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CHAPTER 1
INTRODUCTION

1.1 General Background

A supply chain is a network of facilities that performs a series of activities:
procuring raw material, transforming raw material into products or services, stocking
finished goods and distributing products to customers [Lee and Billington, 1993].
From these mentioned activities, it is clearly seen that inventory control and
transportation planning are important aspects of the supply chain management. In
some industries such as the food industry, the logistics cost is a huge portion of the
cost of products. Therefore, there are more opportunities to reduce the logistics cost
than to decrease the production cost [Henkoff , 1994 and Nahmias, 1997].

Due to different sources of uncertainties existing aong the supply chain,
inventories are always kept to satisfy unexpected demands. When the inventory level
drops, a replenishment may be needed in order to raise the inventory back to the
desired level. Overstock inventories sometimes would be unprofitable rather than
advantageous to an organization. Therefore, efficiency in inventory control is
essential. There are many inventory models that can be adopted for efficient inventory
management depending on the characteristics of the system. For instance, if the
demand rate is constant, the economic order quantity (EOQ) model is appropriate in
some degree. However; the fundamental purpose of al replenishment control systems
isto resolve the following three issues [Silver, Pyke and Reterson, 1998]:

How often should theinventory status be determined?
When should a replenishment order be placed?

How large should the replenishment order be?

In a distribution process, commodity movement from one place to another
involves transportation. For example, a warehouse sends a truck to collect raw
materials at a supplier and a plant dispatches a fleet of vehicles to distribute goods to
geographically dispersed retailers, etc. Costs of distributing products or collecting raw



materials are also considered as a mgjor component of the logistics costs. For that
reason, one of the main issues in transportation planning is to design optimal delivery
or collection routes for the vehicle subject to restrictions. This problem is known as a
vehicle routing problem (VRP) which is an extension of the traveling salesman
problem (TSP). For a review of TSP and VRP exact and heuristic agorithms, see
Laporte (1992a and 1992b).

Inventory control and transportation planning of an organization are
traditionally managed by different departments each of which has its own goal.
Consequently, inventory and transportation costs are minimized separately by each
department. In genera, there is a trade off between the inventory cost and the
transportation cost in the logistics system. When attempting to decrease one cost, the
other will normally increase. For instance, in an inbound material collection scenario
using a ssmple EOQ inventory policy where a fixed ordering cost could be viewed as
a fixed transportation cost, smaller order quantity leads to a lower inventory holding
cost but a vehicle needs to be dispatched more frequently to collect materials which
generates a higher transportation cost. However, the total inventory and transportation
cost in the system can be greatly reduced if inventory control and transportation
planning are closely coordinated and decision making in both aspects is cooperated in

order to determine the best trade-off between both costs.

In a multi-item inventory system, it is practical to combine groups of itemsin
a single replenishment order to accomplish substantial cost savings [Peterson and
Silver ,1979] due to the sharing of fixed replenishment costs. When these
replenishment costs contain a transportation cost component, this cost sharing is often
a consequence of the ability to share truck and loading equipment between the items.
In addition, the design of avehicle route for visiting a group of retailers (in the case of
a distribution system) or a group of suppliers (in the case of a collection system) may
have a significant effect on the magnitude of the replenishment costs. Hence, it is
desirable to design an efficient joint replenishment strategy that coordinates both

inventory control and transportation planning.



1.2 Statement of the Problem

This research involves an inbound commodity collection system that
comprises a central warehouse with unlimited space for stocking inventories and
geographically dispersed suppliers. Each supplier produces one or more non-identical
items. The items face demands from outside retailers. When a manager of the central
warehouse decides to replenish the inventories, a fleet of identical vehicles with
limited capacity are sent to visit a set of dispersed suppliers for item collection. The
frequency of dispatching each vehicle is limited due to the time required for
maintaining vehicles and for other responsibilities, and the limited material handling
capacity. When the item collection is completed, the vehicle returns to the centra

warehouse where the items are unloaded and stored.

The problem is to partition items into a number of subsets each of which
consists of al different items so as to minimize the total cost per unit time of the
integrated inventory-transportation system. For each item, the replenishment quantity
and the replenishment interval, must be determined along with the efficient route for
the vehicle. See Figure 1.1 for an illustration of the problem. Suppose that there are
two groups of products according to a grouping strategy. Group one consists of item
11, 12, 13 and I5 while Group two composes of item 14, 16 and |7. When the
replenishment of items in Group one is needed, a vehicle is dispatched to visit in
order, according to the shortest distance, supplier S3 for collecting item 15, supplier
S2 for item 12 and 13 and supplier S1 for item 11.-After the vehicle completes its
collection duty, it returns to the central warehouse. The replenishment of items in

Group two may not occur at the same time as Group one’s.



Central warehouse

Figure 1.1 Inventory-routing system with multiple items, multiple suppliers and a

A S5

central warehouse

1.3 Resear ch Objective

The objective of this research is to develop mathematical programming
models of the integrated inventory-vehicle routing problem, and propose an exact
solution approach several grouping heuristics and improvement algorithms to
determine an integrated multi-item replenishment strategy that coordinates inventory
control and transportation planning in order to satisfy demands from outside retailers

at the minimum average total inventory and transportation costs.



1.4 Resear ch Scope

An integrated inventory-transportation system is studied in this research. This
is an inbound commodity collection system that consists of a central warehouse and
geographically dispersed multiple suppliers. Each supplier manufactures one or more
non-identical items. Transshipment of items between suppliersis not allowed. That is
each supplier cannot buy or stock any items produced by other suppliers. The central
warehouse has its own fleet of identical capacitated vehicles and an unlimited area for
stocking items that face demands from outside retailers. There is a frequency
constraint on the number of vehicle dispatching in a given period because of time
required for vehicle maintenance and for its other responsibilities and limited material
handling capacity at the central warehouse. It is assumed further that each vehicle can
be dispatched for item collection with an equal limited frequency. Moreover, the
vehicle capacity is assumed to be comparatively larger than accumulated demands of
any item in the replenishment interval. This assumption is made to avoid multiple

visits for collecting the same product at a particular supplier in one period.

When the inventory replenishment of a particular group of itemsis needed, the
warehouse dispatches a vehicle to collect that group of items from the suppliers. No
time window for item collection is considered in the system because suppliers are
assumed to operate 24 hours a day and there is no traffic problem. That is the vehicle
can pick up the items at any time when it arrives at the location of each supplier. After
visiting the suppliers for item collection as planned, the vehicle is driven back to the
central warehouse. For each item, lead time is assumed to be fixed for any
replenishment and the replenishment interval of any item is assumed to be longer than
its lead time. When stock-out situation occurs, the manager of the central warehouse
will not expedite any ordering or transporting processes. The model is treated from
the viewpoint of the central warehouse and it is assumed that the central warehouse
and the suppliers belong to different organizations so any charges to the suppliers

from holding stock will not be considered.



The costs in the system are composed of two major costs: inventory costs and
transportation costs. On the aspect of inventory costs, there are a joint fixed ordering
cost, an item dependent minor ordering cost and an inventory holding cost at the
central warehouse. The transportation costs include a fixed dispatching cost, a vehicle
routing cost and a fixed stopover cost which is specific for each supplier. It is
assumed that every supplier has responsibility of getting the items ready to be picked
up at any time so that no shortage or delay occurs for each item collection at any
supplier. In addition, the holding cost incurred when the products are in the vehicle is

assumed to be very small and can be neglected.

Both deterministic and stochastic demands are studied in separate cases. At
first, algorithms are developed for the deterministic problem and then they are applied
to solve the stochastic problem. In the deterministic caseg, it is assumed that each item
faces a constant and deterministic demand from outside retailers. As a result, an
economic order quantity (EOQ) inventory policy can be adopted at the centra
warehouse which leads to a joint replenishment of items. In the stochastic case,
demands from outside retailers are assumed to be independent, and identically and
normally distributed due to a standard periodic review order-up-to level inventory
policy adopted by these retailers. However, the stochastic problem is restricted to the
case where the average demand of each item is approximately constant with time. The
manager of the central warehouse chooses a periodic review fixed order quantity
policy for inventory control and the safety stock is considered to prevent the stock-out

situation under a given service level determined by management.

All data used in this research ( locations of suppliers, demand rates, holding
cost rates, minor ordering costs and stopover costs) are randomly generated from

uniform distribution.

1.5 Research Contribution
There are various models of integrated inventory-transportation

systems which have been studied for the past 20 years. To develop a model,



characteristics of the system must be considered. The system may involve a single
item or multiple items. A distribution of demand for an item may be deterministic or
stochastic. The number of destinations could be one or more. Unsatisfied demand may
be backlogged or completely lost. Lead time of each replenishment may be zero,
constant or variable. Vehicle capacity may be limited or unlimited. Transportation
cost can be fixed or variable or both. A planning horizon may be single, multiple or

infinite.

Most researches on integrated inventory-transportation systems deal with a
single item multi-retailer deterministic model or simplified ordering cost and
transportation cost structures. For example, work of Daganzo, Barns, Hall and
Blumenfeld (1985), Dror, Ball and Golden (1985), Chien, Balakrishan and Wong
(1989), Gallago and Simchi-Levi (1990), Anily and Federgruen (1990& 1993), Anily
(1994) and Chan and Simchi-L evi (1998).

For the case of stochastic demands for a single item, Federgruen and Zipkin
(1984) study a single period problem but no ordering cost is included in the cost
structure. Chaovalitwongse (2000) considers a single period distribution system with
multiple capacitated suppliers. For the transportation problem, the author has linear
and fixed charge costs but does not capture a vehicle routing cost. Cetinkanu and Lee
(2000) deal with Vender-Managed Inventory (VMI) systems. They assume Poisson

demands and zero lead time. Again no vehicle routing problem is considered.

Viswanathan and Mathur (1997) study a multi-item multi-retailer distribution
system with the case of deterministic demands for several products a multiple
retailers. However, they assume that demands for items are constant and deterministic.
Buffa and Munn (1990) analyze a multi-item single retailer stochastic model. They
propose a grouping heuristic which is partly based on holding and shipping costs and

no vehicle routing cost is considered due to a single destination.



This research is the most similar to that of W.Qu, Bookbinder and lyogun
(1999). They study an integrated inventory-transportation system for multiple items
with stochastic demands. They integrate a modified periodic review inventory policy
and transportation vehicle routing into one mathematical model. However, they

simplify the integrated problem by assuming that a vehicle has unlimited capacity.

An integrated inventory-transportation system considered involves multiple
items, a single warehouse and multiple suppliers. Both deterministic and stochastic
demands are studied. Furthermore, a vehicle routing problem is also presented in the
model which is made more realistic by adding vehicle capacity and frequency
constraints. A periodic review inventory policy with a fixed order quantity, which is
modified from a simple EOQ model, is adopted for both deterministic and stochastic
cases. The EOQ model is studied by Daganzo et al. (1985), Gallago and Simchi-Levi
(1990), Anily and Federgruen (1990), Anily and Federgruen (1993) and Anily (1994)
in the integrated inventory-transportation system in which there is only a single item.
Cost structures which include a holding cost, a major ordering cost, a minor ordering
cost, a fixed dispatching cost, a stopover cost and a variable routing cost are

realistically captured.

In this research, a branch-and-price agorithm is developed to determine the
exact solution to the problem. Several greedy constructive heuristics and local search
methods are proposed, and a very large-scale neighborhood (VL SN) search algorithm
[see Ahuja et a. (2000) and Ahuja, Ergun, Orlin and Punnen (2002)] is developed to
obtain near-optimal solutions for the problem. A column generation approach is
applied to construct on the total costs a lower bound which is used to measure the
effectiveness of proposed algorithms which can be utilized to solve both deterministic
and stochastic problems. The computational results indicate that the proposed
algorithms perform satisfactorily for both deterministic and stochastic cases. A
developed model of the integrated inventory-transportation system can be applied to

any organization that has similar environment to this problem.



1.6 Resear ch M ethodology

At first, the integrated inventory-transportation system in the deterministic
settings is studied. An exact solution approach and heuristics to find a near-optimal
solution are developed. These methods are further applied to solve the stochastic
problem. Figure 1.2 shows the research methodology. This research is conducted as

the following steps.

1.6.1. Model formulation

Once getting a new idea from literature survey, an integrated inventory-
transportation problem is set up and then a single mathematical model in deterministic
settings is devel oped. The stochastic model is devel oped after the solution approaches
to the deterministic problem are obtained. Prior to formulating the model, decision
variables which are the order quantity Q and the replenishment interval T as well as

the route traveled, parameters, constraints and assumptions of the model are defined.

1.6.2. Solution approach

Firstly, a branch-and-price algorithm is developed and used to solve the
inventory-routing problem to optimality. To determine near-optimal solutions, several
greedy constructive heuristics are proposed to separate all the items into groups. Each
group is replenished independently. Then one or two of neighborhood search methods
(One Supplier Move, Supplier Exchange and VLSN) are employed to solve the
integrated inventory-transportation -problem . for. -the —orderquantity and the
replenishment interval that minimize the total cost of the system. The TSP tour is
solved heuristically by using the Arbitrary Insertion-heuristic [Rosenkrantz et al.
(2977)] and then improved by applying the 2-opt exchange heuristic[Croes (1958),
Lin (1965) and Lin and Kernighan (1973)].
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1.6.3. Perfor mance measur ement of heuristics

The solutions obtained from the proposed heuristics are merely near optimal.
Therefore, how well the proposed heuristics perform is not known. To measure the
performance of the heuristics, a lower bound is constructed by employing a column

generation approach and it is compared with the solutions obtained from the heuristics.

1.6.4. Sensitivity analysis

To analyze how model parameters effect the solution, the vehicle capacity, the
maximum number of trips allowed and the fixed dispaiching cost are varied. All the
problem instances are randomly generated from a uniform distribution. In the
stochastic casg, it is assumed demands are normally distributed. Computer codes are

written in C++ along with utilization of the CPLEX 8.1 solver.

1.7 Thesis Structure

The outline of this thesis is as follows. The relevant literature is reviewed in
Chapter 2. In Chapter 3, the integrated inventory and transportation model in the
deterministic settings is formulated under the policy studied as a set partitioning
problem. Based on the model formulated, a column generation and a branch-and-price
algorithm are developed in Chapter 4, paying particular attention to the pricing
subproblem, which is a very challenging optimization problem in its own right.
Greedy construction heuristics, local search methods and the VLSN algorithms are
proposed and developed in Chapter 5.

In Chapter 6, the integrated inventory and transportation  model in the
stochastic settings is studied and analyzed. Computational experiments on both
deterministic and stochastic problems are conducted in Chapter 7. The sensitivity
analysis on some parametersis also carried out in this chapter. Finally, thisresearch is

summarized and future research directions are provided in Chapter 8.
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CHAPTER 2
LITERATURE REVIEW

Firstly the integrated inventory-transportation systems are discussed focusing
on characteristics of the systems, cost structures and model formation. The literature
review of the integrated inventory-transportation systems is classified by the number
of items. single and multiple. Secondly, the joint replenishment strategies are
reviewed with classification of a characteristic of demand: deterministic and
stochastic. In addition, grouping strategies for the multi-item joint replenishment and
the integrated inventory-transportation system are also examined. For the review of
integrated inventory-transportation deterministic models with both single item and

multi-item cases, see Bertazzi and Speranza (1999).

2.1 Integrated inventory-transportation systems
2.1.1 Singleitem cases

Inventory and transportation are two of the important elements in supply chain
management which has recently emerged as a maor and interesting topic in
operations research and operations management. See Thomas and Griffin (1996) for
review of coordinated supply chain management. In distribution systems, if inventory
control and transportation planning are closely coordinated, the total system cost can
be greatly reduced. The main interest in the past was to study inventory problems and
transportation problems . separately, without paying attention to-the entire system.
Until early 1980's, Federgruen and Zipkin (1984), to the best of our knowledge, are
the first to integrate the alocation and routing problems in asinglemodel. They study
the allocation of a scarce resource from a central depot to many retailers using a fleet
of capacitated vehicles and consider random demands in a single period model. The
problem is formulated as a nonlinear integer program. Interchange heuristics for the
deterministic vehicle routing problem are modified to solve the problem. They also
derive an exact algorithm for the problem using Benders decomposition method
which decomposes the main problem into one nonlinear inventory allocation

subproblem and a number of traveling salesman subproblems. With this approach,
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substantial cost saving can be achieved. The decomposition method presented by
Federgruen and Zipkin provides the basis for the solution algorithm to the model
developed by Qu et al (1999).

An anaytic approach for minimizing the distribution freight by capacitated
trucks from a supplier to many customers is developed by Burns, Hall, Blumenfeld
and Daganzo (1985) whose work is the first one to integrate transportation and
inventory costs explicitly in decison making over an infinite time horizon.
Nevertheless, their cost structure, opposed to our model, does not include ordering. In
their paper, two distribution strategies, direct shipping and peddling, are analyzed and
compared. The analysis for direct shipping is consistent with EOQ model. For
peddling, formulas derived require the spatial density for customers, rather than the
precise customer locations. The results show that the optimal shipment size for direct

shipping is the economic order quantity while the one for peddling isafull truck.

A direct shipping strategy is studied by Gallego and Simchi-Levi (1990) as
well. Their system includes a single warehouse, asingle item and multiple retailers. In
contrast to the proposed model here, demand is assumed to be constant with retailer

specific rate. They show the benefits of direct shipping.

