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CHAPTER I

INTRODUCTION

Theory of everything is a unified description of all four fundamental forces in

nature: weak, strong, electromagnetic, and gravitational forces [1, 2, 3]. Finding

this final theory is one of the major unsolved problems in physics. Unfortunately,

the main obstruction on the way to this unified theory is an incompatibility

between Einstein’s general relativity, the classical theory describing curved

spacetime as gravity in large scale and high-mass conditions, and quantum field

theory, expressing all the rest three non-gravitational forces in small scale and

low-mass limitations. In general, this contradictory between the two pillars of

physics is avoidable. However, if one wants to approach the theory of everything

all extremely high-mass in small scale situations such as in a black hole or the

Big Bang, the beginning stage of the universe are needed to be explained through

quantum gravity, the name of the developing consistent theory between general

relativity and quantum field theory.

Development of quantum gravity leads to the more fundamental theory in

higher dimension for example; ten-dimensional string theory and eleven-

dimensional M-theory, the two best candidates for the theory of everything. To

describe our four-dimensional world via these fundamental theories, a way of

extracting lower dimensional theory from the higher one is required.

Dimensional reduction is a procedure to extract a gravitational theory in

lower spacetime dimensions from a higher dimensional one with some

compactification imposed on some of the spacetime coordinates. It originated

in 1926 known as Kaluza-Klein reduction theory [4, 5, 6, 7] where the usual

Einstein’s general relativity was considered in five spacetime dimensions. The

fifth extra dimension is compactified to a very small, in the order of Planck

length, circle or one-dimensional sphere (S1), as shown in Figure 1.1, such that

the compact space is unobservable at the present energy scale. This unobservable

compact space leads to the truncation to the massless sector process giving rises

to the Kaluza-Klein reduction ansatz, an expression of the higher dimensional

field in terms of the lower dimensional ones, that turns the five-dimensional

pure gravity theory into the Einstein-scalar-Maxwell system in four spacetime

dimensions. The result is well known to be the first unification theory between

gravity and electromagnetism, satisfying U(1) gauge symmetry that corresponds

to the symmetry on S1. Moreover, Kaluza-Klein reduction proposes the possible

way to unify gravity and other forces with a more complicated symmetry by

means of consideration a gravitational theory in higher dimensions with a more

complicated compact space. Unfortunately, there are some issues that are in

conflict with experiments, such as the requirement of an unobserved extra

dimension, the presence of the massless scalar field, called the dilaton, in the

resulting theory, fading this reduction out of the main research current for a long
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time [8].

Figure 1.1: Illustration of the compact space S1 where the rest four-dimensional spacetime are

simplified to the two dimensional grid.1

Until 1997, the AdS/CFT correspondence, a duality relating string theory

or its effective theory, supergravity, on anti-de Sitter (AdS) background to

conformal field theories (CFT) on the AdS boundary [9-11] as shown in Figure

1.2 for the AdS5/CFT4 correspondence, was first developed. This new duality

was becoming a fascinating research topic for many theoretical physicists. Gauged

supergravities, the supergravities with gauged R-symmetry group or any subgroup

thereof, admit AdS vacuum solutions that have played the important role in the

AdS/CFT correspondence. As mentioned before, a conformal field theory in D

spacetime dimensions corresponds to a (D+1)-dimensional gauged supergravity,

therefore, the derivation of gauged supergravity in some specific dimensions

becomes valuable for this study. In many cases, lower dimensional gauged

supergravities can be derived from higher dimensional ungauged supergravities

such as the eleven-dimensional supergravity [12], the type IIA and IIB

supergravities by using the faded dimensional reduction.

Figure 1.2: Illustration of AdS5/CFT4 correspondence.2

There are two general ways to obtain gauged supergravities by dimensional

reduction [13], as shown in Figure 1.3. The first way is represented by the vertical

arrow. From the reduction on an n-dimensional torus (T n), a product space of

1imagining-other-dimensions-merl.jpg [Online]. Available from : http://www.pbs.org/wgbh/nova/

assets/img/full-size/imagining-other-dimensions-merl.jpg[2016,February]
2ads-cft.png [Online]. Available from : http://quantum-bits.org/wp-content/uploads/2015/09/

ads-cft.png[2016,March]
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n-S1 where an example T 2 compact space is illustrated in the left panel of Figure

1.4, a lower-dimensional ungauged supergravity, which refuses an AdS vacuum,

is obtained. Then, gauged supergravity in lower dimensions is achieved later

by a gauging process (the horizontal arrow), selecting a subgroup, G0 of the

global symmetry, G of the ungauged supergravity and promoting it to a local

gauge symmetry.

Figure 1.3: lower-dimensional gauged supergravity from the higher ungauged ones [13].

For the diagonal arrow, a lower-dimensional gauged supergravity can

directly be obtained by the consistent dimensional reduction on more complicated

structured compact space like an n-dimensional sphere (Sn), for example the

dimensional reduction on S2 is shown in the right panel of Figure 1.4, from the

higher dimensional ungauged supergravities as demonstrated in the study of AdS

black holes in [14]. Notable cases are the maximal gauged supergravities in 7

and 4 dimensions from consistent Kaluza-Klein reductions on S4 [15, 16] and

S7 [17] of the eleven-dimensional supergravity and the five-dimensional maximal

gauged supergravities from the reduction on S5 of type IIB supergravity [18]. The

reductions to maximal gauged supergravities are very complicated; the full

consistent reduction of S7 has been recently proven in [19]. On the other hand,

many examples giving the half-maximal gauged supergravities in D = 7, 6, 5, and

4 have been worked out completely [20, 21, 22, 23].

Figure 1.4: Illustration of the compact space T 2 and S2 [3].

However, the consistencies of the Kaluza-Klein sphere reductions,

mentioned above, are suspicious. They depend seriously on conspiracies between
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contributions from the metric and the other fields in the higher-dimensional theory

and have no general understanding of their reasons unless for achieving the

consistency.

In general, Kaluza-Klein reduction on Sn with an arbitrary n > 1 leads

to inconsistencies. Fortunately, there exists an alternative way to perform a

spherical reduction. This is known as the Scherk-Schwarz reduction [24] that

is guaranteed to be consistent. It is a Kaluza-Klein reduction on a group manifold

of a Lie group, a continuous group equipped with a Lie algebra, for example,

the group manifold of SU(2) is S3, demonstrated in Appendix A. From the

consistency viewpoint, Lie algebras are classified into 2 types; the Lie algebras

with traceless structure constants are referred to as type A where the reduction

ansatz is consistent at the level of the higher-dimensional action, while for the

type B algebra, with non-vanishing trace of structure constants in Lie algebras,

the reduction is consistent only at the level of the field equations. There are some

previous works on this guaranteed consistent reduction. The SU(2) reduction of

six-dimensional (1,0) supergravity giving rise to a gauged supergravity in three

dimensions was studied in [25], and in a more general case, the group reduction

on an n-dimensional group manifold of the ten-dimensional heterotic supergravity

is given in [26].

The main purpose of this work is to study the dimensional reduction

theory for obtaining the N=4, half-maximal SO(4) gauged supergravity in four-

dimensional spacetime by truncating the Kaluza-Klein reduction on S7 of the

ungauged supergravity in eleven dimensions that was worked out in [23]. The

compact space S7 is described by a foliation of the two three-dimensional spheres,

S3. In group theory, S3 is a group manifold of Lie group SU(2). By replacing an

S3 with the SU(2) group manifold and keeping only SU(2) left invariant fields, it

is guaranteed to be a consistent reduction. This could possibly lead to the more

understanding in the consistency of the reduction on S7.

The reduced theory; N=4, half-maximal SO(4) gauged supergravity in

four-dimensional spacetime, has some applications in the study of superconductors.

By the AdS/CFT correspondence, a gauged supergravity is related to a

superconformal field theory in three-dimensional spacetime, a time dimension

together with the two-dimensional spatial surface, that has been recently used

for study two-dimensional superconductor in [27, 28].

Besides, knowing the procedure of the dimensional reduction allows us to

embed solutions in lower dimensions to higher dimensional theory through the

reduction ansatz as in [29, 30]. Since the two theories are consistent, solutions

in one theory have to be solutions in another one. The embedding solution

in the most fundamental eleven-dimensional M-theory possibly leads to more

interesting properties of the same solution in the lower dimensional description.
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Thus, after the study of dimensional reduction, some solutions in this SO(4)

gauged supergravity in four dimensions will be reviewed, established and embedded

to study in eleven-dimensional supergravity.



CHAPTER II

LITERATURE REVIEW

2.1 Einstein’s Gravity Theory

Einstein’s gravity theory or general relativity is one of the cornerstones of classical

physics that applies special relativity to gravity. Albert Einstein spent almost ten

years after created his special relativity theory to formulate this elegant theory of

gravity in 1915 [31, 32]. General relativity can explain situations that Newton’s

gravity theory cannot figure out for a long time. The most famous example, which

appears in many textbooks is the perihelion shift of Mercury. It has been long

known that the point on Mercury’s orbit with the nearest distance from the sun is

shifted by 42.9 seconds of arc in every 100 years [33]. Calculations from Newtonian

mechanics cannot describe this weird situation even though adding the effect of the

neighbouring planets while Einstein’s general relativity can explain it effortlessly.

In this section, the brief main ideas about Einstein’s gravity theory are reviewed

from [33, 34, 35, 36] to introduce all the basic understandings and calculations

that will be always used in this study.

There are two essences in general relativity. Firstly, gravity is not a force

but a curvature of spacetime. Our four-dimensional spacetime is not only an

empty flat static stage of the universe anymore but also has dynamics and can be

curved. Some mathematical concepts describing the curvature of spacetime are

established in the first part of this section: differential geometry. Secondly, the

curvature of spacetime is caused by the existence of matter or energy. Hence, the

last part will be about Einstein’s field equations explaining this curvature’s cause.

Furthermore, some matter fields coupling to gravity will be reviewed at last.

2.1.1 Differential Geometry

2.1.1.1 Spacetime, manifold, tangent and cotangent spaces

In relativity framework, spacetime is the main character expressing all the weird

but true relativistic phenomena. The idea of spacetime was emerged in special

relativity by considering time as one of the universe’s dimensions that can be

related to different observers instead of the absolute time of the universe that is

the same for all observers.

Flat space is the simplest case that satisfies Euclidean geometry, all basic

geometry, such as interior angles in a triangle add up to 180 degrees. In special

relativity, the four-dimensional flat spacetime R1,3 or Minkowski spacetime M4

has an unusual rotational symmetry: Lorentz symmetry or SO(3, 1). The Lorentz

symmetry corresponds to Lorentz transformations, the spacetime transformations

satisfying the two postulates of special relativity:

1. All physical laws are the same in all inertial frames.
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2. The speed of light∗ is the same in all inertial frames.

The two inertial frames (O and O′) related by some relative speed v in Euclidean

coordinates are shown in the Figure 2.1. All four spacetime coordinates in each

frame can be related by the Lorentz transformations:

t′ = γ(t− vx),

x′ = γ(x− vt),

y′ = y,

z′ = z,

(2.1.1)

where γ = 1√
1−v2 is called Lorentz factor.

Figure 2.1: The two inertial frames O and O′ with some constant relative speed v.1

In the rest of this study, any vectors in spacetime coordinates can be easily

described by xa = (t, x, y, z, ...) where a = 0, 1, 2, 3, ..., D − 1 is a D-dimensional

flat spacetime index where the zeroth coordinate is always the time coordinate.

By this convention, Lorentz transformations in four-dimensional spacetime from

(2.1.1) will become

x0′ = γ(x0 − vx1),

x1′ = γ(x1 − vx0),

x2′ = x2,

x3′ = x3,

(2.1.2)

or in matrix equation,
x0′

x1′

x2′

x3′

 =


γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1



x0

x1

x2

x3

 . (2.1.3)

∗For convenience, the speed of light is assigned to be unity, c = 1.
1relativita 04.jpg[Online]. Available from : http://images.treccani.it/enc/media/share/images/orig/

system/galleries/NPT/VOL 8/IMMAGINI/relativita 04.jpg[2016,May]
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By introducing Lorentz operator,

Λ =


γ −γv 0 0

−γv γ 0 0

0 0 1 0

0 0 0 1

 , (2.1.4)

the Lorentz transformations (2.1.2) can be written in a simple equation:

xa
′
= Λa′

bx
b (2.1.5)

where the repeated indices are summed by Einstein’s summation convention

Λa′
bx
b =

∑3
b=0 Λa′

bx
b. Moreover, if the two inertial frames (O and O′) are related

by a relative speed v in arbitrary direction, (2.1.5) is still satisfied by using

Λ =


γ −γvx −γvy −γvz
−γvx γ 0 0

−γvy 0 γ 0

−γvz 0 0 γ

 . (2.1.6)

Figure 2.2: The unchanged distance ∆s in two-dimensional space (x,y) due to rotational

symmetry SO(2) that turns (x,y) to (x′,y′) [33].

Four-dimensional Minkowski spacetime has an unusual rotational

symmetry SO(3, 1) such that any distance in the spacetime should be unchanged

or said to be invariance under these Lorentz transformations (the unusual rotation)

similar to the unchanged distance in space due to rotational symmetry, for example;

SO(2) in two-dimensional space illustrated in Figure 2.2. Spacetime interval is

the distance between two events, points in spacetime, defined∗ by

∆s2 = −(∆t)2 + (∆~x)2 (2.1.7)

∗This definition is called the mostly plus convention that prefers to use in many studies of general

relativity. However, one can use the mostly minus convention by defining spacetime interval as ∆s2 = (∆t)2 −
(∆~x)2 together with ηab = diag(1,−1,−1,−1) but their physical meanings are the same
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where (∆~x)2 = (∆x1)2 + (∆x2)2 + (∆x3)2 is the distance in three-dimensional

space. By introducing the Minkowski metric,

ηab =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , (2.1.8)

the spacetime interval can be written in the form

∆s2 = ηab∆x
a∆xb. (2.1.9)

Hence, its infinitesimal form is

ds2 = ηabdx
adxb, (2.1.10)

that is invariant under Lorentz transformations

ds2 = ds′
2
,

ηabdx
adxb = ηa′b′dx

a′dxb
′
.

(2.1.11)

By using Lorentz transformations (2.1.5), Minkowski metric has to transforms by

ηa′b′ = Λa
a′Λ

b
b′ηab (2.1.12)

where Λa
a′ = (Λa′

a)
−1 is an inverse of the Lorentz operator in (2.1.5).

In vector’s point of view, spacetime interval is nothing but the square

magnitude of the vector dxa. Therefore, any vector V a in Minkowski spacetime

has its square magnitude as

|V |2 = ηabV
aV b. (2.1.13)

A dual vector of the vector V a in spacetime is defined by

Va = ηabV
b, (2.1.14)

and transforms by the inverse Lorentz operator

Va′ = Λa
a′Va. (2.1.15)

Using this dual vector definition, the square magnitude of any vector V a in

Minkowski spacetime can be written in the form

V 2 = VaV
a, (2.1.16)

Note that the minus sign in Minkowski metric introduced in (2.1.8)

distinguishes vector V a into 3 types:

1. V 2 > 0 : V is called space-like vector.



10

2. V 2 = 0 : V is called light-like or null vector.

3. V 2 < 0 : V is called time-like vector.

This dissimilarity depends on the difference between the components of time and

space coordinates while Lorentz transformations cannot change their type. In

group theory, Lorentz group SO(3, 1) is categorised as a non-compact group, see

also Appendix A.

While spacetime and coordinates seem indivisible in special relativity, they

become vastly different in general relativity. To yield spacetime that can be curved,

the theory describes D-dimensional spacetime as a D-dimensional differentiable

real manifoldM, a smooth and continuous topological real space that locally looks

like flat space MD. A coordinate system x maps a subset ofM to the well known

MD. However, there is no a unique coordinate system for a manifold M. On

the other hand, one coordinate system x has a smooth map to another coordinate

system x′ that also maps a subset ofM to some flat space MD, as shown in Figure

2.3.

Figure 2.3: Mapping of two subsets of a manifold M by coordinate systems x and x′ where the

overlap region can be mapped smoothly between the two coordinate systems.2

At each point p ∈M, there exists a tangent space Tp(M), a vector space

containing tangent vectors at the point p, as displayed in Figure 2.4. Tp(M) has

the same dimensions as M with a particular set of basis vector ∂/∂xµ where xµ

is the coordinates and µ = 0, 1, . . . , D − 1 is a D-dimensional curved spacetime

index. Thus any vector V ∈ Tp(M) can be written as

V = V µ∂µ (2.1.17)

Along with the tangent space Tp(M), the corresponding cotangent space T ∗p (M)

2manifold.svg.png[Online]. Availabel from : https://upload.wikimedia.org/wikipedia/commons/thumb

/0/06/Two coordinate charts on a manifold.svg/2000px-Two coordinate charts on a manifold.svg.png[2016,May]
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Figure 2.4: A tangent space Tp(M) (gray plane) of a manifold M (dark grey) at point p [34].

with a dual basis dxν is also defined where dxν(∂µ) = δνµ. Likewise, every vector

in the cotangent space W ∈ T ∗p (M) may be written as

W = Wνdx
ν (2.1.18)

By using the fact that physics does not depend on the choice of coordinates

system, the general coordinates transformations (GCT) is defined as

transformation ofs x to x′ that turns basis vectors in the tangent space Tp(M)

from ∂/∂xν to ∂/∂xµ
′

via using the chain rule,

∂µ′ =
∂xν

∂xµ′
∂ν . (2.1.19)

Furthermore, any vector V ∈ Tp(M) is a geometrical object that is independent

of the choice of coordinate system as mentioned so V has to be invariant under

GCT,

V = V ν∂ν = V µ′∂µ′ . (2.1.20)

Together with (2.1.19), this leads to the transformations of the vector components

V µ under GCT,

V µ′ =
∂xµ

′

∂xν
V ν , (2.1.21)

where ∂xµ
′

∂xν
can be claimed to be a GCT operator with its inverse ∂xν

∂xµ
′ . In the same

fashion, the transformation properties of the cotangent vectors W ∈ T ∗p (M) under

GCT can be determined. Starting from transformations of the basis vectors,

dxµ
′
=
∂xµ

′

∂xν
dxν . (2.1.22)

The invariance of the cotangent vectors W leads to the transformations of the

components Wµ,

Wµ′ =
∂xν

∂xµ′
Wν . (2.1.23)
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To determine interval on curved spacetime, a multi-linear map from a

product space of r cotangent space T ∗p (M) and s tangent space Tp(M) to the real

line called (r, s) tensor T (r,s) is considered where (r, s) is called the rank of the

tensor,

T (r,s) : T ∗p (M)× ...× T ∗p (M)︸ ︷︷ ︸
r times

×Tp(M)× ...× Tp(M)︸ ︷︷ ︸
s times

→ R. (2.1.24)

Note that T (0,0) is nothing but a real number or real scalar field while T (1,0) and

T (0,1) are just an element of tangent and cotangent space in (2.1.17) and (2.1.18)

respectively. An (r, s) tensor T (r,s) can be written in component form as

T (r,s) = T µ1...µrν1...νs ∂µ1 ⊗ ...⊗ ∂µr ⊗ dxν1 ⊗ ...⊗ dxνs , (2.1.25)

where ⊗ is called a tensor product and T µ1...µrν1...νs are the components of any

(r, s) tensor T (r,s) that transform under GCT as

T µ
′
1...µ

′
r
ν′1...ν′s =

∂xµ
′
1

∂xρ1
...
∂xµ

′
r

∂xρr
∂xσ1

∂xν′1
...
∂xσs

∂xν′s
T ρ1...ρrσ1...σs (2.1.26)

For curved spacetime, any distance is now defined by a (0, 2) symmetric tensor

called the metric g at each point p ∈M, i.e.

g : Tp(M)× Tp(M)→ R, (2.1.27)

which can be expressed in terms of the basis vectors dxµ⊗dxν and the components

gµν(x) by

g = gµν(x) dxµ ⊗ dxν . (2.1.28)

By dropping ⊗, this equation becomes a familiar equation corresponding to the

interval on curved spacetime that called the line element,

ds2 = gµν(x) dxµdxν . (2.1.29)

In the case of flat spacetime, the metric components gµν
∗, or called the metric

tensor for simplicity, becomes the constant Minkowski metric ηµν defined in (2.1.8).

Moreover, gµν also have the same properties as ηµν , such as there exists inverse

metric gµν = g−1
µν , if gµν are non-degenerate (det gµν 6= 0), which satisfy

gµλgλν = δµν . (2.1.30)

Similarly, the metric components and their inverses can be used to raise and

lower the components of tangent and cotangent vector correspondingly by mapping

between tangent and cotangent space,

g : Tp(M)→ T ∗p (M)⇒ Vµ = gµνV
ν ,

g−1 : T ∗p (M)→ Tp(M)⇒ W µ = gµνWν .
(2.1.31)

∗For convenience, an argument (x) for the metric components gµν is usually omitted but they are

always depend on coordinates x.
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The line element in (2.1.29) is sometimes called the metric equation containing the

metric tensor gµν encoding the curvature’s information of spacetime. Therefore,

metric equation (2.1.29) is the keystone for describing spacetime curvature. Before

decoding the curvature’s information of spacetime, the totally anti-symmetric

tensor is useful to introduce.

2.1.1.2 Differential forms and volume form

Differential forms or p-form∗ is the totally anti-symmetric (0, p) tensor ω(p),

ω(p) : Tp(M)× ...× Tp(M)︸ ︷︷ ︸
p times

→ R, (2.1.32)

defined by

ω(p) =
1

p!
ωµ1...µp dx

µ1 ∧ ... ∧ dxµp , (2.1.33)

where the components ωµ1...µp are anti-symmetric in all indices,

ωµ1...µm...µn...µp = −ωµ1...µn...µm...µp . (2.1.34)

The basis operation of p-form is described by the wedge product ∧ that totally

anti-symmetric instead of the usual tensor product ⊗,

dxµ1 ∧ ... ∧ dxµp = p! dx[µ1 ⊗ ...⊗ dxµp] (2.1.35)

where anti-symmetrizing in the indices µ1...µp of any tensor component T is

denoted by

T [µ1...µp] =
1

p!
(T µ1...µp + (−1)P permutation of (µ1...µp)), (2.1.36)

with P = 0 for even and P = 1 for odd permutation.

There are some useful operations of differential forms, which are essential

to the calculation performed in this study, reviewed as following:

• Wedge product: ∧
∧ : (ω(p), ω(q)) → ω(p+q) (2.1.37)

The wedge product of any p-form ω(p) and q-form ω(q) yeilds the resulting

(p+q)-form ω(p) ∧ ω(q), for example;

A(p) =
1

p!
Aµ1...µp dx

µ1 ∧ ... ∧ dxµp ,

B(q) =
1

q!
Bν1...νq dx

ν1 ∧ ... ∧ dxνq ,

A(p) ∧B(q) =
1

p!q!
Aµ1...µpBν1...νqdx

µ1 ∧ ... ∧ dxµp ∧ dxν1 ∧ ... ∧ dxνq .

(2.1.38)

∗Note that this p in differential forms is an integer number, 0 ≤ p ≤ D for D dimensional spacetime,

while p in TpM is a point p in a manifold M. They are confusing but fashionable notation.
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Thus

A(p) ∧B(q) = (−1)pqB(q) ∧ A(p). (2.1.39)

• Exterior derivative: d

d : ω(p) → ω(p+1) (2.1.40)

The resulting object of an exterior derivative of a p-form ω(p) is a (p+1)-form

dω(p) defined as

dω(p) =
1

p!
(∂µωµ1...µp) dx

µ ∧ dxµ1 ∧ ... ∧ dxµp . (2.1.41)

The exterior derivative is a linear operation satisfying the following conditions,

d(ω(p) ∧ ω(q)) = dω(p) ∧ ω(q) + (−1)pω(p) ∧ dω(q), (2.1.42)

d2ω(p) = 0, (2.1.43)

for any p-form ω(p) and q-form ω(q), where the operator d2 in (2.1.43) is called

the nilpotent operator that always gives zero as a result of anti-symmetrization.

• Hodge duality: ∗
Hodge duality is an operation with respect to the dimension of the spacetime

mapping a p-form in D-dimensional spacetime to a (D − p)-form,

∗ : ω(p) → ω(D−p), (2.1.44)

defined by

∗ω(p) =
1

p!
ωµ1...µp ∗ (dxµ1 ∧ ... ∧ dxµp). (2.1.45)

The hodge duality of the basis are given by

∗(dxµ1 ∧ ... ∧ dxµp) =
1

(D − p)!
εµp+1...µD

µ1...µpdxµp+1 ∧ ... ∧ dxµD , (2.1.46)

hence hodge duality for any p-form inD-dimensional spacetime can be written

as

∗ω(p) =
1

p!(D − p)!
ωµ1...µp εµp+1...µD

µ1...µpdxµp+1 ∧ ... ∧ dxµD . (2.1.47)

Here, εµ1...µD is the totally anti-symmetric Levi-Civita tensor inD-dimensional

curved spacetime given by

εµ1...µD =
√
|g| εµ1...µD , (2.1.48)

where g = det gµν and εµ1...µD is the totally anti-symmetric Levi-Civita

symbol defined by

εµ1...µD =


+1 : (µ1...µD) is even permutation of (0, 1, ..., D − 1),

−1 : (µ1...µD) is odd permutation of (0, 1, ..., D − 1),

0 : otherwise.

