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CHAPTER |

INTRODUCTION

1.1 Background and rationale

Cervical cancer is the fourth most common malignancy in women worldwide and it
remains as a leading cause of cancer related death for women in developing countries (1). In Thai

women, cervical cancer is also commonly found.

Radiotherapy is the main treatment for cervical carcinoma, separated into 2 modalities:
Brachytherapy (BT) and external beam radiation therapy (EBRT). The most common treatment
modality in BT for cervical cancer is called intracavitary technique that usually applies
an applicator inside patient’s cavity in order to transfer high dose rate radioactive to target. As a
contrary, the EBRT delivers radiation dose to the target from outside patient’s body and continue
to the irradiation to whole pelvis. The dose of EBRT is limited by the tolerance doses to OARs
such as bladder, rectum, and bowel.

Nowadays, EBRT has several techniques such as three-dimensional conformal radiation
therapy (3D-CRT), intensity modulated radiation therapy (IMRT), and volumetric modulated arc
therapy (VMAT). The 3D-CRT technique is the primary treatment technique for treating cervical
cancer until the present time. On the other hand, the advance techniques such as IMRT and
VMAT are capable to improve the efficacy for treating cervical cancer. Portlance et al. (2) showed
that IMRT technique presented similar results in target coverage and more OARs sparing in
comparison to 3D-CRT technique. The study from Deng X et al. (3) demonstrated significant
advantages in dosimetric parameters for target and OARs in VMAT technique than the 3D-CRT
technique of cervical cancer.

In addition to the treatment techniques previously described, the types of radiation and
energy are also considered. Both of these factors can affect the outcomes of patient treatment
since the characteristics of each radiation and energy types are different. For example, the high
energy photon beams provide deeper penetration than lower energy. However, high energy
beams also utilize higher MUs especially in IMRT technique. The high number of MUs can lead to
neutron contamination as well as gamma contamination. Higher MUs also induces the probability

of secondary malignancy in the future.

The aim of this study was to investigate the dosimetric parameters between 6 and 15 MV
photon beams in 3D-CRT, IMRT, and VMAT planning techniques.



1.2 Research objective

To compare the dosimetric outcomes in advanced cervical carcinoma plans such as Dgs,
TC, HI, CI, CN from PTV, Vas 6, and Vsp gy from OARs, NTID, MUs, beam on time, neutron dose as
well as gamma dose from contamination dose between 6 MV and 15 MV photon energies in 3D-
CRT, IMRT, and VMAT plans.



CHAPTER Il

REVIEW OF RELATED LITERATURES

2.1 Cervical carcinoma
2.1.1 Cervical cancer

Cervical cancer is a cancer where the abnormal cells appear in the cells lining the cervix
as shown in figure 2.1. These abnormal cells have ability to invade or spread to other parts of the
patient body.

Figure 2.1 Cervical carcinoma with adnexa.

2.1.2 The incident of cervical cancer

Cervical cancer is the 4™ most common cancer in women worldwide (1). In Thailand,
statistics in the year 2012 showed an incidence rate of cervical cancers within 8,000 new cases.
This type of cancer becomes second rank of most common cancer for Thai female (4).

2.1.3 The cause of cervical cancer (5)

The main cause of cervical cancer is Human papillomaviruses (HPV). The HPV causes the
production of two proteins known as E6 and E7 which turn off some tumor suppressor genes.
This may allow the cervical lining cells to grow too much and to develop changes in additional

genes, which in some cases will lead to cervical cancer.

2.1.4 Treatment of choice for cervical carcinoma

The treatment options for cervical cancer are separated by staging of disease.

L Early stage
> Surgery is the primary treatment choice to treat cervix cancer. The
radical hysterectomy is one of the alternative method to treat cervical
cancer. This technique removes whole uterus and lymph nodes in the

pelvis and some lymph nodes from the para-aortic area.



> Chemotherapy is the anti-cancer drugs treatment which is injected into
the bloodstream for killing the cancer cells in most parts of the body.

Advanced stage
> Radiotherapy (+chemotherapy) with both external beam radiation
therapy (EBRT) and brachytherapy (BT) are the important role in

radiotherapy treatment to treat cervical cancer.

Patient about to undergo
radiation therapy

Figure 2.2 The cervical cancer external beam radiation therapy.

Tiny isotope pellets are propelled
by compressed air down hollow

tubes which the oncologist has
inserted in the correct position

Computer
control A
equipment Ay

=

£ Lead-lined
storage

container

Figure 2.3 The cervical cancer intracavitary brachytherapy.



2.1.5 Radiotherapy for cervical carcinoma

External beam radiation therapy as shown in figure 2.2 can be employed for 2
fields technique (AP, PA) or 4 fields technique (AP, PA, RL, LL) which is commonly
known as 4 fields box technique for whole pelvis treatment. The prescription doses
are conventional dose 1.8-2 Gy for 25-28 fractions with total dose of in the range of
45-50.4 Gy. There are three main critical organs which have to be concerned while

treating cervical carcinoma. They are bladder, rectum, and bowel.

Brachytherapy (figure 2.3) is another treatment option that delivers radiation inside
the body from radioactive source. It is often used in addition to EBRT as a part of
the main treatment for cervical cancer. Intracavitary technique is the most popular
type of brachytherapy to treat this disease. The radioactive source placed in
applicators in the vaginal canal of patient. The prescription doses are commonly in

range of 6.5-8.3 Gy for 3-4 fractions according to tumor staging.

2.2 Principle of radiotherapy planning

2.2.1 Volume definition (6)

Volume of target and critical structure definition are reported by International

Commission on Radiation Units (ICRU) Reports No. 50 and 62. The following volumes have been

defined as principal volumes related to 3-D treatment planning (Figure 2.4), gross tumour volume

(GTV), clinical target volume (CTV), internal target volume (ITV), and planning target volume (PTV).
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Figure 2.4 Schematic volume of target and critical structure definition reported by ICRU Reports

No. 50 and 62.

2.2.1.1 Gross tumour volume (GTV)

The Gross Tumour Volume is the gross visible extent and location of malignant growth

(ICRU Report No. 50). The GTV is usually based on clinical examination or on imaging modalities

such as computed tomography (CT), magnetic resonance imaging (MRI), etc.



2.2.1.2 Clinical target volume (CTV)

The clinical target volume is the tissue volume that contains a demonstrable GTV and/or
sub-clinical microscopic malignant disease, which has to be eliminated. This volume thus has to
be treated adequately in order to achieve the aim of therapy, cure or palliation (ICRU Report No.
50).

2.2.1.3 Internal target volume (ITV)

The Intemnal target volume consists of the CTV plus an internal margin. The internal
margin is designed to take into account the variations in the size and position of the CTV relative
to the patient’s reference frame. The variations due to organ motions such as breathing and
bladder or rectal contents (ICRU Report No. 62).

2.2.1.4 Planning target volume (PTV)

The planning target volume is a geometrical concept, and it is defined to select
appropriate beam arrangements while taking into consideration the net effect of all possible
geometrical variations, in order to ensure that the prescribed dose is actually absorbed in the
CTV (ICRU Report No. 50).

