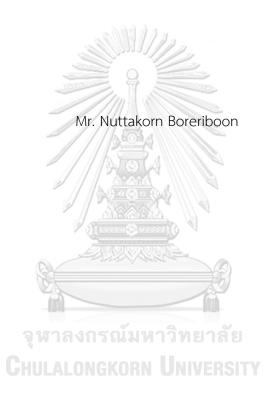
ไฮโดรจิเนชันเชิงเร่งปฏิกิริยาของคาร์บอนไดออกไซด์สำหรับการสังเคราะห์ไฮโดรคาร์บอน


จุหาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเคมีเทคนิค ภาควิชาเคมีเทคนิค คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2560 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

CATALYTIC HYDROGENATION OF CARBON DIOXIDE FOR HYDROCARBON SYNTHESIS

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Program in Chemical Technology Department of Chemical Technology Faculty of Science Chulalongkorn University Academic Year 2017 Copyright of Chulalongkorn University

Thesis Title	CATALYTIC HYDROGENATION OF CARBON DIOXIDE
	FOR HYDROCARBON SYNTHESIS
Ву	
Field of Study	Chemical Technology
Thesis Advisor	Professor Pattarapan Prasassarakich, Ph.D.
Thesis Co-Advisor	Professor Chunshan Song, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

Dean of the Faculty of Science
(Professor Polkit Sangvanich, Ph.D.)
THESIS COMMITTEE
Chairman
(Associate Professor Prasert Reubroycharoen, Ph.D.)
Thesis Advisor
(Professor Pattarapan Prasassarakich, Ph.D.)
Thesis Co-Advisor
(Professor Chunshan Song, Ph.D.)
CHULALONGKORN UNIVERSITY Examiner
(Associate Professor Chawalit Ngamcharussrivichai, Ph.D.)
Examiner
(Associate Professor Napida Hinchiranan, Ph.D.)
(Boonyawan Yoosuk, Ph.D.)

ณัฐกร บริบูรณ์ : ไฮโดรจิเนชันเชิงเร่งปฏิกิริยาของคาร์บอนไดออกไซด์สำหรับการ สังเคราะห์ไฮโดรคาร์บอน (CATALYTIC HYDROGENATION OF CARBON DIOXIDE FOR HYDROCARBON SYNTHESIS) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ศ. ดร.ภัทรพรรณ ประศาสน์ สารกิจ, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ศ. ดร.ชุนชาน ซอง, 145 หน้า.

้ไฮโดรจิเนชันเชิงเร่งปฏิกิริยาสามารถเปลี่ยน CO₂ ให้กลายเป็นเชื้อเพลิงไฮโดรคาร์บอน การ พัฒนา ตัวเร่งปฏิกิริยาสำหรับไฮโดรจิเนชันของ CO2 กำลังได้รับความสนใจเนื่องจากตัวเร่งปฏิกิริยา ้จำเป็นต้องมี ความจำเพาะเจาะจงต่อการผลิตไฮโดรคาร์บอนสายยาว ก่อนการนำไปใช้งานในระดับ อุตสาหกรรมได้ งานวิจัยนี้เป็นการสังเคราะห์ตัวเร่งปฏิกิริยาโลหะเดี่ยวและโลหะคู่ Fe-M (M = Co และ Cu) บนตัวรองรับไทเทเนี และทดสอบสำหรับไฮโดรจิเนชันของ CO₂ 573 เคลวิน และ 1.1 เมกะ พาสคัล เมื่อเปรียบเทียบตัวเร่งปฏิกิริยา โลหะเดี่ยว (Fe, Co และ Cu/TiO₂) มีเพียงตัวเร่งปฏิกิริยา Fe/TiO₂ เท่านั้นที่แสดงการเลือกเกิดไฮโดรคาร์บอนสายยาวได้ ในขณะที่ ตัวเร่งปฏิกิริยา Co/TiO₂ และ Cu/TiO2 แสดงการเลือกเกิดเฉพาะ CH4 และ CO อย่างสูงตามลำดับ การเติม โลหะชนิดที่สอง (Co และ Cu) ในปริมาณเพียงเล็กน้อย (M/M+Fe=0.10 โดยอะตอม) บนตัวเร่งปฏิกิริยา Fe แสดง การส่งเสริมร้อยละเปลี่ยน CO₂ และผลได้ space-time yield ของผลิตภัณฑ์ไฮโดรคาร์บอน จากการ วิเคราะห์ด้วย temperature-programmed desorption (TPD) และ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) แสดงให้เห็นว่าการมีอยู่ของตัวส่งเสริม K ้สามารถลดการดูด ซับของ H₂ อย่างมีนัยสำคัญซึ่งยับยั้งการเกิด CH₄ ในทางตรงกันข้ามการเติม La สามารถส่งเสริมการดูดซับ ชนิดแรงปานกลางของ CO2 สปีชีส์ (ส่วนใหญ่ในรูปของ monodentate carbonate สปีชีส์) ซึ่งนำไปสู่การ เลือกเกิด C5-C7 ที่มากขึ้น การใช้ตัวส่งเสริม La และ K ร่วมกัน สามารถปรับ การปกคลุมของ H และ C บน พื้นผิวของตัวเร่งปฏิกิริยาให้เหมาะสมได้ ซึ่งมีบทบาท สำคัญในการเปลี่ยนการแจกแจงผลิตภัณฑ์จากไฮโดรจิเนชันของ CO₂ ดังนั้นการเติม La และ K ร่วมกันในฐานะตัวส่งเสริมสามารถปรับปรุงแอคทิวิตีและร้อยละการ เลือกเกิดของผลิตภัณฑ์ ไฮโดรคาร์บอนสายยาว ซึ่งบ่งบอกได้ว่าตัวเร่งปฏิกิริยาโลหะคู่ฐานเหล็กที่มีตัวส่งเสริม เหมาะสม สำหรับกระบวนการผลิตไฮโดรคาร์บอนจากไฮโดรจิเนชันของ CO2

ภาควิชา	เคมีเทคนิค	ลายมือชื่อนิสิต
สาขาวิชา	เคมีเทคนิค	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา	2560	ลายมือชื่อ อ.ที่ปรึกษาร่วม

KEYWORDS: CARBON DIOXIDE HYDROGENATION / IRON-BASED CATALYST / BIMETALLIC CATALYST / POTASSIUM PROMOTION / LANTHANUM PROMOTION / HIGHER HYDROCARBONS / ADSORPTION PROPERTIES

> NUTTAKORN BORERIBOON: CATALYTIC HYDROGENATION OF CARBON DIOXIDE FOR HYDROCARBON SYNTHESIS. ADVISOR: PROF. PATTARAPAN PRASASSARAKICH, Ph.D., CO-ADVISOR: PROF. CHUNSHAN SONG, Ph.D., 145 pp.

Catalytic hydrogenation can turn CO₂ into hydrocarbon fuel. The development of the catalysts for CO_2 hydrogenation has become important since the catalysts are critical for selective production of more higher hydrocarbons for practical application. In this work, the titania supported monometallic and bimetallic Fe-M (M = Co and Cu) catalysts were synthesized and tested for CO2 hydrogenation at 573 K and 1.1 MPa. Among the monometallic catalysts (Fe, Co and Cu/TiO₂), only Fe/TiO₂ catalyst exhibited some selectivity to higher hydrocarbons, while Co/TiO₂ and Cu/TiO₂ catalysts were highly selective only to CH₄ and CO, respectively. The addition of a small amount of a second metal M (M= Co, Cu) to Fe at M/(M + Fe) = 0.10 atom atom⁻¹ showed the synergetic promotion on the CO₂ conversion and the space-time yields (STY) of hydrocarbon products. Characterization by temperature-programmed desorption (TPD) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) showed that the presence of K promoter significantly decreased the adsorption of H_2 which suppressed the CH_4 formation. On the other hand, La addition could promote the moderately adsorbed CO₂ species (mainly monodentate carbonate species), which led to the enhanced C_5 - C_7 selectivity. The simultaneous use of La and K promoters can tailor the H and C coverage on the catalyst surface, which plays an important role in altering product distribution in CO₂ hydrogenation. Thus, incorporation of K and La as promoter can further improve the catalyst activity and product selectivity to higher hydrocarbons, indicating that the promoted Fe-based bimetallic catalysts are promising for CO₂ hydrogenation to higher hydrocarbons.

Department:	Chemical Technology	Student's Signature
Field of Study:	Chemical Technology	Advisor's Signature
Academic Year:		Co-Advisor's Signature
Academic real.	2017	

ACKNOWLEDGEMENTS

After an intensive period of four years. It has been a period of intense learning for the author, not only in the scientific research area but also on his personal level. Doing this doctoral dissertation has gained a significant impact on him. The author would like to reflect on the people who have supported and helped him throughout this period.

The author would like to express heartfelt gratitude and sincere appreciation to his advisor, Prof. Dr.Pattarapan Prasassarakich and co-advisor, Prof. Dr.Chunshan Song for the encouraging guidance, supervision, helpful discussion and support throughout this research. The author also would like to acknowledge Assoc. Prof. Dr.Prasert Reubroycharoen, Assoc. Prof. Dr.Chawalit Ngamcharussrivichai, Assoc. Prof. Dr.Napida Hinchiranan and Dr. Boonyawan Yoosuk for serving as the dissertation chairman and members of the thesis committee, respectively.

The author gratefully acknowledges the funding support from the Thailand Research Fund (through the Royal Golden Jubilee Project) and the Pennsylvania State University. Many thanks also go to EMS Energy Institute, Department of Energy and Mineral Engineering, Pennsylvania State University and Department of Chemical Technology, Faculty of Science, Chulalongkorn University for providing research facilities throughout his research work.

เลงกรณมหาวิทยาลัย

The author is deeply grateful to Dr.Xiao Jiang and Wenjia Wang who gave much valuable advice and taught him many important things about the research work. Special thanks are also extended to members of the Clean Fuels and Catalysis Program in the Energy Institute of the Pennsylvania State University and his friends in Department of Chemical Technology for friendship, support and encouragement. We were not only able to support each other by deliberating over our problems and findings but also happily by talking other things than just our research work.

Finally, the author would like to express his sincere gratitude to his family for their love, endless support and encouragement throughout the tenure of his Ph.D. program.

CONTENTS

vii

Page	
THAI ABSTRACTiv	THAI ABSTRA
NGLISH ABSTRACTv	ENGLISH ABS
ACKNOWLEDGEMENTSvi	ACKNOWLED
CONTENTSvii	CONTENTS
IST OF TABLESxi	LIST OF TABL
IST OF FIGURES	LIST OF FIGU
IST OF ABBREVIATIONS	
CHAPTER I	CHAPTER I
NTRODUCTION	INTRODUCTIO
1.1 Motivation	1.1 Motiva
1.2 Challenges for CO ₂ utilization2	1.2 Challer
1.3 Catalytic hydrogenation of CO ₂	1.3 Catalyt
(i) Synthesis of CO <i>via</i> reverse water-gas shift (RWGS) reaction	(i
(ii) CO_2 hydrogenation to dimethyl ether	(i
(iii) CO_2 hydrogenation to formic acid and formates	(i
(iv) CO ₂ hydrogenation to formamides10	(i
(v) CO ₂ hydrogenation to methanol	(י
(vi) CO ₂ hydrogenation to higher alcohols	(י
(vii) CO ₂ hydrogenation to hydrocarbons	(י
1.4 Objectives and scope of dissertation21	1.4 Object
CHAPTER II	CHAPTER II
EXPERIMENTAL AND CHARACTERIZATION	EXPERIMENT

Pa	age
2.1 Materials	23
2.2 Catalyst preparation	.23
2.3 Activity test	.26
2.4 CO ₂ hydrogenation product analysis	. 27
2.5 Catalyst passivation	. 27
2.6 Adsorption/Desorption of N_2	. 28
2.7 X-ray diffraction	. 28
2.8 Temperature-programmed reduction	. 29
2.8.1 Calcined catalyst	. 29
2.8.2 Pre-reduced catalyst	.29
2.9 Temperature-programmed desorption	
2.9.1 CO ₂ -TPD	. 30
2.9.2 H ₂ -TPD	. 31
2.10 In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)	. 31
2.11 Transmission electron microscopy (TEM).	. 32
CHULALONGKORN UNIVERSITY	.34
COMPARATIVE STUDY OF Fe-BASED CATALYSTS FOR CO_2 HYDROGENATION TO	
HIGHER HYDROCARBONS	.34
3.1 Introduction	.34
3.2 Equilibrium conversion of CO ₂ hydrogenation to higher hydrocarbons	. 35
3.3 Support comparison	. 38
3.4 Monometallic catalysts	. 40
3.5 K-promoted monometallic catalysts	. 42

P	age
3.6 Textural properties of monometallic catalysts	. 44
CHAPTER IV	. 45
Fe-BASED BIMETALLIC CATALYSTS SUPPORTED ON TIO ₂ FOR SELECTIVE CO_2	
HYDROGENATION TO HYDROCARBONS	. 45
4.1 Introduction	. 45
4.2 Characterization of TiO ₂ supported Fe-based catalysts	. 46
4.2.1 Physical properties	. 46
4.2.2 X-ray diffraction patterns	. 46
4.3 Reducibility of supported metal oxides	. 50
4.4 CO ₂ hydrogenation over Fe-based bimetallic catalysts	. 52
4.5 CO ₂ hydrogenation over K promoted Fe-based bimetallic catalyst	. 58
4.6 CO ₂ hydrogenation over La promoted Fe-based bimetallic catalyst	. 62
4.7 Liquid hydrocarbon products	. 64
CHAPTER V	. 65
HIGHER HYDROCARBONS SYNTHESIS FROM CO2 HYDROGENATION OVER K- AND La-	
PROMOTED Fe-Cu/TiO ₂ CATALYSTS	. 65
5.1 Introduction	. 65
5.2 CO ₂ hydrogenation over Fe-Cu-K-La/TiO ₂ catalyst	. 66
5.3 Plausible reaction pathways of CO_2 hydrogenation to hydrocarbons	.71
5.4 Physical properties of prepared catalysts	.74
5.5 CO ₂ adsorption property	.76
5.5.1 CO ₂ -TPD profiles	.76
5.5.2 Deconvolution analysis of the CO ₂ -TPD profiles	.77
5.5.3 in situ DRIFTS analysis of reduced catalyst	. 80

	Page
5.6 H_2 adsorption property	
5.7 Surface adsorbed species on the spent catalyst	
5.8 Correlation of adsorption properties with the catalytic property	
5.9 Influence of temperature on the CO_2 hydrogenation	92
CHAPTER VI	94
CONCLUSIONS AND RECOMMENDATIONS	94
6.1 Conclusions	
6.2 Recommendations	96
REFERENCES	98
APPENDICES	116
APPENDIX A	117
APPENDIX B	119
APPENDIX C	120
APPENDIX D	121
APPENDIX E จุฬาลงกรณ์มหาวิทยาลัย	126
APPENDIX F	129
APPENDIX G	130
APPENDIX H	131
VITA	145

LIST OF TABLES

	Page
Table 2.1	Fe, Co, Cu, K and La loadings of Fe-M(X)-K(Y)-La(Z)/TiO ₂ catalysts (M =
	Co and Cu)25
Table 3.1	Activities and selectivities of supported monometallic catalysts for CO_2
	hydrogenation ^a
Table 3.2	Physical properties of TiO ₂ supported monometallic catalysts
Table 4.1	Physical properties and crystalline structure of TiO ₂ supported catalysts48
Table 4.2	Activities and selectivities of TiO ₂ supported Fe-based bimetallic
	catalysts for CO ₂ hydrogenation ^a
Table 5.1	The activity of Fe-Cu(0.1)-K(Y)-La(Z)/TiO ₂ catalyst ^a 69
Table 5.2	Amount of adsorbed CO_2 species over Fe-Cu(0.1)-K(Y)-La(Z)/TiO ₂
	catalysts
Table 5.3	Amount of adsorbed H_2 species over Fe-Cu(0.1)-K(Y)-La(Z)/TiO ₂
	catalysts
Table 5.4	Effect of temperature on CO_2 hydrogenation over Fe-Cu(0.1)-K(0.1)-
	La(0.1)/TiO ₂ catalyst
Table A-1	Condition and temperature program for micro GC analysis117
Table A-2	Condition and temperature program for GC-FID analysis
Table B-1	Condition and temperature program for GC/MS analysis119
Table C-1	Equilibrium CO ₂ conversion at constant molar ratio ($H_2/CO_2 = 3$) and various
	reaction temperatures
Table C-2	Equilibrium CO ₂ conversion at constant molar ratio ($H_2/CO_2 = 3$) and various
	reaction pressures

xii

Table D-1	GC-TCD data of CO_2 hydrogenation over Fe-Cu(0.1)-K(0.1)-La(0.1)
	catalyst122
Table E-1	GC-FID data of CO ₂ hydrogenation over Fe-Cu(0.1)-K(0.1)-La(0.1)
	catalyst127
Table H-1	The experiment data of CO_2 hydrogenation with Fe-Cu-La-K/TiO ₂ catalyst
	for kinetics analysis
Table H-2	The values of kinetic parameters and reactor parameter values used in
	the model
Table H-3	Stream table of CO_2 hydrogenation using 1 PFR simulation by ASPEN
	PLUS 8.6
Table H- 4	Stream table of CO_2 hydrogenation using 2 PFR in series simulation by
	ASPEN PLUS 8.6
Table H-5	$\rm CO_2$ conversion of experimental data, 1 PFR (calculation) and 2 PFR in
	series (calculation) at various GHSV143

CHULALONGKORN UNIVERSITY

LIST OF FIGURES

Monthly CO_2 concentration at Mauna Loa Observatory, Hawaii.
Measurements by the Scripps CO_2 program are supported by the U.S.
Department of Energy (DOE) and by Earth Networks [1]
Plausible products from CO ₂ hydrogenation [13]4
Proposed redox mechanism of RWGS reaction over Cu-based catalyst [39]
Schematic representation of the plausible associative formate mechanism of RWGS reaction over K-Pt/mullite catalyst [41]
Road load test data comparing engine emission using diesel and DME [44]
Mechanisms of CO_2 hydrogenation to formic acid by Ru(II) and Ir(III) aqua complexes under acidic conditions [74]
Hydrogenation of carbon dioxide to formamides [86]
Basic setup of the reaction system with in situ product extraction [86].
CHULALONGKORN UNIVERSITY 12
Reaction pathways for the methanol synthesis from CO $_2$ /H $_2$ over Pd/ β -Ga $_2$ O $_3$ catalyst [13]14
) Proposed mechanism reaction pathway for the methanol formation
over CO_2 hydrogenation with Cu/ZrO_2 catalyst [13]15
l Plausible reaction mechanism of CO_2 hydrogenation to ethanol [13] 15
2 Alcohols formation from alkenes by hydroformylation with CO_2 [13] 16
3 Proposed mechanism of CO ₂ hydrogenation over Fe-K/ γ -Al ₂ O ₃ catalyst [120]

Figure 1.14	Reaction networks examined to identify energetically favorable C_1
	species from CO ₂ hydrogenation on (a) Fe(100) and (b) the Cu–Fe(100)
	surface at 4/9 ML Cu coverage. Activation barriers are given in eV (The
	networks connected with red arrows represent the preferred path for
	CO ₂ conversion to CH*.) [121]
Figure 1.15	Theoretical proportion of C_1 , C_1 - C_7 and C_5 - C_{15} hydrocarbons among all
	hydrocarbons formed by FTS. Calculation according to ASF distribution
	equation (Eq. 1.12)
Figure 2.1	Procedures for preparation of TiO ₂ supported catalyst24
Figure 2.2	Schematic illustration of a fixed-bed reactor system for CO_2
	hydrogenation
Figure 2.3	Schematic illustration of CO ₂ -TPD over Fe-Cu-K-La/TiO ₂ catalyst
Figure 2.4	Schematic illustration of H ₂ -TPD over Fe-Cu-K-La/TiO ₂ catalyst
Figure 3.1	The flow diagram using in Aspen HYSYS 7.1
Figure 3.2	Equilibrium CO_2 conversion for a molar ratio of $H_2/CO = 2:3$ as a
	function of reaction (a) temperature and (b) pressure
Figure 3.3	Catalytic stability of Fe/TiO ₂ at time on stream (TOS). Reaction
Ū	conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) g ⁻¹ h ⁻¹
Figure 3.4	GC-FID chromatograms of gas-phase hydrocarbons from CO_2
	hydrogenation over Fe-K(X)/TiO $_2$ with different K/Fe atomic ratio. (a)
	X=0, (b) X=0.1 and (c) X=0.343
Figure 4.1	XRD patterns of TiO ₂ support (P25, Evonik), TiO ₂ -supported monometallic,
	Fe-Co and Fe-Cu bimetallic catalysts in the 2 $ heta$ ranges (a) between 20 and
	70° and (b) between 60 and 68°, Δ TiO $_2$ (anatase), \Box TiO $_2$ (rutile), $ullet$ $lpha$ -
	$Fe_2O_3 \bullet Co_3O_4$ and $\star CuO$

Figure 4.2	Effect of combining Fe and Co on the H_2 -TPR profiles of the calcined		
	Fe-Co(X)/TiO ₂ catalysts, () calcined catalysts and () pre-		
	reduced catalysts		

- Figure 4.6 STY of CH₄ and C₂-C₇ products, and olefin to paraffin ratio (O/P) of C₂-C₄ products over (a) Fe-Co(0.1)-K(Y)/TiO₂ and (b) Fe-Cu(0.1)-K(Y)/TiO₂ catalysts at various K/Fe atomic ratios. Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) g⁻¹ h⁻¹......61

Figure 5.1	Catalytic stability of (a) Fe-Cu(0.1)/TiO ₂ and (b) Fe-Cu(0.1)-K(0.1)/TiO ₂ at time on stream (TOS). Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) g ⁻¹ h ⁻¹	. 67
Figure 5.2	Effect of K/Fe atomic ratio on STYs of C ₅ -C ₇ , CH ₄ and CO product over Fe-Cu(0.1)-K(Y)/TiO ₂ and Fe-Cu(0.1)-K(Y)-La(0.1)/TiO ₂ catalysts. Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) $g^{-1} h^{-1}$. 70
Figure 5.3	Selectivities to CH_4 , CO and C_{2+} hydrocarbons versus CO_2 conversion over (a) Fe-Cu(0.1)/TiO ₂ and (b) Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO ₂ catalysts. Reaction conditions: 573 K, 1.1 MPa, W/F=0.07-6.25 g h mol ⁻¹	. 72
Figure 5.4	Proposed reaction pathways of CO ₂ hydrogenation to hydrocarbon products.	.73
Figure 5.5	TEM images of calcined (a) Fe/TiO ₂ , (b) Fe-Cu(0.1)/TiO ₂ and (c) Fe-Cu(0.1)-K(0.1)/TiO ₂ catalysts and its corresponding TEM-EDS images (d-f), respectively.	75
Figure 5.6	Effect of K and La promoters on the CO ₂ -TPD profiles of reduced Fe-	
Figure 5.7	Cu(0.1)-K(Y)-La(Z)/TiO ₂ catalysts. Deconvolution of CO ₂ -TPD profiles of the reduced (a) Fe-Cu(0.1)/TiO ₂ , (b) Fe-Cu(0.1)-K(0.1)/TiO ₂ , (c) Fe-Cu(0.1)-La(0.1)/TiO ₂ and (d) Fe-Cu(0.1)- K(0.1)-La(0.1)/TiO ₂ catalyst, (oooo) measured TPD profile, () deconvoluted peaks and () summation of the deconvoluted	76
	peaks (I-IV).	. 78
Figure 5.8	Change in the DRIFT spectra of CO ₂ adsorbed on the (a) TiO_2 support, (b) reduced Fe-Cu(0.1)/TiO ₂ , (c) reduced Fe-Cu(0.1)-K(0.1)/TiO ₂ and (d) Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO ₂ catalysts in the course of an adsorption	
	time of (bottom to top) 3, 10, 20, 60 and 120 min	81

Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts......82

Figure 5.10 Effect of K and La promoters on the total amount of adsorbed CO_2	
and adsorbed H_2 species of reduced Fe-Cu(0.1)-K(Y)-La(Z)/TiO ₂	
catalysts	84
Figure 5.11 DRIFT spectra of the surface adsorbed species on spent Fe-Cu(0.1)-K(Y)-	
$La(Z)/TiO_2$ catalysts after (a) N ₂ purge at 298 K for 1 h and then (b)	
followed by H_2 reduction at 523 K for 2 h.	85
	00
Figure 5.12 TPD signal of des. species over spent Fe-Cu(0.1)-K(Y)-La(Z)/TiO ₂ catalyst	
surfaces	87
Figure 5.13 Effect of amount of desorbed CO_2 species on STY of C_5 - C_7 , CH_4 and CO	
products over Fe-Cu(0.1)-K(Y)-La(Z)/TiO ₂ catalysts. Reaction conditions:	
573 K, 1.1 MPa, GHSV = 3600 mL (STP) g ⁻¹ h ⁻¹	89
Figure 5.14 Effect of amount of weakly desorbed H_2 species on STY of C_5 - C_7 , CH_4	
and CO products over Fe-Cu(0.1)-K(Y)-La(Z)/TiO ₂ catalysts. Reaction	
conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) $g^{-1} h^{-1}$	89
Figure 5.15 Effect of H/C adsorbed species (atomic ratio) on selectivity of CH_4 , C_2 -	
C_4 , C_{5+} and CO products over Fe-Cu(0.1)-K(Y)-La(Z)/TiO ₂ catalysts.	00
Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) $g^{-1} h^{-1}$	90
Figure 5.16 Influence of temperature on (a) CO_2 conv. and product selectivity for	
CO_2 hydrogenation over Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO_2 (experimental)	
and (b) equilibrium CO_2 conversion (calculation)	93
Figure D-1 The calibration curve. (a) Ar, (b) CH_4 and (c) CO_2	24
Figure E-1 ASF plot of the gaseous hydrocarbon products for the Fe-Cu(0.1)-K(0.	.1)-
La(0.1)/TiO ₂ catalysts1	28
Figure F-1 Effect of combining Fe and Cu on the H_2 -TPR profiles of the calcined I	Fe-
Cu(X)/TiO ₂ catalysts1	

Figure G-1	G-1 GC-FID chromatograms of gas-phase hydrocarbons from CO_2 hydrog		
	over Fe-Cu(0.1)-K(X)/TiO ₂ with different K/Fe atomic ratio. (a) X = 0, (b) X	=	
	0.1 and (c) X = 0.31	30	

- Figure H-2
 The comparison of CO₂ conversion rate from experiment data and rate equation (calculation) of CO₂ hydrogenation with Fe-Cu-La-K/TiO₂ catalyst at various GHSV.

 135

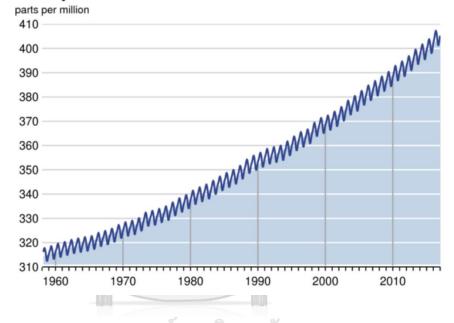
- **Figure H-6** (a) C₂₊ hydrocarbon and (b) CO selectivity of experimental data, 1 PFR (calculation) and 2 PFR in series (calculation) at various GHSV......142

CHULALONGKORN UNIVERSITY

LIST OF ABBREVIATIONS

ASF:Anderson-Schulz-FloryBET:Brunauer-Emmett-Teller	
BET : Brunauer-Emmett-Teller	
BJH : Barrett-Joyner-Halenda	
DME : Dimethyl Ether	
DRIFTS : Diffuse Reflectance Infrared Fourier Tran	sform
Spectroscopy	
EIA : Environmental Impact Assessment	
FTIR : Fourier Transform Infrared Spectroscopy	
FTS : Fischer-Trospch Synthesis	
GHG : Greenhouse Gas	
GHSV : Gas Hourly Space Velocity	
$\Delta G_{298 \text{ K}}$: Gibb Free Energy	
$\Delta H_{298 \text{ K}}$: Heat of Reaction	
MS : Mass Spectrometry	
NIST : National Institute of Standard and Techr	nology
ppm : Parts-Per-Million	
PFR : Plug Flow Reactor	
RWGS : Reverse Water-Gas Shift	
STY : Space-Time Yield	
TOS : Time-On-Stream	
TPD : Temperature-Programmed Desorption	
TPR : Temperature-Programmed Reduction	
WGS : Water-Gas Shift	
XRD : X-Ray Diffraction	

CHAPTER I


INTRODUCTION

1.1 Motivation

The atmospheric CO₂ concentration has been steadily increased from only 310 ppm since 1950 (industrial revolution) and surpassed 400 ppm for the first time in 2013 as shown in Fig. 1.1 [1]. This recent relentless rise in CO₂ indicates a relationship with the burning of carbon-rich fossil fuels such as coal, natural gas and oil, which currently represent 78 % of the world's energy source (EIA, 2017 [2]). There is no doubt that fossil-fuels are still relatively inexpensive energy sources and will continue to play a significant role at least in the next decades [3]. It should be noted that the atmospheric CO₂ has positive roles in the ecological system because it is a carbon source for food and energy production, namely photosynthesis and fossil fuels. However, the increase in carbon dioxide emission is one of the major environmental issues since a direct link between the rise in global temperatures and CO₂ emission level has been reported [4, 5]. The increase of greenhouse-gas (GHG) is mainly due to the rising emissions of CO₂ which represents 80% of the total emission of GHG [6].

Nowadays, scientists and environmental groups are aiming to find methods for reducing CO_2 emission from industrial, transportation and social activities. Many counties have paid much attention to low-carbon economic development; the low-carbon economy is a general term of low-carbon industry, low-carbon technology and low-carbon life [6]. Technological innovations are one of the most feasible ways of reducing the GHG effect. A possible technology to mitigate the CO_2 emissions involves the capturing CO_2 from flue gas and atmospheric air first, followed by the conversion

of CO_2 to synthesize the petrochemicals and petrol fuels. The CO_2 utilization has become more important recently because a major advance in energy-efficient CO_2 conversion could reduce both the dependence on fossil fuel and the greenhouse-gas emissions [7-10]. The hydrogenation using hydrogen produced with renewable energy can turn CO_2 into the oxygenated and hydrocarbon products [11].

Monthly Carbon Dioxide Concentration

Figure 1.1 Monthly CO₂ concentration at Mauna Loa Observatory, Hawaii. Measurements by the Scripps CO₂ program are supported by the U.S. Department of Energy (DOE) and by Earth Networks [1].

1.2 Challenges for CO₂ utilization

CO₂ is not only a GHG but also be an important carbon source for synthesized chemical feedstocks, materials and fuels, which should be a sustainable way in the long term when renewable energy such as solar energy could be used for the chemical processing. Using renewable energy in an endothermic chemical process can reduce

the need for using heat from fossil fuels combustion. It should be noted that the fossil fuel-based electricity generators in the US have an average efficiency of only 35% and the efficiency for automobiles are less than 20% [12]. The issues of major concern for renewable energy are availability, energy density, efficiency and capital cost. Development for improved energy efficiency and switching from fossil fuels toward renewable sources could have a significant impact on CO_2 reduction and utilization [13].

The energy requirements of CO₂ chemical conversion (include source and cost of H_2 and/or other co-reactants) is the primary challenge for CO_2 utilization because CO₂ represents as a low-value product, the energy-consuming conversion is viewed as unfavorable and against the economics. This is principally due to the high stability of CO₂; thus, high energy substance (such as Hydrogen) or electroreductive processes are required to turn CO₂ into other chemical feedstocks [9, 14, 15]. Not only the energetic issues but the costs of CO₂ capture, separation, purification and transportation to user site also be the challenges and the barriers for CO_2 utilization and conversion. Hydrogen is a high energy reagent that can be used for CO₂ transformation. The plausible products of CO₂ hydrogenation are shown in Fig. 1.2. The products from CO₂ hydrogenation such as dimethyl ether (DME), methanol and hydrocarbons are excellent for fuels and also good for transportation and storage [13]. Moreover, alcohols and formic acid are raw materials for many chemical industries. It should be noted that hydrogen sources for CO₂ hydrogenation could be produced using renewable energy including water splitting by using electrolysis (by solar, wind, nuclear or other renewable sources), photocatalytic, photoelectrochemical, or enzymatic biological processes [16, 17].

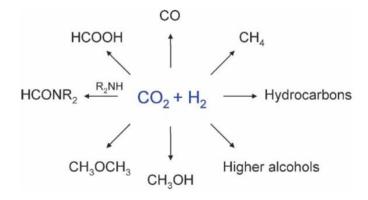


Figure 1.2 Plausible products from CO₂ hydrogenation [13].