(2.1.49)
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Note that the Levi-Civita tensor becomes the Levi-Civita symbol in flat

Minkowski spacetime where det gµν = det ηµν = −1. For any p-form ω(p),

applying twice Hodge dualities gives rise to the same p-form ω(p) with positive

or negative sign by

∗ ∗ ω(p) = (−1)p(D−p)+tω(p), (2.1.50)

where t is the number of time-like coordinate.

Volume form is a canonical volume that plays an important role for the

calculus on D-dimensional curved spacetime M defined by the unique D-form,

V ol(M) =
√
|g| dDx =

√
|g| dx0 ∧ ... ∧ dxD−1. (2.1.51)

By using the totally anti-symmetric Levi-Civita symbol defined in (2.1.49), the

volume form can be written as

V ol(M) =
√
|g| 1

D!
εµ1...µDdx

µ1 ∧ ... ∧ dxµD

=
1

D!
εµ1...µDdx

µ1 ∧ ... ∧ dxµD ,
(2.1.52)

where the second line is obtained by applying the relation (2.1.48) that is obviously

invariant under GCT. Moreover, the Hodge duality of the pure number 1 (a 0-form)

denoted by ε(D) in D dimensions is also the volume form,

∗1 = ε(D) =
1

D!
εµ1...µDdx

µ1 ∧ ... ∧ dxµD ,

=
√
|g| dDx = V ol(M).

(2.1.53)

Together with the wedge product, Hodge duality can describe the inner product

between any two p-forms, A and B, as follows

∗A ∧B = ∗B ∧ A =
1

p!
|A ·B| ∗ 1, (2.1.54)

where the inner product is defined by

|A ·B| ≡ Aµ1...µpB
µ1...µp , (2.1.55)

that frequently appears in the kinetic terms in many theories for A and B being

derivative terms.

2.1.1.3 Spacetime curvature from vielbein formalism

Now, we are ready to describe curved spacetime. As declared before, the

information about the curvature of spacetime is encoded in the metric tensor

gµν(x) that are functions depending on coordinates x at each point p ∈ M.

Unfortunately, dealing with these tensor is more complicated. Especially, their

inversion g−1
µν are difficult to find.
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In this study, an easier way for describing curved spacetime known as the

vielbein formalism is utilised. Since a D-dimensional manifold M is locally flat,

D-dimensional flat spacetimes can be defined at each point p ∈ M. Precisely

there are the two Minkowski spacetimes defined before: the tangent space Tp(M)

and cotangent space T ∗p (M). These flat spacetimes, known as Lorentz frames,

are described by the non-coordinate vielbein bases ea and ea respectively, where

a is the flat spacetime index defined previously. The relation between the metric

tensor and the Minkowski metric in these Lorentz frames is defined by

gµν(x) = ηab e
a
µ(x)ebν(x), (2.1.56)

where∗ eaµ , called vielbein, are the components of the vielbein basis ea with respect

to the coordinates basis dxµ, i.e. ea = dxa = eaµdx
µ. Equation (2.1.56) describing

the vielbein like the square-root of the metric gµν is practically used to find these

vielbein components from a given metric tensor. Besides, inverse vielbein are

defined as eµa , which are the components of the inverse vielbein basis ea with

respect to the coordinates basis ∂µ, i.e. ea = ∂a = eµa∂µ, and they satisfy these

relations:

eµae
a
ν = δµν , eµae

b
µ = δba. (2.1.57)

By these vielbein basis component, any tangent vector V and cotangent vector W

can be described as

V = V aea, W = Wae
a, (2.1.58)

with their components,

V a = eaµV
µ, Wa = eµaWµ. (2.1.59)

Therefore, any (r, s) tensor components can be transformed via these vielbein basis

components to be an (r, s) Lorentz tensor components in flat spacetime,

T a1...ar b1...bs = ea1µ1 ...e
ar
µre

ν1
b1
...eνsbs T

µ1...µr
ν1...νs . (2.1.60)

However, the choice of the non-coordinate basis ea is not unique. One can define

another basis eb
′
satisfying (2.1.56). However, the transformations between eb

′
and

ea is not the GCT but the familiar Lorentz transformations in (2.1.5). Moreover,

the Lorentz operator now depends on spacetime coordinates, Λb′
a(x), such that the

transformations between non-coordinate bases is called the local Lorentz

transformations (LLT) where the transformations of vielbein and inverse vielbein

are defined by

eb
′

µ (x) = Λb′
a(x) eaµ(x), eµb′(x) = Λa

b′(x) eµa(x), (2.1.61)

∗In the same case as gµν , an argument (x) is omitted but keep in mind that both eaµ and eµa are always

depend on coordinates x.
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similarly, Λa
b′(x) is defined to be the inverse of Λb′

a(x). Moreover, since both

vielbein and their inverse contain the spacetime coordinate index µ, they also

transform under the GCT,

eaµ′(x) =
∂xν

∂xµ′
eaν(x), eµ

′

a (x) =
∂xµ

′

∂xν
eνa(x). (2.1.62)

Consequently, vielbein are both (1, 0) Lorentz tensor components and (0, 1)

coordinate tensor components at the same time, while their inverse are (0, 1)

Lorentz tensor components and (1, 0) coordinate tensor components. Therefore,

any tensor components could be both Lorentz and coordinate with respect to their

flat and curve spacetime indices. Even so, they can transform to pure Lorentz or

coordinate tensor components by virtue of vielbein and their inverse. The LLT of

any (r, s) Lorentz tensor components can be written as

T a
′
1...a′r

b′1...b′s = Λa′1
a1 ...Λ

a′

r ar
Λb1

b′1 ...Λ
bs
b′s T

a1...ar
b1...bs , (2.1.63)

after subtracting (x) for convenience. Note that, in coordinate point of view, this

(r, s) Lorentz tensor components are just a scalar, which is invariant under GCT.

Apart from scalar fields, partial derivatives of any (r, s) Lorentz tensor

components do not transform as (2.1.63) anymore. For example, consider the

partial derivative, ∂a = ∂/∂xa, of a one-form or a (0, 1) Lorentz tensor components,

i.e. ∂aWb. By the index structure, they should transform as (0, 2) Lorentz tensor

components. However, under LLT, this partial derivative transforms as

∂a′Wb′(x) = Λc
a′(x) ∂c

[
Λd

b′(x)Wd(x)
]
,

= Λc
a′(x) Λd

b′(x)
[
∂cWd(x)

]
+Wd(x)Λc

a′(x)
[
∂c Λd

b′(x)
]
.

(2.1.64)

Here the second line is obtained by using the Leibniz’s product rule where the

first term is the expected transformation law of (0, 2) Lorentz tensor components

while the second term ruins it. The only one settlement is an elimination of this

second term by defining the Lorentz covariant derivative Da of any one-form as

DaWb = ∂aWb − ωaf bWf , (2.1.65)

where ωa
c
b is the spin connection that is anti-symmetric in the last two indices

ωabc = −ωacb = −ηcfωaf b. To get rid of the problematic term in (2.1.64), the

transformations of the spin connection contracted with a one-form under LLT is

defined by

ωa′
f
b′Wf = WdΛ

c
a′(x) [∂c Λd

b′(x)]− Λc
a′(x) Λd

b′(x)ωa
f
bWf . (2.1.66)

Together with (2.1.64), the transformations of the Lorentz covariant derivative of

any one-form under LLT yields the expected (0, 2) Lorentz tensor components’

transformations,

Da′Wb′ = Λc
a′(x) Λd

b′(x)[∂cWd(x)] + Λc
a′(x) Λd

b′(x)ωa
f
bWf ,

= Λc
a′(x) Λd

b′(x)DcWd.
(2.1.67)
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This procedure is called gauging acheived by promoting a global symmetry to

be local resulting in a new derivative that satisfies transformation rules of the

new promoted local symmetry. As demonstrated above, the Lorentz symmetry,

a global symmetry in flat spacetime, was promoted to be local, Λb′
a → Λb′

a(x).

Then, the transformations of the partial derivative of non-scalar fields turn out

to be inconsistent with the LLT. Here, defining a new derivative, the standard

derivative added by a correction term, gives the right transformations under LLT.

This gauging process will be reviewed soon in the literature review of gauge

theories in which some Lie groups are gauged.

Moreover, the Lorentz covariant derivative of any tangent vector, (1, 0)

Lorentz tensor, components can be defined, by using the fact that the Lorentz

covariant derivative of any scalar fields reduces to the partial derivative,

Da(V
bWb) = ∂a(V

bWb) together with (2.1.65), as

DaV
b = ∂aV

b + ωa
b
fV

f . (2.1.68)

Thus the Lorentz covariant derivative of a (r, s) Lorentz tensor components can

be written as

DaT
a1...ar

b1...bs =∂aT
a1...ar

b1...bs + ωa
a1
cT

c...ar
b1...bs + ...+ ωa

ar
cT

a1...c
b1...bs

− ωacb1T
a1...ar

c...bs − ...− ωacbsT
a1...ar

b1...c.
(2.1.69)

Note that the Lorentz covariant derivative Da satisfies the following properties:

1. Da maps any (r, s) Lorentz tensor components to (r, s + 1) Lorentz tensor

components,

2. Da is a linear operator, i.e. Da(T + S) = DaT +DaS,

3. Da satisfies the Leibniz’s product rule; Da(T ⊗ S) = DaT ⊗ S + T ⊗DaS,

4. for Lorentz scalar fields, Da reduces to ∂a.

The coordinate covariant derivative of any vector in coordinate basis∇µV
ρ

is defined from the transformed Lorentz covariant derivative, Dµ = eaµDa = ∂µ +

ωµ
b
c, as following

∇µV
ρ ≡ eρaDµV

a = eρaDµ(eaνV
ν),

= ∂µV
ρ + eρa(∂µe

a
ν + ωµ

a
be
b
ν)V

ν ,
(2.1.70)

while the last term in the first line is obtained by transforming to the vielbein basis.

The second line arises from the Leibniz’s product rule of the Lorentz covariant

derivative while the first term is just a normal partial derivative because V ρ is (0, 0)

Lorentz scalar. This equation is in the same form as (2.1.65) so the coordinate

connection can be defined by the second term in (2.1.70) as

Γρµν = eρa(∂µe
a
ν + ωµ

a
be
b
ν), (2.1.71)
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where this Γρµν is called the affine or Christoffel’s connection making the

coordinate covariant derivative transforms in the right way under the GCT, in

the same way as the spin connection preserving the LLT transformation rules for

the Lorentz covariant derivative. Substitution this Christoffel’s connection back in

(2.1.70) yields the definition of the coordinate covariant derivative of any tangent

vector in coordinate basis,

∇µV
ρ = ∂µV

ρ + ΓρµνV
ν . (2.1.72)

However, the coordinate covariant derivative is usually defined to be the total

covariant derivative that contains both spin and Christoffel’s connections. If we

use the Lorentz covariant derivative in the first term of the second line in equation

(2.1.70), we will find

∇µV
ν = DµV

ν + ΓνµσV
σ, (2.1.73)

with Lorentz covariant derivative being an ordinary partial derivative for (0, 0)

Lorentz tensor components. This covariant derivative becomes a partial derivative

only on a scalar quantity in both coordinate and non-coordinate frames. This

covariant derivative also satisfies the same rules as the Lorentz covariant derivative,

such as the coordinate covariant derivative of any one-form is given by

∇µWν = DµWν − ΓρµνWρ. (2.1.74)

This leads to the definition of a coordinate covariant derivative of any (r, s)

coordinate tensor components,

∇µT
µ1...µr

ν1...νs =DµT
µ1...µr

ν1...νs + Γµ1µρT
ρ...µr

ν1...νs + ...+ ΓµrµρT
µ1...ρ

ν1...νs

− Γρµν1T
µ1...µr

ρ...νs − ...− ΓρµνsT
µ1...µr

ν1...ρ.
(2.1.75)

Therefore equation (2.1.71) can be written in the form of the total covariant

derivative as,

∇µe
a
ν = Dµe

a
ν − Γρµνe

a
ρ = 0, (2.1.76)

that is called the vielbein postulate. After anti-symmetrizing this equation, the

torsion tensor T aµν can be defined by

∇[µe
a
ν] = eaρ(Γ

ρ
νµ − Γρµν) ≡

1

2
T aµν . (2.1.77)

Note that in common spacetime, this torsion tensor usually equals to zero, called

the torsion-free condition of spacetime, that allows the Christoffel’s connection

to be symmetric under the two lower indices, Γρνµ = Γρµν and turns the vielbein

postulate into

∇[µe
a
ν] = ∂[µe

a
ν] + ω[µ

a
b
eaν] = 0. (2.1.78)

Moreover, this torsion-free condition can be rewritten using the differential forms

as

dea = −ωab ∧ eb, (2.1.79)
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Figure 2.5: The parallel transport of a vector on a cloed path in flat and curved space.3

which is customarily used to find the spin connection.

To quantify the curvature of spacetime, the parallel transport of a vector

V = V aea along a path γ parametrized by a parameter λ on a manifold M is

defined as
δV a

δλ
≡ dxµ

dλ
∇µV

a = 0, (2.1.80)

which means the physical properties of a vector V are invariant along this path.

By Equations (2.1.73) and (2.1.68), the variation of a vector V along this path

can be described by
δV a

δλ
≡ dV a

dλ
+ ωb

a
c

dxb

dλ
V c, (2.1.81)

where the first term describes the variation of the vector component V a due to the

change in λ and the second term expresses the variation in the non-coordinate basis

ea along γ. The parallel transport of a vector V on a closed path is directly affected

by the curvature of spacetime. As shown in Figure 2.5, the parallel transport of

a vector on a closed path in flat space yields the same vector at the origin, while

the different vector is obtained in curved space.

Figure 2.6: The difference between the paralell transported vectors on the paths A → B and

B → A [34].

The quantity related to the curvature of spacetime can be obtained from

a commutator between parallel transports of a vector V on any two different parts

parametrized by λ and σ, A and B in Figure 2.6, that exhibits the difference

between the parallel transported vectors that defined by

δV a =
δ

δσ

δV a

δλ
− δ

δλ

δV a

δσ
,

=
dxµ

dλ

dxν

dσ
(∇µ∇ν −∇ν∇µ)V a,

(2.1.82)

3Parallel-Transport-medium.jpg[Online] Available from : https://www.quantum-munich.de/fileadmin/

media/media/Aharonov-Bohm/Parallel-Transport-medium.jpg[2016,May]
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where the second line is obtained via (2.1.80). From this equation, the Riemann

curvature tensor Rµν
a
d, the tensor measuring the deviation from flat spacetime, is

defined by

(∇µ∇ν −∇ν∇µ)V a = Rµν
a
bV

b. (2.1.83)

Using the definition of the covariant derivative in (2.1.73) and (2.1.68), the

Riemann curvature tensor Rµν
ab = ηbfRµν

a
f can be expressed in terms of the

spin connection as

Rµν
ab = 2∇[µ ων]

ab = 2∂[µ ων]
ab + 2ω[µ

af ων]f
b, (2.1.84)

or in differential forms,

Rab
(2) = dωab + ωaf ∧ ωfb, (2.1.85)

where Rab
(2) = 1

2
Rµν

ab dxµ ∧ dxν = 1
2
Rcd

ab ec ∧ ed is the curvature 2-form with the

Riemann tensor being its components. Moreover, it is more comfortable to deal

with the purely lower flat indices of the Riemann tensor, Rcdab = eµc e
ν
d ηaf Rµν

f
b,

that has various symmetries in its indices. These symmetries are given by

Rcdab = −Rdcab = −Rcdba = Rabcd, (2.1.86)

Rabcd +Racdb +Radbc = 0. (2.1.87)

The last equation (2.1.87) implies the Bianchi identities, where ∇f = eµf ∇µ,

∇[f Rcd]ab = 0. (2.1.88)

By taking traces, other important quantities describing the curvature of

spacetime can be derived from the Riemann tensor: the Ricci tensor Rab and the

Ricci scalar R defined as follow

Rab = Racb
c, (2.1.89)

R = ηabRab. (2.1.90)

These two quantities play important roles in the descriptions of curved spacetime.

In the next section, Einstein’s field equations relating geometry and matter will

be introduced through these Ricci tensor and Ricci scalar.

2.1.2 Einstein’s Field Equations

After introducing all ingredients for describing curved spacetime, the elegant

relation between this curvature and existences of energy and matter described by

the energy-momentum tensor Tab will be established in this section. For simplicity,

the vacuum curved spacetime in the region containing no matter and energy will

be firstly discussed to give a basic concept for a more complicated cases in which

matter sources are coupled to gravity at the end of this section.
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2.1.2.1 Pure gravity field equation

In the case of vacuum spacetime, there is no matter and energy occur in the

region. To find an action describing the curvature of vacuum spacetime, it is

more convenient if we start from the field equations expressing behaviour of the

curvature. Bianchi identities in (2.1.88) are the suitable equations describing

nature of the Riemann tensor, or precisely the curvature of spacetime. By taking

traces, the Bianchi identities implies

∇a(Rab −
1

2
ηabR) = ∇aGab = 0, (2.1.91)

where the Einstein tensor is defined by Gab = Rab− 1
2
ηabR and this equation leads

to the pure gravity field equations or the vacuum Einstein’s field equations,

Rab −
1

2
ηabR = 0, (2.1.92)

describing the curvature of empty spacetime. Furthermore, an action giving rise

to this field equation in D-dimensional spacetime is known as the Einstein-Hilbert

action that is simply written in just only a term of Ricci scalar as

SEH =

∫
dDx

√
|g|R. (2.1.93)

Note that, at the level of actions, it is easier to deal with their variations with

respect to the metric gµν so the vacuum Einstein’s field equations (2.1.92) can be

obtained by varying this Einstein-Hilbert action SEH with respect to the metric

gµν ,
δSEH
δgµν

=

∫
dDx

√
|g|(Rµν −

1

2
gµνR), (2.1.94)

after applying the least action principle δSEH = 0 and contactions with eµae
ν
b . The

Einstein-Hilbert Lagrangian density is just the integrand in the Einstein-Hilbert

action (2.1.93),

LEH =
√
|g|R. (2.1.95)

In the language of differential forms, notice that the Einstein-Hilbert action in

(2.1.93) is an integration on the volume form defined in (2.1.53),

SEH =

∫
R ∗ 1, (2.1.96)

where the Einstein-Hilbert Lagrangian density takes the form

LEH = R ∗ 1. (2.1.97)

Note that the concept of Lagrangian density is now changed. In general,

Lagrangian density is a scalar quantity whose integral over all space gives the

scalar action. Henceforth, from a differential forms point of view, Lagrangian

density is not a scalar quantity or 0-form anymore, but rather D-form that can

be integrated over a D-dimensional manifold giving rise to a 0-form action.
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2.1.2.2 Matter-coupled gravity field equation

As stated at the beginning, existences of energy and mass affact the curvature of

spacetime. The energy-momentum tensor Tab is defined to describe all energies,

momentums, and also stresses in spacetime by relating this gravity-source-tensor

to the Einstein tensor explaining the curvature of spacetime as Gab ∝ Tab or∗

Gab = κ2Tab =
1

2
Tab, (2.1.98)

where the last term is obtained by using the convention κ2 = 1/2. Using the

definition of Einstein tensor, the matter coupled Einstein’s field equations are

obtained from (2.1.98) in the forms

Rab −
1

2
ηabR =

1

2
Tab. (2.1.99)

This equation is the famous Einstein’s field equations describing the relation

between the curvature of spacetime and matter sources. This equation can be

derived from a matter coupled Einstein-Hilbert action,

S(g,X) = SEH(g) + SMatter(g,X), (2.1.100)

where the argument g refers to the dependence of the metric and X denotes any

matter field. The total variation of this matter coupled action takes the form

δS =
{√
|g|(Rµν −

1

2
gµνR) +

δSMatter

δgµν
}
δgµν +

δSMatter

δX
δX. (2.1.101)

By applying the least action principle, δS = 0, the last term corresponds to the

field equation of the matter sourceX while the terms in the bracket will become the

Einstein’s field equations (2.1.99), if the energy-momentum tensor Tµ
a is defined

by

Tµν =
−2√
|g|
δSMatter

δgµν
. (2.1.102)

Note that, for some matter fields that will be henceforth described, this coordinate

version of the energy-momentum tensor is conveniently derived from matter actions

describing their behaviour on curved spacetime by the metric gµν . However,

Einstein equations are simpler in flat spacetime as in (2.1.99), since dealing with

the Minkowski metric ηab is easier than gµν . Thus the energy-momentum tensor

can transforms to (0, 2) Lorentz tensor components by using the inverse vielbein,

Tab = eµae
ν
bTµν .

There are two kinds of the matter fields involving in this study that will

be reviewed. They are both bosonic fields with integer spin: 0 and 1. The simpler

∗To obtain the Newton’s gravity theory, this constant is related to the Newton’s gravitational constant,

G ≈ 6.674 × 10−11N · m2/kg2, by κ2 = 8πG. In this study, we use the convention that 2κ2 is set to unity,

κ2 = 1/2.
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case is the zero-spin real scalar field φ(x) described by an action,

Sφ =

∫
dDx

√
|g|
{
− 1

2
∂µφ ∂

µφ− 1

2
m2φ2

}
, (2.1.103)

where m corresponds to its mass. Variation of this action with respect to φ leads

to the well-known field equation of scalar field; the Klien-Gordon equation,

�φ−m2φ = 0, (2.1.104)

where the d’Alembert operator � is defined by � = ∇µ∇µ, which can be reduced

to �φ = ∇µ∂µφ for any scalar field φ. Its energy-momentum tensor can be derived

by (2.1.102) as

Tµν = ∂µφ∂νφ−
1

2
gµν
{
∂ρφ∂

ρφ+m2φ2
}
. (2.1.105)

Moreover, by using the volume form (2.1.53) and the inner product in (2.1.55),

the Lagrangian density of a real scalar field can be written in form of

Lφ = −1

2
∗ dφ ∧ dφ− (

1

2
m2φ2) ∗ 1. (2.1.106)

Another case is a vector field or gauge field Aµ corresponds to U(1) gauge

symmetry that will be introduced in the review of the gauge theory. An action

expressing behaviour of a U(1) gauge field is simply of the form

SA = −1

4

∫
dDx

√
|g|FµνF µν , (2.1.107)

where the fields strength is defined by

Fµν = ∂µAν − ∂νAµ, (2.1.108)

or simpler in the form of differential form,

F = dA, (2.1.109)

where F = 1
2
Fµνdx

µ ∧ dxν is the field strength 2-form. Notice that the exterior

derivative of the field strength 2-form certainly equals to zero due to the nilpotent

property in (2.1.43). This leads to the Bianchi identities, that can be written in

component form as

∂µFνρ + ∂νFρµ + ∂ρFµν = 0. (2.1.110)

The variation of the action (2.1.107) with respect to the gauge field gives the field

equations,

∇µFµν = 0. (2.1.111)

By using (2.1.102), the energy-momentum tensor of a gauge field Aµ can be

obtained as

Tµν = FµρFν
ρ − 1

4
gµνFρσF

ρσ. (2.1.112)
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Moreover, the Lagrangian density of a gauge field Aµ can be expressed by using

the differential form as

LA = −1

4
∗ F ∧ F, (2.1.113)

where the inner product in (2.1.55) is applied.

2.2 Kaluza-Klein Reduction on S1

Kaluza-Klein reduction, the original simplest case of dimensional reduction, which

is briefly introduced in the introduction, now can be demonstrated in more

mathematical details. As mentioned before, this dimensional reduction is a

consideration of Einstein’s general relativity in five spacetime dimensions where

the fifth dimension is compactified to a very small circle or S1, as shown in Figure

1.1. In general, this procedure can be generalized to reduce any (D+1)-dimensional

gravitational theories to the reduced ones in D dimensions. In this section,

fundamental concepts about dimensional reduction will be reviewed. Even though

it is the simplest compact space S1, these concepts and also calculational processes

can be applied to a more complicated compact space such as an S7 that we want

to study.

Since the higher dimensional theory is just a pure gravity theory, a

Lagrangian density describing this theory is only the Einstein-Hilbert Lagrangian

density from (2.1.95),

LEH =
√
|ĝ|R̂, (2.2.1)

where the hat-fields are higher-dimensional fields. Equations of motion from this

Lagrangian density are also the Einstein’s field equations in vacuum from (2.1.92)

that can be contacted and written as

R̂MN = 0, (2.2.2)

whereM,N = 0, 1, 2..., D are the (D+1)-dimensional spacetime coordinate indices.

As introduced in Section 2.1, Ricci scalar R̂ can be derived from the metric

field ĝMN that depends on the higher dimensional spacetime coordinates y. Now

suppose that one of the spatial coordinates labelled by z is compactified to a circle,

S1, with radius L, such that, the coordinates y are separated to be (x, z) where

x denote the reduced D-dimensional spacetime coordinates. The coordinate z is

then periodic, therefore, the metric ĝMN(y) can be described in Fourier series of

the form

ĝMN(x, z) =
∑
n

ĝ
(n)
MN(x)einz/L

= ĝ
(0)
MN(x) +

∑
n6=0

ĝ
(n)
MN(x)einz/L,

(2.2.3)
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where the dependence on z is excluded. The Fourier modes n are integers associated

with masses of the metric field in the lower dimensional point of view, since the

twice partial derivative with respect to z will always give the real number n2/L2

which corresponds to the square of mass, as in (2.1.104). In the second line

of (2.2.3), these massless and massive modes of the metric field are apparent

separated. This process is called compactification giving rise to a stack of higher-

dimensional metric field’s mass states called the infinite Kaluza-Klein tower with

the masses of the field in each Fourier mode n equal to |n|/L. Note that only

compactifying procedure cannot reduce spacetime dimensions. Since in lower

dimensional theory this compact space S1 should be unobservable, the radius

L should be assumed to be very small in the order of the Planck length, 10−35

metres. In this limit, the non-zero massive modes will have masses in order of

the Planck mass, 10−8 kilogrammes, that is too heavy for fundamental particles.