2.2.1.5 Organs at risk (OARs)

Organs at risk are the radiosensitive organs that can affect the total dose. The dose from
a treatment plan may be significant compared with its tolerance, possibly require a change in the
beam arrangement or a change in the dose. The OARs have different radiation tolerances limit

based on the tissue involved.

2.2.2 Photon beam

A photon beam consists of numerous photons which pass from the target, through beam
modifying devices, and into the patient or phantom. Their usefulness depends on the energy and

the volume to be treated.

2.2.2.1 Photon energy

Photon energy has various types of energies such as KV X-rays, gamma rays, low and high
MV X-rays. Each type of energy contains several individual characteristics such as penumbra, skin
dose, and depth of maximum dose or depth of penetration. As can be seen in figure 2.5, the KV
X-rays has larger penumbra than the other photon energies due to greater scatter. On the other
hand, the MV X-rays have smaller penumbra because of small photon scatter and the electron
range. Furthermore, the MV photon beams has more penetration property. It provides the
maximum dose at Dmax as oppossed with the KV photon beams that presents the maximum
dose at patient skin. Therefore, the higher energy has the skin sparing effect property better than
the lower energy. Nowadays, in most of radiotherapy departments, the use of low and high

energy megavoltage Xx-rays are commonly emplyed to treat cancer patient. The selection of



beam energy is based on the location of the tumor. For instance, in case of the tumor dwells at
12 or 15 cm depth like the prostate or cervix cancer, the suitable energy is high energy photon
beams such as 10 MV beams (green line) as can be observed in figure 2.6 This is associated to the
fact that 10 MV photon beams penetrates more and have better skin-sparing properties than

lower energy such as 4 MV photon beams (orange line).
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Figure 2.5 Isodose distributions for various photon beam energy.
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Figure 2.6 Percent depth dose for various photon beam energy.



2.2.3 External beam radiation therapy technique

One method to deliver radiation to cancer from outside patient body is the external

beam radiation therapy. EBRT for cervical carcinoma is the treatment for the large field for whole

pelvis including target volume and surrounding lymph node irradiation. EBRT is usually combined

with BT as the boost to gross-tumor volume for cervical carcinoma treatment. ICRU Report No. 50

recommends a target dose uniformity within +7% and -5% of the prescription dose within the

target. The dose of EBRT is limited by the tolerance of involved organs at risk (OARs) such as

bladder, rectum, and bowel. Nowadays, EBRT has several techniques such as three-dimensional

conformal radiation therapy (3D-CRT), intensity modulated radiation therapy (IMRT), and

volumetric modulated arc therapy (VMAT).

2.2.3.1 3D-conformal radiation therapy (3D-CRT)

Overview: 3D-CRT is the radiation therapy technique that can view a tumor in three
dimensions with the help of image guidance. Therefore, this technique can deliver
radiation beams from several directions to the tumor and able to conform the
radiation beams to the shape of a tumor using multi-leaf collimator (MLC) for
modern radiotherapy machine while limiting radiation exposure to surrounding
healthy tissues. Higher beam energies (10-18 MV) are more regarded for pelvic
treatments in order to increase the dose to the center and reduce dose to skin as

well as subcutaneous tissues.

Planning technique: 3D-CRT is the forward treatment planning where user designs
the plans into a radiotherapy treatment planning system. The required decisions
include beam energy, number of beams, beam directions, and prescription dose. In
order to receive conformal treatment, the beam weighting, wedges, electronic
tissue compensators, and other parameters need to be adjusted. The dose volume
histogram (DVH) and tolerance limit of each OAR are used for planning evaluation.
In cervical cancer treatment, the 4 fields box technique (figure 2.7) has been

considered as the common treatment choice in 3D CRT plan.

Figure 2.7 The dose distribution of 4 fields box technique in cervical cancer region.



2.2.3.2 Intensity-modulated radiotherapy (IMRT)

Overview: IMRT is the technique that can create more conformal dose distribution to
the target volume compared to 3D-CRT planning technique. IMRT is capable to achieve
better sparing of normal surrounding tissues with the use of multiple optimized beams
from different directions to create non-uniform dose distributions using MLC movement
to modulate the beam (figure 2.8). However, this technique has several weaknesses. First,
it gives approximately 10 times higher monitor units than 3D-CRT technique, which raises
a concern about leakage radiation, secondary malignancy, and neutron contamination,
especially for high energy photon beams. Second, it takes quite long time during
treatment, which can increase the chances of patient movement during beam irradiation

that might affect to the treatment outcome.

Planning technique: IMRT is the inverse treatment planning. In contrast to the manual
trial-and-error process of forward planning, the inverse planning uses the optimiser to
solve the inverse problem as set by the planner. In inverse planning, radiation oncologist
defines a patient's critical organs and tumour. Afterward, planner sets target doses for
both tumour and organs at risk. Then, an optimization program is run to find the
treatment plan which best matches to all the input criteria. Inverse planning uses the

optimizer to solve the inverse problem as has been set by the planner.

Figure 2.8 The dose distribution of 9 fields IMRT planning technique in cervical cancer region.
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2.2.3.3 Volumetric modulated arc therapy (VMAT)

® Overview: VMAT technique is the advanced form of IMRT that can solve the
disadvantage of lengthy time in IMRT planning technique. VMAT delivers a precisely
sculpted 3D dose distribution during gantry rotation (figure 2.9). The machine
continuously re-shapes and changes the intensity of the radiation beam as it moves
around the patient with 3 modulating parameters: MLC movement, dose rate, and
gantry speed variations. In addition, VMAT allows us to give lower MU in comparison
to IMRT.

® Planning technique: VMAT is also inverse treatment planning which set up the
dose constraints by the planner according to tolerance limits protocol. The result of
dose distribution in VMAT planning technique is slightly similar to IMRT planning

technique.

Figure 2.9 The dose distribution of 2 arcs VMAT planning technique in cervical cancer region.

2.2.4 Treatment plan evaluation (6)

After completion of plan optimization and calculation, the radiation oncologist and
physicist will evaluate the plan using these following parameters: isodose curves, orthogonal

planes and isodose surfaces, dose distribution statistics, and dose volume histograms.

2.2.4.1 Isodose curves and isodose surfaces

> Isodose curves are used to ensure that target coverage is adequate and
critical structures are spared as necessary. The plan is commonly
accepted within 95-100% of isodose lines, while the OARs must not

exceed the tolerance limits.

> lsodose surfaces are the alternative way to display isodoses map in
three dimensions. It shows overlay of resulting isosurface on a 3-D

display featuring surface renderings of the target and/or other organs.
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2.2.4.2 Orthogonal planes

Since it is impractical to evaluate the plan in only axial planes isodose distributions, the
TPSs also generates the orthogonal CT planes and reconstructs the original axial data to other

planes in sagittal as well as coronal isodose distributions.

2.2.4.3 Dose distribution statistics

This parameter presents the quantitative information on the volume of the target or
critical structure and on the dose received by that volume. These include the minimum dose to
the volume, the maximum dose to the volume, the mean dose to the volume, the dose
received by at least 95% of the volume, and the volume irradiated to at least 95% of the

prescribed dose.