With the assumption of a single commodity with deterministic demands in a
multi-period setting, Dror, Ball and Golden (1985) describe and computationally
compare two algorithms, the assignment routing approach and the modified routing
approach for a distribution system that consists of -——a centra depot-and multiple
customers who process a known capacity .and have a constant consumption rate. The
authors present two formulations of the problem, the vehicle assignment formulation
and the day assignment formulation. Cost structures include the routing cost and the
future costs associated with the inventory. The future costs are used for consideration
of assigning customers to a vehicle on a particular day in the vehicle assignment
problem and assigning customers to days in the day assignment problem. No

inventory costs are expressed in the models.
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Dror and Ball (1987) study the inventory routing problem similar to the one of
Dror, Ball and Golden (1985). Unlike the previous work, they formulate the problem
in short duration, not in an annual period. Single customer deterministic and
stochastic models are derived and then extended to the multi-customer problem. They
present a procedure for reducing the annual distribution problem to a single period
problem by including penalty costs within the single-period model that reflects the

long term effect of decisions made during that period.

One of interesting work under a single item deterministic demand model is
presented by Chien, Baakrishnan and Wong (1989). They develop an integrated
inventory allocation and vehicle routing model with the objective of maximizing
profit, unlike other models that have the objective of minimizing total costs. However,
they do not capture inventory ordering costs. The integrated problem is formulated as
a mixed integer program and then decomposed into two subproblems: the inventory
allocation subproblem and the customer assignment/vehicle utilization subproblem.
The authors use a Lagrangian relaxation approach and a heuristic method to generate

upper bounds and lower bounds respectively.

Anily and Federgruen (1990) consider single item distribution systems with
one depot and many geographically dispersed retailers who keep inventories. The
planning horizon is infinite. Unlike our model, no ordering cost is included in the cost
structure. In addition, the demand rate is constant and assumed to be integer multiples
of some base rate. The problem is studied within a specific class of replenishment
strategies in which there is a collection of regions covering al retailers, each of which
may belong to several regions and each region satisfies a faction of total demand.
When avehicle visits aretailer in a particular region, it must visit every retailer in that
region as well. This scheme is also adopted in our work. The authors apply the
Modified Circular Regional Partitioning Scheme to partition the set of demand points
and propose the Combined Routing and Replenishment Strategies Algorithm to

compute lower and upper bounds for total costs.
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Anily and Federgruen (1993) develop a two-echelon distribution system from
their previous work. The extension is that inventory can be kept at retailers as well as
at a central warehouse while other main assumptions are not changed. Earlier methods

are extended to manage this more complicated problem.

Anily (1994) also extends the work of Anily and Federgruen (1990) by
employing general holding cost rates. One different aspect from the previous work is
that the assignment of retailers to routes in the previous work is based merely on their
geographical location while this one is based on both the geographical location of
retailers and holding cost rates. An experiment study for both capacitated and
uncapacitated systemsiis presented to demonstrate the algorithm's efficiency.

Chan, Federgruen and Simchi-Levi (1998) investigate the asymptotic
effectiveness of the Zero Inventory Ordering and Fixed Partition Policies for a one
origin multi-destination single item network in an infinite planning horizon and a
deterministic setting. Vehicle capacity and frequency constraints are imposed. Only
holding cost with an identical rate for all retailersis captured in the inventory problem.
Computational results are given to show the effectiveness of the proposed strategy.
The proposed policy in this research bears some resemblance to the class of Fixed
Partition policies introduced by Bramel and Simchi-Levi (1995&1997) for an
inventory-routing problem in which a single item is distributed among retailers. Under
this policy, a group of retailers are partitioned into a number of regions each of which
is served separately and independently and when aretailer in aregion is visited by a
vehicle, every retailer in the same region is visited as well. Although such policies are
generally not optimal, they are impartant from a practical standpoint, as they are easy
to implement. In particular, they allow for efficient integration of severa business

functions.

Chan and Simchi-Levi (1998) study a three-level distribution system which
consists of a single outside vendor, a number of warehouses and multiple retailers.

They simplify the problem by considering a single item with a constant, retailer
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specific demand rate. Plus, only a holding cost is involved in the inventory cost
structure. An efficient algorithm for the integrated inventory control and vehicle
routing problem is proposed. They show that, in an effective strategy which
minimizes the asymptotic long run average cost, each warehouse receives fully loaded
trucks from the outside vendor but never holds of deliveries to the retailers and that

each retailer is served by exactly on warehouse.

One of the most recent works in the integrated inventory-transportation system
is presented by Chaovalitwongse (2000). The author analyzes a single-period
distribution system where multiple capacitated warehouses supply multiple retailers
with a single commodity. Like this research to some degree, demands are assumed to
be stochastic. Nevertheless, a vehicle routing is not incorporated in the model. The
transportation costs include linear and fixed charge costs. The linear transportation
cost model is solved by the Lagrange multiplier approach while the fixed charge cost
model is solved by the developed dynamic slope scaling procedure (DSSP) scenario-
based heuristic. The Lagrangian relaxation based DSSP heuristic that generates better

solutions is also proposed for the fixed charge cost model.

An interesting concept in supply chain management is that a supplier has
responsibility for managing inventories at retaillers by reviewing the retaler's
inventory levels and making decisions regarding the quantity and timing of resupply.
This is caled a Vendor-Managed -Inventory (VMI). system which is studied by
Cetinkaya and Lee (2000). They develop for the case of a single item with Poisson
demands an analytical model coordinating inventory and transportation decisions for a
VMI supplier who employs a special kind of (s, S) policy with s= 0 for inventory
replenishment. Zero lead time is assumed and no vehicle routing cost is considered in
the model.

2.1.2 Multi-item cases
Now the case of multiple items is discussed. The number of researches on

multi-item inventory-transportation systems is much smaller than the one in a single
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item case. Among those are Buffa and Munn (1990), Ben-Khedher and Y ano (1994),
Chanda and Fishr (1994), Viswanathan and Mathur (1997), Beertazzi and Speranza
(1999), Fumero and Vercellis (1999) and Qu, Bookbinder and Iyogun (1999).

One of the work which is most similar to this research belongs to Qu,
Bookbinder and lyogun (1999). In fact, the idea of this research is motivated by their
paper. Qu, Bookbinder and lyogun (1999) develop an integrated inventory and
transportation system for joint replenishment with a modified periodic policy in which
each replenishment period is an integer multiple of a base period. Like our problem in
some aspects, this is an inbound material-collection problem with a central warehouse
sending an uncapacitated vehicle to collect multiple items at geographically dispersed
suppliers in multiple periods and a stochastic setting. A heuristic decomposition
method is proposed to solve the problem by separating the model into two
subproblems namely conventional inventory and vehicle routing models. The
inventory subproblem is solved item by item while the transportation one is solved
period by period. A lower bound is aso constructed to test the effectiveness of the

heuristic which performs satisfactorily.

The problem studied here differs from the work of Qu, et a. (1999) in that a
periodic review inventory policy with a fixed order quantity is exploited instead of a
modified periodic policy with an order-up-to level. This alows a vehicle capacity
constraint to be included in the mathematical model. Another major difference is that
it is assumed that each vehicle has identical limited capacity. Moreover, a frequency

constraint is also encompassed in the model.

Under a modified periodic policy with an order-up-to level and unlimited
vehicle capacity, it is known that at the time of review, order must be placed to raise
the inventory up to the maximum level and a vehicle is dispatched to collect items no
matter what total order quantity is. In the case when the combined order quantity is
very small compared to the actual vehicle capacity, this policy does not seem to work

efficiently. In other words, when the inventory level of every item at the time of
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review is not much below the order-up-to level, it is likely that this replenishment
strategy will not lead to cost saving due to high transportation costs per unit
replenished. This policy can't be used in our problem because of the capacity
constraint incorporated in the model. That is it is not guaranteed that the total order

quantity of itemsin the group will not exceed the vehicle capacity.

The first multi-stage grouping algorithm for a stochastic model with both
inventory and transportation costs readlistically modeled is proposed by Buffa and
Munn (1990). Firstly, they rank items based on holding and shipping costs, then test if
additional grouping is economic and finally apply a grouping heuristic to form the
groups. They model transportation cost sensibly as a function of cycle time, shipping
distance and weight. In addition, |ead time is assumed to be dependent on transit time.
However, they simplify the problem by considering a single destination. Moreover, no
vehicle routing problem is included in the model. The total logistic cost of the groups
obtained by the proposed algorithm is compared with the minimum one determined

by a complete enumeration.

Ben-Khedher and Yano (1994) combine a bin-packing problem with a multi-
item joint replenishment problem. The system considered is composed of a single
supplier, an assembly facility and multiple items which face deterministic demands
and are packed into containers shipped by identical capacitated trucks. Opposed to
this research, they assume zero lead time and only a fixed cost proportiona to the
number of trucks shipped is included in the transportation cost structure. They
develop a heuristic solution procedure starting by relaxing container integrality
constraints. The solution to the relaxed problem is then modified by sequentialy

considering each item and optimally scheduling the fractional containers.

Viswanathan and Mathur (1997) integrate a vehicle routing problem and
inventory decisionsin a single warehouse multi-retailer multi-item distribution system
with deterministic demands. The cost structure of their model is similar to the one of

our proposed model. In addition to the holding cost, magjor and minor ordering costs
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are associated with three components of the transportation cost: fixed dispatching,
stopover and variable routing costs. They propose a stationary nested joint
replenishment policy (SNJRP) heuristic to solve the problem where replenishment

intervals are power of two multiples of abase planning period.

Bertazzi and Speranza (1999) extend the single supplier single customer multi-
item environment to the multistage supply chain networks where multiple items are
shipped from a common origin to a common destination through one or severa
intermediate nodes. A periodic shipping strategy is determined to minimize the total
inventory and transportation costs based on shipping frequencies on each link that
may be the same or different. In this more global setting, the supply and demand rates
are assumed to be constant and equal for each item. Plus, no stock-out is allowed.
They concentrate on the formulation and evaluation of the total inventory cost. On the
other hand, unlike our proposed model, they don't capture a vehicle routing cost. Six
heuristic algorithms are presented and eval uated.

Interesting work on integrated production and distribution systems belongs to
Chanda and Fisher (1994) and Fumero and Vercellis (1999). Chanda and Fisher (1994)
investigate the value of coordinating production and distribution planning in a multi-
period setting whereas Fumero and Vercellis (1999) consider a multi-period system
that consists of a single plant producing multiple items with limited resource. Items
face constant demand rates ‘and are distributed to several customers by a fleet of
capacitated vehicles. The problem is formulated as a mixed integer program and
solved by Lagrangean relaxation to obtain both lower -bounds and heuristic feasible
solutions: To demonstrate the effectiveness of the proposed solution scheme that
separates the production and distribution decisions, computational results on

randomly generated problems are provided.

2.2 Multi-item joint replenishment inventory systems
In addition to the integrated inventory-transportation literature, inventory

literature that is related to this work is aso surveyed. Multi-item joint replenishment
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inventory systems is concentrated. Most of the work in this area involves
deterministic models. For example, Shu (1971), Nocturne (1973), Silver (1976),
Goyal and Belton (1979), etc. In a stochastic setting, more work on a continuous
review system than on a periodic review system is explored, especially on a
continuous can-order policy considered closely by Goyal and Satir (1989) who review
joint replenishment inventory models for both deterministic and stochastic cases. We

start this section with review in deterministic models.

2.2.1 Deterministic models

Shu (1971) and Nocturne (1973) analyze a deterministic model which is
applicable to the batch processing industry where a batch of item is blended and
subsequently packaged into various types of containers. This can be viewed as ajoint
replenishment. Under an infinite planning horizon and a continuous time model, Shu
(1971) finds the conditions under which the total set-up and holding cost is minimized
by packaging the smallest demand item with less frequency of packaging than the rest
of the group. However, Nocturne (1973) demonstrates that Shu's solution does not
aways lead to an optimal solution. In addition, Nocturne formulates a multi-item joint
replenishment problem and also provides a graphical solution of optimal ordering

frequencies for the two-item case.

Silver (1976) studies a multi-item lot sizing problem when item demands are
constant over a finite horizon. The cost structure includes a major setup cost for each
replenishment, a minor setup cost for each item included in the replenishment and a
carrying cost. The author uses the EOQ concept to propose a simple procedure of
determining order quantities, a group. replenishment interval and. replenishment
periods of each item. Goyal and Belton (1979) improve performance of Silver's

method by modifying the item selection rule.

For a multi- item deterministic demand single supplier system, Goyal (1974)
develops an algorithm for determining the optimal ordering quantity and the relative
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ordering frequency for each item. Like our proposed policy, this optimal ordering

policy may be viewed as a periodic review policy with afixed order quantity.

Another interesting inventory policy is a power-of-two policy. Work related to
the power-of-two policy is studied by Jackson, Maxwell and Muckstadt (1985),
Mucktadt and Roundy (1987) and lyogun and Atkins (1993).

Jackson, Maxwell and Muckstadt (1985) develop a model for the joint
replenishment problem over a finite planning horizon in a manufacturing system
under the restriction that constant reorder intervals must be power-of-two multiples of

a base planning period.

Mucktadt and Roundy (1987) apply a power-of-two policy and a stationary
nested policy for a multi-echelon distribution system while lyogun and Atkins (1993)
propose a power-of-two heuristic for a multi-stage multi-item distribution network

which is decomposed into facilities-in-series problems to obtain alower bound.

2.2.2 Stochastic models
For a joint replenishment inventory system in a stochastic setting, severa

inventory policies, both in continuous and periodic reviews, have been investigated.

For a continuous review maodel, Pantumsinchai (1992) and Cheung (1998)
study QS policies where al items are replenished to their base stock levels S
whenever the combined usage of all items reaches Q while Balintfy (1964), Silver
(1974) and Federgruen, Groenevelt and Tijms (1984) study the can-order (S, c, s)
policy where inventory levels are continuously reviewed. Whenever the inventory
position of item i dropsto its must order point si or lower, areplenishment is triggered
to raise its inventory position to an order-up-to-level Si. At the same time, any other
items with inventory positions at or below their individual can-order point ¢ are
included in this replenishment in order to raise their inventory levels to the order-up-

to-levels.
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Federgruen, Groenevelt and Tijms (1984) present an algorithm to search for an
optimal can-order (S, ¢, s) coordinated control rule. The proposed algorithm differs
from Silver (1974) and Thompstone and Silver (1975) in that it can handle nonzero

lead times for the case of compound Poisson demands.

The can-order (S, ¢, s) policy is compared with a simple periodic (Ri, Ti)
policy proposed by Atkins and lyogun (1988). For this ssmple periodic (Ri, Ti) policy,
item i israised to Ri every Ti period. The computational study shows that the simple

periodic policy seemsto show considerable promise over the can-order one.

Pantumsinchai (1992) compares the QS policy with the can-order policy and
with the ssmple periodic policy. The computational results indicate that no one policy
is superior to the others and in the situation where the stock-out cost is low and the
major setup cost is high relative to the minor setup cost, the QS policy performs

significantly well.

Like Atkins and lyogun (1988), Chakravarty and Martin (1988) and Eynan
and Kropp (1998) aso work on periodic review inventory policies. Chakravarty and
Martin (1988) develop the item grouping strategy for a coordinate inventory
replenishment under a normally distributed demands environment whereas Eynan and
Kropp (1998) propose simple heuristics for solving the multi-item joint replenishment

problem under stochastic demands with normal distribution.

A new class of policies called Periodic Review (s, S) Policies for joint
replenishment inventory systems:in a stochastic setting is proposed by Viswanathan
(1997). Under this policy, Inventories of all items are reviewed once every t units of
time. Item i is ordered up to the level S, if itsinventory position is less than or equal

tos at time of review.

The author compares the (s, S) policy with other four policies suggested in the

literature: MP, QS, Can-order and Independent Control policies. From computational
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results, although the P(s, S) policy is only marginally better than the MP policy,
unlike the MP policy, the P(s, S) policy generaly dominates all the other policies over

wide range of problem parameters.

2.3 Grouping Strategy
In this section, grouping strategies of previous work in the multi-item joint

replenishment and the integrated inventory-transportation system are discussed.

2.3.1 Multi-item joint replenishment

When a distribution system consists of multiple items that can be jointly
replenished, a question of which items should be grouped together in order to
minimize total related costs is arisen. In fact, the optimal grouping set of items can be
determined by completely enumerating every possible group but when the number of
multiple items is high, it isimpractical to perform a complete enumeration due to the

combinatorial nature of this grouping problem [Buffa and Munn, 1990].

In a multi-item system, how items are partitioned into groups and jointly
replenished partly relies on an inventory policy adopted. Under a can-order policy
(S,c,s) studied by Federgruen, Groenevett and Tijms (1984), Baintfy (1964) and
Silver (1974), an item whaose inventory position continuously reviewed drops to a
must order point s triggers a replenishment to build up its inventory position to an
order-up-to level S and other items whose inventory positions are at or below their
can order points ¢ will be replenished as well. Therefore, under this policy, the can
order point of each item determines whether it-will be added in the joint
replenishment or not. It is clearly seen that a group of items in each replenishment

may vary.

Another joint ordering inventory policy with a continuous review presented by
Pantumsinchai (1992) is a QS policy where a group reorder point is a device to

initiate a replenishment to raise the inventory position of each item to its base stock



24

level Si. Asaresult, any item that has an inventory position below its base stock level

at the time an order is demanded will be incorporated in the group refilled.

