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CHAPTER |
INTRODUCTION

Mycosporine-like amino acids (MAAs) are a group of secondary metabolites
which naturally biosynthesized from various microorganisms, such as fungi, micro- and
macroalgae, and cyanobacteria. These molecules are colorless, water-soluble, and can
absorb energy from the wavelength in range of ultraviolet A and B (309-362 nm). MAAs
are composed of cyclohexinimine or cyclohexanone as a core structure, attaching with
amino acid (s) at the third (and the first) carbon atoms (Singh et al., 2008; Wada et al.,
2013; Pope et al., 2015). The variation of bonded amino groups results in the variety
of MAAs (Wada et al., 2015). To date, there are more than 25 MAAs discovered. The
MAAs molecules can be intracellular modified by terrestrial and desiccated
cyanobacteria via glycosylation, yielded glycosylated-MAAs (Matsui et al., 2011; Ishihara
et al., 2017; Shang et al., 2018).

MAAs are known as multifunctional compounds by their direct and indirect
properties. The direct property involved in photoprotection as being a sunscreen (UV-
screening) compound. Unlike other organic sunscreen compound, these molecules
can absorb the energy from the wavelength and release it in form of heat without
producing reactive oxygen species (ROS) (Wada et al., 2013). The indirect properties of
MAAs are widely described to date, especially in antioxidant, anti-inflammation and
anti-aging cosmeceutical properties for applications. For instance, majority of the
compounds exhibited an antioxidation ability by radical quenching and scavenging
mechanisms.  Three commonly found MAAs (shinorine, porphyra-334, and
mycosporine-glycine) were found to promote wound healing via focal adhesion kinase
(FAK) and mitogen-activated protein kinase (MAPK) pathways induction in human
keratinocyte (HaCaT). These MAAs were also found as having anti-aging capability by
enhancing procollagen | enhancer and elastin genes transcription (Oyamada et al,,
2008; Ryu et al., 2014). Anti-inflammation activity was discovered in mycosporine-

glycine by decreasing expression of COX-2 (Suh et al., 2014). According to these



functions, MAAs become the interesting biocompounds for cosmeceutical and
pharmaceutical approaches, nowadays.

Inflammation is an important cellular mechanism to get rid of pathogens and
injured cells. An inflammation pathway is initiated by induction of various stimuli, such
as bacterial lipopolysaccharide, molecular patterns released from damaged cells, UV
radiation, and ROS. The stimulation consequences of an activation of transcription
nuclear factor-kappa B (NF-KB) (Napetschnig & Wu, 2013). This action leads to the
transcription of various proinflammatory genes. There are two genes remarked as key
regulators for an inflammation; INOS and COX-2, which encode two mediators,
inducible nitric oxide synthase and cyclooxygenase-2, respectively. To promote an
inflammation, these two enzymes generates nitric oxide, the chemical inflamsmation
inducer, and prostaglandin E2, an essential proinflammatory cytokine, respectively
(Wendum et al., 2003; Alexander & Supp, 2014). Thus, these genes regulation capability
is of interest property for pharmaceutical application to prevent skin inflammation.

Oxidative stress is found to be one of the effective stimulators in inflammation
pathway. In general, cells generate oxidants from their routine mechanisms, whether
aerobic metabolism, immune functions, or cells division. The produced oxidants are
controlled by the equilibrium of oxidants and antioxidants in cells. Keap1/Nrf2/ARE
signaling pathway is the major mechanism to produce enzymatic antioxidants for the
equilibrium maintenance. This pathway is directly activated by an induction of
oxidants, leads to the synthesis of antioxidant enzymes, such as catalase, superoxide
dismutases, and glutathione peroxidase (Ahmed et al., 2017). Overproduction or
excessive exposure; however; disrupts this equilibrium, leads to damaging of
macromolecules (i.e. DNA, proteins, and phospholipids) (Watt et al., 2004).

Mycosporine-2-glycine (M2G) is a rare MAA, which is naturally produced as a
major MAA compound in only two cyanobacteria; Euhalothece sp. and Aphanothece
halophytica (Halothece sp. PCC 7418) (Kedar et al., 2002; Waditee-Sirisattha et al,,
2014). This sunscreen molecule is composed of a core structure 4-deoxygadusol (4-
DG), attached with two glycine molecules at C; and C; positions, respectively. M2G can
absorb the wavelength in a range of UV radiation with a maximal adsorption at 331

nm. M2G was found in having a stronger antioxidant capability than the commonly



found MAAs. This molecule exhibited an activity as an oxidative protectant against cell-
death induction and DNA damaging in A375 human melanoma (Cheewinthamrongrod
et al., 2016).

Although the described abilities of M2G indicate a potent feasibility in being an
effective multifunctional sunscreen compound. Other indirect functions; however,
were uncharacterized to date. This study aimed to examine other capability of M2G.
The interested functional properties are (1) oxidative scavenging activity under a wide
range of pHs, (2) anti-inflammation and antioxidation activities in macrophage cell line,
and (3) heterologous expression of M2G biosynthetic genes in a fresh water

cyanobacterium.
The objective of this research:

1. To extract and purify the natural sunscreen compound mycosporine-2-glycine

2. To functionally characterize the natural sunscreen compound mycosporine-2-
glycine

3. To examine the functions of mycosporine-2-glycine in macrophage cell line under
oxidative stress and lipopolysaccharide (LPS)-induced inflammation

4. To evaluate the contribution of mycosporine-2-glycine in heterologous expression

system

The hypotheses in this research are:

1. A natural sunscreen compound M2G from Halothece sp. PCC 7418 possesses
antioxidative and anti-inflammatory activities in cell line.
2. Heterologous expression of M2G biosynthetic genes contributes the oxidative stress

response in fresh water cyanobacterium Synechococcus elongatus PCC 7942.