2.2.4.4 Dose-volume histograms

A 3D treatment plan consists of dose distribution information over a 3D matrix of points
over the patient’s anatomy. The DVHs summarize the information contained in the 3D dose
distribution and also represent a frequency distribution of dose values within PTV and contoured

organs.

There are two types of DVH, these are:

® Direct (or differential) DVHs: The software sums the number of voxels with an
average dose within a given range and plots the resulting volume. The ideal DVH for
a target volume would be a single column indicating that 100% of the volume
receives the prescribed dose. For a critical structure, the DVH may contain several

peaks, indicating that different parts of the organ receive different doses.

® Cumulative (or integral) DVHs: The cumulative DVH is more popular. This
parameter represents the volume of structure receiving greater than or equal to that
dose. For a structure receiving a very homogenous dose (for instance, 100% of the
volume receiving exactly 10 Gy), the cumulative DVH will appear as a horizontal line
at the top of the graph, at 100% volume as plotted vertically with a vertical drop at
10 Gy on the horizontal axis.
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2.3 Parameter Indices

Target volume enclosed by
prescription isodose, V ;

Target volume, V, l

Target volume receiving
prescription dose or

greater, V,

Figure 2.10 Definition of Vt, Vpi and Vt .

2.3.1 Target coverage (TC) (7)

The target coverage is defined as the ratio of the volume of target receiving the
prescription dose or greater (Vi) divided by the target volume (Vi) as illustrated in figure 2.10.

Equation 1 demonstrates the empirical formula to detemine the TC.

Vt,pi
Vi

TC = x 100% (1)

For perfect coverage, TC (Target coverage) = 100%. The aim of coverage is 95% and 90%-95% is

acceptable for the complex treatment.

2.3.2 Conformity index (CI) (7)

The conformity index is the ratio of the volume within the target irradiated to at least
the prescription isodose (Vi,p) over the total volume enclosed by the prescription isodose (V)

from figure 2.10. Equation 2 demonstrates the empirical formula to detemine the Cl.

Vipi
a=— )
Voi
This ratio gives a value ranging from 0 (no conformity) to 1.0 (for perfect conformation, where the
prescription isodose is identical to the target volume.) An ideal plan would have a Cl value close

to unity. The lower the ratio, the poorer the conformity.
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2.3.3 Conformation number (CN) (7)

The conformation number as mathematically writte in equation 3 is the proportion of
the target covered to prescription dose, which is identical to TC value in equation 1 and the
volume of the tissue outside the target receiving at least the prescription dose, which is identical
to Cl value in equation 2.

Vt,pi Vt,pi
—_— =
Vi Vpi

CN = (3)

CN can have a value between 0 and 1, with 1 being the optimal conformity. The lower the score,

the lesser the conformal plan is.

2.3.4 Homogeneity index (HI) (7)

The dose homogeneity index value is defined as the difference between the maximum
dose delivered to 2% of the target volume (Dz%) and the minimum dose to 98% of the target

volume (Desx) divided by median dose (Dsow) of the target volume as shown in equation 4.

_ D29~ Dogy

HI (4)

D509,

Smaller values of HI value correspond to more homogenous irradiation of the target volume. A
value of 0 represents the absolute homogeneity of dose within the target.

2.3.5 Normal tissue to integral dose (NTID) (8)

To find the dose to normal tissues outside the PTV, the NTID was calculated manually

and defined as a mean dose times the volume of the structure.
NTID = mean dose of (Body-PTV) (Gy) x volume of (Body-PTV) (lit) (5)

NTID has no significant impact during optimization. NTID was calculated to evaluate the quality of
the plan.

2.3.6 Total number of monitor units (MUs)

The monitor unit (MUs) is a measure of machine output from a linear accelerator.
Monitor units are measured by ionization chambers that measure the dose delivered by a beam
and built into the treatment head of radiotherapy linear accelerators. The monitor unit is defined
as monitor chamber reads 100 MU when an absorbed dose of 1 Gy is delivered to a point at the
depth of maximum dose in a water-equivalent phantom whose surface is at the isocenter of the

machine with a field size at the surface of 10 cm x 10 cm. (9)


https://en.wikipedia.org/wiki/Linear_accelerator
https://en.wikipedia.org/wiki/Ionization_chamber
https://en.wikipedia.org/wiki/Radiation_dose
https://en.wikipedia.org/wiki/Absorbed_dose
https://en.wikipedia.org/wiki/Imaging_phantom
https://en.wikipedia.org/wiki/Isocenter
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2.4 Neutrons
2.4.1 Neutrons characteristics

The neutron was discovered by James Chadwick in 1932. The nature of neutrons is take
place with protons within the nucleus of atom by the nuclear force as shown in figure 2.11. A
neutron has mass of 1.67 x 107" kg. and also has high penetration propoty. This particles are
categorized as an indirectly ionizing radiation because they do not carry an electrical charge.
lonization is caused by charged particles, which are produced during collisions with atomic nuclei.
The neutrons can be classified by their energies as follows: Thermal (0.025 eV), Slow (<2 keV),
Fast (> 2 keV), and Relativistic (>20 MeV). (10)

PROTON
NUCLEUS

NEUTRON

o\ ELECTRON

Figure 2.11 Atomic structure.

2.4.2 Photoneutron interaction

The bremsstrahlung process is confined to the target of the accelerator while the
photoneutron production process (y,n) occurs in both the accelerator head and treatment room.
Neutron capture gamma rays are largely confined to produce in the treatment room and arises as
a result from photoneutrons production when the primary photons have energies above the
neutron binding energy of roughly 8 MeV for most nuclides (11). The interaction is shown in
Figure 2.12.

According to AAPM TG158 (12), the photoneutron interaction is generated
by interaction between photon energy which greater than 10 MV and high Z materials in the
linac head such as target, primary collimators, flattening filter, upper jaw, lower jaw and multileaf
collimators (MLC) (figure 2.13). The jaws or MLC can also be a major source of neutrons when
they interact the primary photon beam. All neutrons are born fast then lose energy become

thermal.
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Figure 2.12 The interaction of radiation dealt with in the bremsstrahlung photons produced by

linear accelerators and the secondary radiations produced by these photons.
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Figure 2.13 The high Z materials in the linac head.

2.4.3 Neutrons dosimetry (9)

Neutrons can be detected with the aid of their various interactions. In a hydrogenous
material, neutrons produce hydrogen recoils or protons that can be detected by ionization
measurements, proportional counters, and scintillation counters. Neutrons can also be detected
by their nuclear reactions. Certain materials such as activation detectors could be radioactive
material when exposed to neutrons. The detector, after exposure to the neutron field, is counted

for beta or gamma ray activity.
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Neutron measurements in or near the primary x-rays beam can be made with activation
detectors, without being adversely affected by pulsed radiation. An activation detector can be
used either as a bare threshold detector or inside a moderator such as polyethylene. An example
of a bare threshold detector is phosphorus (in the form of phosphorus pentoxide) that has been

successfully used by several investigators to measure neutrons in and outside the primary beam.

