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Global warming is the critical issue that is the result of Greenhouse Gases
(GHGs) emission. Carbon dioxide (CO,) is concerned to be major GHGs. Thus, Carbon
dioxide utilization is the promising pathway to reduce the emission of CO,. To utilize
CO,, waste hydrogen from sodium methoxide production is used to produce methanol
which can be recycled as reactant of sodium methoxide synthesis. Carbon dioxide
hydrogenation process is used for produce methanol from CO, and waste H, from
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CHAPTER 1
INTRODUCTION

1.1 Statement of the problem

Nowadays, the climate change as a result of the global warming is a critical
issue that has gained its attention worldwide. Such issue may result from the emissions
of greenhouse gases (GHG) such as carbon dioxide (CO,), methane (CH,), nitrous oxide
(N,O), hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulphur hexafluoride
(SF¢) [1]. Among these GHG, CO, accounts for more than 70% of the total GHG
emissions [2]. According to National Oceanic and Atmospheric Administration (NOAA),
atmospheric concentration of CO, had increased from 381 ppm in 2006 to 402 ppm in

2016 [3].

Industrialized-based countries attempt to come up with agreements in order
to solve such concern. For example, in 2015, Paris Agreement aim to holding the global
temperature rising to well below 2 °C compare to pre-industrial levels and try to
continue to limit of global temperature rising to 1.5 °C compare to pre-industrial levels
in year 2023 [4]. Similarly, environmental and public health authority in Thailand aims
to decrease about 7 to 20 percent of the total GHG emissions from energy and

transportation sectors before year 2020 [5].

For the past centuries, many researchers have been attempting to develop
feasible technologies that enable reduction of the CO, emissions [6]. There are two
major technologies that effectively decrease CO, emissions: Carbon dioxide Capture
and Storage (CCS), and Carbon dioxide Capture and Utilization (CCU). CCS is the
technology which CO, is collected, compressed, and sequestered in underground
geological storage. However, major problems found in the CCS are 1) limitation of
storage volume [7] 2) its expensive operation cost that may not worth the capital
investment [6, 8] and 3) its effect that may relate to more frequent with earthquake
earthquakes such as in the US [9]. Therefore, the CCU is more preferred, and will be

focused in this study.



According to CCU, CO, is considered as one-carbon atom feedstock that reacts
with hydrogen gas (H,) to produce others chemical products [7, 8]. However, the major
problem in CCU exists as H, is conventionally produced from the non-stainable via
natural gas steam reforming. To remedy this, biogas may be more suitable as an input

for the H, production.

Nevertheless, utilization of H, produced from biogas may be hindered by one
constraint; that is its large amount of CO, constituent. In fact, the purpose of this study
is to evaluate chemical processes that can consume CO, from external sources and
produce more valuable chemical products. If the feedstock has a large amount of
preexisting CO,, the CO, from external sources may not be fully utilized. Thus, a high
purity source of H, is preferred which leads to considerations of using renewable

hydrogen and waste hydrogen as feedstock.

Since, renewable hydrogen has high production cost that may not be feasible
[10, 11]. Industrial waste hydrogen is another alternative that will be scrutinized in this
study. Some industries such as propane dehydration, and sodium methoxide
production release a large amount of H, [12, 13]. The reuse of such H, waste may

satisfy the objective of the sustainable CO, utilization.

As mentioned above, waste H, is released from the sodium methoxide
production process. Sodium methoxide is a catalyst utilized in biodiesel productions.
In 2016, the global biodiesel production was about 90 million liters/day and Thailand
alone synthesized approximately 3.4 million liters/day [14, 15]. As considered by the
number of biodiesel productions, they can be justified that waste H, was produced in
a large quantity. Consequently, benefit may be gained from the conversion of such
problematic CO, and the zero-value H, waste through chemical reactions in order to
produce more valuable products. This definitely not only helps solve the

environmental problems but also adds value to the CO, and H, waste.

In this work, methanol production is selected as a chemical process that utilizes
H, waste from sodium methoxide production. The CO, from external sources is

consumed in the methanol production process via CO, hydrogenation in order to



reduce the CO, emissions. Also noted that methanol production process is chosen for
the evaluation due to one major reason; the obtained methanol may be recycled to
the sodium methoxide production process. This should contribute to a reduction in

raw material cost since the methoxide production uses methanol as a reactant.

1.2 Objective

The aim of this work is to evaluate the potential of wasted H, and captured
CO, as feedstock for methanol production through CO, hydrogenation reaction. The
produced methanol is then recycled to the sodium methoxide production. The

process evaluation is conducted using a process simulator namely Aspen Plus.

1.3 Scope of work

1. Quantify the amount of H, waste released from NaOCH; production. Further
details regarding the H, waste estimation is given in Chapter 4.

2. Analyze the methanol production process using Aspen Plus. The analyzed
process converts CO, and H, through CO, hydrogenation using H, waste
obtained from sodium methoxide production process and CO, from external
sources.

3. Evaluate the economics of methanol production process that benefits a future

feasibility study.

1.4 Hypothesis

The conversion of waste H, and a greenhouse gas such as CO, via CO,
hydrogenation leads to an economically feasible process capable of reducing the CO,

emissions as well as producing a more valuable product such as methanol.



CHAPTER 2
THEORY AND BACKGROUND

This chapter describes about the theoretical background relevant to this
research. Carbon dioxide (CO,) management, and methanol properties and its

production are provided in this chapter 2.

2.1 CO, management

There are two main approaches for the reduction of CO, emission including 1)
CO, Capture and Storage (CCS) and 2) CO, Capture and Utilization (CCU). In fact, the
first step of both approaches is similar; CO, is captured. However, the step after CO,
capture is different depending upon how the captured CO, is managed. The CO,

management schematic is summarized and depicted in Figure 2.1

Geological
Storage
CO, Capture and
» Storage Ocean Storage
(CCS)
Mineral
Carbon Carbonation
dioxide CO, Capture
(CO,)
Direct Utilization
CO, Capture and
> Utilization
ccu) Conversion
Utilization

Figure 2.1 Schematic of CO, Managements Route

2.1.1 CO, capture technology

The CO, capture technique can be partitioned into 3 categories including pre-
conversion, post-conversion, and oxy-fuel combustion captures. Pre-conversion

capture is the technique which CO, is captured from a mixture of reactants before



moving into a reactor, for example, CO, captured from syngas before burning H, in
IGCC and CO, captured from syngas before being fed to ammonia production
processes. In post-combustion capture, CO, is separated after the reaction is
completed. The example of this type of capture is CO, captured from flue gas
produced from burning of fossil fuel. Finally, the oxy-fuel combustion is a technique
that an air separation unit is required. After combusting with pure oxygen, the obtained
flue gas contains only CO, and H,O. The exhaust gas is then sent to a unit of gas

separation such as a cryogenic separation unit. [6]

Separation processes are important for CO, capture. Technologies for CO,
capture are not only centered on developments of chemical solvents that dissolve
CO, but also developments of unit operations that can effectively separate the CO,.

The summary of CO, capture technologies is provided in Table 1

Table 2.1 Summary of CO, capture technologies [6, 16]

Process Chemicals/Unit Operation Usage
Absorption Amine solution, Selexol Pre-conversion, Post-conversion
High temperature Metal oxide as oxygen Pre-conversion, Post-conversion,
solid looping carrier Oxy-fuel combustion

Amine-based sorbent,
Pre-conversion, Post-conversion,
Solid sorbents Alkaline earth metal-based
Oxy-fuel combustion
or carbonate sorbent

Post-conversion, Oxy-fuel

Cryogenic Cooler and compressor
combustion

Pre-conversion, Post-conversion,

Membranes Polymeric membrane
Oxy-fuel combustion

From the list in Table 1, absorption is the only technology that is fully developed. For
example, in 2015, demonstration plant of CO, capture and sequestration project were

achieved at the rate of 1 Mt CO,/yr. [16]



2.1.2 CO, capture and storage (CCS)

In CO, capture and storage (CCS), after CO, is captured, CO, will be stored in
technological potential storages such as geological storage, ocean storage, and mineral

carbonation [6]. The diagram of CO, storage is shown in figure 2.1

Figure 2.2 Diagram of CO, capture and sequestration (CCS) [17]

In geological storage, the captured CO, are compressed and sequestered in
storages such as petroleum fields, deep saline formation, and unminable coal beds.
For storing underneath the ocean floor, gas is shipped or delivered through pipelines
for direct injection of CO,. Finally, mineral carbonation is the fixation of CO,; CO, reacts

with metal oxide to form carbonate compounds, such as, MgCO; and MgCO; [17].

