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potential satisfying that there exist o > —2 such that
a(x) 2 |x|7 forall z € C.
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CHAPTER 1

INTRODUCTION

There have been many studies of nonlinear heat equations with initial and

boundary conditions of the form

)
Ou = Au+ f(yu,u,z,t) xeOt>0,

u(z,t) = g(x,t) x € 00, t>0, (1.1)
Lu(:zc,O) = up(x) x € €,

where u : Q x [0,00) — R, is an open subset of R", f and g are given functions
and ug is the initial condition of u. The heat equations have been employed to
model many phenomena in physic, chemistry, biology, population dynamic etc.
In 1960’s, H. Fujita [5] studied positive solutions of (1.1) in the case that f = u?
and Q = R", i.e.,

ou = Au + uP re€R" t >0,
(1.2)

u(z,0) = up(x) > 0,
where p > 1 is a real constant. He proved that p. = 1+ % is a critical value for
the exponent p in the sense that if 1 < p < p., then the solution with nontrivial
initial condition blows up in a finite time, whereas if p > p., then the solution
can be global provided wug is sufficiently small and it blows up in a finite time
provided wuy is sufficiently large. We recall that a solution u is said to be blow-up
in a finite time if there is T > 0 such that ||u(-,t)||p~ — 0o ast — T~ and u

is said to be global if it is defined on R™ x [0,00). In the case that p = p., the



nontrivial solution is shown to be blow-up by K. Hayakawa [6], when n = 1,2 and
by K. Kobayashi et al. [8] (and also F.B. Weissler [16]) for the general n > 1. The
number p, = 1 + % is called the Fujita critical exponent for the semilinear heat
equation (1.2).

In 2002, G.G. Laptev derived the Fujita type critical exponent for weak so-
lutions to the semilinear heat equation on cone domains using the test function
method developed by Pohozaev and Miditeri ([12], [13]). He studied the following

differential inequality
w = A" ) > 27|l (2,8) € € x (0, 00), (1.3)

where € is a cone domain, 1 < m < ¢ and 0 > —2 and he proved that (1.3) has

240
e*+2

no nontrivial global weak solution when ¢ < ¢* :=m + (see in Chapter 2 for
the definition of e*).
Apart from the heat equations, there is another type of equations which are

widely studied, the so-called, pseudo parabolic equations, which have the following

form
4

Ou — kAo = Au + a(z)uP x e Ct>0,

u(z,t) =0 x €0C,t>0, (1.4)

\u(az, 0) = ug(x),
where p > 1,k > 0 is a constant, a(z) > 0 and uy > 0 are given functions. It
is used to model many physical systems such as lightning [1], seepage of fluids in
fissured rocks [2], radiation with time delay [11], the heat conduction models [15]
etc. Observe that H. Fujita studied (1.4) in the case kK = 0,a(z) = 1 and C is
replaced with R™.

In 2009, Y. Cao, J. Yin and C. P. Wang [3] studied (1.4) when k£ > 0,a(x) =1

and € is replaced with R™ and proved that p. =1 + % is the Fujita type critical



exponent for the initial value problem. This is the same as the corresponding
result for the semilinear heat equation.

Moreover, in 2015, S. Khomrutai [7] studied (1.4) in the case k = 1, a(x) is an
unbounded function and € is replaced with R". He proved by the test function

method that if a(z) = [z|” where 0 < 0 < -4 for n > 3 and ¢ € [0,00) for

3

n = 1,2, then the critical exponent of (1.4) is p, = 1 4 %2,

There have been many studies on nonlinear pseudo parabolic on R"™ or a
bounded domain in R™ such as above. To the author knowledge, there is no
investigation of the problem on cone domains. The aim of this work is to fill this
gap.

In my thesis, motivated by [7], [9], we consider the Cauchy problem (1.4) on

a cone domain and we have the main result that if

. o+2 2
1<p<p.:=min< 1+ 14— 5,
n -+ e, €y

where a(xz) 2 |x|7, then u = 0 is the only solution which is defined for all ¢ €
[0, 00).