A phosphorus detector can monitor both fast and thermal neutrons, using 31p (n,p) 31 5i and

31p (n,y) 32p reactions. The activation products 31si and 32p are essentially pure B emitters and

are counted using a calibrated liquid scintillation spectrometer.

Outside the treatment room, it is a common practice to use two detectors that respond
pre-dominantly to one or the other radiation. For example, a conventional air filled ionization
chamber with non-hydrogenous walls (carbon) predominantly for photon measurement and its
response to neutrons can be negligible because the n:y ratio outside the shield is usually small
and the neutrons are low energy. An ion chamber with hydrogenous walls, on the other hand,
can detect both neutrons and x-rays. An ion chamber that can be filled with either argon or
propane to obtain a predominantly photon or photon plus neutron response, respectively, has
also been used to estimate photon and neutron exposure rates outside the shield of a medical
accelerator. Such a gas proportional counter, used either in the counting mode or current
measurement, may be regarded as an ionization chamber with internal gas multiplication. The

voltage is high enough so that ionization by collision occurs and, as a result, the current due to

primary ionization is increased many fold. The basis of the detection system is the 10g (n, o) L
reaction, whereby the a particle can be counted or the ionization current caused by them is

measured. A moderated BF counter will also count proton recoil particles produced by

neutrons in the hydrogenous material.

2.5 Detectors theory
2.5.1 Scintillation detector

Overview: The scintillation detector belongs to the class of solid state detectors. This
instrument is used to detect ionizing radiation on a scintillator material and report the result in
light pulses. The detector consists of scintillating phosphors (the organic and inorganic crystals
contain  activator  atoms, emit  scintillations upon  absorption of radiation) and
Photomultiplier tubes (PMT). The high atomic number phosphors are mostly used for the
measurement of gamma rays, while the plastic scintillators are mostly used with beta particles.
Example: Csl (TV) scintillator as an example used for detection of low energy gamma waves, while

Lil (Eu) Lithium iodide is used for neutron doses detection.

Operation: Start from when the radiation passes into the scintillator and interact with
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atoms of crystal phosphor along the track, then produce in light photons. The number of
photons is in proportion to the amount of energy of incident photons. These photons arrive to
the photocathode that attached with photomultiplier tube. The photocathode emits electron for
each arriving photon by the photoelectric effect. This group of primary electrons is
electrostatically accelerated and focused by an electrical potential so that they strike the first
dynode of the tube. The impact of a single electron on the dynode releases a number of
secondary electrons which are in turn accelerated to strike the second dynode and another
dynode. Each subsequent dynode impact releases further electrons, and so there is a current
amplifying effect at each dynode stage. Then, these electrons pass through to the
photomultiplier tubes (PMT) which converts the light to an electrical signal and electronics to
process. This signal is amplified by amplifier and reported the output by monitor. The result or
the number of such pulses per unit time gives information about the intensity of the radiation.
The average current at the anode is used as a measure of radiation intensity as shown in figure
2.14 (13).

optical
coupling dynode glass light-tight
Mal (TL) photocathode envelope shield
phosphor s
T hotomultiplier
X-ray L1 P ;
photan » T Power su pply pins
T . outout signal
_ - ™ to preamplifier
beryllium “. photo- secondary
window electrons electon
cascades

Figure 2.14 Schematic diagram of a Nal (TU) scintillation detector.

2.5.2 Semiconductor detector

Overview: Solid-state or Semiconductor Radiation Detectors act as solid state ionization
chambers on application of a reverse bias to the detectors and on exposure to radiation. The
sensitivity of solid state detectors are higher than gas filled detectors, owing to the lower average
energy required to produce an ion pair in solid detector materials compared with air and the

higher density of the solid detector materials compared with air.

Operation: The device consists of a p-n junction across which a pulse of current
develops when a particle of ionizing radiation traverses it. In a different device, the absorption of
jonizing radiation generates pairs of charge carriers (electrons and holes) in a block of
semiconducting material; the migration of these carriers under the influence of a voltage
maintained between the opposite faces of the block constitutes a pulse of current. The pulses
created in this way are amplified, recorded, and analyzed to determine the energy, number, or
identity of the incident-charged particles. The diagram of solid-state detector is shown in figure
2.15 (14).
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Figure 2.15 Schematic of a solid state detector.

2.6 Review of related literatures

The first literature review, J. Forrest et al. (15) studied in a dosimetric planning study
comparing Intensity-modulated Radiotherapy with four-field conformal pelvic radiotherapy for
the definitive treatment of cervical carcinoma. This study aimed to compare the dose to organs
at risk between a conventional four-field whole pelvis radiotherapy (4F-WPRT) plan and an initial
single intensity-modulated WPRT (IM-WPRT) plan for a definitive treatment of cervical cancer.
They found that the target coverage at 95% of PTV was not much different between 2 plans and
the percent mean dose of OARs reduced when using IMRT technique. In conclusion, their study
found that an initial single IMRT plan can produce the significant of dose sparing to OAR in all

organs in nearly all patients, while maintaining target coverage.

The second literature review, A dosimetric analysis of 6 MV versus 15 MV photon energy
plans for intensity modulated radiation therapy (IMRT) of carcinoma of cervix was performed by
A. Tyagi et al. (8). This research aimed to compare the dosimetric parameters in IMRT plans
generated by 6MV and 15MV photon energies for cervical cancer. Their result showed a
comparable coverage of planning target volume (PTV) and organ at risk (OAR) for both energies.
The parameter indices of homogeneity index (HI) and conformity index at 98% (Closs) for both
energies were similar while integral dose to normal tissue (NTID) and total number of monitor
units (MUs) were lesser in 15 MV plans compared to 6MV plans. Therefore, they concluded that a
6 MV IMRT photon was a good choice for cervix carcinoma as it generated a highly conformal and

homogeneous plan with the good target coverage and OARs sparing.

The third literature review, F. Vanhavere et al. (16) illustrated neutron and gamma
peripheral doses around a medical accelerator in 6 and 18 MV photon energies of IMRT
techniques by using TLD for prostate cancer. They found the doses in free air were higher for 18
MV compared with 6 MV beam. For the 6 MV at 1 m. to isocenter beam, the neutron and gamma
dose could be neglected, while the neutron and gamma dose were higher for the 18 MV at 1 m.

to isocenter because of the higher number of monitor units.
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CHAPTER Il

RESEARCH METHODOLOGY

3.1 Research design

This study is an observational analytical study.

3.2 Research design model

The diagram of research design model is shown in figure 3.1 and figure 3.2 for part 1 and

part 2, respectively.

Original plan

!