Also noted that, the mineral carbonation process may be perceived as the CCU

approach since more valuable products are obtained.

However, a main limitation of CCS is its expensive operation cost of
compression of CO, before sequestration. Another constraint is formation leakage that

may occur in both geological storage and ocean storages. Moreover, CO, sequestration



in geological storage may cause adverse effect which may relate to earthquake

particularly in the US [6, 18].

2.1.3 CO, capture and utilization (CCU)

Carbon dioxide capture and utilization (CCU) may be more superior to the CCS
as far as the sustainability is concerned because CO, can be reprocessed to form more
valuable products. There are two types of CO, utilization: direct utilization and

conversion utilization.

Direct utilization means CO, is used directly: there is no conversion of CO, to
other products. For example, in food industry, CO, is used as supercritical solvent for

flavors extraction or used in carbonated drinks [6].

Utilization conversion of CO, is the utilization that CO, is converted to more

valuable products by biological and chemical processes.

Conversion of CO, via biological process is focused on biofuel production from
microalgae. Waste gas contains CO, is fed directly to the microalgae. However, the

production cost of biofuels from microalgae appears to be high [6].

In the transformation of CO, via chemical process, CO, is considered as one-
carbon-atom source. The potential products which can be produced from CO, are

shown in figure 2.3.
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Figure 2.3 Example of products from carbon dioxide [19]

According to Figure 2.3 the major products obtained from the conversion of CO, are

urea, methanol, organic carbonates, cyclic carbonates, as well as, organic and cyclic

carbamates. The following section is dedicated to providing the chemical reactions

that converts CO, to more valuable products.

® Urea production from CO,
Urea production from CO, is started form CO, and ammonia. The two-step
reaction and side reaction are listed as following [20].
1°" step: 2NH; + CO, <> NH,COONH, (1)
2" step: NH,COONH, <>  NH,CONH, + H,O (2)
Side reaction: 2NH,CONH, <> NH,CONHCONH, + NHs (3)



® Methanol production from CO,
The synthesis of methanol from CO, is the reaction between CO, and H,
with copper-based catalysts as given in the following reaction [21].
CO, Hydrogenation: CO, + 3H, <>  CH;OH + H,O (4)
The side reactions of CO, hydrogenation are Reverse Water Gas Shift (RWGS)
reaction and methanol dehydration reaction respectively [21].
RWGS Reaction: CO, + H, <~ CO+H,0 (5)
CH,OH dehydration: 2CH;0OH <>  CH;OCH; + H,0 (6)

® Organic carbonates and Cyclic carbonates
Organic carbonates can be produced in various ways. One way of low toxic
synthesis is transesterification of urea. The 1°'step is urea synthesis and the

2" step is transesterification of urea as provided in the following equations

[22]
urea synthesis: CO, + 2NH; > NH,CONH, + H,O (7)
Transesterification: NH,CONH, + ROH > ROCOOR + NHs (8)

Cyclic carbonates can be synthesized from epoxides or alcohols as given in

the following reaction [23]

O
0 CHL
SN+ co, —ul 0
R —t
4
Epoxide reactant: R

Alcohol reactant: 2ROH + CO, —  (RO),C = O + H,0O (10)

® Organic carbamates and Cyclic carbamates

Organic carbamates can be synthesized by two-step reaction. First, CO,
reacts with amine to form carbamic acid. Then carbamic acid reacts with
alcohol to form carbamates as shown in following equation [23].

The 1°" step: RNH, + CO, —  RNHCOOH (11)
The 2" step: RNHCOOH + R’OH —  RNHCOOR’ + H,0O (12)
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There are many ways to synthesize cyclic carbamates from CO,. One
example of cyclic carbamate synthesis is the reaction of aziridines with CO,

as shown in reaction (13) [23].

o 0
R R
= OAN T o’u\ N

D

Ta-n

Cyclic carbamates: R (13)

2.2 methanol

In atmospheric pressure and room temperature, methanol is colorless liquid.
Molecular structure of methanol is shown in figure 2.4. Physical and chemical

properties of methanol are listed in table 2.2.

H H

AE |\ N
5E—0
/

H

Figure 2.4 Molecular structure of methanol [24]

Table 2.2 Physical and chemical properties of methanol [25]

Properties Methanol

Formula CH5;OH

Molecular weight 32.04 g/mole

Appearance No color liquid,
Odor Alcohol like

Melting point -97.8 °C

Boiling point 64.5 °C

Specific gravity 0.7915 (water = 1)

Vapor pressure 12.3 kPa (at 20 °C)

Solubility

Easy to solute in water

Classification (National Fire Protection

Association)*

Health:1, Flammability: 3, Reactivity:0,

and no specific hazard

*NFPA 704 defined the degree of hazard of chemical products. Degree of health hazard at level 1 means this chemical can make some
of eyes, respiratory tract, and skin irritation. Degree of flammability hazard at level 3 mean this chemical have flash point between 22.8
°C and 37.8 °C. Degree of reactivity hazard at level 0 means this chemical do not sensitive to thermal or mechanical shock at normal or

elevated temperature and pressure.[26]



CHAPTER 3
LITERATURE REVIEW

This chapter is a review of relevant literature about the CO, hydrogenation
reaction to produce methanol. The review of reactant source is provided herein.

Novelty of this study will be given in this chapter.

3.1 CO, Hydrogenation

With regard to the objective of CO, utilization, CO, hydrogenation is one
of the effective method for CO, utilization. Although CO, may be converted to various
products, production of methanol from CO, is chosen since the production process of
methanol is potentially feasible and further modification of the process is easily

developed as provided in the following examples.

In Iceland, waste CO, reacts with H, from water electrolysis using geometric
energy. Capacity of a demonstration plant is about 10 tons/day. Moreover, a
demonstration plant with a capacity of about 10000 tons/year has been planned to
be constructed in Japan. Reactants are obtained from CO, waste from other production

plant and H, from photoelectrolysis. [27]

In methanol production process, a typical catalyst used in CO, hydrogenation
process in order to produce methanol is copper-based. Various catalyst types and

conditions for methanol synthesis are listed in table 3.1

Table 3.1 List of catalyst types and conditions for CO, hydrogenation to methanol
production [28-31]

Temperature Pressure CO, Conversion Methanol
Catalyst
(°O) (bar) (%) Selectivity (%)
Cu/Ga/ZrO, 250 20 13.7 75.6
Cu/Zn/ZrO, 220 80 21.0 68.0
Pd/Zn/CNTs 250 30 6.30 99.6
Cu/ZnO/AL, 04 170 50 259 729
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To produce methanol, the best catalyst of CO, hydrogenation to produce
methanol appears to be Cu/ZnO/Al,O5 since the catalyst has highest CO, conversion
and methanol selectivity. At temperature and pressure around 200 °C and 50 bars, CO,

hydrogenation follow the CAMERE pathway. [32]

The CAMERE pathway contains two step including reverse water shift reaction

and carbon monoxide hydrogenation. [32]

RWGS Reaction: CO, + H, > CO + H,0 (3.1)

CO Hydrogenation: ~ CO + 2H, <>  CH;OH (3.2)

CO, Hydrogenation:  CO, + 3H, <>  CH;OH + H,0 (3.3)

The rate equations of reaction kinetics are different depending upon
components in each catalyst. The rate equations of CO, hydrogenation are listed in

Table 3.2

Table 3.2 Kinetics of CO, hydrogenation for methanol products on various catalysts.