The next step of dimensional reduction is neglecting all these massive modes and

keeping only the massless one called the truncation to the massless sector process.

Thus the metric ĝMN(x) is now only dependent on the D-dimensional spacetime

coordinates.

In group theory, these Fourier mode functions einz/L in (2.2.2) are the

representations of an Abelian U(1) group of the circle S1 where the Fourier mode

n corresponds to a U(1) charge. The n = 0 mode is a singlet while the n 6= 0

modes are all doublet where the modes n and −n are complex conjugate of each

other. Keeping only n = 0 mode makes the net charge always neutral or said

to be invariant under the U(1) transformation that is consistent because the rest

n 6= 0 representations are impossibly generated from the n = 0 due to the charge

conservation.

As a result, dimensional reductions are the compactifying some spatial

coordinates together with the truncation to the massless sector that turn the

higher dimensional fields to be independent of the compact space’s coordinates.

For the case S1, the (D+1)-dimensional spacetime coordinate index splits to µ =

0, 1, 2..., D − 1 the D-dimensional spacetime coordinates and the compactified

spatial coordinate z. Thus the massless mode metric field can be divided into ĝµν
symmetric (0, 2) tensor components, ĝµz 1-form components, and a scalar field ĝzz
in theD-dimensional point of view. Kaluza-Klein reduction ansatz is an expression

of these (D+1)-dimensional metric components in the following forms

ĝµν = e2αφgµν + e2βφAµAν , ĝµz = e2βφAµ, ĝzz = e2βφ, (2.2.4)

where gµν is the metric tensor, 1-form’s components Aµ, and a scalar field φ, which

are all independent of z. The two constants α and β are chosen to be

α2 =
1

2(D − 1)(D − 2)
, β = −(D − 2)α. (2.2.5)
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By using these expressions in (2.2.4), the metric equation in higher dimensions

can be written as

dŝ2 = e2αφ ds2 + e2βφ(dz + Aµdx
µ)2. (2.2.6)

Note that the reduction ansatz of the metric is always written in the form of the

line element for convenience. Reduction ansatze are the key to obtain dimensional

reduction describing relations between the two different dimensional worlds. As

demonstrated above, the reduction ansatz of the metric describes the geometry of

spacetime in which there are D non-compact spacetime dimensions together with

a compact circle S1. Translation in this compact space S1 described by a U(1)

gauge transformation corresponds to the gauge transformation of the field Aµ in

the ansatz. In conclusion, reduction ansatze of the metric can be deduced from

the symmetry corresponding to the chosen compact space. We will use this fact

to derive the reduction ansatz for the eleven-dimensional metric compactified on

S7.

To obtain the consistent dimensional reduction, substitutions of

the reduction ansatze in the higher dimensional equations of motion giving rise to

lower dimensional equations of motion are required. However, gravity’s equations

of motion, the Einstein’s field equations, are only expressed by Ricci tensor. Hence,

before providing the substitutions, all components of the Ricci tensor are needed

to be derived from the ansatz (2.2.4). Starting from finding the higher dimensional

vielbein bases, by using (2.1.56), each vielbein basis can be expressed as∗

êa = eαφea, êz = eβφ(dz + A), (2.2.7)

where A = Aae
a is a 1-form and a is a flat index in D dimensions while z is also

used for the flat index of the compactified dimension. Then, (D+1)-dimensional

spin connections can be obtained, in the vielbein bases through the torsion-free

condition in (2.1.79),

ω̂ab = ωab + αe−αφ(∂bφêa − ∂aφêb)− 1

2
F abe(β−2α)φêz,

ω̂az = −βe−αφ∂aφêz − 1

2
F a

be
(β−2α)φêb,

(2.2.8)

where Fab are the components in the Lorentz frame of the field strength F = dA.

Finally, the higher dimensional Ricci tensor components can be derived from the

reduction ansatz (2.2.4) by finding the curvature 2-form via (2.1.85) and reading

off their components as

R̂ab = e−αφ(Rab −
1

2
∂aφ∂bφ− αηab�φ)− 1

2
e−2DαφF 2

ab,

R̂az =
1

2
e(D−3)αφ∇b

(
e−2(D−1)αφFab

)
,

R̂zz = (D − 2)αe−2αφ�φ+
1

4
e−2DαφF 2,

(2.2.9)

∗Beware confusing between an exponential e and a vielbein e.
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where the two type contractions of the field strengths are defined by F 2
ab = FacFb

c

and F 2 = FabF
ab. After transformation to the curve spacetime indices, these

(D+1)-dimensional Ricci tensor components can be substituted into the Einstein’s

field equations (2.2.2) to obtain all equations of motion of the reduced theory in

D-dimensions,

Rµν −
1

2
gµνR =

1

2
(∂µφ ∂νφ−

1

2
gµν∂ρφ ∂

ρφ) +
1

2
e−2(D−1)αφ(F 2

µν −
1

4
gµνF

2),

∇µ(e−2(D−1)αφFµν) = 0,

�φ = −1

2
(D − 1)αe−2(D−1)αφF 2.

(2.2.10)

The first equation of motion is nothing but the Einstein’s field equation describing

the curvature of the D-dimensional spacetime corresponding to the two kinds

of matter source, the scalar field φ and the U(1) gauge field Aµ, as shown on

the right-hand side of the equations. The terms in the first parenthesis are the

energy-momentum tensor of a massless scalar field, as introduced in (2.1.105), and

the other ones are the gauge field’s energy-momentum tensor defined in (2.1.112).

The rest lower dimensional equations of motion describe behaviours of the two

matter fields coupled to each other. Note that the elimination of the gauge field

makes the scalar field to be a harmonic function while the truncation of the scalar

field, setting φ = 0, turns all components of the U(1) field strength to be zero.

It’s said to be inconsistent in the later case.

In conclusion, consistent dimensional reductions giving rise to the

gravitational theory together with some additional fields in lower spacetime

dimensions can be achieved if their reduction ansatze, expressions of the higher

dimensional fields in terms of the lower dimensional ones, yield all equations of

motion in the reduced theory via substitutions them into the higher dimensional

equations of motion. By this procedure, the dimensional reductions are said to be

consistent at the level of equations of motion.

Moreover, the stronger consistency of dimensional reductions can be

obtained by substitutions their reduction ansatze into the higher dimensional

Lagrangian density to get the lower dimensional one. In this case, dimensional

reductions are said to be consistent at the level of actions. For example, this

simplest Kaluza-Klein reduction on S1 is also consistent at the level of actions. The

higher dimensional Ricci tensors are contracted to be a Ricci scalar by contractions

of these tensors with the (D+1)-dimensional Minkowski metric as follows

R̂ = e−2αφ(R− 1

2
∂ρφ ∂

ρφ− 2α�φ)− 1

4
e−2DαφF 2. (2.2.11)

The determinant of the (D+1)-dimensional metric can be easily calculated through
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the block metric form in the reduction ansatz (2.2.4),√
|ĝ| = e(β+Dα)φ

√
|g| = e2αφ

√
|g|, (2.2.12)

where the last term is obtained by the choice of β constant in (2.2.5). Then

multiplication of these two quantities gives an expression for the higher dimensional

Lagrangian density in lower D dimensions,

L =
√
|ĝ| R̂ =

√
|g|(R− 1

2
∂ρφ ∂

ρφ− 2α�φ− 1

4
e−2(D−1)αφF 2), (2.2.13)

where the �φ term can be dropped from this Lagrangian density because it is just a

total derivative that does not contribute to the equations of motion. Therefore the

final form of the Lagrangian density is just a combination of the Einstein-Hilbert

and the two matter fields’ Lagrangian densities,

L =
√
|ĝ| R̂ =

√
|g|(R− 1

2
∂ρφ ∂

ρφ− 1

4
e−2(D−1)αφF 2), (2.2.14)

which corresponds to all the lower dimensional equations of motion in (2.2.10).

Note that the choices of the two constant, α and β, in (2.2.5) have their background

in the following way. For α, it ensures that the kinetic term of the scalar field,

∂ρφ ∂
ρφ, has the canonical normalisation, 1

2
∂ρφ ∂

ρφ, as in (2.1.103). The other

thing is to ensure that the dimensionally-reduced Lagrangian density contains the

usual Einstein-Hilbert form, i.e.
√
|g|R. It is obviously shown in the above that

the choice of β makes the coefficient of the lower dimensional Ricci scalar, after

multiplied by the determinant of the metric in (2.2.12), to be one.

However, consistency only at the level of equations of motion is sufficient

for studying their solutions. Since all solutions must satisfy their equations of

motion so consistency between equations of motion in the two theory turn solutions

in lower dimensions into the higher dimensional theory’s solutions, which is called

lifting up or embedding solutions, and vice versa.

At this point, Kaluza-Klein reduction can be extended to produce on

more complicated compact spaces a more complicated symmetry. For example,

reduction on n-dimensional torus, T n = S1 × . . . × S1, reduces a D-dimensional

gravitational theory to be a reduced one in (D-n)-dimensions. This dimensional

reduction can be obtained by performing n-sequent of S1 reductions. In this case,

the final reduced theory will contain n-U(1) gauge fields corresponding to a U(1)n

symmetry.

Moreover, performing Kaluza-Klein reduction on a group manifold is also

guaranteed to be consistent. Group manifold is a topological space that corresponds

to a transformation satisfying group theory. For example, in this study, a group

manifold of a Lie group SU(2) is a three-dimensional sphere S3, as discussed

in Appendix A. The group manifold G admits a metric with the isometry group

GL×GR corresponding to left- and right-transformations. Truncation to the set of
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all fields that are invariant under the left action GL is guaranteed to be consistent

since, in group theory, the retained GL-singlet fields cannot act as sources for

generating the discarded GL-non-singlet fields, in the same way as the truncation

to the massless sector process for a U(1) symmetry described above. Note also

that Kaluza-Klein reduction on a Lie group manifold is called Scherk-Schwarz

reduction [24].

2.3 Gauge Theory

In general relativity’s framework, it is more relevant to consider local symmetries

than global ones. Since spacetime can be curved, so locality, or dependence

on spacetime’s position, becomes an essential feature of gravitational theories.

Gauging is a procedure of promoting any continuous global symmetry to be a local

one that depends on the spacetime coordinates x. For example, in Section 2.1,

the Lorentz symmetry, which is a global symmetry on flat spacetime in special

relativity, was promoted to be the local one with transformations called local

Lorentz transformation or LLT. After that, the Lorentz covariant derivative was

defined to preserve their transformation rules. Furthermore, this procedure can

be applied to promote some continuous symmetries associated with Lie groups

that are briefly introduced in Appendix A. Note that all the four fundamental

forces i.e. electromagnetism, weak and strong interactions and also gravity can be

formulated through this gauge procedure, therefore understanding general gauge

theories is very valuable.

Classical gauge theories are summarily demonstrated in this section,

starting from the simplest case; Abelian gauge theory in which a U(1) gauge

symmetry is promoted to be local. Then, all basic concepts from this simple

gauge theory will be applied to a more involved case: non-Abelian gauge theory

in which global symmetries associated with simple Lie groups, such as SU(N),

SO(N), or USp(N) are local. Finally, an SU(2) gauge theory involving to this

study is given at last.

2.3.1 Abelian Gauge Theory

Gauging of a U(1) symmetry corresponding to a vector field or gauge field

presented in Section 2.1.2.2 is mainly described in this section. To explain this

simplest gauge theory, we consider a complex scalar field φ(x) with mass m in

D-dimensional flat spacetime with the action given by

Sφcomplex
= −1

2

∫
dDx

{
∂µφ ∂

µφ∗ +m2φ∗φ
}
. (2.3.1)



31

It is straightforward to see that this action is invariant under a global U(1)

transformation that can be defined as a constant phase shift on the scalar field,

global U(1) : φ(x)→ φ′(x) = eiαφ(x),

φ∗(x)→ (φ∗)′(x) = e−iαφ∗(x),
(2.3.2)

where α is a real phase parameter and φ∗(x) is a complex conjugate of the scalar

field φ(x) whose global U(1) transformation in the second line can be obtained

from the complex conjugation of the first one.

Then, promoting this phase parameter α to depend on the spacetime

coordinates, α(x), turns the global transformations in (2.3.2) into a local U(1)

transformations,

local U(1) : φ(x)→ φ′(x) = eiα(x)φ(x),

φ∗(x)→ (φ∗)′(x) = e−iα(x)φ∗(x).
(2.3.3)

However, the action in (2.3.2) is no longer invariant under this local transformation

since there is an undesirable term arising when the partial derivatives of the

scalar field in this action, ∂µφ(x) and ∂µφ(x), transform. This term makes the

transformation of ∂µφ(x) differ from the transformation rule in (2.3.3) such that

local U(1) : ∂µφ(x)→ ∂µφ
′(x) = ∂µ(eiα(x)φ(x)),

= eiα(x)∂µφ(x) + i∂µα(x)eiα(x)φ(x),
(2.3.4)

where the last term in the second line is the undesirable term that spoils the

expected transformation rule. To achieve an action that is invariant under this

local U(1) transformation, the partial derivatives in (2.3.1) need to be replaced by

covariant derivatives defined by

Dµφ(x) ≡ ∂µφ(x)− iAµ(x)φ(x), (2.3.5)

where Aµ(x) is a U(1) gauge field that transforms under the local U(1)

transformation as

local U(1) : Aµ(x)→ A′µ = Aµ − ∂µα(x). (2.3.6)

Therefore, this new covariant derivative satisfies the local U(1) transformation

rule (2.3.3) in the way that

Dµφ(x)→ (Dµφ)′(x) = ∂µφ
′(x)− iA′µ(x)φ′(x),

= eiα(x)∂µφ(x) + i∂µα(x)φ′(x)− iAµφ′(x)− i∂µα(x)φ′(x),

= eiα(x)Dµφ(x).

(2.3.7)

Replacing partial derivatives in the ungauged action (2.3.1) by covariant derivatives,

known as the minimal coupling procedure, gives rise to the U(1) gauged complex
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scalar field theory described by an action of the form

Sφgauged = −1

2

∫
dDx

{
(Dµφ)∗Dµφ+m2φ∗φ

}
, (2.3.8)

that is obviously invariant under the local U(1) transformation, where (Dµφ)∗ is a

complex conjugation of the covariant derivative of the complex scalar field defined

in (2.3.5) whose phase shift from local U(1) transformation cancels another one

from (2.3.7).

However, there is still no dynamical term for the gauge field Aµ itself

in (2.3.8). Adding the action expressing dynamics of the gauge field, which

is introduced in (2.1.107), gives the well-known action describing interactions

between a complex scalar field φ(x) and the U(1) gauge fieldAµ(x) inD-dimensional

flat spacetime, called the scalar electrodynamics theory,

S = −1

2

∫
dDx

{
(Dµφ)∗Dµφ+m2φ∗φ+

1

2g2
FµνF

µν
}
, (2.3.9)

where g is a coupling constant. Here, the U(1) field strength is defined by

Fµν ≡ [Dµ, Dν ] = ∂µAν − ∂νAµ, (2.3.10)

which is also invariant under local U(1) transformations,

local U(1) : Fµν → F ′µν = ∂µAν − ∂µ∂να− ∂νAµ + ∂ν∂µα,

= ∂µAν − ∂νAµ,
= Fµν ,

(2.3.11)

such that this scalar electrodynamics action is invariant under U(1) transformations.

2.3.2 Non-Abelian Gauge Theory

As mentioned in the previous section, U(1) gauge symmetry is a symmetry

describing one of the four fundamental forces, electromagnetism. Apart form this

Abelian gauge symmetry, in the standard model of elementary particle interactions,

weak and strong interactions can be expressed through the two simple Lie groups,

SU(2) and SU(3) that are non-Abelian, respectively. Therefore, to explain all of

the four fundamental forces the study of non-Abelian gauge theory is required.

A more complicated local transformation associated to an N -dimensional

compact simple Lie group G is now considered. In adjoint representations, see also

in Appendix A, a set of scalar fields φ(x)A, where A = 1, 2, ...N , can be written

as a scalar matrix Φ(x) that transforms by elements of the Lie group G, U(x), as

Φ(x)→ Φ′(x) = U(x)Φ(x)U−1(x) (2.3.12)

where Φ(x) = TAφ(x)A. These group elements can be written in an expoenetial

form,

U(x) ≡ e−α
A(x)TA , (2.3.13)



33

where αA(x) are real parameters depending on the spacetime coordinates x, which

indicate that the above transformation (2.3.12) is local, and TA are the group

generators satisfying the Lie algebra introduced in (A.10),

[TA, TB] = fAB
CTC , (2.3.14)

where fAB
C are real numbers called structure constants. A, B, and C label the

number of the group generators.

As in the Abelian case, a partial derivative of the scalar matrix Φ(x) does

not transforms in the same way as (2.3.12). To preserve the local transformation

rule, the non-Abelian covariant derivative of a scalar matrix Φ(x) is introduced

by the definition

DµΦ(x) ≡ ∂µΦ(x) + [Aµ(x),Φ(x)], (2.3.15)

where Aµ(x) ≡ AAµ (x)TA are the gauge field matrices whose transformation by the

group elements U(x) can be imposed to be

Aµ(x)→ A′µ(x) ≡ U(x)Aµ(x)U(x)−1 + U(x)∂µU(x)−1,

= U(x)Aµ(x)U(x)−1 − (∂µU(x))U(x)−1,
(2.3.16)

where the second line is obtained through applying the Leibniz’s product rule to

the last term in the first line. By using these definitions, the non-Abelian covariant

derivative of a scalar matrix Φ(x) now satisfies the same transformation rules as

Φ(x),

(DµΦ)′(x) = ∂µ(UΦU−1 ) + [ (UAµ U
−1 − ∂µU U−1), UΦU−1],

= U
{
∂µΦ + [Aµ,Φ]

}
U−1 + (∂µU)ΦU−1 − (∂µU)ΦU−1

− UΦ∂µU
−1 + UΦ∂µU

−1,

= U(x)DµΦ(x)U−1(x)

(2.3.17)

Furthermore, by using the Lie algebra (2.3.14), the covariant derivative of the

scalar fields φ(x)A can be written as

Dµφ
A(x)TA ≡ ∂µφ

A(x)TA + fBC
AABµ (x)φC(x)TA, (2.3.18)

where ABµ (x) are the G gauge fields. Eliminating the generators TA gives the

definition of the gauged covariant derivative of scalar fields φA(x),

Dµφ
A(x) = ∂µφ

A(x) + fBC
AABµ (x)φC(x). (2.3.19)

The non-Abelian field strength matrices are defined by Fµν(x) = [Dµ, Dν ]

that can be expressed in terms of the gauge fields by

Fµν(x) ≡ FA
µν(x)TA ≡ ∂µAν(x)− ∂νAµ(x) + [Aµ(x),Aν(x)],

= (∂µA
A
ν (x)− ∂νAAµ (x) + fBC

AABµ (x)ACν (x))TA.
(2.3.20)
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Thus the field strengths FA
µν(x) are defined in terms of the G gauge fields AAµ as

FA
µν(x) = ∂µA

A
ν (x)− ∂νAAµ (x) + fBC

AABµ (x)ACν (x). (2.3.21)

A gauge invariant action describing the dynamics of these gauge fields in D-

dimensional flat spacetime can be written in the similar form as (2.1.107) by

S[A] = − 1

4g2

∫
dDxFA

µνF
Aµν , (2.3.22)

where g is a gauge coupling constant that can be absorbed into the definition of

the gauge fields such that the covariant derivative of the scalar metrices and the

field strength metrices can be written as

DµΦ(x) = ∂µΦ(x) + g[Aµ(x), φ(x)],

Fµν(x) =
1

g
[Dµ, Dν ].

(2.3.23)

Hence, the covariant derivative of the scalar fields and the field strenghts become

Dµφ
A(x) = ∂µφ

A(x) + gfBC
AABµ (x)φC(x),

FA
µν(x) = ∂µA

A
ν (x)− ∂νAAµ (x) + gfBC

AABµ (x)ACν (x).
(2.3.24)

The field equations and Bianchi identities describing the nature of the gauged

fields AAµ derived from the action (2.3.22) are of the same forms as given in Section

2.1.2.2 but the partial derivatives ∂µ are needed to be replaced by the non-Abelian

covariant derivative Dµ,

DµFA
µν(x) = 0, (2.3.25)

DµF
A
νρ(x) +DνF

A
ρµ(x) +DρF

A
µν(x) = 0. (2.3.26)

Note that it is easier to write the non-Abelian gauged covariant exterior derivative

of any k-form and the definition of the field strength 2-forms by using diferential

forms,

DωA(k) ≡ dωA(k) + gfBC
AAB(1) ∧ ωA(k),

FA
(2) ≡ dAA(1) +

1

2
gfBC

AAB(1) ∧ AC(1),
(2.3.27)

where AA(1) = AAµ (x)dxµ are the gauge 1-forms.

For SU(2) gauge theory, the structure constant is nothing but a three-

dimensional Levi-Civita symbol εijk from (A.21), where the gauge indices become

i, j, k = 1, 2, 3. The non-Abelian gauged covariant exterior derivative of any k-form

and the definition of the field strength 2-forms defined above are now written as

Dωi(k) = dωi(k) + gεijkA
j
(1) ∧ ω

k
(k), (2.3.28)

F i
(2) = dAi(1) +

1

2
gεijkA

j
(1) ∧ A

k
(1). (2.3.29)
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By using the isomorphism SO(4) ∼ SU(2) × SU(2), an SO(4) gauge theory

can be obtained from the two sets of commuting SU(2) gauge groups that will

be exhibited later when our lower dimensional theory; N = 4 SO(4) gauged

supergravity is discussed in Section 2.4.2.

2.4 Extended Supergravity

Apart from Einstein’s general relativity, dimensional reductions can also be applied

to another gravitational theory combined with supersymmetry, the symmetry

between bosons and fermions, which is called supergravity. As mentioned in the

introduction, if gravity is quantized, it will give a notorious divergence.

Supersymmetry might cure this problem. In fact, supersymmetry is an essential

ingredient in superstring theory, a finite quantum theory of gravity in ten spacetime

dimensions. It is also strongly believed that N = 8 supergravity in four dimensions

might give a finite quantum theory.

Supergravity is a general relativity theory whose symmetries are extended

by local supersymmetry corresponding to supercharge operators Q [35, 37]. In

the simplest case with only one supersymmetry operator, there exists a spin

3/2 vector-spinor field called the gravitino Ψµ(x) that is a superpartner of the

bosonic gravitational field eaµ(x) relating to each other through supersymmetry

transformations. Moreover, supersymmetry can be extended by adding more

supercharge operators up to the number N . With more supercharge, there are

more fields contained in supergravity multiplet, a set of various spin fields

transforming to each other through supersymmetry transformations. For four-

dimensional supergravity, N = 8 is the maximal case that has all fields with spin

≤ 2 in its supergravity multiplet. Furthermore, supergravity can be considered in

higher dimensional spacetime in which their component fields have more degrees

of freedom. The eleven-dimensional supergravity is the unique maximal case

for the dimensional extension. Note that beyond these maximal limits, local

supersymmetry will be ruined and their equations of motion are all inconsistent

[35].

The simplest linear N = 1 supergravity in four-dimensional spacetime is

first introduced in this section to familiarize with the universal part of supergravity,

starting from gauging the global supersymmetry. After that, extended

supergravities involved in this study, both higher and lower dimensional theory,

will be considered.

First of all, the structure of global supersymmetry is required. The global

supersymmetry transformations that change a bosonic field denoted by B into a

fermionic spinor field, F , and vice versa, are schematically written in the following
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forms

δB ∝ ε̄F, δF ∝ εγµ∂µB, (2.4.1)

where ε is called the infinitesimal supersymmetry spinor parameter and γµ(x) are

the coordinate gamma matrices, which are related to the Dirac gamma matrices

defined in Appendix B through inverse vielbein’s contractions, γµ(x) = eµa(x)γa.

As shown in Appendix B, γ 0̂ is anti-hermitian and the rest γ î with î = 1, 2, 3

are hermitian∗. Using this γ 0̂, the Dirac adjoint can be defined in the same way

as (B.11) by ε̄ = ε†iγ 0̂. The commutator of two supersymmetry transformations

acting on a bosonic field leads to an operator that is proportional to the

spacetime-derivative,

[δ1, δ2]B ∝ (ε̄1γ
µε2)∂µB. (2.4.2)

This implies the important fact that the commutator of two supersymmetry

transformations is an infinitesimal spacetime translation with a parameter ε̄1γ
µε2

that transforms under GCT in the same way as a (1, 0) coordinate tensor

demonstrated in (2.1.21). Promoting the infinitesimal supersymmetry spinor

parameter to be dependent on spacetime coordinates turns the global

transformations to be local such that the supersymmetry transformation in (2.4.1)

can be written as

δB ∝ ε̄(x)F, δF ∝ ε(x)γµ∂µB. (2.4.3)

Thus, the commutator of two supersymmetry transformations becomes

[δ1, δ2]B ∝ (ε̄1γ
µε2)(x)∂µB. (2.4.4)

For local supersymmetry, this commutator yields a vector field (ε̄1γ
µε2)(x)

corresponding to an element of spacetime (local) translation, which is called

diffeomorphism. Therefore, the local supersymmetry requires Einstein’s general

relativity describing spacetime metric as a dynamical object to assure the

diffeomorphism invariance.