Re-plan and define prescription dose in 50.4 Gy / 28 Fx

| )

6 MV 3D-CRT 4F-Box 6 MV IMRT 9 Fields 6 MV VMAT 2 Arcs

Y

Create new plan by changing only energy

: I I

15 MV 3D-CRT 4F-Box 15 MV IMRT 9 Fields 15 MV VMAT 2 Arcs

A

Evaluate plans by using DVH, parameter index and tolerance dose limit

Y

Record the results

Figure 3.1 Research design model part 1.
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Transfer plan to treatment room

Y

Set up Rando phantom on the couch

h

Place the detectors at :
1. NE2: 1m. far away from isocenter (In treatment room)

2. HDS-101 : on console (In control room)

v

Irradiate all 15 MV plans and observe the value on monitors

¥

After 30s, 2mins, and 5mins
move HD5-101 inside the treatment room at 1 m. away

from isocenter while record neutron and gamma dose rate

L4

Analyze the results

Figure 3.2 Research design model part 2.

3.3 Conceptual framework

The factors that affect to the dosimetric outcomes are photon energies, treatment

techniques and parameter indices. The diagram of conceptual framework is shown in figure 3.3.

Parameter indices: Dys% , TC, HI, ClI, CN, Vs Gy Voo Gy, NTID,

MUs, beams on time, neutron and gamma dose

Photon energies: Dosimetric Treatment techniques:
6 MV and 15 MV Outcomes 3D-CRT, IMRT, and VMAT

Figure 3.3 Conceptual frameworks.

3.4 Keywords

® Photon energy effect

® (Cervical carcinoma

® 3D-CRT planning technique
® |MRT planning technique

® VMAT planning technique
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3.5 Research question

What is the suitable photon energy between 6 MV and 15 MV photon beams in 3D-CRT,

IMRT, and VMAT plans for cervical carcinoma?

3.6 Materials

The materials used in this study are from the Department of Radiation Oncology, King

Chulalongkorn Memorial Hospital.

1)

The advanced cervical cancer plans of 5 cases during 2016-2017 (figure 3.4), which

have target volume in the range from 1,627.9 to 2,115.8 cm’,

Figure 3.4 Dose distribution and DVHs of advanced cervical cancer plans.

2)

Eclipse treatment planning system (TPS) with Anisotropic Analytical Algorithm.
(version 11.0.31) (17)

The Analytical Anisotropic Algorithm (AAA) (Varian Medical System, Inc,
Palo Alto, CA, USA) in EclipseTM Integrated Treatment Planning was used in this
study. This algorithm provides a fast and accurate dose calculation for clinical
photon beams. The AAA dose calculation model is a 3D pencil beam
convolution-superposition algorithm that separates modelling for primary
photons, scattered extra-focal photons, and electrons scattered from the beam
limiting devices. Functional forms for the fundamental physical expressions in
AAA allows analytical convolution and thus reducing the computation time

significantly.



3)

22

Varian clinac 23EX linear accelerator

This study used Varian clinac 23EX linear accelerator with 120 millenium
MLC (Varian Medical system, Inc, Palo Alto, USA), as shown in figure 3.5. The
machine can be operated in 6 MV and 15 MV for photon beams and 4, 6, 9, 12,
16 and 20 MeV for electron beams. The range of field sizes are from 0.5x0.5 cm”
to 40x40 cm” at isocenter. The distance from the target to isocenter is 100 cm.
The dose rates can be adjusted from 100 to 600 MU/min for conventional

mode. The 6 MV and 15 MV for photon beams were used in this study.

Figure 3.5 The Varian clinac 23EX linear accelerator.

4) Alderson rando phantom

The Alderson rando phantom (The Phantom laboratory, Salem, NY, USA)
(figure 3.6) is molded of tissue-equivalent material which has the similar effective
atomic number to the body's soft tissue. The material is radiologically equivalent
to soft tissue and virtually indestructible, capable of withstanding substantial

impact, and continuous handling without damage.

—————— >
Head region |

Cervical region |} _———-a->

Thoracic region

Abdominal region - - ( \
N

Figure 3.6 The Alderson rando phantom.
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The materials used for neutron dosimetry are from the Department of Nuclear
Engineering, Faculty of Engineering, Chulalongkorn University.

5) NE2 Neutron monitor (NE Technology)

Figure 3.7 shows the NE2 Neutron monitor (NE Technology, Limited, UK). It is
the active neutron cylindrical polyethylene moderator that can decelerate fast
neutrons into thermal neutrons and be detected by the central BFs tube. This
detector possess good respond to thermal neutrons. The dose equivalent rate is
expressed in terms of mSv/hr.

Figure 3.7 Anterior and lateral views of NE2 Neutron monitor.

6) HDS-101 GN Area survey meter (Mirion)

The HDS-101 GN Area survey meter (Mirion Technologies, Inc, Smyrna,
Georgia, USA) as displayed in figure 3.8 has a high sensitivity and fast response active
gamma-neutron detector. Three detectors are embedded in one probe. There are
Csl (T scintillator for low gamma dose rate measurement, Silicon diode for high
gamma dose rate measurement, and Lil (Eu) scintillator for neutron measurement.
The survey meter is able to detect gamma rays and neutrons in the range of 30 keV
to 3 MeV and 0.025 eV to 15 MeV, respectively.

Figure 3.8 HDS-101 GN Area survey meter.
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Part 1: Perfo
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Select the original advanced cervical plans which target and organs at risk were

contoured by radiation oncologist.

Re-plan with 3D-CRT, IMRT and VMAT techniques on Eclipse TPS for 6 MV photon
energy with the plan parameters as displayed in the figure 3.9.

Treatment techniques

Parameters
3D-CRT IMRT VMAT
Number of fields / arcs 4 fields 9 fields 2 arcs
Photon energy 6 MV 15 MV
Prescribed dose 50.4 Gy in 28 fractions.
DVH
OARs Dmax
Dose Max Volume
imi Bladd
Tolerance dose limits adder | o 50 Gy 50%
Rectum
Bowel | 50 45 Gy 10%

Figure 3.9 Treatment plan parameters in each technique and tolerance dose limits.

* In case of IMRT and VMAT plans the similar dose constraints was selected, while in case of 6

MV and 15 MV the similar optimization was performed.

3)

4)

5)

6)

Create the new plans by changing only the 6 MV photon to 15 MV photon plans. All

other parameters remain constant.

Re-calculate the new plans.

Evaluate the plans using DVH and tolerance limit as shown in the figure 3.9.

Record the data from all treatment plans.
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Part 2: Perform in treatment room

7) Open the treatment plans at the control room and transfer the plans to 23EX

treatment room.

8) Set up the Alderson rando phantom on the couch (figure 3.10).

Figure 3.10 The Alderson rando phantom in AP head first position on the couch and the NE2

detectors at 1 m. in lateral and longitudinal far away from isocenter in the 23EX treatment room.

9) Place the NE2 detectors at diagram position from isocenter at 1 m. in lateral and
longitudinal far away from isocenter in the treatment room (figure 3.10, 3.11, and
3.13). On the other hand, place the HDS-101 on console in control room (figure 3.12
and 3.13) to detect neutron during irradiation. The HDS-101 is placed toward the

isocenter.

Figure 3.11 The NE2 detector at 1 m. in lateral and longitudinal direction far away from isocenter

in the 23EX treatment room.
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Figure 3.12 The HDS-101 on console in control room.

