สารที่มีฤทธิ์ต้านอนุมูลอิสระจากเอื้องมัจฉา

จุหาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2560 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

FREE RADICAL SCAVENGERS FROM DENDROBIUM PALPEBRAE

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy Program in Pharmacognosy Department of Pharmacognosy and Pharmaceutical Botany Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2017 Copyright of Chulalongkorn University

Chulalongkorn University

Thesis Title	FREE RADICAL SCAVENGERS FROM DENDROBIUM
	PALPEBRAE
Ву	Mr. Napat Kyokong
Field of Study	Pharmacognosy
Thesis Advisor	Associate Professor Boonchoo Sritularak, Ph.D.
Thesis Co-Advisor	Professor Kittisak Likhitwitayawuid, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

......Dean of the Faculty of Pharmaceutical Sciences (Assistant Professor Rungpetch Sakulbumrungsil, Ph.D.)

THESIS COMMITTEE

Chairmar	١
(Associate Professor Rutt Suttisri, Ph.D.)	
Thesis Ac	dvisor
(Associate Professor Boonchoo Sritularak, Ph.D.)	
Thesis Co	o-Advisor
(Professor Kittisak Likhitwitayawuid, Ph.D.)	
CHULALONGKORN UNIVERSITY Examiner	
(Assistant Professor Taksina Chuanasa, Ph.D.)	
Examiner	
(Chaisak Chansriniyom, Ph.D.)	
External	Examine

(Duangpen Pattamadilok, Ph.D.)

ณภัทร เกี่ยวข้อง : สารที่มีฤทธิ์ต้านอนุมูลอิสระจากเอื้องมัจฉา (FREE RADICAL SCAVENGERS FROM *DENDROBIUM PALPEBRAE*) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ภก. ดร.บุญชู ศรีตุลารักษ์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ศ. ภก. ดร.กิตติศักดิ์ ลิขิตวิทยาวุฒิ, หน้า.

การศึกษาทางพฤกษเคมีของเอื้องมัจฉาในวงศ์ Orchidaceae สามารถแยกสารบริสุทธิ์ได้ ทั้งหมด 10 ชนิด พบว่าเป็นสารชนิดใหม่ในกลุ่ม phenanthrene-phenanthraquinone 1 ชนิด คือ dendropalpebrone ประกอบกับสารที่เคยมีการรายงานแล้ว 9 ชนิด ได้แก่ gigantol, lusianthridin, nobilone, 3,7-dihydroxy-2,4,8-trimethoxyphenanthrene, 2,5-dihydroxy-4,9-dimethoxyphenanthrene, moscatilin, scoparone, 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl และ dendroflorin จากการทดสอบฤทธิ์ต้านอนุมูลอิสระเบื้องต้นของสารบริสุทธิ์แต่ละ ชนิดด้วยวิธี oxygen radical absorbance capacity assay, DPPH radical scavenging assay, deoxyribose degradation assay และทดสอบฤทธิ์ยับยั้งอนุมูลอิสระในเซลล์เพาะเลี้ยงมาโครฟาจ (RAW 267.4) ที่ถูกเหนี่ยวนำโดยไฮโดรเจนเปอร์ออกไซด์ พบว่า dendroflorin มีฤทธิ์ต้านอนุมูล อิสระที่สูงที่สุด โดยความเข้มข้นของ dendroflorin ที่สามารถต้านอนุมูลอิสระได้ร้อยละ 50 (IC₅₀) คือ 193 ไมโครโมลาร์ ซึ่ง Trolox® ที่ใช้เป็นชุดควบคุมผลบวกมีค่า IC₅₀ อยู่ที่ 160 ไมโครโมลาร์ นอกจากนั้นพบว่า dendroflorin ยับยั้งอนุมูลอิสระในเซลล์ได้สูงกว่ากลุ่มควบคุมอย่างมีนัยสำคัญทาง สถิติในลักษณะที่แปรผันตามความเข้มข้น อีกทั้งยังสามารถล่งผลเพิ่มฤทธิ์ต้านอนุมูลอิสระของเอนไซม์ ภายในเซลล์ อันได้แก่ superoxide dismutase (SOD), glutathione peroxidase (GPx) และ catalase (CAT) ได้