Some previous literature in the joint replenishment concentrates on a periodic
review inventory policy. Among them are Jackson, Maxwell and Muckstadt (1985),
Muckstadt and Roundy (1987), Chakravarty and Martin (1988), Viswanathan (1997)
and Eynan and Kropp (1998).

Jackson, Maxwell and Muckstadt (1985), Muckstadt and Roundy (1987) and
Eynan and Kropp (1998) adopt a power of two policy where areorder interval of each
item must be a power of two multiple of the base planning period. Consequently, in
each replenishment, itemswill be grouped for joint ordering according to their reorder
intervals. Items that have lower reorder intervals are included in agroup of items that

are replenished and have larger reorder intervals.

Eynan and Kropp (1998) aso study the case where an item’s replenishment
interval is an integer multiple of the base cycle which is acquired by taking a
derivative on the cost function. The iteration of solving the basic cycle continues until
a margina difference of the total cost between consecutive iterations is succeeded.
Similar to the case of the power of two policy, items are grouped for joint ordering

according to their replenishment intervals.

Chakravarty and Martin (1988) propose a grouping strategy for the stochastic
demand environment by assuming consecutiveness in all individual optimal
replenishment intervals that are then ranked in non-decreasing order. The shortest-
path approach and the ranking process of replenishment intervals are repeatedly

employed to determine the minimum cost grouping System.

Viswanathan (1997) introduce a Periodic Review (s,S) Policy for a multi-item
inventory system where inventory of every item is reviewed every constant period t.

At the time of the review, any items whose inventory levels are at or below their own
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s are grouped together for a single order and replenished up to their highest levels S.
By originating a value of areview interval and assuming that the item yields only the
minor setup cost, the order-up-to level S and the reorder point s of each item are
calculated independently from others. Then the best review interval is searched in the
small step. Under this policy, the items are possibly different in each replenishment

relying on their inventory levels at the review time.

Goyal (1974) and Silver (1976) apply the EOQ concept for the multi-item
single supplier joint replenishment in a deterministic setting. Goyal (1974) determines
the economic order quantity of each item from the economic number of purchase
whereas Silver (1976) obtains the economic order quantity from the time interval
between replenishments of the group. However, they use the same idea that the
replenishment interval of each item Is an integer multiple ki of the base interval.
Therefore, the item’s integer multiple ki which is solved by differentiating the total

cost function decides which items will be combined in the single order.

2.3.2 Integrated Inventory-Transportation System

In the integrated inventory-transportation model, retailers, suppliers or
products can be categorized in the grouping strategy depending on the characteristics
of the integrated system. For example, for a single product multi-retailer system
studied by Federgruen and Zipkin (1984) and Anily and Federgruen (1990), retailers
are grouped. On the other hand, for amulti-item integrated system presented by Buffa
and Munn (1990), Viswanathan and Mathur (1997) and Qu, Bookbinder and lyogun
(1999), the items are partitioned into groups.

Federgruen and Zipkin (1984) formulate the integrated inventory-routing
problem as a non-linear integer program and then solve the inventory allocation
problem first to determine the amount of the scarce item shipped to each customer in
the group assigned to each vehicle. A modified interchange heuristic is utilized to
alter the partition of customers among vehicles.
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Anily and Federgruen (1990) use the EOQ policy for a single-item muilti-
retailer distribution system where each retailer receives a fixed quantity of the item
every constant time interval. A Modified Circular Regional Partitioning Scheme is
applied to separate demand points of retailers into groups. In this scheme, the circle
that encloses al demand points and has the radius as the distance between the depot
and the furthest demand point are divided into K successive sectors each of which
contains the equal number of demand points mq and possibly one extra sector having
a fewer number of demand points. Then using circular cuts, each sector is partitioned
into subregions each of which encompasses m equal demand points. As we see, only
geographical locations of retailers are considered for this grouping strategy but no

inventory or transportation cost involved.

An inbound consolidation for a multi-item replenishment with stochastic
demands is examined by Buffa and Munn (1990). They practically model the
integrated inventory and transportation costs and present the grouping algorithm
which is composed of a ranking procedure, a continue rule and a grouping heuristic.
In the ranking procedure, firstly each item iIs reordered separately. Then they are
arranged in a non-decreasing order of the amount reflecting the sum of holding cost
and shipping cost. In the continue rule, the combination of groups is performed if the
shipping weight of each group fallsin the elastic range of the unit freight rate function
and if the primary trade-off in acquiring the optimal cycle time of each group is
between shipping and holding costs. In the grouping heuristic, the selection of groups
for merging is based on the physical characteristics of value and weight as well as the
value of marginal holding-shipping cost ratio (MHSR). At each stage, the receptor
group which is the group with the largest MHSR is merged with the donor group, the
adjacent group in the ranking scheme with the lowest MHSR. It is observed that the
holding and shipping costs are taken into account for grouping items. Nevertheless, no
vehicle routing cost is involved as a result of a common carrier considered in this

system.
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A stationary nested joint replenishment policy (SNJRP) is proposed by
Viswanathan and Mathur (1997) for distribution systems with one warehouse and
multiple retailers who keep multiple items that face deterministic demands. Under this
policy, the replenishment intervals of items are power of two multiple of the base
planning period. Accordingly, the items are grouped based on their replenishment
intervals which are computed using a modification of the standard EOQ formula
where the marginal cost incurred if an item is collectively replenished with the items
already embraced in the nested set of items is employed as the setup cost. The items
that have equal replenishment intervals are kept in the same group and replenished
simultaneously. Both uncapacitated and capacitated cases are examined. For the
uncapacitated case, all items are included in a single cluster consisting off several
groups each of which has the nested replenishment interval. On the other hand, for the
capacitated case, several clusters are created and there are several groups in each

cluster.

An integrated inventory-transportation model dealing with an inbound
material collection for a multi-item multi-supplier system with unlimited vehicle
capacity in a stochastic setting is developed by Qu, Bookbinder and lyogun (1999).
With the modified periodic inventory policy, the authors separate items into two
types, base items and non-base items, and group them based on an item’'s
replenishment cycle which is adjusted to be an integer multiple of a base planning
period. The replenishment interval -of the non-base-items is calculated using the
shared transportation cost along with minor ordering cost, holding cost and
backlogging cost while the one of the base items which are restocked every
replenishment period is determined using the joint fixed ordering cost in addition to
those costs considered for the non-base items. The non-base items that possess an
identical replenishment cycle are grouped and replenished together with the base
items and sometimes with other non-base items at equally space epochs according to

their replenishment period.
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CHAPTER 3

AN INTEGRATED INVENTORY-
TRANSPORTATION SYSTEM UNDER
DETERMINISTIC DEMANDS

3.1 A description of the problem

In this chapter, an inbound commadity collection system in a deterministic
setting is considered. The system consists of a centra warehouse and a set of
geographically dispersed suppliers. Each supplier produces one or more non-identical
items, each of which faces constant and deterministic demand from outside retailers.
The central warehouse has an unlimited area for stocking items and uses a fleet of
vehicles to collect the items from its suppliers. These vehicles have limited capacity,
and they are also subject to frequency constraints that limit the number of trips that
each vehicle can make per time unit. The frequency constraint may, for example, be
caused by the time required for vehicle maintenance and other responsibilities, or by
the fact that material handling capacity is limited. Lead time of each replenishment is
constant and the replenishment interval of any item is assumed to be longer than its
lead time.

It seems unlikely that it is possible to identify an optimal strategy for this
problem. But more importantly, even if such an optima strategy could be found
efficiently, it would likely be too complex to ‘be implementable in practice.
Nevertheless, some progress has been made in this direction recently with the work of
Adelman (2003), who develops an approximate dynamic programming approach that
finds high quality policieswithout imposing any a priori policy structure for inventory
routing problems where only the routing costs are taken into account. Due to the
difficulty, as well as perhaps the undesirability from the point of view of
implementability, of finding truly optimal policies, it is common practice in
inventory-routing problems to consider a given policy structure up front, and focus on

finding optimal parameters for that policy.
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A policy where the set of items is partitioned into digoint groups is adopted.
Each group of itemsis assigned to a vehicle. The vehicle leaves the central warehouse,
visits the set of suppliers corresponding to the items in its group, and returns to the
warehouse, where the items are unloaded and stored. It is assumed that no item can be
assigned to more than one group, i.e. the orders cannot be split across multiple
vehicles. However, it is not necessary for items produced by the same supplier to be
in the same group, i.e., a supplier can be visited by multiple vehicles. Finaly, the fact
that the central warehouse faces a constant demand for each item leads to a joint

replenishment of all itemsin agroup using an economic order quantity (EOQ) policy.

3.2 Notation
All notation used in chapter 3 for the deterministic model is defined as follows.

S set of items in the system (stored by the central warehouse).
S subset of items Sc S.

m number of available vehicles.

n total number of items.

i index for vehicles (i =1,2,...,m) .

k index for vehicles (k =1,2,...,m).

] subscript denoting item (] =12,...,n).

D, demandrateforitem j.

h; inventory holding cost rate for item | .

Q; replenishment quantity of item j .

K fixed joint ordering cost plus fixed dispatching cost.
C vehicle capacity.

F maximum number of trips allowed for each vehicle.

TSP(S) optimal vehicle rout for visiting suppliers of itemsin subset S.
L(S) fixed transportation costs plus fixed joint ordering cost.

D(S) aggregate demand ratefor all itemsin subset S.

h(S) weighted average unit holding cost for itemsin subset S.

T(S) replenishment interval for itemsin subset S.

Q(S) aggregate replenishment quantity for all itemsin subset S.
Q; optimal replenishment quantity of item | .
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Q' (S) optimal aggregate replenishment quantity for all itemsin subset S.
T°(S) optimal replenishment interval for all itemsin subset S.

S®  subset of items assigned to vehicle i .
c(S) total inventory-transportation cost for all itemsin subset S.

3.3 Costs
In the deterministic problem, it is assumed that the costs of the integrated
inventory-routing system include the inventory holding cost at the central warehouse,

the joint ordering cost, the vehicle dispatching cost, and the vehicle routing cost.

3.3.1Inventory Holding Cost

The inventory holding cost is proportional to the average inventory kept at the
central warehouse and incurred at a constant rate per unit item per year. The inventory
holding cost rate of each item may be different. The model is treated from the
viewpoint of the central warehouse and it is assumed that the central warehouse and
the suppliers belong to different organizations. Therefore, any charges to the suppliers

from holding stock will not be considered.

3.3.2 Joint Ordering Cost

This joint ordering cost is fixed for every replenishment, regardless of which
items and what quantity are replenished. It's assumed to be associated only with the
ordering process and charged when-a manager of the central warehouse decides to

replenish the stock.

3.3.3 Vehicle Dispatching Cost
The vehicle dispatching cost is constant and equal for all the vehicles. It is
incurred whenever a vehicle is dispatched to collect a set of items assigned to it. Wage

of adriver per trip could be viewed as this cost.
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3.3.4 Vehicle Routing Cost

This component of transportation costs is a variable cost depending on the
distance traveled by a vehicle. However, it is constant for a specific set of items
assigned to the vehicle. That isit is fixed for replenishment of the same set of items.

An example of this cost is gas expenses.

3.4 Model Formulation

In the integrated inventory-transportation system, it is assumed that there are
the set of items stored by the central warehouse which isdenoted by S. Item j (] €9)
faces a deterministic demand rate D, . The items are collected from the suppliers using

a fleet of m vehicles. The total system costs consist of the holding costs associated
with each item, which are incurred at a constant rate of h; per unit per year for item

j(jeS), aswel as fixed costs. These fixed costs include fixed ordering costs and

fixed vehicle dispatching costs, as well as the total vehicle routing costs associated
with atrip, which is the cost of a Traveling Salesman Problem (TSP) where the cities
are the warehouse and the suppliers of the items collected in the trip. For convenience,
the fixed joint ordering and dispaiching costs are combined in a single term K per
vehicle per trip. Using a policy where each item is assigned to a single group that is
replenished repeatedly using a given vehicle, the inventory-routing problem is then to
determine the subsets of items that are replenished with a single vehicle, as well asthe
corresponding replenishment quantities, the replenishment interval and the optimal
vehicle routes, that minimize the average total inventory and transportation cost per

unit time.

3.4.1 No vehicle capacity and frequency.constraints
Firstly, the average total inventory and transportation costs per unit time for a
given set of items S — S assigned to a vehicle, and under the simplifying assumption

that the vehicle is uncapacitated and does not face a frequency constraint, is

determined. It is assumed that the fixed cost associated with this set is of the form

L(S) =K +TSP(S)
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where TSP(S) denotes the cost of the optimal TSP route for visiting the suppliers

corresponding to the items inS, and K represents any other fixed costs associated

with using the vehicle plus the fixed joint ordering cost. If the time between
replenishments of the items in S is denoted by T(S), then the corresponding

replenishment quantities are given by

Q, =D;T(S

for al items j in S. The total inventory-transportation costs per unit time incurred

for replenishing the items in S as a function of the replenishment interval T(S) is

egual to

L(S) 1
ﬁ§+§;moﬁﬁ)

It is convenient to define the aggregate demand and weighted average unit holding

costs for subset S asfollows:

D(S)=2_D;
T

The cost function can then be rewritten as

LS 1
(9 + H h(S)D(S)T(S)

which is a standard EOQ-type cost function and thus immediately yields that the
optimal replenishment time for set S isequal to

- [ 2O
h(S)D(S)
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Alternatively, the total cost function can be formulated in terms of the aggregate
replenishment quantity
Q(S) = ZQJ
jeS
Note that the individual item replenishment quantities have to satisfy
_ D
_(DJ_ a1y ¥ for J S
Q(S) D(S)
or

D, _
Q, :—D(S) Q(S) for jeS

Since Q, =D,T(S) for @l jeS, it is clear that Q(S)=D(S)T(S) . The total

inventory-transportation costs per unit time incurred for replenishing the items in S

can now equivalently be written as

D), 1
L(S) S = h(S)Q(S)

This is again a standard EOQ-cost function, and leads to the optimal aggregate
replenishment quantity for subset S

o (S /ZDS?S I;(S)

Using either approach, we obtain that the optimal replenishment quantities for the

individual items are equal‘to

cmrra. P e 2L(S) .
Q =DT (9= D(S)Q (S)=D, /—D(S)h(s) for jeS

The corresponding optimal inventory-transportation costs are equal to

c(S) = 4/2D(S)L(S)h(S)



The integrated inventory-routing problem can now be formulated as a set partitioning

problem:

minzm:c(s“))

subject to

m

s =s

i=1

SO ASY =g foral i,k=212...m i=k

3.4.2 Vehicle capacity constraint

In the capacitated case where each vehicle has identical limited capacity C, if
the optimal aggregate replenishment quantity obtained from the EOQ formula is
larger than the vehicle capacity, it has to be reduced to be equal to the vehicle
capacity in order to satisfy the capacity constraint. As a result, a similar partitioning

problem can be obtained but with

» eI /2D(S)L(S)
Q(S)_mm{ —h(S) ,C}

and corresponding optimal inventory-transportation costs equal to

.. [2D(9)L(S)
\2D(S)L(S)h(S) if Wsc

c(S) =
L P thgic | ir PPOLE) S ¢
Co h(S)
3.4.3 Frequency constraint

The vehicles may face only a frequency constraint. In other words, the
vehicles cannot travel more than a maximum number of trips allowed per year F due
to the time required for vehicle maintenance and other responsibilities, or the limited

material handling capacity. This means that the number of trips per year is bounded
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from above or, equivalently, the replenishment interval is bounded from below. The
minimum length of the replenishment interva would be 1/F . If the optimal

aggregate replenishment quantity obtained from the EOQ formula is smaller than the
smallest aggregate replenishment quantity D(S)/F that still satisfies the frequency

constraint, then the optimal aggregate replenishment quantity collected by the
vehicles must be increased to become D(S)/F . That is

- [2D(S)L(S) D(S)
Q(S)_max{ hS) ' F }

and corresponding optimal inventory-transportation costs equal to

.« [2D(S)L(S) _ D(S)
JDEUSES) it m . o
LS)F + 1n9 2O i [2DOLE) D)
; I h(S) F

3.4.4 Vehicle capacity and frequency constraints

c(S) =

In the case where the vehicles face both vehicle capacity and frequency

constraints, the aggregeate replenishment quantity must be larger than or equal to
D(S)/F, and smaller than or equal to C. It is clearly seen that the set ScSisa

feasible subset of items only if

D(S) < CF

With both the vehicle capacity and frequency constraints included in the model, the
aggregate replenishment quantity for the items in a feasible subset S can be

determined from



D(S) + [2D(SL(S) _ D)

F h(S) F

o9 -1 [POLE + D(S) _ [2DOL(S) _
h(S) F \ nhS

2D(S)L(S)
h(S)

Q' (S = max{@,min{ 2DS)LES) C}}
F V- h(s)

and the corresponding optimal costs can be obtained from

C if C<

or

L(S)F +£h(s)9@ i« [2D(SL(S) _ D(9)
2 ¥ h(S) F
o(S) = 1J2D(S)L(SN(S) i DéS)S ZD%(S) <o
LePS) Lhgc i ce [2ROLS

In this case, the set partitioning problem becomes

minzm:c(s(‘))

subject to
S(i) c S

Lmjs“) ¥ 65
i=1

D(S") < CF foral i=12,..,m

SV AS® =y fordlik=12...m i=k

(3.1)

(3.2)

(3.3)

36
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CHAPTER 4

AN EXACT SOLUTION APPROACH USING
BRANCH-AND-PRICE

An exact solution approach, the Branch-and-Price algorithm, is developed in
this chapter. The branch-and-price algorithm can be used to solve our inventory-
routing problem to optimality. This algorithm is based on a column generation
approach to the set partitioning formulation of the problem. After formulating this
problem as an integer programming problem, its LP-relaxation is then solved via
column generation. In this approach, the problem is solved iteratively with only a
limited number of candidate subsets for the vehicles. In each iteration, a subproblem,
called the pricing problem, is solved. Each subproblem will either verify that the
current solution is optimal for the entire problem, or identify one or more subsets that
should be added to the limited model. This solution method for solving the LP-
relaxation of the set partitioning problem is incorporated in a branch-and-bound
algorithm if the optimal solution of the L P-relaxation is fractional. The procedure of
the branch-and-price algorithm is summarized in Figure 4.1. Applications of this
methodology have been applied to other set partitioning problems, such as the
generalized assignment problem [see Savelsbergh (1997)], the multi-period single-
sourcing problem [see Freling et a. (1999)], a continuous-time version of that model
[see Huang et al. (2003)], a joint location-inventory model [see Shen et al. (2003)],
and the crew scheduling problem [see Barnhart et al. (1998)].