CHAPTER Il
LITERATURE REVIEW

2.1 Mycosporine-like amino acids
2.1.1 Basic features

Mycosporine-like amino acids (MAAs) are a group of secondary metabolites found
in various microorganisms. These compounds are colorless, water soluble, and low
molecular weight (<1050 Da). The structures are composed of a cyclohexanone or a
cyclohexinimine as a core, attaching by one or two amino acid (s) at the third (and the
first) carbon position of the core structure (Singh et al., 2008; Pope et al., 2015). The
differences of attached amino acids generate a variety of MAA species (Wada et al,,
2015). For instance, the addition of glycine to the third carbon position produces
mycosporine-glycine, while further attachment of another amino acid serine to the first
carbon position yields shinorine. To date, there are more than 25 MAAs discovered in
fungi, corals, micro- and macroalgae, and cyanobacteria (Rastogi et al., 2015). MAA
molecules can be further modified by glycosylation. This modification is specific in
terrestrial and desiccated cyanobacteria, such as Nostoc commune, N. sphaericum, N.
flagelliforme, and Scytonema cf. cripsum (Matsui et al,, 2011; Nazifi et al., 2013;
D'Agostino et al., 2016; Ishihara et al., 2017; Shang et al., 2018).

2.1.2 Biosynthesis of MAAs

Biosynthesis of MAAs occurred from the systematized activity of at least three
enzyme groups; dimethyl-4-deoxygadusol synthase (DDGS), O-Methyltransferase (O-
MT) and ATP grasp family. The biosynthetic pathway was extensively studied in
cyanobacteria. This pathway commonly begins with the first step reaction of DDGS,
which converts sedoheptulose-7-phosphate (SH7P), an intermediate from Pentose
Phosphate Pathway, to dimethyl-4-deoxygadusol (DDG). Then, DDG is methylated by
O-MT, resulting in 4-deoxygadusol (4-DG). The biosynthesis of 4-DG was reported in

relevant to Shikimate pathway by the methylation of O-MT to an intermediate of the



pathway, 3-dehydroquinate (3-DHQ) in the cyanobacterium Anabaena variabilis ATCC
29413 (Figure 1) (Pope et al., 2015). After that, an amino acid is attached to the 4-DG
core at C; position by an ATP grasp family, causing one-amino group MAAs, such as
mycosporine-glycine and mycosporine-taurine. In addition to ATP grasp, the second
addition of an amino acid can be occurred by non-ribosomal peptide-like synthase.
The second amino acid is added into the structure at C, position, leading to two-amino
groups MAAs, such as shinorine (C; = serine and C; = glycine), porphyra-334 (C; =
threonine and C; = glycine), and mycosporine-2-glycine (C; = glycine and C; = glycine)

(Carreto & Carignan, 2011; Rosic & Dove, 2011; Waditee-Sirisattha et al., 2014).
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Figure 1: Biosynthetic pathway of a commonly found MAA, shinorine, in the
filamentous cyanobacterium A. variabilis ATCC 29413. The relevance between
shikimate pathway and pentose phosphate pathway by the reaction of O-MT is
demonstrated (from: Pope et al., 2015)



2.1.3 Direct function of MAAs

MAAs are well recognized as bio-sunscreen compounds by their direct
photoprotective function against UV radiation. These molecules can absorb UV in range
of 309-362 nm, which are specific for UVA and UVB (Shang et al., 2018). The maxima
absorption is varied by the uniqueness of the molecules. Early evidence also revealed
that MAA prevents 3 out of 10 photons from striking cytoplasmic targets in
cyanobacteria (Garcia-Pichel et al, 1993). Unlike other organic UV-screening
compounds, MAAs can absorb an energy from the electromagnetic waves and dissipate
it as a heat without any reactive oxygen species (ROS) production. This proficiency is
believed in protonation to an amino group by the acid-base reaction, resulting in a
zwitterionic property of the molecule. The protonation initiates the delocalization of
electrons on a nitrogen atom through the chromophore ring. Thus, this leads to the
resonance stabilization of electrons at the carbon atoms number 3 to 1, causing the
loss of energy during electron transition in form of heat (Figure 2) (Wada et al., 2013).
A study in two common MAAs, shinorine and mycosporine-glycine, revealed that the
availability of H" in environment affected on their zwitterionic properties (Matsuyama

et al., 2015).
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Figure 2: Electron resonance stabilization of porphyra-334. The lone pair electrons
shift from a nitrogen atom of an amino acid to another nitrogen atom through carbon
atoms of the core structure. This movement caused an energy loss during an excitation

and relaxation of electrons in form of heat (modified from: Wada et al., 2013).

2.1.4 Indirect functions of MAAs

Apart from direct property as a sunscreen (UV-screening) compounds, MAAs are
widely described in having indirect functions. Various examples were reported in both
native producers and in vitro experiments, especially in terms of medical and
pharmaceutical applications. Three common MAAs (i.e. shinorine, porphyra-334, and
mycosporine-glycine) were found to stimulate the growth of human skin fibroblast
(TIG-114) and promote wound healing via focal adhesion kinase (FAK) and mitogen-
activated protein kinase (MAPK) pathways in human keratinocyte (HaCaT) (Oyamada et
al., 2008; Choi et al., 2015). These MAA compounds were also reported as anti-aging
substances by enhancing of procollagen | enhancer and elastin genes transcription in
HaCaT cell line (Suh et al., 2014) as well as in human skin fibroblast for porphyra-334
(Ryu et al., 2014). Anti-inflammation property was found in mycosporine-glycine by the
decreasing of cyclooxygenase-2 (COX-2) after the cell treatment (Suh et al., 2014).
Furthermore, majority of MAAs exhibited an effective antioxidative capability by radical

quenching and scavenging (Wada et al., 2015; Cheewinthamrongrod et al., 2016).



According to these indirect functions, MAAs are becoming an interest in application

whether medical and pharmaceutical approaches.