จุฬาลงกรณมหาวิทยาลย Chulalongkorn University

ภาควิชา	เภสัชเวทและเภสัชพฤกษศาสตร์	ลายมือชื่อนิสิต
สาขาวิชา	เภสัชเวท	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา	2560	ลายมือชื่อ อ.ที่ปรึกษาร่วม

6076103233 : MAJOR PHARMACOGNOSY

KEYWORDS: DENDROBIUM PALPEBRAE / FREE RADICALS / ORCHIDACEAE / BIBENZYLS / PHENANTHRENES / DIHYDROPHENANTHRENES / FLUORENONES

NAPAT KYOKONG: FREE RADICAL SCAVENGERS FROM *DENDROBIUM PALPEBRAE*. ADVISOR: ASSOC. PROF. BOONCHOO SRITULARAK, Ph.D., CO-ADVISOR: PROF. KITTISAK LIKHITWITAYAWUID, Ph.D., pp.

Phytochemical study of Dendrobium palpebrae Lindl. (Orchidaceae) afforded ten pure compounds. One of them was characterized as a new phenanthrenephenanthraquinone derivative named dendropalpebrone, and nine known compounds were identified as gigantol, lusianthridin, nobilone, 3,7-dihydroxy-2,4,8trimethoxyphenanthrene, 2,5-dihydroxy-4,9-dimethoxyphenanthrene, moscatilin, scoparone, 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl and dendroflorin. All of the isolated compounds were initially screened for their free radical scavenging activity via oxygen radical absorbance capacity assay, DPPH radical scavenging assay, deoxyribose degradation assay, and assay for intracellular antioxidant activity in H₂O₂-induced RAW 264.7 murine macrophage cells. Dendroflorin showed the most potent activity in all assays, especially in the deoxyribose degradation assay. It manifested an IC_{50} value of 193 μ M approximating to the IC₅₀ of Trolox[®], a positive control (IC₅₀ 160 μ M). In a further evaluation, dendroflorin significantly reduced reactive oxygen species in hydrogen peroxide induced RAW 264.7 macrophage cells in a dose-dependent manner, and it also improved the activity of cellular antioxidant enzymes including superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT).

Department:	Pharmacognosy and	Student's Signature
	Pharmaceutical Botany	Advisor's Signature
Field of Study:	Pharmacognosy	Co-Advisor's Signature
Academic Year:	2017	

ACKNOWLEDGEMENTS

I am delighted to express my sincere gratitude to my thesis advisor, Associate Professor Dr. Boonchoo Sritularak and my co-advisor, Professor Dr. Kittisak Likhitwitayawuid, for their invaluable help and constant encouragement throughout the thesis. This thesis would not have been accomplished without all the support, advice and kindness that I have always received from them.

Besides my advisors, I am grateful for all assistance, insightful comments and beneficial advice from the members of my thesis committee, and I would like to thank all staff members of the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, especially Mr. Virunh Kongkatitham, for their help and support.

I would like to thank Associate Professor Dr. Pornchai Rojsitthisak, Mr. Chawanphat Muangnoi and Mr. Wuttinont Thaweesest from the Department of Food and Pharmaceutical Chemistry, for guidance, suggestions and all their help.

Additionally, I wish to express my specially thanks to the graduate school of Chulalongkorn university for granting the graduate scholarship to commemorate the 72nd anniversary of his Majesty King Bhumibol Adulyadej, for supporting my research.

Finally, I most gratefully acknowledge my family for all their love, understanding, encouragement and supporting throughout the period of this thesis research.

CONTENTS

Page
THAI ABSTRACTiv
ENGLISH ABSTRACTv
ACKNOWLEDGEMENTSvi
CONTENTSvii
LIST OF TABLES 1
LIST OF FIGURES
LIST OF SCHEMES
ABBREVIATIONS and SYMBOLS
CHAPTER I INTRODUCTION
CHAPTER II HISTORICAL
1. Chemical constituents of <i>Dendrobium</i> 23
2. Traditional uses and biological activities of <i>Dendrobium</i> species
CHAPTER III EXPERIMENTAL
1. Source of plant materials
2. General techniques
2.1 Analytical thin-layer chromatography (TLC)103
2.1.1 Normal-phase thin-layer chromatography
2.1.2 Reverse-phase thin-layer chromatography
2.2 Column chromatography (CC)104
2.2.1 Vacuum liquid chromatography (VLC)104
2.2.2 Flash column chromatography (FCC), normal phase
2.2.3 Flash column chromatography (FCC), reverse phase