1.3 Catalytic hydrogenation of CO₂

 CO_2 hydrogenation has been more intensively explored due to fundamental of catalysis, surface science, nanoscience and environmental science. Both homogeneous and heterogeneous catalysts have been used to catalyze the hydrogenation of CO_2 [18-20]. Homogeneous catalysts show acceptable activity and selectivity however the separation and recovery are complicated. On the other hand, using heterogeneous catalysts have advantages in stability, handling, separation, recovery and reactor design, which prefers for commercial and large-scale production [9, 14, 19, 21-23]. The understanding of catalysts for CO_2 hydrogenation is still being explored with an emphasis on practical aspects.

(i) Synthesis of CO via reverse water-gas shift (RWGS) reaction

Many researchers proposed that the reverse water-gas shift reaction (RWGS) is a key reaction of catalytic CO_2 hydrogenation [11, 24-26]. The RWGS reaction is a mildly endothermic and reversible reaction as shown in Eq. (1.1).

$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$
; $\Delta H_{298 \text{ K}} = 41.2 \text{ kJ/mol}$
; $\Delta G_{298 \text{ K}} = 28.6 \text{ kJ/mol}$

Catalysts that active in the water gas shift (WGS) reaction are also used in the RWGS reaction [27]. Copper-based catalysts are the most favorable for catalytic RWGS process [22, 28-30]. RWGS reaction is an endothermic thus high temperature would enhance the CO formation. However, the Cu-based catalyst has poor thermal stability and using high temperature would cause the sintering of copper nanoparticles unless modified by adding a thermal stabilizer. The addition of a small amount of iron can improve the catalytic activity and stability of Cu/SiO₂ catalyst at high temperature [31, 32]. Moreover, using potassium (K) as a promoter on copper-based catalysts can give better catalytic activity. Potassium could create new active sites located at the interface between K and Cu increasing the formate (HCOO) species formation. The primary role of K_2O is to provide active sites for formate decomposition and CO₂ adsorption [33]. Cerium-based catalysts are also showed excellent catalytic performance in term of activity and selectivity for the RWGS reaction [34-36]. However, deactivation of ceria-supported catalysts is a crucial issue due to the carbon deposition on the ceria [37].

The equilibrium of RWGS reaction can be driven to the right side by (i) increasing the CO₂ concentration or H₂ concentration and (ii) removing water vapor from the reactor (using membrane permeoselective to water). The reaction mechanism of RWGS is still debated. Two main mechanisms have been proposed [22, 38]; (i) The "redox" mechanism, CO₂ is first dissociatively adsorbed on reduced metal sites (in this case is Cu⁰) and releases CO. Then the oxidized metal sites

(Cu₂O) are reduced with H_2 back to reduced metal sites releasing water as shown in Fig. 1.3 [39, 40]. (ii) The associative "formate" mechanism, CO could be formed from the decomposition of an intermediate formate species from hydrogen associated with CO₂ as proposed in Fig. 1.4 [33, 41-43].

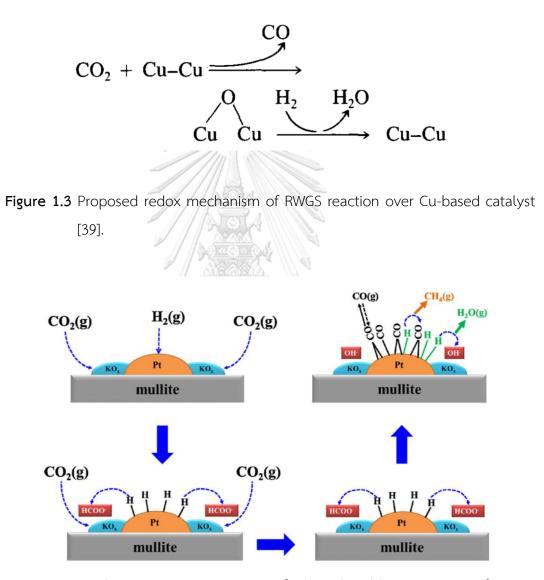


Figure 1.4 Schematic representation of the plausible associative formate mechanism of RWGS reaction over K-Pt/mullite catalyst [41].

(ii) CO₂ hydrogenation to dimethyl ether

Dimethyl ether (DME) is a viable alternative fuel to diesel oil due to its better combustion performance including high cetane number, low emissions (e.g., NO_x, hydrocarbons and CO), and does not produce soot [44-46]. Figure 1.5 shows road load test data comparing engine emissions using diesel and DME [44]. DME is also considered to be used in DME-fired turbines to generate electricity. In 2010, 50% of the potential demand for DME in Asia is to be used for electricity [47]. General Electric has evaluated the power generation *via* DME-fired turbines. For a 700 MW combined cycle power plant, using DME produced a lower amount of NO_x and CO than using natural gas and liquid naphtha [48, 49]. Moreover, DME can be reformed to hydrogen-rich gas at low temperatures, which can be used as fuel-cell feeds [50-52].

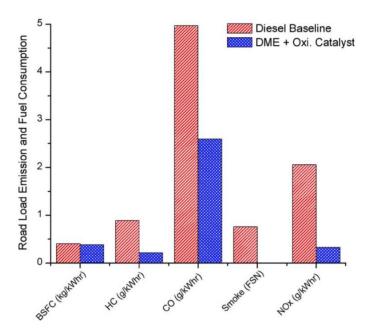


Figure 1.5 Road load test data comparing engine emission using diesel and DME [44].

The direct CO_2 hydrogenation to DME is an exothermic reversible reaction (Eq. (1.2)). In order to obtain DME *via* this direct reaction, the multi-

functional catalyst is necessary, as the reaction proceeds through the methanol synthesis on metal-oxide sites (Eq. (1.3)) and subsequent dehydration to DME on acid sites (Eq. (1.4)) [53-56].

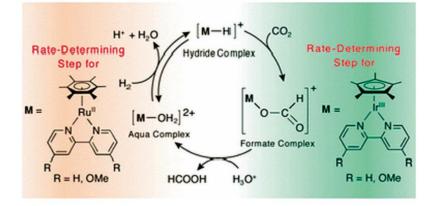
$2CO_2 + 6H_2 \rightleftharpoons CH_3OCH_3 + 3H_2O$;ДН _{298 к} = -122 kJ/mol	(1.2)
$CO_2 + 3H_2 \rightleftharpoons CH_3OH + H_2O$	<i>;Д</i> Н _{298 к} = -49 kJ/mol	(1.3)

 $2CH_3OH \rightleftharpoons CH_3OCH_3 + H_2O$; $\varDelta H_{298 K} = -23 \text{ kJ/mol}$ (1.4)

The Cu-based catalyst is commonly used for producing methanol in DME synthesis. The acidic catalysts such as γ -Al₂O₃ and zeolite, typically ZSM-5 and Ferrierite (FER) are used for the subsequent step which is the dehydration of methanol to synthesized DME [57-62]. There is two proposed process for the production of DME *via* CO₂ hydrogenation; (i) a two-step process (methanol synthesis on a metallic catalyst and subsequent methanol dehydration on an acid catalyst) and (ii) a single-step process using a bifunctional catalyst to perform the two steps simultaneously [55, 63-66].

งหาลงกรณ์มหาวิทยาลัย

(iii) CO₂ hydrogenation to formic acid and formates


Formic acid is widely used in many fields such as leather, rubber, chemical textile and other industries [67]. Recent studies have shown that formic acid has the potential to be power for fuel cells [68, 69]. Moreover, formic acid has been considered as a hydrogen storage material by combining CO_2 hydrogenation with selective formic acid decomposition [70-72]. Equation 1.5 shows the formic acid formation *via* CO_2 hydrogenation. To shift the reaction equilibrium, the addition of inorganic or organic base to the reaction system is necessary. The

addition of an inorganic base can generate formate which subsequently needs strong acid to convert to formic acid [73].

$$CO_2 + H_2 \rightarrow HCOOH$$
 ; $\Delta G_{273 K} = 32.9 \text{ kJ/mol}$ (1.5)

The CO₂ hydrogenation to formic acid and formate is typically catalyzed by organometallic complexes of transition-metal such as Ru, Rh and Ir (homogeneous catalysts) [3, 19, 74]. The formic acid synthesis *via* CO₂ hydrogenation is carried out in the presence of additives such as amines, KOH, Na₂CO₃ and water or in the supercritical CO₂, which can give high turnover numbers of catalysts [19]. Using supercritical CO₂ in reaction has gained an interest since CO₂ can play a dual role as both reactant and solvent [75]. There have many advantages of using supercritical CO₂ in CO₂ hydrogenation to formic acid including improved mass- and heat- transfer, easy to separation and high solubility of H₂ with supercritical CO₂ [76, 77].

Both Ru and Ir complexes share the similar mechanism (Fig. 1.6), but the only difference in the determining step. The rate-determining step for the CO_2 hydrogenation with the Ru catalysts is the reaction of the aqua complex with H₂. On the other hand, the rate-determining step of Ir catalysts is the reaction between the hydride complex and CO_2 [74, 75].

Figure 1.6 Mechanisms of CO₂ hydrogenation to formic acid by Ru(II) and Ir(III) aqua complexes under acidic conditions [74].

(iv) CO₂ hydrogenation to formamides

Formamides are a class of compounds widely used in organic synthesis including the synthesis of heterocycle, pharmaceuticals, biological intermediates and also used as Lewis base organocatalysts in hydrosilylation and other transformation. In addition, the formyl group of formamides is a useful protecting group of the amine functionality in peptide synthesis [78-80]. The use of CO₂ and H₂ as formylation agents instead of CO and phosgene which are toxic compounds, is a step toward green formylation of amines [81]. Similar to the CO₂ hydrogenation to formic acid, supercritical CO₂ has also been applied to the formamides synthesis. The formamides synthesis *via* CO₂ hydrogenation is shown in Eq. 1.6.

$$R_2NH + CO_2 + H_2 \rightarrow HCONR_2 + H_2O$$
(1.6)

Typically, Ru complexes has been used as homogenous catalysts for formylation of amines with CO_2 [19, 82, 83]. The CO_2 hydrogenation to formamides is reported to accompany with a formate salt as intermediate (Fig. 1.7) [84-86]. The

high temperatures or pressures are required for the condensation of formic acid salts with high turnover numbers [82].

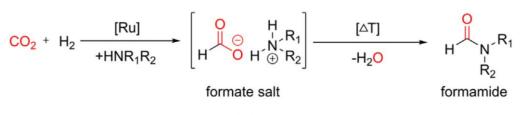


Figure 1.7 Hydrogenation of carbon dioxide to formamides [86].

The synthesis of *N*,*N*-dimethylformamide (DMF) from CO₂ hydrogenation with dimethylamine has well investigated and the catalysts with very high activities was reported [78, 87]. Kuhlmann *et. al.* recently reported that an *in situ* formed catalyst system for the synthesis of DMF with CO₂ and H₂ showed the promising catalytic properties referring to its good stability and recyclability [86]. The catalyst is based on the Ru(III)Cl₃ hydrate and the bidentate phosphine ligand BISBI (2,2'-bis(diphenylphosphinomethyl)-1,1'-bi-phenyl). The catalyst was immobilized by applying a biphasic solvent system consisting of 2-ethylhexan-1-ol as catalyst solvent and aqueous dimethylamine (DMA) solution as both substrate supply and extraction agent for the DMF product (Fig. 1.8).

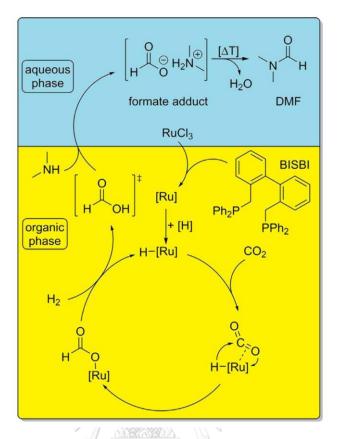


Figure 1.8 Basic setup of the reaction system with in situ product extraction [86].

(v) CO₂ hydrogenation to methanol

Methanol is a general solvent, a chemical feedstock and an alternative fuel. As an alternative chemical feedstock, CO_2 has been used instead of CO and is considered as an effective way for CO_2 utilization in the methanol production [9, 88]. The CO_2 hydrogenation to methanol is shown in Eq. 1.7.

$$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$$
 ; $\Delta H_{273 \text{ K}} = -49.5 \text{ kJ/mol}$ (1.7)

From a thermodynamic point of view, an increase in reaction pressure or a decrease in reaction temperature could felicitate the methanol synthesis from CO_2 hydrogenation [9]. Moreover, other by-products are usually formed during the CO_2 hydrogenation, such as CO, higher alcohols and hydrocarbons [89]. Therefore, a highly selective catalyst is required to avoid the formation of undesired products [9, 11, 90].

The methanol synthesis from CO₂ hydrogenation has been typically preformed with Cu and Pd-based catalysts [91-96]. Methanol synthesis generally occurring at the interface of metal and oxides. In other words, CO₂ is adsorbed on bare oxides and H₂ can dissociate on metal like Cu or Pd species [92, 96]. However, the nature of the active metal phase at interface is still in debate. Based on X-ray diffraction (XRD) results, it suggested that the active copper species are predominantly present as Cu⁰ over Cu/ZrO₂ [97]. On the other hand, Cu⁺ was proposed to be the active component of Cu/ZnO/SiO₂ catalyst, which was determined by static low-energy ion scatter experiments [98]. However, Cu metal and low valence of Cu (Cu^{δ_t} and Cu⁺) have also been suggested that it could affect the catalytic activity of Cu-based oxide catalysts [99-102]. Hence, the electronic and geometrical structures of the active site is the fundamental step for a catalyst design with high activity and selectivity of CO₂ hydrogenation [103].

There are two proposed reaction routes for CO₂ hydrogenation to methanol. First is the (i) formate pathway, where the intermediate HCOO formation is usually considered as the rare-determining step [104-106]. On Cu sites, the intermediate is a bidentate formate species, which is the most stable adsorbed species; while on ZnO, a monodentate formate is an intermediate species [107, 108]. The formate pathway suggests that CO may formed as a byproduct due to methanol decomposition [108]. The other pathway involves (ii) the formation of CO through the RWGS (Eq.1.1) and conventional gas-to-methanol conversion (Eq.1.8) [109, 110].

$$CO + 2H_2 \rightarrow CH_3OH \tag{1.8}$$

An *in situ* FTIR spectroscopy was carried out to identify the intermediates during methanol synthesis over Pd/ β -Gq₂O₃ catalyst [111]. The mechanism follows the formate pathway proceeding through the formation of H₂COO (dioxomethylene), CH₃O (methoxy), HCOO and CH₃OH as shown in Fig. 1.9. The outstanding activity and selectivity of Pd/ β -Gq₂O₃ catalyst are attributed to the atomic hydrogen spillover from Pd surface to the carbonaceous species and the moderate stability of methoxy species on Ga₂O₃. The density functional theory (DFT) calculations on Cu(1 1 1) and Cu₂₉ nanoparticles indicated that the superior activity of Cu nanoparticles for the methanol synthesis is associated with active corner sites and structural flexibility, which stabilize the key intermediates (H₂COO, CH₂O and HCOO) and reduce the barrier of the rate-determining steps (HCOO and H₂COO hydrogenation) [112].

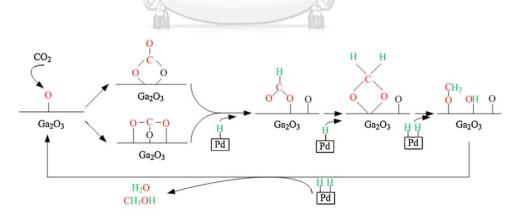


Figure 1.9 Reaction pathways for the methanol synthesis from CO₂/H₂ over Pd/ β -Ga₂O₃ catalyst [13].

A simplified mechanism of methanol synthesis via CO_2 hydrogenation on catalyst surface is proposed in Fig. 1.10. CO_2 first adsorbed on the ZrO_2 surface to form a bicarbonate species which is then hydrogenated to produce formate intermediate species. The required H_2 for the formate species formation could be provided by the spillover of adsorbed hydrogen on Cu [11, 13].

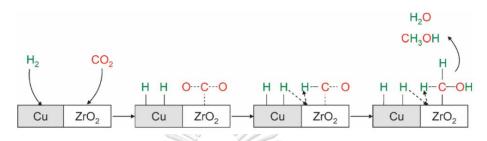


Figure 1.10 Proposed mechanism reaction pathway for the methanol formation over CO_2 hydrogenation with Cu/ZrO_2 catalyst [13].

(vi) CO₂ hydrogenation to higher alcohols

Higher alcohols are more preferable than methanol as product of CO_2 hydrogenation due to the safe transport, excellent compatibility to gasoline and high energy and value. CO_2 hydrogenation to higher alcohols could be a combination of the RWGS reaction and subsequent the formation of higher alcohols from syngas (CO and H₂) as shown in Fig. 1.11 [22]. Hence, a catalyst that is active for both RWGS and higher alcohols formation reaction would be suitable for the higher alcohols synthesis *via* CO_2 hydrogenation, for example, Fe- and Rh-based catalysts [113, 114].

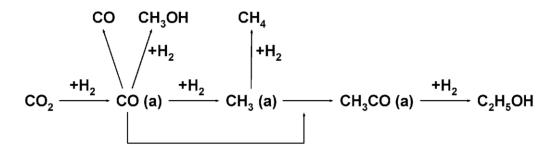


Figure 1.11 Plausible reaction mechanism of CO₂ hydrogenation to ethanol [13].

Furthermore, Tominaga *et al.* introduced a multi-step method for CO_2 hydrogenation and hydroformylation reaction [115]. Hydroformylation with CO_2 proceeds in two steps; (i) CO_2 is first converted into CO by RWGS and further involves in (ii) hydroformylation of alkenes as shown in Fig. 1.12. Ruthenium carbonyls are active for the process since it is capable of catalyzing both steps.

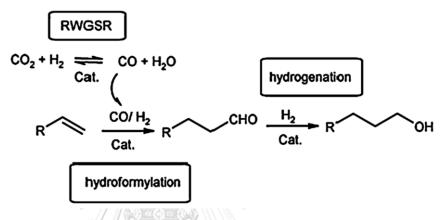


Figure 1.12 Alcohols formation from alkenes by hydroformylation with CO_2 [13].

(vii) CO₂ hydrogenation to hydrocarbons

Carbon dioxide can be hydrogenated to hydrocarbons either by direct or indirect routes (*via* synthesis gas and/or methanol intermediate formation) [116]. The active metals Fe, Ru, Co, Ni and Rh as the conventional catalyst for Fischer-Tropsch synthesis (FTS) could also be employed for CO_2 hydrogenation [117, 118]. The comparative study on the hydrogenation of CO and CO_2 over Co and Fe catalysts, reported that the supported iron-based catalysts showed good performance for the CO_2 hydrogenation to higher hydrocarbons [119]. The synthesis of hydrocarbons *via* CO_2 hydrogenation could be viewed as a modification of FTS, wherein CO_2 is first converted to CO by reverse water-gas shift (RWGS) reaction (Eq. 1.9), then CO or CO-like intermediates are subsequently consumed in the formation of carbon-carbon bond building unit and hence producing hydrocarbons through FTS (Eq. 1.10). Meanwhile, an additional reaction, namely the direct CO_2 hydrogenation (Eq. 1.11), is also proposed, but it is thought to be difficult due to the high-energy barrier of CO_2 activation [11, 24-26].

$$CO_2 + H_2 \rightleftharpoons CO + H_2O$$
 ; $\Delta H_{573 \text{ K}} = 38 \text{ kJ/mol}$ (1.9)

CO + 2H₂ → -(CH₂)- + H₂O ; $\Delta H_{573 \text{ K}}$ = -166 kJ/mol (1.10)

$$CO_2 + 3H_2 \rightarrow -(CH_2) - + 2H_2O$$
 ; ∠ $H_{573 K} = -128 \text{ kJ/mol}$ (1.11)

The plausible mechanism of CO_2 hydrogenation over iron-based catalyst have been proposed and shown in Fig. 1.13 [120]. CO_2 adsorption on metal surface is the important step and the preliminary step for CO_2 hydrogenation. Firstly, CO_2 is adsorbed on the metal surface and converted to CO by the RWGS reaction. Consequently, CO intermediate is hydrogenated and transform to the monomers.

Chulalongkorn University

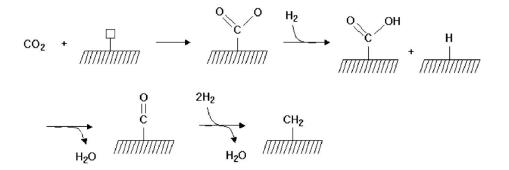
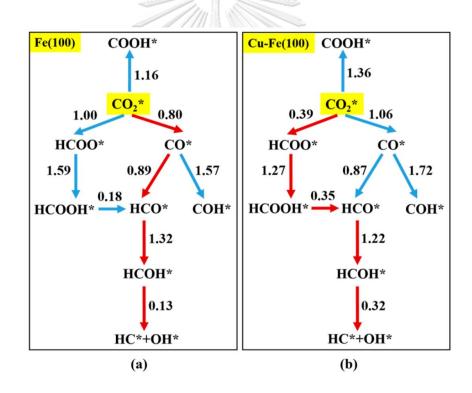
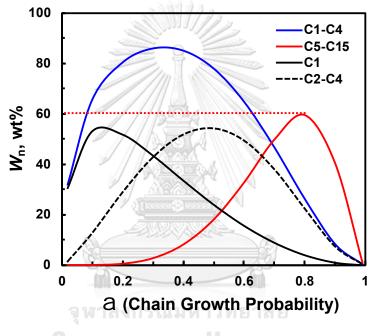



Figure 1.13 Proposed mechanism of CO $_2$ hydrogenation over Fe-K/ γ -Al $_2$ O $_3$ catalyst [120].

Moreover, according to recent density functional theory (DFT) study by Nie *et al.*, they suggested that the CO₂ dissociation to CO* intermediate is preferred on Fe(100) and the kinetically favorable path changes to CO₂ hydrogenation to a HCOO* intermediate when Cu was added to Fe catalyst as shown in Fig. 1.14. CH* intermediate is found to be the most favorable monomeric species for production of CH₄ and C₂H₄ *via* C-C coupling of CH* species and subsequent hydrogenation [121]. Typically, methane is the most product for CO₂ hydrogenation, which is not the desired products. The main propose of the CO₂ hydrogenation is to synthesize light olefins and the long chain hydrocarbons as liquid fuels.

Figure 1.14 Reaction networks examined to identify energetically favorable C₁ species from CO₂ hydrogenation on (a) Fe(100) and (b) the Cu–Fe(100) surface at 4/9 ML Cu coverage. Activation barriers are given in eV (The networks connected with red arrows represent the preferred path for CO₂ conversion to CH*.) [121].


Recently, our research group reported on the bimetallic promotion on the selective CO_2 hydrogenation to methanol using Pd-Cu catalysts [91] and to light hydrocarbons using Fe-based bimetallic catalysts [122]. Moreover, the addition of promoters, such as K and Mn, on Fe-based catalysts significantly promoted the selectivity to olefinic products and suppressed the methane formation [11, 25, 122, 123]. CO_2 hydrogenation to liquid fuels and highly value-added products remains a challenging research topic. For this purpose, La as promoter was introduced in the preparation of Fe-based bimetallic catalysts since La could enhance the selectivity of higher hydrocarbons in FTS [124] and CO_2 hydrogenation [125, 126].

In addition to the active metal, the chemical and textural properties of the support also influence the product selectivity of CO₂ hydrogenation. Although γ -Al₂O₃ is widely used as a support due to its high surface area, TiO₂ is also a good candidate as support, which showed better selectivity to higher hydrocarbon products of CO₂ hydrogenation [125]. It was reported that the oxygen vacancy of TiO₂ could increase bridge-type adsorbed CO₂, which can be dissociated to carbon species, thereby enhancing C-C bonds formation [127, 128].

The chain-growth probability (α) of FTS limits the proportion of desired fuel hydrocarbons (C₅-C₁₅) according to the work by Anderson, Schulz and Flory [129-131]. Form theoretical ASF distribution calculation using Eq. 1.12, it revealed that the product proportion of C₅-C₁₅ reached its maximum of 60% at a chaingrowth probability of α =0.8 (Fig. 1.15). Therefore, the highest theoretically achievable yield of C₅-C₁₅ hydrocarbon products is 60%. From recent studies, the chain-growth probability of α up to 0.5 could be achieved, hence the yield of higher hydrocarbons products could be further improved [122, 132].

$$W_{\rm n} = (\ln^2 \alpha) n \alpha^{\rm n} \tag{1.12}$$

where W_n is wt.% of hydrocarbons, α is the chain-growth probability and n is the number of C atoms.

CHULALONGKORN UNIVERSITY

Figure 1.15 Theoretical proportion of C_1 , C_1 - C_7 and C_5 - C_{15} hydrocarbons among all hydrocarbons formed by FTS. Calculation according to ASF distribution equation (Eq. 1.12).

1.4 Objectives and scope of dissertation

The objective of this research is to develop efficient catalysts for CO_2 hydrogenation to higher hydrocarbons especially liquid hydrocarbons (C_{5+}). One approach is to investigate the adsorption properties of CO_2 and H_2 on the TiO_2 -supported catalyst surfaces with various active metal compositions. The effects of catalyst formulations on the physical and chemical properties as well as the activity of the catalyst were also studied.

Chapter I of this dissertation provides a review of the global challenges and strategies for CO_2 utilization focusing on the catalytic hydrogenation of CO_2 .

The experimental procedures for the catalyst preparation as well as the catalyst evaluation on CO_2 hydrogenation and the various techniques used for the characterization are given in Chapter II.

The catalytic activities and product selectivities of the monometallic including Fe, Co and Cu catalysts for the hydrogenation of CO_2 are reported in Chapter III. The promotion effect of K promoter on the monometallic catalyst is also studied as well as the textural properties of the catalysts.

In Chapter IV, the Fe-based bimetallic catalysts were studied in detail to understand the bimetallic synergistic promotion effect on CO_2 hydrogenation to hydrocarbons. The second metal; Co and Cu were incorporated with Fe catalysts to synthesize the TiO₂ supported Fe-based bimetallic catalysts. The Fe-based bimetallic catalysts (Fe-M/TiO₂; M = Co or Cu) were prepared at various M/(M+Fe) atomic ratio from 0-1 and tested for CO₂ hydrogenation reaction. The effect of K and La promoter on Fe-based bimetallic catalysts is also investigated as well as the physical properties of synthesized catalysts.

To explore the surface chemistry of the Fe-Cu bimetallic catalysts, the temperature-programmed desorption (TPD) and diffuse reflectance Infrared Fourier

transform spectroscopy (DRIFTS) were performed and their results are reported in Chapter V. To clarify the effect of K and La promoter addition on the CO_2 and H_2 adsorption, and their impact on the catalytic activity, the *in situ* TPD and DRIFTS techniques was used to characterize the fresh and spent-catalysts after H_2 reduction and CO_2 hydrogenation, respectively.

In Chapter VI, the kinetics study of catalytic CO_2 hydrogenation to hydrocarbons was investigated. The ASPEN PLUS was employed to simulate the catalytic CO_2 hydrogenation process with the kinetic model from the experiment data, for further study on the reactor performance and process scale-up.

Finally, the conclusions of this dissertation and recommendations for future work are provided in Chapter VII. The results of this research would contribute the understanding and useful guidance to the development of Fe-based bimetallic catalyst for catalytic CO_2 hydrogenation to higher hydrocarbons synthesis.

CHAPTER II

EXPERIMENTAL AND CHARACTERIZATION

2.1 Materials

Titania (AEROXIDE TiO₂ P 25) was supplied by Evonik Corporation and calcined at 723 K for 4 h before being used. $Fe(NO_3)_3 \cdot 9H_2O$ (99.99%), $Co(NO_3)_2 \cdot 6H_2O$ (\geq 98%), KNO₃ (99.0%) and $La(NO_3)_3 \cdot 6H_2O$ (\geq 99.99%) were purchased from Sigma-Aldrich Chemical Company. $Cu(NO_3)_2 \cdot 2.5H_2O$ (\geq 98%) was purchased from Alfa-Aesar Chemical Company. All precursors were used witout further purification. The mixed gas of 24 vol% $CO_2/72$ vol% $H_2/4$ vol% Ar (purity >99.999%), H_2 (99.999%) and He gas (99.999%) were supplied by Praxair Inc.

2.2 Catalyst preparation

จุหาลงกรณ์มหาวิทยาลัย

Titania (AEROXIDE TiO₂ P 25) was used as support material. The unpromoted supported Fe-based bimetallic catalysts were prepared by a wet impregnation method using an aqueous solution containing $Fe(NO_3)_3 \cdot 9H_2O$, $Co(NO_3)_2 \cdot 6H_2O$ and $Cu(NO_3)_2 \cdot 2.5H_2O$. Concentrations of Fe and co-metal (Co, Cu = M) precursors in the solution were adjusted to obtain desired M/(Fe+M) atomic ratios (0.0-1.0 atom atom⁻¹) while maintaining total metal (Fe+M) loading at 15 wt% (support weight basis). Typically, 1 g of support was impregnated with 4 mL of precursor solution. The impregnated sample was dried at 363 K in a rotary evaporator for 4 h and then dried in an oven at 383 K overnight in ambient air, followed by calcination in a furnace in dry air of 100 mL (NTP) min⁻¹ at 673 K for 2 h (Fig. 2.1).

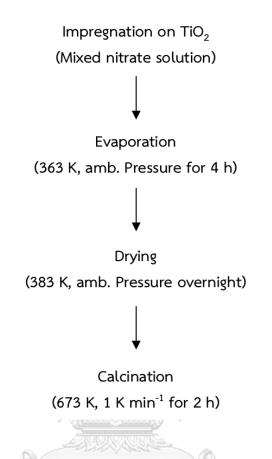


Figure 2.1 Procedures for preparation of TiO₂ supported catalyst.

The K- and La-promoted catalysts were also prepared by a wet impregnation method, wherein the mixed solution of KNO₃ and La(NO₃)₃·6H₂O were used as precursors. Then, mixed nitrate precursor solution was impregnated, followed by drying and calcination at the same conditions as the unpromoted catalysts. The prepared catalysts are denoted as "Fe-M(X)-K(Y)-La(Z)/TIO₂", where X, Y and Z represent the atomic ratios of M/(Fe+M), K/Fe and La/Fe, respectively. Total metal loading for monometallic and bimetallic catalysts (M and M+Fe) was fixed at 15 wt%, unless otherwise noted. Corresponding metal loadings of catalysts for different components are summarized in Table 2.1 for clarity.

	L	_oading, wt%	6 (support v	weight basis)
Catalyst	Fe	Со	Cu	К	La
Unpromoted catalyst					
Fe	15.0	-	-	-	-
Со	-	15.0	-	-	-
Cu	-	-	15.0	-	-
Fe-Co(0.1)	13.4	1.6	-	-	-
Fe-Co(0.17)	12.4	2.6	-	-	-
Fe-Co(0.5)	7.3	7.7	-	-	-
Fe-Cu(0.1)	13.3		1.7	-	-
Fe-Cu(0.5)	7.0		8.0	-	-
Promoted catalyst	NECE 4				-
Fe-K(0.1)	15.0	3 - F	-	1.1	-
Fe-Co(0.1)-K(0.1)	13.4	1.6	-	0.9	-
Fe-Co(0.1)-K(0.3)	13.4	1.6	-	2.8	-
Fe-Cu(0.1)-K(0.05)	13.4	1.6	-	0.5	-
Fe-Cu(0.1)-K(0.1)	13.3	ทยาลัย	1.7	0.9	-
Fe-Cu(0.1)-K(0.2)	ONGKO ^{13.3}	NIVERSI	TY 1.7	1.9	-
Fe-Cu(0.1)-K(0.3)	13.3	-	1.7	2.8	-
Fe-Cu(0.1)-K(0.05)-La(0.05)	13.3	-	1.7	0.5	1.7
Fe-Cu(0.1)-K(0.05)-La(0.1)	13.3	-	1.7	0.5	3.3
Fe-Cu(0.1)-K(0.05)-La(0.2)	13.3	-	1.7	0.5	6.6
Fe-Cu(0.1)-K(0.05)-La(0.3)	13.3	-	1.7	0.5	9.9
Fe-Cu(0.1)-K(0.1)-La(0.1)	13.3	-	1.7	0.9	3.3
Fe-Cu(0.1)-K(0.2)-La(0.1)	13.3	-	1.7	1.9	3.3
Fe-Cu(0.1)-K(0.3)-La(0.1)	13.3	-	1.7	2.8	3.3

Table 2.1 Fe, Co, Cu, K and La loadings of Fe-M(X)-K(Y)-La(Z)/TiO₂ catalysts (M = Co and Cu)

2.3 Activity test

CO₂ hydrogenation was performed in a high-pressure fixed-bed reactor system (Fig. 2.2). For each activity test, about 0.20 g of the catalyst was mixed with ca. 0.48 g amorphous SiO₂ (Davisil Grade 62, particle size = $75-250 \times 10^{-6}$ m) as a diluent to maintain an aspect ratio of approximately 6.0 and then loaded in a 6 mm I.D. stainless-steel reactor between two glass wool layers. The upper part of the bed was packed with borosilicate glass bead as a pre-heating zone. Prior to the activity test, the prepared catalyst was reduced under a H₂ (purity > 99.995) flow of 50 mL (STP) min⁻¹ at 673 K with a ramping rate of 2 K min⁻¹ for 2 h and then allowed to cool to the hydrogenation temperature of 573 K. The feed gas, 24 vol% CO₂/ 72 vol% H₂/ 4 vol% Ar (purity > 99.99959 %), was employed to pressurize the system to 1.1 MPa (GHSV = 3600 mL (STP) g⁻¹ h⁻¹) and regulated using mass flow controllers and a backpressure regulator.