2.2 Inflammation

Inflammation is an important cellular mechanism to eliminate pathogens or
damaged cells, initiate tissue wound healing and decide cells death (Newton & Dixit,
2012). This mechanism can be stimulated by damage associated molecular patterns
(DAMPs) from damaged cells, pathogen associated molecular patterns (PAMPs) from
pathogens, irradiations, and oxidative stresses. These stimuli induce cells inflammation
in various manners. For example, DAMPs and PAMPs trigger cells by binding to toll-like
receptors (TLRs), the pattern recognition receptors which are specific to each molecular
pattern. UV radiation promotes a trigger protein elF20t by induce the expression of
GCN/PERK2 (Mitchell et al., 2016). On the other hands, oxidative stress can induce
directly to the classical (canonical) pathway (Siomek, 2012).

Although cells stimulation mechanisms are different, all the signals are aimed for
nuclear factor-Kappa B (NF-KB) pathway activation (Siomek, 2012). In general, NF-KB
protein is inactivated by complementation of the inhibitor KB (IKB), forming
complemented protein NF-KB-IKB. The activation of NF-KB pathway is occurred when
the protein complex inhibitor KB kinase (IKK) is activated via proinflammatory signals.
Then, NF-KB-IKB complex is phosphorylated by an activated IKK, leads to a
detachment and degradation by ubiquitination of an inhibitor protein IKB from the
complex. Thereafter, the liberated NF-KB protein is transported into nucleus and acts
as a transcription factor by binding with the inflammatory g¢enes promotor.
Consequently, several proinflammatory genes are transcribed (Napetschnig & Wu,
2013).

Two proinflammatory genes are remarked as key regulators for an inflammation
among the cascade. These are inducible nitric oxide synthase (iNOS) and COX-2, which

encode two proinflammatory enzymes iNOS and COX-2, respectively. Mechanism of



action of iNOS is to generate nitric oxide, an inflammation chemical inducer. The
reaction catalyzing by iNOS is occurred between L-arginine and oxygen (Alexander &
Supp, 2014). In case of COX-2, this enzyme has an importance by cooperating with
PLA2 in conversion of phospholipids to an essential cytokine prostaglandin-E2 (PGE2)
(Wendum et al., 2003) (Figure 3).
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Figure 3: NF-KB pathway and the mechanism of action of two key regulator enzymes
iNOS and COX-2 (modified from: Infantino et al., 2011)
COX-2: cyclooxygenase-2

iNOS: inducible nitric oxide synthase

IKB: inhibitor kappa B

IKK: inhibitor kappa B kinase

LPS: lipopolysaccharide

NO: nitric oxide

NF-KB: nuclear factor-kappa B

PLA2: phospholipase A2

PGE2: prostaglandin E2

TLR4: toll-like receptor 4
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2.3 Cellular oxidative responses

In normal condition, oxidants are generated in cells in a disciplined manner. The
produced oxidants serve as cell signaling molecules to trigger cells processing, such as
cell division, inflammation, immune functions, and stress responses (Ma, 2013). These
mechanisms are controlled by the equilibrium of oxidants/antioxidants.
Overproduction or excessive exposure of oxidants; however, causes the equilibrium
disturbance, leading to the oxidative stress in cells. Furthermore, enormous oxidants
can cause damages to organic matters and organelles in cells through lipid
peroxidation and oxidative modifications (Watt et al., 2004), as well as to cells survival
by trigger cells inflammation and programmed cell death mechanisms (Zhang et al.,
2015). Thus, the elimination of overabundant oxidants is essential for cells to maintain
their oxidants/antioxidants equilibrium and to survive upon the stress conditions.

Kelch-like ECH-associated protein 1/nuclear factor erythroid 2-related factor
2/antioxidant response element (Keapl/Nrf2/ARE) signaling pathway is the major
mechanism to alleviate the oxidative stress in human cells via regulation of antioxidant
and detoxification enzymes (Ma, 2013). Generally, the transcription factor Nrf2 is
attached with Keap1 inhibitor protein, forming Keap1/Nrf2 complex. This inactivated
protein is detained in cytosol by the binding of Keapl and actin or myosin. The
activation of Keap1/Nrf2/ARE pathway is occurred after the detachment of Keapl and
Nrf2 via thiol modification at Keapl cysteine residues. This step is induced by oxidative
species and electrophiles. The activated Nrf2 is then localizes into nucleus and binds
to the basic leucine zipper-musculoaponeurotic fibrosarcoma (bZip-Maf) protein at ARE
region. Finally, the interaction between heterodimers and ARE promotor region initiates
antioxidative genes transcription (Figure 4) (Zhang et al., 2015; Ahmed et al., 2017,
Krajka-Kuzniak et al., 2017).
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Figure 4: Keap1/Nrf2/ARE pathway and the mechanism of enzymes to eliminate
excessive oxidants in mammalian cells (modified from: Krajka-Kuzniak et al., 2017).
ARE: antioxidant response element

Cu/Zn SOD: Cu/Zn superoxide dismutase

Keapl: Kelch-like ECH-associated protein 1

Maf: musculoaponeurotic fibrosarcoma

Nrf2: nuclear factor erythroid 2-related factor 2
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2.4 MAA from extremophilic cyanobacterium Halothece sp. PCC 7418

Mycosporine-2-glycine (M2G) is a rare natural sunscreen compound in a group of
MAAs. To date, M2G was found in some marine microorganisms; sea anemone
Anthopleura elegantissima (Stochaj et al., 1994; Shick et al., 2002), and dinoflagellate
Maristentor dinoferus (Sommmaruga et al., 2006), and two halophilic cyanobacteria
Euhalothece sp. LK-1 (Kedar et al.,, 2002) and Aphanothece halophytica (Halothece
sp. PCC 7418) (Waditee-Sirisattha et al., 2014). The discovered M2G in A. elegantissima
was; however, predicated as accumulated from its food, while M2G was detected at
an extremely low amount in M. dinoferus. Thus, these can be concluded that M2G is

naturally produced as a major MAA by only two cyanobacteria nowadays.