Page
2.2.4 Gel filtration chromatography105
2.3 Spectroscopy 105
2.3.1 Ultraviolet (UV) spectra
2.3.2 Infrared (IR) spectra105
2.3.3 Mass spectra 105
2.3.4 Proton and carbon-13 nuclear magnetic resonance (¹ H and 13 C-
NMR) spectra
2.4 Solvents
3. Extraction and isolation
3.1 Extraction
3.2 Isolation
3.2.1 Isolation of compound DPB-1 (Dendropalpebrone)
3.2.2 Isolation of compound DPB-2 (Gigantol)111
3.2.3 Isolation of compound DPB-3 (Lusianthridin)111
3.2.4 Isolation of compound DPB-4 (Nobilone)
3.2.5 Isolation of compound DPB-5 (3,7-Dihydroxy-2,4,8-trimetho-
xyphenanthrene) and DPB-6 (2,5-Dihydroxy-4,9-
dimethoxyphenanthrene)112
3.2.6 Isolation of compound DPB-7 (Moscatilin)112
3.2.7 Isolation of compound DPB-8 (Scoparone), DPB-9 (4,5,4'-
Trihydroxy-3,3′-dimetho-xybibenzyl), and DPB-10
(Dendroflorin)112
4. Physical and spectral data of isolated compounds
4.1 Compound DPB-1 (Dendropalpebrone)113

	Page
4.2 Compound DPB-2 (Gigantol)	113
4.3 Compound DPB-3 (Lusianthridin)	113
4.4 Compound DPB-4 (Nobilone)	
4.5 Compound DPB-5 (3,7-Dihydroxy-2,4,8-trimethoxyphenanthrene)	114
4.6 Compound DPB-6 (2,5-Dihydroxy-4,9-dimethoxyphenanthrene)	114
4.7 Compound DPB-7 (Moscatilin)	114
4.8 Compound DPB-8 (Scoparone)	114
4.9 Compound DPB-9 (4,5,4'-Trihydroxy-3,3'-dimethoxybibenzyl)	115
4.10 Compound DPB-10 (Dendroflorin)	115
5. Free radical scavenging activity assays	115
5.1 Sample preparation	115
5.2 Oxygen radical absorbance capacity assay (ORAC assay)	115
5.2.1 Materials and instruments	116
5.2.2 Determination of oxygen radical absorbance capacity assay.	116
5.3 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assa	ау 117
5.3.1 Materials and instruments	117
5.3.2 Determination of DPPH radical scavenging activity assay	118
5.4 Deoxyribose degradation assay	118
5.4.1 Materials and instruments	118
5.4.2 Determination of deoxyribose degradation assay	
5.5 Intracellular antioxidant activity in cell culture	120
5.5.1 Materials and instruments	120
5.5.2 Determination of intracellular antioxidant activity in cell cul	ture . 121

	Page
5.6 Activity of antioxidant enzymes in cell culture	121
5.6.1 Materials and instruments	122
5.6.2 Determination of effect of dendroflorin on antioxidant enzyr	nes
activity in cell culture	122
CHAPTER IV RESULTS AND DISCUSSION	124
1. Structure determination of isolated compounds	124
1.1 Structure determination of compound DPB-1	124
1.2 Structure determination of compound DPB-2	128
1.3 Structure determination of compound DPB-3	131
1.4 Structure determination of compound DPB-4	133
1.5 Structure determination of compound DPB-5	135
1.6 Structure determination of compound DPB-6	137
1.7 Structure determination of compound DPB-7	139
1.8 Structure determination of compound DPB-8	142
1.9 Structure determination of compound DPB-9	144
1.10 Structure determination of compound DPB-10	146
2. Free radical scavenging activities	148
CHAPTER V CONCLUSION	154
	155
REFERENCES	155
VITA	200