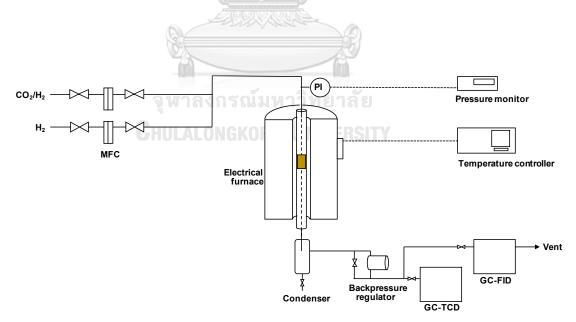


Figure 2.2 Schematic illustration of a fixed-bed reactor system for CO₂ hydrogenation.

2.4 CO₂ hydrogenation product analysis

For analysis of Ar, CO, CH₄ and CO₂, an online Agilent 3000 micro Gas Chromatography equipped with molecular sieve-type column and Plot-Q column was used. The gas-phase hydrocarbon products (C₁-C₇) were analyzed using an online SRI 8610C GC equipped with flame ionization detector (GC-FID) (Porapak Q column). CO₂ conversion and gas-phase product space-time yields (STY) were evaluated by the values obtained at 16-18 h on-stream. The condition and temperature program for both GC are described in Appendix A. Activity data reported here were based upon at least two runs for each catalyst, and average deviations of CO₂ conversion and product formation rate are 0.9% and 0.02 μ mol g⁻¹ s⁻¹, respectively.

For analysis of liquid hydrocarbon products, the liquid products from CO₂ hydrogenation were collected in an ice trapped condenser connected to the reactor. The gas chromatography-mass spectrometry (GC/MS) (Agilent, 7890) with a capillary column RTX-PAH (60 m x 0.25 mm 1.D. x 0.25 μ m film thickness) and a split mode injector (ratio 20:1) was used with ultra-high purity helium as a carrier gas. The condition and temperature program for GC/MS are described in Appendix B.

CHULALONGKORN UNIVERSITY

2.5 Catalyst passivation

After CO₂ hydrogenation at 573 K and 1.1 MPa for 15-16 h, the catalyst was cooled down to 298 K under 24 vol% CO₂/ 72 vol% H₂/ 4 vol% Ar and subsequently passivated using 0.95 vol % O₂/He (purity > 99.999%) at a flow rate of 30 mL min⁻¹ until an area of O₂ peak (effluent of O₂) observed by Micro GC equipped with TCD became constant. Then, the catalyst was collected from the reactor for further characterizations, hereafter simply denoted as "spent catalyst".

2.6 Adsorption/Desorption of N₂

The catalyst surface area (SA), pore volume (PV) and average pore diameter (D_p) were determined from N₂ sorption isotherms at 77 K using fully automated TriStar II (Micromeritics) surface area and porosity analyzer. Before analysis, all samples (ca. 0.20-0.25 g) were degassed under N₂ at 363 K for 1 h and 473 K for 12 h. From isotherms, Brunauer-Emmett-Teller (BET) method was used to determine the surface area, while Barrett-Joyner-Halenda (BJH) model was used for calculation of pore volume and average pore diameter of the catalysts.

2.7 X-ray diffraction

XRD patterns of calcined catalysts were obtained using a PANalytical Empyrean X-ray Diffractometer with Cu K α (λ = 0.154059 nm) radiation, fixed slit incidence (0.25° divergence, 0.5° anti-scatter, specimen length of 10 mm) and diffracted optics (0.25° anti-scatter, 0.02 mm nickel filter). Data obtained at 45 kV and 40 mA from 20-90 (2 θ) using a PIXcel detector with a PSD length of 3.35° (2 θ), and 255 active channels. From the relative XRD diffraction intensities corresponding to anatase (101) and rutile (110) reflections [133], the mass fraction of rutile and anatase was calculated using Eqs. 2.1 and 2.2 [134, 135].

Anatase (%) =
$$[0.79I_A / (I_R + 0.79I_A)] \times 100$$
 (2.1)

Rutile (%) = $[1/[(I_R + 0.79I_A)/I_R]] \times 100$ (2.2)

where I_A and I_B are the peak intensities of (101) and (110) reflections for anatase and rutile, respectively.

The XRD peaks of crystal plane (101) and (200) in anatase was selected to determine the lattice parameter of TiO_2 supported catalysts according to Eqs. 2.3 and 2.4 [136].

Bragg's law:

$$d_{(hkl)} = \lambda / 2 \sin \theta \tag{2.3}$$

$$d^{-2}_{(hkl)} = h^2 a^{-2} + k^2 b^{-2} + l^2 c^{-2}$$
(2.4)

where $d_{(hkl)}$ is the distance between crystal planes of (hkl), λ is the X-ray wavelength, θ is the diffraction angle of crystal plane (hkl), hkl is the crystal plane index, and a, band c are lattice parameters ($a = b \neq c$) of anatase.

2.8 Temperature-programmed reduction

2.8.1 Calcined catalyst

reduction (TPR) Temperature-programmed experiments were performed at ambient pressure in a Micromeritics AutoChem 2910 using hydrogen as a reducing agent. About 0.10 g of sample was charged in a U-shaped quartz tube reactor and held by quartz wool. Prior to the reduction program, the sample was heated in situ to 393 K (10 K min⁻¹) under Ar (purity > 99.999%) flow (25 mL min⁻¹) for 1 h to remove adsorbed species on the sample surface. The sample was then cooled down to 323 K, followed by switching to 4.93 vol% H₂/Ar at 20 mL min⁻¹. After the baseline was stable, the temperature program started by a ramping rate of 10 K min⁻¹ up to 1173 K and held at this temperature for 30 min. The effluent gas was cooled down by a slush bath consisting of isopropanol and liquid N₂ located between a reactor and detector to trap the water formed during the reduction process. The gas was then analyzed using a thermal conductivity detector (TCD).

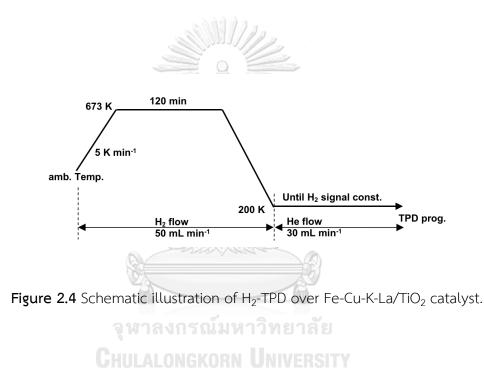
2.8.2 Pre-reduced catalyst

0.1 g of catalyst was loaded to the U-shaped quartz tube reactor and pre-reduced *in situ* at 673 K (5 K min⁻¹) under H_2 (purity > 99.999%) flow (50 mL min⁻¹) for 2 h. After pre-reduction step, the catalyst was cooled down to 423 K under flowing 20 mL min⁻¹ Ar (purity > 99.999%) for 30 min to remove H_2 gas that might be remained

in the system. The gas was then switched to 4.93 vol% H_2 /Ar at 20 mL min⁻¹ and followed the same procedures used for calcined catalysts in section 2.8.1.

2.9 Temperature-programmed desorption

2.9.1 CO₂-TPD


Prior to the CO₂- and H₂-temperature programed desorption (TPD), about 150 mg of catalyst was loaded in a U-shaped quartz tube reactor and prereduced *in situ* in a H₂ flow (purity > 99.999%, 50 mL min⁻¹) at 673 K (5 K min⁻¹) for 2 h. For CO₂-TPD, the catalyst was then purged with He (purity > 99.999%, 30 mL min⁻¹) at 573 K for 30 min to remove the remaining H₂ in the reactor tube. The catalyst was subsequently dosed with 12 vol% CO₂/He (at 573 K) at a flow rate of 30 mL min⁻¹ for 1 h, followed by cooling down to room temperature. The catalyst was then purged with 30 mL min⁻¹ He (purity > 99.999%) to remove any trace of CO₂ gas until CO₂ signal (observed from Mass Spectrometer) became constant. The TPD experiment was started by heating at a ramp of 10 K min⁻¹ to 1173 K under 30 mL min⁻¹ He (purity > 99.999%) flow. The desorbed gas was analyzed using a Dycor Dymaxion Mass Spectrometer DM200M (AMETEK) (Fig. 2.3).

120 min 673 K 30 min 60 min 573 | 5 K min⁻¹ Until CO₂ signal const. amb. Temp amb. Temp. TPD prog. H₂ flow 50 mL min⁻¹ He flow 12 vol% CO₂/He flow He flow 30 mL min 30 mL min⁻¹ 30 mL min-1

Figure 2.3 Schematic illustration of CO₂-TPD over Fe-Cu-K-La/TiO₂ catalyst.

2.9.2 H₂-TPD

For H₂-TPD, the pre-reduced catalyst was cooled down to 200 K in H₂ using a slush bath of isopropanol-liquid N₂ mixture to prevent the desorption of weakly-adsorbed hydrogen from the catalyst surface. Then, the catalyst was purged with He (purity > 99.999%, 30 mL min⁻¹) until the H₂ signal became constant (Fig. 2.4). The temperature program was started at around 280 K. The H₂-TPD experiment was performed by following the same procedures used for CO₂-TPD.

2.10 In situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS)

The adsorption states of CO₂ on the reduced catalysts were studied by *in situ* diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) using a Thermo Nicolet NEXUS 470 equipped with a diffuse reflectance cell (Spectra Tech) and a mercury cadmium telluride (MCT-A) detector cooled by liquid N2 and a KBr beam splitters. The infrared cell with a ZnSe window was employed at high temperatures. The cell was directly connected to a gas flow system equipped with rotameter and a

set of valves to switch and control the gas flow rate. The temperature of the catalyst was monitored by a K-type thermocouple placed 2 mm underneath the crucible surface.

Before the experiment, about 50 mg of the calcined catalyst was gently mixed and ground with 50 mg of KBr powder uniformly. The mixed powder was charged into the sample cell and then pre-reduced *in situ* at 523 K (10 K min⁻¹) under H₂ flow for 1 h, followed by flushing with N₂ at this temperature for 30 min. The background was collected at this temperature after the system was stabilized for 30 min. The *in situ* DRIFT spectra of the adsorbed CO₂ were recorded at the same temperature in a 12 vol% CO₂/Ar flow and the time-on-stream (TOS) of 3, 10, 20, 60 and 120 min. The total flow of all gases through the sample cell was kept constant at 50 mL min⁻¹.

The surface species formed during CO₂ hydrogenation on the spent catalysts were also studied by DRIFTS. About 50 mg of the spent catalyst was gently mixed and grinded with 50 mg of KBr powder. The mixed powder was then charged into the sample holder and was purged in N₂ (purity > 99.999%) at 298 K for 1 h to remove any moisture and gases, before recording the DRIFT spectrum. After that, the sample was pre-reduced *in situ* at 523 K (10 K min⁻¹) under H₂ flow (purity > 99.999%) for 2 h, and then cooled down to 310 K under a H₂ flow. The DRIFT spectrum was then recorded after flushing the sample with N₂ for 30 min. These spectra were transformed to Kubelka-Munk functions using a KBr background spectrum measured under a N₂ flow at ambient temperature.

2.11 Transmission electron microscopy (TEM)

Morphologies and particle sizes were evaluated by transmission electron microscopy (TEM; JEM-2500SE) with an accelerating voltage of 200 kV. The samples were prepared by dispersion of prepared catalyst in ethanol under ultrasonication for 15 min. Then, the suspension was dropped onto a 150 mesh Cu TEM grid and the solvent was left to evaporate for overnight prior to the investigation. The EDS analysis was analyzed by using a nominal electron beam size of 1 nm.

CHAPTER III

COMPARATIVE STUDY OF Fe-BASED CATALYSTS FOR CO₂ HYDROGENATION TO HIGHER HYDROCARBONS

3.1 Introduction

Recently, CO₂ has become an attractive renewable carbon source as a nontoxic C_1 building block for fuels. One processes to transform CO_2 to hydrocarbon fuels as hydrogenation is of interest because hydrogen is a high-energy substance which can be used as the reagent for CO₂ conversion. The conventional active metals for Fischer-Tropsch synthesis (FTS) such as Fe, Co, Ni, Ru and Rh have been applied as a catalyst for CO₂ hydrogenation to higher hydrocarbons [26, 117, 137, 138]. However, CH₄ was the dominant product from CO₂ hydrogenation over these conventional catalysts. Therefore, the developing of the catalysts for CO₂ hydrogenation has become of great interest since these catalysts need to selectively produce more higher hydrocarbons before use in industrial scale. The Fe-based catalyst has been reported as a promising catalyst for CO₂ hydrogenation to hydrocarbons due to its high activity, low cost, and flexible operation conditions, as well as reasonable hydrocarbon products distribution [118, 139]. To further improve the higher hydrocarbons selectivity, the addition of promoters is required. The addition of K and Mn promoters on Fe-based catalysts have been reported that it significantly promoted the selectivity to olefinic products and suppressed the methane formation [11, 25, 122, 123].

In this chapter, a comparative study on the CO_2 hydrogenation to higher hydrocarbons over monometallic catalyst including Fe, Cu and Co metal. γ -Al₂O₃ and

 TiO_2 supported catalysts were synthesized and evaluated for CO_2 hydrogenation to higher hydrocarbons. The activities and selectivities of these monometallic catalysts were investigated as well by the effect of K addition.

3.2 Equilibrium conversion of CO₂ hydrogenation to higher hydrocarbons

Form thermodynamic point of view for CO₂ hydrogenation, the equilibrium CO₂ conversion and product yields are dependent on temperature and pressure. In this study, the equilibrium CO₂ conversion of CO₂ hydrogenation to higher hydrocarbons could be estimated using Aspen HYSYS 7.1 and the system flow diagram are shown in Fig. 3.1. For calculating the equilibrium CO₂ conversion, the equations (3.1) – (3.12) are input reactions in the reactor as lines (a), (b) and (c), CH₄ is the most thermodynamically stable product and C₂H₄ – C₅H₁₀ were chosen as relatively stable higher hydrocarbon products. Figure 3.2a-b showed the calculated CO₂ conversion at various temperatures (Fig. 3.2a) and various pressure (Fig. 3.2b) at constant mixed feed gas molar ratio of H₂/CO₂ of 3. The results from ASPEN HYSYS 7.1 are presented in Table C-1 (temperature) and C-2 (pressure) of Appendix C.

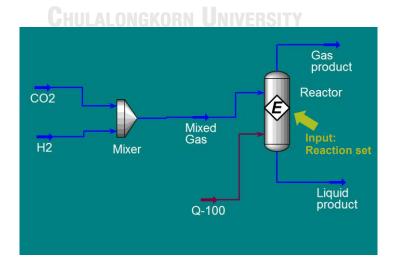


Figure 3.1 The flow diagram using in Aspen HYSYS 7.1.

Line (a): Reverse water-gas shift (RWGS)

$$CO_2 + H_2 \leftrightarrow CO + H_2O$$
 (3.1)

Line (b): CO₂ hydrogenation to CO and hydrocarbons

$$CO_2 + H_2 \leftrightarrow CO + H_2O$$
 (3.2)

$$CO + 3H_2 \longleftrightarrow CH_4 + H_2O \tag{3.3}$$

$$CO + 2H_2 \longleftrightarrow 1/2C_2H_4 + H_2O \tag{3.4}$$

$$CO + 2H_2 \longleftrightarrow 1/3C_3H_6 + H_2O \tag{3.5}$$

$$CO + 2H_2 \longleftrightarrow 1/4C_4H_8 + H_2O \tag{3.6}$$

$$CO + 2H_2 \longleftrightarrow 1/5C_5H_{10} + H_2O$$
(3.7)

Line (c): Direct CO₂ hydrogenation to hydrocarbons

$$CO_2 + 4H_2 \longleftrightarrow CH_4 + 2H_2O$$
 (3.8)

$$CO_2 + 3H_2 \longleftrightarrow 1/2C_2H_4 + 2H_2O$$
(3.9)

$$CO_2 + 3H_2 \leftrightarrow 1/3C_3H_6 + 2H_2O$$
 (3.10)

$$CO_2 + 3H_2 \longleftrightarrow 1/4C_4H_8 + 2H_2O \tag{3.11}$$

$$CO_2 + 3H_2 \longleftrightarrow 1/5C_5H_{10} + 2H_2O \tag{3.12}$$

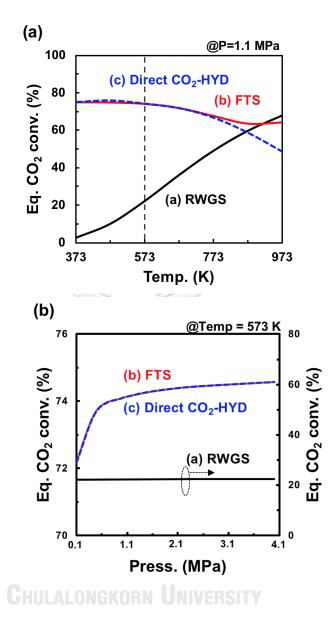


Figure 3.2 Equilibrium CO_2 conversion for a molar ratio of $H_2/CO = 2:3$ as a function of reaction (a) temperature and (b) pressure.

According to the calculation, temperature is more pronounced effect than pressure on the equilibrium CO_2 conversion. At high temperature, RWGS (line a) is more favorable than CO_2 hydrogenation to hydrocarbons (line b and c). From thermodynamic point of view, at low temperature, the CO_2 conversion by RWGS reaction is limited due to its endothermic reaction. The exothermic FTS reaction is not thermodynamically limited in the temperature regime below 673 K and thus, it is possible to achieve higher CO_2 conversion for the overall reaction because of the consecutive reaction of CO formed by the RWGS reaction. Therefore, the catalysts have to be developed that both RWGS and FTS reaction could be catalyzed. In addition, the reaction rate of FTS should be equal or higher than that of the RWGS to overcome the thermodynamic limitation of the RWGS reaction [125]. For the pressure effect, the equilibrium CO_2 conversion of line b and c (CO_2 hydrogenation to hydrocarbons) are slightly increased with increasing pressure, while the RWGS is not dependent on pressure. The optimal condition for CO_2 hydrogenation to hydrocarbons is 300 °C (573 K) and 1.1 MPa and this condition was also chosen as a reaction condition for research work on CO_2 hydrogenation to hydrocarbons [140-142].

3.3 Support comparison

The chemical and textural properties of the support could influence the catalyst activity. Commonly, γ -Al₂O₃ is widely used as a support material due to its high surface area and acid properties. A previous study on CO₂ hydrogenation reported that using TiO₂ as support, it can give better selectivity to higher hydrocarbon [125]. It suggested that the oxygen vacancy of TiO₂ could increase bridge-type adsorbed CO₂, which can be dissociated to carbon species, thereby enhancing C-C bonds formation [127, 128].

			Prod sel	Prod selec (C-mol%)	(%)	STV (IIm	ω α ⁻¹ ε ⁻¹)			
(%) CH_4 C_{2+} CO CH_4 C_2-C_7 CO <th></th> <th></th> <th></th> <th></th> <th>10/2</th> <th></th> <th></th> <th></th> <th>⊖/D e</th> <th>۲</th>					10/2				⊖/D e	۲
19.7 33 46 21 0.87 0.28 0.51 0.00 16.1 34 42 25 0.59 0.23 0.43 0.02 $inactive$ $ 54.5$ 87 12 1 1 5.22 0.04 0.06 0.02 9.7 1 9 90 0.01 0.01 0.01 0.97 0.00 18.0 11 40 49 0.22 0.18 0.91 0.97 0.00 17.1 4 40 56 0.06 0.08 1.02 6.60		(%)	CH4	C ₂₊ ^c	0	CH4	C ₂ -C ₇ ^d	9	5	3
16.13442250.590.230.430.02inactive 54.5 87 121 5.22 0.04 0.06 0.02 9.7 1990 0.01 0.01 0.97 0.00 18.0 114049 0.22 0.18 0.91 0.50 17.1 44056 0.06 0.08 1.02 6.60	Fe/Al ₂ O ₃ ^g	19.7	33	46	21	0.87	0.28	0.51	0.00	0.39
inactive54.5871215.220.040.060.029.719900.010.010.970.0018.01140490.220.180.910.5017.1440560.060.081.026.60	Fe/TiO ₂ (P25) ^h	16.1	34	42	25	0.59	0.23	0.43	0.02	0.39
54.5 87 12 1 5.22 0.04 0.06 0.02 9.7 1 9 90 0.01 0.97 0.00 18.0 11 40 49 0.22 0.18 0.91 0.50 17.1 4 40 56 0.06 0.08 1.02 6.60	Fe/TiO2 ¹	inactive	ı	ı	I	I	ı	I	I	ı
9.7 1 9 90 0.01 0.97 0.00 18.0 11 40 49 0.22 0.18 0.91 0.50 17.1 4 40 56 0.06 0.08 1.02 6.60	Co/TiO ₂ (P25)	54.5	87	12	Ţ	5.22	0.04	0.06	0.02	0.01
18.0 11 40 49 0.22 0.18 0.91 0.50 17.1 4 40 56 0.06 0.08 1.02 6.60	Cu/TiO ₂ (P25)	9.7	-	6	06	0.01	0.01	0.97	0.00	0.00
17.1 4 40 56 0.06 0.08 1.02 6.60	Fe-K(0.1)/TiO ₂ (P25)	18.0	11	40	49	0.22	0.18	0.91	0.50	0.54
	Fe-K(0.3)/TiO ₂ (P25)	17.1	4	40	56	0.06	0.08	1.02	6.60	09.0
	support, ^c Including small amoun	its of alcohols	s, ^d Only va	ıpor phas∈	, ^e Olefin t	to paraffin ((J/P) ratio ot	f C ₂ -C ₄ hy	drocarbo	ns
support, ^c Including small amounts of alcohols, ^d Only vapor phase, ^e Olefin to paraffin (O/P) ratio of C ₂ -C ₄ hydrocarbons	^f Chain growth probability of C ₂ –C ₇ hydrocarbons determined by Anderson-Schulz-Flory (ASF) distribution equation	C ₇ hydrocarbc	ins determ	ined by Ar	nderson-Sc	shulz-Flory (ASF) distribı	ution equ	ation	

39

The effect of support material over Fe monometallic catalyst on CO₂ and selectivity are presented in Table 3.1. The γ -Al₂O₃ (PURALOX TH 100/150), TiO₂ (catalyst support, Alfa Aesar) and TiO₂ (AEROXIDE P 25, Evonik) were chosen as support material for Fe monometallic catalyst. Fe/ γ -Al₂O₃ catalyst gave slightly higher CO₂ conversion and C₂₊ selectivity while gave significantly higher STY of CH₄ compare with TiO₂ (P 25) support. However, when using TiO₂ from Alfa Aesar as a support, it did not show any activity although the BET surface area (Table 3.2) of this TiO₂ is significant higher than TiO₂ (P 25). It should be noted that the TiO₂ (Alfa Aesar) synthesized *via* wet process (using sulfur-containing precursor), still contained small amount of sulfur, unlike TiO₂ (AEROXIDE P 25, Evonik) which was synthesized *via* dry process. When using TiO₂ (Alfa Aesar) as support of Fe catalyst, the inactive phenomena possibly occur because the sulfur can cause the poisoning on Fe catalyst [143]. This suggested that the activity of the Fe monometallic catalysts could depend on the metal-support interaction and surface chemical properties, rather than the textural properties of support materials.

3.4 Monometallic catalysts

จุหาลงกรณ์มหาวิทยาลัย

Cμία λι ομογορή Πλανεροιτν

The CO₂ hydrogenation over TiO₂-supported monometallic catalysts (Fe, Co and Cu) was performed in a fixed-bed flow reactor system at 573 K and 1.1 MPa. The steady-state activity data was obtained after 6-8 h on stream for all catalysts as shown in Fig. 3.3. The steady-state activities and selectivities at 16-18 h on stream of monometallic catalysts were chosen for evaluating the catalytic activity, which are presented in Table 3.1. Among from monometallic catalysts tested here, only Fe/TiO₂ catalyst produced a significant amount of C₂₊ hydrocarbons (selectivity = 41 mol%) as well as high chain growth probability (α =0.39). Riedel *et al.* [119] suggested that the iron-carbide could be an active phase for the FTS leading to C₂₊ hydrocarbon formation over Fe-based catalysts, and this carbide species was a prerequisite for carbon-carbon bond formation. Co/TiO₂ showed a much higher CO₂ conversion (55%) than Fe catalyst (16%), but CH₄ was the dominant product due to the high hydrogenation ability of Co. Such ability of Co/Al₂O₃ catalyst was reported by Satthawong *et al.* [17]. On the other hand, Cu/TiO₂ exhibited a low activity compared with Fe and Co catalysts and CO was the primary product as expected because Cu is well-known as an active metal for reverse water-gas shift (RWGS) [33, 144, 145]. Based on the activity of metal carbides for CO₂ hydrogenation, a transition metal (Fe, Co or Ni) carbide can cleave the C-O bonds, thereby leading to hydrocarbon formation in the subsequent hydrogenation, whereas Cu carbide does not break these bonds [146]. It should be noted that the active phases of the TiO₂-supported monometallic catalysts remain to be clarified.

Figure 3.3 Catalytic stability of Fe/TiO₂ at time on stream (TOS). Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) $g^{-1} h^{-1}$.

3.5 K-promoted monometallic catalysts

To further improve CO₂ hydrogenation performance of heterogeneous catalysts for CO₂ hydrogenation to hydrocarbons. The addition of electronic or structural promoters have been investigated, K as a promoter of Fe-based catalysts can promote the selectivity to olefin, long chain hydrocarbons, and also suppress the methane formation [11, 25, 122, 147]. The effect of K promoter addition (K/Fe= 0.1 atom atom ¹) to Fe monometallic catalysts is tabulated in Table.3.1. The results indicated that K significantly suppressed CH₄ STY, while CO STY was increased. This suggested that K could suppress the methanation reaction. Moreover, when the amount of K/Fe atomic ratio was further increased to 0.3, the CH₄ STY was further suppressed and led to higher chain growth probability (α) and olefin to paraffin (O/P) ratio. Such dependence reported by Choi et al. suggested that the addition of K could decrease H₂ chemisorption capacity, while it enhanced CO₂ adsorption on catalyst surface [148]. For clarity, the chromatograms of gas-phase hydrocarbon product with α and O/P are shown in Fig. 3.4. Hence, K promoter acts a different role compared to that by the active metal including Fe, Co and Cu, which enhanced the hydrogen coverage. To clarify the role of K on the catalyst surface, the characterization of adsorbed species will be investigated.

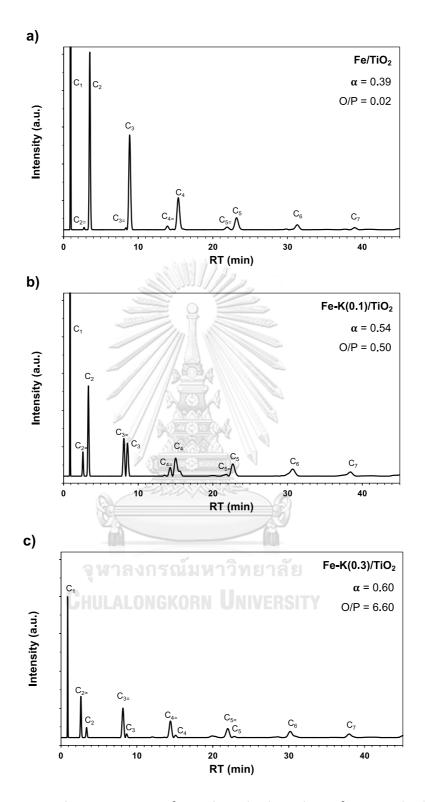


Figure 3.4 GC-FID chromatograms of gas-phase hydrocarbons from CO₂ hydrogenation over Fe-K(X)/TiO₂ with different K/Fe atomic ratio. (a) X=0, (b) X=0.1 and (c) X=0.3.

3.6 Textural properties of monometallic catalysts

A correlation of physical properties to the catalytic activity of the monometallic catalysts has been investigated using the N₂ adsorption-desorption analyses. The textural properties of support materials and all monometallic catalysts are summarized in Table. 3.2. According to the catalytic activity results of TiO₂-supported monometallic catalysts in Table 3.1, it suggested that there is no relation between textural properties of the catalysts and CO₂ conversion. The BET surface area (SA) of the calcined Fe/TiO₂ catalysts was close to that of the bare TiO₂ (P 25) support (44 m² g⁻¹), while SA of the monometallic Co/TiO₂ and Cu/TiO₂ catalysts was lower (36 and 35 m² g⁻¹, respectively). Upon loading the metal oxides, the pore volume (PV) and average pore diameter (D_p) were about 34% and 18% lower, respectively compared with bare TiO₂ (P 25), suggesting that the small metal oxide particles could fill in the pores of TiO₂ support.

Catalyst ^a	จุฬาลงกรณ์ม ^{SA^bอิทยาลัย Chulalongkor^(m²g-1)NIVERS}	PV ^c (cm ³ g ⁻¹)	D _p ^d (nm)
Al ₂ O ₃ ^e	139	1.03	24
TiO ₂ (Alfa) ^f	112	0.34	11
TiO ₂ (P25) ^g	44	0.42	35
Fe/TiO ₂ (P25)	44	0.29	27
Co/TiO ₂ (P25)	36	0.26	28
Cu/TiO ₂ (P25)	35	0.28	30

Table 3.2 Physica	l properties of	TiO ₂ supported	monometallic	catalysts.
-------------------	-----------------	----------------------------	--------------	------------

^a Total metal loading = 15 wt% based on support, ^b BET surface area

^c BJH desorption cumulative pore volume, ^d BJH desorption average pore diameter

^e γ-Al₂O₃ (PURALOX TH 100/150, Sasol, ^f TiO₂ (Catalyst support, Alfa Aesar).

^g TiO₂ (AEROXIDE P25, Evonik)

CHAPTER IV

Fe-BASED BIMETALLIC CATALYSTS SUPPORTED ON TIO₂ FOR SELECTIVE CO₂ HYDROGENATION TO HYDROCARBONS

4.1 Introduction

Recently, the bimetallic promotion on the selective CO_2 hydrogenation to methanol using Pd-Cu catalysts [91] and to light hydrocarbons using Fe-based bimetallic catalysts [122, 123] have been reported. CO_2 hydrogenation to liquid fuels and highly value-added products remains a challenging research topic. For this purpose of promoter addition, such as K and La, on Fe-based catalysts, K significantly promoted the selectivity to olefinic products and suppressed the methane formation [11, 25, 122, 123] and La could enhance the selectivity of higher hydrocarbons in FTS [124] and CO_2 hydrogenation [125, 126]. In this work, a comparative study on the CO_2 hydrogenation activities and product selectivities of the titania-supported Fe-based bimetallic catalysts was carried out. The addition of a small amount of second metal (Co and Cu) on Fe showed the synergetic promotion on the CO_2 conversion and the space-time yields (STY) of hydrocarbon products. The incorporation of K and La as promoters can further improve the activity and product selectivity to higher hydrocarbons, indicating that the promoted Fe-based bimetallic catalysts are promising for CO_2 hydrogenation to higher hydrocarbons.

The aims of this work are to study the CO_2 hydrogenation to higher hydrocarbons (C_{5+}) over Fe-based bimetallic catalysts and to explore the synergetic effect of bimetallic catalysts. TiO₂-supported Fe-based bimetallic catalysts were synthesized and evaluated for CO_2 hydrogenation activity, wherein Co and Cu were selected as the second metals. The effect of promoters, K and La, was investigated as well by a comparative study with the unpromoted catalysts.