1m.
NE2 Detector Ye===sss=- .

élm.

SCHeG |socenter§<) @_ Varian Clinac 23EX
: Linear Accelerator

Rando phantom

- Door

Control Room X HDS-101 GN survey meter

Figure 3.13 The 23EX treatment room diagram which illustrates the position of both detectors

during irradiation.

10) Irradiate all 15 MV plans and observe the dose value on monitors.

11) Inside the treatment room, place the HDS-101 away from isocenter in diagram
position of 1 m. lateral and longitudinal direction. Record neutron and gamma dose

rate at 30s, 2mins, and 5mins after irradiation as displayed in figure 3.14.
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1m.
HDS-101GN survey meter Xsssssesss
t1lm.

Couch |socenter@ @_ Varian Clinac 23EX
[ Linear Accelerator

Rando phantom

B Door

Control Room

Figure 3.14 The 23EX treatment room diagram which shows position of HDS-101 GN detector
after irradiation.

12) Analyze the results.

Evaluation parameters:

Record the data from treatment plans and dosimeters as shown in figure 3.15.

PTV D, TC, HI, Cl, and CN

95% ?

Bladder, Rectum : V,

OARs o
Bowel : V, Gy
Parameter indices NTID, MUs, and beam on time
Contamination dose neutron and gamma dose

Figure 3.15 The recorded parameters for PTV, OARs, parameter indices, and contamination dose.

3.8 Outcome measurements

The outcomes for plan evaluation are:

® Dosimetric parameter of planning target volume (PTV)
® Dosimetric parameter of organs at risk (OARs)
® Target coverage (TC)

® Homogeneity index (HI)
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® Conformity index (Cl)

® Conformation number (CN)

® Normal tissue to integral dose (NTID)
® Total number of monitor units (MUs)
® Beam on time

® Neutron and Gamma dose

3.9 Statistical analysis

The mean and standard deviation of dosimetric parameters and neutron doses calculation
were analyzed by using SPSS (Statistical Package for the Social Science for Windows) version 22
and Microsoft Excel version 2010.

3.10 Expected benefits

To obtain the information about the suitable energy in 3D-CRT, IMRT, and VMAT to treat
patients with cervical cancer.

3.11 Ethical consideration

Although this study was performed in treatment planning system and in phantom,
patient information was used. Therefore, the ethical consideration was submitted and has been
approved by Ethics Committee of Faculty of Medicine, Chulalongkorn University. The number of
approval is IRB No. 513/59 and the certificate is given in figure 3.16.

COE No. 03772017

1R8 No. 362/60

Figure 3.16 The certificate of approval from ethic committee of Faculty of Medicine

Chulalongkorn University.
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The comparison of dosimetric parameters between 6 MV and 15 MV photon energies in
3D-CRT 4F-Box technique is shown in Table 4.1. (The raw data are shown in Table Al. and Table
A2. of appendix). The PTV requires dose at least 50.4 Gy of prescription dose. For other

parameters in both energies were not much different. Furthermore, the Cl and CN from 15 MV

presented better outcome than 6 MV since the mean was slightly closer to 1. This finding was

supported by the data from p-value.

Table 4.1 The dosimetric parameters of PTV in 3D-CRT planning technique between 6 and 15 MV

photon beams.

6 MV 15 MV P-value

b © 50.624 + 0.184 50.682 + 0.166 0.228

TC (%) 96.694 + 1.205 96.695 + 0.974 0.998
HI 0.139 + 0.044 0.113 + 0.024 0.109
cl 0551 + 0.072 0.586 + 0.088 0.024
CN 0.532 + 0.063 0.566 + 0.081 0.027
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4.1.2 IMRT technique

The comparison of dosimetric parameters between 6 MV and 15 MV photon energies in
IMRT technique is shown in Table 4.2. (The raw data are displayed in Table A3. and Table A4. of
appendix). The PTV volume received doses nearly prescription dose in 50.4 Gy, while the other

parameters of both energies were not much different.

Table 4.2 The dosimetric parameters of PTV in IMRT planning technique between 6 and 15 MV

photon beams.

6 MV 15 MV P-value
0. © 50.643 = 0.168 50.586 = 0.184 0.550
TC (%) 96.657 = 0.937 96.552 + 0.759 0.661
HI 0.084 = 0.003 0.074 = 0.011 0.067
cl 0.890 + 0.018 0.902 + 0.023 0.050
CN 0.864 + 0.023 0.871 + 0.023 0.059

4.1.3 VMAT technique

The comparison of dosimetric parameters between 6 MV and 15 MV photon energies in
VMAT technique is shown in Table 4.3. (The raw data are presented in Table A5. and Table Aé. of
appendix). The PTV volume obtained the prescription dose within 50.4 Gy. For other parameter
indices, the outcome was similar to the IMRT technique.

Table 4.3 The dosimetric parameters of PTV in VMAT planning technique between 6 MV and 15
MV photon beams.

6 MV 15 MV P-value

b & 50.480 = 0.084 50.580 + 0.148 0.298
TC (%) 96.072 + 0.547 96.322 = 0.336 0.485
HI 0.091 + 0.017 0.095 = 0.018 0.551

a 0.915 + 0.032 0.915 + 0.043 0.980
CN 0.879 + 0.035 0.881 = 0.041 0.465
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4.2 OARs
4.2.1 3D-CRT planning technique

Figure 4.1 exhibits the OARs dosimetric parameters comprised of Vso g, of bladder and
rectum and Vas g, of bowel. The tolerance limit states that the volume of bladder and rectum
obtaining dose 50 Gy should receive radiation dose below 50% of volume. For bowel volume
receiving dose 45 Gy should receive radiation dose below 10% of volume. The 3D-CRT planning
techniques displayed exceeding tolerance dose limits in both energies lead to the increased
complications. (The raw data are shown in Table Al. and Table A2. of appendix)

100 - 98.05 97.20

6 MV

90
15 MV

80

70
61.57

60
Bladder and

Rectum’s limit

50

Volume %

40

30

20
11.70

10 Bowel’s limit

V50 - Bladder V50 - Rectum Va5 - Bowel

Figure 4.1 The dosimetric results of OARs in 3D-CRT planning technique between 6 and 15 MV

photon beams.
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4.2.2 IMRT planning technique

The dosimetric parameters of OARs comparison between 6 and 15 MV photon energies
in IMRT technique is displayed in figure 4.2. The great similar doses between both photon
energies were shown. For OARs, the outcomes were also still within tolerance limit. (The raw data
are displayed in Table A3. and Table Ad. of appendix).

100 -
N6 MV

90 -
15 MV

80
70 7
60
Bladder and

Rectum’s limit

5 —frm e o e
3816 37.16

Volume %

40 -+

30

20

101 SN S meessssssssssossosscsooes Bowel’s limit

V50 - Bladder V50 - Rectum V45 - Bowel

Figure 4.2 The dosimetric results of OARs in IMRT planning technique between 6 and 15 MV
photon beams.
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4.2.3 VMAT planning technique

The dosimetric parameters of OARs comparison between 6 MV and 15 MV photon
energies in VMAT technique demonstrate the dose of all organs in both energy plans received
similar dose and also within the tolerance limit for all OARs as displayed in figure 4.3. (The raw

data are presented in Table A5. and Table A6. of appendix).