This thesis is organized into four chapters as follows.

In Chapter II, we introduce some basic analysis, definitions and theories that
are useful to study (1.4) on cone domains. Next, in Chapter III, we prove some
preliminary estimates and we introduce the notion of a weak solution for (1.4).

Finally, we proved our main results in Chapter IV.



CHAPTER II

PRELIMINARIES

In this chapter, we give some basic concepts in PDEs which are omitted the

details of proofs. The proof can be found in common PDEs textbooks.

2.1 Bisic analysis

Lemma 2.1. Ifp,q > 1 and % + % =1, then, for any u,v >0,

1 1
wo < —uf + —vi. (2.1)
p q

Lemma 2.2. (Holder’s inequality). Let f, g be measurable functions on a measure

space (X, ). Let 1 < p,q < oo be such that % + é = 1. Then,

[ 1fkdn < ( / |f|”du>;< / |g|qdu>é. (2.2

Theorem 2.3. (Minkowski’s inequalilty). Let 1 < p < oo and let f,g be measur-

able functions on a measure space (X, ). Then,

</X !f+g\pdu>; < (/X ‘f‘pdu>; + (/X ,g,pdﬂ);_ (2.3)

Theorem 2.4. Let (X, pu) and (Y,v) be o-finite measure spaces and

f: X xY —[0,00) be an integrable function. Then,

o) dux )= [ ([ s ant)) dut

_ /Y ( /X f@,y) du(x)> du(y). (2.4)

XxY



2.2 Integration on cones

Let

Sl = {x €R": fo = \Ja +a} + 4. +a2 =1}

be the unit sphere. Any € R™ (z # 0) can be written in polar coordinations as

T = rw, where

r:=|z| € (0,00) and w:= ﬁ e St
T

For a continuous function f : R®™ — R which is integrable, it is well-known that

f(z)dx = /OO frw)yr™ tdw dr, (2.5)
R® 0o Jsnt

where dw is the surface measure on the unit sphere.

Definition 2.5. Let Q C S™ ! be an open set and p > 0. A set of the form
Cro={r=rweR":r>pwel} (2.6)
is called a cone in R™.

Note that the boundary of the cone C,q is 0C, 0 = {rw € R"|r = p,w €

QU {rw € R*|r > p,w € 9Q} =: 9C" U HE? .
Example 2.6. If Q = S"! and p = 0, then €y gn-1 = R" — {0} and 9C, o = {0}.

Example 2.7. If Q = {z = (v, 29,23, ...,2,) € S" 1,2, > 0} and p = 0, then

Co sn—1 is the upperhalf space and 0C, o = {(z1, z2, T3, ..., Tn—1,0)}.

Proposition 2.8. Let f : €, — R be an integrable function. Then,

[ s te= [T [ st s .



Lemma 2.9 (Integrating by parts). Let f : C, o — R be a differentiable function.

Then, for all g € C°(C,q)(= the space of smooth functions with compact support,

defined on C,q),

| @ngae=-[ @t (2.5)

GP»Q ep,ﬂ

Theorem 2.10 (Green’s formula). Let f,g € C*(C,q) N C(€C,q). Then,

B dg of
/e (A gnpde= /8 y (fa—ﬁ; - ga—ﬁ;) s, (2.9)

%)

where 52 is the directional derivative of g with respect to the outward unit normal

Q

vector ﬁ)

2.3 Helmholtz eigenvalue

For simplicity, we denote € = C, . We shall use the first Helmholtz eigenvalue
Aw = A1(22) > 0 of the Laplace-Beltrami operator A, on {2 and the corresponding

eigenfunction ¥ > 0, that is, \; and ¥ satisfy,

AT +MT =0 in Q,
(2.10)

U =0 on Of2.

The following results are true by standard elliptic theory (see for instance [4]):
1. U eC®(Q)NC(Q),
2. U(z) >0 VreQ,

3. 82)1’7(3‘”) <0 Vzx € 09 by Hopt’s lemma.