4.2 Characterization of TiO₂ supported Fe-based catalysts

4.2.1 Physical properties

The physical properties and crystalline structure parameters of calcined catalysts are summarized in Table 4.1. The BET surface area (SA) of the calcined Fe and Fe-Co (X = 0.1) catalysts (43-44 m² g⁻¹) was close to that of the bare TiO₂ support (44 m² g⁻¹), while SA of the Co-rich and Cu-rich Fe-M(0.5) catalysts was lower (36 and 37 m² g⁻¹, respectively). Upon loading the metal oxides, the pore volume (PV) and average pore diameter (D_p) were about 35% and 23% lower, respectively, suggesting that small metal oxide particles were dispersed inside the pores of TiO₂ support.

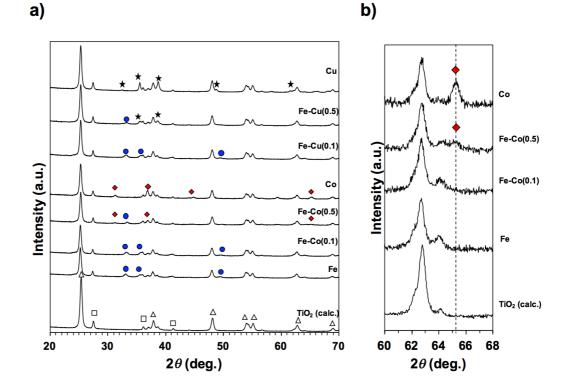
4.2.2 X-ray diffraction patterns

Figure. 4.1a presents the X-ray diffraction patterns of the calcined mono- and bimetallic catalysts, as well as the bare support as benchmark. The calcined Fe-Cu(0.1)/TiO₂ and Fe-Co(0.1)/TiO₂ showed the similar XRD patterns with the monometallic Fe catalyst, and the diffraction peaks of polycrystalline α -Fe₂O₃ [PDF #00-001-1053] were observed centered at 33.14, 35.56 and 49.35°. Only Cu and Co-rich bimetallic catalysts, Fe-Cu(0.5)/TiO₂ and Fe-Co(0.5)/TiO₂, showed the peaks of Cu and Co metal oxide, wherein the calcined Fe-Cu(0.5)/TiO₂ exhibited diffraction peaks at 35.55 and 38.60° corresponding to polycrystalline CuO [PDF #00-005-0661], while the calcined Fe-Co(0.5)/TiO₂ catalyst displayed diffractions at 31.29, 36.86, and 65.28° corresponding to polycrystalline Co₃O₄ [PDF #00-042-1467]. As depicted in Fig. 4.1b, the magnified range (60-68°) clearly illustrates the existence of polycrystalline Co oxide. The crystallite size was determined by Scherrer equation and tabulated in Table 4.1. The polycrystalline Co oxide crystallite size of Fe-Co(0.5)/TiO₂ (19.4 nm) was larger

than that of the catalysts with lower Co loading. Besides, the SA of Fe-Co(0.5)/TiO₂ was lower than that of Fe-Co(0.1)/TiO₂, suggesting that Co oxide particles are larger in the former. The average size of the α -Fe₂O₃ phase in the calcined Fe-Co(0.5)/TiO₂ was 19.2 nm which was larger than those of Fe alone and Fe-rich bimetallic (i.e., Fe-Co(X) and Fe-Cu(X), X ≤ 0.1) catalysts (e.g., 13.9-14.9 nm).

	¢ U	70	C	Crystalline phase	e phase	(سما) ^م مجامع المربين الحك المربي الحك (لم) المربين الحك المربين الحك المربي الحك المرابي المرابي المرابي الحك المربي الحك المربي الحك المرابي الحك المرابي الحك المرابي الحك المرابي الحك المرابي المرابي الحك المرابي الم المرابي المرابي المرابي المرابي المرابي الم	(Å)			lito cito e	()
Catalyst ^a	-1)	$\Gamma ^{-1}$	d D D	comp. ^c (wt%)	(wt%)	במנוורה שמומ		Let vol. (λ^3)	שופועור	וווב אדם	
				Anatase	Rutile	a = b	υ		Fe ₂ O ₃	Fe ₂ O ₃ Co ₃ O ₄	CuO
TiO ₂ ^b	44	0.42	35	85	15	3.784	9.384	134.4		1	.
Fe/TiO ₂	44	0.29	27	83	17	3.789	9.622	138.1	14.9	I	ı
Fe-Co(0.1)/TiO ₂	43	0.29	27	83	17	3.787	9.585	137.5	13.9	N/A	ı
Fe-Co(0.5)/TiO ₂	36	0.27	28	82	18	3.786	9.558	137.0	19.2	19.4	,
Co/TiO ₂	36	0.26	28	83	17	3.786	9.564	137.1	ı	22.7	ı
Fe-Cu(0.1)/TiO ₂	37	0.29	32	83	17	3.786	9.502	136.2	13.9	ı	N/A
Fe-Cu(0.5)/TiO ₂	37	0.29	31	83	17	3.786	9.559	137.0	13.2	ı	18.1
Cu/TiO ₂	35	0.28	30	83	17	3.784	9.528	136.4	I	I	32.7
^a Total metal loading (Co/Cu+Fe) = 15 wt% based on support.	Co/Cu+Fe)	i = 15 wt%	based o	on support.							

Table 4.1 Physical properties and crystalline structure of TiO $_2$ supported catalysts


 $^{\rm b}$ AEROXIDE TiO_2 P 25, Evonik calcined at 723 K for 4 h.

^c Determined from the relative XRD diffractions corresponding to anatase (101) and rutile (110) reflections.

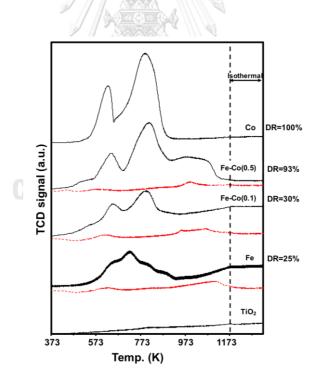
^d Estimated from the Bragg's law of anatase reflections.

 $^{\rm e}$ Estimated from the Scherrer equation of corrected 2 θ position.

From Table 4.1, the mass fractions of anatase and rutile for all catalysts were similar to those of the bare TiO₂, indicating that the TiO₂ phase exists regardless of the catalyst preparation. The lattice parameter (*a*, *b*, and *c*) and cell volume of anatase unit cell generally increased with increasing metal loading on the TiO₂ support compared with the bare support. It is known that the ionic radius of Fe³⁺, Co³⁺, Co²⁺, and Cu²⁺ (0.645, 0.610, 0.745 and 0.650 Å, respectively) are larger than that of Ti⁴⁺ (0.605 Å) [149]. Thus, the changes of the anatase unit cell implies that the loaded metals were incorporated into the anatase crystalline structure, thereof leading to the unit cell distortion.

Figure 4.1 XRD patterns of TiO₂ support (P25, Evonik), TiO₂-supported monometallic, Fe-Co and Fe-Cu bimetallic catalysts in the 2 θ ranges (a) between 20 and 70° and (b) between 60 and 68°, Δ TiO₂ (anatase), \Box TiO₂ (rutile), • α -Fe₂O₃, • Co₃O₄ and * CuO.

4.3 Reducibility of supported metal oxides


The TPR profiles of the calcined Fe-Co/TiO₂ and Fe-Cu/TiO₂ catalysts with various M/(M+Fe) atomic ratios, along with the degree of reduction (DR) of the supported metal oxides are illustrated in Fig. 4.2. The DR of the supported metal oxides was defined as the ratio of the measured H₂ consumption from TPR experiment to the theoretical H₂ consumption. The measured H₂ consumption was determined by integrating the whole TPR profile, while the theoretical H₂ consumption was calculated from the amount of H₂ required for the reduction of the supported Fe and Co oxides to their metallic states according to the stoichiometry of the Eq. 5.1 and 5.2. The calibration of the H₂ consumption was done by the reduction of Ag₂O powder.

$$Fe_2O_3 + 3H_2 \iff 2Fe^0 + 3H_2O$$
 (5.1)

$$Co_3O_4 + 4H_2 \iff 3Co^0 + 4H_2O$$
 (5.2)

$$CuO + H_2 \iff Cu^0 + H_2O$$
 (5.3)

A calcined TiO₂ support material was also tested, and barely showed any major reduction peak. For the Fe/TiO₂ catalyst, a broad peak with several shoulders was observed at 659, 728, and 886 K, attributing to a stepwise reduction of Fe₂O₃ to Fe⁰ through Fe₃O₄ and FeO [150-152]. The Co/TiO₂ catalyst exhibited two peaks at 621 and 792 K relating to two different oxidation states, Co₃O₄ and CoO, of the cobalt [150, 151, 153]. The TPR profile of Fe/TiO₂ was significantly changed by Co addition. The peaks at 638 and 793 K were clearly observed and accompanied by a significant enhancement of the peak intensities, demonstrating a considerable improvement in total degree of reduction in the Fe-Co bimetallic catalysts from only 25% (Fe/TiO₂) to 93% (Fe-Co(0.5)/TiO₂). Noticeably, only Fe-Co(0.5)/TiO₂ catalyst showed a single broad peak centering at 925 K, suggesting the formation of Fe-rich Fe-Co alloy phase. Such similar peak was also reported by Duvenhage and Coville [151], suggesting the formation of stable and hardly reduced Fe-rich phase in the synthesized bimetallic catalyst. However, the peak of stable and hardly reduced did not appear for Fe-Cu(0.5)/TiO₂ catalyst as shown in Appendix F. Moreover, If the Fe/TiO₂ and Co/TiO₂ catalysts were prepared by physical mixing, the calculated DR for Fe-Co(0.1)/TiO₂ would be 30%, which was equal to the measured DR. However, the measured DR of Fe-Co(0.5)/TiO₂ catalyst was 93% which was much higher than those calculated DR (58%) suggesting that the supported metal oxides possibly become more reducible by the alloy formation of Fe-Co spinels [153]. The *in situ* H₂-TPR analysis of pre-reduced catalysts was also carried out for all Fe-containing catalysts, and the resultant profiles are shown as well in Fig. 4.2 (red line). Apparently, H₂-reduction peak was not observed for pre-reduced catalysts, implying that the Fe-based bimetallic catalysts could be reduced almost completely under this pretreatment condition.

Figure 4.2 Effect of combining Fe and Co on the H₂-TPR profiles of the calcined Fe-Co(X)/TiO₂ catalysts, (_____) calcined catalysts and (_____) pre-reduced catalysts.

4.4 CO₂ hydrogenation over Fe-based bimetallic catalysts

To enhance CO_2 hydrogenation activities for higher hydrocarbon production, Satthawong *et al.* and Wang *et al.* [17, 154] reported on the corporation of Co and Cu as a second metal to γ -Al₂O₃-supported Fe-based catalysts that found the synergetic promotion effect on CO_2 conversion and product selectivity of Fe-based bimetallic catalysts was observed. In this work, the TiO₂-supported Fe-based bimetallic catalysts (Fe-M; M = Co or Cu) with 15 wt% total metal loading (Fe + M, support weight basis) were tested and the results are shown in Table 4.2.

Figure. 4.3 showed the synergistic promotion effect of second metal addition to Fe-based catalysts with using both TiO₂ (present work) and γ -Al₂O₃ (previous works. [17, 154]) as support materials. Combining Fe with the second metal (Co or Cu) on TiO₂ can significantly improve the CO₂ conversion (from 16% to 33%) and enhance the space-time yields (STY) of higher hydrocarbons. It can be noted that the synergistic promotion of Fe and other metal combination can increase the C₂₊ hydrocarbons formation. However, comparing the promotion effect of Co and Cu over the Fe-based bimetallic catalyst, the Fe-Co exhibited much higher promotion effect on the activity than Fe-Cu due to the stronger hydrogenation ability of Co resulting in higher CH₄ and C₂₊ hydrocarbons formation. According to Satthawong *et al.* [122], tailoring the adsorbed hydrogen surface properties of catalyst is essential for enhancing the higher hydrocarbon formation. Hence, combining the second metal with Fe possibly changed the adsorption properties of catalyst surface and led to the synergistic promotion on the activity of Fe-based bimetallic catalysts.

To verify this idea, the Fe- M/TiO_2 bimetallic catalyst with difference M/(M+Fe) atomic ratios were tested and the CO₂ hydrogenation results are compared in Fig. 4.4. The product selectivities of both Fe-Co/TiO₂ and Fe-Cu/TiO₂ catalysts changed with

I adle 4.2 Activities and selectivities		u ₂ supp	ortea ra	e-basec	DIMER	aulo cata	INSTS TO	or 110 ₂ supported re-based dimetatic catalysts for CO_2 hydrogenation	Irogena	non	
Catalvet ^b		Prod.	Prod. selec. (C-mol%)	-mol%)		STY (µ	STY (µ mol g ⁻¹ s	S ⁻¹)		₀ O/D	ک ^ر
Catatyor	CO2 COIN. (70)	CH ₄	$C_2^{-C_4}$	C ₅₊ ^c	00	CH4	C ₂ -C ₄	C ₅ -C ₇ d	8	5	3
Fe	16.1	34	13	28	25	0.59	0.21	0.016	0.43	0.02	0.39
Fe-Co(0.1)	33.3	51	11	32	ý	1.43	0.38	0.012	0.26	0.00	0.30
Fe-Co(0.5)	18.4	72	20	3	Ŋ	1.56	0.17	0.005	0.09	0.03	0.26
Fe-Cu(0.1)	19.5	27	11	39	23	09.0	0.23	0.023	0.46	0.10	0.41
Fe-Cu(0.5)	19.7	21	26	15	38	0.47	0.23	0.022	0.76	0.02	0.43
Fe-Co(0.1)-K(0.1)	23.9	23	11	35	31	0.56	0.29	0.026	0.78	0.20	0.44
Fe-Co(0.1)-K(0.3)	21.2	6	9	31	54	0.16	0.13	0.020	1.25	4.06	0.50
Fe-Cu(0.1)-K(0.1)	19.9	12	Ø	31	49	0.27	0.17	0.028	0.98	0.38	0.52
Fe-Cu(0.1)-K(0.3)	20.8	5	6	30	62	0.10	0.08	0.019	1.35	4.91	0.57
Fe-Cu(0.1)-La(0.1)	22.5	25	12	38	25	0.61	0.28	0.033	0.61	0.05	0.44
Fe-Cu(0.1)-K(0.1)-La(0.1)	23.1	13	6	45	33	0.31	0.21	0.043	0.76	0.52	0.56
Fe-Co(0.1)-K(0.1)-La(0.1)	21.9	18	10	30	42	0.40	0.23	0.031	0.98	0.35	0.49
$^{\rm a}$ Reaction conditions: 573 K, 1.1 MPa, C $^{\rm c}$ Including small amounts of alcohols,	MPa, GHSV = 3600 mL (STP) g^{-1} h ⁻¹ , ^b Total metal loading (Co/Cu+Fe) = 15 wt% based on support, shols, ^d Only vapor phase, ^e Olefin to paraffin (O/P) ratio of $C_{z}C_{4}$ hydrocarbons,	(STP) g ⁻¹ h se, ^e Olefi	-1, ^b Total n to paraf	metal loa fin (O/P) r	ding (Co/C atio of $C_{2^{-}}$	lu+Fe) = 15 C₄ hydroca	i wt% base rbons,	oddns uo pə	'n,		

Table 4.2 Activities and selectivities of TiO $_{\circ}$ subnorted Ee-based himetallic catalysts for CO $_{\circ}$ hydrosenation a

53

^f Chain growth probability of C₂-C₇ hydrocarbons determined by Anderson-Schulz-Flory (ASF) distribution equation.

the varying bimetallic composition and both catalysts gave the highest C_{2+} hydrocarbons selectivity at M/(M+Fe) atomic ratio of 0.1 (43 and 50%, respectively) which was also higher than the monometallic Fe catalyst (41%). A further Co addition promoted CH₄ formation to a dominant product due to the stronger hydrogenation ability of Co (Fig. 4.4a). Surprisingly, the Fe-Co(0.5) catalyst showed only 18% of CO₂ conversion, which was lower than other Fe-Co bimetallic catalysts . However, such negative effect was not observed for Al₂O₃-supported Fe-Co(0.5) catalyst (Fig. 4.3). According to the lattice parameters (Table 4.1), the Fe and Co were possibly present in the form of Fe-rich alloy in Fe-Co(0.5) as evidenced from the distortion of crystallite structure, resulting in a smaller cell volume of Fe-Co(0.5) in comparison to that of Fe-Co(0.1).

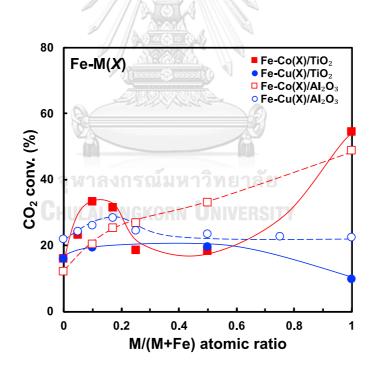


Figure 4.3 Effect of (red square) Co/(Co+Fe) atomic ratio and (blue circle) Cu/(Cu+Fe) atomic ratio on CO₂ conversion over Fe-M(X)/TiO₂ catalysts (present work) and Fe-M(X)/Al₂O₃ (from ref. [17, 154]). Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) g⁻¹ h⁻¹.

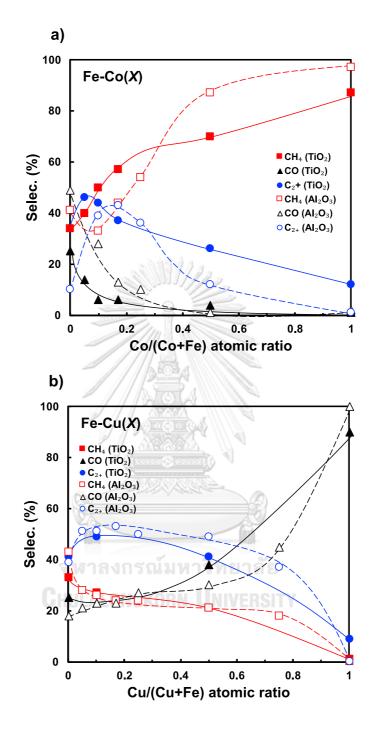


Figure 4.4 Effect of (a) Co/(Co+Fe) atomic ratio and (b) Cu/(Cu+Fe) atomic ratio on CH_4 , C_{2+} hydrocarbons, and CO product selectivities over Fe-M(X)/TiO₂ (present work) and Fe-M(X)/Al₂O₃ (from ref. [17, 154]) catalysts. Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) g⁻¹ h⁻¹.

As aforementioned, the H₂-TPR profile of Fe-Co(0.5)/TiO₂ catalyst exhibited a reduction peak at 925 K (Fig. 4.2), relevant to alloy phase which was difficult to be reduced. However, this catalyst was reduced almost completely under the pre-treatment condition. Thus, the low activity of Fe-Co(0.5)/TiO₂ was possibly ascribed to the Fe-rich alloy phase which was not quite active compared with the catalysts at other bimetallic composition.

On the other hand, adding more Cu into Fe evidently enhanced the RWGS reaction which exhibited a favorable production towards CO (Fig. 4.4b). However, at the same M/(M+Fe) atomic ratio of 0.1, the Fe-Cu(0.1) catalyst gave C₅-C₇ hydrocarbons STY almost 1-fold higher than Fe-Co(0.1)/TiO₂ catalyst (Table 4.2). Such high increase in C₅-C₇ suggests that more CO in the system possibly enhanced the chance of chain-growth reaction *via* FTS.

From Fig. 4.3 and 4.4 regarding to the support materials, although the surface area of γ -Al₂O₃ (139 m² g⁻¹) is much higher than that of TiO₂ (44 m² g⁻¹) support, both support materials exhibited the similar promotion effect on both CO₂ conversion and product selectivity of supported Fe-based bimetallic catalysts. The γ -Al₂O₃ supported Fe-based bimetallic catalysts (Fe-Co/Al₂O₃ and Fe-Cu/Al₂O₃) gave highest C₂₊ hydrocarbons selectivity at M/(M+Fe) atomic ratio of 0.17 (44 and 53%, respectively). On the other hand, TiO₂ supported Fe-based bimetallic catalysts (Fe-Co/TiO₂ and Fe-Cu/TiO₂) have highest C₂₊ selectivity at 0.10 atomic ratio (43 and 50%, respectively). However, at high Fe-Co atomic ratio of 0.5, TiO₂ supported catalysts could maintain higher C₂₊ hydrocarbons selectivity (23%) than γ -Al₂O₃ and TiO₂ support properties. The first reason is that the CoAl₂O₄ spinel structure is easily formed on Co/Al₂O₃ rather than TiO₂ support. The other reason is that the acid sites on Al₂O₃-supported catalysts may facilitate carbon deposition [155]. However, the properties of support, Al₂O₃ and TiO₂, has less influence than the combining transition metal as active phase or active site(s) of the catalysts for the catalytic CO_2 hydrogenation.

The addition of a small amount of second metal (Co or Cu) to Fe catalyst could, upon reduction, induce the formation of alloy which modify the adsorption and activation of CO₂ and H₂, alter the reaction pathways and thus change the selectivity to higher hydrocarbons [122]. The DFT studies by Xiaowa Nie *et al.* [121, 156] indicate that doping second metal such as Cu to Fe can alter the surface properties of the catalyst, alter the relative kinetic barriers of different reaction pathways and lower the kinetic barrier of the rate-determining step; thus bimetallic Fe-Cu enhances CO₂ conversion by reducing the kinetic barriers, and alters the selectivity preference to more valuable C₂ products from CH₄ on mono-metallic Fe surface. The alloy effect may include changes in surface structure and binding energies for CO₂ and H₂ and the reaction intermediates, thus the alloy effect could involve both electronic and geometric factors on surface.

CHULALONGKORN UNIVERSITY

4.5 CO₂ hydrogenation over K promoted Fe-based bimetallic catalyst

Time-on-stream (TOS) performance of promoted Fe-based bimetallic catalysts for CO₂ conversion and product selectivity are illustrated in Fig. 4.5 as examples. From the initial increase in CO₂ conversion with time on stream for Fe-Co(0.1)-K(0.1)/TiO₂ in the first 4 h, it appears the *in situ* activation is required for this catalyst which includes but is not limited to reduction of oxides of Fe and Co. On the other hand, the *in situ* activation is not really needed for the Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ catalyst. Fe-M/TiO₂ showed relatively stable CO₂ conversion and selectivities after 6-8 h on stream. Although CO₂ conversion with the catalysts slightly decreased with TOS, the decreasing rates were less than 0.3% per hour at 16-18 h on stream.

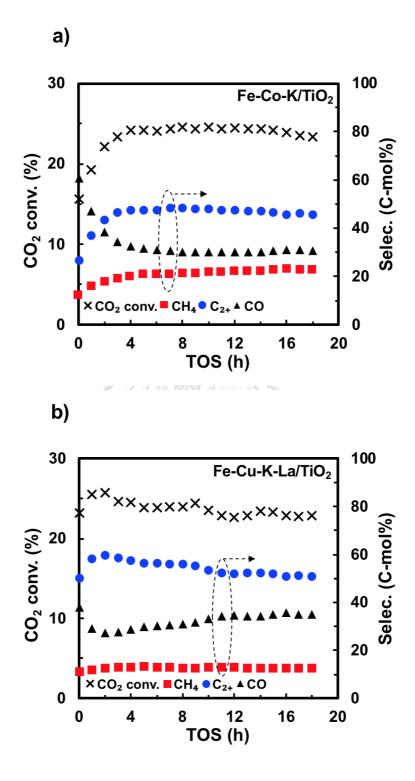
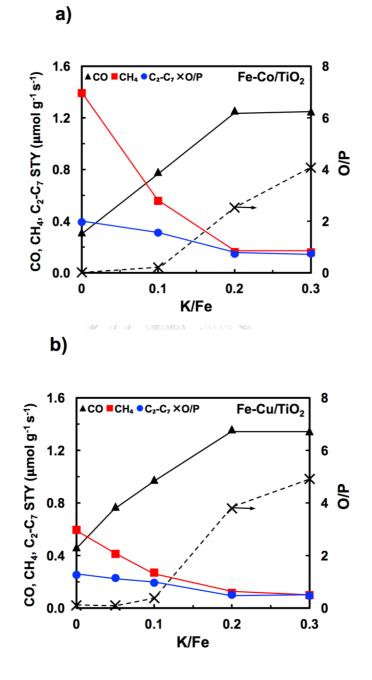



Figure 4.5 Catalytic stability of (a) Fe-Co(0.1)-K(0.1)/TiO₂ and (b) Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ at time on stream (TOS). Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) g⁻¹ h⁻¹.

The performance of Fe-M(0.1)/TiO₂ catalysts at various K/Fe atomic ratios was also studied, and the corresponding results are shown in Fig. 4.6a (Fe-Co(0.1)-K(Y)/TiO₂) and Fig. 4.6b (Fe-Cu(0.1)-K(Y)/TiO₂). For comparison, all Fe-based catalysts were incorporated with K, and the K/Fe atomic ratio was initially fixed at 0.1 and 0.3 (Table 4.2). The addition of K to the metal with an atomic ratio of 0.1 can suppress the CH_4 formation and promote the C₅₊ hydrocarbons STY. Both K promoted Fe-Co/TiO₂ and Fe-Cu/TiO₂ catalysts exhibited the similar trends on STY of CH₄ and C₂-C₇ hydrocarbons and olefin to paraffin ratio of C_2 - C_4 products (O/P). The K addition increased the light olefin content (O/P of C2-C4 hydrocarbons) and improved the chain growth probability of hydrocarbons as evidenced from the increased lpha value. For clarity, the chromatograms of gas-phase hydrocarbon product over Fe-Cu-K(X)/TiO₂ catalysts with lpha and O/P value are shown in Appendix G. This dependence suggests that, the presence of K can suppress the methanation and olefin hydrogenation. On the other hand, a further increase of K/Fe up to 0.3 on both catalysts reduced the activity towards the hydrocarbons formation (decrease in CH₄, C₂-C₄ and C₅-C₇ STY) and gave more CO (Table 4.2). Such decreased performance suggests that K could covered the active metal of the catalyst on TiO_2 support. The chemisorption property towards CO_2 and H₂ over K-promoted Fe catalysts has been reported that the K addition could reduce the H₂ adsorption capacity of Fe-based catalyst while enhancing CO₂ adsorption [119, 123, 147]. The K addition plays a different role compared to that of the second metal added to Fe. K promoter is expected to enhance CO₂ chemisorption and suppress H_2 coverage on surface.

Although, the K-promoted catalysts gave a slightly lower CO_2 conversion than unpromoted ones, the promoted catalyst exhibited high selectivity towards higher hydrocarbons especially C_{5+} and lower methane selectivity. From the value-added product point of view, the lowest methane selectivity is desired for liquid-fuel production via CO₂ hydrogenation [125].

Figure 4.6 STY of CH₄ and C₂-C₇ products, and olefin to paraffin ratio (O/P) of C₂-C₄ products over (a) Fe-Co(0.1)-K(Y)/TiO₂ and (b) Fe-Cu(0.1)-K(Y)/TiO₂ catalysts at various K/Fe atomic ratios. Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) g⁻¹ h⁻¹.

4.6 CO₂ hydrogenation over La promoted Fe-based bimetallic catalyst

The performance of TiO₂-supported Fe bimetallic catalysts with La addition was also investigated. For comparison, the M/(M+Fe) and K/Fe atomic ratio of all bimetallic catalysts were kept constant at 0.1 atom atom⁻¹ as well as the La/Fe atomic ratio as presented in Table 4.2. Among the K-promoted bimetallic catalysts, the La-loaded Fe-Cu catalyst showed the maximum values of both C₅₊ selectivity (45%) and C₅-C₇ STY (0.043 μ mol g⁻¹ s⁻¹). In comparison to both K-promoted and unpromoted Fe-Cu bimetallic catalysts, when La was added, the C₅-C₇ STY was improved to 0.033 and 0.043 μ mol g⁻¹ s⁻¹, respectively, which were almost 2-fold higher than those on corresponding catalysts with no La addition (0.023 and 0.028 μ mol g⁻¹ s⁻¹, respectively). However, this promoting effect of La was not observed on Fe-Co-K-La/TiO₂ catalyst. Due to the positive effect of La on the higher hydrocarbons synthesis, a series of Laloaded Fe-Cu(0.1)-K(0.05) catalysts were tested, and the corresponding activity performance was depicted in Fig. 4.7.

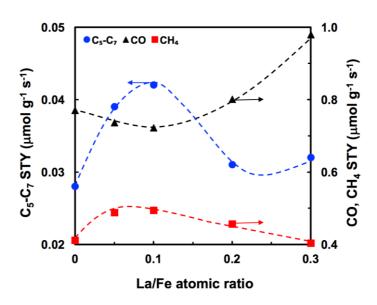
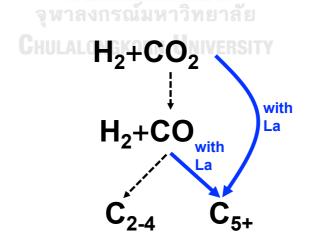



Figure 4.7 STY of C₅-C₇, CH₄ and CO products over Fe-Co(0.1)-K(0.05)-La(Z)/TiO₂ catalysts at various La/Fe atomic ratios. Reaction conditions: 573 K, 1.1 MPa, GHSV=3600 mL (STP) g⁻¹ h⁻¹.

The La addition clearly showed a volcano-shape trend on the C_5 - C_7 formation along with the varied La/Fe atomic ratio, and the maximum C₅-C₇ STY was achieved at La/Fe of 0.1 atom atom⁻¹. However, the CO formation revealed a reverse trend and reached the minimum CO STY at La/Fe=0.1 atom atom⁻¹. Such opposite behavior suggested that CO was likely to contribute to the synthesis of higher hydrocarbons via CO-FTS route and/or the CO_2 was likely to directly convert to C_{5+} higher hydrocarbons at low La/Fe atomic ratio (La/Fe \leq 0.1 atom atom⁻¹) (see Fig. 4.8), while it hardly showed any influence of La/Fe atomic ratio on the CH₄ synthesis since the La-loaded catalyst exhibited almost identical STY and selectivity of CH4 as the non-La addition catalyst (see Table 4.2). This similar improvement on C₅₊ yield and selectivity when adding La on Fe-K/La-Al₂O₃ catalyst was also reported by Nam et al. [126], suggesting that La could enhance the in situ iron-carbide species during the CO₂ hydrogenation reaction. Among the varied composition of La-loaded Fe-Cu-K/TiO₂ catalyst, the Fe-Cu(0.1)-K(0.1)-La(0.1) exhibited the highest STY and C₅-C₇ selectivity with a low amount of CH₄. Thus, such performance makes Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ catalyst a promising catalyst for CO₂ hydrogenation to liquid-fuels.

Figure 4.8 Schematic illustration of proposed reaction route of Fe-Cu-K/TiO₂ catalyst with La addition.

4.7 Liquid hydrocarbon products

The obtained liquid products from CO₂ hydrogenation was also analyzed using the Gas Chromatography-Mass Spectrometry (GC/MS). Figures 4.9 illustrates the total ion chromatograms of liquid products from CO₂ hydrogenation over Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ catalyst. The hexadecane (C₁₆H₃₄) was used for extracting the hydrocarbon products from the liquid products from CO₂ hydrogenation, therefore the mass spectrometer filament was turned off at retention time of hexadecane in order to protect the instrument.

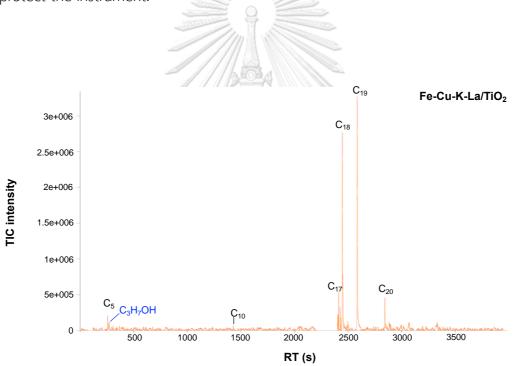


Figure 4.9 GC/MS total ion chromatogram of liquid products from CO_2 hydrogenation over Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ catalyst.

According to the chromatogram (Fig. 4.9), the linear hydrocarbon products mainly from octadecane ($C_{18}H_{38}$) to icosane ($C_{20}H_{42}$) were observed in the liquid product. Moreover, small amount of alcohols (mainly iso-propyl alcohol) was also observed in the liquid products from CO_2 hydrogenation.