2.4.1 Features of M2G and its biosynthesis

The structure of M2G is composed of a 4-deoxygadusol as a core, attached by
two molecules of glycine at C; and C; positions, respectively (Figure 5 (A)). M2G can
absorb the UV with the maxima absorbance at 331 nm, which is a unique characteristic
of the compound.

In 2014, Waditee-Sirisattha et al. discovered and clarified M2G biosynthetic
pathway in the halophilic cyanobacterium Halothece sp. PCC 7418. The M2G gene
cluster composed of Ap3858, Ap3857, Ap3856, and Ap3855, encoding for DDGS, OMT,
C-N ligase, and D-ala D-ala ligase, respectively. The amino acid sequences of Ap3857
to Ap3856 were highly homologous to MAAs biosynthetic enzyme models Ava 3857
to Ava_3856 from Anabaena variabilis ATCC 29413 (63% and 61%, respectively) and
NpR5599 to NpR5598 from Nostoc punctiforme ATCC 29133 (61% and 60%,
respectively), while Ap3858 was found in only 38% and 39% homolog of Ap_ 3858 and
Nrp5600, respectively, and Ap3855 was 38% identity to NpR5596, respectively. Gene
organization for M2G biosynthesis comprised of two regions, the first cluster composed
of Ap3857-56-55, and the second Ap3858 which is in a far distant. This organization
was peculiar comparing to those two MAAs biosynthetic gene organization reporting in

A. variabilis and N. punctiforme, which all genes are in a cluster (Figure 5 (B)).
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Figure 5: Chemical structure of M2G. Two molecules of glycine are attached to the 4-

DG core at C; and C; positions (A). Gene organization of M2G biosynthesis in Halothece
sp. PCC 7418 compared to two MAAs biosynthetic gene organization models from N.
punctiforme ATCC 29133 and A. variabilis ATCC 29413. Ap3858, encoded DDG

synthase, was far separated from a cluster of other genes (B).
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2.4.2 Biological activity and function of M2G

M2G exhibits its indirect activities in both a native producer and in vitro
approaches. In a halotolerant cyanobacterium Halothece sp. PCC 7418, the native M2G
bio-synthesizer, accumulation of M2G was significantly upregulated by exposure to salt
stress condition (Waditee-Sirisattha et al., 2014). Thus, M2G functions as an
osmoprotectant.

Cheewinthamrongrod et al. (2016) reported a strong antioxidant property of M2G
by the in vitro experiments. Its oxidant scavenging activity was determined in high
capability with SCsy at 22 + 1.4 pM. This was two times greater than mycosporine-
glycine (43 + 1.3 uM). In this study also revealed an oxidative protection ability of M2G
to human cell line. Proper concentrations of M2G could completely protect normal
human skin fibroblast (NHSF) and A375 melanoma cell line against cell-death induction
and DNA damaging triggered by hydrogen peroxide.

Although UV absorption and other indirect properties of M2G indicate a strong
possibility as being a good multifunctional sunscreen compound; however, other
indirect properties remain elusive. This study aimed to extract and purify M2G from
Halothece sp. PCC 7418 and examine its functional characteristics. The interested
functional properties are (1) oxidative scavenging activity under a wide range of pHs,
(2) anti-inflammation and antioxidation activities using a macrophage cell line, and (3)
heterologous expression of M2G biosynthetic genes in a fresh water cyanobacterium
S. elongatus PCC 7942.

Thus, the study for these approaches would provide a deep information and
support an acclamation of M2G as a high efficacy multifunctional sunscreen compound

for further applications, such as in cosmeceutical and pharmaceutical industries.
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The objective of this research:

1.
2.
3.

To extract and purify the natural sunscreen compound M2G

To functionally characterize the natural sunscreen compound M2G

To examine the functions of M2G in a macrophage cell line under oxidative stress
and lipopolysaccharide (LPS)-induced inflammation

To evaluate the contribution of M2G in a heterologous expression system
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CHAPTER 1lI
MATERIALS AND METHODS

3.1 Instruments

Autoclave: Model SS-325 and ES-215, TOMY Digital Biology, Japan
Autopipette: Eppendorf Research plus, Eppendorf, Germany
Bench-top centrifuge: MSC-6000, Biosan, Malaysia

Biological safety cabinet: Model MCV-131S, Sanyo, Japan

CO, incubator: Model 311: Thermo Electron Corporation, USA
Cuvette: Spectronic 401, Milton Roy, USA

DSC-SCX-SPE® cartridge, Sigma Aldrich, USA

DSC18 SPE® cartridge: Sigma Aldrich, USA

Gel imaging: Model Gel Doc EZ" Bio-Rad Laboratories, USA

Gel electrophoresis: Model MJ-105, Major Science, USA
Hemacytometer: Bright-Line ", Sigma, USA

High Performance Liquid Chromatography (HPLC): Shimadzu, Japan
Hot air oven: Model UE600, Mammert, Germany

Incubator shaker: Model innova 4330, New Brunswick Scientific, USA
Laboratory glassware: Pyrex, USA

Laminar flow: Model H1, Microtech, Thailand

Magnetic stirrer: Model MMS-3000, Biosan, Latvia

Microplate reader: Multiskan™ FC Microplate Photometer, Thermo Scientific, USA
Microscope: Olympus, Japan

Nanodrop 200 UV-Vis Spectrophotometer: Thermo Scientific, USA
Orbital shaker: Model TT-20: Hercuvan Lab Systems, Malaysia

pH meter: SevenEasy ", Mettler Toledo, USA

Refrigerated centrifuge: Model Allegra 25R, Backman, Germany
Refrigerated microcentrifuge: Model 5418 R, Eppendorf, Germany
Thermal cycler: Model T100™ and C1000 Touch”, Bio-Rad Laboratories, USA

Transformer: PowerPac” HC, Bio-Rad Laboratories, USA



UV-Vis Spectrophotometer: UV-240, Shimadzu, Japan
Vortex mixer: Model K-550-GE: Scientific Industries, USA