4.1 Notation

Hereis additional notation mentioned in this chapter.
N. number of feasible subsets of items that can be assigned to vehicle i .

I superscript denoting subsets of items.

a; a; =1 ifitem j isinsubset | of itemsfor vehicle i and o =0 otherwise.
a binary vector representing subset | of itemsfor vehicle i .
y! y' =1 if subset | of itemsisassigned to vehicle i and y' =0 otherwise.

¢ () total inventory-transportation cost of subset | of items assigned to vehicle i .
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U dual variable associated with item constraints (j =1,2,...,n) .

0, dual variable associated with vehicle constraints (i =1,2,...,m) .

g optimal dual solution associated with item constraints (j =1,2,...,n).

c§i optimal dual solution associated with vehicle constraints (i =1,2,...,m).

feasible subset of items.
z; =1 ifitem j isinsubset (column) z and z; =0 otherwise.

C. vehicle capacity for vehicle i .

F maximum number of trips allowed for each vehicle i .
J° set of items whose z; isfixed to 0.

J* set of items whose z; isfixed to 1.

J set of items whose z; has not been fixed.

c(z) lower bound of total inventory-transportation cost of subset z of items.

4.2 A column generation approach to the set partitioning formulation
At the beginning, the set partitioning problem will be formulated as an integer

programming problem. Without loss of generality, it is assumed that there are n items,
and S={1,2,...,n}. Then, let N, denote the number of feasible candidate subsets of

items that can be assigned to vehicle i . Each of these subsets is represented by a

binary vector
a; = (@ @)

where o =1if item j isin candidate subset | for vehicle i, and «; =0 otherwise.
Letting c (.) denote the cost function for vehicle i (as derived in Chapter 3 for a
generic vehicle), the cost of subset | of vehicle i can be obtained by ¢ (a'). Note

that a binary incidence vector of a subset of S is used rather than the subset itself as
the argument of ¢, . When it is convenient, this aso will be done for all set functions

introduced in Chapter 3. Finally, with the introduction of a binary variable y' that
takes on the value 1 if subset | is chosen for vehicle i, and O otherwise. The set

partitioning problem can then be reformulated as
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mi an: i G (ail ) Yil

i=1 1=1

subject to P)
S >apy -1 j=12...n (4.1)
=

iyi' =1 i =12,..,m (4.2)
) y {01} 1=1,2,..,N,,i=12,..m

The first n constraints (item constraints) ensure that each item is collected by
exactly one vehicle, while the next m constraints (vehicle constraints) state that only
one feasible subset of items can be assigned to each vehicle. It is clear that the number
of variables in this problem grows extremely rapidly in the number of items
considered, which would make even solving the LP-relaxation of (P) a daunting task.
However, since it is expected that most variables will have a value of zero in the
optimal solution, a column generation approach is applied to solving LP(P), the LP-
relaxation of (P).

In this approach, at first only a small number of subsets (columns) for each
vehicle are considered. These can, for example, be obtained using a heuristic. After
obtaining the solution to the master problem, a subproblem called the pricing problem
is solved in order to either identify columns that would provide a better objective
value if they would be added to the problem, or conclude that the current solution is
optimal. This process is then repeated iteratively until the optimal solution is indeed

obtained. To check for optimality of an intermediate solution we consider the dua
problem (D) of LP(P). Letting x; denote the dua variables associated with

constraints (4.1) (j =12,...,n) and o; the dual variables associated with constraints
(42) (i=212..m) , and noting that the binary constraints are replaced by

nonnegativity constraints in the L P-relaxation of (P), we obtain
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n m
max) u; + .6
=1 i1

subject to (D)
D +8 <c(a) =12,..,N,,i=12,...m (4.3)
j=1

u; free j=12,...,n
o, free i=12,..m

Now suppose that we have the optimal primal and, in particular, dual solution
to a restricted version of LP(P) and (D) in which only a subset of the columns has
been taken into account. Extending the primal optimal solution with the implicit zero
values of all omitted variables, we find that if the corresponding dua solution is

feasible for the entire dual problem (D), then the current solution is optimal.

4.3 Thepricing problem

The pricing problem aims to find, for each vehicle i, the feasible subset
(represented by a binary vector ¢, ), for which the corresponding constraint in (D) is

most violated. Denoting the decision variable representing a feasible subset for

vehicle i by z, and the optima dual solution to the restricted version of LP(P) by
([1,3) , the pricing problem for vehicle i can be formulated as follows:

n
max ) [z, =c(2)
=1

subject to (PPI)

z, €01 for j=12,..,n
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where C, denotes the capacity of vehicle i, and F, denotes its maximum frequency.
If the optimal solution value of (PPi ) is no more than - 5i , then all dual constraints for

vehicle i are satisfied. If the optima solution value of (PPi) exceeds -é:i , the

corresponding optimal solution yields a subset for vehicle i that may improve the
solution if added to the limited set partitioning problem.

In the remainder of this section, a branch-and-bound algorithm that can be
used to solve the pricing problem (PPi) to optimality will be developed. For
notational convenience, we will omit the index 1 indicating the vehicle, and consider
agenera pricing problem (PP). Similar to often used branch-and-bound strategies for
the knapsack problem [see, e.g., Martello and Toth (1990)], the binary variables z,
will be branched. Therefore, each node of the branch-and-bound tree is characterized

by a partition of theitemsin Sinto the following three sets: J°, J*, and J:

=ljes: z, hasbeen fixed to O}
3t = {j € S: 2, hasbeen fixed to1}
J ={jeS:z, hasnot been fixed)

Note that z; can be set to O for all items j such that /; <0 without loss of

optimality, which may significantly reduce the size of the problem. So, these items
will be assumed to always be included in the set J°. Now an upper bound on the

objective function value of (PP) in anode of the tree can be found as follows.

Note that the function ¢ given in-equation (3.2).in Chapter 3 can be bounded
by noting that the fixed costs are given by

L(2) =K +TSP(2)

so that we can bound these from below by

L(2) > K +TSP(JY)
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where

c(2) =
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dazqa
(K+TPEYF +1nn 2@ ¢ [2D@K TP _ D)
2 F h(2) T F
J2D(A(K + TP(I))h(2) it 2@ \/ZD(Z)(K E O
F h(2)
K +ToP(a) 22 Ihpc it c< X/ZD(Z)(K +TSP(IY)
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If the number of items in J are small, the following problem may be efficiently

solved

subject to

(PP")
D,z <CF
j=1
z,=0 for jeJ°
z, =1 for jeJ*
z, {01 for jed

by complete enumeration, which will clearly provide a valid upper. bound in the

current node of the branch-and-bound tree. However, in general we will need to find

an upper bound that can be computed more efficiently.

Clearly, an alternative lower bound on the costs can be found by, in addition to
using the lower bound on L(z), ignoring the capacity and frequency constraints,

which yields

c(2) = /2D(2)(K + TP(I*))h(2)



Recalling the definition of the aggregate demand and inventory holding cost functions,

the lower bound may be rewritten as

c(2) > \/Z(K +TSP(J1))Zn: h,D,z,

=1

An upper bound on the solution value of (PP) given the sets J° and J* can

now be determined by solving the following optimization problem

maxy_ i,z —\/2(}( +TSP(3Y))D D,z
j=1 j=L
subject to (PP?)

z.=0 for jeJ°
1

for jed'

N
Il

J

z, {01 for jeJ

m

where the capacity and cardinality constraints have also been ignored. This problem
can now be solved efficiently using a result from Huang et al. (2003). This result says
that, if the | J | relevant items are renumbered and sorted in non-increasing order of the

ratio
A,
_— 4.4
"D (44)

the optimal solution will be of the form

L 1 for j=12..k
P10 for j=k+1..,|Jd]

for some k=0,...,| J |.

Since our relaxation yields an integral solution, this solution cannot be used to
guide the branching. We will instead use a strategy that has been successfully applied
to many knapsack and related problems. This is a depth-first-search strategy that first



explores the subtree in which the variable corresponding to the most promising itemis
set to one. For this problem, it means that the subproblem in which the unassigned
item with the largest positive ratio (4.4) is added to J* will be considered first.

Since any feasible solution to the pricing problem for vehicle i with a value
that exceeds - 0. provides a subset of itemsthat is attractive, it is not strictly necessary
to solve the pricing problem to optimality, especially in the early stages of the column
generation procedure. Therefore, the branch-and-bound procedure for (PP) usualy is
implemented heuristically by finding an approximate bound in each node. That is, we
find a value that will often, but not necessarily, be an upper bound to the objective
function value in the current node of the tree. This approximation is based on
considering solutions by sequentially adding items according to the ranking scheme

given by the ratio (4.4). Observing the capacity and cardinality constraints, we then
choose the solution that maximizes the objective function of (PP'). Since this

procedure does not necessarily find the optimal solution to (PP*), the corresponding

bound is not exact, and therefore the solution to the pricing problem obtained is not

necessarily optimal.

4.4 Branching

We now return to our main problem (P). If the optimal solution of LP(P)
obtained by using the column generation approach is not integral, we need to use
branch-and-price. It remains to discuss the corresponding branching strategy. As has
been mentioned by several authors [e.g., Freling et al. (1999)], branching on the
subset selection variables y' in the set partitioning formulation is problematic, since
excluding a subset from consideration would require finding the second best solution
to the pricing problem. However, the subset selection variables can be transformed to

assignment variables that indicate the fraction of an item that isincluded in a subset:

N;
X; = Zailj i
=
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Clearly, x isintegral if y isintegral. In a node of the branch-and-price tree,

we can now branch on fractional assignment variables. This corresponds to requiring
or disallowing an item to be replenished by vehicle i . Item | isassigned to vehicle i
if the fractional assignment variable x; is fixed to 1. On the other hand, item j

cannot be assigned to vehicle i if the fractional assignment variable x; is fixed to 0.

To solve the problem at the branching node, the column generation and pricing are

applied as before.

If the solution to the problem contains y' with a value that is negative or

greater than one, this means that the set partitioning problem is infeasible in that node.
This may be because there are not enough subsets of items included in the problem to
allow for a feasible solution. In this case, at least one subset of items needs to be
added to the existing ones to obtain a feasible solution and then the column generation

and pricing are repeated in that node.
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Figure 4.1 Branch-and-Price Algorithm for the integrated inventory-transportation
problem
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CHAPTER 5

CONSTRUCTIVE HEURISTICS AND
IMPROVEMENT ALGORITHMS

In Chapter 4, a branch-and-price algorithm has been developed to solve the
inventory-routing problem described in Chapter 3. Clearly, only relatively small
problem instances can be solved to find an exact solution in reasonable time. The
computational effort islikely to increase rapidly when the number of items, suppliers,
and/or the vehicle capacities increase. Therefore, heuristic approaches to the problem
are focused in this chapter. In particular, two constructive heuristics will be described.
These heuristics can be used to find an initial feasible solution by constructing routes
for the vehicles either sequentiadly or simultaneously. In addition, several
neighborhood search agorithms that can be used to improve a solution found by the

constructive heuristics will aso developed..

5.1 Constructive Heuristics
5.1.1 Distance Ratio (DR) heuristic

The first heuristic constructs routes sequentially for one vehicle at atime. The
idea of the heuristic isto add items to a vehicle whose supplier is (a) located far away
from the warehouse, but (b) close to at least one supplier that is already visited in the
route. In that case, it is attractive to add the item to the vehicle under consideration
rather than supplying this item with-another vehicle. Items.are added until no more
items can be added without violating the capacity and/or frequency constraints.
Initially, when the route for avehicleis.empty, this criterion says that the item that is

located furthest away from the warehouse should be chosen.

When a group of items is assigned to a vehicle and no more items can be
added, the cost associated with the vehicle is estimated by solving its associated TSP
heuritically. Firstly, a TSP tour is constructed by using the Arbitrary Insertion (Al)
heuristic [see Rosenkrantz et a. (1977)]. To improve the vehicle tour, the 2-opt



exchange heuristic studied by Croes (1958), Lin (1965), and Lin and Kernighan (1973)
isutilized.

In the remainder, let d; ; denote the distance (cost) from the supplier of item
j, to the supplier of item j,, for adl j,, j, € S. Similarly, let d,; and d,, denote
the distance from the warehouse to the supplier of item j and from the supplier of

item | to the warehouse. The procedure of the DR heuristic is described as follows.

DR heuristic
StepO. Initialize an empty route for the next vehicle.

Stepl. For each of ungrouped items that can be added to the vehicle without

violating its capacity constraint, say |, determine its distance-ratio as the
minimum value of d”. /dy; over dl items j served by the current vehicle. If

the current vehicle does not contain any items, let the distance-ratio be 1/d,, .

If no such items exist, go to Step 3.

Step2. Find the item with the smallest distance-ratio, assign it to the vehicle, and
return to Step 1.

Step3. If al items have been assigned to a vehicle, go to Step 4. Otherwise, if there
are available vehicles | eft, return to Step O.

Stepd. Find a TSP tour for all vehicles using the Al heuristic to construct a route and

the 2-opt exchange heuristic to improve the tour.

As an alternative, we have explored the possibility of choosing the first itemin
the vehicle to be the unassigned item that has the smallest replenishment interval
when replenished individually. In this case, Steps 0 and 1 in the algorithm are
replaced by

Step0. Initialize an empty route for the next vehicle, and find the ungrouped item
with the smallest individual replenishment interval that can be added to this
vehicle without violating its capacity constraint. Add that item to the vehicle.
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Stepl. For each ungrouped item that can be added to the vehicle without violating its

capacity constraint, say j, determine its distance-ratio as the minimum value
of d,./d,; over all items j served by the current vehicle. If no such items

exist, go to Step 3.

5.1.2 Arbitrary Item Insertion (All) heuristic

This heuristic is based on the Arbitrary Insertion (Al) heuristic for the TSP
[see Rosenkrantz et al. (1977)]. This heuristic starts with an empty route for each
vehicle. On each iteration, given a partial route for each vehicle, the total insertion
costs are calculated for each unassigned item and each possible dot in each partial
route. The insertion costs estimate the additional total inventory-transportation costs
to be incurred if an item Is inserted in a given dlot in a route. This estimation is
obtained by first finding the traditional TSP insertion costs associated with inserting
the item in a route, and next computing the total costs incurred by the vehicle with

this additional item. More formally, consider a vehicle, say i, and a given pair of
items, say |, and j,, that are visited consecutively in the current route for that

vehicle. Moreover, let L(S") denote the current costs associated with the route for
assigned items in S . Then, ignoring for simplicity the capacity and frequency

constraints, the corresponding insertion costs are:

{2D(S” L{iN(L(SY) +dy; +dy, —d,; JN(SY U{j}) =42D(SV)L(SV)h(SV)

Analogously, the insertion costs can be derived in the presence of capacity and

frequency constraints.

All heuristic

StepO. Initialize an empty route for each vehicle.

Stepl. Randomly select an unassigned item for insertion, and determine its insertion
costs corresponding to each slot in each vehicle's partial route, for each vehicle

to which the item can feasibly be assigned.
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Step2. Find the minimum insertion cost for this item, and insert the item in the
corresponding slot.

Step3. If all items have not been assigned, return to Step 1. Otherwise, improve, if
possible, the TSP tour for each vehicle by applying a 2-opt exchange heuristic
and stop.

5.2 Improvement Algorithms

Neighborhood search algorithms are often the most effective approaches
available for solving partitioning problems which is a difficult class of combinatorial
optimization problems. They usually begin with an initial feasible solution which is
then repeatedly replaced by an improved solution until no further improvements can
be found or some termination criterion is satisfied. For the problem studied, five
different neighborhood search algorithms are proposed to improve the solutions
obtained from constructive heuristics. The first two, which are called One Supplier
Move (OSM) and Supplier Exchange (SE), are based on 1- and 2-exchange heuristics
for the Vehicle Routing Problem (VRP) [see, e.g., Toth and Vigo (2002)]. The third
and fourth are combination of OSM and SE. The last neighborhood search algorithm
that will be considered is the very large scale neighborhood (VL SN) search algorithm.