CHAPTER V

HIGHER HYDROCARBONS SYNTHESIS FROM CO₂ HYDROGENATION OVER K- AND La-PROMOTED Fe-Cu/TiO₂ CATALYSTS

5.1 Introduction

Developing selective and active catalyst is crucial for CO_2 hydrogenation to higher hydrocarbons especially C_{5+} products. The synergetic effect of the titaniasupported Fe-based bimetallic catalysts for the CO_2 hydrogenation is being explored in this ongoing work. To further enhance the selectivity of the desired hydrocarbon products, the promoters can be added to tune the surface property and optimize the product distribution. Potassium as promoter of iron-based catalysts could increase the selectivity to olefin and suppress the methane formation [11, 25, 122, 123]. In addition, the addition of La as promoter could also enhance the selectivity of higher hydrocarbons in FTS [124] and CO_2 hydrogenation [125, 126].

In the present study, the TiO_2 -supported Fe-Cu bimetallic catalysts promoted by K and La were prepared and tested for CO_2 hydrogenation to higher hydrocarbon products. These catalysts were characterized by temperature-programmed desorption (TPD) and diffuse reflectance infrared Fourier transform (DRIFTS) to elucidate the influence of K and La promoters on adsorption properties of CO_2 and H_2 on the Fe-Cu/TiO₂ catalyst and their correlation with the product distribution.

The incorporation of K and La promoters could improve both CO_2 hydrogenation activity and selectivity to higher hydrocarbons of Fe-based catalyst. Characterization by TPD and DRIFTS showed that the presence of K promoter significantly decreased the adsorption of H_2 , which suppressed the CH₄ formation. On the other hand, La addition could promote the moderately adsorbed CO_2 species (mainly monodentate carbonate species), resulting the enhanced C_5 - C_7 selectivity. The simultaneous addition of La and K promoters would tailor the H and C coverage on the catalyst surface, which plays an important role in altering product distribution in CO_2 hydrogenation.

5.2 CO₂ hydrogenation over Fe-Cu-K-La/TiO₂ catalyst

CO₂ hydrogenation over TiO₂ supported Fe-Cu bimetallic catalysts with and without K-La promoter was performed in a fixed-bed reactor system at 573 K and 1.1 MPa. The steady-state activity and selectivity of catalysts (K/Fe atomic ratio of 0-0.3) were obtained at 15-16 h time on stream as shown in Table 5.1. Time-on-stream (TOS) performance of TiO₂ supported Fe-Cu bimetallic catalyst for CO₂ conversion and product selectivity are shown in Fig. 5.1 as examples. Fe-Cu(0.1)/TiO₂ and Fe-Cu(0.1)-K(0.1)/TiO₂ showed relatively stable CO₂ conversion and selectivities after 6-8 h on stream. CO₂ conversion of the catalysts slightly decreased with TOS, however, the decreasing rates were less than 0.5% per hour at 15-18 h on stream. From the initial relatively stable in CO₂ conversion with time on stream, it appears that the *in situ* activation is not really needed for the TiO₂ supported Fe-Cu bimetallic catalysts kept constant at low level and did not change with time on stream.

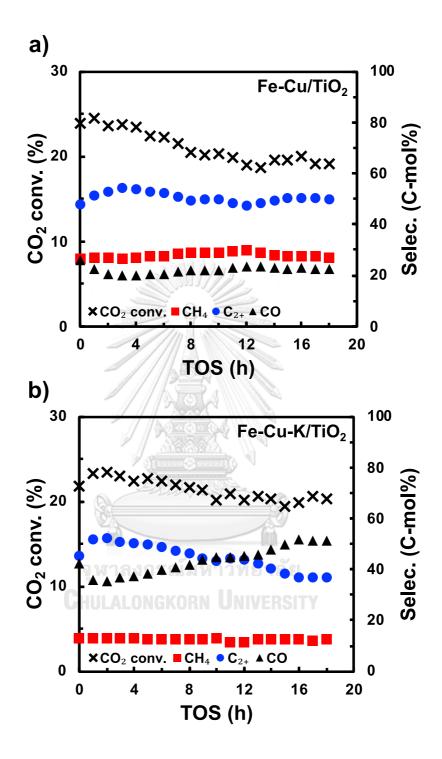


Figure 5.1 Catalytic stability of (a) Fe-Cu(0.1)/TiO₂ and (b) Fe-Cu(0.1)-K(0.1)/TiO₂ at time on stream (TOS). Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) $g^{-1} h^{-1}$.

Figure 5.2 illustrates the catalytic performance of K-promoted Fe-Cu bimetallic catalysts in the presence and absence of La promoter. Apparently, the addition of K promoter inhibited the CH₄ formation while promoted the CO STY suggesting that K promoter can suppress the methanation. The K addition showed a volcano-shaped trend on the C_5 - C_7 formation with the increasing K/Fe atomic ratio, and the maximum C_5-C_7 STY value was obtained at K/Fe of 0.1 at at⁻¹. The K addition also yielded the increased light olefin content (C_2-C_4) and improved the chain growth probability of hydrocarbons as evidenced from the increased olefin to paraffin ratio (O/P) and $oldsymbol{\alpha}$ value (Table 5.1). However, a further increase in K/Fe up to 0.3 on both catalysts, namely with and without La, reduced the activity towards the hydrocarbon formation, and gave more CO. Such performance suggests that K addition suppressed the hydrogen adsorption and hydrogenation activity of the catalyst; the catalyst has low surface area compared with the bare TiO₂ support (SA = 44 m² g⁻¹) suggesting that Koxide could cover the active site of the catalysts. The chemisorption properties of Kpromoted Fe catalysts towards CO_2 and H_2 reported in the literatures indicate that the K addition could tune the surface H/C ratio by decreasing H_2 chemisorption capacity of Fe-based catalyst while enhancing CO₂ adsorption [119, 123, 147]. To verify the validity of this interpretation for Fe-Cu-K/TiO₂ catalyst, the CO₂ and H₂ chemisorption analysis was conducted which is discussed in Section 5.5 and 5.6.

lable 5.1 The	activity of	Fe-Cu(0.1)-	-K(Y)-La(able 5.1 The activity of Fe-Cu(U.1)-K(Y)-La(Z)/ IIO2 catalyst										
q + 1+	SA^{c}	ьVd	D_{p}^{e}		Prod.	Prod. selec. (C-mol%)	(C-mol	(%)	STY (J	STY (μ mol g ⁻¹ s ⁻¹)	1 s ⁻¹)		^h O/ O	
Lalalyst	(m ² g ⁻¹)	g ⁻¹) (cm ³ g ⁻¹)	(mn)	CO2 COIIV. (%)	CH4	CH ₄ C ₂ -C ₄ C ₅₊ ^f	C ₅₊ f	0	CH4	C ₂ -C ₄	CH ₄ C ₂ -C ₄ C ₅ -C ₇ ^g	0	5	
TiO ₂	43.8	0.42	34.9	 т	I	ı	I	I	I	I	ı	I	I	
Fe-Cu	36.7	0.29	32.2	19.5	27	29	21	23	0.60	0.23	0.023	0.46	0.10	0
Fe-Cu-K	41.4	0.29	31.8	19.9	12	21	16	51	0.27	0.17	0.028	0.98	0.38	0
Fe-Cu-La	41.3	0.30	27.0	22.5	25	31	19	25	0.61	0.28	0.033	0.61	0.05	0
Fe-Cu-K-La	37.6	0.27	31.7	23.2	13	25	29	33	0.31	0.21	0.045	0.76	0.52	0
Fe-Cu/K-La ^j	34.7	0.31	29.6	23.4	13	26	26	35	0.34	0.23	0.043	0.80	0.56	0.
Fe-Cu/La/K ^j	41.3	0.33	34.6	24.2	15	28	25	32	0.40	0.25	0.043	0.75	0.37	0

0.44

0.52

0.10 0.41

ī

ัช

0.56

0.53

0.51

0.50

0.86

0.24 0.040

0.36

35

26

25

14

24.4

29.3

0.28

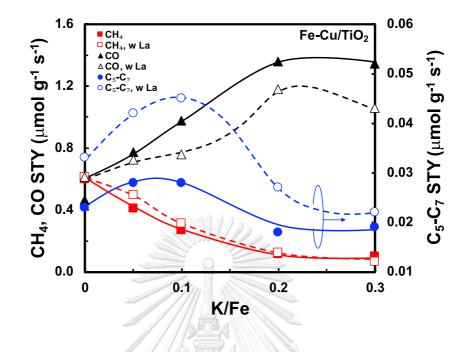
37.6

Fe-Cu/K/La^j

0.51

Table 5.1 The activity of Fe-Cu(0.1)-K(Y)-I a(Z)/TiO. ratalvet a

^a Reaction conditions: 573 K, 1.1 MPa, GHSV=3600 mL (STP) g^{-1} h⁻¹.


^b Total metal loading (Cu+Fe) = 15 wt% (support weight basis); Cu/(Cu+Fe) = K/Fe = La/Fe = 0.1 at at^{-1} .

² BET surface area ^d BJH desorption cumulative pore volume ^e BJH desorption average pore diameter

¹ Including small amounts of alcohols. ^g Only vapor phase. ^h Olefin to paraffin (O/P) ratio of C_2 - C_4 hydrocarbons.

Chain growth probability ($\mathbf{\alpha}$) of C₂-C₇ hydrocarbons determined by Anderson-Schulz-Flory (ASF) distribution equation (Appendix E).

¹ Prepared by sequential wet impregnation.

Figure 5.2 Effect of K/Fe atomic ratio on STYs of C₅-C₇, CH₄ and CO product over Fe-Cu(0.1)-K(Y)/TiO₂ and Fe-Cu(0.1)-K(Y)-La(0.1)/TiO₂ catalysts. Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) g⁻¹ h⁻¹.

The effect of La addition on the catalytic performance of TiO₂-supported Fe bimetallic catalysts was also investigated. For comparison, the La/Fe atomic ratio of all Fe-Cu(0.1)-K(0.1)/TiO₂ catalysts was fixed at 0.1 at at⁻¹, as well as the K/Fe atomic ratio. Among the promoted bimetallic catalysts, the La-loaded Fe-Cu-K catalyst showed the maximum values of both C₅₊ selectivity and STY of C₅-C₇ hydrocarbons (Table 5.1). In comparison to both K-promoted and unpromoted Fe-Cu bimetallic catalysts, the La addition increased the C₅-C₇ STY to 0.045 and 0.033 μ mol g⁻¹s⁻¹, respectively, which were about 1.5-fold of those corresponding catalysts without La addition (e.g., 0.028 and 0.023 μ mol g⁻¹s⁻¹, respectively). Based on the positive effect of La on the higher hydrocarbon synthesis, a series of La-loaded Fe-Cu-K catalysts were tested, and corresponding activity performance is depicted in Fig. 5.2 (dotted line). The

presence of La clearly led to a shift from CO formation toward higher hydrocarbons (C₅-C₇). Such La loading-dependent behavior suggests that CO is possibly contributed to the synthesis of higher hydrocarbons. La addition showed no influence on the CH₄ synthesis since the La-loaded catalyst yielded almost identical STY and selectivity of CH₄ as the Fe-Cu-K/TiO₂ catalyst. This La-induced catalyst improvement on C₅₊ productivity from CO₂ hydrogenation was also found on Fe-K/La-Al₂O₃ catalyst, wherein La could enhance the *in situ* iron-carbide species during the CO₂ hydrogenation reaction, which is believed as the active sites for the formation of higher hydrocarbons in FTS and CO₂ hydrogenation [126].

From CO₂ hydrogenation using various Fe-Cu-K-La/TiO₂ catalysts (Fig. 5.2), the Fe-Cu(0.1)-K(0.1)-La(0.1) gave the highest STY and selectivity to C_5 - C_7 hydrocarbons with the low amount of CH₄, a low value-added product. Thus, such efficient Fe-Cu-K-La/TiO₂ could be a promising catalyst for CO₂ hydrogenation to liquid-fuels. For comparison, a series of catalysts with similar composition was also papered by varied sequential wet impregnation including Fe-Cu/K/La, Fe-Cu/La/K, and Fe-Cu/K-La catalysts, activity performance of which is tabulated in Table 5.1. Apparently, these catalysts did not display any significant change of activity regarding to the different preparation sequence.

5.3 Plausible reaction pathways of CO₂ hydrogenation to hydrocarbons

The plausible reaction pathway of CO_2 hydrogenation over promoted and unpromoted Fe-Cu catalysts was also studied by varying the catalyst amount (0.002-0.600 g) at the same reaction conditions and the total gas flow rate was 12 mL (STP) min⁻¹. The obtained selectivity-conversion data for Fe-Cu(0.1)/TiO₂ and Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ are shown in Fig. 5.3a and 5.3b, respectively. At low CO₂ conversion for both catalysts, CO was more selective than hydrocarbons (CH₄ and C₂₊) suggesting that CO_2 was directly converted to CO *via* RWGS reaction. The extrapolated trend of C_{2+} selectivity approached zero at 0 % of CO_2 conversion on unpromoted catalyst, and the C_{2+} selectivity increased with decreasing CO formation. Such trend suggests that C_{2+} products are likely produced from CO through CO-FTS pathway. However, the RWGS reaction is not the only primary reaction of CO_2 conversion. Clearly, the extrapolated trend of CH_4 selectivity of unpromoted Fe-Cu catalyst did not reach zero at low CO_2 conversion (Fig. 5.3a) indicating the existence of the direct CO_2 hydrogenation to methane,

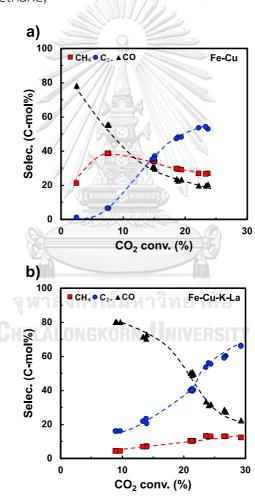


Figure 5.3 Selectivities to CH₄, CO and C₂₊ hydrocarbons versus CO₂ conversion over
(a) Fe-Cu(0.1)/TiO₂ and (b) Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ catalysts. Reaction conditions: 573 K, 1.1 MPa, W/F=0.07-6.25 g h mol⁻¹.

namely CO₂ methanation. On the other hand, the CO₂ methanation significantly shifted to CO methanation with the presence of K and La promoters, which was evidenced by the increase in CH₄ selectivity with decreasing CO selectivity in the conversion range examined (Fig. 5.3b). Therefore, the plausible reaction pathways of CO₂ hydrogenation to hydrocarbon products are proposed in Fig. 5.4, wherein we suggest that CO and CH₄ are the primary products from direct CO₂ conversion, while C₂₊ hydrocarbon products are possibly produced through CO-FTS. The presence of K and La promoters on TiO₂ supported Fe-Cu bimetallic catalysts could shift CO₂ methanation toward CO methanation. However, the evidence from our recent DFT study [121] indicates that doping Cu to Fe can alter the kinetically favorable path of CO₂ dissociation to CO* toward CO₂ hydrogenation to HCOO* intermediate. It should be noted that the direct CO₂ hydrogenation to C₂₊ hydrocarbons could not be excluded.

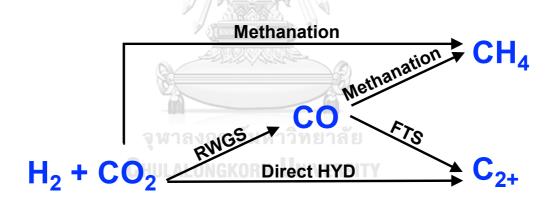


Figure 5.4 Proposed reaction pathways of CO_2 hydrogenation to hydrocarbon products.

5.4 Physical properties of prepared catalysts

The physical properties of calcined Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts are tabulated in Table 1. The BET surface area and pore volume of the calcined catalysts decreased with the loading of K and La promoter, while the average pore diameter was slightly reduced. The reduction in BET surface area and pore volume suggest that the small metal oxide particles are dispersed inside the pores of the TiO₂ support. Although, the K- and La-promoted Fe-Cu catalysts prepared by sequential impregnation method showed the difference in surface area and pore volume (< $\pm 10\%$), these catalysts did not display any significant change in activity performance. Therefore, considering the relatively low BET surface area of the prepared catalysts (36.7-41.3 m² g⁻¹), the catalytic activity is not dependent on these physical properties.

The surface morphology of prepared catalyst was studied by using TEM-EDS and the micrograph showed the metal dispersion of Fe/TiO₂, Fe-Cu/TiO₂ and Fe-Cu-K/TiO₂ catalysts (Fig. 5.5). The agglomeration of Fe cluster on TiO₂ support was obviously found in unpromoted Fe-based catalysts (Fe/TiO₂ and Fe-Cu/TiO₂) (Figs. 5.5d and 5.5e). For Fe-Cu-K/TiO₂ catalyst, the good dispersion Fe cluster was observed (with no agglomeration) (Fig. 5.5f). Therefore, adding K-promoter could enhance the Fe dispersion of the TiO₂ supported Fe-based catalyst.

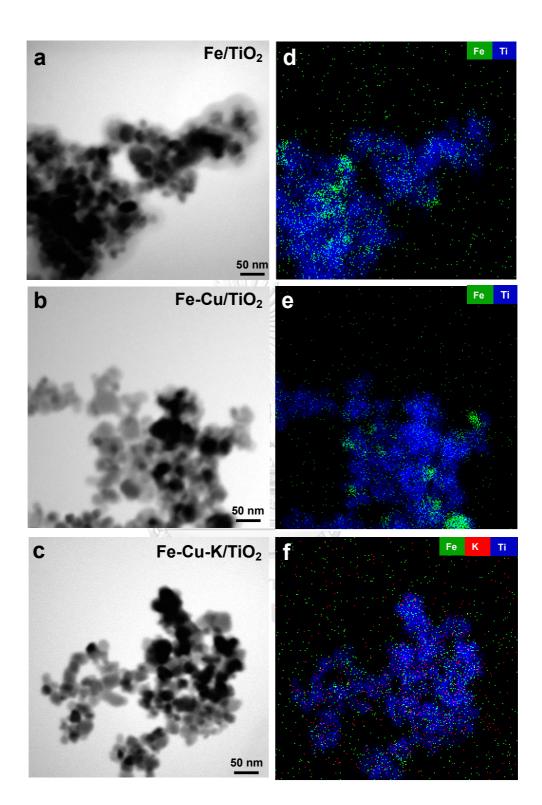
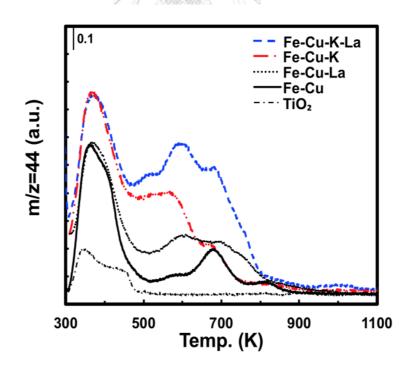


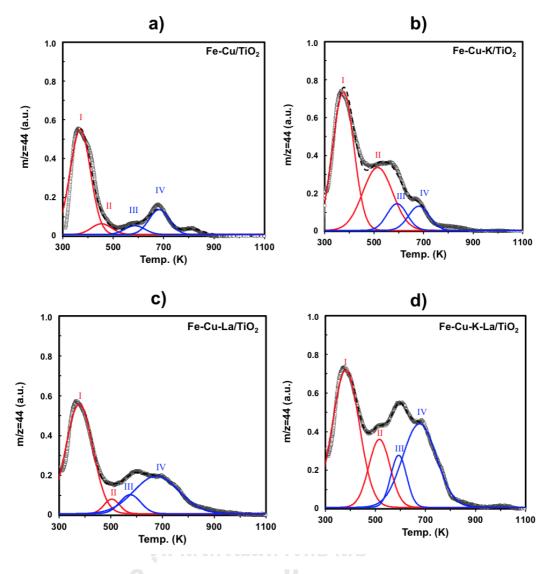
Figure 5.5 TEM images of calcined (a) Fe/TiO₂, (b) Fe-Cu(0.1)/TiO₂ and (c) Fe-Cu(0.1)- $K(0.1)/TiO_2$ catalysts and its corresponding TEM-EDS images (d-f), respectively.

5.5 CO₂ adsorption property

5.5.1 CO₂-TPD profiles

The CO₂ adsorption properties of reduced Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts were measured, and the resultant TPD profiles are presented in Fig. 5.6 For the bare TiO₂ support as a reference, only a small amount of CO₂ desorption was observed around 350-450 K, which CO₂ mainly originated from the monodentate carbonate and bicarbonate species formed on the TiO₂ surface observed from DRIFTS result [157, 158]. For reduced Fe-Cu catalyst, CO₂ desorption was clearly observed at 369 and 682 K. The signal of CO₂ desorption at low temperatures (350-450 K) was remarkably enhanced by the presence of a small amount of K (Y=0.1), while the desorption signals at higher temperatures (575-800 K) were clearly observed with the presence of La (Z=0.1).




Figure 5.6 Effect of K and La promoters on the CO_2 -TPD profiles of reduced Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts.

5.5.2 Deconvolution analysis of the CO₂-TPD profiles

To investigate quantitatively the effect of K and La promoter on the CO_2 adsorption properties quantitatively, the superimposed peaks in the CO_2 -TPD profiles of Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts were deconvoluted using Gaussian functions, as depicted in Fig. 5.7. The deconvolution analysis exhibited 4 main Gaussian peaks corresponding to 4 types of desorbed CO_2 species on the surface, wherein Type I+II (desorbed below 550 K) and III+IV (desorbed around 550–700 K) were denoted as weakly- and moderately-adsorbed CO_2 species, respectively. The quantities of different types of adsorbed CO_2 estimated by integrating the Gaussian peaks are presented in Table 5.2.

CHULALONGKORN UNIVERSITY

JHULALONGKORN UNIVERSITY

Figure 5.7 Deconvolution of CO₂-TPD profiles of the reduced (a) Fe-Cu(0.1)/TiO₂, (b) Fe-Cu(0.1)-K(0.1)/TiO₂, (c) Fe-Cu(0.1)-La(0.1)/TiO₂ and (d) Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ catalyst, (oooo) measured TPD profile, (_____) deconvoluted peaks and (------) summation of the deconvoluted peaks (I-IV).

	CO. Ad	CO. Adsorption						
	· · · · · · · · · · · · · · · · · · ·							
Cotol: sota	Type I		Type II		Type III		Type IV	
Latatyst	Temp.	Amount	Temp.	Amount	Temp.	Amount	Temp.	Amount
	(\mathbf{x})	$(\mu mol g^{-1})$	(\mathbf{Y})	$(\mu mol g^{-1})$	Ŷ	$(\mu mol g^{-1})$	(\mathbf{Y})	$(\mu mol g^{-1})$
Fe-Cu	369	45.9	453	4.8	586	3.9	682	10.9
Fe-Cu-K(0.1)	375	65.8	514	42.3	593	12.0	681	11.2
Fe-Cu-La(0.1)	378	9.09	504	4.6	575	8.1	677	34.7
Fe-Cu-K(0.1)-La(0.1)	381	80.9	516	31.6	593	18.0	676	61.6
^a Total metal loading (CLLEA) = 15 wt% (sumort weight basis): CLL(CLEA) = $K/Ea = 1 a/Ea = 0.1 at at^{-1}$	15 = (94)	Wt% (support	weight ha	eie). ريا /(ريا+Ee	- K/Fe -	= 1 0 = 0 1 =	at at ⁻¹	

Table 5.2 Amount of adsorbed CO₂ species over Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts.

^a Total metal loading (Cu+Fe) = 15 wt% (support weight basis); Cu/(Cu+Fe) = K/Fe = La/Fe = 0.1 at at⁻¹.

The K addition enhanced the amount of the weakly-adsorbed CO₂ species (Type I+II) significantly from 50.7 to 108.1 μ mol g⁻¹, which was almost doubled. The K addition also increased the CO₂ adsorption at 593 K (Type III) due to the formation of the bidentate carbonate species on potassium ferrite (K₂Fe₂O₄) [159-161]. On the other hand, the presence of La obviously promoted the moderately-adsorbed CO₂ species especially the Type IV (676-682 K). The amount of moderately-adsorbed CO₂ of La-promoted catalyst (Fe-Cu-La = 42.8 and Fe-Cu-K-La = 79.6 μ mol g⁻¹) was significantly higher than that of the catalyst without La (Fe-Cu = 14.8 and Fe-Cu-K = 23.2 μ mol g⁻¹). Regarding La addition, the amount of weakly-adsorbed CO₂ species of the Fe-Cu-La (65.2 μ mol g⁻¹) was slightly higher than that of the Fe-Cu catalyst (50.7 μ mol g⁻¹).

5.5.3 in situ DRIFTS analysis of reduced catalyst

The adsorption states of CO₂ on the reduced catalyst were also investigated by *in situ* DRIFTS analysis and the interferograms as a function of adsorption time are shown in Fig. 5.8. For the bare TiO₂ support (Fig. 5.8a), four IR bands appeared at 1570, 1430, 1398, and 1345 cm⁻¹, wherein the bands at 1570 and 1345 cm⁻¹ corresponded to monodentate carbonate, while the 1430 and 1398 cm⁻¹ to bicarbonate species [157, 158]. Similar IR bands of bicarbonate species were also observed in the reduced Fe-Cu catalyst (Fig. 5.8b). Additional IR bands at 1672, 1630, 1243, and 1221 cm⁻¹ were only observed in the spectra of K-promoted catalysts such as Fe-Cu-K and Fe-Cu-K-La (Fig. 5.8c and 5.8d, respectively). The bands at 1672 and 1243 cm⁻¹ were attributed to bidentate carbonate species which were adsorbed on K₂Fe₂O₄ surface, while the bands at 1630 and 1221 cm⁻¹ confirmed the presence of additional bicarbonate species [159-161]. In addition, the catalyst with the presence of La showed the additional IR bands at 1500, 1390, and 1362 cm⁻¹ indicating the existence of monodentate carbonate on the La_2O_3 surface would attribute to the formation of the moderately adsorbed CO_2 species since the monodentate carbonate is stable and can be decomposed at high temperature (above 673 K) [158, 162].

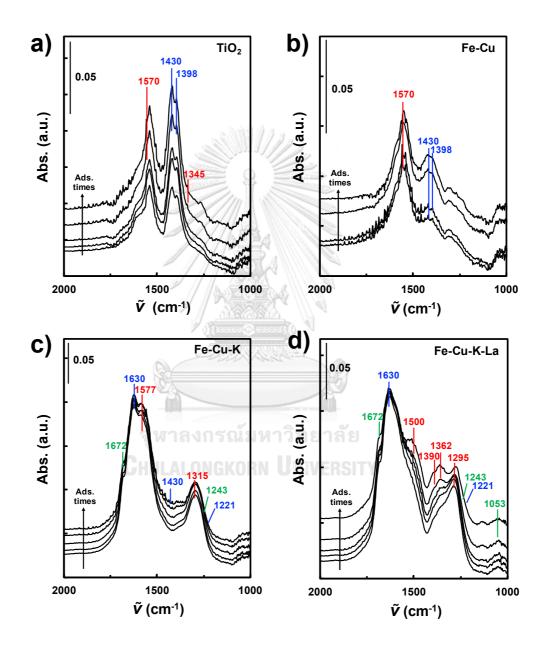


Figure 5.8 Change in the DRIFT spectra of CO₂ adsorbed on the (a) TiO₂ support, (b) reduced Fe-Cu(0.1)/TiO₂, (c) reduced Fe-Cu(0.1)-K(0.1)/TiO₂ and (d) Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ catalysts in the course of an adsorption time of (bottom to top) 3, 10, 20, 60 and 120 min.

5.6 H₂ adsorption property

The H₂ adsorption properties of reduced Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts were also studied by H₂-TPD, and the resultant profiles are depicted in Fig. 5.9. The bare TiO₂ support as reference did not show any adsorption towards H₂. The H₂-TPD profiles of unpromoted and promoted Fe-Cu catalysts mainly exhibited one peak around 400-500 K, which indicated that the existence of atomic adsorbed hydrogen species on the metal surface [163, 164] and quantities of adsorbed H₂ are presented in Table 5.3.

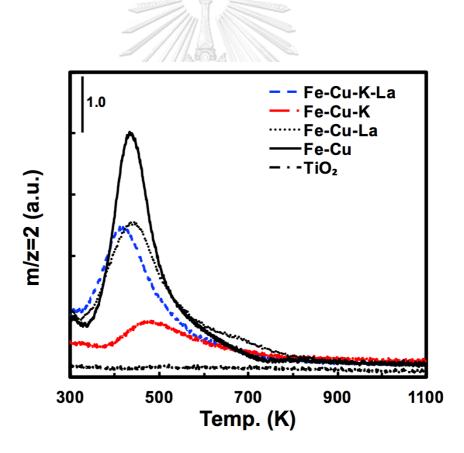


Figure 5.9 Effect of K and La promoters on the H_2 -TPD profiles of reduced Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts.

	H ₂ Adsorption	
Catalyst ^a	Temp.	Amount
	(К)	$(\mu mol g^{-1})$
Fe-Cu	432	559.4
Fe-Cu-K(0.1)	474	80.7
Fe-Cu-La(0.1)	436	525.2
Fe-Cu-K(0.1)-La(0.1)	415	438.9

Table 5.3 Amount of adsorbed H_2 species over Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts.

^a Total metal loading (Cu+Fe) = 15 wt% (support weight basis); Cu/(Cu+Fe) = K/Fe = La/Fe = 0.1 at at⁻¹.

For the presence of K promoter, the amount of weakly-adsorbed H₂ species was dramatically decreased from 559 μ mol g⁻¹ for Fe-Cu catalyst to only 81 μ mol g⁻¹ for Fe-Cu-K catalyst with 86% reduction. The Fe-Cu-K-La catalyst (439 μ mol g⁻¹) showed a similar reduction in the amount of weakly-adsorbed H₂ compared with the unpromoted catalyst with only 21% reduction. Such negative impact suggests that the presence of K promoter can reduce the weak H₂ adsorption on the catalyst surface, and this similar behavior was also reported for the K/Fe/Al₂O₃ and Fe-Co/K/Al₂O₃ catalysts [123, 147]. On the other hand, the addition of La showed only a slight suppression effect on the amount of H₂ adsorption. The K addition has a higher impact on the H₂ adsorption property than the La addition, which might further influence the methanation and hydrogenation reaction. The total amount of adsorbed CO₂ and adsorbed H₂ species on Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts are shown in Fig. 5.10. It is worth noting that the correlation of adsorption properties with the catalyst activity remains to be discussed.

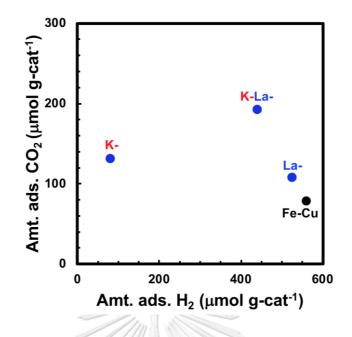
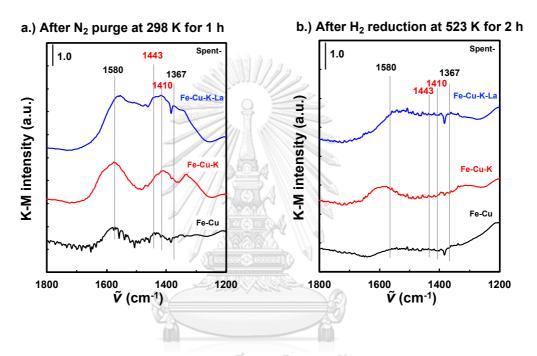


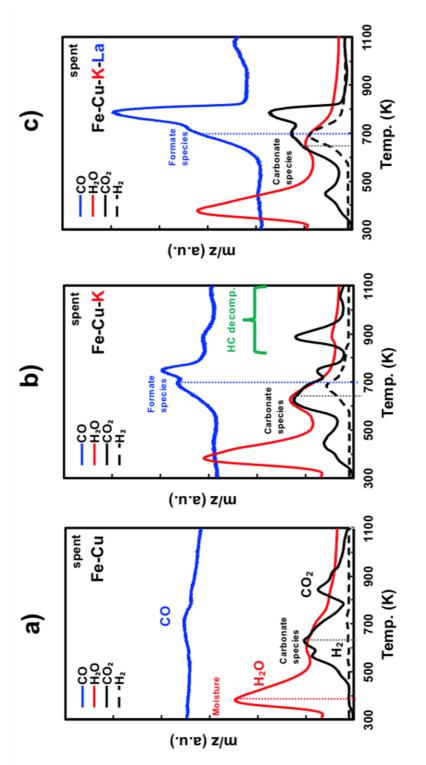
Figure 5.10 Effect of K and La promoters on the total amount of adsorbed CO_2 and adsorbed H₂ species of reduced Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts.