Four-dimensional N = 1 supergravity is the simplest supersymmetric

theory describing gravity as a vielbein field eaµ(x) together with its superpartner,

a Majorana gravitino Ψµ(x) that is a vector-spinor field containing both vector

and spinor indices. The supersymmetry transformations relating these fields are

given in [35] by,

δeaµ =
1

2
ε̄(x)γaΨµ,

δΨµ = Dµε(x) ≡ ∂µε+
1

4
ωµabγ

abε,
(2.4.5)

where γab = 1
2
[γa, γb]. Here, Dµ = eaµDa = ∂µ + 1

4
ωµabγ

ab is defined to be

the Lorentz covariant derivative for a spinor. At this moment, the gravitino
∗For avoiding confusion, the hat-indices are now used to separate flat spacetime indices from the curved

ones.
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behaves as a gauge field of the local supersymmetric theory. Therefore the linear

supersymmetric Lagrangian density for this theory, which is invariant under the

local supersymmetry transformation (2.4.5), is just a combination of the ordinary

Einstein-Hilbert Lagrangian density, introduced in (2.1.95), and a kinetic action

expressing the dynamics of the gauge field gravitino given by a Rarita-Schwinger

Lagrangian density in [38], of the form

L = LEH + LRS,=
√
|g| [R + Ψ̄µγ

µνρDνΨρ]. (2.4.6)

Here γµνρ = 1
2
{γµ, γνρ} and the gravitino covariant derivative is given by DνΨρ ≡

∂νΨρ+ 1
4
ωνabγ

abΨρ. Note that the equation of motion for this gravitino gauge field

can be obtained through the variation of this Lagrangian density with respect Ψ̄µ

as

γµνρDνΨρ = 0. (2.4.7)

helicity −2 − 3
2 −1 − 1

2 0 1
2 1 3

2 2

N = 1 1 1

N = 2 1 2 1

N = 4 1 4 6 4 1

N = 8 1 8 28 56 70 56 28 8 1

Table 2.1: The various supergravity multiplets for N = 1, 2, 4, 8. [37]

Adding more supercharge operators extends supergravity to the N >

1 case whose supergravity multiplet contains various fields, as shown in Table

2.1. Here helicity is the projection of the spin onto the direction of the linear

momentum. This quantity can be both positive or negative while the spin is just a

positive integer or half-integer. Apart from the maximal N = 8 case, supergravity

multiplets in Table 2.1 are not invariant under CPT discrete transformations that

all physical theory must be invariant under these transformations

• Charge conjugation : the transformation between paritcle and anti-particle,

• Parity : the spatial inversion (~x↔ −~x),

• Time reversal : the time inversion (t↔ −t).

CPT transformations just flip the helicity of each field in the supergravity multiplet

to the opposite sign. Therefore CPT invariant supergravity multiplets can be

obtained by adding their CPT conjugate states to the multiplets. For example,

in the N=1 case, the supergravity multiplet invariant under CPT transformations

contains (2, 3
2
) and (−2,−3

2
) states corresponding to a graviton eaµ and a gravitino

Ψµ. Note also that the number of bosonic and fermionic states are always equal

in each supergravity multiplet [35, 37], for example in the maximal N = 8

supergravity, the CPT invariant supergravity multiplet has 256 degrees of freedom,

which are divided into 128 bosonic and also 128 fermionic states [37].
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2.4.1 Eleven-dimensional Supergravity

The higher dimensional theory for this study is the effective theory of M-theory

i.e. the unique eleven-dimensional supergravity firstly constructed by Cremmer,

Julia, and Scherk in [12]. In eleven dimensions, one may expect that this N = 1

supergravity will contains only a graviton êM̂M(x) and a vector-spinor gravitino

ΨM(x) in the same way as the simplest N = 1 four-dimensional supergravity

introduced previously, where M = 0, 1, ...10 is a curved eleven-dimensional

spacetime index, M̂ = 0, 1, ...10 is an eleven-dimensional flat space index, and

hat-fields are eleven-dimensional bosonic fields.

However, fermionic degrees of freedom from the Majorana vector-spinor

is 128 in eleven dimensions, while degrees of freedom from an eleven-dimensional

graviton is just 44 [35, 37]. Thus 84 bosonic degrees of freedom are missing due to

the fact that the number of bosonic and fermionic states are always identical

in each supergravity multiplet. An antisymmetric 3-form potential ÂMNP (x)

corresponding to the missing 84 bosonic degrees of freedom is added to the

supergravity multiplet to fix this problem. Consequently, the unique eleven-

dimensional supergravity contains a graviton field êM̂M(x), a 3-form potential

ÂMNP (x), and a Majorana vector-spinor gravitino ΨM(x) where their

supersymmetry transformations are given in [35] by,

δêM̂M =
1

2
ε̄γM̂ΨM ,

δΨM = DM(ω̃)ε+

√
2

288
(γM̂N̂ÔP̂

M − 8γN̂ÔP̂ δM̂M )F̃M̂N̂ÔP̂ ε,

δÂMNP = −3
√

2

4
ε̄γ[MNΨP ],

(2.4.8)

in which

DM(ω̃)ε = ∂Mε+
1

4
ω̃MN̂P̂γ

N̂P̂ ε,

ω̃MN̂P̂ = ω̂MN̂P̂ −
1

4
(Ψ̄MγP̂ΨN̂ − Ψ̄N̂γMΨP̂ + Ψ̄P̂γN̂ΨM),

F̃MNPQ = 4∂[M ÂNPQ] +
3

2

√
2Ψ̄[MγNPΨQ].

(2.4.9)

The tillded spin connection and field strength are called supercovariants that are

the same hat-quantity added by gravitino’s interaction terms from the following

3-form potential’s Lagrangian density [35, 37],

LA =
√
|g|
[
− 1

48
F̂MNPQF̂

MNPQ +
1

20736
εM1...M11F̂M1...M4F̂M5...M8ÂM9...M11

−
√

2

192
Ψ̄Q(γMNOPQR + 12γMNgOQgPR)ΨR(F̂MNOP + F̃MNOP )

]
,

(2.4.10)
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where the components of the 4-form field strength are defined by F̂MNPQ =

4∂[M ÂNPQ], while the second term is called the Chern-Simon term. Together

with the naive eleven-dimensional supergravity Lagrangian density, the analogue

of (2.4.6),

L0 =
√
|g|[R̂ + Ψ̄Mγ

MNPDNΨP ], (2.4.11)

the full Lagrangian density of the eleven-dimensional supergravity can be obtained,

Lfull11 =
√
|g|
[
R̂ + Ψ̄Mγ

MNPDNΨP −
1

48
F̂MNPQF̂

MNPQ

−
√

2

192
Ψ̄Q(γMNOPQR + 12γMNgOQgPR)ΨR(F̂MNOP + F̃MNOP )

+
1

20736
εM1...M11F̂M1...M4F̂M5...M8ÂM9...M11

]
.

(2.4.12)

Nevertheless, in most applications, only bosonic parts are sufficient to perform the

dimensional reduction while all fermionic fields can be obtained from

supersymmetry transformations (2.4.8). Therefore, the bosonic Lagrangian density

for eleven-dimensional supergravity consists only of the usual Einstein-Hilbert

Lagrangian density along with kinetic and Chern-Simons terms of the 3-form

potential ÂMNP (x) as

L11 =
√
|g|[R̂− 1

48
F̂MNPQF̂

MNPQ] +
1

20736
εM1...M11F̂M1...M4F̂M5...M8ÂM9...M11 ,

(2.4.13)

or in the more compact format using differential forms,

L11 = R̂∗̂1− 1

2
∗̂F̂(4) ∧ F̂(4) +

1

6
F̂(4) ∧ F̂(4) ∧ Â(3), (2.4.14)

where the 4-form field strength is defined by F̂(4) ≡ dÂ(3). There are three bosonic

equations of motion in this theory,

R̂MN =
1

12
(F̂ 2

MN −
1

12
ĝMN F̂

2
(4)), (2.4.15)

d∗̂F̂(4) = −1

2
F̂(4) ∧ F̂(4), (2.4.16)

dF̂(4) = 0, (2.4.17)

where the two contractions of the field strength’s components are given by F̂ 2
MN =

F̂MPQRF̂
PQR
N and F̂ 2

(4) = F̂MNPQF̂
MNPQ. While the first two equations describing

the dynamics of both bosonic fields, the graviton and the 3-form potential, can be

directly derived from the bosonic Lagrangian density (2.4.14), the last equation is

just the Bianchi identity arisen from the definition of the field strength 4-form.

The clues to the dimensional reduction on S7 of this theory can be

investigated from the eleven-dimensional Einstein’s field equations (2.4.15)
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describing the curvature of eleven-dimensional spacetime coupled by the gauge

matter fields. This is obtained by assuming that eleven-dimensional spacetime

is splitted such that the spacetime index can be written as M = (µ,m), where

µ is a four-dimensional spacetime index and m is running over the remaining

seven-dimensional space, along with setting all components of the 4-form field

strength to be zero except

F̂µνρσ = −3
√

2gεµνρσ, (2.4.18)

where g is a constant. Note that this field strength’s assumption satisfies both

equations of motion in (2.4.16) and (2.4.17). Thus, all contractions of the two

field strengths can be obtained by

F̂ 2
µν = −108g2gµν , F̂ 2

mn = 0, F̂ 2
(4) = −432g2. (2.4.19)

Substitutions of these contractions into the eleven-dimensional Einstein’s field

equations (2.4.15) lead to two separated Ricci tensors corresponding to four-

dimensional spacetime and seven-dimensional compact space,

R̂µν = −6g2gµν , R̂mn = 3g2gmn. (2.4.20)

The opposite-sign between the two Ricci tensors indicate that the eleven-

dimensional theory admits AdS4 × S7 solutions since these Ricci tensors can be

directly obtained from the four-dimensional metric gµν describing AdS4 and the

seven-dimensional metric gmn on S7 with radius 2g−1 respectively. Therefore if

the dimensional reduction on S7 is applied to the eleven-dimensional supergravity,

four-dimensional supergravity will be obtained together with non-vanishing

cosmological constant related to the seven-dimensional sphere’s radius.

In this study, we will use this fact to perform dimensional reduction of

the eleven-dimensional supergravity to obtain N = 4 gauged supergravity in four

dimensions. However, the compact space is not the full S7 but the truncated

foliation ×S3 × S3. Note that these eleven-dimensional equations of motion,

(2.4.15) to (2.4.17), are needed for the dimensional reduction such that their

substitutions by given reduction ansatze, expressions of the two eleven-dimensional

bosonic fields in terms of the lower dimensional ones, have to yield all equations

of motion in the reduced theory to achieve the consistent dimensional reduction.

2.4.2 N = 4 Gauged Supergravity in Four Dimensions

There are two discovered versions for four-dimensional N = 4 supergravity [39];

the first one is a theory that has a global SO(4) symmetry [40, 41], and another

version with global SU(4) symmetry [42]. SO(4) gauged supergravity is the main

dimensionally reduced theory obtained from the dimensional reduction of the

eleven-dimensional supergravity in this study. Besides, there is a one-way map
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from this standard SO(4) gauged theory to another gauged supergravity, known

as Freedman-Schwarz model [43], in which the four-dimensional supergravity is

gauged by SU(2) × SU(2) subgroup of the global SU(4) symmetry. Therefore,

after introducing the main reduced theory, N = 4 SO(4) gauged supergravity,

this related Freedman-Schwarz N = 4 SU(2)×SU(2) gauged supergravity will be

given together with the one-way map from the main SO(4) gauged theory.

As shown in Table 2.1, N = 4 supergravity contains the following fields in

its CPT invariant field content, i.e.

• 1 spin-2 graviton eaµ,

• 4 Majorana vector-spinor gravitinos, Ψα
µ,

• 6 gauge fields Aαβµ , where the two upper indices are anti-symmetrized,

• 4 Majorana spinor fields λα,

• 2 real scalar fields, A and B, corresponding to the complex scalar field W ≡
−A+ iB [39],

where α, β = 1, 2, 3, 4. For the first kind of this N = 4 theory that is invariant

under a global SO(4) transformation, the local supersymmetry transformations

relating the above bosonic and fermionic fields are given in [40] by

δeaµ =− iε̄αγaΨα
µ,

δΨ̄α
µ = ε̄α

←−
∇µ −

1

4
ε̄βγµγ

νρFαβ
νρ ,

δAαβµ =
i

2
√

2

[
εαβγδ ε̄γγµλ

δ + ε̄αΨβ
µ − ε̄βΨα

µ

]
,

δλ̄α =
i√
2
ε̄α(∂µA+ iγ5∂B)γµ − 1

4
√

2
εαβγδ ε̄βγµνF γδ

µν ,

δA =
1√
2
ε̄αλα,

δB =
i√
2
ε̄αγ5λ

α,

(2.4.21)

where εα are four spacetime dependent majorana spinor in which right covariant

dericatives of their dirac adjoint are given by ε̄α
←−
∇µ = ∂µε̄

α + 1
4
ωµabε̄

αγab and the

field strengths Fαβ
µν are defined by Fαβ

µν ≡ ∂µA
αβ
ν − ∂µAαβν .

To obtain the SO(4) gauged supergravity, the isomorphism SO(4) ∼
SU(2)×SU(2) is used. Thus the six gauge fields in the above N = 4 supergravity

multiplet are divided into the two sets associated with each SU(2) gauge group

defined by

Aiµ = aiαβA
αβ
µ , Ãiµ = biαβA

αβ
µ , (2.4.22)
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where i = 1, 2, 3. Here ai and bi are the six real anti-symmetric 4 × 4 matrices

represented by the Pauli matrices from (A.19) in [43] as

a1 =
1

2

[
0 σ3

−σ3 0

]
, a2 =

1

2

[
−iσ2 0

0 −iσ2

]
, a3 =

1

2

[
0 −σ1

σ1 0

]
,

b1 =
1

2

[
0 1

−1 0

]
, b2 =

1

2

[
−iσ2 0

0 iσ2

]
, b3 =

1

2

[
0 iσ2

iσ2 0

]
. (2.4.23)

These matrices generate the Lie algebra SU(2)× SU(2),

[ai, aj] = εijkak, [bi,bj] = εijkbk, [ai,bj] = 0, (2.4.24)

which are two commuting SU(2) Lie algebras from (A.21). Therefore, the SO(4)

gauged supergravity can be described as a theory that is gauged by two commuting

SU(2) gauge groups. The SU(2) Yang-Mills field strength 2-forms are given by

F i
(2) = dAi(1) +

1

2
gεijkA

j
(1) ∧ A

k
(1),

F̃ i
(2) = dÃi(1) +

1

2
gεijkÃ

j
(1) ∧ Ã

k
(1),

(2.4.25)

where g is a gauge coupling constant. The couplings for the two factors of SU(2)

can be chosen to be equal in this case without losing of generality. The bosonic

Lagrangian density of the four-dimensional N = 4, SO(4) gauged supergravity

can be written in differential form as [23],

LSO(4)
4 = R ∗ 1− 1

2
∗ dφ ∧ dφ− 1

2
X4 ∗ dχ ∧ dχ− V ∗ 1− 1

2
X−2 ∗ F i

(2) ∧ F i
(2)

− 1

2
X̃−2 ∗ F̃ i

(2) ∧ F̃ i
(2) −

1

2
χF i

(2) ∧ F i
(2) +

1

2
χX2X̃−2F̃ i

(2) ∧ F̃ i
(2),

(2.4.26)

where the potential V is given by

V = −2g2(4 +X2 + X̃2), (2.4.27)

and the two scalar fields, called the dilaton φ and the axion χ, are written as

X ≡ e
1
2
φ, X̃ ≡ X−1q where q2 ≡ 1 + χ2X4. (2.4.28)

These two real scalar fields are related to the complex scalar field W defined by

W ≡ −A+ iB or W = eiσ tanh 1
2
λ through the following parametrisation

coshλ = coshφ+
1

2
χ2eφ,

cosσ sinhλ = sinhφ− 1

2
χ2eφ,

sinσ sinhλ = χeφ,

(2.4.29)
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which is a map from a two-dimensional metric ds2
2 = dλ2 + sinh2 λdσ2 to ds2

2 =

dφ2 + e2φdχ2. This SO(4) gauged Lagrangian density is invariant under the

ungauged supersymmetry transformations in (2.4.21) added by some extra terms

for fermionic fields due to gauging process,

δ′Ψ̄α
µ =

i√
2
ε̄αγµ

g

(1− |W |2)1/2
,

δ′λ̄α =
1

2
ε̄α
g(A− iγ5B)

(1− |W |2)1/2
.

(2.4.30)

All equations of motion describing each bosonic field can be directly

obtained from variations of the above bosonic Lagrangian density (2.4.26). Firstly,

the equations of motion for the two scalar fields; the dilaton φ, which is now

described by X, and the axion χ, are

d(X−1 ∗ dX) =− 1

2
X4 ∗ dχ ∧ dχ+ g2(X2 −X−2 + χ2X2)ε(4) +

1

4
X−2 ∗ F i

(2) ∧ F i
(2)

+
1

2
χX̃−4F̃ i

(2) ∧ F̃ i
(2) −

1

4
(1− χ2X4)X2q−4 ∗ F̃ i

(2) ∧ F̃ i
(2),

(2.4.31)

d(X4 ∗ dχ) = 4g2χX2ε(4) +
1

2
(1− χ2X4)X̃−4F̃ i

(2) ∧ F̃ i
(2) −

1

2
F i

(2) ∧ F i
(2)

+ χX6q−4 ∗ F̃ i
(2) ∧ F̃ i

(2),

(2.4.32)

where ε(4) = 1
4!
εµνρσ dx

µ ∧ dxν ∧ dxρ ∧ dxσ is the four-dimensional volume form

defined in (2.1.53). The two Yang-Mills equations, the equations of motion

describing each SU(2) gauge fields, are given by

D(X−2 ∗ F i
(2)) = −dχ ∧ F i

(2), (2.4.33)

D̃(X̃−2 ∗ F̃ i
(2)) = d(χX2X̃−2) ∧ F̃ i

(2), (2.4.34)

where both D and D̃ are the SU(2) gauge covariant exterior derivatives for

each SU(2) gauge fields, expressed in (2.3.28). Moreover, there are two Bianchi

identities automatically followed from the definitions of both SU(2) field strength

in (2.4.25),

DF i
(2) ≡ dF i

(2) + gεijkA
j
(1) ∧ F

k
(2) = 0, (2.4.35)

D̃F̃ i
(2) ≡ dF̃ i

(2) + gεijkÃ
j
(1) ∧ F̃

k
(2) = 0. (2.4.36)

Finally, the last four-dimensional equations of motion are the usual contracted

Einstein’s field equations with the remaining fields being gravitational sources

together with the scalar potential V . These can be written in the following typical
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component form,

Rµν =
1

2
∂µφ ∂νφ+

1

2
X4∂µχ∂νχ+

1

2
gµνV +

1

2
X−2(F i

µρF
iρ
ν −

1

4
gµν(F

i
(2))

2)

+
1

2
X̃−2(F̃ i

µρF̃
iρ
ν −

1

4
gµν(F̃

i
(2))

2)

(2.4.37)

where Rµν is the four-dimensional Ricci tensor and µ, ν = 0, 1, 2, 3 are the four-

dimensional curved spacetime indices. It is easy to see that this gauged theory

admits an AdS vacuum solution through these Einstein’s field equations. By

setting all the six gauge fields and the two scalar fields∗ to be zero such that there

are only the spacetime’s equations of motion,

Rµν = −6gµνg
2, (2.4.38)

which is the Ricci tensor describing vacuum AdS4 spacetime’s curvature.

The Freedman-SchwarzN = 4 SU(2)×SU(2) gauged supergravity contains

the same bosonic fields as the SO(4) gauged theory while its bosonic Lagrangian

density is given in [23] by

LFS4 = R ∗ 1− 1

2
∗ dφ ∧ dφ− 1

2
e2φ ∗ dχ ∧ dχ− VFS ∗ 1

− 1

2
eφ ∗ F i

(2) ∧ F i
(2) −

1

2
e−φ ∗ F̃ i

(2) ∧ F̃ i
(2) −

1

2
χF i

(2) ∧ F i
(2) −

1

2
χF̃ i

(2) ∧ F̃ i
(2).

(2.4.39)

Here the Freedman-Schwarz potential is

VFS = −2(g2 + g̃2)eφ, (2.4.40)

where the two coupling constants g and g̃ are independent and correspond to each

SU(2) gauge group. The two SU(2) field strength 2-forms are defined in the same

way as (2.4.25) but using different coupling constants,

F i
(2) = dAi(1) +

1

2
gεijkA

j
(1) ∧ A

k
(1),

F̃ i
(2) = dÃi(1) +

1

2
g̃εijkÃ

j
(1) ∧ Ã

k
(1).

(2.4.41)

This Freedman-Schwarz Lagrangian density is invariant under the ungauged

supersymmetry transformations of the second version of four-dimensional N = 4

supergravity containing a global SU(4) symmetry given in [43] together with the

following extra terms for fermionic fields,

δ′Ψ̄α
µ =

i

2
√

2
eφ/2ε̄α(g + iγ5g̃)γ5,

δ′λ̄α =
1

2
eφ/2ε̄α(g + iγ5g̃).

(2.4.42)

∗In general vacuum solutions, scalar fields are the critical points of the scalar potential and need not

be zero.
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As mentioned before, there exists a one-way map to this Freedman-Schwarz

supergravity from the standard SO(4) gauged theory [23]. The distinction between

the two equal SU(2) gauge coupling constants in the standard theory can be

obtained by making the fields and coupling constant redefinitions as follow

φ = φ′ + k, χ = χ′e−k,

Ai(1) = A′
i
(1)e

k/2, Ãi(1) = Ã′i(1)e
−k/2,

g′ = g ek/2, g̃′ = g e−k/2,

(2.4.43)

where k is a constant. After that, dropping the primes makes the SO(4) bosonic

Lagrangian density in (2.4.26) unchanged under these redefinitions except for the

definitions of the two SU(2) field strength 2-forms, which are now defined by

(2.4.41), and the potential V that can be written in the following forms

V = −8gg̃ − 2g2X2 − 2g̃2X̃2,

= −8gg̃ − 2(g2 + g̃2) coshλ− 2(g2 − g̃2) cosσ sinhλ,

= − 1

1− |W |2
(g2

+(3− |W |2)− g2
−(1− 3|W |2)− 4g+g−A).

(2.4.44)

In the second line, the two scalar fields are parametrized by (2.4.29), while in the

last line, the potential V is written in terms of the complex scalar field W , and

two coupling constants g± ≡ g ± g̃. Besides, the redefinitions (2.4.43) also turn

the extra terms in the supersymmetric transformations for fermionic fields (2.4.30)

into [23, 39]

δ′Ψ̄α
µ =

i√
2
ε̄αγµ

[g+ + g−(−A+ iγ5B)]

(1− |W |2)1/2
,

δ′λ̄α =
1

2
ε̄α

[g+(A− iγ5B)− g−]

(1− |W |2)1/2
.

(2.4.45)

From this g 6= g̃ SO(4) gauged supergravity, the Freedman-Schwarz model can

be obtained by applying the following redefinitions of the fields and coupling

constants,

χ = χ′ + b, Ãi(1) = bÃ′i(1), g̃ = g̃′b−1, (2.4.46)

where b is also a constant. Then, after taking the limit b→∞ and dropping the

primes, the bosonic Lagrangian density for the Freedman-Schwarz supergravity in

(2.4.39) is finally obtained together with the extra terms in fermionic

supersymmetry transformations (2.4.42), while the ungauged supersymmetry

transformations (2.4.21) map to the transformation rules in [43] appropriately.

In conclusion, the Freedman-Schwarz model can be derived from the SO(4)

gauged supergravity. However, this map is irreversible since there is no analogue

scaling of fields and coupling constants turning the Freedman-Schwarz gauged

theory into the SO(4) gauged supergravity [23]. The scaling (2.4.43) means there
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is no distinction between the situations where the gauge coupling constants g

and g̃ are equal or unequal because they leave the SO(4) gauged Lagrangian

density invariant. Whereas, the loss of this scaling in the Freedman-Schwarz

model indicate that the ratio between these two SU(2) gauge coupling constants

is a genuine parameter of the theory. Afterwards, the redefinitions of these fields

and coupling constants mapping the standard SO(4) gauged supergravity to the

Freedman-Schwarz model will be reconsidered in the investigation of the effects of

this one-way map on the Kaluza-Klein reduction ansatze giving N=4, half-maximal

SO(4) gauged supergravity from eleven-dimensional supergravity in Section 3.1.