Reference Catalyst Kinetics of reaction
* 3
Mochalin et e — k1pcoszz(1 _pCH30HpH20/(K:}pCOZPHZ)
3 Pco, T Ku,oPco,Pr,0 + K 'Pu,o
al.,, 1984 Cu/ZnO/AL, Oy
33] 2 _ k21,0 co,(1 = PeoPu,oks / (0co,Pu,)
J Pco, + Ku,oPco,Pr,0 + K'Pujo
K. M. TMeOH ) ,
Vand _ Kapcozpyz[l - (/K )(pHZOPCH3OH/pHZpCOZ)]
anaen - 3
(1 + (Ku,o/KsKoKpr,) 00/ Pu,) + VEuPH, + Ki,0P1,0)
Bussche

CU/ZI’]O/A[203 rRWGS
and G. F. k'1pco, [1- K;(szopCO/pCOZpHZ)]

- (1+ (KHZO/KBK‘)KHZ) (pHZO/pHZ) + /Ky,pu, + KHZOPHZO)

Froment,
1996 [34] Ky = k'soK', K3 K Ky,
. - kaKcoK it Ken,co(Pi,Poo = Peryon/Kea)
HW. Lim et C A+ KoPeo) (1 + Kty Pty + Kii,0Pu0)
al,, 2009 Cuw/ZnO/AL,05/Zr0,
TRWGS 05 05
[21] kKo, K (Pco,Pu, = PeoPu,o/Kpp )/ P,

(1 + Ko Peo) (1 + KPP + Ky, 0Pi0)(1 + Ko, Peo,)
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) S kcK o, K, Ken,co,(Peo,Pit, — Per,onPu 0/ Kec)/ P,
co, =
HW. Lim et : (1+ KS;SPI?;S +Kp,0P,0)(1 + Kco,Peo,)
al., 2009 Cu/ZnO/ALO05/Zr0,
kom0 (CgH30H - ((CHZOCDME)/ KP,DME))
(cont.) TomE = -
(1 +2./RenzonCerzon + Kir,0Crio)
E.S. Van-Dal Feron = k1Pco,Pu, = ke Pu,oPc onPi, i
and Chakib ’ (1+ kZPHZOPI;; + k3P13'25 + k4PH20)
Cuw/ZnO/AL, O,
Bouallou ksPco, = k7Pu,oPcoPir)!
TrRwGs = = -
[35] 1+ koPy P + k3Pg> + kyPy o

Studies that CO, and H, were obtained from different sources have been
conducted for CO, hydrogenation to methanol. These studies are collected and

provided as shown in Table 3.3

Table 3.3 Sources of CO, and hydrogen for CO, hydrogenation to produce methanol

CO, source Hydrogen source Reference
By-product of fermentation
Water electrolysis [11]
process
Flue gas of coal power plant
Water electrolysis [35]
(Captured CO,)
Captured CO, Purchase [36]
Captured CO, CO,/steam mixed reforming [37]

Type of a reactor chosen in this work is plug flow model (PFR). A simple plug

flow [35, 36] and a multi-tubular plug flow [11, 37] are used in this study.

From Table 3.3, the method that mostly used to produce hydrogen is water
electrolysis. Electricity for the electrolysis is produced from a renewable energy such
as wind or solar power. Although a renewable energy does not produce CO, the cost
of water electrolysis appears to be more expensive when compared to the
conventional steam reforming of natural gas [11]. As a result, a trade-off is unavoidable

since one alternative is more expensive where as another produce CO, as a by-product.
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Thus, in this research H, released as industrial waste will be used as feedstock

for CO, hydrogenation process in order to produce methanol.

3.2 Hydrogen source

Although the hydrogen source may be a main barrier for CO, hydrogenation
process specifically for methanol production, some industries release hydrogen as

waste such as propane dehydrogenation and sodium methoxide production processes.

3.2.1 Hydrogen from propane dehydrogenation

Propane dehydrogenation (PDH) is the important step for preparing the
propylene monomer. The reaction of propane dehydration is shown as a following

equation

Propane Dehydrogenation: CGHy — GHg +H, (3.4)

The conditions for this reaction are 437-477 °C and 1.1 bar with Pt-based
catalyst [38].

3.2.2 Hydrogen from sodium methoxide production

Sodium methoxide (NaOCHs) can be used widely in various application. One
application of NaOCH; which is focus of this work is the compound is use as a catalyst
for biodiesel production. Methanol reacts with sodium metal to produce high purity

sodium methoxide as expressed in the following equation.

Sodium methoxide synthesis: 2Na + 2CH;OH — 2NaOCH; + H,  (3.5)

The suitable temperature range of this equation is between 80 to 86 °C[13].

When compared to PDH, H, waste from NaOCH; production is more attractive
in this case since methanol obtained from a main process in this study could be used
and compensate some methanol feed for the NaOCH; production. Further, as the

higher use of renewable energy is gaining its attention, sodium methoxide production
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plant in Brazil is planned to be expanded [39]. As such, the H, waste from NaOCH,

production is by far the most attractive source for H, feedstock.

3.3 Sodium methoxide production

As mentioned above, Sodium methoxide can be produced from methanol and
sodium metal which afterwards releases hydrogen as waste. This process was patented
by E. I. Du Pont De Nemours And Company in 1997 [13]. This dry-production process
may still be in-use for sodium methoxide production according to recent publication
of EnviroCat [40] and the patent about sodium methoxide production in year 2002
[41]. Therefore, the BRZ in Table 3.4 is served as a based case of NaOCH, production
that will be used to estimate the amount of H, released as waste. Such waste will be
used to react with external CO, in accordance with the objective of this work: CO,

utilization

Further, in order to conduct a feasibility analysis, the capacities of sodium
methoxide production are established as the four set-up listed in table 3.4. These four
set-ups are constructed since the author would like to determine the cut-off size that

would make this process economically feasible.

Table 3.4 the size of sodium methoxide production

Name Company Country Capacity (ton/year) | References
BRZ Dupont, JBS Brazil 3.00 x 10* [39]
BRZ x 5 Assumed size 1.50 x 10° -
BRZ x 7.5 Assumed size 2.25 x 10° -
BRZ x 9.5 Assumed size 2.85 x 10 -

3.4 CO, Utilization evaluation methods

There are several methods to evaluate CO, utilization in a process. There are

three methods used in the literature [37, 42, 43].

Evaluation of CO, utilization in the first method is determined based on CO,

flow rate. the net CO, emission can be calculated by the following equation
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i i
Net CO, emission = Z COy tter Z COy e (3.6)
n n

Direct CO, released from a process and indirect CO, computed from plant’s

[42]

energy input such as electricity are accounted for Zﬁl COZoutzet'

Evaluation of CO, utilization in the second method is computed based on
dimensionless expression. Carbon efficiency is one of the example of this method.

expression for determination of Carbon efficiency is given in Equation (3.7) [37]

Total moles of C atom in output product ( )

Carbon efficiency = : ,
Totalmoles of C atom inlet flow+Totalmoles of C atomin energyused

Evaluation of CO, in the third method is estimated based on potential factors
of input and output. In life-cycle assessment (LCA) study, Global warming potential
(GWP) of input and output material are used to calculated carbon footprints (GW) as

shown in equation (3.8) [43].

GW = Z m,GWP, (3.8)
i

In this research, Net CO, emission and carbon efficiency might be calculated

for evaluation of CO, utilization.
3.5 Economic analysis

Net present value (NPV) is the promising method to evaluate the economic

feasibility of the production process. At NPV > 0, it means that the project is payback.

From Matzen et al. [11], the methanol selling price and hydrogen production
cost from water electrolysis would be varied. The result of net present value (NPV)
after 10 years of project show that the hydrogen production cost would be around
0.4-0.7 $/kg with methanol price in year 2015 and sell oxygen by-product from

electrolysis process.
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Moreover, Pérez-Fortes, M., et al. [36] found that hydrogen price should be
decrease about 2.5 times or methanol selling price increase about 2 times of present

price NPV will be equal to zero for the 20 years of project.

In this study, H, is considered as waste and the price of H, is zero. CO, is
assumed that it is bought from plant which release CO, such as ethanol production
plant (0.7537 tons per 1 m> of ethanol product [44]). Net present value is used to

compare the economic feasibility of each production size in Table 3.4.



CHAPTER 4
METHODOLOGY

This chapter is divided in to 5 parts including Design scope, feedstock
estimation, process description, evaluation of CO, utilization and a method for

economics evaluation.

4.1 Design scope

A scope of this work encompassed in the dotted square is depicted in Figure
4.1. As mentioned previously, the need exists for a chemical process suitable for the
CO, capture and utilization (CCU) approach. As such, the methanol production process
is selected and thoroughly investigated. The highlight of this work is that captured CO,
and H, waste from other processes are utilized as feedstock for the methanol
production. Details about the feedstock and the feedstock estimations are given in

Section 4.2 and 4.3 respectively.

| Hydrogen |

I |

| ! r

I Methanol Methanol | NaOCH, NaOCH,
> —_——

- production - Production

| : :

I l

I [

. Carbon dioxide .

I !

Figure 4.1 Scope of work
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4.2 Feedstock estimation

There are two potential feedstock that meet the research objective. Such
objective is that the feedstock are renewable such as captured CO, and H, obtained

as waste from other processes.

The H, feedstock for the methanol production is received as waste from
another process. In fact, a high purity H, in the feedstock is preferred since the
preexisting CO,, if contained in the H, feedstock, would decrease the conversion of
CO, obtained externally. Accordingly, the H, waste obtained from NaOCH- production
is considered since it meets the purpose of this work. To underline this, first, the
exhaust released from the NaOCH; production contains high purity H, that is not
currently feasible for further usage. Second, methanol is also a raw material for NaOCH 5

production that may be recycled and leads to a reduction of raw material cost.