LIST OF TABLES

Table 1 Distribution of bibenzyls and derivatives in the genus Dendrobium	25
Table 2 Distribution of flavonoids in the genus Dendrobium	61
Table 3 Distribution of terpenoids in the genus Dendrobium.	
Table 4 Distribution of miscellaneous compounds in the genus Dendrobium	
Table 5 NMR spectral data of compound DPB-1 (in CD_3OD)	126
Table 6 NMR spectral data of compound DPB-2 (in acetone- d_6) andgigantol (in acetone- d_6)	130
Table 7 NMR spectral data of compound DPB-3 (in acetone- d_6) andlusianthridin (in acetone- d_6)	132
Table 8 NMR spectral data of compound DPB-4 (in acetone- d_6) andnobilone (in acetone- d_6)	134
Table 9 NMR spectral data of compound DPB-5 (in acetone- d_6) and3,7-dihydroxy-2,4,8-trimethoxyphenanthrene (in acetone- d_6)	136
Table 10 NMR spectral data of compound DPB-6 (in acetone- d_6) and2,5-dihydroxy-4,9-dimethoxyphenanthrene (in acetone- d_6)	138
Table 11 NMR spectral data of compound DPB-7 (in acetone- d_6) andmoscatilin (in acetone- d_6)	141
Table 12 NMR spectral data of compound DPB-8 (in CDCl ₃) and scoparone (in CDCl ₃)	143
Table 13 NMR spectral data of compound DPB-9 (in acetone- d_6) and $4,5,4'$ -trihydroxy- $3,3'$ -dimethoxybibenzyl (in acetone- d_6)	145
Table 14 NMR spectral data of compound DPB-10 (in acetone- d_6) and dendroflorin (in acetone- d_6)	147

Table 15 Free radical scavenging activity of isolated compounds from

D. palpebrae	_15	0
--------------	-----	---

- Table 17 Inhibitory effects of dendroflorin on ROS production in RAW 264.7murine macrophage cells induced by H2O2 at non-toxicconcentration152

Table 18 Effects of dendroflorin on antioxidant enzymes in H2O2-treatedRAW 264.7 macrophage cells153

Chulalongkorn University

LIST OF FIGURES

Figure 1 Dendrobium palpebrae Lindl.	22
Figure 2 Structures of bibenzyls and derivatives previously isolated from	
Dendrobium species	43
Figure 3 Structures of flavonoids previously isolated from <i>Dendrobium</i> species	64
Figure 4 Structures of terpenoids previously isolated from <i>Dendrobium</i> species.	72
Figure 5 Structures of miscellaneous compounds previously isolated from	
Dendrobium species	89
Figure 6 UV spectrum of compound DPB-1	170
Figure 7 IR spectrum of compound DPB-1	170
Figure 8 Mass spectrum of compound DPB-1	171
Figure 9 ¹ H-NMR (500 MHz) spectrum of compound DPB-1 (in CD ₃ OD)	171
Figure 10 ¹³ C-NMR (125 MHz) spectrum of compound DPB-1 (in CD ₃ OD)	172
Figure 11 HSQC spectrum of compound DPB-1 (in CD ₃ OD)	172
Figure 12 NOSEY spectrum of compound DPB-1 (in CD ₃ OD)	173
Figure 13 HMBC spectrum of compound DPB-1 (in CD ₃ OD)	173
Figure 14 Mass spectrum of compound DPB-2	174
Figure 15 ¹ H-NMR (300 MHz) spectrum of compound DPB-2 (in acetone- d_6)	174
Figure 16 ¹³ C-NMR (75 MHz) spectrum of compound DPB-2 (in acetone- d_6)	175
Figure 17 NOESY spectrum of compound DPB-2 (in acetone- d_6)	175
Figure 18 Mass spectrum of compound DPB-3	176
Figure 19 ¹ H-NMR (300 MHz) spectrum of compound DPB-3 (in acetone- d_6)	176
Figure 20 ¹³ C-NMR (75 MHz) and DEPT 135 spectrum of compound DPB-3	
(in acetone-d ₆)	