100 7
W6 MV
% 15 MV
80 A

70 A

60
Bladder and

O A e e e e

40.55 Rectum’s limit

Volume 9%

40 A

30 A

20 A

------------------------ Bowel’s limit

V50 - Bladder V50 - Rectum Va5 - Bowel

Figure 4.3 The dosimetric results of OARs in VMAT planning technique between 6 and 15 MV

photon beams.

4.3 Parameter indices
4.3.1 3D-CRT planning technique

Table 4.4 lists the NTID, MUs and beam on time in 3D-CRT planning technique for both
photon energies. The NTID from 15 MV was lower than 6 MV. In case of MU comparison, the 3D-
CRT 4F-Box technique used lower MU in 15 MV. Therefore, the beam on time decreased in higher
energy plans. (The raw data are shown in Table Al. and Table A2. of appendix)

Table 4.4 The dosimetric parameter indices in 3D-CRT planning technique between 6 and 15 MV

photon beams.

6 MV 15 MV P-value
NTID (Gy.lit) 361.766 + 127.787 335.842 + 115.072 0.012
MUs 333,620 + 23.036 279.120 + 12.635 < 0.001

Beam on time (min) 0.834 + 0.058 0.698 + 0.032 < 0.001
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4.3.2 IMRT planning technique

The dosimetric parameters comparison between 6 and 15 MV photon energies in IMRT
planning technique is shown in Table 4.5. The NTID, MUs and beam on time were lower in higher

energy plans. (The raw data are displayed in Table A3. and Table Ad. of appendix).

Table 4.5 The dosimetric parameter indices in IMRT planning technique between 6 and 15 MV

photon beams.

6 MV 15 MV P-value
NTID (Gy.lit) 338.818 + 137.958 328.577 + 125.693 0.148
MUs 2211.600 + 374.638 1931.800 + 236.468 0.024
Beam on time (min) 5.529 +0.938 4.830 + 0.591 0.024

4.3.3 VMAT planning technique

The dosimetric parameter comparison between 6 MV and 15 MV photon energies in
VMAT planning techniques is shown in table 4.6. All of parameter indices of 15 MV plans yielded
the lower outcome than the 6 MV plans similar to the comparison in IMRT plans. (The raw data
of NTID and MUs are shown in Table A5. and Table A6. While, the raw data of beam on time are
shown in Table A7. of appendix)

Table 4.6 The dosimetric parameter indices in VMAT planning technique between 6 and 15 MV

photon beams.

6 MV 15 MV P-value
NTID (Gy.lit) 323.984 + 130.064 310.821 + 123.779 0.012
MUs 448.600 + 36.814 405.600 + 50.317 0.015
Beam on time (min) 1.267 + 0.007 1.215 £ 0.001 0.478

4.4 Neutron and Gamma dose
4.4.1 During irradiation

Figure 4.4 and 4.5 (The raw data are demonstrated in Table A8.) show the neutron dose
rate in all treatment techniques during treatment. The NE2 neutron monitor was placed inside
treatment room while the HDS-101GN area survey meter was positioned outside the treatment
room. Inside the treatment room, the Alderson Rando phantom was irradiated using 15 MV
photon beams. The neutron product from IMRT planning technique exhibited the highest number

of neutron dose rate compared to 3D-CRT and VMAT, respectively.
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4.4.2 After irradiation

Figure 4.6 and 4.7 show neutron and gamma dose in all treatment techniques at 30s,
2mins, and 5mins after treatment. The HDS-101 GN area survey meter was placed inside the
treatment room and Alderson rando phantom was irradiated using 15 MV photon beams. The
IMRT planning technique produced higher number of neutron and gamma dose rate than VMAT
and 3D-CRT, respectively. (The raw data are presented in Table 9A., Table 10A., and Table 11A)
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Figure 4.4 Comparison of neutron dose rate (mSv/hr) measured by NE2 detector at 1 m. far away
from isocenter during treatment from 3D-CRT, IMRT, and VMAT planning techniques.
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Figure 4.5 Comparison of neutron dose rate (cps) measured by HDS-101 GN area survey meter at
control room during treatment from 3D-CRT, IMRT, and VMAT planning techniques.
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Figure 4.6 Comparison of neutron dose rate (cps) at 30s, 2mins, and 5mins measured by HDS-101

GN area survey meter at 1 m. far away from isocenter after treatment from 3D-CRT, IMRT, and

VMAT planning techniques.
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Figure 4.7 Comparison of gamma dose rate (uSv/h) at 30s, 2mins, and 5mins measured by HDS-

101 GN area survey meter at 1 m. far away from isocenter after treatment from 3D-CRT, IMRT,

and VMAT planning techniques.
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CHAPTER V

DISCUSSION AND CONCLUSION

5.1 DISCUSSION

According to the results, it was clear that both energies had the advantages as well as
the drawbacks which could affect the decision to select the suitable energy in each technique.
We noticed that the higher energy was the good alternative of 3D-CRT 4 fields box technique in
large patient due to the higher penetration to the target. In contrast, the lower energy of 3D-CRT
plans was unable to transfer the similar dose to the tumor, in which the same isodose line was
selected to evaluate the 4 fields box technique. This reason was expressed in forms of Cl and CN
indices. The Cl of higher energy provided value of 0.586 + 0.088 that was better than lower
energy of 0.551 + 0.072. The CN of 15 MV provided value of 0.566 + 0.081 that was better than 6
MV of 0.532 + 0.063 with statistically significant difference as supported from the table 4.1.
Furthermore, the OARs of 6 MV plans received slightly more radiation dose than the OARs of 15
MV plans (Figure 4.1) due to the lower penetration power of lower energy including the pelvis
thickness. Besides, the higher energy beams also showed the better outcomes in terms of NTID,
MUs, and beam on time for all techniques. The 3D-CRT displayed exceeding tolerance dose limits
in both energies which potentially lead into the higsh complication rates. There are both acute
and long-term potential complications that tend to start a few days after the beginning of
radiotherapy. These symptoms include diarrhea, bladder inflammation, bleeding from the vagina,
tiredness, and weakness. Late effects could be the changes of the ovaries, the changes of the
vagina, swelling, bladder effects, bowel effects, and bleeding. The side effects could continue or
might start several months or years after treatment.

According to table 4.4, 4.5, and 4.6, the 15 MV photon energy showed the dose
reduction of NTID, MUs, and beam on time for all planning techniques. The reduction of total
number of monitor unit in 15 MV was caused by high penetration property of high energy. When
the high energy was employed, the NTID decreased due to the less absorption of 15 MV in
treated volume. Our results agreed to the Tyagi study (8). They observed the small differences
between 6 MV and 15 MV for HI in IMRT plans for cervical cancer treatment and discovered that
two energy plans were nearly identical in their conformity of dose to the target.