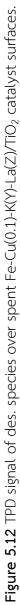
5.7 Surface adsorbed species on the spent catalyst

The DRIFTS and TPD analysis of the spent catalyst was used to investigate the surface adsorbed species formed during CO₂ hydrogenation to hydrocarbons. The DRIFTS spectra of the spent Fe-Cu/TiO₂, Fe-Cu-K/TiO₂ and Fe-Cu-K-La/TiO₂ catalysts after flushing the sample cell with N₂ at ambient temperature and pressure for 1 h are shown in Fig. 5.11a. Four major IR bands were observed at 1580, 1443, 1410 and 1367 cm⁻¹, wherein the bands at 1580 and 1367 cm⁻¹ corresponded to the V(CO)_{as} and V (CO)_s of adsorbed formate species [158, 165]. The IR bands at 1443 and 1410 cm⁻¹ were ascribed to the adsorbed carbonate species [157, 158, 166]. The spent catalysts were then reduced *in situ* in a H₂ flow at 523 K for 2 h followed by flushing with N₂. According to DRIFT spectra after H₂ reduction (Fig. 5.11b), it found to be that the intensities of the IR bands of adsorbed carbonate species on all spent catalysts were almost disappeared. However, in the case of promoted catalysts, namely Fe-Cu-K/TiO₂ and

Fe-Cu-K-La/TiO₂ catalysts, the IR bands of adsorbed formate species still being observed. DRIDTS analysis of the spent catalysts suggested that the adsorbed formate and carbonate species were formed on the Fe-Cu/TiO₂ catalyst during CO₂ hydrogenation to hydrocarbons and the formatted species had a higher stability on the K and La-promoted Fe-Cu bimetallic catalyst than unpromoted catalyst.




Figure 5.11 DRIFT spectra of the surface adsorbed species on spent Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts after (a) N₂ purge at 298 K for 1 h and then (b) followed by H₂ reduction at 523 K for 2 h.


The TPD analysis of spent catalyst was also carried out to investigate the presence of adsorbed surface species after CO_2 hydrogenation of Fe-Cu/TiO₂, Fe-Cu-K/TiO₂ and Fe-Cu-K-La/TiO₂ catalyst. The desorbed H₂, H₂O, CO and CO₂ were detected by the mass spectrometer during the TPD analysis as shown in Figure. 5.12. The H₂O signal was observed at low temperature (384 K) for all spent-catalysts due to the originated moisture. For all catalysts, the signals of CO₂ and H₂O appeared at the same temperature (640 K), corresponding to the decomposition of carbonate species.

Surprisingly, for spent-promoted catalysts (Fe-Cu-K/TiO₂ and Fe-Cu-K-La/TiO₂), the signal of H₂, CO, CO₂ and H₂O were only observed at the relative higher temperature (680 K) (see Fig. 5.12b and c), which is also the same temperature of decomposition of formate species and the adsorbed CO₂ species (Type IV) reported earlier [32, 33, 167]. It suggested that K and La promoter that enhance the adsorbed formate species on the catalyst's surface was found to be one of the moderately-adsorbed CO₂ species. The peaks observed at higher temperature than 900 K could be attributed to the decomposition of hydrocarbons species.

Chulalongkorn University

5.8 Correlation of adsorption properties with the catalytic property

As discussed in Section 5.2, the Fe-Cu catalysts with K and La addition yielded a significant increase in the selectivity of higher hydrocarbons (C_{5+}). Furthermore, the Fe-Cu catalyst with K addition exhibited a dramatically decrease of CH₄ selectivity, while La addition enabled a notable enhancement of C_{5+} hydrocarbons selectivity. These results could be explained by the change of CO₂ and H₂ adsorption properties as discussed in Section 3.5 and 3.6, respectively.

Figure 5.13 illustrates the relation between the C_5 - C_7 and CO STYs and the amount of various adsorbed CO₂ species identified by the CO₂-TPD analysis, along with the adsorption results on promoted and unpromoted catalysts. Evidently, for the catalyst with K promoter, the amount of weakly-adsorbed CO₂ (Type I+II) was apparently related to the CO formation rate. As reported, the existence of K could enhance the RWGS reaction by providing additional active sites for the formation of formate species on the catalyst surface, which was proposed as an important intermediate for RWGS reaction [33, 123]. On the other hand, the moderately-adsorbed CO₂ (Type III+IV), closely correlated to the La incorporation, played a crucial role on the C₅-C₇ STY. Thus, the single La-promoted and K-La promoted catalysts resulted the increase in the amount of moderately-adsorbed CO₂ species (Type III+IV), which could be a key intermediate for further hydrogenation to higher hydrocarbons (C_{5+}). From H_2 -TPD results, the weakly-bonded H₂ species was dramatically decreased by the presence of K, and resulted in the suppression of CH_4 STY as shown in Fig. 5.14. This dependent behavior suggests that the amount of weakly-adsorbed H_2 plays an important role in the CH₄ formation.

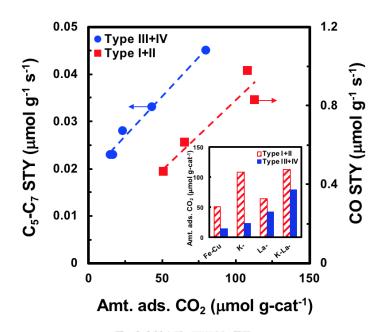


Figure 5.13 Effect of amount of desorbed CO₂ species on STY of C₅-C₇, CH₄ and CO products over Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts. Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) g⁻¹ h⁻¹.

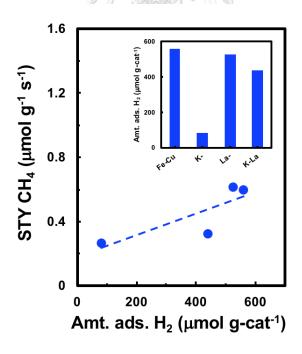


Figure 5.14 Effect of amount of weakly desorbed H₂ species on STY of C₅-C₇, CH₄ and CO products over Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts. Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) g⁻¹ h⁻¹.

The changes of CO_2 and H_2 adsorbed properties on the catalyst surface were further analyzed in the form of surface H/C atomic ratios, the relation of which with the product selectivity is shown in Fig. 5.15.

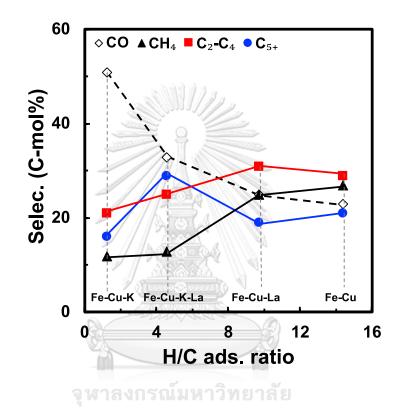


Figure 5.15 Effect of H/C adsorbed species (atomic ratio) on selectivity of CH_4 , C_2 - C_4 , C_{5+} and CO products over Fe-Cu(0.1)-K(Y)-La(Z)/TiO₂ catalysts. Reaction conditions: 573 K, 1.1 MPa, GHSV = 3600 mL (STP) g⁻¹ h⁻¹.

The CH₄ selectivity increased with the increasing H/C ratio, wherein a high relative H coverage on the surface could provide more chances of methanation reaction than C-C bond formation. Volcano-like trends of the selectivity of light hydrocarbons (C_2 - C_4) and higher hydrocarbons (C_{5+}) with the surface H/C ratio were evidenced. However, their maximum selectivities appeared at different ranges of H/C ratio, the C_{5+} selectivity was at relatively lower region and the C_2 - C_4 selectivity was at

higher. Possibly, the C-C bond formation would be favorable at a lower range of the H/C ratio (high C coverage), while a higher H coverage on the surface resulted in the direct hydrogenation reaction. However, a much higher CO selectivity than other hydrocarbon products was obtained at the lowest H/C ratio. This observation suggests that more unconverted CO was released probably due to the higher energy barrier for the subsequent hydrogenation [156, 168]. The addition of K and La promoter had a significant impact on the H/C atomic ratio of adsorbed H₂ and CO₂ species on the catalyst surface during CO₂ hydrogenation. As a result, the tailored H/C atomic ratio of adsorbed species on the catalyst surface influenced the catalyst performance and the product selectivity of CO₂ hydrogenation.

5.9 Influence of temperature on the CO₂ hydrogenation

The Fe-Cu-K-La/TiO₂ catalyst were also tested at various reaction temperatures (range of 523-623 K) as shown in Fig. 5.16 and Table 5.4. The CO₂ conversion and CO selectivity increased with increasing reaction temperature, while the opposite trend was observed for C_{2+} selectivity. These results are consistent with the thermodynamic equilibrium reported earlier in section 3.2. This is due to the fact that the RWGS is more favorable at high temperature than CO₂ hydrogenation to hydrocarbons. From thermodynamic point of view, the CO₂ conversion by RWGS reaction is limited at low temperature due to its endothermic reaction. However, the exothermic FTS reaction is also thermodynamically limited in this temperature range examined.

 La(0.1)/TiO ₂ catalyst.						
Temp.	CO ₂ conv.	Selectivity (C-m		l %)		
(K)	(%)	CH ₄	CO	C ₂₊		
 523	17.0	าวทย _{าว} สย	28	60		
548	GHULAL21.4 KORN	UNIV₁₄RSITY	31	55		
573	22.8	13	33	54		
598	25.3	13	49	38		
623	26.3	14	69	17		

Table 5.4 Effect of temperature on CO_2 hydrogenation over Fe-Cu(0.1)-K(0.1)-
La(0.1)/TiO2 catalyst.

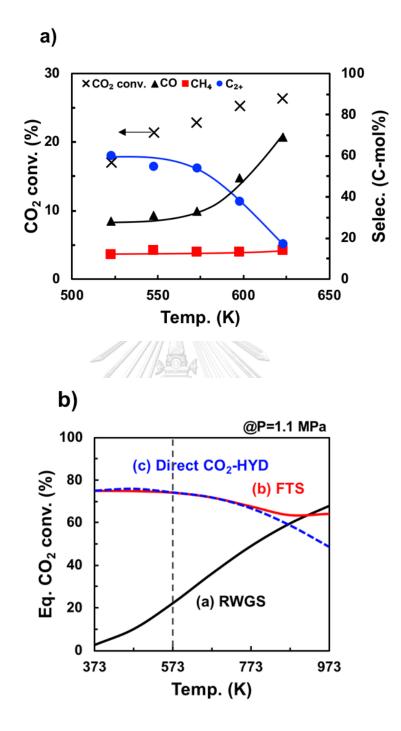


Figure 5.16 Influence of temperature on (a) CO_2 conv. and product selectivity for CO_2 hydrogenation over Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ (experimental) and (b) equilibrium CO_2 conversion (calculation).

CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

(i) Comparative study of Fe-based catalysts for CO₂ hydrogenation to hydrocarbons

The CO₂ hydrogenation over TiO₂-supported monometallic (Fe, Co and Cu) catalysts was performed in a fixed-bed flow reactor. Among the monometallic supported on TiO₂ catalysts prepared, only Fe/TiO₂ catalyst exhibited the selectivity to higher hydrocarbons (C₂₊). Although Co/TiO₂ catalyst gave much higher CO₂ conversion (55%) than Fe catalyst (16%), CH₄ was the dominant product. In contrast, Cu/TiO₂ catalyst produced CO as a main product, indicating its superior activity for the RWGS. The supported Fe monometallic catalyst were also prepared with different support material (e.g. γ -Al₂O₃) and the results suggested that the activity of Fe monometallic catalysts depended on the metal-support interaction and surface chemical properties, rather than the textural properties of support materials. Moreover, K as an effective promoter was added on Fe monometallic catalyst, that could suppress the CH₄ formation and improve selectivity to higher hydrocarbons as well as the olefins to paraffin ratio.

(ii) Fe-based bimetallic catalysts supported on TiO_2 for selective CO_2 hydrogenation to hydrocarbons

The titania-supported Fe-based bimetallic catalysts were examined for CO_2 hydrogenation in a fixed-bed flow reactor. The combination of Fe and a small amount

of second metal (Co and Cu) in TiO₂ supported catalysts can enhance the CO₂ conversion and the formation of hydrocarbons. The results show that the space-time yield (STY) of C₂-C₇ hydrocarbons approached the maximum at the M/(M+Fe) = 0.1 atom atom⁻¹ for both M = Co and Cu. It is worth noting that the maximum C₂-C₇ STY hydrocarbons is significantly higher than those monometallic Fe/TiO₂, Co/TiO₂ and Cu/TiO₂ catalysts. A further Co addition promoted CH₄ formation to a dominant product due to the stronger hydrogenation ability of Co. On the other hand, adding more Cu into Fe evidently enhanced the RWGS reaction which exhibited a favorable production towards CO. However, these bimetallic Fe-Co/TiO₂ and Fe-Cu/TiO₂ still favored the CH₄ formation.

The incorporation of K and La as promoters could evidently improve the yield and selectivity to higher hydrocarbons. Adding K could suppress the CH_4 formation and also give high olefin content (C_2 - C_4). However, an excessive K addition led to more CO STY. On the other hand, La could significantly shift CO toward the production of C_{5+} hydrocarbons, likely through CO-FTS reaction pathway, while it hardly showed any influence of La addition on the CH_4 synthesis since the La-loaded catalyst exhibited almost identical STY and selectivity of CH_4 as the non-La addition catalyst. Among all catalyst combinations, Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ catalyst gave the highest STY of C_{5-7} hydrocarbons, which is promising for the liquid-fuel production from CO_2 hydrogenation.

(iii) Higher hydrocarbons synthesis from CO_2 hydrogenation over K- and La- promoted Fe-Cu/TiO₂ catalysts

In the present work, the K- and La-promoted Fe-Cu/TiO_2 catalysts were found to be promising for CO₂ hydrogenation to C₅₊ higher hydrocarbons. The incorporation of K and La as promoters can improve both catalyst activity for CO₂ hydrogenation and selectivity to higher hydrocarbons. The promoted catalyst (Fe-Cu-K-La/TiO₂) gave higher C₅₊ hydrocarbons selectivity (29 C-mol%) than the unpromoted catalyst (21 Cmol%). Through characterization of both promoted and unpromoted catalysts by CO₂-TPD, H₂-TPD and DRIFTS, the K addition can significantly reduce the amount of chemisorbed H₂ species and increase chemisorbed CO₂ species on catalyst surface, while La addition showed very limited influence on the amount of H₂ adsorption but increased in the amount of moderately-adsorbed CO₂ species (Type III+IV). Adding K appears to correlate to the suppression of CH₄ formation. The presence of La in Fe-Cu-K/TiO₂ catalyst enhanced the production of C₅-C₇ hydrocarbons, which may be in part due to the CO hydrogenation pathway relating to the increase of the moderately adsorbed CO₂ species (mainly monodentate carbonate species). Generally, the introduction of La and K promoters is capable of turning the surface chemisorbed H/C ratios, the variation of which appears to correlate to the product distribution evidently.

6.2 Recommendations

In this work, the Fe-Cu-K-La/TiO₂ exhibited the promising CO₂ hydrogenation activity and product selectivity to higher hydrocarbons. A further study of catalytic CO₂ hydrogenation to higher hydrocarbons, especially C_{5+} over heterogeneous catalysts should be concerned with following aspects:

1. This work revealed that Fe-based bimetallic promotion effect was related to the adsorption sites of H_2 and CO_2 species since the dispersion of active metal particle could play a crucial role on adsorption sites. Many literatures reported that the novel catalyst preparation including solution plasma and laser ablation technique could control the metal particle size, the metal dispersion, the deflect and the structure of the catalyst material. Therefore, the novel catalyst preparation would be of interest in developing the Fe-based catalyst for $\rm CO_2$ hydrogenation.

- 2. The catalytic CO₂ hydrogenation to higher hydrocarbons could occurred through RWGS and FTS reaction since water was formed from both reactions. Therefore, removing the produced water during the process could enhance the equilibrium conversion of CO₂ hydrogenation. The modification of catalyst hydrophobicity and water removing process (e.g. membrane separation) should be further studied.
- 3. In this work has been investigated the catalytic CO_2 hydrogenation using thermal process was investigated. It is worth noting that the electrochemical and photochemical catalytic process of CO_2 hydrogenation has been applied to improve in efficiency and become a more friendly environmental issue. Thus, the use of electrochemical and photochemical catalytic process in CO_2 hydrogenation should be carried out.

REFERENCES

REFERENCES

- [1] S.C. Program, Carbon Dioxide Measurements, in, 2017, pp. Measurements by the Scripps CO₂ program are supported by the U.S. Department of Energy (DOE) and by Earth Networks, a technology company that is collaborating with Scripps to expand the global GHG monitoring network.
- [2] U.S.E.I. Administration, Primary energy overview, in, U.S. Energy Information Administration, 2018.
- [3] C. Federsel, R. Jackstell, M. Beller, State-of-the-Art Catalysts for Hydrogenation of Carbon Dioxide, Angewandte Chemie International Edition, 49 (2010) 6254-6257.
- [4] M. Aresta, A. Dibenedetto, Utilisation of CO_2 as a chemical feedstock: opportunities and challenges, Dalton Transactions, (2007) 2975-2992.
- [5] S.E. Schwartz, Uncertainty in climate sensitivity: Causes, consequences, challenges, Energy & Environmental Science, 1 (2008) 430.
- [6] X.-l. Liu, China CO₂ Control Strategy under the Low-carbon Economy, Procedia Engineering, 37 (2012) 281-286.
- [7] B. Hu, C. Guild, S.L. Suib, Thermal, electrochemical, and photochemical conversion of CO_2 to fuels and value-added products, Journal of CO_2 Utilization, 1 (2013) 18-27.
- [8] U. Burghaus, Surface science perspective of carbon dioxide chemistry— Adsorption kinetics and dynamics of CO₂ on selected model surfaces, Catalysis Today, 148 (2009) 212-220.
- [9] J. Ma, N. Sun, X. Zhang, N. Zhao, F. Xiao, W. Wei, Y. Sun, A short review of catalysis for CO₂ conversion, Catalysis Today, 148 (2009) 221-231.
- [10] C. Song, Global challenges and strategies for control, conversion and utilization of CO₂ for sustainable development involving energy, catalysis, adsorption and chemical processing, Catalysis Today, 115 (2006) 2-32.
- [11] S. Saeidi, N.A.S. Amin, M.R. Rahimpour, Hydrogenation of CO₂ to value-added products—A review and potential future developments, Journal of CO₂ Utilization, 5 (2014) 66-81.

- [12] DOE/EPA, Fuel Economy. Internet Resource Developed by U.S. Department of Energy and U.S. Environmental Protection Agency, in, 2018.
- [13] W. Wang, S. Wang, X. Ma, J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide, Chemical Society Reviews, 40 (2011) 3703-3727.
- [14] A. Baiker, Utilization of carbon dioxide in heterogeneous catalytic synthesis, Applied Organometallic Chemistry, 14 (2000) 751-762.
- [15] W.C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S.M. Haile, A. Steinfeld, High-Flux Solar-Driven Thermochemical Dissociation of CO₂ and H₂O Using Nonstoichiometric Ceria, Science, 330 (2010) 1797.
- [16] G.A. Olah, A. Goeppert, G.K. Prakash, Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, Journal of Organometallic Chemistry, 74 (2009) 487-498.
- [17] R. Satthawong, N. Koizumi, C. Song, P. Prasassarakich, Bimetallic Fe–Co catalysts for CO₂ hydrogenation to higher hydrocarbons, Journal of CO₂ Utilization, 3-4 (2013) 102-106.
- [18] G. Centi, S. Perathoner, Heterogeneous Catalytic Reactions with CO₂: Status and Perspectives, in: S.-E. Park, J.-S. Chang, K.-W. Lee (Eds.) Studies in Surface Science and Catalysis, Elsevier, 2004, pp. 1-8.
- [19] I. Omae, Aspects of carbon dioxide utilization, Catalysis Today, 115 (2006) 33 52.
- [20] S. Moret, P.J. Dyson, G. Laurenczy, Direct synthesis of formic acid from carbon dioxide by hydrogenation in acidic media, Nature Communications, 5 (2014) 4017.
- [21] M. Mikkelsen, M. Jorgensen, F.C. Krebs, The teraton challenge. A review of fixation and transformation of carbon dioxide, Energy & Environmental Science, 3 (2010) 43-81.
- [22] G. Centi, S. Perathoner, Opportunities and prospects in the chemical recycling of carbon dioxide to fuels, Catalysis Today, 148 (2009) 191-205.

- [23] W.-L. Dai, S.-L. Luo, S.-F. Yin, C.-T. Au, The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts, Applied Catalysis A: General, 366 (2009) 2-12.
- [24] T. Riedel, G. Schaub, K.W. Jun, K.W. Lee, Kinetics of CO₂ hydrogenation on a Kpromoted Fe catalyst, Industrial & Engineering Chemistry Research, 40 (2001) 1355-1363.
- [25] R.W. Dorner, D.R. Hardy, F.W. Williams, H.D. Willauer, K and Mn doped iron-based CO₂ hydrogenation catalysts: Detection of KAlH4 as part of the catalyst's active phase, Applied Catalysis A: General, 373 (2010) 112-121.
- [26] S.-C. Lee, J.-H. Jang, B.-Y. Lee, J.-S. Kim, M. Kang, S.-B. Lee, M.-J. Choi, S.-J. Choung, Promotion of hydrocarbon selectivity in CO₂ hydrogenation by Ru component, Journal of Molecular Catalysis A: Chemical, 210 (2004) 131-141.
- [27] A. Faur Ghenciu, Review of fuel processing catalysts for hydrogen production in PEM fuel cell systems, Current Opinion in Solid State and Materials Science, 6 (2002) 389-399.
- [28] K. Zhao, Q. Bkour, X. Hou, S.W. Kang, J.C. Park, M.G. Norton, J.-I. Yang, S. Ha, Reverse water gas shift reaction over CuFe/Al₂O₃ catalyst in solid oxide electrolysis cell, Chemical Engineering Journal, 336 (2018) 20-27.
- [29] G. Zhou, B. Dai, H. Xie, G. Zhang, K. Xiong, X. Zheng, CeCu composite catalyst for CO synthesis by reverse water–gas shift reaction: Effect of Ce/Cu mole ratio, Journal of CO₂ Utilization, 21 (2017) 292-301.
- [30] E.L. Fornero, D.L. Chiavassa, A.L. Bonivardi, M.A. Baltanás, Transient analysis of the reverse water gas shift reaction on Cu/ZrO₂ and Ga₂O₃/Cu/ZrO₂ catalysts, Journal of CO₂ Utilization, 22 (2017) 289-298.
- [31] C.-S. Chen, W.-H. Cheng, S.-S. Lin, Enhanced activity and stability of a Cu/SiO₂ catalyst for the reverse water gas shift reaction by an iron promoter, Chemical Communications, (2001) 1770-1771.
- [32] C. Chen, Study of iron-promoted Cu/SiO_2 catalyst on high temperature reverse water gas shift reaction, Applied Catalysis A: General, 257 (2004) 97-106.

- [33] C.-S. Chen, W.-H. Cheng, S.-S. Lin, Study of reverse water gas shift reaction by TPD, TPR and CO_2 hydrogenation over potassium-promoted Cu/SiO₂ catalyst, Applied Catalysis A: General, 238 (2003) 55-67.
- [34] L. Wang, H. Liu, Y. Liu, Y. Chen, S. Yang, Influence of preparation method on performance of Ni-CeO₂ catalysts for reverse water-gas shift reaction, Journal of Rare Earths, 31 (2013) 559-564.
- [35] F.-m. Sun, C.-f. Yan, Z.-d. Wang, C.-q. Guo, S.-l. Huang, Ni/Ce–Zr–O catalyst for high CO₂ conversion during reverse water gas shift reaction (RWGS), International Journal of Hydrogen Energy, 40 (2015) 15985-15993.
- [36] L. Wang, H. Liu, Y. Liu, Y. Chen, S. Yang, Effect of precipitants on Ni-CeO₂ catalysts prepared by a co-precipitation method for the reverse water-gas shift reaction, Journal of Rare Earths, 31 (2013) 969-974.
- [37] A. Goguet, F. Meunier, J. Breen, R. Burch, M. Petch, A. Faurghenciu, Study of the origin of the deactivation of a Pt/CeO catalyst during reverse water gas shift (RWGS) reaction, Journal of Catalysis, 226 (2004) 382-392.
- [38] A. Goguet, S. Shekhtman, R. Burch, C. Hardacre, F. Meunier, G. Yablonsky, Pulseresponse TAP studies of the reverse water–gas shift reaction over a Pt/CeO₂ catalyst, Journal of Catalysis, 237 (2006) 102-110.
- [39] S.-I. Fujita, M. Usui, N. Takezawa, Mechanism of the reverse water gas shift reaction over Cu/ZnO catalyst, Journal of Catalysis, 134 (1992) 220-225.
- [40] Q. Zhang, L. Guo, Z. Hao, Exploration of high-performance W_6S_8 -supported single-atom Rh 1 catalysts for reverse water–gas shift reaction and methanol formation via DFT computational study, Polyhedron, 146 (2018) 108-120.
- [41] B. Liang, H. Duan, X. Su, X. Chen, Y. Huang, X. Chen, J.J. Delgado, T. Zhang, Promoting role of potassium in the reverse water gas shift reaction on Pt/mullite catalyst, Catalysis Today, 281 (2017) 319-326.
- [42] C.-S. Chen, W.-H. Cheng, S.-S. Lin, Mechanism of CO formation in reverse watergas shift reaction over Cu/Al_2O_3 catalyst, Catalysis Letters, 68 (2000) 45-48.
- [43] V. Arunajatesan, B. Subramaniam, K.W. Hutchenson, F.E. Herkes, In situ FTIR investigations of reverse water gas shift reaction activity at supercritical conditions, Chemical Engineering Science, 62 (2007) 5062-5069.

- [44] T.A. Semelsberger, R.L. Borup, H.L. Greene, Dimethyl ether (DME) as an alternative fuel, Journal of Power Sources, 156 (2006) 497-511.
- [45] M. Matzen, Y. Demirel, Methanol and dimethyl ether from renewable hydrogen and carbon dioxide: Alternative fuels production and life-cycle assessment, Journal of Cleaner Production, 139 (2016) 1068-1077.
- [46] J. McCandless, DME as an Automotive Fuel: Technical, in: Economic and Social Perspectives Energy Frontiers Conference, 2001.
- [47] R.S. T. Fleisch, Beyond of GTL-FT: large-scale gas conversion through oxygenates, in: 7th Natural Gas Conversion Symposium, Dalian, China, 2004.
- [48] H.H.-L. G.R. Jones, D. Romani, R.A. Sills, DME for power generation fuel: supplying India's southern region in: PetroTech conference, New Delhi, India, 2001.
- [49] J.M.W. A. Basu, DME as power generation fuel: performance in gas turbines, in: PetroTech conference, New Delhi, India, 2001.
- [50] S.D. Badmaev, G.G. Volkova, V.D. Belyaev, V.A. Sobyanin, Steam reforming of dimethyl ether to hydrogen-rich gas, Reaction Kinetics and Catalysis Letters, 90 (2007) 205-211.
- [51] V.V. Galvita, G.L. Semin, V.D. Belyaev, T.M. Yurieva, V.A. Sobyanin, Production of hydrogen from dimethyl ether, Applied Catalysis A: General, 216 (2001) 85-90.
- [52] K. Takeishi, H. Suzuki, Steam reforming of dimethyl ether, Applied Catalysis A: General, 260 (2004) 111-117.
- [53] F. Frusteri, M. Migliori, C. Cannilla, L. Frusteri, E. Catizzone, A. Aloise, G. Giordano,
 G. Bonura, Direct CO₂-to-DME hydrogenation reaction: New evidences of a superior behaviour of FER-based hybrid systems to obtain high DME yield, Journal of CO₂ Utilization, 18 (2017) 353-361.
- [54] G. Bonura, M. Migliori, L. Frusteri, C. Cannilla, E. Catizzone, G. Giordano, F. Frusteri, Acidity control of zeolite functionality on activity and stability of hybrid catalysts during DME production via CO₂ hydrogenation, Journal of CO₂ Utilization, 24 (2018) 398-406.
- [55] G. Jia, Y. Tan, Y. Han, A Comparative Study on the Thermodynamics of Dimethyl Ether Synthesis from CO Hydrogenation and CO_2 Hydrogenation, Industrial & Engineering Chemistry Research, 45 (2006) 1152-1159.

- [56] A. Goeppert, M. Czaun, J.-P. Jones, G.K. Surya Prakash, G.A. Olah, Recycling of carbon dioxide to methanol and derived products – closing the loop, Chemical Society Reviews, 43 (2014) 7995-8048.
- [57] G. Bonura, C. Cannilla, L. Frusteri, A. Mezzapica, F. Frusteri, DME production by CO₂ hydrogenation: Key factors affecting the behaviour of CuZnZr/ferrierite catalysts, Catalysis Today, 281 (2017) 337-344.
- [58] G. Bonura, M. Cordaro, L. Spadaro, C. Cannilla, F. Arena, F. Frusteri, Hybrid Cu-ZnO-ZrO₂/H-ZSM5 system for the direct synthesis of DME by CO₂ hydrogenation, Applied Catalysis B: Environmental, 140-141 (2013) 16-24.
- [59] F. Frusteri, M. Cordaro, C. Cannilla, G. Bonura, Multifunctionality of Cu–ZnO– ZrO₂/H-ZSM5 catalysts for the one-step CO₂-to-DME hydrogenation reaction, Applied Catalysis B: Environmental, 162 (2015) 57-65.
- [60] Y. Zhang, D. Li, Y. Zhang, Y. Cao, S. Zhang, K. Wang, F. Ding, J. Wu, V-modified CuO–ZnO–ZrO₂/HZSM-5 catalyst for efficient direct synthesis of DME from CO₂ hydrogenation, Catalysis Communications, 55 (2014) 49-52.
- [61] Y. Suwannapichat, T. Numpilai, N. Chanlek, K. Faungnawakij, M. Chareonpanich, J. Limtrakul, T. Witoon, Direct synthesis of dimethyl ether from CO₂ hydrogenation over novel hybrid catalysts containing a Cu ZnO ZrO₂ catalyst admixed with WO_x/Al₂O₃ catalysts: Effects of pore size of Al₂O₃ support and W loading content, Energy Conversion and Management, 159 (2018) 20-29.
- [62] Z.-z. Qin, X.-h. Zhou, T.-m. Su, Y.-x. Jiang, H.-b. Ji, Hydrogenation of CO_2 to dimethyl ether on La-, Ce-modified Cu-Fe/HZSM-5 catalysts, Catalysis Communications, 75 (2016) 78-82.
- [63] T.A. Semelsberger, K.C. Ott, R.L. Borup, H.L. Greene, Generating hydrogen-rich fuel-cell feeds from dimethyl ether (DME) using Cu/Zn supported on various solid-acid substrates, Applied Catalysis A: General, 309 (2006) 210-223.
- [64] F. Yaripour, F. Baghaei, I. Schmidt, J. Perregaard, Synthesis of dimethyl ether from methanol over aluminium phosphate and silica-titania catalysts, Catalysis Communications, 6 (2005) 542-549.

- [65] A.T. Aguayo, J. Ereña, D. Mier, J.M. Arandes, M. Olazar, J. Bilbao, Kinetic Modeling of Dimethyl Ether Synthesis in a Single Step on a CuO–ZnO–Al₂O₃/γ-Al₂O₃ Catalyst, Industrial & Engineering Chemistry Research, 46 (2007) 5522-5530.
- [66] T. Wang, J. Wang, Y. Jin, Slurry Reactors for Gas-to-Liquid Processes: A Review, Industrial & Engineering Chemistry Research, 46 (2007) 5824-5847.
- [67] T. Lu, Y. Hou, W. Wu, M. Niu, Y. Wang, Formic acid and acetic acid production from corn cob by catalytic oxidation using O₂, Fuel Processing Technology, 171 (2018) 133-139.
- [68] C. Rice, S. Ha, R.I. Masel, P. Waszczuk, A. Wieckowski, T. Barnard, Direct formic acid fuel cells, Journal of Power Sources, 111 (2002) 83-89.
- [69] N.V. Rees, R.G. Compton, Sustainable energy: a review of formic acid electrochemical fuel cells, Journal of Solid State Electrochemistry, 15 (2011) 2095-2100.
- [70] T. Zell, B. Butschke, Y. Ben-David, D. Milstein, Efficient hydrogen liberation from formic acid catalyzed by a well-defined iron pincer complex under mild conditions, Chemistry, 19 (2013) 8068-8072.
- [71] Z.L. Wang, J.M. Yan, Y. Ping, H.L. Wang, W.T. Zheng, Q. Jiang, An efficient CoAuPd/C catalyst for hydrogen generation from formic acid at room temperature, Angewandte Chemie International Edition in English, 52 (2013) 4406-4409.
- [72] T.C. Johnson, D.J. Morris, M. Wills, Hydrogen generation from formic acid and alcohols using homogeneous catalysts, Chemical Society Reviews, 39 (2010) 81-88.
- [73] Z. Zhang, S. Hu, J. Song, W. Li, G. Yang, B. Han, Hydrogenation of CO₂ to Formic Acid Promoted by a Diamine-Functionalized Ionic Liquid, ChemSusChem, 2 (2009) 234-238.
- [74] P.G. Jessop, F. Joó, C.-C. Tai, Recent advances in the homogeneous hydrogenation of carbon dioxide, Coordination Chemistry Reviews, 248 (2004) 2425-2442.