Figure 21 HSQC spectrum of compound DPB-3 (in acetone- d_6)	
Figure 22 NOESY spectrum of compound DPB-3 (in acetone- d_6)	178
Figure 23 HMBC spectrum of compound DPB-3 (in acetone- d_6)	178
Figure 24 Mass spectrum of compound DPB-4	179
Figure 25 ¹ H-NMR (300 MHz) spectrum of compound DPB-4 (in acetone- d_6)	179
Figure 26 ¹³ C-NMR (75 MHz) spectrum of compound DPB-4 (in acetone- d_6)	180
Figure 27 HSQC spectrum of compound DPB-4 (in acetone- d_6)	
Figure 28 HMBC spectrum of compound DPB-4 (in acetone- d_6)	
Figure 29 NOESY spectrum of compound DPB-4 (in acetone- d_6)	181
Figure 30 Mass spectrum of compound DPB-5	182
Figure 31 ¹ H-NMR (300 MHz) spectrum of compound DPB-5 (in acetone- d_6)	182
Figure 32 ¹³ C-NMR (75 MHz) spectrum of compound DPB-5 (in acetone- d_6)	183
Figure 33 HSQC spectrum of compound DPB-5 (in acetone- d_6)	
Figure 34 NOESY spectrum of compound DPB-5 (in acetone- d_6)	184
Figure 35 HMBC spectrum of compound DPB-5 (in acetone- d_6)	
Figure 36 Mass spectrum of compound DPB-6	185
Figure 37 ¹ H-NMR (300 MHz) spectrum of compound DPB-6 (in acetone- d_6)	185
Figure 38 ¹³ C-NMR (75 MHz) spectrum of compound DPB-6 (in acetone- d_6)	186
Figure 39 HSQC spectrum of compound DPB-6 (in acetone- d_6)	186
Figure 40 NOESY spectrum of compound DPB-6 (in acetone- d_6)	187
Figure 41 HMBC spectrum of compound DPB-6 (in acetone- d_6)	187
Figure 42 Mass spectrum of compound DPB-7	188
Figure 43 ¹ H-NMR (300 MHz) spectrum of compound DPB-7 (in acetone- d_6)	

Figure 44 ¹³C-NMR (75 MHz) and DEPT 135 spectrum of compound DPB-7

(in acetone- d_6)	
Figure 45 HSQC spectrum of compound DPB-7 (in acetone- d_6)	189
Figure 46 NOESY spectrum of compound DPB-7 (in acetone- d_6)	190
Figure 47 HMBC spectrum of compound DPB-7 (in acetone- d_6)	190
Figure 48 Mass spectrum of compound DPB-8	191
Figure 49 ¹ H-NMR (300 MHz) spectrum of compound DPB-8 (in CDCl ₃)	191
Figure 50 ¹³ C-NMR (75 MHz) spectrum of compound DPB-8 (in CDCl ₃)	192
Figure 51 HSQC spectrum of compound DPB-8 (in CDCl ₃)	192
Figure 52 HMBC spectrum of compound DPB-8 (in CDCl ₃)	193
Figure 53 Mass spectrum of compound DPB-9	193
Figure 54 ¹ H-NMR (300 MHz) spectrum of compound DPB-9 (in acetone- d_6)	194
Figure 55 ¹³ C-NMR (75 MHz) spectrum of compound DPB-9 (in acetone- d_6)	194
Figure 56 HSQC spectrum of compound DPB-9 (in acetone- d_6)	195
Figure 57 NOESY spectrum of compound DPB-9 (in acetone- d_6)	195
Figure 58 HMBC spectrum of compound DPB-9 (in acetone- d_6)	196
Figure 59 Mass spectrum of compound DPB-10	196
Figure 60 ¹ H-NMR (300 MHz) spectrum of compound DPB-10 (in acetone- d_6)	197
Figure 61 ¹³ C-NMR (75 MHz) spectrum of compound DPB-10 (in acetone- d_6)	197
Figure 62 HSQC spectrum of compound DPB-10 (in acetone- d_6)	198
Figure 63 NOESY spectrum of compound DPB-10 (in acetone- d_6)	198
Figure 64 HMBC spectrum of compound DPB-10 (in acetone- d_6)	199

LIST OF SCHEMES

Scheme	1 Separation of the	MeOH extract of Dendrobium palpebrae.	
Scheme	2 Separation of the	EtOAc extract of Dendrobium palpebrae	