CHAPTER III

MAIN RESULT 1

3.1 Weak solution

Let p > 0 and Q C S"' be an open set. We denote € = €,q, IC' = 9C,
and 0C? = 8@279. In this work, we consider non-negative solutions u = u(z,t) for

the semilinear pseudoparabolic equation

;

Ou — ANdyu = Au+ a(x)u?  for z € C,t >0,

u(z,0) = ug(x) for = € C, (3.1)

u(x,t) =0 for x € 0C,t > 0,

\
where p > 1, a(x) and ug are given non-negative functions.
We have the following relationship between classical and weak solutions for

(3.1).

Proposition 3.1. Ifu is a classical solution of (3.1), then for any ¢ € C°(€ x [0, 00)),

we have

/Ooo/eu/kp dxdt + /Ooo/ewa(x)up dxdt = /@uo(:c) <A(p(x7()) _ g0(1-70)) dz,

(3.2)

where the operator A is defined by

Ap = 0yp — NOyp + N (3.3)



Proof. Multiplying (3.1) with ¢ and integrating over € x [0, 00), we have

/ /SOatU dxdt —/ /goA@tu dxdt
o Je o Je
:/ /cpAu dxdt—l—/ /g@a(x)u” dxdt. (3.4)
o Je o Je

Consider the first term on the left hand side of (3.4). Applying the Fubini’s

theorem (Theorem 2.4) and then integrating by parts with respect to t, we get

/ /Sﬁatu dzxdt = // O dtdx
o Je ¢Jo
=/<90uoo—/ udyp dt) dx
e 0 0
¢ eJo
—/gp(x,())uo(w) da:—/ /u@tgo dxdt, (3.5)
e o Je

where we have used that ¢ has compact support in the third equality.

Next, we consider the second term on the left hand side of (3.4). We get by

the Green’s identity (Theorem 2.10) that

/ /@A@tu dxdt = (/ /@A@tu dzdt —/ /&u&gp da:dt)
o Je o Je
/ / dulNe dxdt
/ / ( (O) — O ¢ ) dSdt +/ /@u&gp dxdt
oe o e
/ / &“— dSdt — / atué% dSdt
oe o Joe

+/ /ﬁtuAgp dxdt.
o Je

Since dyu = 0 and ¢ = 0 on 0C, we get

/ /@Aatu drdt = / /(Atp)atu dxdt.
o Je o Je



Applying the integrating by parts with respect to t, we get

/ /SOAatU dxdt = / /(Ag&)@tu dxdt
0 C 0 C
Z/uﬁs@‘w dx—// uaA@ dtdx

/uo( VAp(x,0) dx — 6’ 80

drdt.  (3.6)

Now, we consider the first term on the right hand side of (3.4), we get

/ /goAu dxdt = (/ /gpAu dxdt —/ /uA@ dxdt)
o Je o Je o Je
—l—/ /uAgp dxdt
/ / [ Uj] det+/ /uAgp dxdt.
ae

Since u = 0 and ¢ = 0 on 0C, Weget/ @det—Oand

U dSdt = 0. Then,
| Lo

/ /@Au dxdt :/ /uAgo dxdt. (3.7)
o Je o Je

Substituting (3.5), (3.6) and (3.7) in (3.4) and using the operator 4, we have

/OOO/GUASD dxdt + /Ooo/egaa(a:)up dxdt = /euo(:z:) (Ago(x,o) — Sp(x’())> do.

So, we have the proposition. O
In this work we are interested in weak solutions of (3.1).

Definition 3.2. (Weak solution) A function u € L}, (€ X [0, 00)) is called a weak

loc

solution to (3.1) provided it satisfies (3.2) for all p € C°(€ x [0, 00)).



CHAPTER IV

MAIN RESULT 2

4.1 Test function

Notation: For two functions f and g, we write f < g if there is a constant C,

called a constant multiple, such that f < C'g at every point in the domain.