- [75] S. Ogo, R. Kabe, H. Hayashi, R. Harada, S. Fukuzumi, Mechanistic investigation of CO2 hydrogenation by Ru(II) and Ir(III) aqua complexes under acidic conditions: two catalytic systems differing in the nature of the rate determining step, Dalton Transactions, (2006) 4657-4663.
- [76] P.G. Jessop, Y. Hsiao, T. Ikariya, R. Noyori, Homogeneous Catalysis in Supercritical Fluids: Hydrogenation of Supercritical Carbon Dioxide to Formic Acid, Alkyl Formates, and Formamides, Journal of the American Chemical Society, 118 (1996) 344-355.
- [77] P.G. Jessop, T. Ikariya, R. Noyori, Homogeneous catalytic hydrogenation of supercritical carbon dioxide, Nature, 368 (1994) 231.
- [78] P. Daw, S. Chakraborty, G. Leitus, Y. Diskin-Posner, Y. Ben-David, D. Milstein, Selective N-Formylation of Amines with H₂ and CO₂ Catalyzed by Cobalt Pincer Complexes, ACS Catalysis, 7 (2017) 2500-2504.
- [79] S. Jones, C.J. Warner, Trichlorosilane mediated asymmetric reductions of the C=N bond, Organic and Biomolecular Chemistry, 10 (2012) 2189-2200.
- [80] P. Ganapati Reddy, G.D. Kishore Kumar, S. Baskaran, A convenient method for the N-formylation of secondary amines and anilines using ammonium formate, Tetrahedron Letters, 41 (2000) 9149-9151.
- [81] P. Haynes, L.H. Slaugh, J.F. Kohnle, Formamides from carbon dioxide, amines and hydrogen in the presence of metal complexes, Tetrahedron Letters, 11 (1970) 365-368.
- [82] P.G. Jessop, T. Ikariya, R. Noyori, Homogeneous Hydrogenation of Carbon Dioxide, Chemical Reviews, 95 (1995) 259-272.
- [83] F. Liu, M.B. Abrams, R.T. Baker, W. Tumas, Phase-separable catalysis using room temperature ionic liquids and supercritical carbon dioxide, Chemical Communications, (2001) 433-434.
- [84] P.G. Jessop, Y. Hsiao, T. Ikariya, R. Noyori, Catalytic Production of Dimethylformamide from Supercritical Carbon Dioxide, Journal of the American Chemical Society, 116 (1994) 8851-8852.

- [85] A. Behr, P. Ebbinghaus, F. Naendrup, Process Concepts for the Transition Metal Catalyzed Syntheses of Formic Acid and Dimethylformamide Based on Carbon Dioxide, Chemical Engineering & Technology, 27 (2004) 495-501.
- [86] R. Kuhlmann, S. Schmitz, K. Haßmann, A. Prüllage, A. Behr, Synthesis of N,Ndimethylformamide from carbon dioxide in aqueous biphasic solvent systems, Applied Catalysis A: General, 539 (2017) 90-96.
- [87] L. Zhang, Z. Han, X. Zhao, Z. Wang, K. Ding, Highly Efficient Ruthenium-Catalyzed N-Formylation of Amines with H₂ and CO₂, Angewandte Chemie International Edition in English, 54 (2015) 6186-6189.
- [88] A. Olah George, Towards Oil Independence Through Renewable Methanol Chemistry, Angewandte Chemie International Edition, 52 (2012) 104-107.
- [89] T. Inui, T. Takeguchi, Effective conversion of carbon dioxide and hydrogen to hydrocarbons, Catalysis Today, 10 (1991) 95-106.
- [90] X.M. Liu, G.Q. Lu, Z.F. Yan, J. Beltramini, Recent advances in catalysts for methanol synthesis via hydrogenation of CO and CO₂, Industrial & Engineering Chemistry Research, 42 (2003) 6518-6530.
- [91] X. Jiang, N. Koizumi, X. Guo, C. Song, Bimetallic Pd–Cu catalysts for selective CO2 hydrogenation to methanol, Applied Catalysis B: Environmental, 170–171 (2015) 173-185.
- [92] N. Koizumi, X. Jiang, J. Kugai, C. Song, Effects of mesoporous silica supports and alkaline promoters on activity of Pd catalysts in CO₂ hydrogenation for methanol synthesis, Catalysis Today, 194 (2012) 16-24.
- [93] E.L. Kunkes, F. Studt, F. Abild-Pedersen, R. Schlögl, M. Behrens, Hydrogenation of CO₂ to methanol and CO on Cu/ZnO/Al₂O₃: Is there a common intermediate or not?, Journal of Catalysis, 328 (2015) 43-48.
- [94] H. Ren, C.-H. Xu, H.-Y. Zhao, Y.-X. Wang, J. Liu, J.-Y. Liu, Methanol synthesis from CO_2 hydrogenation over Cu/γ -Al₂O₃ catalysts modified by ZnO, ZrO₂ and MgO, Journal of Industrial and Engineering Chemistry, 28 (2015) 261-267.
- [95] L. Zhang, Y. Zhang, S. Chen, Effect of promoter SiO_2 , TiO_2 or SiO_2 - TiO_2 on the performance of CuO-ZnO-Al₂O₃ catalyst for methanol synthesis from CO₂ hydrogenation, Applied Catalysis A: General, 415–416 (2012) 118-123.

- [96] I.A. Fisher, A.T. Bell, In-SituInfrared Study of Methanol Synthesis from H_2/CO_2 over Cu/SiO₂ and Cu/ZrO₂/SiO₂, Journal of Catalysis, 172 (1997) 222-237.
- [97] R.A. Koeppel, A. Baiker, A. Wokaun, Copper/zirconia catalysts for the synthesis of methanol from carbon dioxide: Influence of preparation variables on structural and catalytic properties of catalysts, Applied Catalysis A: General, 84 (1992) 77-102.
- [98] W.P.A. Jansen, J. Beckers, J.C. v. d. Heuvel, A.W. Denier v. d. Gon, A. Bliek, H.H. Brongersma, Dynamic Behavior of the Surface Structure of Cu/ZnO/_{SiO2} Catalysts, Journal of Catalysis, 210 (2002) 229-236.
- [99] J. Liu, J. Shi, D. He, Q. Zhang, X. Wu, Y. Liang, Q. Zhu, Surface active structure of ultra-fine Cu/ZrO₂ catalysts used for the CO₂+H₂ to methanol reaction, Applied Catalysis A: General, 218 (2001) 113-119.
- [100] X.-M. Liu, G.Q. Lu, Z.-F. Yan, Nanocrystalline zirconia as catalyst support in methanol synthesis, Applied Catalysis A: General, 279 (2005) 241-245.
- [101] M. Saito, T. Fujitani, M. Takeuchi, T. Watanabe, Development of copper/zinc oxide-based multicomponent catalysts for methanol synthesis from carbon dioxide and hydrogen, Applied Catalysis A: General, 138 (1996) 311-318.
- [102] S.H. Liu, H.P. Wang, H.C. Wang, Y.W. Yang, In situ EXAFS studies of copper on ZrO₂ during catalytic hydrogenation of CO₂, Journal of Electron Spectroscopy and Related Phenomena, 144-147 (2005) 373-376.
- [103] Q.-L. Tang, Q.-J. Hong, Z.-P. Liu, CO2 fixation into methanol at Cu/ZrO₂ interface from first principles kinetic Monte Carlo, Journal of Catalysis, 263 (2009) 114-122.
- [104] T.C. Schilke, I.A. Fisher, A.T. Bell, In SituInfrared Study of Methanol Synthesis from CO₂/H₂ on Titania and Zirconia Promoted Cu/SiO₂, Journal of Catalysis, 184 (1999) 144-156.
- [105] D.L. Chiavassa, S.E. Collins, A.L. Bonivardi, M.A. Baltanás, Methanol synthesis from CO₂/H₂ using Ga₂O₃-Pd/silica catalysts: Kinetic modeling, Chemical Engineering Journal, 150 (2009) 204-212.
- [106] H.-W. Lim, M.-J. Park, S.-H. Kang, H.-J. Chae, J.W. Bae, K.-W. Jun, Modeling of the Kinetics for Methanol Synthesis using Cu/ZnO/Al₂O₃/ZrO₂ Catalyst: Influence of

Carbon Dioxide during Hydrogenation, Industrial & Engineering Chemistry Research, 48 (2009) 10448-10455.

- [107] J. Słoczyński, R. Grabowski, A. Kozłowska, P. Olszewski, M. Lachowska, J. Skrzypek, J. Stoch, Effect of Mg and Mn oxide additions on structural and adsorptive properties of Cu/ZnO/ZrO₂ catalysts for the methanol synthesis from CO₂, Applied Catalysis A: General, 249 (2003) 129-138.
- [108] Y. Nitta, O. Suwata, Y. Ikeda, Y. Okamoto, T. Imanaka, Copper-zirconia catalysts for methanol synthesis from carbon dioxide: Effect of ZnO addition to Cu-ZrO₂ catalysts, Catalysis Letters, 26 (1994) 345-354.
- [109] C. Schild, A. Wokaun, A. Baiker, On the mechanism of CO and CO₂ hydrogenation reactions on zirconia-supported catalysts: a diffuse reflectance FTIR study: Part II. Surface species on copper/zirconia catalysts: implications for methanoi synthesis selectivity, Journal of Molecular Catalysis, 63 (1990) 243-254.
- [110] J. Weigel, R.A. Koeppel, A. Baiker, A. Wokaun, Surface Species in CO and CO₂
 Hydrogenation over Copper/Zirconia: On the Methanol Synthesis Mechanism, Langmuir, 12 (1996) 5319-5329.
- [111] S. Collins, M. Baltanas, A. Bonivardi, An infrared study of the intermediates of methanol synthesis from carbon dioxide over Pd/-GaO, Journal of Catalysis, 226 (2004) 410-421.
- [112] Y. Yang, J. Evans, J.A. Rodriguez, M.G. White, P. Liu, Fundamental studies of methanol synthesis from CO₂ hydrogenation on Cu(111), Cu clusters, and Cu/ZnO(0001), Physical Chemistry Chemical Physics, 12 (2010) 9909-9917.
- [113] T. Inui, T. Yamamoto, M. Inoue, H. Hara, T. Takeguchi, J.-B. Kim, Highly effective synthesis of ethanol by CO₂-hydrogenation on well balanced multi-functional FT-type composite catalysts, Applied Catalysis A: General, 186 (1999) 395-406.
- [114] T. Inui, T. Yamamoto, Effective synthesis of ethanol from CO₂ on polyfunctional composite catalysts, Catalysis Today, 45 (1998) 209-214.
- [115] K.-i. Tominaga, Y. Sasaki, Ruthenium complex-catalyzed hydroformylation of alkenes with carbon dioxide, Catalysis Communications, 1 (2000) 1-3.

- [116] K. Fujimoto, T. Shikada, Selective synthesis of C2-C5 hydrocarbons from carbon dioxide utilizing a hybrid catalyst composed of a methanol synthesis catalyst and zeolite, Applied Catalysis, 31 (1987) 13-23.
- [117] S. Krishnamoorthy, A. Li, E. Iglesia, Pathways for CO₂ formation and conversion during Fischer–Tropsch synthesis on iron-based catalysts, Catalysis Letters, 80 (2002) 77-86.
- [118] T. Li, H. Wang, Y. Yang, H. Xiang, Y. Li, Study on an iron–nickel bimetallic Fischer– Tropsch synthesis catalyst, Fuel Processing Technology, 118 (2014) 117-124.
- [119] T. Riedel, M. Claeys, H. Schulz, G. Schaub, S.-S. Nam, K.-W. Jun, M.-J.C.G. Kishan, K.-W. Lee, Comparative study of Fischer–Tropsch synthesis with H₂-CO and H₂-CO₂ syngas using Fe- and Co-based catalysts, Applied Catalysis A: General, 186 (1999) 201-213.
- [120] S.-C. Lee, J.-S. Kim, W.C. Shin, M.-J. Choi, S.-J. Choung, Catalyst deactivation during hydrogenation of carbon dioxide: Effect of catalyst position in the packed bed reactor, Journal of Molecular Catalysis A: Chemical, 301 (2009) 98-105.
- [121] X. Nie, H. Wang, M.J. Janik, Y. Chen, X. Guo, C. Song, Mechanistic Insight into C– C Coupling over Fe–Cu Bimetallic Catalysts in CO₂ Hydrogenation, The Journal of Physical Chemistry C, 121 (2017) 13164-13174.
- [122] R. Satthawong, N. Koizumi, C. Song, P. Prasassarakich, Comparative study on CO₂ hydrogenation to higher hydrocarbons over Fe-based bimetallic catalysts, Topics in Catalysis, 57 (2013) 588-594.
- [123] R. Satthawong, N. Koizumi, C. Song, P. Prasassarakich, Light olefin synthesis from CO₂ hydrogenation over K-promoted Fe-Co bimetallic catalysts, Catalysis Today, 251 (2015) 34-40.
- [124] J. Barrault, A. Guilleminot, J.C. Achard, V. Paul-Boncour, A. Percheron-Guegan, Hydrogenation of carbon monoxide on carbon-supported cobalt rare earth catalysts, Applied Catalysis, 21 (1986) 307-312.
- [125] U. Rodemerck, M. Holeňa, E. Wagner, Q. Smejkal, A. Barkschat, M. Baerns, Catalyst Development for CO2Hydrogenation to Fuels, ChemCatChem, 5 (2013) 1948-1955.

- [126] S.-S. Nam, G. Kishan, M.-W. Lee, M.-J. Choi, K.-W. Lee, Effect of lanthanum loading in Fe–K/La–Al₂O₃ catalysts for CO₂ hydrogenation to hydrocarbons, Applied Organometallic Chemistry, 14 (2000) 794-798.
- [127] S. Hinchiranan, Y. Zhang, S. Nagamori, T. Vitidsant, N. Tsubaki, TiO₂ promoted Co/SiO2 catalysts for Fischer–Tropsch synthesis, Fuel Processing Technology, 89 (2008) 455-459.
- [128] J. Xiao, D. Mao, X. Guo, J. Yu, Effect of TiO₂, ZrO₂, and TiO₂-ZrO₂ on the performance of CuO-ZnO catalyst for CO₂ hydrogenation to methanol, Applied Surface Science, 338 (2015) 146-153.
- [129] G.V. Schulz, Über die Beziehung zwischen Reaktionsgeschwindigkeit und Zusammensetzung des Reaktionsproduktes bei Makropolymerisationsvorgängen, Zeitschrift Fur Physikalische Chemie-Abteilung B-Chemie Der Elementarprozesse Aufbau Der Materie, 30 (1935) 379-398.
- [130] P.J. Flory, Molecular Size Distribution in Linear Condensation Polymers1, Journal of the American Chemical Society, 58 (1936) 1877-1885.
- [131] R.B. Anderson, R.A. Friedel, H.H. Storch, Fischer-Tropsch Reaction Mechanism Involving Stepwise Growth of Carbon Chain, The Journal of Chemical Physics, 19 (1951) 313-319.
- [132] H.D. Willauer, R. Ananth, M.T. Olsen, D.M. Drab, D.R. Hardy, F.W. Williams, Modeling and kinetic analysis of CO_2 hydrogenation using a Mn and K-promoted Fe catalyst in a fixed-bed reactor, Journal of CO_2 Utilization, 3-4 (2013) 56-64.
- [133] K.J.A. Raj, B. Viswanathan, Effect of surface area, pore volume and particle size of P25 titania on the phase transformation of anatase to rutile, Indian Journal of Chemistry, 48A (2009) 1378-1382.
- [134] T.L. Thompson, J.T. Yates, Surface Science Studies of the Photoactivation of TiO₂
 New Photochemical Processes, Chemical Reviews, 106 (2006) 4428-4453.
- [135] G. Colón, J.M. Sánchez-España, M.C. Hidalgo, J.A. Navío, Effect of TiO₂ acidic pretreatment on the photocatalytic properties for phenol degradation, Journal of Photochemistry and Photobiology A: Chemistry, 179 (2006) 20-27.

- [136] J.C. Yu, J. Lin, R.W.M. Kwok, Ti₁-xZr_xO₂ Solid Solutions for the Photocatalytic Degradation of Acetone in Air, The Journal of Physical Chemistry B, 102 (1998) 5094-5098.
- [137] G. Weatherbee, Hydrogenation of CO₂ on group VIII metals IV. Specific activities and selectivities of silica-supported Co, Fe, and Ru, Journal of Catalysis, 87 (1984) 352-362.
- [138] F.-W. Chang, M.-S. Kuo, M.-T. Tsay, M.-C. Hsieh, Hydrogenation of CO₂ over nickel catalysts on rice husk ash-alumina prepared by incipient wetness impregnation, Applied Catalysis A: General, 247 (2003) 309-320.
- [139] T.Z. Li, Y. Yang, C.H. Zhang, Z.C. Tao, H.J. Wan, X. An, H.W. Xiang, Y.W. Li, Effect of manganese incorporation manner on an iron-based catalyst for Fischer-Tropsch synthesis, Journal of Natural Gas Chemistry, 16 (2007) 244-251.
- [140] R.W. Dorner, D.R. Hardy, F.W. Williams, H.D. Willauer, C2-C5+ olefin production from CO₂ hydrogenation using ceria modified Fe/Mn/K catalysts, Catalysis Communications, 15 (2011) 88-92.
- [141] M. Fujiwara, T. Satake, K. Shiokawa, H. Sakurai, CO₂ hydrogenation for C2+ hydrocarbon synthesis over composite catalyst using surface modified HB zeolite, Applied Catalysis B: Environmental, 179 (2015) 37-43.
- [142] S. Hu, M. Liu, F. Ding, C. Song, G. Zhang, X. Guo, Hydrothermally stable MOFs for CO₂ hydrogenation over iron-based catalyst to light olefins, Journal of CO₂ Utilization, 15 (2016) 89-95.
- [143] W. Arabczyk, D. Moszyński, U. Narkiewicz, R. Pelka, M. Podsiadły, Poisoning of iron catalyst by sulfur, Catalysis Today, 124 (2007) 43-48.
- [144] T. Salmi, R. Hakkarainen, Kinetic Study of the Low-Temperature Water-Gas Shift Reaction over a Cu—ZnO Catalyst, Applied Catalysis, 49 (1989) 285-306.
- [145] J. Graciani, K. Mudiyanselage, F. Xu, A.E. Baber, J. Evans, S.D. Senanayake, D.J. Stacchiola, P. Liu, J. Hrbek, J.F. Sanz, J.A. Rodriguez, Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO₂, Science, 345 (2014) 546.

- [146] J.A. Rodriguez, J. Evans, L. Feria, A.B. Vidal, P. Liu, K. Nakamura, F. Illas, CO₂ hydrogenation on Au/TiC, Cu/TiC, and Ni/TiC catalysts: Production of CO, methanol, and methane, Journal of Catalysis, 307 (2013) 162-169.
- [147] M.L. Cubeiro, H. Morales, M.R. Goldwasser, M.J. Pérez-Zurita, F. González-Jiménez, Promoter Effect of Potassium on an Iron Catalyst in the Carbon Dioxide Hydrogenation Reaction, Reaction Kinetics and Catalysis Letters, 69 (2000) 259-264.
- [148] P.H. Choi, K.-W. Jun, S.-J. Lee, M.-J. Choi, K.-W. Lee, Hydrogenation of carbon dioxide over alumina supported Fe-K catalysts, Catalysis Letters, 40 (1996) 115-118.
- [149] R. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A, 32 (1976) 751-767.
- [150] R. Brown, M.E. Cooper, D.A. Whan, Temperature programmed reduction of alumina-supported iron, cobalt and nickel bimetallic catalysts, Applied Catalysis, 3 (1982) 177-186.
- [151] D.J. Duvenhage, N.J. Coville, Fe:CoTiO₂ bimetallic catalysts for the Fischer-Tropsch reaction I. Characterization and reactor studies, Applied Catalysis A: General, 153 (1997) 43-67.
- [152] G. Pecchi, P. Reyes, T. López, R. Gómez, A. Moreno, J.L.G. Fierro, Effect of precursors on surface and catalytic properties of Fe/TiO₂ catalysts, Journal of Chemical Technology & Biotechnology, 77 (2002) 944-949.
- [153] S. Lögdberg, D. Tristantini, Ø. Borg, L. Ilver, B. Gevert, S. Järås, E.A. Blekkan, A. Holmen, Hydrocarbon production via Fischer–Tropsch synthesis from H₂-poor syngas over different Fe-Co/γ-Al₂O₃ bimetallic catalysts, Applied Catalysis B: Environmental, 89 (2009) 167-182.
- [154] W. Wang, X. Jiang, X. Wang, C. Song, Fe–Cu Bimetallic Catalysts for Selective CO₂
 Hydrogenation to Olefin-Rich C2+ Hydrocarbons, Industrial & Engineering
 Chemistry Research, 57 (2018) 4535-4542.

- [155] W. Li, X. Nie, X. Jiang, A. Zhang, F. Ding, M. Liu, Z. Liu, X. Guo, C. Song, ZrO₂ support imparts superior activity and stability of Co catalysts for CO₂ methanation, Applied Catalysis B: Environmental, 220 (2018) 397-408.
- [156] X. Nie, H. Wang, M.J. Janik, X. Guo, C. Song, Computational Investigation of Fe-Cu Bimetallic Catalysts for CO₂ Hydrogenation, The Journal of Physical Chemistry C, 120 (2016) 9364-9373.
- [157] G. Martra, Lewis acid and base sites at the surface of microcrystalline TiO₂ anatase: relationships between surface morphology and chemical behaviour, Applied Catalysis A: General, 200 (2000) 275-285.
- [158] G. Busca, V. Lorenzelli, Infrared spectroscopic identification of species arising from reactive adsorption of carbon oxides on metal oxide surfaces, Materials Chemistry, 7 (1982) 89-126.
- [159] T. Montanari, L. Castoldi, L. Lietti, G. Busca, Basic catalysis and catalysis assisted by basicity: FT-IR and TPD characterization of potassium-doped alumina, Applied Catalysis A: General, 400 (2011) 61-69.
- [160] M. Kantschewa, E.V. Albano, G. Etrtl, H. Kno"zinger, Infrared and x-ray photoelectron spectroscopy study of K_2CO_3/γ -Al₂O₃, Applied Catalysis, 8 (1983) 71-84.
- [161] T. Hirano, Roles of potassium in potassium-promoted iron oxide catalyst for dehydrogenation of ethylbenzene, Applied Catalysis, 26 (1986) 65-79.
- [162] H. Tsuji, A. Okamura-Yoshida, T. Shishido, H. Hattori, Dynamic Behavior of Carbonate Species on Metal Oxide Surface: Oxygen Scrambling between Adsorbed Carbon Dioxide and Oxide Surface, Langmuir, 19 (2003) 8793-8800.
- [163] J.M. Zowtiak, C.H. Bartholomew, The kinetics of H_2 adsorption on and desorption from cobalt and the effects of support thereon, Journal of Catalysis, 83 (1983) 107-120.
- [164] F. Bozso, G. Ertl, M. Grunze, M. Weiss, Chemisorption of hydrogen on iron surfaces, Applications of Surface Science, 1 (1977) 103-119.
- [165] P. Panagiotopoulou, Hydrogenation of CO_2 over supported noble metal catalysts, Applied Catalysis A: General, 542 (2017) 63-70.

- [166] L. Mino, G. Spoto, A.M. Ferrari, CO_2 Capture by TiO_2 Anatase Surfaces: A Combined DFT and FTIR Study, The Journal of Physical Chemistry C, 118 (2014) 25016-25026.
- [167] T. Meisel, Z. Halmos, K. Seybold, E. Pungor, The thermal decomposition of alkali metal formates, Journal of thermal analysis, 7 (1975) 73-80.
- [168] Y. Santiago-Rodríguez, E. Barreto-Rodríguez, M.C. Curet-Arana, Quantum mechanical study of CO_2 and CO hydrogenation on Cu(111) surfaces doped with Ga, Mg, and Ti, Journal of Molecular Catalysis A: Chemical, 423 (2016) 319-332.
- [169] R.W. Dorner, D.R. Hardy, F.W. Williams, H.D. Willauer, Heterogeneous catalytic
 CO₂ conversion to value-added hydrocarbons, Energy & Environmental Science, 3 (2010) 884.
- [170] M.-J. Choi, J.-S. Kim, H.-K. Kim, S.-B. Lee, Y. Kang, K.-W. Lee, Hydrogenation of CO₂ over Fe-K based catalysts in a fixed bed reactors at elevated pressure, Korean Journal of Chemical Engineering, 18 (2001) 646-651.
- [171] H.S. Fogler, Elements of chemical reaction engineering, Third edition. Upper Saddle River, N.J. : Prentice Hall PTR, [1999] ©1999, 1999.

CHULALONGKORN UNIVERSITY

APPENDIX A

Gas Product Analysis

The gas product including Ar, CO, CH_4 and CO_2 were analyzed online using an Agilent 3000 micro GC with molecular sieve type column for Ar, CO, CH_4 and Plot-Q column for CO_2 , respectively. The GC-TCD condition and temperature program used for the analyses are described in Table A-1.

Table A-1 Condition and	temperature program	for micro GC analysis.
-------------------------	---------------------	------------------------

Parameters	Molecular Sieve	Plot Q
Carrier gas	Helium	Helium
Internal standard	Argon	Argon
Injector temperature (°C)	100	100
Column temperature (°C)	60	70
Column pressure (psi)	20	20
Sample pump (s)		10
Injection time (ms)	100	100
Run time (s)	300	600

The gas-phase hydrocarbon products were analyzed online using SRI 8610C GC (Porapak Q column) equipped with FID. The GC-FID condition and temperature program used for the analyses are described in Table A-2.

Parameters	Molecular Sieve
Carrier gas	Helium
Injector temperature (°C)	165
Detector temperature (°C)	250
Injection volume (ml)	3
Oven temperature program	7
Initial temperature (°C)	40
Hold time (min)	0
Ramp rate (°C min ⁻¹)	5
Final temperature (°C)	100
Hold time (min)	0 ลัย
Ramp rate (°C min ⁻¹)	2.5
Final temperature (°C)	200
Hold time (min)	0

 Table A-2 Condition and temperature program for GC-FID analysis.

APPENDIX B

Liquid Hydrocarbon Product Analysis

The liquid hydrocarbons collected from an ice cooled condenser connected to the reactor system were analyzed after the CO₂ hydrogenation reaction using the GC/MS (Agilent, 7890) with a capillary column RTX-PAH (60 m x 0.25 mm I.D. x 0.25 μ m film thickness). The condition and temperature program for GC/MS are described in Table B-1.

Table B-1	Condition	and	temperature	program	for GC/MS	analysis.
			11 11 11 13 14			

Parameters	Molecular Sieve
Carrier gas	Helium
Column inlet pressure (kPa)	23
Column flow (mL min ⁻¹)	0.7
Split mode injector	20:1
Total flow (mL min ⁻¹)	15.2
Carrier gas flow rate (mL min ⁻¹)	15.2
Injector temperature (°C)	290
Detector temperature (°C)	270
Injection volume (μ l)	r y 1
Oven temperature program	
Initial temperature (°C)	40
Hold time (min)	10
Ramp rate (°C min ⁻¹)	5
Final temperature (°C)	120
Hold time (min)	2
Ramp rate (°C min ⁻¹)	4
Final temperature (°C)	250
Hold time (min)	5

APPENDIX C

The equilibrium $\rm CO_2$ conversion from ASPEN HYSYS 7.1

Table C-1 Equilibrium CO_2 conversion at constant molar ratio ($H_2/CO_2 = 3$) and various reaction temperatures.

	(a) RWGS	(b) FTS	(c) Direct CO ₂ -HYD
Temp. (K)	CO ₂ conv. (%)	CO ₂ conv. (%)	CO ₂ conv. (%)
373	2.78	75.00	75.00
473	10.23	74.87	75.87
573	22.30	74.14	74.13
673	36.12	71.9	71.76
773	48.97	67.74	66.68
873	59.56	63.65	58.66
973	67.74	64.26	48.56

Table C-2 Equilibrium CO₂ conversion at constant molar ratio ($H_2/CO_2 = 3$) and various reaction pressures

reaction	n pressures.	20	
	(a) RWGS	(b) FTS	(c) Direct CO ₂ -HYD
Press. (MPa)	CO ₂ conv. (%)	399 B CO ₂ conv. (%)	CO ₂ conv. (%)
0.10	GHULALON (22.22	UNIVERS 72.20	72.17
0.51	22.25	73.73	73.71
1.01	22.30	74.1	74.09
1.10	22.30	74.14	74.13
1.52	22.34	74.27	74.27
2.03	22.38	74.38	74.37
2.53	22.42	74.45	74.44
4.05	22.42	74.58	74.57

APPENDIX D

Calculation of CO_2 Conversion and Product Selectivity

The catalytic CO_2 hydrogenation activity was obtained from GC-TCD analyses (using Ar as an internal standard) and can be written in terms of mole percent conversion of CO_2 . Calculation procedures are as follow:

$$CO_{2} \text{ conversion } (\%) = \left[1 - \frac{\left(CO_{2}/A_{r}\right)_{out}}{\left(CO_{2}/A_{r}\right)_{in}}\right] \times 100 \qquad (D-1)$$
where
$$\begin{pmatrix}CO_{2}/A_{r}\end{pmatrix}_{in} = \text{ratio of } CO_{2} \text{ to Ar concentration at the reactor inlet} \\ \begin{pmatrix}CO_{2}/A_{r}\end{pmatrix}_{out} = \text{ratio of } CO_{2} \text{ to Ar concentration at the reactor outlet} \end{cases}$$
Example: CO₂ conversion of Fe-Co(0.1)-K(0.1)-La(0.1)/TiO₂ catalyst
Form Table D-1: at 16 hour-on-stream; Ar area = 431342 and CO₂ area = 1042200 \\ (CO_{2}/Ar)_{out} = 1042200 / 431342 = 2.416

 $(CO_2/Ar)_{in}$ can be estimated from the ratio of CO_2 area to Ar area measured at

1.1 MPa (ambient temperature) before CO₂ hydrogenation

$$(CO_2/Ar)_{out} = 3.087$$

Hence, CO_2 conversion = $[1 - (2.416 / 3.087)] \times 100 = 21.7\%$

TOS (h)	Area			
	Ar	CH ₄	СО	CO ₂
0.0	398981	43830	251533	958745
1.0	429489	56955	203807	1004440
2.0	445046	64519	174765	1026030
3.0	447148	67378	164505	1031730
4.0	448374	68690	163690	1030920
5.0	444311	68410	164510	1032030
6.0	442667	68122	169911	1027940
7.0	441684	67795	174226	1034790
8.0	441708	67413	182050	1032350
9.0	437076	66261	187331	1030370
10.0	430783	64754	174948	1032700
11.0	430938	64528	ຄັ ຍ 185100	1032000
12.0	C 431116 O (63674	RS 194487	1028950
13.0	431254	62425	173698	1032500
14.0	431566	64261	177908	1036980
15.0	434350	67360	177908	1044920
16.0	431342	61837	175760	1042200
17.0	426581	51028	187820	1038730

 Table D-1 GC-TCD data of CO2 hydrogenation over Fe-Cu(0.1)-K(0.1)-La(0.1) catalyst.