ABBREVIATIONS and SYMBOLS

AAPH	=	2,2′-Azobis(2-amidinopropane) dihydrochloride
Acetone- d_6	=	Deuterated acetone
Ara	=	Arabinose
AU	=	Absorbance unit
AUC	=	Area under the curve
br s	=	Broad singlet (for NMR spectra)
°C	=	Degree celsius
CAT	=]	Catalase
CC	= /	Column chromatography
CDCl ₃	=	Deuterated chloroform
CH ₂ Cl ₂	=	Dichloromethane
cm	- 8	Centimeter
¹³ C-NMR	=	Carbon-13 Nuclear Magnetic Resonance
COPD	ฐหา	Chronic obstructive pulmonary disease
1-D NMR	C <u>h</u> ula	One-dimensional Nuclear Magnetic Resonance
2-D NMR	=	Two-dimensional Nuclear Magnetic Resonance
d	=	Doublet (for NMR spectra)
DCFH-DA	=	2′,7′-Dichlorofluorescein diacetate
dd	=	Doublet of doublets (for NMR spectra)
δ	=	Chemical shift
DEPT	=	Distortionless Enhancement by Polarization Transfer
DMEM	=	Dulbecco's modified eagle's medium

DPPH	=	2,2-Diphenyl-1-picrylhydrazyl
3	=	Molar absorptivity
EDTA	=	Ethylene diamine tetraacetic acid
ESI-MS	=	Electrospray Ionization Mass Spectrometry
EtOAc	=	Ethyl acetate
FBS	=	Fetal bovine serum
FCC	=	Flash Column Chromatography
FL	=	Fluorescein
g	=	Gram
Gal	=]	Galactose
GF	=	Gel Filtration
Glc	=	Glucose
GPx	=	Glutathione Peroxidase
НМВС	- 8	¹ H-detected Heteronuclear Multiple Bond Correlation
HR-ESI-MS	= 700	High Resolution Electrospray Ionization Mass
	จุฬา: ค	Spectrometry
¹ H-NMR	GHULA =	Proton Nuclear Magnetic Resonance
HSQC	=	¹ H-detected Heteronuclear Single Quantum Coherence
Hz	=	Hertz
IC ₅₀	=	Concentration exhibiting 50% inhibition
IR	=	Infrared
J	=	Coupling constant
Kg	=	Kilogram
L	=	Liter

λ_{max}	=	Wavelength at maximal absorption
[M+Na] ⁺	=	Sodium-adduct molecular ion
т	=	Multiplet (for NMR spectra)
MeOH	=	Methanol
mg	=	Milligram
μg	=	Microgram
min	=	Minute
mL	=	Milliliter
μL	=	Microliter
μΜ	= /	Micromolar
µmol TE/g	=	Micromole Trolox [®] equivalent per gram of sample
mm	=	Millimeter
mМ	=	Millimolar
MS	= 🕅	Mass spectrum
MW		Molecular weight
m/z	จุหาย	Mass to charge ratio
N/A	GHULA =	Thai name not available
nm	=	Nanometer
NMR	=	Nuclear Magnetic Resonance
NOESY	=	Nuclear Overhauser Effect Spectroscopy
$ u_{\text{max}}$	=	Wave number at maximal absorption
OEt	=	Ethoxy group
OMe	=	Methoxy group
ORAC	=	Oxygen Radical Absorbance Capacity

ppm	=	Part per million
Rha	=	Rhamnose
ROS	=	Reactive Oxygen Species
5	=	Singlet (for NMR spectra)
SD	=	Standard deviation
SOD	=	Superoxide Dismutase
t	=	Triplet (for NMR spectra)
TLC	=	Thin Layer Chromatography
UV-VIS	=	Ultraviolet and Visible spectrophotometry
VLC	= /	Vacuum Liquid Column Chromatography
Xyl	-	Xylose
	จุฬา	ลงกรณ์มหาวิทยาลัย
		longkorn University

CHAPTER I

INTRODUCTION

Oxidative stress is defined as a loss in the balance between free radical generation and free radical detoxification by antioxidants in cells, leading to excessive accumulation that the antioxidants are not enough to neutralize the surplus of free radicals (Conti *et al.*, 2016). This imbalance can be deleterious to cellular structures, resulting in induction of aging process and causing a range of modern chronic diseases, for example, cancer, diabetes, cardiovascular diseases, Parkinson's disease, Alzheimer's disease, chronic obstructive pulmonary disease (COPD), rheumatoid arthritis (RA), chronic renal failure, and cataracts (Pham-Huy *et al.*, 2008; Fiedor and Burda, 2014).