CHAPTER III

DIMENSIONAL REDUCTION

The dimensional reduction of eleven-dimensional supergravity giving rise to half-

maximal N = 4 SO(4) gauged theory in four dimensions will be demonstrated

in this chapter. The reduction ansatze for the bosonic eleven-dimensional fields,

i.e. the metric and the 4-form field strength, are first discussed together with

their geometry and symmetry. After that these ansatze will be substituted in all

eleven-dimensional equations of motion in Section 3.2 to verify the consistency at

the level of equations of motion for the dimensional reduction.

3.1 Reduction Ansatze

The consistent reduction ansatz for the eleven-dimensional metric can be deduced

from the maximal Abelian case U(1)4 and the full S7 reduction ansatze in [14]

and [17] respectively, as explicated in Appendix C. This metric ansatz describes

eleven-dimensional spacetime as a product space between four-dimensional

spacetime and a distorted seven-dimensional sphere where its geometry can be

described as a foliation of S3×S3. By the fact that three-dimensional sphere S3 is

a group manifold of Lie group SU(2), parts of the metric ansatz involving S3 can

be obtained from the Scherk-Schwarz reduction [24]. Therefore the whole metric

reduction ansatz is given by

dŝ2
11 = ∆

2
3ds2

4 + 2g−2∆
2
3dξ2 +

1

2
g−2∆

2
3

[ c2

c2X2 + s2

∑
i

(hi)2 +
s2

s2X̃2 + c2

∑
i

(h̃i)2
]
,

(3.1.1)

where

∆ ≡
[
(c2X2 + s2)(s2X̃2 + c2)

] 1
2 ,

c ≡ cos ξ, s ≡ sin ξ,

hi ≡ σi − gAi(1), h̃i ≡ σ̃i − gÃi(1).

(3.1.2)

The six quantities, σi and σ̃i , are left-invariant 1-forms on each S3 [44] satisfying

the Maurer-Cartan algebras:

dσi = −1

2
εijkσj ∧ σk, dσ̃i = −1

2
εijkσ̃j ∧ σ̃k. (3.1.3)

It is more explicit to consider the geometry of eleven-dimensional spacetime in

“unexcited” state where the SU(2) gauge fields, axion, and dilaton vanish such

that

X = X̃ = 1,

∆ = [(c2 + s2)(s2 + c2)]
1
2 = 1,

hi = σi, h̃i = σ̃i.

(3.1.4)

Therefore the metric reduction ansatz (3.1.1) becomes

dŝ2
11 = ds2

4 + 2g−2
[
dξ2 + c2 1

4

∑
i

(σi)
2 + s2 1

4

∑
i

(σ̃i)
2
]
, (3.1.5)
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where 1
4

∑
i(σi)

2 = dΩ2
3 and 1

4

∑
i(σ̃i)

2 = dΩ̃2
3 are the metrics on the two round

unit three-dimensional spheres S3 [38]. The terms in the bracket represent the

metric on the round unit seven-dimensional sphere S7,

dΩ2
7 = dξ2 + c2dΩ2

3 + s2dΩ̃2
3, (3.1.6)

where ξ is called the “latitude” coordinate running between the limits 0 ≤ ξ ≤ π/2,

at which one of the two S3 shrinks to zero radii. In this unexcited state, the metric

ansatz in (3.1.5) clearly describes the compact space as a round S7 with radius√
2/g. However, the existence of other fields distorts the shape of the round S7.

While the consistent reduction ansatz for the metric can be deduced by

using the SU(2) group reduction, the 4-form field strength ansatz are determined

by a trial and error process introducing additional terms from the already known

reduction ansatz in the Abelian case [17] until the dimensional reduction are finally

consistent. The reduction ansatz for the 4-form field strength is given in [23] by

F̂(4) = −g
√

2Uε(4)−
4sc

g
√

2
X−1 ∗dX∧dξ+

√
2sc

g
χX4 ∗dχ∧dξ+ F̂ ′(4) + F̂ ′′(4), (3.1.7)

where

U = (X2c2 + X̃2s2 + 2). (3.1.8)

The primed terms can be described as an exterior derivation of the primed 3-form

potential ansatz, F̂ ′(4) = dÂ′(3), that is purely given in terms of the two S3 of the

form

Â′(3) = fε(3) + f̃ ε̃(3), (3.1.9)

where the two volume forms on each S3 are defined by

ε(3) =
1

3!
εijkh

i ∧ hj ∧ hk,

ε̃(3) =
1

3!
εijkh̃

i ∧ h̃j ∧ h̃k.
(3.1.10)

The two functions, f and f̃ , are given by

f =
1

2
√

2
g−3c4χX2(c2X2 + s2)−1,

f̃ = − 1

2
√

2
g−3s4χX2(s2X̃2 + c2)−1.

(3.1.11)

Hence, the primed 4-form field strength ansatz can be written as

F̂ ′(4) =
∂f

∂χ
dχ ∧ ε(3) +

∂f

∂X
dX ∧ ε(3) +

∂f

∂ξ
dξ ∧ ε(3)

+
∂f̃

∂χ
dχ ∧ ε̃(3) +

∂f̃

∂X
dX ∧ ε̃(3) +

∂f̃

∂ξ
dξ ∧ ε̃(3)

− 1

2
fgεijk h

i ∧ hj ∧ F k
(2) −

1

2
f̃ gεijk h̃

i ∧ h̃j ∧ F̃ k
(2).

(3.1.12)
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The remaining terms contained in F̂ ′′(4) involving to the two SU(2) field strength

2-forms, F i
(2) and F̃ i

(2), are given by

F̂ ′′(4) =
g−2

√
2
scX−2dξ ∧ hi ∧ ∗F i

(2) +
g−2

4
√

2
c2X−2εijkh

i ∧ hj ∧ ∗F k
(2)

− g−2

√
2
scX̃−2dξ ∧ h̃i ∧ ∗F̃ i

(2) +
g−2

4
√

2
s2X̃−2εijkh̃

i ∧ h̃j ∧ ∗F̃ k
(2)

+
g−2

√
2
scχdξ ∧ hi ∧ F i

(2) +
g−2

4
√

2
c2χεijkh

i ∧ hj ∧ F k
(2)

+
g−2

√
2
scχX2X̃−2dξ ∧ h̃i ∧ F̃ i

(2) −
g−2

4
√

2
s2χX2X̃−2εijkh̃

i ∧ h̃j ∧ F̃ k
(2).

(3.1.13)

Note that these reduction ansatze for both eleven-dimensional bosonic fields still

depend on the internal space coordinate ξ through its sinusoidal functions, s and

c. In order to obtain all four-dimensional equations of motions in SO(4) gauged

supergravity, (2.4.31)-(2.4.34) and (2.4.37), every single ξ-dependent term arising

from substitutions of the eleven-dimensional equations of motion, (2.4.15)-(2.4.17),

by these reduction ansatze need to be canceled. Therefore the consistent

dimensional reduction between the two supergravities is achieved.

The reduction ansatze, (3.1.1) and (3.1.7), are invariant under a residual Z2

subgroup of the original global SL(2,R) symmetry of the ungauged four-dimensional

N = 4 supergravity that transforms the various quantities to their primed image

by

X ′ = X̃ ′, χ′X ′2 = −χX2,

A′i(1) = Ãi(1), Ã′i(1) = Ai(1),

c′ = s, s′ = −c,
h′i = h̃i, h̃′i = hi,

ε′(3) = ε̃(3), ε̃′(3) = ε(3).

(3.1.14)

This residual Z2 corresponds to an interchange of the two S3 in the foliation of

S3×S3. In the four-dimensional theory, this associates with an interchange of the

two SU(2) gauge fields.

Moreover, it is of interest to see what happens to the reduction ansatze, if

the fields and coupling constants redefinitions in (2.4.43) and (2.4.46) are taken.

For the metric ansatz, these redefinitions turn the metric (3.1.1) into

dŝ2
11 = (

1

2
bX)

2
3

[
ds2

4 +
2

gg̃
dξ̃2 +

1

2
g−2X−2

∑
i

(hi)2 +
1

2
g̃−2X−2

∑
i

(h̃i)2
]
, (3.1.15)

where the new latitude coordinate is defined by ξ ≡ b−
1
2 ξ̃ + 1

4
π. The reduction
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ansatz for the 4-form field strength (3.1.7) reduces to

F̂(4) =
b√
2gg̃

(
X4 ∗ dχ ∧ dξ̃ − 1

2
g−2dξ̃ ∧ ε(3) −

1

2
g̃−2dξ̃ ∧ ε̃(3)

+
1

2
g−1dξ̃ ∧ F i

(2) ∧ hi +
1

2
g̃−1dξ̃ ∧ F̃ i

(2) ∧ h̃i
) (3.1.16)

through these fields and coupling constants redefinitions. Note that even though b

is sent to infinity, these reduction ansatze are still consistent. In eleven-dimensional

theory, there is a scaling symmetry under

ĝMN → e2kĝMN , ÂMNP → e3kÂMNP , (3.1.17)

where k is a constant, that leave all equations of motion unchanged. Substitutions

of these dimensional reduction ansatze, which contain overall constant factors b
2
3

and b for the metric and the 4-form ansatze respectively, into the eleven-dimensional

equations of motion cancel these factors out from the equations of motion. Therefore,

the factor b is effectively set to be any value under these scaling (3.1.17) and it is

conveniently set to be b = 2 [23].

The reduction ansatze (3.1.15) and (3.1.16) can be interpreted as ansatze

for two-step dimensional reduction obtaining another N = 4 gauged theory in

four dimensions. The first step is the simplest Kaluza-Klein reduction of eleven-

dimensional supergravity on an internal space S1 described by the new latitude

coordinate ξ̃ giving rise to ten-dimensional type IIA supergravity. In this case,

the reduction ansatze for the metric can be written in the same form as (2.2.6),

while the 4-form ansatz for the Kaluza-Klein reduction on S1 is given in [7] by the

following form

dŝ2
11 = e−

1
6
ϕds2

10 + e
4
3
ϕ(dξ̃ +A(1))

2,

F̂(4) = F(4) + F(3) ∧ (dξ̃ +A(1)),
(3.1.18)

where ϕ is a ten-dimensional dilaton scalar field andA(1) is called the Kaluza-Klein

U(1) potential 1-form obtained from a dimensional reduction of the metric S1,

while the lower-dimensional 4-from and 3-form field strengths are defined by F(4) ≡
dA(3) − dA(2) ∧ A(1) and F(3) ≡ dA(2) respectively. Comparing these ansatze with

(3.1.15) and (3.1.16) leads to expressions of all bosonic fields in the type IIA

supergravity in terms of the four-dimensional ones,

ds2
10 = (

2

gg̃
)
1
8

[
e

3
4
φds2

4 + e−
1
4
φ
(
g−2

∑
i

(hi)2 + g̃−2
∑
i

(h̃i)2
) ]
,

F(3) =
1√
2gg̃

[
2e2φ ∗ dχ+ g−2ε(3) + g̃−2ε̃(3) − g−1F i

(2) ∧ hi − g̃−1F̃ i
(2) ∧ h̃i

]
,

ϕ =
1

2
φ− 3

4
log

(
gg̃

2

)
,

F(4) = 0, A(1) = 0.

(3.1.19)
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These expressions can be viewed as the reduction ansatze for the second step

dimensional reduction of the ten-dimensional heterotic supergravities on an S3 ×
S3 internal space giving rise to the Freedman-Schwarz model demonstrated in

[45]. Therefore, the reduction ansatze (3.1.1) and (3.1.7) can also reduce eleven-

dimensional supergravity to another version of four-dimensional gauged

supergravity, the Freedman-Schwarz model, through the two-step dimensional

reduction described above when the field and coupling constant redefinitions in

(2.4.43) and (2.4.46) are taken.

3.2 Dimensional Reduction Procedures

All procedures of examining the consistency at the level of equations of motion

for the dimensional reduction are established in this section through substitutions

of eleven-dimensional equations of motion, (2.4.15)-(2.4.17), by the two reduction

ansatze given in the previous section. If these ansatze lead to the consistent

dimensional reduction of eleven-dimensional supergravity giving rise to the N = 4

SO(4) gauged supergravity in four dimensions, these substitutions have to yield

all four-dimensional equations of motion that are introduced in Section 2.4.2.

Fortunately, there are two equations of motion in the four-dimensional

SO(4) gauged supergravity directly arisen from the definitions of the SU(2)

Yang-Mills field strengths in (2.4.25) without dimensional reduction procedure.

These two equations of motion are the Bianchi identities (2.4.35) and (2.4.36) for

each set of SU(2) Yang-Mills field strengths that can be written in component

forms as

DaF
i
bc +DbF

i
ca +DcF

i
ab = 0,

D̃aF̃
i
bc + D̃bF̃

i
ca + D̃cF̃

i
ab = 0.

(3.2.1)

Here Da and D̃a are the Lorentz SU(2)-gauged covariant derivatives defined by

DaP
i
b1...bp

= ∂aP
i
b1...bp

− ωacb1P
i
c...bp − ...− ωa

c
bpP

i
b1...c

+ gεijkA
j
aP

k
b1...bp

,

D̃aP̃
i
b1...bp

= ∂aP̃
i
b1...bp

− ωacb1P̃
i
c...bp − ...− ωa

c
bpP̃

i
b1...c

+ gεijkÃ
j
aP̃

k
b1...bp

,
(3.2.2)

in which P i
b1...bp

and P̃ i
b1...bp

are components of the two p-forms separately charged

by each SU(2). These Bianchi identities are very helpful for substitutions involving

the equations of motion for the SU(2) field strengths. Note that it is simpler to

deal with flat spacetime so all substitutions of the eleven-dimensional equations

of motion will be more conveniently performed in the Lorentz frame described by

vielbein non-coordinates bases.
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Our dimensional reduction procedures take the first step from the simplest

equation of motion in eleven dimensions, the Bianchi identity (2.4.17),

dF̂(4) = 0.

If the reduction ansatz for the eleven-dimensional anti-symmetric tensor is

constructed on the fundamental 3-form potential Â(3), this equation will obviously

satisfy due to the property of the nilpotent operator in (2.1.43), d2Â(3) = 0.

However, there is no way to express an explicit form of the potential from our

field strength ansatz (3.1.7) [23], so the Bianchi identity is not a true identity.

Substitution of the 4-form reduction ansatz in (3.1.7) in this equation of motion

leads to some of the four-dimensional equations of motion. However, an exterior

derivative of the primed 4-form field strength ansatz vanish due to the property

of the nilpotent operator, dF̂ ′(4) = d2Â′(3) = 0. Thus the remaining terms in an

exterior derivative of the 4-form ansatz (3.1.7) are

dF̂(4) =− d
(
g
√

2Uε(4)

)
− d
( 4sc

g
√

2
X−1 ∗ dX ∧ dξ

)
+ d
(√2sc

g
χX4 ∗ dχ ∧ dξ

)
+ d
(g−2

√
2
scX−2dξ ∧ hi ∧ ∗F i

(2)

)
+ d
( g−2

4
√

2
c2X−2εijkh

i ∧ hj ∧ ∗F k
(2)

)
− d
(g−2

√
2
scX̃−2dξ ∧ h̃i ∧ ∗F̃ i

(2)

)
+ d
( g−2

4
√

2
s2X̃−2εijkh̃

i ∧ h̃j ∧ ∗F̃ k
(2)

)
+ d
(g−2

√
2
scχdξ ∧ hi ∧ F i

(2)

)
+ d
( g−2

4
√

2
c2χεijkh

i ∧ hj ∧ F k
(2)

)
+ d
(g−2

√
2
scχX2X̃−2dξ ∧ h̃i ∧ F̃ i

(2)

)
− d
( g−2

4
√

2
s2χX2X̃−2εijkh̃

i ∧ h̃j ∧ F̃ k
(2)

)
.

(3.2.3)

There are five non-zero components survive from this simplest substitution

corresponding to the following 5-form’s bases i.e.

• (dξ ∧ ε(4)) basis

This basis is obtained from the first line in (3.2.3) and the terms containing

dξ in their bases. The component corresponding to this basis equals to a

particular combination of components of the two equations of motion (3.2.10)

and (3.2.11) for the dilaton and the axion respectively,

�φ−X4χ�χ =X4∂aχ∂aχ+ 2χX4∂aφ∂aχ+ 2g2[X2 −X2 + χ2X2]

− 1

4
X−2F i

abF
iab − 1

8
χεabcdF i

abF
i
cd

+
1

4
X̃−2F̃ i

abF̃
iab − 1

8
χX2X̃−2εabcdF̃ i

abF̃
i
cd.

(3.2.4)
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• (dξ ∧ hi ∧ ea ∧ eb ∧ ef ) and (hi ∧ hj ∧ ea ∧ eb ∧ ef ) bases

These two bases can be obtained from the second and the fourth lines in

(3.2.3). While the first basis is obtained from the two left terms containing

dξ, the second basis is obtained from the right terms. By using the four-

dimensional Bianchi identity of the untilded SU(2) field strength given in

(2.4.35), the two components imply the same equation of motion for the first

SU(2) Yang-Mills field strengths,

DaF
iab = ∂aφF

iab +
1

2
X2εabcd∂aχF

i
cd, (3.2.5)

that is a component form of the first Yang-Mills equation of motion (2.4.33).

• (dξ ∧ h̃i ∧ ea ∧ eb ∧ ef ) and (h̃i ∧ h̃j ∧ ea ∧ eb ∧ ef ) bases

These two bases are parallel to the previous ones and can be obtained from

the third and the fifth lines in (3.2.3). These two components equal to the

component form of the equation of motion for the tilded SU(2) Yang-Mills

field strength F̃ i
(2) in (2.4.34),

D̃aF̃
iab =(χ2X4 − 1)q−2∂aφF̃

iab + 2χX̃−2X2∂aχF̃
iab

− 1

2
εabcdX̃−2

[
2χ∂aφ+ (1− χ2X4)∂aχ

]
F̃ i
cd,

(3.2.6)

when another four-dimensional Bianchi identity is applied.

Therefore, the substitution in this simplest higher-dimensional equation of motion

of the 4-form reduction ansatz implies the two SU(2) Yang-Mills equations and a

particular combination of the equations of motion for the dilaton and the axion

in four-dimensional spacetime.

Then, the next substitution in the equation of motion for the 4-form field

strength (2.4.16) with the 4-form reduction ansatz is considered. As shown in

(2.4.16),

d∗̂F̂(4) = −1

2
F̂(4) ∧ F̂(4),

this equation requires the eleven-dimensional Hodge duality of F̂(4) that turns the

4-form field strength into a 7-form expressed through (3.1.7) by

∗̂F̂(4) =
1

4
g−6s3c3∆−2U dξ ∧ ε(3) ∧ ε̃(3) −

1

4
g−6s4c4∆−2X−1dX ∧ ε(3) ∧ ε̃(3)

+
1

8
g−6s4c4∆−2X4χdχ ∧ ε(3) ∧ ε̃(3) + ∗̂F̂ ′(4) + ∗̂F̂ ′′(4).

(3.2.7)
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The eleven-dimensional Hodge duality of F̂ ′(4) is given by

∗̂F̂ ′(4) =−
√

2g−1s3c−3∆−2Ω3∂f

∂χ
∗ dχ ∧ dξ ∧ ε̃(3)

−
√

2g−1s3c−3∆−2Ω3 ∂f

∂X
∗ dX ∧ dξ ∧ ε̃(3)

+
1√
2
gs3c−3∆−2Ω3∂f

∂ξ
ε(4) ∧ ε̃(3)

+
√

2g−1s−3c3∆−2Ω̃3∂f̃

∂χ
∗ dχ ∧ dξ ∧ ε(3)

+
√

2g−1s−3c3∆−2Ω̃3 ∂f̃

∂X
∗ dX ∧ dξ ∧ ε(3)

− 1√
2
gs−3c3∆−2Ω̃3∂f̃

∂ξ
ε(4) ∧ ε(3)

− 1√
2
fg−2s3c−1ΩΩ̃−1dξ ∧ hi ∧ ∗F i

(2) ∧ ε̃(3)

+
1√
2
f̃ g−2s−1c3Ω−1Ω̃dξ ∧ h̃i ∧ ∗F̃ i

(2) ∧ ε(3),

(3.2.8)

where the two scalar quantities Ω = c2X2s2 and Ω̃ = s2X̃2 + c2 are defined in

(D.2), and the last term ∗̂F̂ ′′(4) is given by

∗̂F̂ ′′(4) =− 1

16
g−5s4c2Ω̃−1X−2εijk F

i
(2) ∧ hj ∧ hk ∧ ε̃(3)

− 1

4
g−5s3cΩΩ̃−1X−2dξ ∧ hi ∧ F i

(2) ∧ ε̃(3)

− 1

16
g−5s2c4Ω−1X̃−2εijk F̃

i
(2) ∧ h̃j ∧ h̃k ∧ ε(3)

+
1

4
g−5sc3Ω−1Ω̃X̃−2dξ ∧ h̃i ∧ F̃ i

(2) ∧ ε(3)

+
1

16
g−5s4c2Ω̃−1χεijk ∗ F i

(2) ∧ hj ∧ hk ∧ ε̃(3)

+
1

4
g−5s3cΩΩ̃−1χdξ ∧ hi ∧ ∗F i

(2) ∧ ε̃(3)

− 1

16
g−5s2c4Ω−1χX2X̃−2εijk ∗ F̃ i

(2) ∧ h̃j ∧ h̃k ∧ ε(3)

+
1

4
g−5sc3Ω−1Ω̃χX2X̃−2dξ ∧ h̃i ∧ ∗F̃ i

(2) ∧ ε(3).

(3.2.9)

We now take an exterior derivative on this 7-form and substitute this into the

left-handed side of the equation of motion for the 4-form field strength in (2.4.16)

together with a wedge product of the two F̂(4) on the right-handed side. This

equation of motion now describes an 8-form in which there are 13 differential bases

in which each component equals to some four-dimensional equations of motions

or zero, as exhibited in the following:
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• (ε(4) ∧ dξ ∧ ε(3)) ↔ the two scalar fields’ equations of motion,

• (ε(4) ∧ dξ ∧ ε̃(3)) ↔ the two scalar fields’ equations of motion,

• (ε(4) ∧ dξ ∧ hi ∧ hj ∧ h̃k) ↔ 0,

• (ε(4) ∧ dξ ∧ hi ∧ h̃j ∧ h̃k) ↔ 0,

• (ε(4) ∧ hi ∧ hj ∧ h̃m ∧ h̃n) ↔ 0,

• (ea ∧ eb ∧ ef ∧ ε(3) ∧ h̃i ∧ h̃j) ↔ the second Yang-Mills equation,

• (ea ∧ eb ∧ ef ∧ hi ∧ hj ∧ ε̃(3)) ↔ the first Yang-Mills equation,

• (ea ∧ eb ∧ ef ∧ dξ ∧ ε(3) ∧ h̃i) ↔ the second Yang-Mills equation,

• (ea ∧ eb ∧ ef ∧ dξ ∧ hi ∧ ε̃(3)) ↔ the first Yang-Mills equation,

• (ea ∧ eb ∧ dξ ∧ ε(3) ∧ h̃i ∧ h̃j) ↔ 0,

• (ea ∧ eb ∧ dξ ∧ hi ∧ hj ∧ ε̃(3)) ↔ 0,

• (ea ∧ eb ∧ ε(3) ∧ ε̃(3)) ↔ 0,

• (ea ∧ dξ ∧ ε(3) ∧ ε̃(3)) ↔ 0.

There are 6 differential bases that give non-zero components equal to some four-

dimensional equations of motion. For the first two 8-form’s bases, their components

contain the component form of the equation of motion for the dilaton,

�φ =X4∂aχ∂aχ− 2g−2(X2 −X−2 + χ2X2)− 1

4
X−2F i

abF
iab

+
1

4
(1− χ2X4)q−4X2F̃ i

abF̃
iab +

1

4
χX̃−4εabcdF̃ i

abF̃
i
cd,

(3.2.10)

together with the component of the axion’s equation of motion,

�χ =− 2∂aφ∂aχ− 4g−2χX−2 − 1

2
χX2q−4F̃ i

abF̃
iab

− 1

8
X−4εabcdF i

abF
i
cd +

1

8
(1− χ2X4)q−4εabcdF̃ i

abF̃
i
cd,

(3.2.11)

in some particular combinations in which the two scalar fields’ equations of motion,

(3.2.10) and (3.2.11) are each multiplied by some different coefficient proportional

to cos2 ξ or sin2 ξ. By using the fact that these coefficients are orthogonal to each

other, the components of the first two 8-form’s bases therefore contain the two

independent scalar fields’ equations of motion.

In addition, the non-zero components of the 8-form’s bases equal to the

component of the SU(2) Yang-Mills equations, (3.2.5) and (3.2.6), in the same

way as the previous substitution. Therefore, the substitution of the reduction

ansatz for F̂(4) (3.1.7) in the eleven-dimensional 4-form’s equation of motion gives
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rise to four-dimensional equations of motion for the dilaton, the axion, and the

SU(2) gauge fields.

Finally, substitution in the eleven-dimensional Einstein’s field equation

given in (2.4.15) is performed,

R̂M̂N̂ =
1

12
(F̂ 2

M̂N̂
− 1

12
η̂M̂N̂ F̂

2
(4)).

Note that this is the most significant equation of motion for our dimensional

reduction in which the reduction ansatze for both bosonic fields are required for

this substitution. In Appendix D, all components of the eleven-dimensional Ricci

tensor will be derived from the reduction ansatz for the metric given in (3.1.1).