Lemma 4.1 ([9],[14]). Let ¢ € (1,00). There is ¢ € C3*(R),0 < ¢ < 1 such that

(

o(s) =1 if s<1, ¢(s)=0 if s>2,

¢'(s) <0 for all s € Rand (4.1)

V)] S 6ls)'T forall 1<s<2,j€{1,2,3).

Proof. Choose ¢ € C*(R) satisfying 0 < £ < 1,& <0 and

E(s)=1 for s <1,
£(s)=0 fors>2.

Then, it is directly to verify that

has the desired properties. O]

Let R, p > 0 (the latter is given by (3.1)) and T' > 0 are constants with R > p.

o(H)wen(z). w2

In polar coordinates x = rw, we define

A ERC)




11

where ¢ : R — R is given in Lemma 4.1, U (w) > 0 is the Helmholtz eigenfunction

of A, on Q C S"! corresponding to the first eigenvalue A\;(2) (see Chapter

3), e, = —1=2 4 \/("7‘2)2+)\1(Q) and e* = =2 4 \/(nT—2)2+A1(Q). For

convenience, we will use the following functions

()" ()

Thus,

=&,(r)P(r)Vs(w)P(1). (4.3)
We will need the following lemma.
Lemma 4.2. A(§,V,) =0 in C.
Proof. Note that U, is an eigenfunction for the Dirichlet problem of A, in €2;

AU, + MU, =0 in O
(4.4)

v, =0 on 0f).

By expressing of the Laplace-Beltrami operator in polar coordinates (r,w), i.e.,
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Azg—;—i—" 1‘9—1— LA, we have

r Or
2(E,W,) n—10(EW,) 1
Mgy = Pt no 10D | L ey,
0%, LA

S or? T 87"
= %4_”_1\1} agp gp

* Or2 r *Or r2( M)
L%, n-10¢ &N
=V [a_ T 7}

n—1e, LR

* *_1 — —e*—
:\Ijs|:€(€pe* )e 2+€(€_1>p e* 2+ 8*

OO
L) e

_p, F (f) fea(es— 1) + (n — Dew — A] +
+ (- 1) + /\1]} (4.5)

A
* e* —e*—1 1
+ . epr 2

p

Since e, and —e* are roots of the quadratic equation 7(r — 1)+ (n—1)r — Ay =0,

we have the lemma. O

4.2 Pointwise estimates of the test functions

Since
P, 1) = E,(r)0() W) (1)
~ 6,16 (1) v (1),
we have,
Ouslent) = 7600 () 0.6 (7).

Thus, by Lemma 4.1,




Hence,

q—1749

6o (7)wieio (1)

60 (6 ()" w0 (9 (%)) vierseem

100! S X{t:T<t<2T}

~ (§p<r>¢> (5) ) (%)) &0 () Wolexrzosan)

r

Since &,(r) < (;

) , ¢ (%) <1and ¥y (w) <1, we get that
r ex B B
0rp]? < (;) 91 1X{t:T§t§2T}
S Te*T_qSDq_l)({t:TthT}-
Since r < 2R on supp ¢, we obtain that
|0s0] S (2R)*T 90" X prr<i<ary

S RG*T_qSOq_lX{t:Tgtng}-

0% n—1090¢ 1

Ap(x,t) = 52 + o —i— AN
_ = (fp ) (gp ) 1 Y
=0 b + 2 - 0.3 o 6P (AL
056 0502 0*] n—1 0v 05
—‘I’sq’{@w+ or or %2] ‘”’[@ E]

1 ~
+ —§p<I><1> (ALYy)

e, (%)

— U,3D¢! + §¢< )\II<I>+R -

n—1 LT n—1_~_, 1 ~
— U, D€, <§> + = \1/5<1>c1>§p+—5pc1><1> (ALW,)

— 50 {\1135;’ + "7_1\1155; + T—lzgp (waps)} + =69 ( ) v.d

+

et () <" (7).