For CO,, the gas is available and obtained from external sources such as
exhausts from fermentation processes [45]. The price of CO, is assumed to be the
commercial grade CO,. Required feed amount of CO, is calculated based on
stoichiometric ratio in a reaction of CO, hydrogenation, and is determined relative to

the available waste H, obtained from NaOCH; production.

Since quantitative data of H, waste from the NaOCH; productions are not
available, the H, waste estimates are determined by assuming that every NaOCH,

productions plant uses the process condition which is shown in patent [13].

Steps involved in the H, waste estimations are given as follow.

® Mass of sodium used for production of NaOCH, is estimated from mass balance
that 0.445 kg of sodium metal are used for producing 1 kg of NaOCH; [13]

® The amounts of required methanol and released H, are estimated from
stoichiometric ratio. If 2 moles of sodium metal are used, 2 moles of methanol

are required and 1 mole of H, is generated.
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As a result, required amounts of CO, and H, waste were determined and listed

in Table 4.1. Details about Table 4.1, for example, how each capacity comes from are

explained in Chapter 3, section 3.3.

Amount of CO2 in Table 4.1 are calculated from stoichiometric ratio of equation

(3.3) and the feed ratio of CO,:H, is 1:3.

Table 4.1 Hydrogen waste flow rate from NaOCH, catalyst production

Methanol
Waste
Capacity of rSH £ Hydrogen Stoichiometrically
Size NaOCH; NaOCH; flow rate required CO,
(t/year) production B day) (t/day)
(/day)

BRZ 3.00 x 10* 51.6 1.61 11.8
BRZx5 | 1.50x 10’ 258 8.06 59.1
BRZx 7.5 | 2.25x10° 387 12.1 88.7
BRZ x 9.5 2.85 x 10° 490 153 112

Please note that the methanol amounts required for NaOCH, production given

in Table 4.1 are constructed for comparative purposes used in further discussion in

Table 5.6 in Chapter 5.

4.3 Process description

The process flowsheet of methanol production process in this study is listed in

Figure 4.2.
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PUMPZ

o—{cozn | o [—

Figure 4.2 Process flow sheet for methanol production

Feed hydrogen is compressed in multi-stage compressors COM1 to 50 bars.
While, feed CO, is pumped to 50 bar in PUMP2 and evaporated to gas phase by heater
B1. Then the compressed gases are delivered and mixed with a recycled stream 15 in
a mixer B1. The mixed stream 4 is heated to 250 °C in the heater B3. Reactor R101 is
in plug flow model with the rate equation of reaction kinetics which shown in Appendix
A. The reactor effluence is cooled down in a cooler B4. The cooled products pass
through a flash separator to remove the recycle gas from product stream. The gas
stream 8 is split to a purge stream 14 at ratio of 0.01%. This purge stream is required
for purge some of components that may be accumulated in the system because of
no exit point [46]. Liquid stream from flash separation is reduced pressure to 15 bars
and then sent to stabilizer column (B8) to remove the light gas such as CO,, CO, H,.
Liquid stream 12 is decreased pressure to atmospheric pressure and then sent to a
distillation column to recover methanol in column B10. The product purity is designed

to be 99.95 wt% methanol.

Design criteria of equipment would be listed as below. The results of
equipment design are shown in Appendix C.
4.3.1 Multi-stages compressor design

Each compressor is designed to have equal compression ratio in every stage

because this design gives the minimum required power input [47].
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4.3.2 Reactor design

Methanol production reactor is designed by its concentration profile. The
length of reactor is chosen from the minimum length where the reaction reaches
chemical equilibrium as indicated by composition plateau as shown in Appendix C.4.

Geometry of reactor is designed with a recommended aspect ratio of L/D = 5.

4.3.3 Flash separation unit design

Flash separation unit is designed to be operated adiabatically at a constant
pressure of 50 bars. Size and geometry of flash drum are designed using ASPEN PLUS

program. The vertical drum was chosen with an aspect ratio of L/D = 3.4.

4.3.4 Stabilizer and methanol purification column

Stabilizer column is utilized the light gases removal, so the condenser of this
unit has to be a partial condenser. For the methanol purification column, its reflux is
condense using a total condenser. Diameter and height of column are designed using

ASPEN PLUS.

4.4 Evaluation of CO, utilization

In this research, net CO, emission and carbon efficiency is used to evaluate the
CO, utilization.

Net CO, emission is calculate based on CO, fed into the process and CO,
released from the process by 1) the process stream (or waste) and 2) by the utility
usage that potentially produce CO,.Net CO, emission is calculated using Equation 3.6

mentioned in the previous chapter.

L L
Net CO, emission = Z COsptter ZCOZinlet (3.6)
n n

Carbon efficiency is expressed as given in equation (3.7).

Total moles of C atom in output product

Carbon efficiency =

(3.7)

Total moles of C atom inlet flow+Total moles of C atom in energy used
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According to Equation 3.7, the total moles of C atom in energy used include
the total moles of C generated from fuel burning for heating units. The total moles of

C are estimated from electricity used as the process utility.

Further details regarding the calculation of CO, utilization are provided in

Appendix D.

4.5 Economics analysis

In this study, sizes and costs of all equipment in methanol production process
are obtained from Economics Evaluator in ASPEN PLUS. The estimated cost of raw

material and selling price of the product are given in Table 4.2.

Table 4.2 Cost of raw material and selling price of product

Type Grade Price (/1)

Liquid carbon dioxide Industrial 20 [48]

Methanol Industrial 350 [49]




CHAPTER 5
RESULT AND DISCUSSION

Explanation and discussion of results from this study are included in this
chapter. Three major highlights contained in this chapter includes simulation of
methanol production using ASPEN PLUS, evaluation of CO2 utilization, and economic

feasibility analysis.

5.1 Simulation of methanol production using ASPEN PLUS

Methanol production in this study is simulated using ASPEN PLUS. Feeds

condition are provided in Table 5.1.

Table 5.1 Feed condition

Feed Conditions References

Pressure: 18 barg
Liquid CO, [45]
Vapor fraction: 0

Pressure: 14.3 bar
H, [13]
Temperature: 83 °C

According to the simulated results obtained from the process depicted in figure
4.2, stream results of each capacity in Table 4.1 are shown in Tables 5.2-5.5. Table 5.6
summarizes, for each capacity, the percentages of methanol yield relative to the

required amount of methanol for the sodium methoxide production.
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Table 5.6 Percentages of methanol yield to amount of methanol which want to use

by the sodium methoxide production

- Methanol required for Methanol yield Compensation
>ize NaOCH; production (t/day) (t/day) percentages (%)
BRZ 51.6 8.38 16.2

BRZ x 5 258 42.0 16.3
BRZ x 7.5 387 63.1 16.3
BRZ x 9.5 490 79.7 16.3

According to Table 5.6, the compensation percentages are not affected by the
size of the plant (e.g. BRZ, BRZx5 and etc.). Further, the correctness of this simulation
work is confirmed by the linear correlation in Figure 5.1 since the results are consistent
with 1) mass balance constraint that larger NaOCH; production would require more
methanol and release more waste H, and 2) the trend in Figure 5.2 in linear fashion as

each capacity is merely a linear scale-up from the based case.
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Figure 5.1 Relationship between methanol yield and amount of methanol required

for the sodium methoxide production



5.2 Evaluation of carbon dioxide utilization

According to previous chapter, net CO, emission is used to evaluate carbon dioxide

utilization of methanol production process.

Table 5.7 shows flow of carbon dioxide into the process, direct and indirect

carbon dioxide exiting the process and net CO, emission.

Table 5.7 Net CO, utilization

Methanol Inlet Outlet Net CO,
Size flow rate | Inlet CO, | Direct outlet Indirect emissions
(kg/h) (kg/h) (kg/h) outlet (kg/h) (kg/kSmeon)
BRZ 349 493 478 19.6 -1.34
BRZ x 5 1.75E+03 | 2.46E+03 27.8 98.0 -1.33
BRZx 7.5| 2.63E+03 | 3.70E+03 40.0 147 -1.34
BRZ x 9.5| 3.32E+03 | 4.68E+03 50.4 186 -1.34

From above table, net CO, emission of methanol production process is lower
than zero. As mentioned in equation 3.6, if this value is lower than zero, it certainly

means that the process utilizes CO,.