Water bath: Mammert, Germany

3.2 Chemicals and media

Acetic acid: Merck, Germany

Agar powder: Himedia, India

Agarose gel: Bio-Rad Laboratories, USA

Bacto® tryptone: Merck, Germany

Boric acid: Merck, Germany

Calcium chloride: Merck, Germany

Chloroform: RCl Labscan Limited, Thailand

Citric acid: Merck, Germany

Cobalt(ll) nitrate: Ajax Finechem Pty Limited, Australia
Copper(ll) sulfate: Ajax Finechem Pty Limited, Australia

DEPC (Diethylpyrocarbonate), Amresco, USA

Dimethyl sulfoxide: Amresco, USA

Dipotassium phosphate: Ajax Finechem Pty Limited, Australia
Disodium hydrogen phosphate: Carlo Erba, Italy

Disodium phosphate: Ajax Finechem Pty Limited, Australia
DPPH (2,2-diphenyl-1-picrylhydrazyl): Sigma, USA

Dulbecco’s modified Eagle’s medium/high glucose: HyClone, USA
EDTA (Ethylenediaminetetraacetic acid): Amresco, USA
Endotoxin-free purified water: E-Toxate water, Sigma, USA
Ethanol: Merck, Germany

Ferric ammonium nitrate: Merck, Germany

Fetal bovine serum: Gibco®, Life Technologies, USA

Glycerol: Merck, Germany

HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid): HyClone, USA
Hydrochloric acid: Merck, Germany

Hydrogen peroxide: Merck, Germany
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Isopropanol: Merck, Germany

L-ascorbic acid: Sigma, USA

Magnesium chloride: Merck, Germany

Magnesium sulfate: Merck, Germany

Manganese(ll) chloride: Ajax Finechem Pty Limited, Australia

MES sodium salt (Sodium 2-(N-morpholino)ethanesulfonic acid): Sigma, USA
Methanol: Merck, Germany

Monosodium phosphate: Ajax Finechem Pty Limited, Australia
MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide): Sigma, USA
NED (N-1-napthylethylenediamine dihydrochlorides): Merck, USA
Penicillin-streptomycin solution: HyClone, UK

Phosphoric acid: Merck, USA

Potassium hydroxide: Merck, Germany

Sodium carbonate: Merck, Germany

Sodium chloride: Ajax Finechem Pty Limited, Australia

Sodium dihydrogen phosphate dihydrate: Merck, Germany
Sodium molybdate: Carlo Erba, Italy

Sodium nitrate: Merck, Germany

Sodium pyruvate solution: HyClone, UK

Streptomycin: Sigma, USA

Sulfanilamide: Merck, USA

SYBR® safe DNA gel strain: Invitrogen, USA

Trizma (2-amino-2-(hydroxymethyl)-1,3-propanediol): Sigma, USA
TRIzol® reagent: Invitrogen, USA

Yeast extract powder: Himedia, India

Zinc sulfate: Ajax Finechem Pty Limited, Australia

3.3 Membrane

YM-3 membrane Ultracel®-3K, Millipore, USA



3.4 Kits
HiYield" Plasmid Mini Kit, RBC Bioscience, Taiwan
SuperScriptm Il First Strand Synthesis system, Invitrogen, USA
3.5 Enzymes

BamHI: New England Biolabs, USA
Tag DNA polymerase: Invitrogen, USA
Xhol: New England Biolabs, USA

20



3.6 Plasmids and bacterial strains

Table 1: Plasmids and bacterial strains used this study.
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Strains and plasmids

Descriptions

Sources/References

Ap3858-3855/pUC303

2.76 kb Ap3858 (native
promotor and coding region of
Ap3858) together with 3.63 kb
Ap3857-3855 (native promotor
and coding region of Ap3857-
3855) cloned into pUC303

Waditee-Sirisattha et
al., 2014

E. coli DH5(

d8olaczAM15 AlaczYA-argh)
U169 recAl endAl hsdR17 (1K,
mK") phoA supE4d A- thi-1
gyrA96 relAl

Invitrogen, USA

Halothece sp. PCC 7418

Halotolerant cyanobacterium

This study

S. elongatus PCC 7942

Freshwater cyanobacterium

Research Institute of
Meijo University,

Japan




Table 2: Primers used in this study.
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Primers Sequences (5 —3') Base pairs
Ap3855 Forward TTATCCGAGAAACTCTCC 18
Ap3855 Reverse AGGTCATACTTATCCTGAG 19
Ap3856 Forward GGATCCAATGCTTCTATTTGTCCGAGG 27
Ap3856 Reverse ATAGTAACTAGAAACGGGAC 20
Ap3857 Forward GGATCCAATGACGATCACTAACGATAAAC 29
Ap3857 Reverse ATGCAGAATAGCCCGTAAAC 20
Ap3858 Forward GGATCCAATGACGAAAACAACCTCTG 27
Ap3858 Reverse TGAGGATCGGTTTCCACAAG 20
beta-actin_Forward ATGGTGGGAATGGGTC 16
beta-actin_Reverse CATACAGGGACAGCAC 16
Catalase_Forward GGGATTCCCGATGGT 15
Catalase_Reverse GCCAAACCTTGGTCAG 16
Cox-2_Forward ACAGATTGCTGGCCG 15
Cox-2_Reverse TGGTGCTCCAAGCTC 15
HemeOx1 Forward CTGGGTGACCTCTCAG 16
HemeOx1 Reverse GACGAAGTGACGCCA 15
iNos_Forward AGATCGAGCCCTGGA 15
iNos_Reverse GTGCTTGTCACCACC 15
Nrf2_Forward GCCCAGAACTGTAGGA 16
Nrf2_Reverse CATCCTCCCGAACCT 15
Sod1 Forward GGAACCATCCACTTCG 16
Sodl Reverse TACGGCCAATGATGGA 16
7942Catalase_Forward CTACCGAATTGCCGA 15
7942Catalase Reverse GGGATTGGTGCTTGG 15
7942s0dB_Forward ACCAAGGAAACGCTG 15
7942s0dB_Reverse CGGCTTGTTTGAACTC 16
7942ThioPerox_Forward =~ CCGTAAAGAAGGTGGT 16
7942ThioPerox Reverse  CTTAACAGGGTCGGG 15
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Primers Sequences (5 —3') Base pairs
7942rnpB_Forward GAGGAAAGTCCGGGCTCCC 19
7942rnpB_Reverse TAAGCCGGGTTCTGTTCTC 19