The product space-time yield (STY) was expressed in the moles of product per weight of the catalyst per reaction time (μ mol g⁻¹ s⁻¹) and can estimated as follows:

Example: CH₄ STY of Fe-Co(0.1)-K(0.1)-La(0.1)/TiO₂ catalyst

Feed gas flow rate (24 vol% CO₂/ 72 vol% H₂/ 4 vol% Ar) = 12 mL(STP) min⁻¹

Catalyst weight = 0.2005 g

Gas constant = 0.082 L at, K⁻¹ mol⁻¹

First the CO₂ flow rate is calculated;

 $CO_{2} \text{ flow rate} = [(\text{Feed gas flow rate (mL(STP) min}^{-1}) \times 0.001 / 0.082 / 273.15 \times 60) / (Catalysts weight (g) / 1000)] \times 0.24$ $= [(12 \times 0.001 / 0.082 / 273.15 \times 60) / (0.2005 / 1000)] \times 0.24$ $= 38.48 \text{ mol kg-cat}^{-1} \text{ h}^{-1}$

To calculate the STY, the calibration data of Ar, CH_4 and CO_2 for GC-TCD are required. By plotting out between gas concentration (y-axis) and area of the peak (xaxis) and the slope will be used for qualitative calculation. From the calibration curve of Ar, CH_4 and CO_2 (Fig. C-1), the slopes are listed below:

Slope of Ar curve = 1.2550E-05

Slope of CH_4 curve = 1.4011E-05

Slope of CO_2 curve = 2.3222E-05

Form Table D-1 at 16 hour-on-stream; Ar area = 431342 and CH_4 area = 61837

- $CH_4 STY = CO_2$ flow rate x (CH_4 area x Slope pf CH_4 curve) / (Ar area x Slope of Ar curve) / [(CO_2/Ar)_{in} x (Slope of CO_2 curve/Slope of Ar curve)]
 - = 38.48 × (61837 × 1.4011E-05) / (431342 × 1.4011E-05) / [3.087 × (2.3222E-05 / 1.2550E-05)]

$$= 0.966 \text{ mol kg-cat}^{-1} \text{ h}^{-1}$$

= 0.268 μ mol g-cat⁻¹ s⁻¹ #

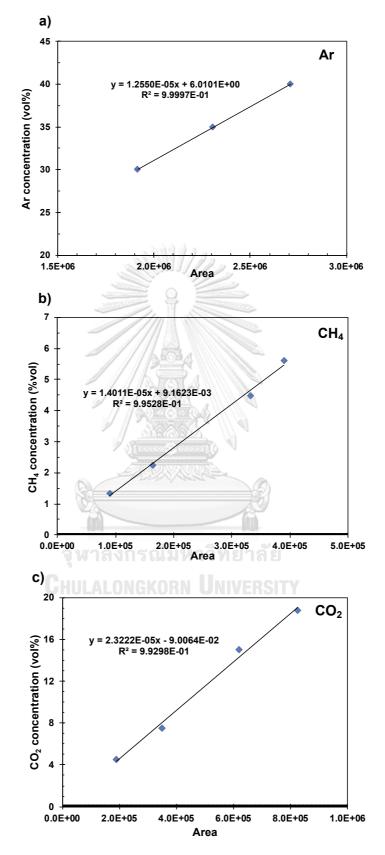


Figure D-1 The calibration curve. (a) Ar, (b) CH_4 and (c) CO_2 .

The gaseous hydrocarbons were analyzed online by GC-FID. The selectivity of these gaseous hydrocarbons ($C_1 - C_7$) was expressed in carbon mole percent (%) and calculated as follows:.

$$s_{i} (c-mot%) = \left(\frac{mole_{i}}{mole_{CO_{2}(converted)}}\right) \times 100 \quad (D-2)$$
where S_{i} = percent product selectivity of produced
product i
mole_{i} = mole of produced product i
mole_{CO_{2}(converted)} = mole of converted CO_{2}
Example: Product selectivity of Fe-Co(0.1)-K(0.1)-La(0.1)/TiO_{2} catalyst:
From Table D-1 the CO_{2} conversion could be calculated:
The CO_{2} conversion @16 h = 21.73%
Then, mole_{CO_{2}(converted)} = (CO_{2} flow rate) \times (%CO_{2} conv. @16 h + %CO_{2} conv.
@17 h) /2 / 100
= (38.48) \times (21.73 + 21.13) / 2 / 100
= 8.24 mol
From Table D-1 the CH_{4} STY could be calculated:
The CH_{4} STY @16 h = 1.0873 mol kg-cat⁻¹ h⁻¹
The CH_{4} STY @16 h + CH_{4} STY @17 h) / 2
= (1.0873 + 0.9073) / 2
= 0.9973 mol
Hence, from Eq. D-2 S_{CH_4} = (0.9973 / 8.24) × 100
= 12 C-mol% #

APPENDIX E

Calculation of Chain Growth Probability

Since CO₂ hydrogenation over Fe-based catalysts mostly proceeds *via* reverse water-gas shift reaction followed by Fischer-Tropsch synthesis, so the hydrocarbon product distribution generally follows an Anderson-Schulz-Flory distribution, where the hydrocarbon chain is formed step-wise by insertion of C₁ intermediates with constant growth proability (α) [129-131]. The Anderson-Schulz-Flory distribution can be written as the following equation,

$$W_{N} = N(1 - \alpha)^{2} \alpha^{N-1}$$
(E-1)

$$\frac{W_{N}}{N} = \frac{(1-\alpha)^{2}}{\alpha} \alpha^{N}$$
(E-2)

$$\ln\left(\frac{W_{N}}{N}\right) = \ln\left(\frac{(1-\alpha)^{2}}{\alpha}\right) + N \ln \alpha^{N}$$
(E-3)

where	W_N	=	carbon weight fraction of hydrocarbon containing N carbon
	Ν	=	carbon number
	α	=	chain growth probability

The chain growth probability (α) can be calculated from the slope of the plot between the carbon number (N) and natural logarithm of hydrocarbon weight fraction to carbon number ratio (ln(W_N/N)) or natural logarithm of the carbon mole fraction of hydrocarbon containing N carbon (ln M_N) <u>Example</u>: Chain growth probability of gaseous product from CO_2 hydrogenation over Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ catalyst

First, the area of each hydrocarbon containing N carbon from GC-FID data as shown in Table E-1 is calculated.

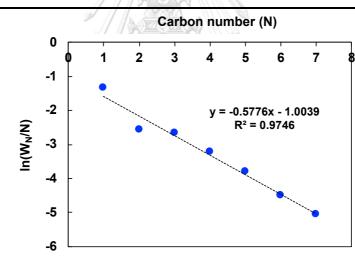
Component	Retention time (min)	Area
CH ₄	0.933	767.2980
C_2H_4	2.683	49.3330
C_2H_6	3.416	401.0050
C ₃ H ₆	8.233	334.1460
C ₃ H ₈	8.683	274.3615
C ₄ H ₈	14.700	129.2870
C_4H_{10}	15.416	333.0400
C ₅ H ₁₀	22.550	69.0730
C ₅ H ₁₂	23.333	256.7960
C ₆ H ₁₄	31.566	196.8835
C ₇ H ₁₆	39.500	129.1130

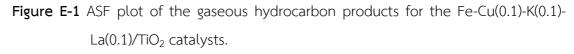
Table E-1 GC-FID data of CO_2 hydrogenation over Fe-Cu(0.1)-K(0.1)-La(0.1) catalyst.

จุฬาลงกรณ์มหาวิทยาลัย

#

Area of C ₄ hydrocarbon	UL/	129.2870 + 333.0400	=	462.327	
------------------------------------	-----	---------------------	---	---------	--


Carbon number (N)	Area
1	767.2980
2	450.3380
3	608.5075
4	462.3270
5	325.8690
6	196.8840
7	129.1130


The carbon weight fraction of hydrocarbon containing N carbon (W_N) is then calculated by divided the area of each hydrocarbon containing N carbon with the total area.

> Total area = 2940.3360 W₄ = 462.3270 / 2940.3360 = 0.1572

Carbon number (N)	W _N	W _N /N	ln(W _N /N)
1	0.2610	0.2610	-1.3434
2	0.1532	0.0766	-2.5694
3	0.2070	0.0690	-2.6739
4	0.1572	0.0393	-3.2363
5	0.1108	0.0222	-3.8092
6	0.0670	0.0112	-4.4954
7	0.0439	0.0063	-5.0715
Total	1.0000	I MARKER	

According to Eq. E-3, the slope of Fig. E-1 is $ln(\alpha)$. Then, the chain growth probability (α) can be calculated.

Slope =
$$ln(\alpha)$$
 = -0.5776
 α = 0.56 #

APPENDIX F

H₂-TPR of Fe-Cu bimetallic catalysts

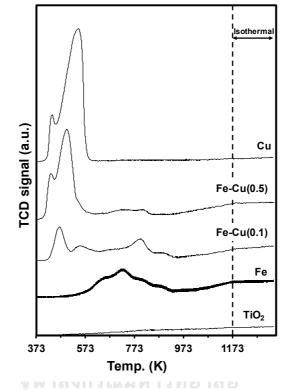


Figure F-1 Effect of combining Fe and Cu on the H_2 -TPR profiles of the calcined Fe-Cu(X)/TiO₂ catalysts.

Chromatograms of gas product over Fe-Cu(0.1)-K(X)/TiO₂ catalysts

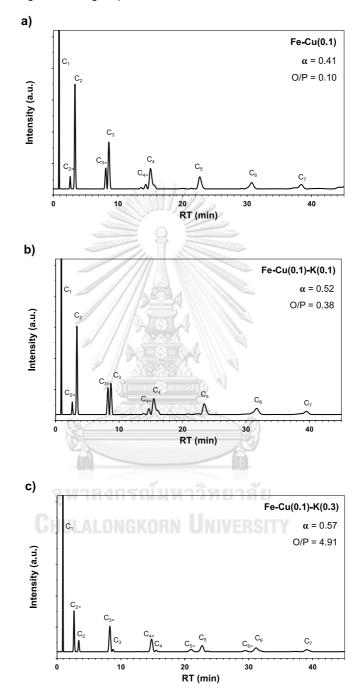
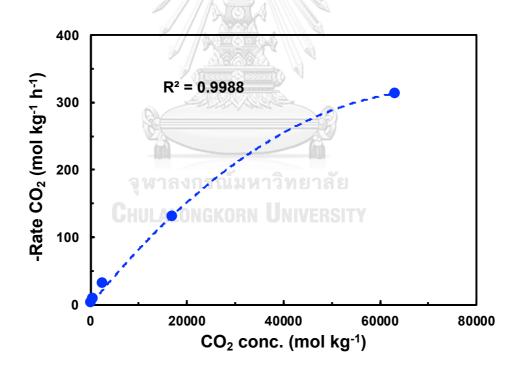


Figure G-1 GC-FID chromatograms of gas-phase hydrocarbons from CO_2 hydrogenation over Fe-Cu(0.1)-K(X)/TiO₂ with different K/Fe atomic ratio. (a) X = 0, (b) X = 0.1 and (c) X = 0.3.

APPENDIX H

KINETICS AND MODELLING OF Fe-BASED CATALYSTS FOR CO₂ HYDROGENATION TO HIGHER HYDROCARBONS

H-1 Introduction


The catalytic CO_2 hydrogenation to hydrocarbon is a potential way for CO_2 utilization. One limitation of using CO_2 as a feedstock for hydrocarbon production concerns the high energy barrier for polymerization and the need for a source of hydrogen. Recently, some reports suggested that the electrochemical and photochemical catalytic CO_2 conversion processes continue to improve in efficiencies, the thermal processes remain one of the few proven methods for producing high yields of higher hydrocarbons greater than methane [24, 132, 169, 170].

According to Chapter IV and V, for CO_2 hydrogenation using an optimized Fe-Cu-K-La catalyst impregnated on TiO₂ in a fixed-bed reactor with thermal process, CO_2 conversion levels could be achieved as high as 23%. The modelling and kinetic analysis could be applied to the further tailor catalyst properties and reactor design in effort to facilitate greater CO_2 conversion. The kinetic studies should be performed on the specific catalyst and operating conditions for process design and scale-up [24, 132].

In this study on the APPEN PLUS simulation of CO_2 hydrogenation, the obtained activity results of Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ catalyst were used to modify the kinetic parameters of Langmuir-Hinshelwood model and predict the optimal reactor size and conditions for hydrocarbon production.

H-2 Kinetic analysis over Fe-Cu-K-La/TiO₂ catalyst

The kinetic rate parameters of CO₂ hydrogenation over optimized Fe-Cu(0.1)- $K(0.1)-La(0.1)/TiO_2$ catalyst were determined by varying the gas hourly space velocity (GHSV) at constant reaction condition (573 K and 1.1 MPa). The reactor tube was loaded with the desired amounts of catalyst (0.002-0.600 g) diluted with amorphous SiO₂ (Davisil Grade 62, particle size = 75-250 × 10⁻⁶ m) to maintain an aspect ratio of approximately 6.0. The rates of CO₂ change with various inlet CO₂ concentration (at about 16-18 h on stream) were used to estimate the kinetic rate parameters as shown in Fig. F-1 and Table. F-1.

Figure H-1 Effects of inlet CO₂ concentration on the reaction rate for CO₂ hydrogenation over Fe-Cu(0.1)-K(0.1)-La(0.1)/TiO₂ catalyst at 573 K and 1.1 MPa.

				Rate of cor	verted CO ₂
Data	GHSV	[CO ₂] (mol kg ⁻¹)	[H ₂] (mol kg ⁻¹)	(mol k	g ⁻¹ h ⁻¹)
	(L g ⁻¹ h ⁻¹)			Experiment	Calculation
1	1.20	233	700	3.4	2.8
2	3.58	690	2071	8.3	8.2
3	3.62	693	2078	8.9	8.3
4	13.79	2660	7980	31.5	31.7
5	88.89	17144	51432	131.3	N/A
6	327.27	63121	189365	314.0	N/A

Table H-1 The experimental data of CO_2 hydrogenation with Fe-Cu-La-K/TiO2 catalystfor kinetics analysis.

From Fig. H-1, the non-linear relationship was observed, which suggested that the surface reaction is a rate determining step (RDS) and the rate equation of Eq. H-1 could be proposed with the following assumptions.

จุฬาลงกรณ์มหาวิทยาลัย **CHULALONGKORN UNIVERSITY** $CO_2 + H_2 \longrightarrow Hydrocarbons + H_2O$ (F-1)

- Assumptions: 1. The overall reaction is irreversible and the surface reaction is rate determining step (RDS).
 - 2. Only CO_2 is adsorbed on catalyst site since the dissociative adsorption of H_2 is weak compared to CO_2 adsorption.
 - 3. CO₂ is not dissociative adsorbed during the adsorption step.

The elementary reactions of CO_2 hydrogenation to hydrocarbons are written as adsorption step (Eq H-2) and surface reaction (Eq. H-3).

$$CO_2 + * \longleftrightarrow^{\mathsf{K}_{\mathsf{CO}_2}} CO_2 * *$$
(H-2)

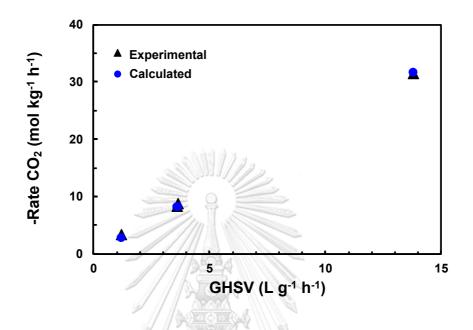
Surface reaction: $CO_2^{*} + H_2 \xrightarrow{k} Hydrocarbons + H_2O + *$ (RDS) (H-3)

Hence, the rate equation of CO_2 hydrogenation can be written based on Langmuir-Hinshelwood model as follows [171];

$$\operatorname{Rate}_{\operatorname{CO}_{2}} = \frac{\kappa \kappa_{\operatorname{CO}_{2}} \lfloor \operatorname{CO}_{2} \rfloor \lfloor \operatorname{H}_{2} \rfloor}{\left(1 + \kappa_{\operatorname{CO}_{2}} \lfloor \operatorname{CO}_{2} \rfloor\right)}$$
(H-4)

$$\mathsf{Rate}_{\mathsf{CO}_2} = \frac{k'[\mathsf{CO}_2][\mathsf{H}_2]}{(1 + \kappa_{\mathsf{CO}_2}[\mathsf{CO}_2])}$$
(H-5)

Where


Adsorption:

$$\mathbf{k}' = \mathbf{k} + \mathbf{k} +$$

The kinetic parameters were estimated from non-linear regression of experiment data (GHSV = $1.2 - 13.8 \text{ Lg}^{-1} \text{ h}^{-1}$) as presented in Table. H-1. The rate equation could be expressed as follows;

Rate =
$$\frac{1775 [CO_2] [H_2]}{(1 + 4.22 \times 10^5 [CO_2])}$$
(H-6)

Figure H-2 shows the comparison of CO_2 conversion rate from the experimental data and calculation from rate equation (Eq. H-6) at various GHSV.

Figure H-2 The comparison of CO₂ conversion rate from experiment data and rate equation (calculation) of CO₂ hydrogenation with Fe-Cu-La-K/TiO₂ catalyst at various GHSV.

จุฬาลงกรณมหาวิทยาลัย

H-3 Simulation of CO $_2$ hydrogenation over Fe-Cu-K-La/TiO $_2$ catalyst

The simulation of the obtained experimental data was performed using ASPEN PLUS 8.6. The reactor model RPLUS was chosen, which provided a rigorous simulation of an ideal PFR. H_2 and CO_2 at the reactor inlet and carbon-containing components CO_2 , CO, and C_3H_8 (represent hydrocarbons) at the reactor outlet. According to the main reaction pathway, CO_2 was first converted to CO *via* the reverse water-gas shift (RWGS) reaction (Eq. H-7) and subsequently converted to hydrocarbons *via* Fischer-Tropsch synthesis (FTS) (Eq. H-8). Both Eq. 6.7 and 6.8 were used as input reaction for the ideal PFR. The catalyst bed dimension used in simulation was 6 cm (diameter) x

36 cm (length) which was 1000 times the catalyst bed volume used in this experimental (6 mm (diameter) x 36 mm (length)). The summary of kinetic parameters from rate equation (Eq. H-6) and other necessary parameters used in the RPLUS reactor are tabulated in Table H-2.

$$CO_2 + H_2 \leftrightarrow CO + H_2O$$
 RWGS (H-7)

$$3CO + 7H_2 \leftrightarrow C_3H_8 + 3H_2O$$
 FTS (H-8)

 Table H-2 The values of kinetic parameters and reactor parameter values used in the model.

Kinetic parameter	ACA	Reactor parameter	
<i>k</i> [']	1775 kg mol ⁻¹ h ⁻¹	Length	36 cm
K _{CO2}	4.22 x 10 ⁵ kg mol ⁻¹	Diameter	6 cm
E _{A,RWGS}	55 kJ mol ⁻¹ [132]	Pressure	1.1 MPa
E _{A,HYD}	72 kJ mol ⁻¹ [132]	Temperature	573 K
	จุหาลงกรณ์มหาวิ	Bed voidage	0.5

JHULALONGKORN UNIVERSITY

From process flow diagram as shown in Fig. H-3, the simulation was performed to investigate the effect of GHSV on the CO₂ conversion of CO₂ hydrogenation in fixedbed reactor. The GHSV ($1.2 - 14 \text{ Lg}^{-1} \text{ h}^{-1}$) was varied by changing the catalyst weight (52 - 600 g) at constant volume feed flow rate ($720 \text{ L} \text{ h}^{-1}$) and reaction condition (573 K and 1.1 MPa). The mixed gas molar ratio of H₂/CO₂ was maintained constant at 3. The 2nd reactor with the same dimension was also added in series to investigate the reactor size scale-up as shown in Fig. H-4. From the simulation results, the CO₂ conversion and the product selectivity at various GHSV are shown in Fig. H-5 and Fig. H-6, respectively. The product distribution (stream flow rate) is also presented in the Table H-3 (1 PFR) and Table H-4 (2 PFR in series).

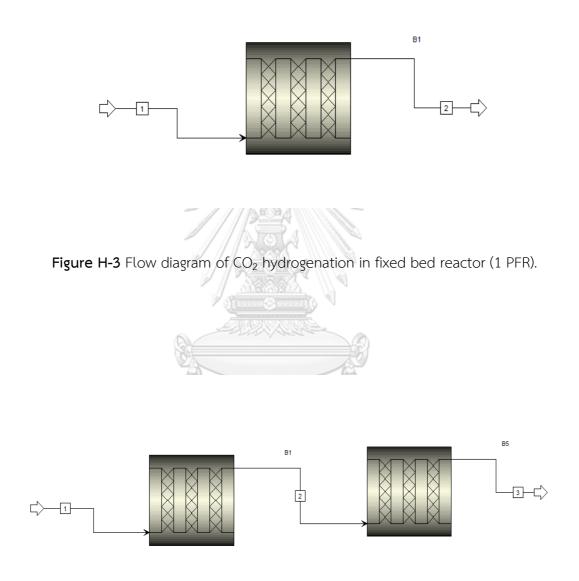


Figure H-4 Flow diagram of CO₂ hydrogenation in 2 PFR in series.

		ישניס		יאכו ומרוחי	t Sillen I		ומימיוסו			
GHSV (L g^{-1} h^{-1})	1.2		3.6		7.0		10		14	
Catalyst weight (g)	600		200		103		72		52	
Stream	-	2	1	2	1	2	Ţ	2	1	2
Temperature (°C)	300	300	300	300	300	300	300	300	300	300
Pressure (bar)	11	11	11	11	11	11	11	11	11	11
Vapor Frac	-	Ţ	1	-	1	1	7	4	1	1
Mole Flow (kmol/h)	0.166	0.129	0.166	0.159	0.166	0.164	0.166	0.165	0.166	0.165
Mass Flow (kg/h)	2.074	2.074	2.074	2.074	2.074	2.074	2.074	2.074	2.074	2.074
Volume Flow (L/h)	720	558	720	692	720	712	720	716	720	718
Enthalpy (Gcal/h)	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
Mole Flow (kmol/h)										
CO_2	0.041	0.016	0.041	0.032	0.041	0.036	0.041	0.038	0.041	0.039
H ₂	0.124	0.056	0.124	0107	0.124	0.117	0.124	0.12	0.124	0.121
C ₃ H ₈	0.000	0.006	0.000	0.001	0.000	0.000	0.000	0.000	0.000	0.000
H ₂ O	0.000	0.043	0.000	0.013	0.000	0.006	0.000	0.004	0.000	0.003
СО	0.000	0.007	0.000	0.007	0.000	0.004	0.000	0.003	0.000	0.002

Table H-3 Stream table of CO₂ hydrogenation using 1 PFR simulation by ASPEN PLUS 8.6.

I able π- 4 surgarin lable of U_2 hydrogenation using 2 prictin series simulation by Aspen pros 0.0.		iyaroger		INY Z PFI		s simula	auon by /		.0.0 CU-
GHSV (L g^{-1} h^{-1})	1.2			3.6			7.0		
Catalyst weight (g)	009			200			103		
Stream	1	2	3	1	2	3	1	2	3
Temperature (°C)	300	300	300	300	300	300	300	300	300
Pressure (bar)	11	11	1.1	11	11	1.1	11	11	1.1
Vapor Frac	1	1	4	1	-	\leftarrow	1	1	1
Mole Flow (kmol/h)	0.166	0.129	0.125	0.166	0.159	0.158	0.166	0.164	0.163
Mass Flow (kg/h)	2.074	2.074	2.074	2.074	2.074	2.074	2.074	2.074	2.074
Volume Flow (L/h)	720	557	539	720	692	685	720	712	708
Enthalpy (Gcal/h)	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
Mole Flow (kmol/h)									
CO ₂	0.041	0.016	0.014	0.041	0.032	0.031	0.041	0.036	0.036
H ₂	0.124	0.056	0.049	0.124	0.107	0.105	0.124	0.117	0.116
C ₃ H ₈	0.000	0.006	0.007	0.000	0.001	0.001	0.000	0.000	0.000
H ₂ O	0.000	0.044	0.048	0.000	0.013	0.015	0.000	0.006	0.007
CO	0.000	0.007	0.006	0.000	0.007	0.007	0.000	0.004	0.005

Table H- 4 Stream table of CO₃ hydrogenation using 2 PFR in series simulation by ASPFN PLUS 8.6.

GHSV (L g ⁻¹ h ⁻¹)	10			14		
Catalyst weight (g)	72			52		
Stream	-	2	3	1	2	3
Temperature (°C)	300	300	300	300	300	300
Pressure (bar)	11	11	1.1	11	11	1.1
Vapor Frac	-	-	\leftarrow	1	-	1
Mole Flow (kmol/h)	0.166	0.165	0.165	0.166	0.165	0.165
Mass Flow (kg/h)	2.074	2.074	2.074	2.074	2.074	2.074
Volume Flow (L/h)	720	716	713	720	718	715
Enthalpy (Gcal/h)	-0.004	-0.004	-0.004	-0.004	-0.004	-0.004
Mole Flow (kmol/h)						
CO ₂	0.041	0.038	0.037	0.041	0.039	0.039
H ₂	0.124	0.120	0.119	0.124	0.121	0.121
C ₃ H ₈	0.000	0.000	0.000	0.000	0.000	0.000
H ₂ O	0.000	0.004	0.005	0.000	0.003	0.003
CO	0.000	0.003	0.003	0.000	0.002	0.003

.6 (cont.). Table H-4

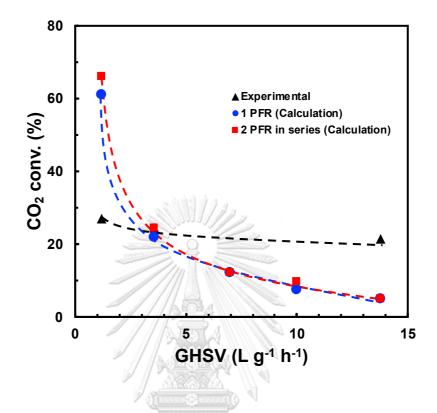
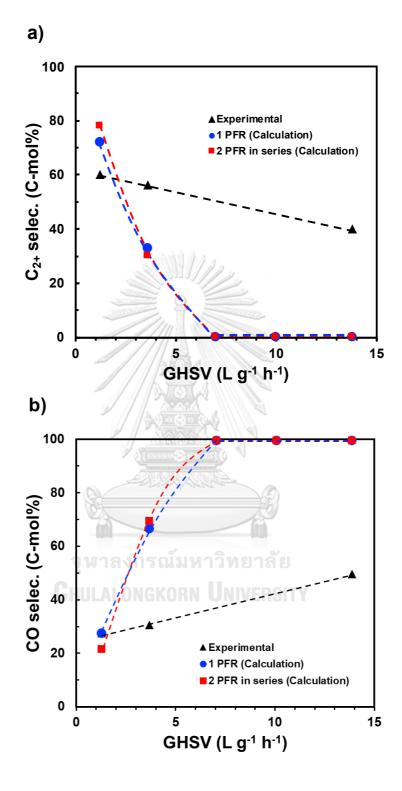



Figure H-5 CO₂ conversion of experimental data, 1 PFR (calculation) and 2 PFR in series (calculation) at various GHSV.

Figure H-6 (a) C₂₊ hydrocarbon and (b) CO selectivity of experimental data, 1 PFR (calculation) and 2 PFR in series (calculation) at various GHSV.

	Experimental	tal		1 PFR			2 PFR in series	ries	
GHSV	CO ₂ conv. HCs	HCs	0	CO ₂ conv.	HCs	CO	CO ₂ conv.	HCs	CO
$(L g^{-1} h^{-1})$ (%)	(%)	selec.	Selec.	(%)	selec.	Selec.	(%)	selec.	selec.
		(%C-mol)	(%C-mol)		(%C-mol) (%C-mol)	(%C-mol)		(%C-mol)	(%C-mol)
1.2	26.9	60	28	61.0	72	28	65.9	78	22
3.6	24.4	56	31	22.0	33	67	24.4	30	70
7.0	N/A	N/A	N/A	12.2	0	100	12.2	0	100
10.0	N/A	N/A	N/A	7.3	0	100	9.8	0	100
14.0	21.3	40	50	4.9	0	100	4.9	0	100

Ġ
S
0
i
at various (
l in series (calculation) at v
$\widehat{}$
ō
ati
cula
2
U
S.
.e
Sel
⊂,
⁼ R in series (calculation
<u>а</u>
7
Ĕ
а (
ition) and
÷
Ila
(calculation
cal
()
(calci
FR (c
. PFR (c
, 1 PFR (
, 1 PFR (
ata, 1 PFR (
l data, 1 PFR (
tal data, 1 PFR (
ntal data, 1 PFR (
mental data, 1 PFR (
mental data, 1 PFR (
mental data, 1 PFR (
mental data, 1 PFR (
mental data, 1 PFR (
mental data, 1 PFR (
mental data, 1 PFR (
mental data, 1 PFR (
ntal data, 1 PFR (
mental data, 1 PFR (
conversion of experimental data, 1 PFR (
O_2 conversion of experimental data, 1 PFR (
CO ₂ conversion of experimental data, 1 PFR (
O_2 conversion of experimental data, 1 PFR (
H-5 CO ₂ conversion of experimental data, 1 PFR (
CO ₂ conversion of experimental data, 1 PFR (
H-5 CO ₂ conversion of experimental data, 1 PFR (

According to the simulation result (Fig. H-5, Fig. H-6 and Table H-5), the CO₂ conversion of both processes could reach the maximum conversion (61 and 66%) at GHSV of 1.2 L g⁻¹ h⁻¹. The process with two PFR in series gave slightly higher CO₂ conversion (up to 4% higher) than one PFR process, while the hydrocarbons product selectivity of 2 PFR in series was only 6% higher than that of 1 PFR. Therefore, it would be inappropriate to double up the reactor size since the GHSV of the process have more influence on the conversion than the reactor size. Surprisingly, when increased the GHSV up to 7.0 L g⁻¹ h⁻¹, the hydrocarbon selectivity from the calculated hydrocarbon selectivity from the simulation approached 0% (no hydrocarbon was produced) suggesting that the residence time in the reactor was not enough for the hydrocarbon formation *via* FTS reaction. On the other hand, the CO could still be produced at high GHSV level (> 7 L g⁻¹ h⁻¹) since RWGS is much faster than FTS reaction. The model prediction suggested that the FTS reaction is the rate-controlling step for the overall conversion of CO₂ to hydrocarbons.

However, when compared the CO_2 conversion from the simulation and the experimental value, the calculated CO_2 conversion (simulation under the assumptions) is much higher than those experimental data. It should be noted that the simulation would be further improved by more kinetic parameters, including equilibrium constant (K_{eq}) of RWGS, adsorption constant (K_i) of CO and other gas products estimated from more data of the realistic hydrocarbons formation. These kinetic parameters are the keys to developing the kinetic modeling which would be useful for the scale-up of CO_2 hydrogenation to commercial process in the future.

VITA

Nuttakorn Boreriboon was born on December 23, 1991 in Bangkok, Thailand. He received his B.Sc. (1st class honors) degree from Department of Chemical Technology, Chulalongkorn University in 2014. He continued pursuing Ph.D. in Chemical Technology under the supervision of Prof. Pattarapan Prasassarakich at Chulalongkorn University and received the Royal Golden Jubilee Scholarship (RGJ) from Thailand Research Fund. He has carried out his Ph.D. research for two years (2015-2017) at Clean Fuel and Catalysis Program (CFCP) at the EMS Energy Institute of the Pennsylvania State University (USA) under the guidance of Prof. Chunshan Song. He also served as a teaching assistant for undergraduate courses in "Chemical Engineering Thermodynamics", "Fuel Testing Lab" and "Unit Operation Lab II".

Journal Publication:

1. N. Boreriboon, X. Jiang, C. Song, P. Prasassarakich, Fe-based bimetallic catalysts supported on TiO2 for selective CO2 hydrogenation to hydrocarbons. J. CO2 Util. 25 (2018) 330-337.

2. N. Boreriboon, X. Jiang, C. Song, P. Prasassarakich, Higher hydrocarbons synthesis from CO2 hydrogenation over K- and La-promoted Fe-Cu/TiO2 catalysts. Top. Catal. (2018) (Accept with minor revision).

Conference Presentation (Oral presentation):

1. "Fe-based bimetallic catalysts supported on TiO2 for selective CO2 hydrogenation to higher hydrocarbons". 254th ACS National Meeting, August 20-24, 2017, Washington DC, USA.

2. "Selective CO2 hydrogenation to higher hydrocarbons over TiO2 supported Fe-based bimetallic catalysts". 2nd International Conference on Catalysis and Chemical Engineering, February 19-21, 2018, Paris, France.

3. "TiO2-supported Fe-based bimetallic catalysts for selective CO2 hydrogenation to higher hydrocarbons". RGJ – Ph.D. Congress 19, June 7-9, 2018, Chonburi, Thailand.

Award:

1. Outstanding oral presentation, RGJ – Ph.D. Congress 19, June 7-9, 2018, Chonburi, Thailand.

CHULALONGKORN UNIVERSITY