Moreover, the result from table 5.7 suggests that net CO, emissions in each
size of process are equal and consistent with results from Table 5.6. This means that

the capacity of the process does not affect the CO, utilization capacity of the process.

In this study, the major outlet of CO, from the process is indirect CO, emission.
This result shows that the CO, emission of the process mainly comes from the energy

usage in the methanol production.

When compare to previous works in the literature, net CO, emission of this

study is comparable to them as presented in Table 5.8



Table 5.8 Net CO, emission of various studies
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Processes Net CO, emission (kg/kgmeon)
This study 1.34
Matzen, M., et al. (2015) [11] 1.30
Pérez-Fortes, M., et al. (2016) [36] 1.23

In terms of CO, efficiency, efficiencies obtained from this study seem to be

higher than the process in Zhang, C., et al. (2016)

[37] about 6% given in Table 5.9.

Such minute difference may result from the higher recycled portion of CO, across

the reactor [37].

Table 5.9 Carbon efficiency of methanol production process
Name Recycle Ratio Carbon efficiency
BRZ* 0.99 0.94
BRZ x 5* 0.99 0.94
BRZ x 7.5% 0.99 0.94
BRZ x 9.5* 0.99 0.94
Zhang, C,, et al. (2016) [37] 0.95 0.89

*Recycle ratio (this study) = (stream 15)/(stream 8)

5.3 Economic feasibility

The economic evaluation of methanol production processes are evaluated by

ASPEN PLUS Economics evaluator. Parameters used in the evaluator are shown in

Appendix E. The result of evaluation are used to compare the feasibility of each

production size with a fixed 20 years project lifetime. The economic analysis results

are shown in Table 5.10.



Table 5.10 Economic analysis result
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BRZ BRZ x 5 BRZx 75 | BRZx 95
Total Capital Cost [USD] 8.79E+06 1.48E+07 1.81E+07 | 1.96E+07
Total Operating Cost [USD/Year] | 2.05E+06 | 3.42E+06 | 4.37E+06 | 5.06E+06
Total Raw Materials Cost
9.52E+04 | 4.76E+05 | 7.14E+05 | 9.04E+05
[USD/Year]
Total Product Sales [USD/Year] 1.07E+06 | 5.38E+06 | 8.06E+06 | 1.02E+07
Total Utilities Cost [USD/Year] 2.24E+05 | 9.14E+05 | 1.46E+06 | 1.83E+06
Equipment Cost [USD] 1.27E+06 | 2.69E+06 | 3.40E+06 | 3.94E+06
P.O. Period [Year] - - - 16.9
NPV (Net Present Value)
-1.29E+07 | -5.49E+06 | -2.40E+06 | 1.13E+06
(20 years)
Pl (Profitability Index) (20 years) 0.324 0.846 0.948 1.02

From Table 5.10, the methanol production processes which have capacity

lower than BRZ x 9.5 do not have a payout period (P.O. period).

Payout period (or payback period) is defined as the length of time that the

process can give the profit which overcomes the investment cost [50]. From the result,

the processes which have no P.O. period does not make profit in 20-year period.

Profitability index for each capacity is shown in Table 5.10. This index is the

ratio of benefit to cost [50]. If it has higher value than 1, the process would be
profitable. In the same way of P.O. period, the small capacity appears to be
unprofitable. These methanol production process start to be profitable at the process
size of BRZ x 9.5 with the Pl near to 1 (1.02). Thus, the cut-off point for this CO,
hydrogenation process that would make such process economically feasible is at 9.5

folds of the based case.
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Figure 5.2 Trend of Total capital cost, total operating cost, and total product sales

According to Figure 5.2, the increasing rate of the total product sales as a

function of the production size appears to be higher than those rate of total capital

cost and total operating cost. This explains the results obtained previously that the

process becomes more feasible when the capacity is higher.
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Equipment costs of unit operations are shown in figure 5.3. The main cost of
equipment is in gas compressor (COM1) and methanol purification unit. This
observation is apparent, especially in the large capacity of methanol production, the
equipment cost of methanol purification unit is relatively higher than others unit.
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Figure 5.4 Trend of compressor construction cost and methanol purification unit

(B10) construction cost

Figure 5.4 shows the increasing rate of compressor construction cost and
methanol purification unit (B10) construction cost, which are the major equipment
costs of methanol production. Although the cost of compressor in the based case is
lower than B10, the increasing rate of B10 is greater than the compressor. Thus, the
equipment cost of methanol production appears to depend on B10 when the

production size is greater than 5 times of the based case.

In summary, the amount of hydrogen from present capacity of sodium
methoxide (the capacity labeled with BRZ) cannot make the methanol production
process feasible. The obtained results suggest that the methanol production from H,
waste could truly compensate the sodium methoxide plant in the 17" year (where
the process becomes profitable) at the capacity of 9.5 folds of the current Brazil’s

production capacity.
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However, the feasibility of such methanol production may be improved as the
sodium methoxide production capacity increase is planned according to the factsheet

released by DuPont [39].

In fact, the suggestion made above agrees in the same way as the conventional
methanol production plant (natural gas as feedstock) that the capacity of methanol
production is currently around 5000 t/day and tends to increase in order to inprove its
economic feasibility because of the increase feedstock for Methanol-to-Olefin (MTO)

process [51].

Another way for making this process economically feasible is that since
methanol is used as a precursor for producing other chemicals [52-54], production of
more expensive products such as DME, DMC and others provided in Table 5.11 may
result in an improved profitability. This could be a focus and recommendation for a

future work.

Table 5.11 Other products from methanol and their price

Products Prices ($/mt) Reference
Methyl tertiary butyl ether (MTBE) 650 [55]
Dimethyl ether (DME) 700 [56]
Formic acid 735 [57]
Propylene 952 (58]
Ethylene 1133 [59]
Dimethyl carbonate (DMC) 1200 [60]




CHAPTER 6
CONCLUSION

In order to utilize carbon dioxide, low-pressure hydrogen waste from sodium
methoxide production is used to produce methanol based on the assumption that the
produced methanol could compensate some methanol fed to the sodium methoxide
production process.

The methanol production by CO, hydrogenation process from waste H, which
was simulated in this work has four capacity set-ups including one based case (BRZ)
and other three assumed cases (BRZ x 5, BRZ x 7.5, and BRZ x 9.5).

First, from mass balance, every capacity of methanol production produces
about 16.3% of the required amount of methanol for sodium methoxide production
process; the process size does not affect the percentage of supportive methanol
relative to the amount required as feedstock for the sodium methoxide production
process.

Second, the result from the evaluation of CO, utilization shows that methanol
production process from waste H, may consume carbon dioxide at 1.34 kg/kgcyson. The
highest amount of CO, released from the process is indirect CO, from utilities usage.
In the same way of mass balance, the CO, utilization capacity does not depend on
methanol production capacity.

Finally, from economic analysis results, CO, hydrogenation process becomes
more feasible when the capacity is higher. The cut-off point that make the process to
be economically feasible is at 9.5 folds of the based case.

At the cut-off point, the methanol production process has a profitability index
near to 1 (Pl = 1.02) at the end of the 20" year and can truly compensate some fed
methanol to the sodium methoxide plant at year 17™ Further, according to the
economic analysis, the feasibility of the process may be improved as the sodium

methoxide production capacity increases.
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For the future work, another way to make this process more feasible is to
produce more valuable products which uses methanol as a precursor such as dimethyl

ether (DME), and dimethyl carbonate (DMC), etc.
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APPENDIX A VERIFICATION OF RATE EQUATIONS

Rate equations which are used in this study is found in from ref. The equation

in form of LHHW and its parameter is shown by following equations and Table Al

-2
k1PC02PHZ_kGPH20PCH30HPH2 (Al)

r =
CH,OH 3
3 (1+k,Py, 0P+ ks PYS +KaPr 0 )

-1
i ksPco,—k7Py,0Pco PH;, (A2)
TRWGS = T3Py Pt kPGS +h,P
20"H20VHy 3%H, 4"H,0

Table Al Kinetics parameter for reaction set of CO, hydrogenation

i-th reaction A B,
k1 -29.87 4811.2
k2 8.147 0
k3 -6.452 2068.4
kd -34.95 14928.9
k5 4.804 -117975
ké 1755 -2249.8
k7 0.1310 -7023.5

The parameters k; in equation Al and A2 are in the form of
B:
Ink; = A; + 2 (A3)

These equation are verified by compared its concentration and temperature
profile with experimental result from the other research [34]. The comparison of

concentration and temperature profile are shown in Figure Al and A2
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APPENDIX B CALCULATION OF METHANOL REQUIRED FOR SODIUM METHOXIDE
PRODUCTION PLANT AND FEED AMOUNT FOR METHANOL PRODUCTION