3.7 Extraction and purification of M2G
3.7.1 Culture condition

Halothece sp. PCC 7418 was cultured in blue green-11 (BG-11) plus Turks island
salts solution (Appendix 1) containing 2.5 M NaCl under continuous light condition at
30°C (Waditee-Sirisattha et al., 2014). The cyanobacterial growth was monitored via
spectrophotometry at 730 nm until the absorbance reached four, approximately. The

cells were harvested by centrifugation at 8,000 rpm for 10 minutes at 25°C.

3.7.2 Extraction of M2G

Harvesting cells were weighed to gain appropriate fresh weights. HPLC-grade
methanol was added in volume (mL) of five times per gram fresh weight. Then, the
suspended cells were disrupted by sonication. The cell debris was precipitated by
centrifugation at 8,000 rpm for 10 minutes at 25°C. Resulting supernatants were
collected in the new tubes. This extraction step was repeated twice. The combined
supernatants were dried up using rotary evaporator at 45°C. The dried samples were
resuspended in one milliliter of distilled water. Thereafter, suspension was precipitated
insoluble materials and high molecular weight compounds by YM-3 membrane

column (Millipore, USA), yielding the methanolic extracted M2G.
3.7.3 Purification of M2G

3.7.3.1 Solid phase chromatography

The extracted M2G was purified by using strong cation chromatography (DSC-
SCX-SPE® cartridge (Sigma, USA)). This column was washed with distilled water, then
the YM-3-treated sample from step 3.7.2 was subjected to the cartridge. After that,

distilled water was loaded onto the cartridge to elute M2G. The absorption of each
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fraction was analyzed, and the fractions with high absorption at 330 nm were subjected

to the reverse phase cartridge.

3.7.3.2 Reverse phase chromatography

The reverse phase cartridge (DSC18-SPE® (Sigma, USA)) was equilibrated with
acetic acid (1%). Then, the obtained fractions were adjusted the concentration of acetic
acid to 1% and subjected to the cartridge. Thereafter, acetic acid (1%) was loaded into
the cartridge to elute M2G. The absorption of each collected fraction was analyzed.
The fractions with high absorption at 330 nm were dried up by rotary evaporator. The
dried sample was dissolved in 0.1 M ammonium acetate (1 mL). Another DSC18-SPE®
cartridge was equilibrated with 0.1 M ammonium acetate. Then, the sample was
subjected to the cartridge. The ammonium acetate was loaded into the cartridee to
elute M2G, the absorption of each fraction was analyzed. Fractions with high
absorption at 330 nm were dried up and stored at -40°C for further experiments.

Concentration of M2G was determined using the authentic compound MAA.

3.7.4 Endotoxin assay

The purified M2G obtaining from step 3.7.3.2 was dissolved in an endotoxin-free
ultrapure water (E-Toxate™ water, Sigma, USA). The M2G solution was diluted to be a
concentration of 10 uM by the ultrapure water. Ten micromolar of M2G solution was
examined its biological toxicity via Limulus Amoebocyte Lysate (LAL) bacterial
endotoxin assay. The experiment was performed by an authority at Nephrology
department, King Chulalongkorn Memorial Hospital. The endotoxin amount was

reported as endotoxin unit per milliliter (EU/mL).

3.8 Determination of antioxidant activity of M2G under various pHs

The M2G solution was diluted to the desired concentration in pH-adjusted buffers
at pH 5.0, 6.0, 7.0, 8.0, and 9.0, respectively. DPPH solution was prepared by dissolving
DPPH in the ethanol:water (1:1) solution for scavenging activity assay. Then, 200 L of
pH-adjusted M2G was added into 800 pL of DPPH solution. After 30 minutes of

incubation in the dark, the absorbance of the solution was measured at 517 nm. The
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obtained values were calculated to the percentage of scavenging activity using the
following formula as described previously (Cheewinthamrongrod et al., 2016).
% scavenging activity = [(Acontrot = Asampte) / Acontroll X 100
when A = absorbance at 517 nm

control non-treated reaction

sample treated reaction

3.9 Determination of anti-inflammatory and antioxidative activities in cell line
3.9.1 Anti-inflammatory activity in LPS-stimulated RAW 264.7 macrophage
3.9.1.1 Culture condition for RAW 264.7 macrophage

RAW 264.7 (ATCC TIB-71) macrophage was cultured in non-treated and
treated plates with completed Dulbecco’s modified Eagle’s medium (DMEM). The
medium contained 4 mM L-glutamine and 4.5 ¢/L of glucose and supplemented with
fetal bovine serum (10%), sodium pyruvate (1%), HEPES (1%), 100 U/mL of penicillin,
and 100 ng/mL of streptomycin. The cells were incubated at 37°C under 5% CO, in
the humidified incubator (Thermo Electron Corporation, USA). The medium was

renewed every 2-3 day during experiments.