By A(¢,¥5) = 0, we have

1
R2

b () + T w e, (1)),

i) = 20 () wib i (5) 4 " bwio

13
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Thus, by Lemma 4.1,

|Ap(z, )|
q
X{r:R<r<2R}

360 () + "5 e (7)
¢ R+ (mve) 1o (7)

(&)
7)

’ §¢< )\IJ<1>+

n—1_ ~ 1
— VU P
- (gvie)
q
R

q

(i) o ()"

-1
}X{r:R<r<2R}

2 =\ T\ 49
s{(Fed) o(f)
+ (nr— 1\118&1)6’0) ¢ <E q
5 (’I;qu (%)q_l |:(i2§plps> + <i2\1/s§p) + (%\Psgp) :| X{r:R<r<2R}

1
~Y R2q¢€p S()Oq ! + RQq(Dgp S(pq ! _'_

S R_Qq@fp‘l’s<ﬂq_1X{r:R<r<2R}

r4 R4 (I)gqusSinl X{r:R<r<2R}

S R—2q+e* Spq_IX{r:R<r<2R} .

Since

Ap(z, 1) = _g & ( )xy b+ ézqfsiigpgb” (%) n nrz%hpséﬁipcb’ (%)
T

~3 [E§;¢’ <}_%> U, + %\Dsﬁpd’ (}_2> + ”T—;{l@sﬁpd (%)} ,

we obtain that

s bt (8) [B () evser (5) 4 "o ()]
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Thus, by Lemma 4.1,

|0 Ap(a, t)*

[ () [ (R wes v (3) + o ()

s o ()] (o) b I+ (o) o G
PG b

2 (N [ Lew o (D) (L)) o (-

stw (o) |Ge) o @) (o) o ()]
+ % (¢ (%))q_l {(nrz%l@sfp)qd)ql (%)} }X i Rer<2Ry X {t:T<t<2T}

G [(heo) o )+ (o) )
I % (¢ (%))q_l {(%\I/sip)q(bql (%)} }X{r:Rer<2Ry X {t:T<t<2T}

1|1 _ 1 1 .
S Ta [ﬁgﬂw‘*wq T+ R2a Tqngp‘I’%Pq } X{r:R<r<2R}X{t:T<t<2T}

q

Ut +

S TR €W 0" X (rirer<2r) X {t:7<t<2T})

S TiqRiqure*pie*SoqilX{r:R<r<2R}X{t:T§t§2T}~
Now, we have

|Ap|? = |0 — DNOwp + Dp|?
< |0pp|? + |A0kp|? + | D)

5 (Re*TinKl + T—9R2atex Xk + R 2atex XKQ) gqul’
where

Ky ={(z,t): p<|z| <2R,T <t <2T},
Ky ={(z,t) : R<|z| <2R,0 <t < 2T},

Ky ={(z,t): R<|z| <2R,T <t <2T}.
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Hence, we obtain the following pointwise estimate for Ap:

| Aw]?

gpq_l < Re*quXKl +R72q+e*XK2 _'_quR72q+e*XK

Y 3°

(4.6)

4.3 Proof of the Main Result

For this section, we study blow-up of solutions to the semilinear pseudoparabolic

equation (3.1). Assume that there exist ¢ > —2 such that
a(x) 2 |z|” for all z € C. (4.7)
Thus, a can be singular if ¢ < 0. We prove that if

1< P <DPc = min{pcppcz}’

where p., =1+ r(:f and p., =1+ %, then u = 0 is the only solution which is

defined for all ¢ € [0, 00).

Theorem 4.3. Let a and ug be non-negative continuous functions, a satisfies

(4.7) with o > =2. If 1 < p < p. and u is a global solution of (3.1), then u = 0.