B.1 Calculation of feed amount of BRZ capacity

Sodium methoxide capacity = 3.00 x 10* tnaochs/year. (Section 3.3)
1k
Sodium methoxide yield = —<ENaOCH; [13]
0.445 kgna
3.00x10%t 1000 k
Sodium metal used = NaOCHs » ENaOCH3
1 year 1 tNaOCH3

1 year x 0.445 kgna
360 day 1 ngaOCH3

k
= 3 0, N

day

Equation 3.5: 2Na + 2CH;0OH — 2NaOCH; + H,  (3.5)
3.71x10% k 1 kmol 2 kmol
Methanol required = ENa Na CH3OH
1 day 23 kgna 2 kmolyg,
32 KgcH30H

1 kmolCH30H
= O i 104 kgCH3OH/day
3.71x10° kgna 1 kmoly, . 1 kmoly,

Hydrogen release =
1 day 23 kgna 2 kmolyg

2 kgHz
1 kmoly,

1.61 x 10° kg,,/day

Equation 3.3: CO, + 3H, > CH;OH + H,0
1.61 x103 kgy 1 kmoly 1 kmol
Feed carbon dioxide = 2 % Z % €0,
1 day 2 kgy, 3 kmoly,
44 kgCOz
1 kmolCO2

1.18 x 10 kgcn,/day

B.2 Calculation of feed amount of BRZ x 5 capacity

150x 10°  tyocus/year. (Section 3.3)

1 KgNaOCH3
0.445 kgna

Sodium methoxide capacity

Sodium methoxide yield [13]



1.50x10° tNaOCH3 x 1000 kKgNaoCH3

1 year 1 tNaocCH;
1 year 0.445 kgna

360 day 1 ngaOCH?,

Sodium metal used =

k
- 185x10°  —°Na

day

Equation 3.5: 2Na + 2CH;0OH — 2NaOCH; + H,  (3.5)
1.85x10°% k 1 kmol 2 kmol
Methanol required = ENa , O Na cHs0H
1 day 23 kgna 2 kmolyg,
32 kgcHs0H

1 kmOICHgoH
= 2.58 x 105 kgCH3OH/day
1.85%10° kgna x 1 kmoly, X 1 kmoly,

Hydrogen release =
1 day 23 kgna 2 kmolp,

2 kgHz
1 kmoly,

= 8.06 x 10° kgy,/day
Equation 3.3: CO, + 3H, < CH;OH + H,0O

8.06 X103 kgy, _ 1kmoly, _ 1kmolcg,

Feed carbon dioxide #
1 day 2 kgy, 3 kmoly,

44 kgcoz
1 kmolCOZ

59.1 x 10“ kgco,/day

B.3 Calculation of feed amount of BRZ x 7.5 capacity

Sodium methoxide capacity 2.25x 10° tnaochz/year. (Section 3.3)

1 kgNaocH
Sodium methoxide yield = ——=2=8 [13]
0.445 nga
2.25%10° tyaocH 1000 KgNaocH
Sodium metal used = =8 % Al
1 year 1 tNaOCHg

1 year x 0.445 kgna
360 day 1 ngaOCH3

k
= 278x10° ~oNa
day
Equation 3.5: 2Na + 2CH;0H — 2NaOCH5; + H,  (3.5)

2.78x10°% kgna , 1 kmolya _, 2 kmolcyzon

Methanol required

1 day 23 kgna 2 kmoly,
32 KgcHz0H
1 kmOICH3OH

3.87 x 10° kgcpson/day
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2.78x10° k 1 kmol 1 kmol
ENa X Na X Hp

Hydrogen release =
1 day 23 kgna 2 kmolpg,

2 kgHz
1 kmoly,

1.21 x 10* kg,,/day

Equation 3.3: CO, + 3H, > CH;OH + H,0O

1.21 x10* kgy, _ 1kmoly, _ 1kmolcg,

Feed carbon dioxide

1 day 2 kgy, 3 kmoly,
44 kgCOz
1 kmolCOZ

8.87 x 10" kgco,/day

B.4 Calculation of feed amount of BRZ x 9.5 capacity

Sodium methoxide capacity 2.85x 10° tnaocrs/year. (Section 3.3)

. . . 1 kgNaocH
Sodium methoxide yield = ——CRTE [13)
0.445 nga
2.85x10° tyaocH 1000 KgNaocH
Sodium metal used = =28 % .
1 year 1 tNaOCHg

1 year 0.445 kgna
360 day 1 ngaOCH3

k
= 352x10° -°Na

day

Equation 3.5: 2Na + 2CH;0H — 2NaOCH; + H, (3.5)
3.52x10% k 1 kmol 2 kmol
Methanol required = ENa - TONa CHsOH
1 day 23 kgna 2 kmoly,
32 KgcHz0H

1 kmolCH30H

= 4.90 x 10° kgcpson/day

3.52x10° k 1 kmol 1 kmol
ENa % Na X H2

Hydrogen release =
1 day 23 kgna 2 kmolpg,

2 kgHZ
1 kmoly,

= 1.53 x 10 kg, ,/day

Equation 3.3: CO,+3H, <>  CHsOH +H,0
1.53 x10% kgy 1 kmoly 1 kmolgg
Feed carbon dioxide = 2% 2 % 2
1 day 2 kgy, 3 kmoly,
44 kgCOz
1 kmolCOZ

1.12 x 10° kgco,/
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APPENDIX C EQUIPMENT SPECIFICATION

C.1 Utilities specification

Table C1 Utilities specification

Name HOT-OIL | LP-STEAM | MP-STEAM R-W
Utility type OIL STEAM STEAM WATER
Calculated inlet pressure [bar] - 232 8.93 1.01
Specified inlet temperature [C] 280 125 175 35
Specified outlet temperature [C] 250 124 174 50
C.2 Compressor Specifications
Table C2 Multi-stages compressor design specifications
Inlet
Inlet Pressure Number | Pressure | Cooler
(bar) e of stages ratio Utility
(@)
COM1 (for H,) 14.0 86.0 3.00 1.51 R-W
Table C3 Size of compressor in
Name Net work required (kW)
BRZ a8.7
BRZ x 5 243
BRZ x 7.5 365
BRZ x 9.5

462




C.3 Heater and cooler specifications

Table C4 Size of Heater and Cooler
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Type Duty Area (m?)
Name Unit Utility
(kcal/s)
B1 LP-STEAM Heater 8.83 0.373
BRZ B3 HOT-OIL Heater 181 415
B4 R-W Cooler -235 10.9
Bl LP-STEAM Heater 44.2 1.87
BRZ x 5 B3 HOT-OIL Heater 970 222
B4 R-W Cooler -1.24E+03 573
B1 LP-STEAM Heater 66.2 2.80
BRZ x 7.5 B3 HOT-OIL Heater 1.98E+03 452
B4 R-W Cooler -2.37E+03 110
B1 LP-STEAM Heater 84.1 3.55
BRZ x 9.5 B3 HOT-OIL Heater 2.07E+03 473
Bd R-W Cooler -2.57E+03 119
C.4 Reactor Specifications
Table C5 Catalyst Properties
Catalyst type Cuw/ZnO/AL O,
Density (kg/m?) 1775
Porosity 0.5
Table Cé6 Size of Reactor
Name Unit Diameter (m) Length (m) L/D
BRZ R101 0.50 2.50 5.00
BRZ x 5 R101 0.70 3.50 5.00
BRZ x 7.5 R101 0.75 3.75 5.00
BRZ x 9.5 R101 0.80 4.00 5.00
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d) BRZx 9.5

Figure C1 Reactor profile

C.5 Flash drum specifications

Table C7 Size of flash drum

61

Unit

Diameter (m)

Height (m) L/D

BRZ B4 1.07

3.66 343

BRZ x 5 B4 1.07

3.66 343

BRZ x 7.5 B4 1.07

3.66 343

BRZ x 9.5 B4 1.07

3.66 343




C.6 Distillation column specifications

Table C8 Distillation column specification
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Reflux Feed Condenser
Unit | Condenser | Reboiler Stages
ratio stage pressure (bar)
Partial
B8 Kettle 5 3 2 15.0
vapor
B10 Total Kettle 2 20 15 1.03
Table C9 Size of distillation column
Condenser Reboiler duty Diameter
Name | Unit Height (m)
duty (kcal/sec) (kcalVsec) (m)
B8 -7.41 22.7 4.88 0914
BRZ
B10 -79.3 69.3 19.5 4.42
B8 -36.4 112 4.88 1.83
BRZ x 5
B10 -398 348 19.5 9.91
B8 -54.8 169 4.88 2.29
BRZ x 7.5
B10 -597 522 19.5 12.0
B8 -69.5 214 4.88 295
BRZ x 9.5
B10 -753 658 19.5 13.6