3.9.1.2 Biocompatibility assay

The cells were seeded at 2x10* cells/well in 96-well cell culture plate with
a total volume of 100 pL/well and incubated for overnight. Then, the medium was
replaced by 100 pL/well of fresh completed DMEM containing M2G (final
concentrations 0.1, 1, 5, and 10 pM, respectively). The treated cells were incubated
for 20 hours. As for the cell viability assay, 0.5 mg/mL of 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyltetrazolium bromide (MTT) reagent was added into each well to be a
substrate for the formazan crystals formation. The reaction occurred by the mechanism
of action of the reduction enzyme, namely mitochondrial reductase. In this step, a
yellow soluble reagent was reduced by mitochondrial reductase to be a non-soluble

purple crystalline. After 4 hours of incubation, 200 uL of DMSO was added into each
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well for dissolving the formazan crystal. The formazan solutions were determined using

microplate reader at 540 nm (Thermo Scientific, USA).

3.9.1.3 Measurement of nitric oxide

RAW 264.7 cells were seeded at 2x10° cells/well in 96-well plate. The total
volume was 200 pL/well. After overnight incubation, the seeded cells were pretreated
for an hour by replacing medium with 50 pL of completed DMEM containing the tested
concentrations of M2G. Then, an inflammatory stimulator, Salmonella enterica serovar
Minnesota’s lipopolysaccharide (LPS), was added into the pretreated wells by mixing
in the M2G supplemented medium. The final volume of the medium in each well was
100 pL with 100 ng of LPS. The treated cells were incubated for 24 hours. After that,
the supernatants were transferred into a round bottom 96-well plate. Fifty microliters
of sulfanilamide solution, composed of sulfanilamide (1%) in phosphoric acid (5%),
was subjected into the wells and incubated in the dark for 15 minutes, followed by
an equal volume of NED solution (1% of N-1-napthylethylenediamine
dihydrochlorides). The solutions were incubated again in the dark for 15 minutes and

determined the absorbance at 540 nm using microplate reader.

3.9.1.4 Semiquantitative reverse transcription polymerase chain

reaction (RT-PCR) analysis
3.9.1.4.1 Cell preparation

RAW 264.7 cells were seeded in 24-well cell culture plate at 3x10°
cells/well with a volume of 500 pL/well and incubated for overnight. Then, the cells
were pre-treated with 250 pL of completed DMEM with M2G concentrations as
described in step 3.9.1.2 for an hour. The pre-treated cells were treated with

Salmonella enterica serovar Minnesota’s LPS, yielding the final volume of 500 pL.

3.9.1.4.2 RNA extraction and cDNA conversion

Total RNA was extracted after inflammatory stimulation for 0, 3, and
6 hours, respectively. This step was performed by removing all the medium and adding

500 pL of cold TRIzol® reagent (Invitrogen, USA). Suspensions were incubated for 5
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minutes, mixing homogenously, and collecting in an RNAse-free microcentrifuge tube.
Two hundred microliters of cold chloroform were added to the harvested solution.
The suspension was mixed gently by inversion for 15 seconds. After 3 minutes of
incubation at room temperature, the mixture was separated into 3 phases; (1)
supernatant, (2) fats and proteins, and (3) phenolic phase by centrifugation at 12,000xg,
4°C for 10 minutes. The supernatant was collected in a new microcentrifuge tube.
After that, 250 pL of cold isopropanol was added into the collected sample and further
incubated for 10 minutes. Finally, this suspension was centrifuged at 12,000xg, 4°C for
10 minutes. The supernatant was discarded carefully to get a gel-like pellet. One
milliliter of 75% ethanol was added and pipetted gently to wash the pellet, followed
by centrifugation at 7,500xg, 4°C for 5 minutes. The supernatant was removed and the
pellet was air dried by overturned the cap-opened microcentrifuge tube. The RNA
pellet was dissolved in 30 pyL of DEPC-treated water and incubated at 60°C for 15
minutes. RNA concentration and its quality were determined using Nanodrop 200
(Thermo Scientific, USA) and gel electrophoresis, respectively. High quality total RNA
was kept at -80°C prior analysis. For the cDNA conversion, final concentration of total
RNA was 1,680 ng. The reaction was performed using SuperScript®lll First-Stranded
synthesis kit (Invitrogen, USA) as per the manufacturer’s instruction. The cDNAs were

kept at -20°C for further experiments.

3.9.4.1.3 Proinflammatory gene expression analysis

Two proinflammatory genes; iINOS and COX-2 were amplified by PCR,
using specific primer pairs (Table 2 and Appendix 3). Gel electrophoresis was carried
out using 1.2% agarose gel precasting with 0.1 pL/mL of SYBR® safe DNA gel stain
(Invitrogen, USA). Band intensities were analyzed by Image)J (https://imagej.nih.gov/ij/).

The housekeeping gene [Factin was used as an internal control gene.
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3.9.2 Antioxidative property in RAW 264.7 macrophage
3.9.2.1 Cell viability assay
3.9.2.1.1 H,0, toxicity

The macrophage cells were seeded at 2x10“ cells/well in 96-well cell
culture plate, the total volume was 100 pL/well, and incubated for overnight. Then,
the medium was replaced by equal volume of completed DMEM containing various
concentrations of H,O,. The cell viability determination was performed using the
protocol described in 3.9.1.2. Inhibition concentration (ICs,) was calculated by

GraphPad Prism 7 (https://www.graphpad.com/scientific-software/prism/).

3.9.2.1.2 Antioxidative property of M2G by co-treatment

The cells were seeded at 2x10* cells/well in 96-well cell culture plate
with total volume of 100 pL/well and incubated for overnight. Then, the medium was
replaced by 100 uL/well of DMEM containing the ICs, or 2xICsy concentrations of H,0O,
(obtaining from step 3.9.2.1.1) together with M2G. Determination of cell viability was

performed using the same protocol described in 3.9.1.2.