Proof. First, we carry out some integral estimates. Assume that u > 0 is a weak

solution of (3.1). Then, by (3.2) and ¢(x,0) > 0, we get

/ / A dadt + / / palz)u? dudt < / uo(2)Ap(z, 0) dz. (4.8)

Observe that supp Ay C supp ¢. Let €' = € N supp Ay and ¢ = z%‘ By Holder

and Young inequalities,

/ /|uA<p|dxdt / / |apugpp

o0 “ 7
< / ]a%ugoi |Pdxdt / / dxdt
e/ / agp p
q
/ / auPpdrdt + — / / \Agp] cdxdt.

dxdt

l
p
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Hence, (4.8) becomes

/ /goa(a:)up dxdt §/ / luAgp| dmdt+/u0(x)Ag0(x,0) dx
o Je '
q
/ /aupgodmdt—l— / / a2 ————dxdt
 (ap)i—t

+/eu0(x)Ag0(a:,0) dzx.

Then,

(1—%) /Ooo/egoa(az)up dedt < é/ooo /@ (laé;quld dt+/e (@) A (z, 0) da.

Thus, we have

/Ooo/ewa(a:)up dxdt < /ooo/@ (L“:‘;ﬁidxdt—l—q/@uo(:c)Agp(x70) de.  (4.9)

Next, we estimate an upper bound for the first term on the right hand side of

(4.9). Since a(x) 2 |z|”(c > —2) and supp Agp, supp ¢ C {(z,t) : p < |z| <

2R,0 <t < 2T, it follows that

q q
/ / IAw\ dudt < / 1 |«490| drdt
i e’ |JJ|U‘1 ) q

2T
1 q
/ / s ’A“‘)‘l dudt.
p<jal<2r 21707 @

By (4.6), we obtain that

q
//|A%0| dedt

2T
1
< / / |z|<2R |z|ola—1) [RE*T_QXKI + R_2q+e*XK2 + T_qR_2q+e*XK3} dxdt
p<|z|<2

o . ] - ) N
— ex —q L —og+e.
- [/0 /pslzlgm ’$|0(q,1)R T X ddt +/0 /pslxng !x\”(qﬂ)R Xz ddt

21 . 2
- T 1R~ q+ex
" /0 /p§|m|§2R ||l TR Xrcsdvdt

= I+11+1II.
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No, we choose T' = R2. The integral I is estimated by

2R? 1
I= / / oy BOR M dwdt
p<|z|<2R |$|U(q_
<[ g
p<|z|<2R |.1" (o=

Re _2q+2de’

- /p<x|<2R |7t

By integration using spherical coordinates, we get

1
I:/ ﬁRe*_2q+2dl'
p<lal<2r 2|70

2R 1 2q+2 1
_ ex—2q+2, .n—
_/ 1/ Ta(q_l)R e drdw.
Sn p

If p=1+2, then n —1—0(¢—1) = —1 and hence, the last integral becomes

2R 1
I:/ / — R 20 2 duw
Snfl p T
2R

Ifp#1+4 2, thenn —o(qg—1)

2R
/ /
Sn—1

—20+2 =1 g oy

n oq+o 2R
= w, ( ) Re*—2q+2
n—oq+o
p
5 1 ((2R>ngq+o . pnaq+o> Re*72q+2
n—oq—+o

< 1 |:(R)n—aq+a+e*—2q+2 o pn—aq—i—JRe* —2q+2:| )

“n—oq+o
If p>1+ 2, then n—oq+ o0 >0 and we obtain that

I < 1 Rn—oq+o+e*—2q+2

~“n—oq+o
= Rv1 1(? 1—LH)+ ex



If p<1+ 2, then n—og+ o0 <0 and we obtain that

I < 1 n—oq-l—aRe*—Qq—i-Q

~“n—oq+o

< ReToT
~ P °

The integral 1 is estimated by

2R? 1
I]S/ / ﬁRe*_quIdt
0 p<|z|<2R |z[ta

< / ;Re*—2q+2dx'
™ Jp<iai<ar |zl

By integration using spherical coordinates, we get

II S / ;Re**QquQd:E
p<lal<2r 2|71

2R 1
< / Re*_2q+27“n_1d7”.