5.2.1 One Supplier Move (OSM)

In the OSM method, a supplier is moved from one vehicle to another one. That
is, al items from a supplier that are replenished using a given vehicle are moved to
another vehicle. A move is only performed when it is feasible and results in a cost
savings, and the search continues until no more solution improvement can be obtained.
To reduce the computational time, the involved TSP problem is not solved to
optimality, but the insertion heuristic will be utilized to estimate the cost change

resulting from the move.
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Figure 5.1 Illustrating a One Supplier Move

In Figure 5.1, an example of OSM is illustrated. Items |1 and 12 from supplier
S1 that are replenished by vehicle V1 are moved to vehicle V2 which also visits
supplier S1 for collecting item 16. As a result, vehicle V1 collects item 15 from
supplier S2 and items 14 and 17 from supplier S3 while vehicle V2 collects items 11,
12 and 16 from supplier S1 and items |3 and 18 from supplier $4.

OSM improvement heuristic

Step0. Sequentially select the next vehicle to consider. If al vehicles have been
considered without making any improving move, stop. Otherwise, return to
thefirst vehicle.

Stepl. Sequentially select the next supplier in the current vehicle to consider for
moving. If al suppliers have been considered, go to stepO.

Step2. Consider only a feasible move. Determine the (approximate) cost changes of
moving this supplier along with its items, which are replenished with the
current vehicle, to each of the other vehicles.

Step3. Perform the move that results in the largest cost savings, if any, and go to
Stepl.

5.2.2 Supplier Exchange (SE)

In the SE approach, in each step, a group of items with a common supplier
currently replenished by one vehicle are exchanged with a group of items with a
common supplier that is currently replenished by another vehicle. The exchange

occurs only when it is feasible and incurs cost reduction.
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Figure 5.2 Illustrating a Supplier Exchange

As shown in Figure 5.2, Items |11 and 12 from supplier S1 that are replenished
by vehicle V1 are moved to vehicle V2. At the same time, items I3 and 18 from
supplier S4 that are replenished by vehicle V2 are moved to vehicle V1. Note that
vehicle V2 will finally visit only supplier S1 for items 11, 12 and 16 while vehicle V1

will visits all other suppliersfor collecting their items.

SE improvement heuristic

Step0. Sequentialy select the next vehicle to consider. If all vehicles have been
considered without making any improving move, stop. Otherwise, return to
thefirst vehicle.

Stepl. Sequentially select the next supplier in the current vehicle to consider for
moving. If al suppliers have been considered, go to step O.

Step2. Consider only a feasible exchange. Determine the (approximate) cost changes
of exchanging this supplier along with its items that are replenished with the
current vehicle with any group of items with a common supplier currently
replenished by another vehicle.

Step3. Perform the exchange that results in the largest cost savings, if any, and go to
Stepl.

5.2.3 One Supplier Move-Supplier Exchange (OSM-SE)

The OSM-SE improvement method combines the OSM approach with the SE
approach. In this algorithm, the OSM method is applied first to improve an initia
feasible solution obtained from constructive heuristics. Then, the improved solution is

further improved by applying the SE method.
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5.2.4 Supplier Exchange- One Supplier Move (SE-OSM)

This improvement algorithm also combines the OSM approach with the SE
approach. However, the SE-OSM approach starts with the SE method which is then
followed by the OSM approach , in contrast to the OSM-SE method.

5.2.5Very Large-Scale Neighbor hood Search (VL SN)

As mentioned before, One Supplier Move (OSM) and Supplier Exchange (SE),
are based on 1- and 2-exchange heuristics. The 1- and 2-exchange heuristics have
been developed and applied to the traditional vehicle routing problem with some
success. However, these methods search for an improved solution in arelatively small
neighborhood of the current solution. Much better results may be expected if larger
neighborhoods can be searched. Rather than extending the 1- and 2-exchange
heuristics to our inventory-routing problem, a Very Large-Scale Neighborhood
(VLSN) Search agorithm will be developed. Using this technique, very large
neighborhoods can be explored implicitly through solving a subproblem, rather than
explicitly by enumeration, as is common practice with small neighborhood search
methods. This technique has relatively recently been developed and applied with
much success to several hard combinatorial optimization problems. For example, the
technique has been applied to vehicle routing problems [see Thompson and Psaraftis
(1993), Gendreau et al. (1998), and Fahrion and Wrede (1990)], minimum makespan
machine scheduling [see Frangioni et al. (2000)] and other scheduling problems [see
Thompson and Psaraftis (1993)], the capacitated minimum spanning tree problem [see
Ahujaet al. (2001-2 and 2001-3)], and several single-sourcing problems [see Ahuja et
al. (2002) and Huang et al. (2003)]. Surveys of VLSN can be found in Ahuja et al.
(2000) and Ahuja, Ergun, Orlin and Punnen (2002).

The VLSN algorithms that we propose can be viewed as extensions of 1- and
2-exchange heuristics for VRPs. In the first algorithm, which is called Supplier-VLSN
(S'VLSN), we consider a neighborhood of solutions that can be reached by moving
groups of items with a common supplier that are currently replenished by one vehicle
to another vehicle. In particular, we consider simultaneous moves of this form, where

each of a subset of the vehicles exchanges one group of items by another. A solution



is called a neighbor of a given solution if it can be reached through a set of moves of
the following form: for some sequence of distinct vehicles i,,...,i, , agroup of itemsis

moved from vehicle i, to vehicle i,, while simultaneously a group of itemsis moved
from vehicle i, to vehicle i,,..., a group of items is moved from vehicle i, ; to

vehicle i, , and a group of items is moved from vehicle i, to vehicle i,. This type of

exchange is called a cyclic exchange. An even larger neighborhood is obtained when
sets of moves that do not include the last one are considered, that is, one vehicle
“loses' a group of items without ~"gaining” one, while another vehicle "gains' a
group of items without ““losing" one. Those type of exchanges are caled path
exchanges. The second algorithm, which is called item-VLSN (I-VLSN), is similar to
S-VLSN, with the distinction that groups of items with a common supplier are now

not moved, but single items only.

Efficient methods for identifying an improving neighbor without explicit
enumeration and evaluation of al neighbors in the neighborhood are based on a
characterization of the neighborhood through a so-called improvement graph [see
Ahuja et a. (2000 and 2002)], which captures all information needed to evaluate any
exchange. The improvement graph for cyclic exchange can be constructed by creating
anode corresponding to each item (or group of items) that is a candidate for exchange.
Then, an arc is created from one node to another if it is possible to move the item(s)
corresponding to the first node to the vehicle that currently replenishes the item(s)
corresponding to the second node, while removing these latter items from their
vehicle. The arc costs in the improving graph are defined to be the change in costs due
to the move incurred by the ““receiving" vehicle. To-alow aso path exchanges, the
improvement graph is extended by a node for each vehicle as well as a dummy node.
Then, an arc with appropriate cost is created from an item-node to a vehicle-node if it
is possible to move the item(s) corresponding to the item-node to the vehicle
corresponding to the vehicle-node without removing any items from that vehicle.
Similarly, an arc with appropriate cost is created from the dummy node to each item-
node, modeling the fact that an item may leave a vehicle without being replaced by

one. Finally, zero-cost arcs are created from the vehicle-nodes to the dummy node.
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Figure 5.3 Illustrating the Supplier-VLSN for the Cyclic Exchange

Each neighbor is now represented by a so-called subset-digoint cycle in the
improvement graph, that is, a cycle whose nodes correspond to distinct vehicles.
(Note that a cycle that does not contain the dummy node corresponds to a cyclic
exchange, and a cycle that does contain the dummy node corresponds to a path
exchange.) Furthermore, the cost change from the current solution to the neighbor is
equal to the total cost of the corresponding cycle in the improvement graph. As shown
by Thompson and Orlin (1989) and Thompson and Psaraftis (1993), the problem of
finding an improving neighbor therefore reduces to the problem of finding a negative-
cost subset-digoint cycle in the improvement graph. However, the problem of
determining whether there exists a subset-digoint cycle in the improvement graph is
NP-complete, and the problem of finding a negative cost subset-digoint cycle is NP-
hard [see Thompson (1988), Thompson and Orlin (1989),and Thompson and Psaraftis
(1993)]. We will employ heuristics for this problem that have been developed by
Ahujaet a. (2001-1, 2001-2 and 2001-3), and appear to be highly effective in practice.

In Figure 5.3, the S'VLSN for the cyclic exchange is illustrated. In this cycle,
items 11 and 12 from supplier S1 are moved from vehicle V1 to vehicle V2, items |3

and 18 from supplier S4 are moved from vehicle V2 to vehicle V4 and item 19 from



56

supplier S2 is moved from vehicle V4 to vehicle V1. The total cost of this cyclic

exchange can be calculated from

c(S® \{11,12 U{19) —c(S) + ¢(S? \{13,18 U{11,12}) - c(S?) +
c(S“\{I19 U{13,18) —c(S™))
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Figure 5.4 lllustrating the Supplier-VLSN for the Path Exchange

Figure 5.4 shows the S-VLSN for the path exchange. In this path exchange,
items 11 and 12 from supplier S1 are moved from vehicle V1 to vehicle V2 and items
I3 and I8 from supplier $4 are moved from vehicle V2 to vehicle V4 while no item is
moved out from vehicle V4 and no item is moved to vehicle V1. The total cost of this

path exchange can be cal culated from

c(SPN{11,12) = c(SP) + (S \{13,18 U{11,12) - c(S?) +
c(S™ U{13,18) — c(S™))
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CHAPTER 6

AN INTEGRATED INVENTORY-
TRANSPORTATION SYSTEM UNDER
STOCHASTIC DEMANDS

6.1 Description of the problem

An inbound commodity collection system in a stochastic setting is studied in
this chapter. Literature that studies the integrated inventory-transportation system with
multiple items usually simplifies the problem with one of the following assumptions:
Demand rates are constant and determinist [see Viswanathan and Mathur (1997)] and
the vehicle capacity is unlimited [see Qu et a. (1999)]. In the problem studied,
stochastic demands and capacitated vehicles will be considered simultaneously. The
characteristics of the integrated inventory-transportation system studied here are
mostly the same as the ones in the deterministic case. There is a central warehouse
that dispatches a given number of capacitated vehicles to visit a set of geographically
dispersed suppliers for collecting non-identical items. Each supplier manufactures at
least one item. The frequency of dispatching each vehicle per unit timeis limited. The
vehicles return to the warehouse after completing their duty. In contrast to the
deterministic case, demands from outside retailers are assumed to be independent and
identically distributed because each retailer faces stochastic demands for its items
from customers and a standard periodic review order-up-to level inventory policy is
adopted at each retailer. The probability distributions of demands of all items are in
the same form but the mean and standard deviation of demands for an item may be
different from others’. The norma distribution will-be examined. This problem is
restricted to the case where the average demand of each item is approximately
constant with time. With limited vehicle capacity and demand uncertainty, the
manager of the central warehouse selects a periodic review fixed order quantity policy
for inventory control to ensure that the replenishment quantity of items of any subset
can be picked up by a single vehicle. In addition, the central warehouse will hold
more inventories than in the deterministic case in order to prevent the stock-out

situation under a given service level determined by management. These additional
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inventories are called Safety Stock. Other assumptions, such as the central warehouse
has unlimited space for stocking inventories, lead time is fixed for any replenishment

and no shortage or delay occurs at any suppliers, remain unchanged.

6.2 Notation
Notation mentioned in Chapter 3 will be used in this chapter and additional

notation for the stochastic model is given below.

o,  standard deviation of demands for item | inunit item per unit time.

SS;, safety stock of item .

T, replenishment interval of items collected by vehicle i .

p service level or probability of no stock out per replenishment cycle.

z random variable that has standard normal distribution at the servicelevel p.

p

n, number of items collected by vehicle i .

M (S) aggregate minor ordering cost for itemsin subset S .

O(S) aggregate stopover cost for itemsin subset S.

f (Q) average total inventory-transportation cost in term of aggregate order quantity
Q.

f/(Q)first derivative of f(Q)

6.3 Additional Costs

In addition to the costs considered in the deterministic case, minor ordering
and stopover costs will be incorporated in the stochastic model. However, in the
model formulation, these two costs will be assumed to be zero for convenience. Then

a special case where they are included in the cost structure will be studied.

6.3.1 Minor Ordering Cost
An item dependent minor order cost is constant and incurred for any item

included in the replenishment. It does not depend on the order quantity.
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6.3.2 Stopover Cost
The stopover cost is considered as a part of transportation costs. It is charged
when the vehicle stops at the supplier’s location for item collection. This cost is fixed

but specific for each supplier.

6.4 Model Formulation

In the integrated inventory-transportation system studied in this chapter,
demands for each item from outside retailers are assumed to follow the normal
distribution. The EOQ inventory policy which is the same as the one used in the
deterministic problem can still be applied to the probabilistic problem. However, the
modification of the total cost function is needed due to the uncertainty of demands.
Under this policy, the review period of a particular subset of items is fixed and the
fixed replenishment quantity for each item is determined with the objective of
minimizing the total cost without violating vehicle capacity and frequency constraints

and satisfying demands at a specific service level aswell.

In general, when facing unknown and varied demands, the inventory manager
always keeps the inventory level higher than the one when demands are deterministic
in order to prevent the stockout situation. As aresult, the inventory holding cost in the
stochastic model is higher than the one in the deterministic model. The increasing
inventory holding cost is incurred by safety stock. The safety stock is an average
inventory just before the replenishment order arrives at the warehouse. There are
many different ways to establish the safety stock. See Silver and Peterson (1985) for
details. In this problem, the safety stock of each item is determined, based on the
service level which is usualy specified by management. The service level is the

probability of no stockout per replenishment cycle. It is assume that the manager of
the central warehouse sets the same service level p for al items.

6.4.1 No Minor Ordering and Stopover Costs
Now suppose the mean and the standard deviation of demands for item | are
D, units per year and o; units per year respectively. Therefore, demands for item |
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picked up by vehicle i over itsreplenishment interval T, are also normally distributed

with mean D; T, and standard deviation o T, or
N(DT,,c°T,)

The safety stock SS of item | can be calculated from the following :

SS Za\/—

Where Z, is a random variable that follows the standard normal distribution with

mean 0 and standard deviation 1 at the service level p.

Apparently, adding the safety stock means increasing the inventory holding
cost. Consequently, a mathematical model for this problem in the stochastic setting
can be formulated by including the inventory holding cost incurred by the safety stock
in the average total inventory-transportation cost function (3.2) derived in Chapter 3.

For item | in subset S assigned to vehicle i, the average inventory cost due to its

safety stock istheinventory holding cost rate multiplied by the safety stock. That is
hZ,o, \/_

The average total inventory holding cost of this subset of items with the
servicelevel p can be formulated as

%h(S)Q(S) +Z, (S) Z ho

jeS

Meanwhile, the assumptions about the transportation part remain the same as
the ones in the deterministic case. The minor order cost and the stopover cost will not
be taken into consideration. In the other words, they are assumed to be zero for now.

As aresult, the average total transportation cost can be derived in the same way as
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D(S)

S
s Q(S)

L(S) can be determined after a subset of items assigned to the vehicle is known.

Therefore, the average total integrated inventory-transportation cost of items in subset
Sis

D(S) Q(S)
S)=L(S hS S)+7Z, h.o 6.1
c(S) = L( )Q(S) 5 (S)Q(S) + (S),;s( (6.1)
Subject to:
D(S) <CF
Q(8)>0

If there are m vehicles available, the integrated inventory-transportation problem

under stochastic demands can still be considered as a partitioning problem.

minzm:c(S(”) (PPP)

Subject to:
LmJ SIS
i=1

SVASW=¢p fordli =Kk.
S denotes a subset of items collected by vehicle i .

6.4.2 Minor Ordering Cost

Now the case when there are iitem dependent minor ordering costs is
considered. The minor ordering cost is constant and incurred for any specific item
included in the replenishment. M (S) is denoted as an aggregate minor ordering cost
which is the summation of minor ordering costs of all items in the subset S.
Therefore, the aggregate minor ordering cost of a particular subset S of items
assigned to the vehicle is also constant for every replenishment interval. When a

subset of items S is determined for the vehicle i, the aggregate minor ordering cost
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can be considered as one of components of fixed costs of that vehicle. So, from (6.1),

we obtain

D(S) h(S)Q(S) + Z; 6.2
SEREUCECR D(S)é( (62)

c(S)=L(S)—=
where L(S) =K +TSP(S)+M(S)
Subject to:
D(S)<CF
Q(S)>0

6.4.3 Stopover Cost

Assume that there isafixed cost incurred when the vehicle visits a supplier for
item collection. This cost is called the stopover cost which is specific for each
supplier and does not depend on items or quantities picked up. As a result, the
aggregate stopover cost of a subset S of items, denoted by O(S), is also fixed for
every replenishment interval. For a particular subset of items assigned to the vehicle,
the aggregate stopover cost can be combined to the existing fixed costs in (6.2).
Therefore, the average total integrated inventory-transportation cost of itemsin subset

S assigned to vehicle i is

D(S) h(S)Q(S) +7Z, Z (h,o (6.3)

S)=L(S
=854 73 D<S>.es

where L(S) =K +TSP(S) + M (S) + O(S)

Subject to:
D(S)<CF
Q(8)>0

If the minor ordering and stopover costs are included in the model, the

integrated inventory-transportation problem under stochastic demands can ill be
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formulated as a set partitioning problem and the only difference is the term of the
average integrated inventory-transportation cost of each subset of items c(S) .

6.5 Analysis of the Cost Function
For a purpose of analyzing the total cost function, a single subset of items S
will be considered and the minor ordering and stopover costs are assumed to be zero.