APPENDIX D CALCULATION OF NET CO, EMISSION AND CARBON EFFICIENCY

D.1 Net CO, Emission and carbon efficiency of BRZ size

Methanol Yield 349 kecuzo/h
Inlet COZ = 493 kgcoz/h

Direct Outlet CO, 478  Kkgcoo/h

Indirect Outlet CO,

Basis: Motor efficiency = 0.9 [61]
Electricity production efficiency = 0.5 [62]
Natural gas used for Electricity production — = 9052 kcal/m?y¢ [62]
CO, Emission per natural gas used = 1.85 kgcoo/M e
® COM1

Net work required 48.7 kW  (from Simulation result)

, 48.7 kW
Work required =
0.9x0.5
= 108  kw
108x103] _ 0.24 cal
= X
S 1]
= 258  kcals
, 25.8 kcal 1mjg
Natural gas required =
1s 9052 kcal
= 0.00285 m>ye/s
0.00285 m3 1.85 kg
CO, emission = NG 3C02
1s 1 myg

= 5.28 x 107 kgco,/s

® PUMP2

1.54 kw (from Simulation result)

1.54 kW
0.9%0.5
= 342 kW

Net work required

Work required
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3.42x103] _ 0.24 cal
X

S 1]
= 0.816 kcal/s
0.816 kcal 1m3
Natural gas required = X NG
1s 9052 kcal
,5 3
= 9.02 X 10 Mm%\ /s
9.02x107°> m3 1.85kg
CO, emission = NG v 3COz
1s 1 myg

= 1.67 x 10 kgco,/s

(5.28 x 107 kge,/s) + (1.67 x 10 kgco,/s)

5.44x1072 kgco, _, 60
1s 1h 8co2

Indirect CO, outlet

i i
Net CO, emission = Z COy prror = Z COy e (3.6)
n n

(4-.78+19.6 kgcoz/h> ( 493 kgco,/h )

Net CO, emission =

349 kgCHgOH/h 349 kgCHgOH/h
= -1.34  Kgco2/k8cHson
349 kch30H/h
Carbon efficienc
4 (493 kgco,/h+19.6 kgco,/h)
= 0.94

D.2 Net CO, Emission and carbon efficiency of BRZ x 5 size

1.75 x 103 kgCHBOH/h
246x 10> kgcon/h
278 kgcoz/h

Methanol Yield
Inlet CO,
Direct Outlet CO,

Indirect Outlet CO,
Basis: Motor efficiency = 0.9 [61]
Electricity production efficiency = 0.5 [62]

Natural gas used for Electricity production 9052 kcal/m? ¢ [62]

CO, Emission per natural gas used 1.85 kgcoo/M e

® COM1

Net work required = 243 kW (from Simulation result)
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. 243 kW
Work required =
0.9%0.5
= 541 kW
541x103] _ 0.24 cal
= X
S 1]
= 129 kcal/s
_ 129 kcal 1mjg
Natural gas required =
1s 9052 kcal
= 0.0143 m’ye/s

0.0143 m3 5 185 kgco,

CO, emission = 3
1s 1 myg

= 00264 kgCOZ/S

® PUMP2
Net work required # 769 kW  (from Simulation result)
. 7.69 kW
Work required =
0.9x0.5
= 171 kW
17.1x103] . 0.24 cal
= X
S 1]
= 4.08  kcal/s
4.08 kcal 1mj
Natural gas required = “ NG
1s 9052 kcal
= 451 X 10" m>ne/s

9.02x10™* m3;; 5 185keco,
3
1s 1 mig

CO, emission =

= 8.34 x 10 kgco,/s

(0.0264 kgco,/s) + (8.34 x 107 kgep,/s)

0.0272kgco, _, 60s
= X = .
— — 98.0 kgcoy/h

Indirect CO, outlet

i i
Net CO, emission = Z CO; putier ~ Z €Oz piee (3.6)
n

n

27.8498.0 kgco,/h 2.46x103 kgco,/h
1.75x103 kgcpzon/h 1.75x103 kgcgzon/h

133 Kkgco2/k8cHson

Net CO, emission
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1.75x10°% kgcyzon/h
(2.46x103 kgco, /h+98.0 kgco,/h)
0.94

Carbon efficiency

D.3 Net CO, Emission and carbon efficiency of BRZ x 7.5 size

Methanol Yield = 263x10°  kgcyzow/h

Inlet CO, = 3.70 x 10° kgcos/h

Direct Outlet CO, = 37.6 kgcoo/h

Indirect Outlet CO,

Basis: Motor efficiency = 0.9 [61]
Electricity production efficiency = 0.5 [62]

Natural gas used for Electricity production 9052 kcal/m?yq [62]

CO, Emission per natural gas used 1.85 kgcoo/M e

® COM1

365 kW (from Simulation result)

365 kW
0.9%0.5
= 811 kW

Net work required

Work required

811x103] . 0.24 cal
X
S 1]
= 194 kcal/s
194 kcal 1mjg

1s 9052 kcal
= 0.0214 m’ye/s

0.0214 m3; % 1.85Kkgco,
1s 1m}g

Natural gas required

CO, emission =

= 00396 kgcoz/s

® PUMP2

115  kw (from Simulation result)

11.5 kW
0.9x0.5

Net work required

Work required



Natural gas required

CO, emission

Indirect CO, outlet =

67

= 256 kW

25.6x103] _ 0.24 cal
X
S 1]
= 6.12  kcal/s
6.12 kcal 1 myg

1s 9052 kcal
= 6.76 x 10° m°/s

6.76X10"* m¥ % 1.85 kgco,

3
1s 1mg

1.25 x 1O>3 kgcoz/s
(0.0396 kgcoy/s) + (1.25 x 107 kgco,/s)

0.0409 kgco, 5 605

T 1h = 147 kgcoz/h

i i
Net CO, emission = Z CO; putier = Z COz piee (3.6)
n n

Net CO, emission =

Carbon efficiency =

37.6+147 kgco,/h 3.70x10% kgco,/h
2.63x103 kgeyzon/h 2.63x103 kgcpzon/h

-1.34  Kgcoa/k8crson
2.63x103 kgcpzon/h

(3.70x103 kgco, /h+147 kgco,/h)
0.94

D.4 Net CO, Emission and carbon efficiency of BRZ x 9.5size

Methanol Yield
Inlet CO,
Direct Outlet CO,

Indirect Outlet CO,

Basis: Motor efficiency

332x10°  kgesow/h
4.68x 10>  kgcon/h
504 kgcoz/h

= 0.9 [61]

Electricity production efficiency = 0.5 [62]

Natural gas used for Electricity production

CO, Emission per natural gas used

® COM1

Net work required

9052 kcal/m?yq [62]
1.85 kgcoo/M e

= 462 kW (from Simulation result)
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462 kW
0.9%x0.5
= 1.03 x 10° kW

1.03x10°] . 0.24 cal
X
S 1]
= 245  kcal/s

Work required =

245 keal 1mjg
1s 9052 kcal
= 0.0271 m’ye/s

Natural gas required

0.0271 My % 1.85kgco,

CO, emission = 3
1s 1 myg

= 00502 kgcoz/s

® PUMP2
Net work required # 138 kW  (from Simulation result)
. 13.8 kW
Work required =
0.9x0.5
= 30.7  kw
30.7x103] . 0.24 cal
= X
S 1]
= 7.34  kcal/s
7.34 kcal 1mj
Natural gas required = “ NG
1s 9052 kcal
= 8.11 X 10" m>ne/s

8.11x10~* m¥;¢ 5 1:85 keco,

CO, emission = 3
1s 1 myg

= 1.50 x 107 kgco,/s

(0.0502 kgco,/s) + (1.50 x 107 kgcp,/s)

0.0517 kgCOz 60 s
= X = ]. h
1s 1h 86 kgco,/

Indirect CO, outlet

i i
Net CO, emission = Z CO; putier ~ Z €Oz piee (3.6)
n

n

50.4+186 kgco,/h 4.86x103 kgco,/h
3.32x103 kgcuzon/h 3.32x103 kgchson/h

-1.34 K8coo/kScrson

Net CO, emission



Carbon efficiency

3.32x103 kgCH3OH/h

(4.86x103 kgco,/h+186 kgco,/h)
0.94
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APPENDIX E ECONOMIC ANALYSIS RESULT