TU(Q_l)

If p=1+ 2, then it becomes

2R 1
_[I — / Re*—2q+2,r,n—1dr
p

7"‘7(‘1_1)

2R
Re* —2q+2
p

5 In (E) Re*—2q+2
P

Sln (E) R i1
p

If p# 1+ 2, then it becomes

= (lnr)

2R 1
II < Re*_2q+27’n_1d7’
~ o ro(g—1)

q+ 2R
Tn—a g
n—oq+o
P

1 ((QR)noq+cr . pnoq+cr> Re*72q+2

ex—2q+2

AN

n—oq—+o

1

< |:(R)n—0'q+a+e*—2q+2 - pn—aq+URe*—2q+2:| )

“n—oq+o
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If p>1+ 2, then n —oq+ 0 >0 and we obtain that

II < 1 Rn—aq—l—o—l—e* —2q+2
~“n—oq+o
< Ritr =)+

If p<1+ 2, then n —oq+ 0 <0 and we obtain that

II < Re*—2q+2

< RO

The integral 111 is estimated by

2R? 1
/ / e R dwdt
p<|z|<2R ’x‘cr T~

/ 1 Re*_4q+2d$
~ 1
p<lal<2r 2|71

Yet again, we get

1

[II,S/ ﬁRe*_&H—QdJT
p<lal<2r |77

! 4q+2,.n—1
_ ex—4q+2, .n—
—/ 1/ ra(q—l)R e drdw.
sn P

If p=1+ 2, then it becomes

2R 1
IIT = / / gy R 4a+2pn=1 g iy
n—1 p r q

2R
= w,(Inr)| Re4H2
p
5 In <2R) Re*—4q+2
p

<ln <5> R,
P

20
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If p# 1+ 2, then it becomes

2R
III</ /
Sn—1

—Aa+2pn=1 gy

n oq+o 2R
= Wy, ( I > Re**4Q+2
n—oq+o
P

S L

n—oq+o
,S 1 |:(2R>noq+o+e* —4g+2 _ pnquﬂLUR@* 4q+2:| .

n—oq+o

If p>1+ 72, then n —oq+ 0 >0 and we obtain that
1 _ _
III < Rn oq+o+ex—4q+2
“n—oqg+o

< Rt e S

If p<1+ 2, thenn—ogq+ o <0 and we obtain that

III S R&* —4q+2

< Re* 277

Combining these estimates with (4.6), we have

;

Rt (P*170I2)+e* ifp>1+ e
/0 / (Léﬂqld dt $ R ifl<p<l+42, (4.10)
| (mR) R ifp=1+2.
Ifl<p<pg :zl—{—fji,then #(p—l—%”)%—e* < 0.
If1<p<pe, ::1+%,thene*—p%1<0.

Now, we assume that 1 < p < min{p,,,p.,} and R — oo, we obtain

q
lim/ / “AQP, ———dxdt = 0.
R—o0 ,
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Observe that Ap(z,0) < R72. Then, (4.9) becomes

q
/ /gpa YuP dxdt </ / |.,4g0| ———dx dt—i—q/ o(z)Ap(x,0) dx
/ / *”' _dxdt + R2|ug| 1.

Hence, if 1 < p < min{p,,, p., }, then passing R — oo in the last estimate we get

/ /gpa(m)up dxdt <0,
o Je

it follows that

/ /a(:z:)up dxdt = 0.
o Je

This means u = 0, we have the theorem. O

4.4 Conclusions

Now, we have the relationship between classical and weak solutions of (1.4)
which was shown in Proposition 3.1. We have shown that (1.4) has no nontrivial
global weak solution which is defined for all ¢t € [0,00). For future works, it is
interesting to investigate the local existence problems, that is to show that given
any initial condition on the cone domain, the pseudoparabolic equation admits
a solution defined on some time interval [0,T]. Another direction would be the
investigation of blowing-up phenomena when the exponent p lies outside (1,p.).
More importantly, we haven’t explored whether p,. is a critical exponent of Fujita

type for the system or not, i.e. we didn’t study the case p > p..
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