echelon system can be focused where a 

manager of the central warehouse sends a fleet of vehicles to collect items at suppliers 

and also dispatches the same fleet of vehicles to distribute items stored at the central 

warehouse to retailers. In this case, each segment could be optimized separately first 

and then linked together to achieve a whole minimum costs.  

 

 Another interesting scenario is that the distribution of items to retailers is 

instantly followed by the item collection. That is after a vehicle sent from the central 

warehouse has finished distributing items to a set of retailers, it visits a set of 

suppliers for item collection and then returns to the central warehouse where the items 

are stored. In this case, the replenishment at the central warehouse and at retailers 

could be assumed to occur simultaneously.  
 

 The models studied in this research may be extended to the case where the 

central warehouse and suppliers belong to the same organization. Therefore, inventory 

holding costs incurred at each supplier must be considered as well. In the case where 

the vehicle capacity is very large, compared to the aggregate demand rate of all items, 

it would be interesting to study if the optimal replenishment strategy is to collect all 

the items by using a single vehicle under the policy studied. 

 

 For the problem in the stochastic setting, a periodic review fixed order 

quantity policy is selected for inventory control. This policy has the advantage that the 

quantities of items collected at suppliers are deterministic so the order quantities of 

each subset of items can be determined in such a way that the vehicle capacity 

constraint is not violated. Alternatively, the ( Q , r ,T ) policy could be considered. 

This is a periodic review with flexible order quantity policy. Q  and r of items may 

not be the same. In this policy, for each subset of items the inventory of each item in 

the subset is reviewed every T unit time. If its inventory level is below the re-order 
point r , the replenishment quantity is Q . In the other case, if its inventory level is at 

or above the re-order point r , say I , the replenishment quantity is ( Q + r )- I .To 



 
 

 

109

satisfy the vehicle capacity constraint, the sum of Q  for all items in the subset must 

not be more than the vehicle capacity. As a result, under this policy the total 

replenishment quantities of all items in the subsets in any period will never exceed the 

vehicle capacity. The problem is to determine Q , r  and T  of each item as well as the 

vehicle route that minimize the average integrated inventory-transportation costs.    

 

 In the real world, it is unlikely that the vehicle can visit a set of suppliers any 

time. It may be more realistic to include a time window constraint in the models 

studied in this research. A constraint that limits the total distance traveled by a vehicle 

could be added to the model. This constraint reflects a maximum amount of time that 

the vehicle can travel. In addition, asymmetric TSP may be considered. This will 

affect the solution to the TSP.  Moreover, the vehicles may have different sizes of 

capacity. With these changes, the problem can still be formulated as a set partitioning 

problem. The constructive heuristic and improvement algorithms may need some 

modification to deal with a more realistic problem. 

 

 As for the improvement algorithms, one of meta-heuristics could be proposed 

to solve the problem. An interesting one is a greedy randomized adaptive search 

procedure (GRASP) [see Resende(1998)]. GRASP is an iterative process that has 

been applied to solve a wide range of combinatorial optimization problems. This 

meta-heuristic consists of two phases, a construction phase and a local search phase. 

The I-VLSN could be incorporated in GRASP in the local search phase. The solution 

that is obtained from this combined algorithm should be better than the one obtained 

from the I-VLSN alone. However, it would require more computational effort.  
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APPENDIX A 
 

Proof of the Global Optimum  

 Consider the total cost function in the range of 0 to the cost at the inflection 

point. From (6.4), 

QCBQ
Q
AQf ++=)(  

 

After taking the first and second derivatives, dQQdf /)( and dQQfd /)(2
 

respectively, of )(Qf , the result is 
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It is needed to prove that the term )(// Qf  is greater than zero at *Q that makes 
)(/ Qf = 0.  From (A.1) and at optimal *Q ,   
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 The term )(// Qf  is definitely greater than zero because A, B and *Q  all are 

positive. Therefore, the total integrated cost )(Qf is convex in the range of 0 to the 

cost at the inflection point. 

 

 Now the question is “Will the value of )(Qf never decrease for every Q  that 

is greater than *Q  ? ” To answer this question, it is necessary to prove that after the 

inflection point where Q =
/Q , the slope of )(Qf for all Q >

/Q  is positive. That is 
)(/ Qf is greater than zero for all Q >

/Q  and the local optimum is also the global 

optimum. 

 

 At the inflection point where Q =
/Q , the second derivative )(// Qf becomes 

zero. Therefore, the equation (A.2) is set to zero and 
/Q  can be solved at the 

inflection point in term of A and C. 
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 To prove ))1(( // Qf α+ >0 for all α  >0, from equation (A.1), replace Q  by  
/)1( Qα+  and substitute 

/Q  to obtain 
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 This means that the slope of the function )(Qf  for all /QQ >  after the 

inflection point is always positive. It can be concluded that the local optima is also the 

global optima.   

 

 
 
 
 
 
 
 



 
 

 

121

APPENDIX B 
 

Replenishment Quantity Comparison with EOQ for the stochastic model 

 In this part, the order quantity obtained from the stochastic model is compared 

with the EOQ. For the simple EOQ model, the total cost function is as follows. 

 

                                                 )( BQ
Q
AQf +=                 (C.1) 

 

where )()( SDSLA =  and 
2

)(ShB =  

Because the EOQ model considers deterministic demands, there is no cost related to 

the safety stock in term of C. 

 

 To compare the optimal order quantity with the EOQ, the slope of the total 
cost function at Q  equal to the EOQ will be determined. If the slope at that point is 

negative, the optimal order quantity obtained from the proposed model is larger than 

the EOQ. If the slope is positive, the optimal order quantity is smaller than the EOQ. 

In the case that the slope is equal to zero, it can be concluded that the optimal order 

quantity is equal to the EOQ. 

 

 From (C.1), take the first derivative, set it equal to zero and solve for the 

optimal order quantity EOQ. That is 
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 The slope of the total cost function at Q  equal to EOQ is positive because A, 

B and C are all non-negative. This means that from Figure 6.1 the EOQ is on the right 

side of the optimal order quantity obtained from the model studied. Therefore, it is 

concluded that the optimal order quantity from the stochastic model studied is always 

smaller than the EOQ.  
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