E.1 Nomenclature of variables in economic analysis result

Table E1 Nomenclature of variables in economic analysis result

DEP Depreciation expense
E Earnings before Taxes
TAX Taxes
NE Net earnings
TED Total earnings
TEX Total expenses (excludes taxes and depreciation)
CF Cash flow
PV Present value
NPV Net present value

E.2 Economic analysis result of BRZ size

TW (Number of Weeks per Period) Weeks/period 52

T (Number of Periods for Analysis) Period 20
DTEPC (Duration of EPC Phase) Period 0.442308
DT (Duration of EPC Phase and Startup) Period 0.826923
WORKP  (Working Capital Percentage) Percent/period | 5
OPCHG (Operating Charges) Percent/period | 25
PLANTOVH (Plant Overhead) Percent/period | 50
CAPT (Total Project Cost) Cost 8.79E+06
RAWT (Total Raw Material Cost) Cost/period 952094
PRODT (Total Product Sales) Cost/period 1.07E+06
OPMT (Total Operating Labor and Maintenance Cost/period 912541
Cost)

UTILT (Total Utilities Cost) Cost/period 223687
ROR (Desired Rate of Return/Interest Rate) Percent/period | 20
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AF (ROR Annuity Factor) 5

TAXR (Tax Rate) Percent/period | 40

IF (ROR Interest Factor) 1.2

ECONLIFE (Economic Life of Project) Period 20

SALVAL (Salvage Value (Percent of Initial Capital | Percent 20

Cost))

DEPMETH (Depreciation Method) Straight
Line

DEPMETHN (Depreciation Method Id) 1

ESCAP (Project Capital Escalation) Percent/period | 5

ESPROD (Products Escalation) Percent/period | 5

ESRAW (Raw Material Escalation) Percent/period | 3.5

ESLAB (Operating and Maintenance Labor Percent/period | 3

Escalation)

ESUT (Utilities Escalation) Percent/period | 3

START (Start Period for Plant Startup) Period 1

DESRET (Desired Return on Project for Sales Percent/Period 10.5

Forecasting)

END (End Period for Economic Life of Project) Period 20

GA (G and A Expenses) Percent/Period | 8

DTEP (Duration of EP Phase before Start of Period 0.211538

Construction)

OP (Total Operating Labor Cost) Cost/period 832770

MT (Total Maintenance Cost) Cost/period 79770.6
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E.3 Economic analysis result of BRZ x 5 size
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TW (Number of Weeks per Period) Weeks/period 52
T (Number of Periods for Analysis) Period 20
DTEPC (Duration of EPC Phase) Period 0.557692
DT (Duration of EPC Phase and Startup) Period 0.942308
WORKP (Working Capital Percentage) Percent/period | 5
OPCHG (Operating Charges) Percent/period | 25
PLANTOVH (Plant Overhead) Percent/period | 50
CAPT (Total Project Cost) Cost 1.48E+07
RAWT (Total Raw Material Cost) Cost/period 476047
PRODT (Total Product Sales) Cost/period 5.38E+06
OPMT (Total Operating Labor and Maintenance Cost/period 1.05E+06
Cost)
UTILT (Total Utilities Cost) Cost/period 913890
ROR (Desired Rate of Return/Interest Rate) Percent/period | 20
AF (ROR Annuity Factor) 5
TAXR (Tax Rate) Percent/period | 40
IF (ROR Interest Factor) 1.2
ECONLIFE (Economic Life of Project) Period 20
SALVAL (Salvage Value (Percent of Initial Capital Percent 20
Cost))

Straight
DEPMETH (Depreciation Method)

Line
DEPMETHN (Depreciation Method Id) 1
ESCAP (Project Capital Escalation) Percent/period | 5
ESPROD (Products Escalation) Percent/period | 5
ESRAW (Raw Material Escalation) Percent/period | 3.5
ESLAB (Operating and Maintenance Labor Percent/period | 3

Escalation)




7

ESUT (Utilities Escalation) Percent/period | 3

START (Start Period for Plant Startup) Period 1
DESRET (Desired Return on Project for Sales Percent/Period | 10.5
Forecasting)

END (End Period for Economic Life of Project) Period 20

GA (G and A Expenses) Percent/Period | 8

DTEP (Duration of EP Phase before Start of Period 0.211538
Construction)

OP (Total Operating Labor Cost) Cost/period 832770
MT (Total Maintenance Cost) Cost/period 212576
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E.4 Economic analysis result of BRZ x 7.5 size

82

TW (Number of Weeks per Period) Weeks/period | 52

T (Number of Periods for Analysis) Period 20

DTEPC (Duration of EPC Phase) Period 0.596154

DT (Duration of EPC Phase and Startup) Period 0.980769

WORKP (Working Capital Percentage) Percent/period | 5

OPCHG (Operating Charges) Percent/period | 25

PLANTOVH (Plant Overhead) Percent/period | 50

CAPT (Total Project Cost) Cost 1.81E+07

RAWT (Total Raw Material Cost) Cost/period 714070

PRODT (Total Product Sales) Cost/period 8.06E+06

OPMT (Total Operating Labor and Maintenance Cost) | Cost/period 1.11E+06

UTILT (Total Utilities Cost) Cost/period 1.46E+06

ROR (Desired Rate of Return/Interest Rate) Percent/period | 20

AF (ROR Annuity Factor) 5

TAXR (Tax Rate) Percent/period | 40

IF (ROR Interest Factor) 12

ECONLIFE  (Economic Life of Project) Period 20

SALVAL (Salvage Value (Percent of Initial Capital Percent 20

Cost))

DEPMETH (Depreciation Method) Straight
Line

DEPMETHN (Depreciation Method Id) 1

ESCAP (Project Capital Escalation) Percent/period | 5

ESPROD (Products Escalation) Percent/period | 5

ESRAW (Raw Material Escalation) Percent/period | 3.5

ESLAB (Operating and Maintenance Labor Escalation) | Percent/period | 3

ESUT (Utilities Escalation) Percent/period | 3

START (Start Period for Plant Startup) Period 1
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DESRET (Desired Return on Project for Sales Percent/Period | 10.5
Forecasting)

END (End Period for Economic Life of Project) Period 20

GA (G and A Expenses) Percent/Period | 8

DTEP (Duration of EP Phase before Start of Period 0.211538
Construction)

OP (Total Operating Labor Cost) Cost/period 832770
MT (Total Maintenance Cost) Cost/period 278321
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E.5 Economic analysis result of BRZ x 9.5 size
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TW (Number of Weeks per Period) Weeks/period 52

T (Number of Periods for Analysis) Period 20

DTEPC (Duration of EPC Phase) Period 0.634615

DT (Duration of EPC Phase and Startup) Period 1.01923

WORKP (Working Capital Percentage) Percent/period | 5

OPCHG (Operating Charges) Percent/period | 25

PLANTOVH (Plant Overhead) Percent/period | 50

CAPT (Total Project Cost) Cost 1.96E+07

RAWT (Total Raw Material Cost) Cost/period 904488

PRODT (Total Product Sales) Cost/period 1.02E+07

OPMT (Total Operating Labor and Maintenance Cost/period 1.16E+06

Cost)

UTILT (Total Utilities Cost) Cost/period 1.83E+06

ROR (Desired Rate of Return/Interest Rate) Percent/period | 20

AF (ROR Annuity Factor) 5

TAXR (Tax Rate) Percent/period | 40

IF (ROR Interest Factor) 1.2

ECONLIFE (Economic Life of Project) Period 20

SALVAL (Salvage Value (Percent of Initial Capital Percent 20

Cost))

DEPMETH (Depreciation Method) Straight
Line

DEPMETHN (Depreciation Method Id) 1

ESCAP (Project Capital Escalation) Percent/period | 5

ESPROD (Products Escalation) Percent/period | 5

ESRAW (Raw Material Escalation) Percent/period | 3.5

ESLAB (Operating and Maintenance Labor Percent/period | 3

Escalation)
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ESUT (Utilities Escalation) Percent/period | 3

START (Start Period for Plant Startup) Period 1
DESRET (Desired Return on Project for Sales Percent/Period | 10.5
Forecasting)

END (End Period for Economic Life of Project) Period 20

GA (G and A Expenses) Percent/Period | 8

DTEP (Duration of EP Phase before Start of Period 0.211538
Construction)

OP (Total Operating Labor Cost) Cost/period 832770
MT (Total Maintenance Cost) Cost/period 329821
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