The contractions of the 4-form’s components on the right-hand side of the equation

can be obtained from the reduction ansatz for the 4-form field strength. Starting

from all non-zero components of the 4-form field strength that can be read off

from (3.1.7) where the eleven-dimensional flat spacetime indices split to M̂, N̂ =

(a, 0, i, ĩ) where a is a four-dimensional flat spacetime index, 0 is a flat space index

corresponding to the spatial coordinate ξ, i and ĩ are the flat coordinate index on

each S3,

F̂abcd = −
√

2g∆−
4
3 (c2x2 + s2X̃2 + 2)εabcd, (3.2.12)

F̂abc0 = sc∆−
4
3 (χX4∂fχ− ∂fφ)εabc

f , (3.2.13)

F̂aijk = cΩ
1
2 ∆−

4
3

(s2χX2∂aφ

Ω
+X2∂aχ

)
εijk, (3.2.14)

F̂ãij̃k̃ = −s Ω̃−
1
2 ∆−

4
3

[
χX2(2s2X−2 + c2)∂aφ+ (s2 − s2χ2X4 + c2X2)∂aχ

]
εijk,

(3.2.15)

F̂0ijk = −
√

2gsΩ−
1
2 ∆−

4
3χX2(1 + Ω)εijk, (3.2.16)

F̂0̃ij̃k̃ = −
√

2gc Ω̃−
1
2 ∆−

4
3χX2(1 + Ω̃)εijk, (3.2.17)

F̂ab0i =
1√
2
sΩ

1
2 ∆−

4
3

(
χF i

ab +
X−2

2
F i
cdεab

cd
)
, (3.2.18)

F̂ab0̃i =
1√
2
c Ω̃

1
2 ∆−

4
3 X̃−2

(
χX2F̃ i

ab −
1

2
F̃ i
cdεab

cd
)
, (3.2.19)

F̂abij =
1√
2

Ω∆−
4
3 εijk

(χs2

Ω
F k
ab +

X−2

2
F k
cdεab

cd
)
, (3.2.20)

F̂ab̃ij̃ =
1√
2

Ω̃∆−
4
3 εijkX̃

−2
(
− χX2c2

Ω̃
F̃ k
ab +

1

2
F̃ k
cdεab

cd
)
, (3.2.21)
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the contractions of these components in F̂ 2
M̂N̂

= F̂M̂P̂ Q̂R̂F̂
P̂ Q̂R̂

N̂
can be obtained as

follow

F̂ 2
00 = 3!∆−

8
3 s2c2

{
2χX4∂aχ∂aφ− ∂aφ∂aφ− χ2X8∂aχ∂aχ

+ 2g2
[c−2χ2X4

Ω
(1 + 2Ω + Ω2) +

s−2χ2X4

Ω̃
(1 + 2Ω̃ + Ω̃2)

]
+
c−2X−2

4
Ω
[
X̃2F i

abF
iab + χεabcdF i

abF
i
cd

]
+
s−2X̃−4

4
Ω̃
[
(χ2X4 − 1)F̃ i

abF̃
iab + χX2εabcdF̃ i

abF̃
i
cd

]}
, (3.2.22)

F̂ 2
0a = 3!

√
2g∆−

8
3 sc ×{

∂aφ
[1 + Ω̃

Ω̃
χ2X4(2s2X−2 + c2)− s2

Ω
χ2X4(1 + Ω)− (c2x2 + s2X̃2 + 2)

]
+ χX4∂aχ

[
(c2x2 + s2X̃2 + 2)− (1 + Ω) +

(1 + Ω̃)

Ω̃
X−2(Ω− s2χ2X4)

]}
,

(3.2.23)

F̂ 2
0i = 0, F̂ 2

0̃i
= 0, (3.2.24)

F̂ 2
ab = 3! ∆−

8
4

{
s2c2(2χX4∂cχ∂

cφ− ∂cφ∂cφ− χ2X8∂cχ∂
cχ)ηab

− 2g2(Ω + Ω̃ + 1)2ηab

+ s2∂aφ∂bφ
[
c2 + χ2X4(

s2c2

Ω
+

(2s2X−2 + c2)2

Ω̃
)
]

+ ∂aχ∂bχ
[
s2c2χ2X8 + c2X4Ω +

s2

Ω
(Ω− s2χ2X4)2

]
+ (∂aχ∂bφ+ ∂aφ∂bχ)

s2χX2

Ω̃
(Ω− s2χ2X4)(2s2X−2 + c2)

+
1

2

[
c2Ω̃X2X̃−2 + X̃−4(Ω̃2 + c4χ2X4)

]
F̃ i
acF̃

ic
b

+
1

2
(s2ΩX−2X̃2 +X−4Ω2 + s4χ2)F i

acF
ic
b

− ΩX−4

4
(s2 + Ω)F i

cdF
icdηab −

Ω̃X̃−4

4
(c2 + Ω̃)F̃ i

cdF̃
icdηab

+ s2ΩχX−2(F i
adF

i
cfεb

dcf + F i
cfεa

dcfF i
bd)

− c2Ω̃χX2X̃−4(F̃ i
adF̃

i
cfεb

dcf + F̃ i
cfεa

dcf F̃ i
bd)
}
, (3.2.25)

F̂ 2
ai = − 3√

2
cΩ

1
2 ∆−

8
3

{
2s2X−2(1 +

s2χ2x4

Ω
∂bφF

iba) + εa
bcd(s2χ2X4 + Ω)∂bχF

i
cd

}
,

(3.2.26)
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F̂ 2
ãi

=
3√
2
s Ω̃

1
2 ∆−

8
3 X̃−2×{

2c2
[
(1− χ2X4(2s2X−2)

Ω̃
)∂bφ− χX4(1 +

ΩX−2 − s2χ2X2

Ω̃
)∂bχ

]
F̃ ib
a

+ Ωεa
bcd
[
2χ∂bφ+ (1− χ2X4)∂bχ

]
F̃ i
cd

}
, (3.2.27)

F̂ 2
ij = 3!∆−

8
3

{
c2X4δij(

s4χ2

Ω
∂aφ∂

aφ+ Ω∂aχ∂
aχ+ 2s2χ∂aχ∂

aφ)

+ 2g2 s
2χ2X4

Ω
(1 + Ω)2δij

+
1

4
Ω
[
s2(χ2 −X−4)− Ω(

χ2s4

Ω2
−X−4)

]
F i
abF

jab

+
1

4
Ω2δij

[
(
χ2s4

Ω2
− x−4)F k

abF
kab +

χX−2s2

Ω
εabcdF k

abF
k
cd

]}
, (3.2.28)

F̂ 2
ĩj̃

= 3!∆−
8
3

{s2

Ω̃
δij[χ

2X4(2s2x−2 + c2)2∂aφ∂
aφ+ (Ω− s2χ2X4)2∂aχ∂

aχ

+ 2χX2(2s2x−2 + c2)(Ω− s2χ2X4)∂aχ∂
aφ]

+ 2g2 c
2χ2X4

Ω̃
(1 + Ω̃)2δij

+
1

4
Ω̃X̃−4

[
c2(χ2x4 − 1)− Ω̃(

c4χ2X4

Ω̃2
− 1)

]
F̃ i
abF̃

jab

+
1

4
Ω̃2X̃−4δij

[
(
c4χ2x4

Ω̃2
− 1)F̃ k

abF̃
kab − c2χX2

Ω̃
εabcdF̃ k

abF̃
k
cd

]}
, (3.2.29)

F̂ 2
ij̃

=
3

2
sc∆−

5
3F i

abF̃
jab. (3.2.30)

At this point, all off-diagonal-block components of the Einstein’s field equation

can be substituted. By using the fact that all off-diagonal-block components of

the eleven-dimensional Minkowski metric tensor are zeros (D.6),

η̂0a = η̂0i = η̂0̃i = η̂ai = η̂ãi = η̂ij̃ = 0, (3.2.31)

the second term on the right-hand side of the eleven-dimensional Einstein’s field

equation vanishes for off-diagonal-block components. While most of substitutions

with these contractions of the 4-form ansatz together with the Ricci tensor’s

components from (D.9) into off-diagonal-block components of the eleven-

dimensional Einstein’s equations lead to zero, there are two components, i.e.

(a, i) and (a, ĩ), in which their substitutions give rise to the components of the

four-dimensional SU(2) Yang-Mills equations (3.2.5) and (3.2.6) respectively.

In order to obtain the substitutions for the diagonal-block components

of the eleven-dimensional Einstein’s equation, the full contraction of the 4-form

field strength ansatz is needed. Since our calculations are performed in the

eleven-dimensional flat spacetime, the full contraction F̂ 2
(4) can be comfortably
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obtained from above contractions through

F̂ 2
(4) = η̂M̂N̂ F̂ 2

M̂N̂
,

= ηabF̂ 2
ab + F̂ 2

00 + δijF̂ 2
ij + δ ĩj̃F̂ 2

ĩj̃
.

(3.2.32)

Therefore the full contraction of the 4-form field strength components is then given

by

F̂ 2
(4) = 4!∆−

8
3

{
s2∂aφ∂

aφ
[s2c2χ2x4

Ω
+
χ2(2s2 + c2x2)2

Ω̃
− c2

]
+ ∂aχ∂

aχ(Ω− s2χ2X4)
[
c2x4 +

s2

Ω̃
(Ω− s2χ2X4)

]
+ 2s2χX2∂aχ∂

aφ
[
2c2x2 +

1

Ω̃
(Ω− s2χ2X4)(2s2X−2 + c2)

]
− 2g2

[
(Ω + Ω̃ + 1)2 − χ2X4

(s2

Ω
(1 + Ω)2 +

c2

Ω̃
(1 + Ω̃)2

)]
+

1

4

[
s2Ω(χ2 −X−4) + s4χ2 − Ω2X−4

]
F i
abF

iab

+
X̃−4

4

[
c2Ω̃(χ2x4 − 1) + c4χ2x4 − Ω̃2

]
F̃ i
abF̃

iab

+ εabcd
[s2χX−2Ω

2
F i
abF

i
cd −

c2χX2X̃−4Ω̃

2
F̃ i
abF̃

i
cd

]}
.

(3.2.33)

Substitutions of these components in the diagonal-block components of the eleven-

dimensional Einstein’s field equation give some particular combinations of the two

scalar fields’ equations of motion, (3.2.10) and (3.2.11), in the same way as the

previous substitution in the 4-form’s equation of motion. However, the (a, b)

component gives the last four-dimensional equation of motion that never been

obtained from the previous substitutions, the four-dimensional Einstein’s field

equation in (2.4.37) described in flat spacetime indices by

Rab =
1

2
∂aφ ∂bφ+

1

2
X4∂aχ∂bχ+

1

2
ηabV +

1

2
X−2(F i

acF
ic
b −

1

4
ηab(F

i
(2))

2)

+
1

2
X̃−2(F̃ i

acF̃
ic
b −

1

4
ηab(F̃

i
(2))

2).
(3.2.34)

Hence, substitution of the reduction ansatze for the both metric (3.1.1) and 4-form

(3.1.7) in the last eleven-dimensional equations of motion leads to all equations of

motion in the four-dimensional SO(4) gauged supergravity.

In conclusion, substitutions of the reduction ansatze (3.1.1) and (3.1.7)

into the equations of motion of the eleven-dimensional supergravity (2.4.15)-

(2.4.17) yield all four-dimensional equations of motion for N=4, SO(4) gauged

supergravity (2.4.31)-(2.4.37). Consequently, this dimensional reduction is said to

be consistent only at the level of equations of motion. Note that the consistency

at the level of equations of motion for this reduction is satisfactory for studying
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embedding of the four-dimensional solutions in eleven dimensions. Since solutions

must satisfy equations of motion in each theory, solutions of one theory are also the

solutions of the other one through these reduction ansatze. In the next chapter,

some interesting solutions in the lower dimensional SO(4) gauged supergravity

will be examined together with their embedding in eleven dimensions obtained by

substitutions of the four-dimensional solutions into the reduction ansatze.



CHAPTER IV

APPLICATIONS

The most interesting and very useful application of consistent dimensional

reductions that we want to present in this chapter is the embedding of lower

dimensional solutions in higher dimensions. As seen in (3.1.1) and (3.1.7), the

eleven-dimensional bosonic fields are expressed in terms of four-dimensional ones

in the SO(4) gauged supergravity. Embedding is a procedure of lifting lower

dimensional bosonic solutions to the higher dimensional theory through expressions

from dimensional reduction ansatze. Note that things are very simpler and clearer

in eleven dimensions so embedding solutions of the four-dimensional N = 4 SO(4)

gauged supergravity into eleven-dimensional fundamental framework give a very

beneficial way to learn about the four-dimensional solutions.

In this chapter, two static solutions in four-dimensional N = 4 SO(4)

gauged supergravity are established together with their supersymmetries. After

that, the embedding of these solutions will be given. Finally, the way to embed

the maximal N = 8 solutions using the N = 4 consistent reduction ansatze when

all SU(2) Yang-Mills gauge fields vanish will be given.

4.1 The Simplest Static Four-dimensional Solutions

We will begin with the simplest static vacuum solution containing nothing in

four-dimensional spacetime. By setting all matter fields to zero, the four-

dimensional Lagrangian density of the SO(4) gauged supergravity given in (2.4.26)

becomes∗

Lvac
4 =

√
|g| (R + 12α2). (4.1.1)

It can also be checked that setting the gauge fields and scalars to zero satisfies their

field equations. Note that, in this chapter, Lagrangian densities are conveniently

considered in component form since our example solutions are some particular

truncated theories of the SO(4) gauged supergravity in which most of the matter

fields vanish. The only one equation of motion from this Lagrangian density is just

the vacuum Einstein’s field equation containing a negative cosmological constant,

Rµν = −6α2gµν . (4.1.2)

It is well known that the Einstein’s field equation containing a negative

cosmological constant Λ in any D dimensions can be written as

Rµν =
Λ

(D − 2)
gµν , (4.1.3)

where Λ ≡ −(D − 1)(D − 2)/L2 and L is a constant. The solution for metric

describes AdSD spacetime [35, 36] of the form

ds2
AdSD

=
L2

r2
(dr2 + ηµνdx

µdxν). (4.1.4)

∗To avoid confusion between the gauge coupling constant g and the determinant of the metric tensor

g = det gµν , the gauge coupling constant will be denoted by α in this chapter.



62

Here µ, ν = 0, 1, ..., D − 1, x0 = t, and ηµν = diag(−1,+1, ...,+1). It is easily

to see that L2 = 1/2α2 for (4.1.2). Therefore, the vacuum solution for the above

Vacuum Einstein’s field equation (4.1.2) is a four-dimensional metric describing

AdS4 spacetime given by

ds2
AdS4

=
1

2α2r2
(−dt2 + dr2 + dx2 + dy2). (4.1.5)

The second example of this application is a more complicated static solution,

the Einstein-Yang-Mills theory. For the standard SO(4) gauged supergravity in

four dimensions, setting the two scalar fields to zero and Aiµ = Ãiµ turns the

Lagrangian density in (2.4.26) into

LEYM
4 =

√
|g| (R + 12α2 − 1

2
(F i)2). (4.1.6)

where the SU(2) Yang-Mills field strengths are defined by F i
µν = ∂µA

i
ν − ∂νAiµ +

αεijkA
j
µA

k
ν , which is the component of the 2-form (2.3.29), and (F i)2 = F i

µνF
iµν .

Note here that this truncated theory is still consistent after truncating the scalar

fields, unlike the dimensionally reduced theory obtained from the simplest Kaluza-

Klein reduction in Section 2.2 that the vanishing of the dilaton makes the U(1)

field strength equals to zero. This Einstein-Yang-Mills Lagrangian density leads

to the following two equations of motion. The Einstein’s field equation is given

from the variation of (4.1.6) with respect to the inverse metric gµν by

Rµν = −6α2gµν +
(
F i
µρF

iρ
ν −

1

4
gµν(F

i)2
)
, (4.1.7)

that is the Einstein’s field equation containing a negative cosmological constant

together with the energy-momentum tensor of the SU(2) Yang-Mills gauge fields.

For the SU(2) gauge fields, the variation of the Einstein-Yang-Mills Lagrangian

density with respect to these vector fields leads to the component form of the

source-free Yang-Mills equation in (2.4.33),

DµF
iµν = 0, (4.1.8)

where Dµ is the SU(2)-gauged covariant derivative defined in the first equation

of (3.2.2). To obtain the solution that preserve some fraction of supersymmetry,

the four-dimensional metric ansatz is taken to be a product space between two-

dimensional anti-de Sitter spacetime and a two-dimensional hyperbolic space,

AdS2 ×H2, given in [29] by

ds2
AdS2×H2

= e2f(r)(−dt2 + dr2) +
e2h(r)

y2
(dx2 + dy2), (4.1.9)

where r is the radial coordinate of AdS2 and f(r), h(r) are functions that will be

determined later. All non-zero components of the spin connections for this metric
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ansatz can be computed as follow

ωtt̂r̂ = −f ′,

ωxr̂x̂ = ωyr̂ŷ = −eh−f
h′

y
,

ωxx̂ŷ = −1

y
,

(4.1.10)

where the hat-indices refer to flat spacetime indices and the prime denotes

derivatives with respect to the AdS2’s radial coordinate r. From these spin

connection’s components, all components of the Ricci tensor can be computed

through (2.1.85) by

Rtt = f ′′ + 2h′f ′,

Rrr = −f ′′ − 2(h′)2 − 2h′′ + 2h′f ′,

Rxx = Ryy = − 1

y2

[
e2(h−f)(h′′ + 2(h′)2) + 1

]
.

(4.1.11)

The gauge fields’ solution given in [29] in order to preserve supersymmetry for the

Yang-Mills equation (4.1.8) is chosen to be

A3
x =

k

y
, (4.1.12)

where k is a constant. Therefore, the only one non-zero component of the SU(2)

Yang-Mills field strength is

F 3
xy =

k

y2
. (4.1.13)

Here, x and y are the two spatial coordinates describing two-dimensional

hyperbolic space H2. Now, we consider a fixed point solution in which h(r)

becomes constant. Therefore, the remaining non-zero spin connection components

are

ωtt̂r̂ = −f ′ = 1

r
,

ωxx̂ŷ = −1

y
,

(4.1.14)

where the last term in the first line is obtained by taking the AdS2 factor to the

same form in (4.1.4) as e2f(r) ≈ L2/r2. The Ricci tensor’s components in (4.1.11)

reduce to

Rtt = f ′′ =
1

r2
,

Rrr = −f ′′ = − 1

r2
,

Rxx = Ryy = − 1

y2
.

(4.1.15)
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Then substitution of all non-zero components of the Ricci tensor together with the

field strengths’ solution (4.1.13) into the Einstein’s field equations (4.1.7) leads to

the near horizon solution, (4.1.13) and (4.1.9) where the two exponential functions

are given by

e2f(r) =
2

(F 2 + 12α2)r2
,

e2h =
(2k2 + y2)y2

k2 + 6α2y4
,

(4.1.16)

where F 2 = 2α2/y4. Note that the AdS4 and the near horizon AdS2×H2 solutions

are supersymmetric and it is very useful to discuss their supersymmetries.

Many bosonic solutions in which all fermionic fields vanish can be

interpreted as supersymmetric backgrounds whose fluctuation can be treated

quantum mechanically [35]. These supersymmetric background solutions preserve

some supersymmetry such that their variations due to local supersymmetry

transformations vanish when the solution is substituted,

δ(ε) boson = ε̄ fermion = 0, δ(ε) fermion = ε boson = 0. (4.1.17)

Since all fermionic fields are absent in supersymmetric backgrounds, the left-hand

side of the first equation obviously satisfy. The remaining variation is called the

supersymmetry condition giving an explicit form of the independent infinitesimal

supersymmetry spinor ε(x) called the Killing spinor. A supersymmetric solution

is called maximally supersymmetric if and only if the Killing spinor ε(x) can

be expressed for the maximal number of Q supercharges, which are local real

components of the Killing spinor, for example, Q = 4 for the simplest N = 1 in

four dimensions. However, there can be some projections for the Killing spinor

ε(x) given from the supersymmetry condition when evaluated on background

solutions. These projections reduce the maximal Q local real components of

ε(x) to Q0 such that the solution is said to preserve a fraction Q0/Q of the

original supersymmetry. The solution with Q0/Q unbroken supersymmetry is

called a Q0/Q Bogomol’nyi, Prasad and Sommerfield (BPS) solution [46, 47] that

is invariant under a subalgebra of the supersymmetry algebra of the action. Some

interesting examples of BPS solutions include multiple charged and multi-center

black holes and intersecting D-branes.

For our four-dimensional SO(4) gauged supergravity, supersymmetry

conditions can be determined from the ungauged local supersymmetry

transformation in (2.4.21) and the two extra terms in (2.4.30). Afer setting all

fermionic fields and the two scalar fields to zero, the remaining local supersymmetry
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conditions are given by

δλ̄α = − 1

4
√

2
εαβγδ ε̄βγµνF γδ

µν = 0, (4.1.18)

δΨ̄α
µ = ε̄α

←−
D µ −

1

4
ε̄βγµγ

νρFαβ
νρ +

i√
2
αε̄αγµ = 0, (4.1.19)

where the supercovariant derivative is ε̄α
←−
D µ = ∂µε̄

α + 1
4
ωµν̂ρ̂ε̄

αγ ν̂ρ̂ + 2αε̄βAαβµ . The

above Yang-Mills field strength is now gauged under SO(4) gauge group defined

in [39] by

Fαβ
µν = ∇µA

αβ
ν −∇νA

αβ
µ + 8gaiαβεijkA

j
µA

k
ν + 8gbiαβεijkÃ

j
µÃ

k
ν . (4.1.20)

Here ai and bi are the six anti-symmetric 4 × 4 matrices expressed in (2.4.23)

generating SO(4) ∼ SU(2)× SU(2) algebra.

In vacuum AdS4 background, the SU(2) Yang-Mills gauge fields also

vanish such that there is only one supersymmetry condition given from (4.1.19)

by

∂µε̄
α +

1

4
ωµabε̄

αγab +
i√
2
αε̄αγµ = 0, (4.1.21)

or

∂µε
α +

1

4
ωµabε

αγab +
i√
2
αεαγµ = 0. (4.1.22)

By a transformation of the radial coordinates r = 1√
2α

e−
√

2αz, the AdS4 metric

solution (4.1.5) turns into

ds2
4 = e2

√
2αzηµ̃ν̃dx

µ̃dxν̃ + dz2, (4.1.23)

where µ̃, ν̃ = 0, 1, 2 are the indices of the transverse coordinates t, x, and y

respectively while the three-dimensional Minkowski metric is defined by ηµ̃ν̃ =

diag(−1,+1,+1). Thus, the spin connection 1-forms are

ωµ̃z =
√

2αdxµ̃, ωµ̃ν̃ = 0. (4.1.24)

After substituting the above spin connection’s components, the supersymmetry

condition (4.1.22) now splits into radial and transverse components,

∂zε
α +

i√
2
αγzε

α = 0,

∂µ̃ε
α +

α√
2
γµ̃(γz + i)εα = 0.

(4.1.25)

Therefore the Killing spinors solution of these equations is given in [48] by

εα = e(−i/
√

2)αzγz
(

1 +
i√
2
αxµ̃γ ˆ̃µ(1− iγz)

)
εα0 , (4.1.26)

where γ ˆ̃µ are the constant Dirac gamma matrices in three-dimensional spacetime.

Here, εα0 are four independent real constant spinors containing 4 real-
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components for each one. Hence, the N = 4 AdS4 solution is said to be maximally

supersymmetric containing 16 supercharges.

For the AdS2 ×H2 near horizon solution, the only one component of the

SU(2) gauge field solution (4.1.12) can be written in the αβ indices through the

linear combinations in (2.4.22) of the form

A23
x = −A32

x = −k
y
. (4.1.27)

Thus, the Yang-Mills field strength in (4.1.20) can be easily obtained

F 23
xy = F 32

xy = − k

y2
. (4.1.28)

Then, substitution of this Yang-Mills solution in the first supersymmetry condition

(4.1.18) clearly implies ε1 = ε4 = 0. By using the non-zero components of the

spin connections in (4.1.14) together with the above Yang-Mills gauge field and

field strength, the remaining Killing spinors can be obtained from the other

supersymmetry condition (4.1.19) in component forms,

∂tε̄
2 + ε̄2(

1

2r
γ t̂γ r̂ − iα√

2
efγ t̂)− k

2
ef−2hε̄3γ t̂γx̂γ ŷ = 0, (4.1.29)

∂r ε̄
2 +

iα√
2

ef ε̄2γ r̂ +
k

2
ef−2hε̄3γ r̂γx̂γ ŷ = 0, (4.1.30)

∂xε̄
2 + ε̄2(

1

2y
γ ŷγx̂ +

iα√
2

eh

y
γx̂) + ε̄3(

2αk

y
+

k

2yeh
γ ŷ) = 0, (4.1.31)

∂y ε̄
2 +

iα√
2

eh

y
ε̄2γ ŷ − k

2yeh
ε̄3γx̂ = 0. (4.1.32)

Assuming these killing spinors to depend only on the AdS2 radial coordinate as

in [49] by imposing ∂tε
i = ∂xε

i = ∂xε
i = 0 where i = 2, 3, the first two equations

can be solved by

ε̄2(r) =
√
rε̄0, (4.1.33)

where ε0 is a real constant spinor containing 4 real-components. Afterwards, the

relation between this expression and ε̄3 can be found from (4.1.31) and (4.1.32) of

the form

ε̄2 = iε̄3, (4.1.34)

after applying the twisting projection from [49]

ε̄iγx̂γ ŷ = −iε̄i. (4.1.35)

This projection reduces the 4 independent real components of ε0 to 2. Therefore,

the AdS2 ×H2 near horizon solution is said to preserve 1/8 supersymmetry.
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4.2 Embedding Solutions in Eleven-dimensional Spacetime

As declared in the beginning of this chapter, eleven-dimensional solutions can

be obtained from four-dimensional ones by using the reduction ansatze (3.1.1)

and (3.1.7). the embedding of the two simplest solutions in Section 4.1 will be

expressed in this section through appropriate ansatze.