From the average total cost function (6.1)

o PO 2 (22 (o,

S)=L(S
=852

where L(S) =K +TSP(S)
Let

A=L(S)D(S), B:%h(S) and C

st

and T(Q) pe the average total cost function in term of the aggregate order quantity
Q. For convenience, the term S will be omitted for now. Then, the total cost function

(6.1) can berewritten as

f(Q) = g +BQ+C{Q (6.4)

A, B and C can be viewed as constant terms if which items arein the subset is

known. Then, the total cost function can be analyzed. Suppose there are three items,
items 1, 2 and 3,in subset S and L(S) =%$50, p=0.975, D,=120, D, =150, D,=200,

h, =100, h,=100, h,=120, o,=24, 0,=30 and o,=40.

Now A, B and C can be determined and A=23500, B=54.26 and C=922.16.
Different values of the total cost function can be obtained by changing the value of Q
without considering the capacity and frequency constraints. With these values, the
graph of the relationship between the total integrated cost and the aggregate order

guantity of items of that particular group can be obtained and shown in Figure 6.1.



As seen from Figure 6.1, at the first stage, when the aggregate order quantity
Q increases, the total cost decreases rapidly and reaches the lowest point as Q= 40.

This is because A is much greater than both B and C. So when Q increases, the
decreasing rate of the cost associated with A/Q is much more than the increasing rate
of the costs associated with both BQand C./Q combined. While Q is increasing, the

total cost continues falling down until the amounts of decreasing and increasing costs

are equa which incurs the minimum total cost. After that, the total cost keeps raising
up as Q increases. This can be explained that when Q is very large, the first term

A/Q becomes near zero while the other two terms, BQ and C,/Q, keep increasing.

This behavior is similar to the simple EOQ model.
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30000 v ZW L A |
|
|

20000 - !
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7
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0 50 100 150 200 250

Total Cost (%)

5000 -

Aggregate Order Quantity Q(S) (unit)

Figure 6.1. Relationship between the total cost and the aggregated order
quantity

From Figure 6.1, the total integrated cost function is convex.in the range of
Q=0to Q~40 whichisthe inflection point. This'can be easily proved which'is shown
in Appendix A. After the inflection point, the cost function is concave. Now a
guestion of “Is the local optimum also the global optimum?’ has arisen. This question
is answered by proving in Appendix A that the local optimal solution to the problem
is also the global optimal solution. In Appendix B, the order quantity determined from
(6.2) is compared with the EOQ. That the optimal order quantity Q of the model

studied is always smaller than the EOQ is proved.
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6.6 Solution Approaches
In this section, the solution methods to solve the integrated inventory-
transportation problem under stochastic demands with the minor ordering and

stopover cost components added are focused.

6.6.1 Exact Solution Approach and Heuristics

As mentioned before, this problem can be formulated as the set partitioning
problem. In addition, adding the minor ordering cost, the stopover cost and the
inventory holding cost due to the safety stock to the deterministic model does not
impact on the main concept of algorithms proposed in Chapters 4 and 5. As a resullt,
the column generation, the branch-and-price algorithm, the constructive heuristics and
the improvement algorithms including VLSN approaches developed in the
deterministic case can still be applied to the problem. However, in determining the
aggregate replenishment quantity Q(s) of each vehicle, the standard EOQ formula
cannot be used because of the inventory holding cost term due to the safety stock.
Therefore, the bisection method [see Kincaid and Cheney (1996)] known as the

method of interval halving is adopted to solve for the optimal replenishment quantity
Q' (S) . Because the local optimum is aso the globa optimum, Q' (S) will be

determined from the first derivative of the total cost function f(Q(S)). From the
graph showing the relationship between the first derivative f'(Q(S))and Q(S), it
intersects the X-axis at only one point which provides the optimal replenishment
quantity Q" (S) as shown in Figure 6.2. As a result, the bisection method is easily
applied to the stochastic problem. In Appendix B, it has been proved that Q (S) is
always smaller than the EOQ which isv/A/B. Conseguently, the initial interval for
halving in the bisection method can be set to [0, \/W].

If the vehicle capacity and frequency constraints are taken into consideration,
the optimal total costs and the optimal aggregate replenishment quantity of items in
subset S assigned to vehicle i can be obtained from

D(S)

_ (P 1 QS
o(S) = L(S) e "2 h(S)Q(S) + Z, o j;(hjaj) (6.5)
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where L(S) =K +TSP(S) + M (S) + O(S)

Subject to:
D(S)<CF
Q(S)>0
@ if Q(9< DI(:S)
where Q(9)=1Q(9) if @ <Q'(§)<C
> if C<Q'(9

and Q(S)is the optimal replenishment quantity determined by the bisection method
[see Kincaid and Cheney (1996)].
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Figure 6.2 Relationship between f(Q(S)) and the aggregated order
quantity Q(S)

6.6.2 The pricing problem
All the same notations as in the deterministic part will be used. The procedures
of the column generation approach and the branch-and-bound strategies used in both

deterministic and stochastic models are unchanged so only how to bound on the
function c(z) will bediscussed. Infact, L(z) isstill bounded from below by

L(2) > K +TSP(JY) + M (2) + O(2) = L(3%)



to obtain
qazqa
where
D(2) Q(Z)
1922, o + 2, ho
c(2) = L( )Q() > N(2Q(2)+ JZEL,
where
2 1 Q@
A2=1Q@ ?s@*(z)sc
c it c<Q(2)

The optimal Q’(z) is computed by using the bisection method.

Now the following problem can be solved

n
max > i,2; = ¢(2)
2t

subject to

Zn:Djzj <CF
j=1

z,=0 forjel’
z,=1 forjed’
z; {03 for jed

by applying the same agorithms developed in the deterministic case.

(6.6)
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CHAPTER 7
COMPUTATIONAL EXPERIMENTS

In order to measure the performance of the proposed algorithms,
computational experiments on both deterministic and stochastic models have been
performed using a randomly generated set of test instances. In this chapter, the
performance of the column generation and exact branch-and-price algorithm on a
number of small instances will be discussed first. As was expected, the branch-and-
price method is very time-consuming. However, these tests can be used to assess the
tightness of the lower bound obtained using the column generation solution to the LP-
relaxation of the set partitioning formulation. To reduce the computational time used
in the branch-and-price method, the solution obtained from the I-VLSN agorithm is
used as an upper bound at each node. In the remaining experiments, the performance
of the proposed constructive and improvement heuristics will be compared, and the
quality of the solutions obtained will be assessed by comparing the heuristic costs to

the column generation lower bound on the optimal costs.

7.1 Generation of the test instances and implementation

Both the deterministic and stochastic models are tested by using random
generated data, like other literature [See Chan and Simchi-Levi (1998)]. For every
experiment, random instances have been generated as follows. The demand rate
(demand per unit time) for each item is randomly generated from the uniform
distribution on [100,300], and the inventory holding cost rate (cost per unit per unit
time) for each item is randomly generated from the uniform distribution on [1,15].
The items are randomly assigned to one of 10 suppliers, while ensuring that each of
these suppliers manufactures at least one item. The locations of the warehouse and
suppliers are generated uniformly in the sguare [0,20]> c R*, and Euclidean
distances are used to measure transportation costs, with unit cost per unit distance
traveled.
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A base case has been defined as follows: Each vehicle has a capacity of
C =150 units, the fixed transportation cost is set to K =50, and the maximum number
of trips allowed per time unit by each vehicle is F =10. The size of an instance is

identified by the number of items, n, and the number of vehicles, m.

In the experiments on the deterministic model, four different sizes have been
considered: 15 items and 3 vehicles, 30 items and 6 vehicles, 40 items and 8 vehicles,
and 50 items and 10 vehicles, where the number of vehicles has been chosen to ensure
that a solution with this number of vehicles indeed exists given the capacity
constraints. In addition, a sensitivity analysis of the computational results has been
performed for changes in the capacity, frequency, and fixed cost parameters, where

the number of available vehicles has been adjusted accordingly.

For the stochastic case, the model with minor ordering and stopover costs
included and the one without these costs are examined. For each model, four different
sizes have been chosen: 15 items and 3 vehicles, 20 items and 4 vehicles, 25 items
and 5 vehicles, and 30 items and 6 vehicles. The reason for testing on smaller
problems for the stochastic model is that the column generation approach to obtain the
lower bound takes much longer time than the one in the deterministic model. For the
case with minor ordering and stopover costs, the minor ordering and stopover costs
are randomly generated from the uniform distribution on [0,5]. The base case for this
model is defined as follows: C =150, F =10, K =50, p =0.975 and the percent of
demands for the standard deviation for all items is set to 20 %. In addition to
analyzing the effect of varying the capacity, frequency, and fixed cost parameters, the
changes in the service level and the standard deviation of demands are also examined.
However, a sensitivity analysis has been conducted for only the stochastic model with

the minor ordering and stopover costs included.

All the agorithms and heuristics have been implemented in the C++
programming language on a PC with a1.80 GHz Intel Pentium 4 CPU and 240 MB of
RAM. The CPLEX 8.1 solver is used to obtain the optimal solution to the TSP and
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the solutions to the LP-relaxation of the set partitioning problem in the column

generation procedure.

7.2 Experiments on the deter ministic model
7.2.1 Performance of branch-and-price and quality of the lower bounding
procedure

The goal of the first experiment is to test the computationa efficiency of the
branch-and-price agorithm and assess the quality of the lower bound obtained from
the column generation procedure. For this experiment, the branch-and-price algorithm
has been used to obtain optimal solutions for all 15-item instances, as well as the
corresponding lower bounds. The results of this test on the 10 instances are given in
Table7.1.

It can be concluded that the branch-and-price algorithm is very time-
consuming, even for these small problem instances. However, the column generation
procedure is able to find a reasonably tight lower bound to the optimal costs
efficiently, with an average gap between the optimal cost and the lower bound of

approximately 2.5 %, and an average computational time of 13.5 CPU seconds.

Problem LB Optimal | %deviation

1 27781 | 2778.1 0.00

2 2645.8 | 2645.8 0.00

3 25452 | 2598.6 2.10

4 2669.7 | 2761.2 3.43

5 2557.6 | 2726.0 6.58

6 25639 | 2699.3 5.28

7 2511.3 | 2526.7 0.61

8 23783 | 2426.2 2.02

9 2556.2 | 2577.2 0.82

10 2710.0 | 28255 4.26
avg 25916 | 2656.4 251
max 27781 | 2825.5 6.58

Time(sec) | 135 | 13571.3

Table 7.1 Optimal cost vs. lower bound (n = 15, m = 3).
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7.2.2 Performance of the constructive heuristics and improvement algorithms

In the second set of experiments on the deterministic model, the goa is to
assess the quality of the solutions obtained by the constructive heuristics and
improvement algorithms. Firstly, each instance is solved by using the constructive
heuristics. Next, these initial solutions are improved by using the OSM, SE, OSM-SE,
SE-OSM, I-VLSN and S-VLSN improvement algorithms. Then the objective function
value found by the heuristic is compared to the lower bound for each instance using
the column generation approach. In addition, for the instances with n=15 items the
heuristic costs are also compared to the optimal costs. The results of these
experiments are given in Tables 7.2-7.4. From Table 7.2, the DR heuristic combined
with the I-VLSN a gorithm provides the best solution to the problem with n=15 and
m=3. The average cost isonly 0.76% higher than the optimal solution.

The average and maximum cost deviations from the lower bound of the
solutions obtained by both constructive heuristics and all the improvement algorithms
are reported in Tables 7.2-7.4 and Figures 7.1-7.6. The results show that the DR
heuristic outperforms the All heuristic both with respect to the average and the
maximum error over al 10 instances. In addition, the gap between the lower bound
and the solution obtained from the DR heuristic improves with increasing problem
size, while this effect is absent from the All heuristic. This can be explained that in
the All heuristic items of the same supplier may not be assigned to the same vehicle
because an item is randomly selected for insertion. When the number of items
increases, it is more unlikely that all items of the same supplier are assigned to the
same vehicle. On the other hand, in the DR heuristic, items of the same supplier are
assigned to the same vehicle if the vehicle capacity is still satisfied. From Tables 7.2-
7.4, the solutions improved by the SE, OSM-SE and SE-OSM algorithms are not
significantly different for the DR and All heuristics. In other words, these
improvement algorithms provide solutions with almost the same level of quality,
regardless of constructive heuristics used to obtain the initial solutions. The SE
approach seems to perform better than the OSM method. However, the OSM-SE and
the SE-OSM approaches perform equally well. With respect to the VLSN
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improvement algorithms, 1-VLSN outperformed S-VLSN for all cases, except for the
largest problem with n=50 and the starting solution found by All. In fact, the I-
VLSN works better than any other improvement algorithms. The I-VLSN algorithm
based on the DR solution on average provided the solution with smallest error, with a
maximum average error of 3.28 %. Moreover, as for the DR heuristic, the gap
between the lower bound and the solution obtained from the I-VLSN decreases when

the number of items increases.

Error
bound
Heuristics (%)
Heuristic OSM SE OSM-SE ~ SE-OSM I-VLSN SVLSN

DR avg 5.29 851 3.66 2410 241 0.76 2.37
max 1411 14.11 9.04 9.04 9.04 5.26 9.04
All avg 7.31 5.23 3.13 2.29 2.49 1.05 2.89
max 15.99 15.70 8.37 6.73 6.73 6.04 9.04

Table 7.2 Error with respect to optimal solution of solutions obtained from the
constructive heuristics and improvement algorithms (n = 15, m = 3).
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Figure 7.1 Average error with respect to optimal solution of solutions obtained
from the constructive heuristics (H=heuristic) and improvement algorithms
(n=15 m=23).
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Figure 7.2 Maximum error with respect to optimal solution of solutions obtained
from the constructive heuristics (H=heuristic) and improvement algorithms
(n=15 m=23).

Size Error bound (%)
n m DR OSM SE OSM-SE SE-OSM 1-VLSN S-VLSN

15 3 avg 8.81 6.98 6.47 4.67 5.18 3.28 491
max 14.11 14.11 9.26 9.04 9.04 6.92 9.68

30 6 avg 8:25 6.84 5.93 6.10 5.62 2.84 5.63
max 11.32 8.78 8.49 8.08 8.08 6.73 7.46

40 8 avg 5.53 4.82 4.47 4.04 3.88 2.69 3.83
max 8.21 7.80 7.03 6.15 6.08 3.20 6.08

50 10 avg 5.43 4.68 4.69 4.06 4.24 237 3.70
max 8.48 6.70 7.40 5.63 6.31 3.31 5.64

Table 7.3 Error bounds of solutions obtained from the DR heuristic and improvement
algorithms.
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Size Error bound (%)
n m All OSM SE OSM-SE SE-OSM I-VLSN S-VLSN

15 3 avg 9.98 7.84 5.69 4.84 5.05 3.57 5.45
max 16.94 15.70 9.39 9.82 9.39 6.58 9.33

30 6 avg 12.18 10.21 6.06 5.21 5.55 3.89 494
max 16.71 13.97 9.11 V.35 9.11 6.51 6.46

40 8 avg 13.00 9.80 478 514 4.74 3.64 4.30
max 16.19 14.45 7.46 6.04 7.44 458 6.16

50 10 avg 1331 11.24 424 4.24 4.17 4.04 3.76
max 17.74 14.07 5.71 6.61 5.71 7.44 5.00

75

Table 7.4 Error bounds of solutions obtained from the All heuristic and improvement
algorithms.
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Figure 7.5 Average error of solutions obtained from the All heuristic and
improvement algorithms.
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Figure 7.6 Maximum error of solutions obtained from the All heuristic and
improvement algorithms.

Finally, the computation time needed for finding the lower bound as well as
for the heuristics is provided in Tables 7.5-7.6. It is immediately seen that the
heuristics are extremely efficient, finding a solution in usually less than a second. On
the other hand, the time needed for computing the lower bound is very time-
consuming, increasing dramatically as the problem size increases. However, as seen
in Tables 7.3-7.4, the solution quality of the heuristics is very good, and improves as
the problem size increases. Therefore, the need for computing the lower bound in
practice decreases as the problem size increases. In the view of the VLSN algorithms,
the I-VLSN requires more computational time than the S-VL SN does. This is because
there are more nodes in the [-VLSN. As a result, constructing and updating the

improvement graph in the I-VL SN takes more computational effort.

Size Average computational time (sec)

n m LB DR OSM SE OSM-SE SE-OSM I-VLSN  SVLSN
15 3 135 0.000 0.000 0.000 0.000 0.005 0.017 0.006
30 6 849.5 0.000 0.036  0.002 0.037 0.003 0.136 0.008
40 8 14207.6 0.002 0.009 0.000 0.011 0.000 0.217 0.011
50 10 48672.0 0.003 0.002  0.003 0.005 0.005 0.433 0.016

Table 7.5 Average computational time for the column generation method (LB), the
DR heuristic and the improvement algorithms.
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Size Average computational time (sec)

n m LB All OSM SE OSM-SE SE-OSM I-VLSN  SVLSN
15 3 135 0.000 0.034 0.002 0.036 0.003 0.027 0.011
30 6 849.5 0.000 0.008 0.002 0.011 0.002 0.235 0.038
40 8 14207.6 0.002  0.014 0.002 0.022 0.003 0.525 0.081
50 10 48672.0 0.006  0.013 0.006 0.019 0.006 1.378 0.133

Table 7.6 Average computational time for the column generation method (LB), the
All heuristic and the improvement algorithms.