In this study, neutron doses in 6 MV photon energy of all planning techniques were not
measured, since the 10 MV photon is the border energy to induce the neutron production. In
addition, study from F. KRY et al. (12) found that no neutron contribution in 6 MV and only
minimal neutron contribution was detected at 10 MV (typically 1%) of IMRT technique in both of
Varian and Siemens linear accelerators.

In our research, during the beam irradiation to phantom, the neutron contamination
from IMRT was much higher compared to the 3D-CRT and VMAT technique. This finding was
corresponded to the higher MUs from IMRT in comparison to other techniques. However, the
neutron contamination from 3D-CRT was higher than VMAT even though the MUs from VMAT was
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relatively higher than 3D-CRT. In 3D-CRT, 4 fields box technique was employed and hence the
gantry rotated within four different angles. The radiation toward the NE2 neutron detector varied
across the gantry rotation. Therefore, the beam angle dependence was more pronounced and
affected the measured dose from this detector. The reading became significantly higher when the
gantry rotation was 270 degrees and lower when the gantry rotated to 90 degrees. In part of HDS-
101 GN area survey meter which placed on the control room, the 90 degree gantry rotation was
significantly higher than gantry rotated to 270 degree.

After the beam irradiation, the neutron contamination from IMRT was still higher than
other techniques. However, the trend changed as we found the VMAT technique produced higher
neutron contamination than 3D-CRT. Once the beam irradiation was completed, the
measurements were made after 30s, 2mins, and 5mins. During that period, the neutron has
spread around the treatment room and the gantry direction still in the 0 degree position.
Therefore, neutron doses collected by using HDS-101 GN area survey meter (placed inside
treatment room) from 3D-CRT became lower than VMAT technique.

For gamma doses, we observed the result only after irradiation. The results showed the
same trend as neutron doses collected by using HDS-101 GN area survey meter place in side
treatment room at 1 m. far way form isocenter. The gamma contamination generated by IMRT
after treatment of 30s, 2mins, and 5mins was higher approximately one time to VMAT and two
times to 3D-CRT plans.

Therefore, the neutron and gamma contamination in the head of linear accelerator from
higher energy of IMRT plans were more pronounced than other techniques. Our study agreed
well to study from F. Vanhavere et al. (16) where they illustrated neutron and gamma peripheral
doses around a medical accelerator in 6 MV and 18 MV photon energies of IMRT techniques were
higher for 18 MV compared with 6 MV photon beams. For 6 MV photon beam, both neutron and

gamma dose could be neglected.

5.2 CONCLUSION

For 3D-CRT technique, 15 MV photon beams is recommended to yield more uniform
dose distribution in cervical cancer region with small amount of neutron and gamma doses. On
the other hand, for IMRT planning technique, the 6 MV photon beams is a suitable option for
cervical carcinoma treatment as this energy produced similar outcome to 15 MV photon beams
and possess no neutron and gamma contamination. For VMAT planning technique, both of the
photon energies could be selected to treat cervical cancer. There is no significant different
between these two energies in dosimetric parameters as well as the contamination dose since 15

MV photon beams produced a small amount of neutron and gamma contamination.



10.
11.

12.

13.

39

REFERENCES

Ferlay J, Soerjomataram |, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence
and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J
Cancer. 2015;136(5):E359-86.

L. PORTELANCE. INTENSITY-MODULATED RADIATION THERAPY (IMRT) REDUCES SMALL
BOWEL, RECTUM, AND BLADDER DOSES IN PATIENTS WITH CERVICAL CANCER RECEIVING
PELVIC AND PARA-AORTIC IRRADIATION. Radiation Oncology Biol Phys. 2001;51:261-6.

Deng X, Han C, Chen S, Xie C, Vi J, Zhou VY, et al. Dosimetric benefits of intensity-
modulated radiotherapy and volumetric-modulated arc therapy in the treatment of
postoperative cervical cancer patients. J Appl Clin Med Phys. 2017;18(1):25-31.
Phoolcharoen N, Kantathavorn N, Sricharunrat T, Saeloo S, Krongthong W. A population-
based study of cervical cytology findings and human papillomavirus infection in a
suburban area of Thailand. Gynecol Oncol Rep. 2017;21:73-7.

Soiety AC. Cervical Cancer [161220171]. Available from:

https://www.cancer.org/cancer/cervical-cancer/causes-risks-prevention/what-causes.html

E.B. P. Radiation Oncology Physics A Handbook for Teachers and Students. . International
Atomic Energy Agency Wagramer Strasse 5, P.O. Box 100, A-1400 Vienna, 2005.

Lomax NJ, Scheib SG. Quantifying the degree of conformity in radiosurgery treatment
planning. International Journal of Radiation Oncology*Biology*Physics. 2003;55(5):1409-19.
Tyagi A, Supe SS, Sandeep, Singh MP. A dosimetric analysis of 6 MV versus 15 MV photon
energy plans for intensity modulated radiation therapy (IMRT) of carcinoma of cervix. Rep
Pract Oncol Radiother. 2010;15(5):125-31.

Khan F GJ. The Physics of Radiation Therapy. 5th Edition. Two Commerce Square 2001
Market Street Philadelphia, PA 19103 USA2014.

Ineafinfiang u. Wandl3e39d (Radiological Physics). 2555. . NFUMNUMIUAT p.

Awotwi-Pratt JB, Spyrou NM. Measurement of photoneutrons in the output of 15 MV varian
clinac 2100C LINAC using bubble detectors. Journal of Radioanalytical and Nuclear
Chemistry. 2007;271(3):679-84.

Kry et al SFK, Bryan Bednarz, Rebecca M. Howell and Larry Dauer. AAPM TG 158:
Measurement and calculation of doses outside the treated volume from external-beam
radiation therapy. 2017 American Association of Physicists in Medicine. 2017:e406.

J. W. Scintillation Detector 2006 [cited 2017 12,Dec]. Available from:

https://www.cefns.nau.edu/geology/malabs/Microprobe/WDS-Scintillation.html


https://www.cancer.org/cancer/cervical-cancer/causes-risks-prevention/what-causes.html
https://www.cefns.nau.edu/geology/malabs/Microprobe/WDS-Scintillation.html

14.

15.

16.

17.

40

RADIATION DETECTOR [Available from: https://www.britannica.com/science/solid-state-

detector.

Forrest J, Presutti J, Davidson M, Hamilton P, Kiss A, Thomas G. A dosimetric planning study
comparing intensity-modulated radiotherapy with four-field conformal pelvic radiotherapy
for the definitive treatment of cervical carcinoma. Clin Oncol (R Coll Radiol).
2012;24(4):e63-70.

Vanhavere F, Huyskens D, Struelens L. Peripheral neutron and gamma doses in
radiotherapy with an 18 MV linear accelerator. Radiat Prot Dosimetry. 2004;110(1-4):607-12.
Sievinen J UW, Kaissl K. . AAA Photon Dose Calculation Model in EclipseTM.:1.-23.


https://www.britannica.com/science/solid-state-detector
https://www.britannica.com/science/solid-state-detector

41

APPENDIX
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