By using the “unexcited” state of the metric ansatz in (3.1.5), the vacuum

AdS4 solution can be embedded in eleven-dimensional spacetime as

dŝ2
11 =

1

2α2r2
(−dt2 + dr2 + dx2 + dy2) +

2

α2

[
dξ2 + c2 1

4

∑
i

(σi)
2 + s2 1

4

∑
i

(σ̃i)
2
]
,

(4.2.1)

which is an eleven-dimensional metric describing spacetime as a AdS4×S7 product

space. Then the embedded solution of the eleven-dimensional 4-form field strength

can be easily obtained from (3.1.7) by

F̂(4) = −3
√

2αε(4), (4.2.2)

which is the well known solution for the 4-form field strength giving rise to the

product spacetime solution AdS4 × S7 in (2.4.18).

For the AdS2×H2 near horizon metric solution (4.1.9), the metric ansatz

(3.1.1) describes eleven-dimensional spacetime as a product space AdS2×H2× S̃7,

dŝ2
11 =

2

(F 2 + 12α2)r2
(−dt2 + dr2) +

e2h

y2
(dx2 + dy2) +

2

α2
dξ2

+
1

2α2

[
c2(σ2

1 + σ2
1 + [σ3 −

k

y
dx]2) + s2(σ̃2

1 + σ̃2
1 + [σ̃3 −

k

y
dx]2)

]
,

(4.2.3)

where e2h is given in (4.1.16) and tilde refers to the squashing of S7 containing two

copies of SU(2) gauge fields pointing in one of the three S3 directions. Moreover,

the eleven-dimensional 4-form field strength can be obtained via (3.1.7) by

F̂(4) =− 3
√

2αε(4) + F̂ ′(4),
√

2α2F̂ ′(4) = s2c2dξ ∧
(
hi ∧ F i

(2) − h̃i ∧ F̃ i
(2)

)
+

+
1

4
εijk

(
c2 hi ∧ hj ∧ ∗F k

(2) + s2 h̃i ∧ h̃j ∧ ∗F̃ k
(2)

)
,

(4.2.4)

where the 1-form gauge fields and the 2-form field strengths are given by

Ai(1) = Ãi(1) =
k

y
dxδi3,

F i
(2) = F̃ i

(2) =
k

y2
dx ∧ dyδi3.

(4.2.5)

The vacuum AdS4 and the AdS2 × H2 near horizon solutions are the

simplest ones demonstrated in this chapter for giving some examples of the
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embedded solutions. Apart from these static solutions, our dimensional reduction

ansatze, (3.1.1) and (3.1.7), can be used to embed more complicated solutions

of the four-dimensional SO(4) gauged supergravity. For example in [50], a time-

dependent solution describing a decaying white hole that settles down to the final

state as a static charged black hole has been embedded in eleven dimensions. The

embedded solution describes decaying, rotating M2-branes, fundamental objects

in eleven-dimensional supergravity.

Furthermore, not only solutions in the N = 4 SO(4) gauged supergravity

but in the absence of gauge fields also N = 8 four-dimensional solutions, such as

dielectric flow and Janus solutions in [51] and [52] respectively, can be embedded in

eleven-dimensional spacetime through approppriately truncated reduction ansatze.

Since the isometry on a three-dimensional sphere S3 is a Lie group SO(4), setting

all SU(2) Yang-Mills gauged fields to zero turns our reduction ansatze into (C.23)

and

F̂(4) = −g
√

2Uε(4) −
4sc

g
√

2
X−1 ∗ dX ∧ dξ +

√
2sc

g
χX4 ∗ dχ ∧ dξ + F̂ ′(4), (4.2.6)

which is the 4-form ansatz in (3.1.7) without F̂ ′′(4) terms. These ansatze containing

only metric and scalar fields have SO(4) × SO(4) symmetry, a subgroup of the

N = 8 gauge group SO(8), as shown in [51].



CHAPTER V

CONCLUSIONS AND DISCUSSIONS

The consistent dimensional reduction giving rise to four-dimensional N = 4 SO(4)

gauged supergravity from the unique supergravity in eleven dimensions has been

achieved through the reduction ansatze, expressions of eleven-dimensional metric

and 4-form field strength in terms of all bosonic fields in four-dimensional N =

4 SO(4) gauged supergravity given in (3.1.1) and (3.1.7) respectively. Apart

from the main dimensional reduction of interest, another related N = 4 gauged

supergravity in four dimensions, the Freedman-Schwarz model, can also be obtained

from these reduction ansatze when the one-way mapping between the two versions

of N = 4 gauged supergravity is applied. However, this alternative dimensional

reduction giving rise to another N = 4 gauged supergravity is not the main interest

in this study because the Freedman-Schwarz model is not directly obtained from a

dimensional reduction of eleven-dimensional supergravity but a particular type of

ten-dimensional one obtained from a Kaluza-Klein reduction of eleven-dimensional

supergravity on S1.

As shown in Section 3.1 and also Appendix D, the metric ansatz (3.1.1)

is conveniently described by symmetry of the SO(4) ∼ SU(2) × SU(2) gauge

group in which each term involving SU(2) is obtained by the Scherk-Schwartz

reduction that is guaranteed to be consistent. Unfortunately, the reduction ansatz

for the eleven-dimensional anti-symmetric tensor is constructed on the 4-form field

strength F̂(4) by a trial and error process adding terms into the Abelian ansatz

in [17] to obtain a consistent reduction without another reason. Moreover, the

explicit form of the fundamental 3-form potential Â(3) is impossible to express

from the 4-form ansatz (3.1.7), so the dimensional reduction is consistent only

at the level of equations of motion where this consistency has been thoroughly

verified in Section 3.2.

Nevertheless, the consistency at the level of the equations of motion of

the dimensional reduction allows us to embed any bosonic solutions of the four-

dimensional N = 4 SO(4) gauged supergravity into a more fundamental theory,

the supergravity in eleven dimensions. Some examples of embedded solutions

have been demonstrated in Chapter 4. Embedding gives a new way to study

four-dimensional solutions in eleven-dimensional theory that has a precise

geometrical interpretation in terms of various M-brane configurations. Therefore,

interesting solutions in four-dimensional N = 4 SO(4) gauged supergravity, such

as in the study of holographic renormalization group (RG) flows and holographic

superconductors, can be embedded in the eleven-dimensional world via our

reduction ansatz in the future.

For further research effort, these reduction ansatze may be further

developed to embed four-dimensional solutions of the N = 4 gauged supergravity

coupled to a number of vector multiplet. As mentioned at the end of Section 4.2,
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our reduction ansatze can be used to embed N = 8 solutions with SO(4)×SO(4)

symmetry into eleven-dimensional spacetime in the absence of gauge fields since

the dimensional reduction ansatze in this case already exhibit a symmetry SO(4)×
SO(4) subgroup of SO(8). It might be possible to construct dimensional reduction

ansatze of the eleven-dimensional theory giving rise to N = 8 SO(4) × SO(4)

gauged supergravity base on these reduction ansatze. In order to enlarge SU(2)

gauge groups on each S3, the standard SO(4) gauged supergravity needs to couple

with some particular vector multiplets for a larger number of gauge fields.

Finally, the complete truncation of the N = 8 gauged supergravity has

been recently given in [19]. Truncating this reduction to the half-maximal theory

coupled to six vector multiplets would be interesting and may give some insights

to the relation between the maximal and half-maximal gauged supergravities in

four dimensions. This will eventually be useful for the studies of the AdS/CFT

holography and string dualities.
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APPENDICES

APPENDIX A INTRODUCTION TO LIE GROUPS

In physics, the concept of Lie groups is significant to express continuous symmetries

in which their generators of an infinitesimal symmetry transformation form a Lie

algebra. Since Lie groups have played many important roles in this study, this

appendix is provided to give some brief introductions to Lie groups including their

identities, representations, and classifications. Furthermore, some examples of Lie

groups involving to this study are discussed in the end of this appendix.

From group theory, group is an abstract mathematical concept defined as

a set G of elements g that satisfy the following properties:

1. Binary operations between any two elements are also elements of G,

gi ⊗ gj ∈ G, ∀gi, gj ∈ G. (A.1)

2. Binary operations of group elements gi, gj, gk ∈ G are associative,

gi ⊗ (gj ⊗ gk) = (gi ⊗ gj)⊗ gk. (A.2)

3. There exists an identity element, e ∈ G such that,

e⊗ gi = gi ⊗ e = gi,∀gi ∈ G. (A.3)

4. For every group elements gi, there exists an inverse g−1
i ∈ G such that,

g−1
i ⊗ gi = gi ⊗ g−1

i = e. (A.4)

When G contains a finite number r of elements, it is called a finite group, and r

is called the order of the group.

Lie group is a continuous group whose elements can be described by a

finite number of parameters, g = g(λ1, ..., λn), where the integer n is called the

dimension of a Lie group G. Since Lie group is continuous, it can be viewed as

a manifold called group manifold on which each point corresponds to a group

element gi. By the closure identity (A.1), binary operations of any gi by gj on

left- or right-hand side provide translations on the group manifold to the new

point gk = gj ⊗ gi or g̃k = gi⊗ gj respectively. Note that, in general, gk and g̃k are

unidentical so there are two types of translations on group manifolds that are the

generally given by non-commuting left- and right-handed transformations. In the

same concept with general relativity, due to the fact that a manifold is locally flat,

any group elements can be considered as expansions around the identity element

e of the infinitesimal forms,

g(λ1, ..., λn) ≈ e− ∂Ag δλA + ..., (A.5)
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where ∂A = ∂/∂λA and A = 1, 2, ..., n. By defining generators TA ≡ ∂Ag and

parameters εA ≡ δλA, group elements g in (A.5) can be written in exponential

forms,

g = e−ε
ATA . (A.6)

These generators TA form basis vectors in the tangent space Te(G) at the identity

element e of the Lie group G and form a Lie algebra Lie(G), a vector space with

a Lie bracket operation [·, ·] : Lie(G)⊗ Lie(G)→ Lie(G), which is

• bilinear,

[αX+βY, Z] = α[X,Z]+β[Y, Z], for α, β ∈ R and X, Y, Z ∈ Lie(G), (A.7)

• antisymmetric,

[X, Y ] = −[Y,X], for X, Y ∈ Lie(G), (A.8)

• and consistent the Jacobi identity,

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, for X, Y, Z ∈ Lie(G). (A.9)

Lie bracket of the two basis vectors gives a linear combination of other generators

with structure constants fAB
C ,

[TA, TB] = fAB
CTC , (A.10)

where this equation is called the Lie algebra. Moreover any finite dimensional Lie

algebra can be represented in terms of matrices through the homomorphic map D

preserving their algebraic structures, i.e.

D([X, Y ]) = [D(X), D(Y )], for any X, Y ∈ Lie(G), (A.11)

such that the Lie algebra (A.10) is the same. There are some important

representations introduced in the following.

1. The trivial or singlet representation mapping all elements to the (1×1) matrix

0,

D(X) = 0, for all X ∈ Lie(G). (A.12)

Therefore this trivial representation is one-dimensional.

2. The fundamental representation is the smallest irreducible finite-dimensional

representation of Lie algebra Lie(G) such that any finite-dimensional

representations of Lie algebras can be constructed from this elementary

representation.
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3. The adjoint representation is another important representation maps the Lie

algebra to the general linear group of the vector space Lie(G),

D : Lie(G)→ GL(Lie(G)), (A.13)

Using (A.10), the adjoint representation is given in terms of its generators as

(dim(Lie(G))× dim(Lie(G))) matrices by

(T adjA )BC = fA
B
C . (A.14)

A Lie group is called Abelian if all the structure constants vanish, such

that all generators commute with each other. For non-Abelian groups, there are

two interesting classes; semi–simple and simple Lie group. A semi-simple Lie

group G0 is a direct product of simple Lie groups Gi that are non-Abelian,

G0 = G1 ×G2 × ...×Gk. (A.15)

The simple Lie groups are completely classified in terms of four infinite series

An, Bn, Cn, and Dn, where n is an integer called rank of Lie groups, and the

exceptional cases G2, F4, E6, E7, and E8, as show in Table A.1.

Cartan Lie group Name Dimensions Rank

An SU(n + 1) Special Unitary (n + 1)2 − 1 n

Bn SO(2n + 1) Odd Special Orthogonal n(2n + 1) n

Cn Sp(2n) Symplectic n(2n + 1) n

Dn SO(2n) Even Special Orthogonal n(2n− 1) n

G2 G2 Exceptional 14 2

F4 F4 Exceptional 52 4

E6 E6 Exceptional 78 6

E7 E7 Exceptional 133 7

E8 E8 Exceptional 248 8

Table A.1: Catan Classification of simple Lie groups.

For example, consider the main Lie group of this study, an SU(2). Starting

from the simple Lie group SU(N), its group elements can be represented as (N ×
N) matrices g satisfy the following two conditions:

1. Special : det g = 1.

By (A.6), det g = eTr(−εATA) = 1, which implies

TA are tracless. (A.16)

2. Unitary : g† = g−1

By (A.6), this condition implies the generators TA to be anti-hermitian matrices,

(TA)† = −TA. (A.17)
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For a three-dimensional Lie group SU(2), the three genereators TA can be

represented by (2× 2) Pauli matrices σA satisfying (A.16) and (A.17) of the form

TA = − i
2
σA, where A = 1, 2, 3. (A.18)

The three Pauli matrices are tracless and hermitian defined by

σ1 =

[
0 1

1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0

0 −1

]
, (A.19)

that satisfy the commutaion relations,

[σA, σB] = 2iεABCσC . (A.20)

These commutation relations of the Pauli matrices turn the Lie algebra in (A.10)

to be

[TA, TB] = εABCTC , (A.21)

called the SU(2) Lie algebra where the structure constants equal to the Levi-Civita

symbols with the three upper and lowwer indices are identical. Substitution of the

generators from (A.18) turns the SU(2)’s group elements to be unitary operators

of the forms

U(~θ) = exp(
i

2
θAσA), (A.22)

where ~θ = θAθ̂A is a parametrized three-dimensional vector described by three

continuous paremeters θA on the basis θ̂A. Since these parameters are continuous,

the group element can be expanded in the form of Tylaor’s series,

U(~θ) = 1 + i(
θ

2
)σAθ̂

A − 1

2
(
θ

2
)2 − i1

6
(
θ

2
)3σAθ̂

A + ..., (A.23)

by using θ̂Aθ̂A = 1, θ =
√
θAθA, and σAσB = iεABCσC + δAB1. This series can be

divided into two series; odd and even orders of θ̂A and σA, then written as

U(~θ) = cos

(
θ

2

)
+ iσAθ̂

A sin

(
θ

2

)
. (A.24)

Due to the imaginary i in the last term, these operators corespond to rotations in

a two-dimensional complex space that leaves the quadratic form,

|z1|2 + |z2|2, (A.25)

invariant. In general, SU(2)’s group elements can be written in the (2×2) unitary

matrices, [
α β

−β∗ α∗

]
, (A.26)

satisfying the special conditions

|α|2 + |β|2 = 1. (A.27)
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Obviously, these conditions are preserved under group transformation,

multiplications by the operators U(~θ).The conditions above indicate that group

elements can be interpreted as points on the surface of a unit three-dimensional

sphere, S3. Therefore, a group manifold of a Lie group SU(2) is an S3,

Another example is the neighbouring SO(3) Lie group. Starting from the

simple Lie groups SO(N) that their elements can be represented as a (N×N) real

orthogonal matrices M satisfying MTM = 1, By (A.6), The SO(N) generators

TA have to be traceless, due to the special condition (A.16), and anti-symmetric

(3× 3) matrices. Thus the SO(3) generators can be written as

(TA)BC = − εABC , (A.28)

where εABC are the three-dimensional totally antisymmetric Levi-Civita symbols,

which are defined as ε123 = 1. These representations of the SO(3) generators

satisfy the same Lie algebra of SU(2) in (A.21), therefore SU(2) and SO(3) are

said to be isomorphic, in the sense that there exists a homomorphic map preserving

Lie algebra between these two Lie group. However, SO(3) group manifold is not

S3, SU(2) group manifold. If the representations in (A.26) substitute in (A.6)

the SO(3) group transformations will be corresponding to rotations by an angle

θ ∈ [−π, π] about some three-dimensional axis θ̂A,

RBC(~θ) = δBC cos(θ) + εBCAθ̂A sin(θ) + θ̂B θ̂C(1− cos(θ)), (A.29)

Hence a group manifold of a SO(3) Lie group is the inside and the surface of a

two-dimensional sphere S2 with radius π,

(ξ1)2 + (ξ2)2 + (ξ3)2 = (
θ

π
)2, (A.30)

where ξi with i = 1, 2, 3 are the three-dimensional coordinates of any SO(3) group

element, with antipodal identification on the surface |θ| = π that means both

θ = π and θ = −π refer to the same group element as seen in (A.29).

Moreover, there is another isomorphism of the Lie groups that will be used

for gauging the N = 4 supergravity in four dimensions. A six-dimensional Lie

group SO(4) is isomorphic to a direct product of two SU(2) Lie groups; SO(4) ∼
SU(2)×SU(2), such that a theory will be gauged by SO(4), if it is gauged under

the two commuting SU(2) Lie groups. In addition, by the isomorphism of SU(2)

and SO(3), it is also SO(4) ∼ SU(2)× SU(2) ∼ SO(3)× SO(3).

All the simple Lie groups, introduced above, are classified as the compact

Lie groups since their group manifolds have finite volumes. Moreover, these Lie

groups can be turned to non-compact Lie groups by replacing the unity matrix in

their defining conditions by the matrix η defined by,

η =

[
−1q 0

0 1p

]
, (A.31)
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where 1m is a (m×m) unity matrix. For example an SO(4) can be turned to be

non-compact SO(3, 1), the Lorentz group, by using the new orthogonal condition

MTηM =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , (A.32)

which is the same Minkovski metric introduced in (2.1.8). Note that the Lie groups

SO(N) and SO(p, q) with p+q = N have different properties. While compact Lie

groups can be represented by finite-dimensional unitary matrices, non-compact

ones can not.
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Appendix B Spinor Representation

Another irreducible representation of the Lorentz group called a spinor

representation is introduced in this appendix to understand spinor quantities

describing fermionic fields in supergravity multiplets and also infinitesimal spinor

parameters in supersymmetry transformations. Starting from a brief introduction

of the non-compact Lorentz group represented by the more familiar vector

representation, then basic concepts about the spinor representation in general

dimension are given. Finally, irreducible spinor representations in both four- and

eleven-dimensional spacetime will be discussed.

As explained in Appendix A, D-dimensional Lorentz group SO(D − 1, 1)

is a non-compact Lie group corresponding to an infinite-volume group manifold.

By introducing the Lorentz generators Mab, which are D ×D matrices, elements

of the Lorentz group can be written in exponential form as

Λ(ω) = exp

(
−1

2
ωabM

ab

)
, (B.1)

where the real parameters ωab and also the Lorentz generators Mab are

anti-symmetric under interchanging of the twoD-dimensional flat spacetime indices

a and b. In vector representation, these group elements can be written in

infinitesimal form by

Λ(ω)cd = δcd −
1

2
ωab(M

ab)cd. (B.2)

Here, any components of the Lorentz generators can be represented by

(Mab)cd = ηbcδad − ηacδbd, (B.3)

where ηab is a D-dimensional inverse Minkowski metric which is defined by ηab ≡
diag(−1, 1, 1, ..., 1, 1). Substitution of the Lie algebra in (A.10) by this vector

representation of the Lorentz generators (B.3) yields the well known Lorentz

algebra,

[Mab,M cd] = ηbcMad + ηadM bc − ηacM bd − ηbdMac. (B.4)

Therefore the infinitesimal form of the group elements in (B.2) is given by

Λ(ω)cd = δcd + ηcaωad. (B.5)

The D-dimensional Minkowski metric ηab transforms in the same way as the

4-diemensional one in (2.1.12). This representation therefore leaves the D-

dimensional spacetime interval ds2 invariant under the Lorentz transformation.

Note that the generators M jk, in which j, k = 1, ..., D − 1, correspond to the

(D-1)-dimensional spatial rotation, an SO(D − 1) subgroup of the Lorentz group

SO(D−1, 1), whereas M0j are called the boost generators. Moreover, other tensor

representations can be constructed from the Lorentz generators in (B.3).
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Spinor representation is another class of irreducible representations of the

Lorentz group SO(D− 1, 1) constructed from the D-dimensional Clifford algebra

defined by

γaγb + γbγa ≡ {γa, γb} = 2ηab1, (B.6)

where γa are the Dirac gamma matrices labeled by a D-dimensional flat spacetime

index. This anti-commutation relations imply that (γ0)2 = −1 and (γj)2 = 1 for

any j = 1, ..., D − 1. Thus the eigenvalues of each gamma matrix are ±i for γ0

and ±1 for γj such that γ0 is anti-hermitian while the rest γj are hermitian,

(γ0)† = −γ0, (γj)† = γj. (B.7)

Note that these Dirac gamma matrices transform under the Lorentz transformation

in the same way as (1, 0) Lorentz tensors demonstrated in (2.1.5). The Lorentz

generators Mab can be represented via these Dirac gamma matrices in the form

Mab =
1

4
[γa, γb], (B.8)

that is called the spinor representation and also satisfying the same Lorentz algebra

in (B.4).

A Dirac spinor Ψ(x) is an elementary field, whose quantization corresponds

to a fermionic particle, represented by a D-dimensional complex column matrix

that transforms under the Lorentz transformation given by the generators in (B.8),

Λ : Ψ→ Ψ′ = exp
(
− 1

8
ωab[γ

a, γb]
)
Ψ. (B.9)

To obtain a Lagrangian density describing the Dirac spinor, its Lorentz invariant

bilinear form is required. However, a multiplication between a Dirac spinor and

its hermitian conjugation is not invariant under the Lorentz transformation,

Λ : Ψ†Ψ→ Ψ′†Ψ′ = Ψ† exp
(1

8
ωab[γ

a†, γb†]
)

exp
(
− 1

8
ωab[γ

a, γb]
)
Ψ,

= Ψ†
[

exp
(
− 1

8
ω0i[γ

0, γi] +
1

8
ωij[γ

i, γj]
)

× exp
(
− 1

8
ω0i[γ

0, γi]− 1

8
ωij[γ

i, γj]
)]

Ψ,

6= Ψ†Ψ,

(B.10)

where the second line is obtained by the hermitian and anti-hermitian properties

of γa from (B.7). Here, the obvious obstacle is the bracketed term that is not

equal to the unity matrix 1 since the two exponential functions do not cancel each

other. To obtain the Lorentz invariant bilinear form, the Dirac adjoint is defined

by

Ψ̄ ≡ Ψ†iγ0. (B.11)

Whereupon using the Clifford algebra (B.6) together with an important property

of the γ0 i.e. [γ0, γi]γ0 = −γ0[γ0, γi] and [γi, γj]γ0 = γ0[γi, γj], a multiplication
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between a Dirac spinor and its Dirac adjoint is now invariant under Lorentz

transformation,

Λ : Ψ̄Ψ→ Ψ̄′Ψ′ = Ψ† exp
(1

8
ωab[γ

a†, γb†]
)
iγ0 exp

(
− 1

8
ωab[γ

a, γb]
)
Ψ,

= Ψ†iγ0
[

exp
(1

8
ω0i[γ

0, γi] +
1

8
ωij[γ

i, γj]
)

× exp
(
− 1

8
ω0i[γ

0, γi]− 1

8
ωij[γ

i, γj]
)]

Ψ,

= Ψ†iγ0Ψ,

= Ψ̄Ψ.

(B.12)

Note that, in particular, Dirac spinor is reducible. Besides, there are two irreducible

spinor representations called Weyl and Majorana spinors satisfying different

projection conditions, some notable similarity transformations for the Dirac gamma

matrices.

The first transformation is simply implied by the definition of Clifford

algebra (B.6) in which γ0 can be used to turn γa into their hermitian conjugations

γa† through the following similarity transformation,

γ0γaγ0 = γa†. (B.13)

In even dimension, the special gamma matrix can be defined as a multiplication

of all gamma matrices,

γ∗ ≡ (−i)D/2−1γ0γ1...γD−1, (B.14)

which satisfies the following properties

γ2
∗ = 1, Tr(γ∗) = 0, {γ∗, γa} = 0, [γ∗,M

ab] = 0. (B.15)

Its eigenvalues are ±1 due to the first property in (B.15). This special gamma

matrix is used to flip the sign of γa by

γ∗γ
aγ∗ = −γa. (B.16)

However, in odd dimensions, γ∗ is not special anymore but behaves as one of the

Dirac gamma matrices satisfying the Clifford algebra (B.6).