7.2.3 Sensitivity analysis

In order to investigate the impact of changing some of the problem parameters
on the computational performance of the proposed heuristics and improvement
algorithms, a third set of experiments have been conducted. Using the 40-item
instances as a base case, the vehicle capacity C, the maximum number of trips per
vehicle F and the fixed (digpatching and joint ordering) costs K have been varied
from 100 to 200, from 8 to 12, and from O to 100 respectively. In each case, the
number of vehiclesis adjusted to suit the capacity constraints. Based on the results in
Tables 7.3-7.4, the best constructive heuristic, DR, and al the improvement

algorithms have been chosen for performing the sensitivity analysis.

The resultsin Tables 7.7-7.9 and Figures 7.7-7.12 show that the gap between
the lower bound and the solution obtained from almost all methods decreases on
average for problems with smaller vehicle capacity, smaller maximum number of trips
per time unit, or smaller fixed transportation cost. However, the error of the solution
obtained from the I1-VLSN method decreases as the fixed transportation cost increases.
The error bound also seems to be more stable across instances when the vehicle
capacity or the maximum number of trips is smaller. In addition, the changes of the
maximum number of trips allowed seem to have less impact on the average error. As
for the changes in the fixed costsK , it is surprising that the I-VLSN approach is
outperformed by the OSM-SE, SE-OSM and S-VLSN agorithms when K = 0.



Error
bound
C m (%)
DR OSM SE OSM-SE ~ SE-OSM I-VLSN SVLSN
100 12 avg 5.34 452 4.47 423 4.28 191 4.39
max 6.66 5.97 5.83 5.83 5.83 3.05 5.97
150 8 avg 5.53 482 4.47 4.04 3.88 2.69 3.83
max 8.21 7.80 7.03 6.15 6.08 3.20 6.08
200 6 avg 7.45 7.07 6.46 6.24 6.21 2.89 5.63
max 11.25 11.25 8.99 8.38 8.38 4.59 8.00
Table 7.7 Error bounds when the vehicle capacity C is varied.
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Figure 7.7 Average error bounds when the vehicle capacity C is varied.
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Figure 7.8 Maximum error bounds when the vehicle capacity C is varied.

Error

bound

F m (%)
DR OSM SE OSM-SE  SE-OSM  I-VLSN  S-VLSN
8 10 | avg 5.45 412 472 3.83 411 224 402
max | 6.63 5.79 5.81 5.35 5.46 2.67 5.35
10 8 | ag | 553 4.82 4.47 4,04 3.88 2.69 3.83
max | . 8.21 7.80 7.03 6.15 6.08 3.20 6.08
12 7| avg| 512 435 414 4.09 3.82 2.94 3.76
max | 10.00 6.41 4.97 6.08 494 4.50 4.89

Table 7.8 Error bounds when the maximum number of trips allowed F is varied.
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Error
bound
K (%)
DR OSM SE OSM-SE ~ SE-OSM  I-VLSN  S-VLSN

0 avg 4.34 3.07 2.53 1.99 212 3.49 242
max 7.07 4.93 5.88 3.76 4.08 5.96 4.36
20 | avg 5.26 477 4.04 3.83 3.65 3.29 3.36
max 7.93 793 5.77 5.68 5.68 5.95 5.12
50 | avg 5.53 4.82 4.47 4.04 3.88 2.69 3.83
max 8.21 7.80 7.03 6.15 6.08 3.20 6.08
100 | avg 4.06 3.55 347 3.00 3.03 2.04 2.98
max 6.79 5.64 5.94 5.06 5.06 2.95 5.04

Table 7.9 Error bounds when the fixed transportation cost K is varied.
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Figure 7.11 Average error bounds when the fixed transportation cost K is varied.
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Figure 7.12 Maximum error bounds when the fixed transportation cost K is varied.

7.3 Experiments on the stochastic model

7.3.1 Performance of branch-and-price and quality of the lower bounding

procedure

In this experiment, the case where the minor ordering and stopover costs are

not considered and the case where the minor ordering and stopover costs are included

in the model are investigated and for each case, ten of 15-item instances are tested.

The results of both cases are shown in Tables 7.10-7.11. The branch-and-price

algorithm is still very time-consuming for- determining the optimal solution to the

problem of the stochastic model. However, the column generation approach can find a

tighter lower bound, with an average gap between the optimal cost and the lower

bound of approximately 1.7 % for the case without the minor ordering and stopover

costs and only 1.31 % for the case with the minor ordering and stopover costs.



Problem LB Optimal | %deviation
1 6193.9 6193.9 0.00
2 5501.6 5501.6 0.00
3 5332.2 5412.0 1.50
4 5612.8 5766.4 2.74
5 5676.9 5866.1 3.33
6 521 0N 5477.1 3.93
1 5480.8 5498.7 0.33
8 4927.4 5006.9 1.61
9 5658.3 5681.6 041
10 5743.0 5921.8 8,14,
avg 6193.9 5632.6 1.70
max 5539.7 6193.9 3.93
Time(sec) 14.9 14357.9

Table 7.10 Optimal cost vs. lower bound for the stochastic case
without minor ordering and stopover costs (n = 15, m = 3).

Problem LB Optimal | %deviation
e 6852.4 6852.4 0.00
2 6279.4 6279.4 0.00
3 5990.5 6056.1 1.10
4 6202.8 6316.4 1.83
5 6340.9 6519.1 2.81
6 5970.3 6172.2 3.38
7 6106.9 6116.2 0.15
8 5481.0 5549.9 1.26
9 6278.6 6292.7 0.23
10 6453.8 6602.3 2.30
avg 6195.7 6852.4 131
max 6852.4 6275.7 3.38
Time(sec) 36.9 5499.7

Table 7.11 Optimal cost vs. lower bound for the stochastic case
with minor ordering and stopover costs (n = 15, m = 3).



7.3.2 Performance of the constructive heuristics and improvement algorithms
Firstly, the model without the minor ordering and stopover costs is tested. The
purpose of these experiments is the same as the one for the deterministic model. In
Table 7.12 and Figures 7.13-7.14 showing the error with respect to optimal solution
for small problem instances with n=15, the All heuristic seems to outperform the DR
heuristic. The solution obtained from the All heuristic and improved by the I-VLSN
algorithm is only 0.36 % over the optimal solution. However, with the same reason
mentioned before, when the problem size gets larger, the AIll heuristic is
outperformed by the DR heuristic as shown in Tables 7.13-7.14 and Figures 7.15-7.18
but its performance in the stochastic model is better than in the deterministic model.
For the improvement algorithms, the I-VLSN is still the best algorithm. It provides
the solution with maximum average error of 5.07 %. The SE-OSM performs better
than the OSM-SE but its performance is approximately as well as the S-VLSN. In
contrast to the deterministic model, when the problem size increases, the gap between
the lower bound and the solution obtained from the heuristics and improvement

algorithms seem to increase.

Error
bound
Hueristic (%)
Heuristic OSM SE OSM-SE  SE-OSM 1-VLSN SVLSN

DR avg 3.71 2.63 2.60 1.48 1.11 0.51 0.64
max 8.09 8.09 5.85 5.44 5.60 3.88 2.66
All avg 2.77 2.32 0.85 0.80 0.76 0.36 0.98
max 6.68 6.68 2.10 2.10 2.10 0.95 2.37

Table 7.12 Error with respect to optimal solution of solutions obtained from the
constructive heuristics and improvement algorithms for the stochastic case
without minor ordering and stopover costs (n = 15, m = 3).
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Size Error bound (%)
n DR OSM SE OSM-SE SE-OSM I-VLSN S-VLSN

15 3 avg 5.45 4.36 431 3.19 2.82 221 2.36
max 8.09 8.09 5.85 5.7 5.7 3.93 6.69

20 4 avg 3.59 351 2.9 277 2.73 214 2.39
max 6.3 6.3 534 5.34 5.34 3.4 4.53

25 5 avg 4.26 4.03 3.64 3.48 3.52 3.19 342
max 6.31 5.89 54 5.4 54 4,19 5.31

30 6 avg 4.99 444 3.78 3.62 3.58 3.27 3.96
max 6.97 5§77 5.19 5.19 4.86 5.07 6.61
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Table 7.13 Error bounds of solutions obtained from the DR heuristic and
improvement algorithms for the stochastic case without minor ordering and stopover

Costs.
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Figure 7.15 Average error bounds of solutions obtained from the DR heuristic

and improvement algorithms for the stochastic case without minor ordering

and stopover costs.
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Figure 7.16 Maximum error bounds of solutions obtained from the DR
heuristic and improvement algorithms for the stochastic case without minor
ordering and stopover costs.

Size Error bound (%)
n All OSM SE OSM-SE SE-OSM I-VLSN S-VLSN

15 3 avg 452 4.06 2.56 251 247 2.06 2.7
max 9.6 9.6 5.28 5.28 5.28 3.93 5.56

20 4 avg 4.67 357 214 2.05 211 2.7 244
max 8.19 5.88 4.38 4.68 4.38 4.82 5.39

25 5 avg 8.01 6.2 3.66 371 3.65 331 3.95
max 10.47 9.77 5.52 5.52 5.52 455 7.56

30 6 avg 7.45 6.14 343 341 3.17 3.16 3.76
max 8.92 7.74 4.95 5.68 4.75 4.48 6.37

Table 7.14 Error bounds of solutions obtained from the AIll heuristic and
improvement algorithms for the stochastic case without minor ordering and stopover

Costs.
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Tables 7.15-7.16 report the average computation time needed for finding the
lower bound and for obtaining solutions by the heuristics and improvement
algorithms. All the algorithms still perform very efficiently. The longest average time
to compute a near-optimal solution by the I-VLSN is only 0.0842 second for instances
with n=30 and m=6. However, the time needed for determining the lower bound is

much longer than the one in the deterministic model, especially when the problem

Size increases.
Size Average computational time (sec)
n m LB DR OSM SE OSM-SE  SE-OSM I-VLSN  SVLSN
15 3 14.9 0.0102  0.0007 0.0095 0.012 0.014 0.0111 0.0072
20 4 161.6 0.0423  0.0062 0.0095  0.0201 0.0126 0.0235 0.0104
25 5 3834.2 0.022  0.0045 0.019 0.0313 0.0221 0.0418 0.0188
30 6 112225 | 0.0155 0.0079 0.0191 0.0171 0.0222 0.0842 0.0153

Table 7.15 Average computational time for the column generation method (LB), the
DR heuristic and the improvement algorithms for the stochastic case without minor
ordering and stopover costs.

Size Average computational time (sec)

n m LB All OSM SE OSM-SE ~ SE-OSM  I-VLSN  SVLSN
15 3 149 0.0116 0 0.0009  0.0011 0.0012 0.0106 0.0082
20 4 161.6 0.0141 0.0015 0.0032  0.0015 0.0032 0.0328 0.0281
25 5 38342 | 00156 - 0.0016 0.0077  0.0064 0.0077 0.0796 0.0532
30 6 11222.5 | 0.0469 . 0.0062 ~0.0031  ~0.0094 0.0047 0.1937 0.0767

Table 7.16 Average computational time for the column generation method (LB), the
All heuristic and the improvement algorithms for the stochastic case without. minor
ordering and stopover costs.

Now the results of the experiments on the stochastic model with the minor
ordering and stopover costs included are discussed. From Table 7.17 and Figures
7.19-7.20 reporting average and maximum errors of the heuristic costs compared with
the optimal costs for the instances with n =15 and m =3, the VLSN algorithms,
especialy the I-VLSN, work very well. The I-VLSN gives the smallest error of 0.34
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% over the optimal cost when applied to the solutions obtained from the All heuristic.
Like the results in the model not considering the minor ordering and stopover costs,
the DR heuristic outperforms the All heuristic in most cases as shown in Tables 7.18-
7.19 and Figures 7.21-7.24. In addition, the I-VLSN still performs better than any
other improvement algorithms, with a maximum average error of 2.99 % when
working with the All heuristic. As for the combination of the one and two exchange
algorithms, both the OSM-SE and the SE-OSM perform equally and reasonably well,
with an average error of less than 3.00 % in almost every case. However, it cannot be
concluded at this point that the gap between the lower bound and the solution
obtained from the constructive heuristics and all improvement algorithms decreases

when the number of items increases.

Error
bound
Hueristic (%)
Heuristic OSM SE OSM-SE = SE-OSM I-VLSN SVLSN

DR avg 3.26 2.36 2.01 1.09 0.83 0.35 0.57
max 7.58 7.58 4.30 4.28 4.08 2.38 2.17
All avg 5.49 2.50 143 0.93 1.42 0.34 0.60
max 11.56 5.54 5.81 2.38 5.81 0.84 2.57

Table 7.17 Error with respect to optimal solution of solutions obtained from the
constructive heuristics and improvement algorithms for the stochastic case
with minor ordering and stopover costs (n = 15, m = 3).
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Figure 7.20 Maximum error with respect to optimal solution of solutions obtained

from the constructive heuristics and improvement algorithms for the stochastic

case with minor ordering and stopover costs (n = 15, m = 3).



Size Error bound (%)
n DR OsM SE OSM-SE SE-OSM I-VLSN S-VLSN

15 avg 459 3.69 3.33 24 214 1.66 1.88
max 7.58 7.58 4.95 4.95 4.95 3.71 5.18

20 avg 3.68 244 2.6 197 2.16 157 179
max 6.55 3.92 4.62 3.92 3.92 2.81 3.3

25 avg 3.38 312 2.62 26 248 2.16 247
max 5.26 4.68 185 3.95 3.95 3.26 3.95

30 avg 4.62 3.57 291 2.97 2.75 2.62 2.83
max 5.96 4.72 4.09 4.39 3.88 4.06 3.52
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Table 7.18 Error bounds of solutions obtained from the DR heuristic and
improvement agorithms for the stochastic case with minor ordering and stopover

Costs.

Figure 7.21 Average error bounds of solutions obtained from the DR heuristic and
improvement algorithms for the stochastic case with minor ordering and stopover

Costs.
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Figure 7.22 Maximum error bounds of solutions obtained from the DR heuristic and

improvement algorithms for the stochastic case with minor ordering and stopover

COsts.

Size Error bound (%)

n All OSM SE OSM-SE SE-OSM I-VLSN SVLSN

15 avg 6.86 3.84 2.75 2.25 2.73 1.65 1.92
max 11.56 9.11 5.81 4.55 5.81 3.73 493

20 avg 6.32 4.14 181 4.14 1.72 1.99 2.2
max 8.82 7.29 4.22 7.29 4.22 4.16 7.58

25 avg 8.4 5.17 2.75 2.75 2.51 2.84 3.09
max 10.81 7.16 5.03 451 5.03 3.86 8.4

30 avg 9.16 5.15 3.35 2.82 3.16 2.99 341
max 10.43 6.2 4.16 3.88 3.76 4.49 557

Table 7.19. Error. bounds of —solutions obtained from. the All heuristic and

improvement algorithms for the stochastic case with minor ordering and stopover

Costs.
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The average computation times corresponding to the tests on the stochastic
problems that the minor ordering and stopover costs are included are given in Tables
7.20-7.21. It appears that the average computation time for al heuristicsis still small,
with less than 0.2 second for all cases. However, for this model, finding the lower
bound by the column generation approach takes longer time than in the deterministic

mode and the stochastic model without these costs included.

Size Average computational time (sec)

n m LB DR OSM SE OSM-SE ~ SE-OSM I-VLSN  SVLSN
15 3 36.9 0.0126  0.0016 0.0156 0.014 0.022 0.0116 0.0078
20 4 254.7 0.0187 0.0031 0.0171 0.0156 0.0202 00485  0.05577
25 5 1579.2 0.0141 0.0063 0.0158 0.0233 0.0173 0.0398 0.0095
30 6 16258.2 0.0251 0.0046 0.0328 0.0203 0.0376  0.0905 0.0124

Table 7.20 Average computational time for the column generation method (LB), the
DR heuristic and the improvement algorithms for the stochastic case with minor
ordering and stopover costs.

Size Average computational time (sec)

n m LB All OSM Si= OSM-SE ~ SE-OSM I-VLSN  SVLSN
15 3 36.9 0.0158  0.0359 0 0.0374 0 0.0176 0.0121
20 4 254.7 0.0127 0 0.0093  0.0062 0.0109 0.0391 0.0374
25 5 1579.2 0.0591 0 0.0032 0.0015 0.0032 0.0624 0.0579
30 6 16258.2 | 0.0547 0.0048 0.0047  0.0108 0.0063 0.1515 0.1124

Table 7.21 Average computational time for the column generation method (LB), the
All heuristic and the improvement algorithms for the stochastic case with minor
ordering and stopover costs.

7.3.3 Senditivity analysis

In the sensitivity analysis, only the stochastic model with the minor ordering
and stopover costs included is considered. The 30-item instances are used as a base
case. In addition to changing the vehicle capacity C, the maximum number of trips
per vehicle F and the fixed costs K as in the deterministic case, the impact of
varying the service level pand the standard deviation o, of demands for item j on
the performance of the proposed heuristics and improvement algorithms is also

investigated. The service level and the percent deviation of demands for the standard
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deviation have been varied from 0.90 to 0.975 and 10% to 30% respectively. The DR
heuristic and all the improvement algorithms have been chosen for conducting the

sensitivity analysis.