3.9.2.1.3 Antioxidative property of M2G by pre-treatment

RAW 264.7 cells were seeded at 2x10% cells/well in 96-well cell
culture plate with total volume of 100 pL/well and incubated for overnight. Then, the
medium was replaced by 50 pL/well of DMEM with the concentrations of M2G and
incubated for an hour to pretreat the cells. After that, 50 uL of DMEM contained M2G
and 2xICs, or 4xICsy concentrations of H,O, was added into each well. The final
concentration of H,O, was ICsy or 2xICs, respectively. Determination of cell viability

was performed using the same protocol as described in 3.9.1.2.
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3.9.2.2 Semiquantitative RT-PCR analysis
3.9.2.2.1 Determination of time for H,O, treatment
3.9.2.2.1.1 Cell preparation

RAW 264.7 cells were seeded in 24-well cell culture plate at
3x10° cells/well with 500 pL/well of total volume and incubated for overnight. Then,

the cells were treated with equal volume of completed DMEM containing ICsq of H,0,.

3.9.2.1.1.2 RNA extraction and cDNA conversion

RNA extraction was performed at 0, 1, 3, and 6 hours after
stress followed the protocol described in 3.9.1.4.2. High quality total RNA solutions
were kept at -80°C prior analysis. For the cDNA conversion, final concentration of total
RNA was 1,680 ng. The reaction was performed using SuperScript®lll First-Stranded
synthesis kit followed the manufacturer’s instruction. The cDNAs were kept at -20°C

for further experiments.

3.9.2.1.1.3 Antioxidant gene expression analysis

Four genes; Nif2, sod1, cat, and HmoxI were amplified by
PCR using specific primer pairs (Table 2 and Appendix 3). Gel electrophoresis was
carried out using 1.2% agarose gel precasting with 0.1 pL/mL of SYBR® safe DNA gel
strain. Band intensities were analyzed by ImageJ. The housekeeping gene S-actin was

used as an internal control gene.
3.9.2.2.2 Determination of antioxidative property of M2G

3.9.2.2.2.1 Cells preparation

RAW 264.7 cells were seeded in 24-well cell culture plate at
3x10° cells/well with 500 uL/well of total volume and incubated for overnight. Then,

the cells were treated with equal volume of completed DMEM containing ICsq of H,0,.
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3.9.2.2.2.2 RNA extraction and cDNA conversion

RNA extraction was performed after stress for an hour as
described in step 3.9.1.4.2. High quality total RNA was kept at -80°C prior analysis. For
the cDNA conversion, final concentration of total RNA was 1,680 ng. The reaction was
performed using SuperScript®lll First-Stranded synthesis kit as per the manufacturer’s

instruction. The cDNAs were kept at -20°C for further experiments.

3.9.2.2.2.3 Gene expression analysis

Four genes; Nif2, sod1, cat, and HmoxI were amplified by
PCR using specific primer pairs (Table 2 and Appendix 3). Gel electrophoresis was
carried out using 1.2% agarose gel precasting 0.1 uL/mL of SYBR® safe DNA gel strain.
Band intensities were analyzed by ImageJ. The housekeeping gene [Factin was used

as an internal control gene.

3.10 Heterologous expression of M2G genes cluster in cyanobacterial model

Synechococcus elongatus PCC 7942 under oxidative stress

3.10.1 Transformation of M2G biosynthetic gene cluster
3.10.1.1 Plasmid preparation and natural transformation
3.10.1.1.1 E. coli culture condition

Culture stock of E. coli DH50C harboring Ap3858-3855/pUC303
(Waditee-Sirisattha et al., 2014) and the empty vector (pUC303) were grown in Luria-
Bertani (LB) medium (Appendix 2) plus streptomycin (50 pg/mL) at 37°C for overnight.

The cells growth was monitored via spectrophotometer (Shimadzu, Japan) at 620 nm.

3.10.1.1.2 Plasmid extraction

The growth cells were harvested by centrifugation at 13,000xg,
4°C for 5 minutes. Plasmids were extracted using HiYield” Plasmid Mini Kit (RBC

Bioscience, Taiwan) according to the manufacturer’s protocol. The recombinant
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plasmid was analyzed by restriction enzymes, BamHI and Xhol. The concentration and
purity of plasmid was determined by using Nanodrop 200 (Thermo Scientific, USA).

3.10.1.1.3 Natural transformation
3.10.1.1.3.1 S. elongatus culture condition

Freshwater cyanobacterium Synechococcus elongatus
was grown in BG11 medium under continuous light condition (28 pmol/m?/s) at 30°C.
The cyanobacterial growth was monitored via spectrophotometry at 730 nm until the
absorbance reached 1.0. The cells were harvested from 1 mlL of culture by
centrifugation at 8,000 rpom for 10 minutes at 25°C and washed thrice with BG11

medium.

3.10.1.1.3.2 Transformation

The washed cells were mixed with 300 ng of each
plasmid and incubated under the dark condition for overnight. The transformants was
recovered in two sets. The first set, transformants were laid onto BG11 agar plates for
10 days and selected by adding streptomycin (50 pg/mL). For the second set, the
transformants were cultured in BG11 medium in 12-well plates. After seven days, the
transformants were transferred to BG11 agar plate plus streptomycin (50 pg/mL). The
transformation was performed under the same condition as wild-type at 30°C. The
recovered transformants were verified by colony PCR analysis using specific primers for

four biosynthetic genes Ap3858, Ap3857, Ap3856, and Ap3855, respectively.
3.10.2 Morphological and physiological investigations under oxidative stress

3.10.2.1 Culture and stress condition

The transformant cells was cultured in BG11 medium plus streptomycin (50
pg/mL) until the absorbance at 730 nm reached approximately 0.5. The cultures were
transferred into 10 mL glass tubes and was stressed by adding H,O, varying from 0-10

mM.
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3.10.2.2 Morphological and physiological investigations

The stressed cells were observed their morphological changes under bright
field microscope at 0, 24, and 48 hours. The transformant carrying empty vector
pUC303 was used as a control. The cells were measured their absorbance at
730, 665, and 650 nm at 0, 24, and 48 hours. The absorbances were calculated to ICs,
using Graphpad Prism 7. Chlorophyll and phycocyanin amounts were measured using
the following formula (Colowick & Kaplan, 1988).

Chlorophyll (ug