The last important similarity transformation is given by

CγaC−1 = −(γa)T, (B.17)

where the matrix C is known as the charge conjugation matrix satisfying to the

following properties

CC† = 1, C = −CT. (B.18)

By using this transformation together with (B.13), the relation between γa and

their complex conjugations can be obtained of the form

(γa)∗ = −(γ0C)γa(γ0C)−1. (B.19)
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These similarity transformations are used to identify the two irreducible spinor

representations:

• Weyl spinors

Since the eigenvalues of γ∗ are±1 and the γ∗ is also traceless, these eigenvalues

can be equally divided by choosing a basis that makes γ∗ diagonal, for example

the γ5 in four-dimensional spacetime expressed in (B.24). Since γ∗ commutes

with the Lorentz generators Mab, this particularly chosen basis describes the

Lorentz generators as block diagonal matrices such that a Dirac spinor Ψ in

even dimensions can be projected on the complex components of the two left-

and right-handed Weyl spinors, ψL and ψR, defined by

ΨL =

[
ψL
0

]
= P+Ψ, ΨR =

[
0

ψR

]
= P−Ψ, where P± ≡

1

2
(1± γ∗).

(B.20)

Therefore an even dimensional Dirac spinor is a reducible representation

comprised by the two complex Weyl spinors, ψL and ψR, which are inequivalent

and can transform to each other through complex conjugation.

• Majorana spinor

By using the similarity transformation relating γa to their complex conjugation

(γa)∗ in (B.19), the complex conjugation of the Lorentz generators is given

by

(γ0C)Mab(γ0C)−1 = −(Mab)∗, (B.21)

which leads to the reality condition of the Dirac spinor,

Ψ∗ = iγ0CΨ. (B.22)

This projection can be used to define the Majorana spinor that is real and

satisfies the condition (γ0C)∗γ0C = 1.

In particular, these two irreducible spinor representations are not equivalent.

While Weyl spinors exist only in even dimensions, Majorana spinor exists if and

only if the condition (γ0C)∗γ0C = 1 is satisfied. Some possible types of irreducible

spinors in D-dimensional flat spacetime together with their real dimensions are

given in Table B.2.

There exist both Weyl and Majorana spinors in which their real dimensions

are 4 in four-dimensional spactime, as shown in Table B.2. To define Weyl

spinors, Dirac matrices can be expressed by (4 × 4) matrices, namely the Weyl

representation, containing the two (2 × 2) matrices; σa = (12×2, σi) and σ̄a =

(−12×2, σi), where σi are the usual Pauli matrices introduced in (A.19), of the

form

γa =

[
0 σa

σ̄a 0

]
. (B.23)
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D spinor’s dimensions (real) Weyl Majorana

2 1 • •
3 2 •
4 4 • •
5 8

6 8 •
7 16

8 16 • •
9 16 •
10 16 • •
11 32 •

Table B.2: Some types of spinor in D-dimensional Minkowkowski spacetime [34, 37].

Thus the special gamma matrix, which is now called γ5, is given by

γ∗ ≡ γ5 = −iγ0γ1γ2γ3 =

[
12×2 0

0 −12×2

]
, (B.24)

such that the Dirac and Weyl spinors can be related to each other as

Ψ =

[
ψα
ψ̄α̇

]
. (B.25)

While ψα is the left-handed Weyl spinor containing an undotted spinor index,

α = 1, 2, the right-handed Weyl spinor is ψ̄α̇ carrying a dotted spinor index

α̇ = 1, 2. Note that these spinor indices are always omitted for convienent.

Besides, a Majorana spinor in four dimensional spacetime can be defined

by setting the charge conjugation matrix to be

C = iγ0, (B.26)

such that the condition (γ0C)∗γ0C = 1 satisfies. The similarity transformation

(B.19) is now given by

(γa)∗ = γa, (B.27)

which indicates that the gamma matrices are explicitly real. This representation

is called the truely real representation in which all real gamma matrices are given

by

γ0 =

[
0 1

−1 0

]
, γ1 =

[
1 0

0 −1

]
,

γ2 =

[
0 σ1

σ1 0

]
, γ3 =

[
0 σ3

σ3 0

]
.

(B.28)

Now, γ0 is anti-symmetric while γi are symmetric corresponding to the hermitian

and anti-hermitian properties of γa from (B.7). Therefore the reality condition
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(B.22) becomes

Ψ∗ = Ψ, (B.29)

that implies Ψ is a real spinor called the Majorana spinor consisting of four real

components,

Ψ =


α

β

γ

δ

 , α, β, γ, δ ∈ R. (B.30)

In eleven dimensions, the real representations can be obtained in the same

way as in four-dimensional spacetime. Starting from setting the charge conjugation

matrix C = iγ0 such that the reality condition in (B.22) takes the same form as

(B.29), Ψ∗ = Ψ. Here, the Majorana spinor Ψ consisting of 32 real components is

the minimal spinor representations in eleven-dimensional spacetime.
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Appendix C Derivation of The Metric Reduction Ansatz

In this appendix, the way to reach the metric reduction ansatz in (3.1.1) is

demonstrated step by step. The first step is the deduction of the two SU(2)

gauge fields in the absence of the axion by the truncation of the previous result in

[14]. Then the axion scalar field will be activated through the truncation of the

full S7 reduction in [17]. Finally, these two steps are combined to obtain the full

metric reduction ansatz in (3.1.1).

From [14], the general Kaluza-Klein reduction ansatz for dimensional

reductions of the D-dimensional metric on a unit odd-dimensional sphere S2k−1

are expressed of the form

dŝ2
D = ∆̃ads2

d + ∆̃−b
k∑
i=1

X−1
i

(
dµ2

i + µ2
i (dφi + Ai(1))

2
)
, (C.1)

where µi are the directions of cosine satisfying the constraint Σk
i=1µ

2
i = 1, φi are the

azimuthal rotation angles, Ai(1) are k commuting U(1) gauge 1-forms. The scalar

quantities Xi satisfy the following constraint ∆̃ = Σk
i=1Xiµ

2
i , and Πk

i=1Xi = 1.

By setting D = 11, d = 4, a = 2/3, b = 1/3, and k = 4 the axion-free

U(1)4 reduction ansatz of the eleven-dimensional metric on a seven-dimensional

sphere S7 with radius
√

2/g is given by

dŝ2
11 = ∆̃

2
3ds2

4 + 2g−2∆̃−
1
3

4∑
i=1

X−1
i

(
dµ2

i + µ2
i (dφi + gAi(1))

2
)
. (C.2)

Here the scalar quantities Xi are parameterised by three dilaton scalar fields,

which are described as a 3-vector ~φ, of the form Xi = exp
(
−1

2
~ai · ~φ

)
where ~ai are

four constant 3-vectors. The truncation to U(1)2 can be obtained by setting two

dilatons to be zero. The Xi’s constraint, X1X2X3X4 = 1, now becomes

a1 + a2 + a3 + a4 = 0. (C.3)

The four scalar constants are set to be a1 = a2 = −1, and a3 = a4 = 1 such that

the scalar quantities Xi are set pairwise equal, X1 = X2 ≡ X and X3 = X4 ≡ 1/X,

where the scalar field X is defined in (2.4.28). Together with setting the four U(1)

gauge 1-forms as A1
(1) = A2

(1) ≡ A(1) and A3
(1) = A4

(1) ≡ Ã(1), the metric ansatz

(C.2) now reduces to

dŝ2
11 = ∆̄

2
3ds2

2 + 2g−2∆̄
2
3dξ2

+
1

2
g−2∆̄−

1
3X−1c2

(
dθ2 + sin2 θdϕ2 + (dψ + cos θdϕ− gA(1))

2
)

+
1

2
g−2∆̄−

1
3Xs2

(
dθ̃2 + sin2 θ̃dϕ̃2 + (dψ̃ + cos θ̃dϕ̃− gÃ(1))

2
)
.

(C.4)
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Here, ∆̄ ≡
[
(c2X2 + s2)(s2X−2 + c2)

] 1
2 where c ≡ cos ξ and s ≡ sin ξ, while the

four directions of cosine are parameterised by

µ1 = c cos
θ

2
, µ2 = c sin

θ

2
, µ3 = s cos

θ̃

2
, µ4 = s sin

θ̃

2
, (C.5)

and the four azimuthal rotation angles φi are given by

φ1 =
1

2
(ψ + ϕ), φ2 =

1

2
(ψ − ϕ), φ3 =

1

2
(ψ̃ + ϕ̃), φ4 =

1

2
(ψ̃ − ϕ̃). (C.6)

If the unexcited state of the spacetime is considered by setting φ = 0 and

A(1) = Ã(1) = 0, the above metric ansatz will be turned into

dŝ2
11 = ds2

4 + 2g−2
{
dξ2 + c2

[dθ2

4
+
dϕ2

4
+
dψ2

4
+

1

2
cos θdψdϕ

]
+ s2

[dθ̃2

4
+
dϕ̃2

4
+
dψ̃2

4
+

1

2
cos θ̃dψ̃dϕ̃

]}
.

(C.7)

Here, the last two terms are the metrics on unit three-dimensional spheres S3, dΩ2
3

and dΩ̃2
3, written in terms of the Euler angles (θ,ϕ,ψ) and (θ̃,ϕ,ψ) respectively [44].

Hence, the unexcited state of the metric ansatz in (3.1.5) is obtained with the two

S3 metrics expressed by the two sets of left-invariant 1-froms, 1
4

∑
i(σi)

2 = dΩ2
3

and 1
4

∑
i(σ̃i)

2 = dΩ̃2
3. Therefore, the axion-free U(1)2 metric ansatz describes

the geometry of eleven-dimensional spacetime as a product space between four-

dimensional spacetime and a foliation of S3 × S3 that contains a U(1) gauge field

in each S3. Furthermore, by using the fact that S3 is a group manifold of SU(2),

the U(1) gauge field in each S3 can be enlarged to SU(2) by turning off the U(1)

gauge fields and replacing all left-invariant 1-froms by the two sets of SU(2)-valued

forms defined in [25, 26] as

hi ≡ σi − gAi(1), h̃i ≡ σ̃i − gÃi(1), (C.8)

where Ai(1) and Ãi(1) are the two sets of the SU(2) Yang-Mills potential 1-forms

with i = 1, 2, 3. This enlargment turns the U(1)2 metric ansatz (C.4) into the

axion-free version of the metric reduction ansatz (3.1.1),

dŝ2
11 = ∆̄

2
3ds2

4 + 2g−2∆̄
2
3dξ2 +

1

2
g−2∆̄

2
3

[ c2

c2X2 + s2

3∑
i=1

(hi)2 +
s2

s2X−2 + c2

3∑
i=1

(h̃i)2
]
.

(C.9)

To obtain the missing axion scalar field, the dimensional reduction on full

seven-dimensional sphere S7 of eleven-dimensional supergravity giving rise to the

maximal N = 8 SO(8) gauged supergravity in [17] is considered. It is shown in

[17] that the internal space S7’s metric reduction ansatz is given in term of the

inverse metric tensor by

∆̂−1(x, y)gmn(x, y) =
1

2
(KmIJKnKL +KnIJKmKL)(uij

IJ + vijIJ)(uijKL + vijKL),

(C.10)
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where

∆̂2(x, y) =
det(gmn(x, y))

det(ḡmn(y))
. (C.11)

Here ḡmn(y) denotes the metric tensor of the undistorted S7 where x and y are

spacetime and internal space coordinates respectively, and m,n = 1, 2, ..., 7 are

internal space indices. Moreover, KmIJ are 28 Killing vectors in this internal

space metric, and the tensors uij
IJ and vijIJ are determined in the definition of

the scalar matrix V and its inverse,

V =

[
uij

IJ vijIJ
vklIJ uklKL

]
, V−1 =

[
uijIJ −vklIJ
−vijKL ukl

KL

]
, (C.12)

where i, j = 1, 2, ..., 8 and I, J = 1, 2, ..., 8.

In the N = 4 SU(2)×SU(2) gauged theory, the full N = 8 SO(8) gauged

one is truncated by splitting the indices i and I into i = (a, ā) and I = (a, ā)

where a = 1, 2, 3, 4 and ā = 5, 6, 7, 8 such that these tensors are given by

uab
cd = 2 cosh

λ

2
δcdab, uāb̄

c̄d̄ = 2 cosh
λ

2
δc̄d̄āb̄, uab̄

cd̄ = 2δcaδ
d̄
b ,

vabcd = sinh
λ

2
eiσεabcd, vāb̄c̄d̄ = sinh

λ

2
e−iσεāb̄c̄d̄,

(C.13)

where the two scalar fields λ and σ are related to the dilation φ and the axion χ

through

coshλ = coshφ+
1

2
χ2eφ,

cosσ sinhλ = sinhφ− 1

2
χ2eφ,

sinσ sinhλ = χeφ.

(C.14)

Substituting these expressions (C.13) into (C.10), the reduction ansatz for the

inverse metric of the internal space in the reduced N = 4 gauged theory are given

by

∆̂−1(x, y)gmn(x, y) =
∑
ij

KmijKnij +
1

2
(X2 − 1)

3∑
α=1

[
(JαabK

mab)2 + (Jαāb̄K
māb̄)2

]
+

1

2
(X̃2 − 1)

3∑
α=1

[
(J̃αabK

mab)2 + (J̃αāb̄K
māb̄)2

]
,

(C.15)

where

J1
12 = J1

34 = J2
13 = −J2

24 = J3
14 = J3

23 = 1,

J1
56 = J1

78 = J2
57 = −J2

68 = J3
58 = J3

67 = 1,

J̃1
12 = −J̃1

34 = J̃2
13 = J̃2

24 = J̃3
14 = −J̃3

23 = 1,

J̃1
56 = −J̃1

78 = J̃2
57 = J̃2

68 = J̃3
58 = −J̃3

67 = 1.

(C.16)
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By using the fact that a sum of the squares of Killing vectors yields the

bi-invariant inverse metric, it is obviously seen that the first summation term

on the right-hand side of (C.15) just equals to ḡmn(y), the inverse metric tensor

of the undistorted S7. The 3 Killing vector combinations Kmα ≡ JαabK
mab and

K̄mα ≡ Jα
āb̄
Kmāb̄ each close on SU(2) and commute with each other such that these

two sets are the left- and right-translation Killing vectors on the first S3. Likewise,

both commuting Killing vector combinations K̃mα ≡ J̃αabK
mab and ˜̄Kmα ≡ J̃α

āb̄
Kmāb̄

are the left- and right-translation Killing vectors on the second S3 since each also

close on SU(2). Moreover, the sum of the squares of each S3 translation Killing

vectors yields the bi-invariant inverse metric gmn3 on each S3. Therefore, (C.15)

becomes

∆̂−1(x, y)gmn(x, y) = ḡmn(y) + (X2 − 1)gmn3 + (X̃2 − 1)g̃mn3 , (C.17)

which expresses the distortion of the round S7 due to the existance of the scalar

fields by the two addition terms on the right hand side together with the scaling

factor ∆̂. However, the bi-invariant inverse metrics on each S3 can be written in

terms of the inverse metrics on the round unit three-dimensional spheres, dΩ2
3 =

g3,ijdx
idxj and dΩ̃2

3 = g3,̃ij̃dx
ĩdxj̃, of the forms gmn3 = gij3 δ

m
i δ

n
j and g̃mn3 = gĩj̃3 δ

m
ĩ
δn
j̃

where the internal space index is splited into m = (ξ, i, ĩ) where i, j = 1, 2, 3 and

also ĩ, j̃ = 1, 2, 3.

In order to find the expression of the metric ansatz for the distorted S7

internal space, all components of the undistorted S7 metric tensor, ḡmn(y), are

needed. From (3.1.5), it is obvious to see that all non-zero components of this

metric tensor are

ḡξξ =1,

ḡij =c2g3,ij,

ḡĩj̃ =s2g3,̃ij̃,

(C.18)

where their inversions are given by

ḡξξ =1,

ḡij =
1

c2
gij3 ,

ḡĩj̃ =
1

s2
gĩj̃3 .

(C.19)

Substituting these inverse metric’s components into (C.17) gives all non-zero

components of the metric tensor for the distorted S7 internal space,

gξξ(x, y) = ∆̂,

gij(x, y) = ∆̂
(c2X2 + s2

c2

)
gij3 ,

gĩj̃(x, y) = ∆̂
(s2X2 + c2

s2

)
gĩj̃3 ,

(C.20)
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that are also easily inverted,

gξξ(x, y) = ∆̂−1,

gij(x, y) = ∆̂−1 c2

c2X2 + s2
g3,ij,

gĩj̃(x, y) = ∆̂−1 s2

s2X2 + c2
g3,̃ij̃.

(C.21)

Thus the metric ansatz for the distorted S7 internal space can be written as

ds2
7 = gmn(x, y)dxmdxn = ∆̂−1

(
dξ2 +

c2

c2X2 + s2
dΩ2

3 +
s2

s2X̃2 + c2
dΩ̃2

i

)
. (C.22)

Replacing the round S7 metric dΩ2
7 in (3.1.5) by this ds2

7 yields the metric reduction

ansatz giving rise to the N = 4 SO(4) gauged theory with vanished gauge fields

of the form

ds2
11 = ∆

2
3ds2

4 + 2g−2∆
2
3

(
dξ2 +

c2

c2X2 + s2

1

4

3∑
i=1

σ2
i +

s2

s2X̃2 + c2

1

4

3∑
i=1

σ̃2
i

)
(C.23)

where ∆ = ∆̂−3/2 [17]. Here the two round S3 metrics are expressed by 1
4

∑
i(σi)

2 =

dΩ2
3 and 1

4

∑
i(σ̃i)

2 = dΩ̃2
3.

Finally, turning all SU(2) gauge fields on via replacing all σi and σ̃i by the

two sets of SU(2)-valued forms defined in (C.8) turns the metric ansatz (C.23)

into the fully decorated metric ansatz in (3.1.1),

dŝ2
11 = ∆

2
3ds2

4 + 2g−2∆
2
3dξ2 +

1

2
g−2∆

2
3

[ c2

c2X2 + s2

∑
i

(hi)2 +
s2

s2X̃2 + c2

∑
i

(h̃i)2
]
.

(C.24)
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Appendix D Derivation of 11D Ricci Tensor

In order to check the consistency of the dimensional reduction, components of

the eleven-dimensional Ricci tensor are needed for the substitution in Einstein’s

field equation in (2.4.15). In this appendix, all non-zero components of the Ricci

tensor are thoroughly calculated from the eleven-dimensional metric ansatz (3.1.1)

through the vielbein formalism demonstrated in Section 2.1.1.

For convenience, all coefficients in the reduction ansatz for the eleven-

dimensional metric will be denoted by

eβ ≡ ∆
1
3 , eγ ≡ (

√
2g)−1c∆

1
3 Ω−

1
2 , eγ̃ ≡ (

√
2g)−1s∆

1
3 Ω̃−

1
2 , (D.1)

where

Ω ≡ c2X2 + s2, Ω̃ ≡ s2X̃2 + c2. (D.2)

Thus, the metric ansatz (3.1.1) becomes

dŝ2
11 = e2βds2

4 + 2g−2e2βdξ2 + e2γ
∑
i

(hi)2 + e2γ̃
∑
i

(h̃i)2,

=
[
e2βgµν + e2γg2AiµA

i
ν + e2γ̃g2ÃiµÃ

i
ν

]
dxµdxν + 2g−2e2βdξ2

− 2e2γgAiµσidx
µ − 2e2γ̃gÃiµσ̃idx

µ + e2γσ2
i + e2γ̃σ̃2

i .

(D.3)

Here, the second line can be obtained by expressing of the four-dimensional metric

as ds2
4 = gµνdx

µdxν , the four-dimensional line element equation in (2.1.29), and

using the definitions of two SU(2)-valued forms in (C.8). Making a comparison

between this form of the metric ansatz in (D.3) and the general eleven-dimensional

line element equation, dŝ2
11 = ĝMNdx

MdxN , in which the eleven-dimensional

spacetime indices are splitted to be M,N = (µ, ξ, i, ĩ) with µ a four-dimensional

spacetime index, ξ a ξ-coordinate index, i and ĩ coordinate indices on each S3,

gives all non vanishing components of the metric tensor,

ĝµν = e2βgµν + e2γg2AiµA
i
ν + e2γ̃g2ÃiµÃ

i
ν ,

ĝξξ = 2g−2e2β,

ĝiµ = −e2γgAiµ, ĝĩµ = −2e2γ̃gÃiµ,

ĝij = e2γδij, ĝĩj̃ = e2γ̃δĩj̃.

(D.4)

By using the relation between metric tensor and the Minkowski metric in the

Lorentz frames defined in (2.1.56),

ĝMN = eM̂M η̂M̂N̂ e
N̂
N , (D.5)

where η̂M̂N̂ is the eleven-dimensional Minkowski metric defined in the same way
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as (2.1.8) and can be written in the block-diagonal form as

η̂M̂N̂ =


ηab 0 0 0

0 1 0 0

0 0 δij 0

0 0 0 δĩj̃

 , (D.6)

the eleven-dimensional non-coordinate orthogonal bases can be obtained∗,

êa = eβea, ê0 =
√

2g−1eβdξ, êi = eγhi, êĩ = eγ̃h̃i, (D.7)

where ea refers to the vielbein 1-form in four-dimensional spacetime. Then,

all non-zero higher-dimensional spin connections can be determined through the

vielbein postulate in (2.1.79) as follow

ω̂ab = ωab + (∂bβea − ∂aβeb) +
g

2
e−2β(e2γF iabhi + e2γ̃F̃ iabh̃i),

ω̂a0 =
g√
2

(β′ea − 2g−2∂aβdξ),

ω̂ai = −e(γ−β)(∂aγhi − g

2
F ia

be
b),

ω̂ãi = −e(γ̃−β)(∂aγ̃h̃i − g

2
F̃ ia
b e

b),

ω̂0i = −gγ′e(γ−β)hi,

ω̂0̃i = −gγ̃′e(γ̃−β)h̃i,

ω̂ij = −1

2
εijk(h

k + 2gAk(1)),

ω̂ĩj̃ = −1

2
εijk(h̃

k + 2gÃk(1)),

(D.8)

where ωab is a four-dimensional spin connection. Here, β′, γ′, and γ̃′ denote their

derivatives with respect to ξ.

Some useful identities of these β, γ, and γ̃ functions are needed for

calculation of the eleven-dimensional Ricci tensor. From (D.1), it is easy to

exhibit the derivatives of each function with respect to the vielbein components

of four-dimensional spacetime and the coordinate ξ in the following forms

∂aβ =
1

6

(c2∂aX
2

Ω
+
s2∂aX̃

2

Ω̃

)
,

∂aγ = ∂aβ −
c2∂aX

2

2Ω
,

∂aγ̃ = ∂aβ −
s2∂aX̃

2

2Ω̃
,

(D.10)

∗This 0 index, which is always used for a timelike coordinate index, now refers to the flat space index

corresponding to the spatial coordinate ξ and all the four-dimensional equations of motion should be independent

of this ξ for consistency of the dimensional reduction.
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β′ =
sc

3

[(1−X2)

Ω
+

(X̃2 − 1)

Ω̃

]
,

γ′ = β′ − sc(1−X2)

Ω
− tan ξ,

γ̃′ = β′ − sc(X̃2 − 1)

Ω̃
− cot ξ.

(D.11)

Two useful identities are obviously obtained from these derivatives,

∂aβ + ∂aγ + ∂aγ̃ = 0, (D.12)

β′ + γ′ + γ̃′ = 2 cot 2ξ. (D.13)

Finally, all components of the eleven-dimensional Ricci tensor can be

computed using (2.1.85),

R̂00 = ∆−
2
3

[
−�β +

1

2
g2(−4β′′ − 3γ′′ − 3γ̃′′ + 3β′γ′ + 3β′γ̃′ − 3γ′2 − 3γ̃′2)

]
,

R̂0a =
3√
2
g∆−

2
3

[
(∂aβ − ∂aγ)γ′ + ∂aβ − ∂aγ̃)γ̃′

]
,

R̂0i = 0, R̂0̃i = 0,

R̂ab = ∆−
2
3

[
Rab − 3(∂aβ∂bβ + ∂aγ∂bγ + ∂aγ̃∂bγ̃)−�βηab

− 1

4
c2Ω−1F i

acF
ic
b −

1

4
s2Ω̃−1F̃ i

acF̃
ic
b −

1

2
g2(β′′ + 6β′ cot 2ξ)ηab

]
,

R̂ai = − 1

2
√

2
c∆−

2
3 Ω−

1
2

[
DbF

ib
a − 2(∂bβ − ∂bγ)F ib

a

]
,

R̂ãi = − 1

2
√

2
s∆−

2
3 Ω̃−

1
2

[
D̃bF̃

ib
a − 2(∂bβ − ∂bγ̃)F̃ ib

a

]
,

R̂ij = ∆−
2
3

[1

2
g2(−γ′′ − 6γ′ cot 2ξ + 2Ωc−2)δij −�γδij +

1

8
c2Ω−1F i

abF
jab
]
,

R̂ĩj̃ = ∆−
2
3

[1

2
g2(−γ̃′′ − 6γ̃′ cot 2ξ + 2Ω̃s−2)δij −�γ̃δij +

1

8
s2Ω̃−1F̃ i

abF̃
jab
]
,

R̂ij̃ =
1

8
sc∆−

5
3F i

abF̃
jab,

(D.9)

where Rab is the Ricci tensor for the four-dimensional spacetime.
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