Theresultsin Table 7.22 and Figures 7.25-7.26 reveal that varying the service
level has small impact on the performance of all the heuristics. The error bound of the
solution obtained from the heuristics dlightly decreases when the service level
increases. Based on the results in Table 7.23 and Figures 7.27-7.28, it is implied that
increasing the standard deviation of demand seems to decrease the gap between the
lower bound and the solution obtained from the heuristics. It may be said that the
proposed heuristics and improvement algorithms will perform better in a situation that

demand uncertainty is high.

The results in Tables 7.24-7.26 and Figures 7.29-7.34 indicate that the gap
between the lower bound and the solution obtained from the DR heuristic and
improvement algorithms decreases as the vehicle capacity, maximum number of trips
per time unit, or fixed transportation cost decreases. These results are the same as the
ones in the deterministic model. |t can be observed further that the changes of the
maximum number of trips allowed and the vehicle capacity have less impact on the
error bound than the changes of the fixed cost K does. In addition, the I-VLSN
approach is outperformed by the OSM-SE, SE-OSM and S-VLSN agorithms as the

fixed cost K decreases.

Error
bound
service (%)
level
p DR OSM SE OSM-SE ~ SE-OSM I-VLSN S-VLSN
0.9 avg 5.15 3.84 3.46 311 3.19 2.52 281
max 6.47 5.40 4.81 4.81 4.67 4.35 3.69
0.95 avg 4,86 3.52 3.32 3.08 3.04 2.58 2.83
max 6.21 5.15 4.63 4.63 4.48 4.22 3.62
0.975 avg 4.62 3.57 291 2.97 2.75 2.62 2.83
max 5.96 4.72 4.09 4.39 3.88 4.06 3.52

Table 7.22 Error bounds for the stochastic case with minor ordering and stopover
costs when the service level pisvaried.
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Error
bound

% of demand (%)
for standard OSM- SE- |- S
deviation DR OsSM SE SE OSM VLSN VLSN
10 avg 5.38 3.95 311 3.28 2.83 281 3.03

max 6.61 5.59 4.98 4.98 4.10 4.44 4.08

20 avg 4.62 3.57 2l 297 2.75 2.62 2.83
max 5.96 4.72 4.09 4.39 3.88 4.06 3.52

30 avg 3.96 3.03 2.62 254 2.38 2.28 2.66

max 5.17 4.13 3.68 3.47 3.46 3.67 4.51

Table 7.23 Error bounds for the stochastic case with minor ordering and stopover
costs when the standard deviation is varied.
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Figure 7.27 Average error bounds for the stochastic case with minor ordering
and stopover costs when the standard deviation is varied.
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Error
bound
C (%)
DR OSM SE OSM-SE  SE-OSM _[-VLSN  S-VLSN

100 avg 348 255 2.64 213 221 197 2.10
max 5.25 341 4.55 3.05 2.97 2.57 2.84
150 avg 4.62 3.57 291 2,97 2.75 2.62 2.83
max 5.96 4.72 4.09 4,39 3.88 4.06 3.52
200 avg 3.90 3.46 2.80 2.92 2.64 2.26 2.66
max 6.49 5.59 5.14 5.14 5.14 3.29 4.25

Table 7.24 Error bounds for the stochastic case with minor ordering and stopover

costs when the vehicle capacity Cisvaried.
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Figure 7.28 Maximum error bounds for the stochastic case with minor ordering
and stopover costs when the standard deviation is varied.
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Error
bound
F m (%)
OSM- SE- S
DR OSM SE SE OSM 1-VLSN VLSN

8 8 avg 3.32 2.59 2.46 221 211 2.36 2.25
max 454 3.56 gai 12l 3.06 3.60 3.52
10 6 avg 4.62 3.57 291 2.97 2075 2.62 2.83
max 5.96 4,72 4.09 4.39 3.88 4.06 3.52
12 5 avg 4.19 3:62 3.03 2.75 2.76 2.29 249
max 5.05 4,72 3.86 3.79 3.63 3.47 2.82

Table 7.25 Error bounds for the stochastic case with minor ordering and stopover

costs when the maximum number of trips allowed F is varied.
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Figure 7.31 Average error bounds for the stochastic case with minor ordering

and stopover costs when the maximum number of trips allowed F isvaried.
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ordering and stopover costs when the maximum number of trips allowed F is

varied.

Error

bound

K (%)
OSM- SE- |- S
DR OSM SE SE OSM VLSN VLSN
0 avg 2.25 132 0.97 0.77 0.71 1.34 0.57
max 3.35 2.23 1.49 1.48 1.39 1.93 1.53
20 avg 3.26 2.25 2.25 2.07 1.85 1.97 164
max 4.29 3.17 3.32 247 2.39 3.50 2.24
50 avg 4,62 3.57 291 297 2.75 2.62 2.83
max 5.96 472 4.09 4.39 3.88 4.06 3.52
100 | avg 5.26 4.24 3.10 3.16 3.07 2.31 2.93
max 6.47 5.66 4.65 4.65 4.65 4.02 4.04

Table 7.26 Error bounds for the stochastic case with minor ordering and stopover

costs when the fixed costs K is varied.
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CHAPTER 8
CONCLUSION AND FUTURE RESEARCH

8.1 Conclusion

In this research, the integration of the inventory replenishment and
transportation decisions for an inbound commodity collection system with one
warehouse, multiple suppliers, and multiple items has been studied. In this system, a
fleet of capacitated vehicles are dispatched from the central warehouse to collect a set
of items at suppliers locations and then return to the central warehouse. Each vehicle
also faces a frequency constraint. The problems in both deterministic and stochastic
settings are considered. For each problem, a mathematical formulation model has

been devel oped.

In the deterministic model, the central warehouse faces constant and
deterministic demands for itsitems. It is assumed that the items are jointly replenished
according to an economic order quantity policy. In order to find the optimal operating
parameters for this assumed policy, a set partitioning formulation for the problem is
developed and a column generation approach that can be used to obtain alower bound
on the objective function value is proposed. In order to solve the small size instances,
a branch-and-price algorithm is also developed. Since the branch-and-price algorithm
is not scalable, i.e., the solution time requirement increases very quickly as the size of
the instance increases; constructive as well -as improving heuristics that efficiently

find near-optimal solutions for the problems are proposed.

The computational analysis of this model indicates that the constructive
heuristics used in conjunction with one of the proposed VLSN agorithms, the I-
VLSN, can find near-optimal solutions very efficiently. The sensitivity anaysis has
shown that this behavior is robust under changes in various key problem parameters.
In addition, the OSM-SE and SE-OSM algorithms that are based on the one and two
exchange heuristics for the VRP also perform reasonably well. For smaller instances

or with some more time investment, the column generation algorithm may be used to
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provide a bound on the deviation of the cost of the heuristic solution from the optimal

COst.

In the stochastic model, it is assumed that demands at the central warehouse
from outside retailers are assumed to be independent and identically distributed. A
periodic review fixed order quantity policy is adopted to ensure that the vehicle
capacity is not exceeded for each collection. In addition to inventory holding, joint
fixed ordering, vehicle dispatching and routing costs that are incorporated in the
deterministic model, the minor ordering and stopover costs are also taken into account
to make the problem more redlistic. The mathematical model is formulated by adding
to the deterministic model the inventory holding cost due to the safety stock for a
specific service level. The constructive heuristics and the improvement algorithms as
well as the branch-and-price algorithm developed for the deterministic model can still
be employed to solve the problem in the stochastic setting with satisfactory

performance even when one of problem parameters has been varied.

The conclusion of this research is depicted in Figures 8.1-8.2
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-An inbound material collection system.

-A central warehouse, multiple suppliers and
non-identical multiple items.

-Demand from outside retailers.

———> -A fleet of capacitated vehicles with frequency
constraint.

-A periodic review with fixed order quantity
policy (EOQ).

-Inventory holding, joint ordering, minor
ordering, stopover, vehicle dispatching and
routing costs.

Stochastic

Deterministic
Model Model

-Constant and deterministic -Independent and identically
demand. distributed demand (Normal
-Assume no minor ordering distribution).

and stopover costs. -Ad(_:l safety stock based on
-Formulate a standard EOQ- service level. _

type cost function and a set -Add inventory holding cost
partitioning problem. due to safety stock to the EOQ-

type cost function.

Solution
Approaches

Figure 8.1 Research Conclusion
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Branch-and-Price
algorithm

|

Exact Solution
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I mprovement
Methods

|

-Formulate an IP problem.
-Iteratively solve the LP-
relaxation  using  column
generation.

-In each iteration, use a branch-
and-bound algorithm to solve a
pricing problem (sub-problem)
in order to verify that the
current solution is optimal, or
identify subsets that may
improve the objective function.
-If the optimal solution is
fractional, transform  subset
selection variables into
assignment variables, branch on
a fractional assignment variable
and solve the LP-relaxation

again.

-Generate an initial feasible
solution.

-The DR heuristic considers a
distance ratio for partitioning
items into groups.

-The All heuristic is based on
the arbitrary insertion heuristic
for the TSP.

-The TSP is solved using the
arbitrary insertion heuristic and
the 2-opt exchange heuristic.

Computational
Experiments

-Improve an initial feasible
solution.

-Based on 1-and-2 exchange
heuristics.

-OSM, SE, OSM-SE, SE-OSM,
VLSN (I-VLSN and S-VLSN).
-OSM moves a group of items
of a common supplier from one
vehicle to another.

-SE exchanges a group of items
of a common supplier between
two vehicles.

-The VLSN algorithms explore
very large  neighborhoods
implicitly.

-The I-VLSN method considers
simultaneous moves of an item
from one vehicle to another in a
subset of vehicles.

-The  SVLSN algorithm
considers simultaneous moves
of a group of items from one
vehicle to another in a subset of
vehicles.

-The branch-and-price algorithm is very time consuming.

-The heuristics perform efficiently, especially the DR followed by
the I-VLSN, for both deterministic and stochastic cases.

-The DR heuristic outperforms the All heuristic.

-The I-VLSN performs better than any other improvement methods.
-The heuristics perform reasonably well under various parameters.

Figure 8.2 Research Conclusion (continued)
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8.2 Future Research

This research studies an inbound commodity collection system which is only
one segment of the supply chain. A multi-echelon system can be focused where a
manager of the central warehouse sends a fleet of vehicles to collect items at suppliers
and also dispatches the same fleet of vehicles to distribute items stored at the centra
warehouse to retailers. In this case, each segment could be optimized separately first

and then linked together to achieve a whole minimum costs.

Another interesting scenario is that the distribution of items to retailers is
instantly followed by the item collection. That is after a vehicle sent from the central
warehouse has finished distributing items to a set of retailers, it visits a set of
suppliers for item collection and then returns to the central warehouse where the items
are stored. In this case, the replenishment at the central warehouse and at retailers

could be assumed to occur simultaneously.

The models studied in this research may be extended to the case where the
central warehouse and suppliers belong to the same organization. Therefore, inventory
holding costs incurred at each supplier must be considered as well. In the case where
the vehicle capacity isvery large, compared to the aggregate demand rate of all items,
it would be interesting to study if the optimal replenishment strategy is to collect all
the items by using a single vehicle under the policy studied.

For the problem in the stochastic setting, ‘a periodic review fixed order
guantity policy is selected for inventory control. This policy has the advantage that the
guantities of items collected at suppliers are deterministic so the order quantities of

each subset of items can be determined in such a way that the vehicle capacity
constraint is not violated. Alternatively, the (Q,r,T) policy could be considered.

This is a periodic review with flexible order quantity policy. Q and r of items may
not be the same. In this policy, for each subset of items the inventory of each item in

the subset is reviewed every T unit time. If its inventory level is below the re-order
point r , the replenishment quantity is Q. In the other casg, if itsinventory level is at

or above the re-order point r, say |, the replenishment quantity is (Q+r)-1.To
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satisfy the vehicle capacity constraint, the sum of Q for all items in the subset must

not be more than the vehicle capacity. As a result, under this policy the total
replenishment quantities of al itemsin the subsetsin any period will never exceed the

vehicle capacity. The problem isto determine Q, r and T of each item as well asthe

vehicle route that minimize the average integrated inventory-transportation costs.

In the real world, it is unlikely that the vehicle can visit a set of suppliers any
time. It may be more redigtic to include a time window constraint in the models
studied in thisresearch. A constraint that limits the total distance traveled by avehicle
could be added to the model. This constraint reflects a maximum amount of time that
the vehicle can travel. In addition, asymmetric TSP may be considered. This will
affect the solution to the TSP. Moreover, the vehicles may have different sizes of
capacity. With these changes, the problem can still be formulated as a set partitioning
problem. The constructive heuristic and improvement algorithms may need some

modification to deal with a more realistic problem.

As for the improvement algorithms, one of meta-heuristics could be proposed
to solve the problem. An interesting one is a greedy randomized adaptive search
procedure (GRASP) [see Resende(1998)]. GRASP is an iterative process that has
been applied to solve a wide range of combinatorial optimization problems. This
meta-heuristic consists of two phases, a construction phase and a local search phase.
The I-VLSN could be incorporated in GRASP in the local search phase. The solution
that is obtained from this combined algorithm should be better than the one obtained

from the I-VLSN aone. However, it would require more computational effort.
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APPENDIX A

Proof of the Global Optimum
Consider the total cost function in the range of O to the cost at the inflection
point. From (6.4),
f(Q) :g+ BQ+C,/Q

After taking the firs and second derivatives, df (Q)/dQ and d*f(Q)/dQ
respectively, of f(Q), theresultis

oye A g C©
Q)= QZ+B+2 5 (A.1)
PA A C
f'Q=5-—— A.2
Q) o 400 (A.2)

It is needed to prove that the term Q) is greater than zero at Q that makes
f(Q)=0. From (A.1) and at optimal O,

f’(Q*)=—Q€\2+B+ =0

Therefore,
C A

T=-727B
2Q  Q
Multiplying both sides by z_é* it would be

C _ A B
WQJQ 20° X

Then, substitute into (A.2) and get

C
4Q Q"
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f,,(Q)ZZA_ A L B*= 3A | B*>O
*3 *3 *3
Q7 207 2 2Q7

The term " (Q) is definitely greater than zero because A, B and Q all are

positive. Therefore, the total integrated cost f(Q)is convex in the range of O to the

cost at the inflection point.

Now the question is “Will the value of f(Q) never decrease for every Q  that
is greater than Q" ?” To answer this question, it is necessary to prove that after the
inflection point where Q :Ql, the slope of f(Q)for al Q >Q' IS positive. That is
' Qis greater than zero for all Q >Q and the local optimum is also the global

optimum.

At the inflection point where Q :Q/, the second derivative f" (Q) becomes
zero. Therefore, the equation (A.2) is set to zero and Q' can be solved at the

inflection point in term of A and C.

Q) == /3 4Q\/»

2A

/3 4Q\/7
2o

ECRE

To prove @+ “)Ql)>0 for al a >0, from equation (A.1), replace Q by
(1+2)Q" and substitute Q' to obtain

£+ a)Q) = £/(@+ a)4(§)3)
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A C

=— 7+ B+ T

16(1+a)2(é\j3 4 (1+a)(é)3
:_Lﬁ(gfﬁﬂ 1 g(gf
(1+a)* 16\ A (l+a) 4\ A

1 1

1 c(ch 1 c(ch
=—————| — | tBt—/—cx—| —
41+ ) 4\ A Q+a) 4\ A

Because (1+a)® is greater than /(1+a) for al « > 0, this makes the term

1
1 . 1 1 C(C).
————is less than . Therefore, the term —|—| is dways
41+ a)? JA+a) 41+ a)? 4(Aj Y
1
1 C(C)s -
smaller than ————| — | foral « > 0 because both A and C are positive values.
Q+a) 4\A
Consequently, it can be said that the negative term which is — 1 E(EJB will
’ Al+a)® 4\ A
1
/4 A 1 C(C)s .
never be larger than the positive term which is ——[—j . Hence, it can be
Q+ea) 4\ A
concluded that
v 1
£ ((1+2)Q") =——1—29(9T f B+;E(Ej3 ~B>0,foral @>0.
A1+a)? 4\ A 1+a) 4\ A

This means that the slope of the function f(Q) for al Q>Q’ after the

inflection point is always positive. It'can be concluded that the local optimais aso the

global optima.
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APPENDIX B

Replenishment Quantity Comparison with EOQ for the stochastic model
In this part, the order quantity obtained from the stochastic model is compared
with the EOQ. For the simple EOQ model, the total cost function is as follows.

£(Q)= g+ BQ (1)

where A=L(S)D(S) and B= e

Because the EOQ model considers deterministic demands, there is no cost related to

the safety stock in term of C.

To compare the optimal order quantity with the EOQ, the slope of the total
cost function at Q equal to the EOQ will be determined. If the slope at that point is
negeative, the optimal order quantity obtained from the proposed model is larger than
the EOQ. If the dope is positive, the optimal order quantity is smaller than the EOQ.
In the case that the slope is equal to zero, it can be concluded that the optimal order
guantity is equal to the EOQ.

From (C.1), take the first derivative, set it equal to zero and solve for the
optimal order quantity EOQ. That is

f (Q)_—A+B 0

Therefore, EOQ= \/7

From equation (A.1) which is the slope of the total cost function, substitute Q
with EOQ to obtain

A C __,B cJ/B CVB

FQ-=- 2R "BrA Y
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The slope of the total cost function at Q equal to EOQ is positive because A,

B and C are adl non-negative. This means that from Figure 6.1 the EOQ is on the right
side of the optimal order quantity obtained from the model studied. Therefore, it is
concluded that the optimal order quantity from the stochastic model studied is always
smaller than the EOQ.
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