A free radical is an atom or molecule containing unpaired electrons in the valence shell which is unintentionally generated by cell metabolism. The unpaired electrons cause the free radicals to be unstable and easy to react or withdraw electrons from other molecules to obtain their stability. Therefore, the molecules which lose their electron by attacking from free radicals will subsequently become free radicals. This chain reaction leads to the accumulation of free radicals that can be harmful to the living cell (Phaniendra *et al.*, 2015).

The most common free radicals which have been frequently studied are reactive oxygen species (ROS), including hydroxyl radical ('OH), superoxide anion (' O_2^{-}), and hydrogen peroxide (H_2O_2) (Koekkoek and Zanten, 2016). ROS can be generated from either endogenous and exogenous sources. For the endogenous sources, ROS mainly occur by metabolic reaction of some organelles within the cells including mitochondria, peroxisomes and endoplasmic reticulum. Other endogenous sources can be auto-oxidation of adrenaline, prostaglandin synthesis, cytochrome P450, inflammation, immune cell activation, mental stress, infection, aging, and excessive exercise. On the other hand, ROS are also generated by numerous exogenous sources such as ultraviolet (UV) light, tobacco smoke, drugs, heavy metals, industrial solvents, pesticides, and high temperature (Phaniendra *et al.*, 2015).

Antioxidant is a substance that is able to hinder or slow oxidation reaction of the free radicals. Human body has numerous mechanisms to quench oxidative stress. In normal state, endogenous antioxidants, which are naturally produced in the cell, stabilize the balance of free radicals and antioxidants. However, if this balance is destabilized by the excess of free radicals, externally supplied antioxidants known as exogenous antioxidants are essential for equilibrating this imbalance (Fusco *et al.*, 2007; Fiedor and Burda, 2014).

The endogenous antioxidants can be classified as enzymatic and nonenzymatic antioxidants. Most of antioxidant enzymes are directly related to the neutralization of cellular free radicals, namely, superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase. In case of the non-enzymatic antioxidants, they are divided into two types i.e. metabolic antioxidants, and nutrient antioxidants which belong to the exogenous antioxidants. The metabolic antioxidants are produced by metabolism in the body, such as L-arginine, glutathione, coenzyme Q10, melatonin, uric acid, transferrin, and bilirubin. On the contrary, the nutrient antioxidants cannot be synthesized within the body, but must to be received through foods or supplements, for example, vitamin C, vitamin E, carotenoids, metals (e.g. zinc and selenium), flavonoids, and omega-3 fatty acids (Pham-Huy *et al.*, 2008).

Under stress conditions, the production of free radical increases in plants, resulting in induction of oxidative stress. To respond to this increasing of oxidative stress, plants have their innate ability to generate non-enzymatic antioxidants. They enhance the production of many low molecular weight antioxidants, namely, vitamin E and vitamin C. They also produce high molecular weight antioxidant secondary metabolites including, tannins, flavonoids, bibenzyls, which act as free radical scavengers, metal chelators, or reducing agents (Kasote *et al.*, 2015). For this reason, plant is one of the most important sources of exogenous antioxidants. It has been the basis of traditional medicines in the world for a long time. Moreover, chemical constituents of plants have many activities, including antioxidant activity which continue to be the source of new drugs (Krishnaiah *et al.*, 2011).

Dendrobium is one of the largest genera in the family Orchidaceae. It contains more than 1100 identified species and is widely distributed throughout Asia, Australia, and Europe (Luo *et al.*, 2016). Numerous plants in this genus have been used in traditional Chinese medicine for a long time as a yin tonic to nourish the stomach, promote the body fluid production, and reduce fever (Lo *et al.*, 2004). On the other hand, several chemical studies on *Dendrobium* species reported many secondary metabolites including alkaloids, aromatic compounds, terpenoids and polysaccharides. These compounds have been studied for various bioactivities, for instance, immunomodulatory, anti-cataract, neuroprotective, anti-angiogenesis, anti-tumor, and hepatoprotective activity (Xu *et al.*, 2013). Furthermore, previous pharmacological studies revealed that some *Dendrobium* plants were potential sources of antioxidant compounds have been found from *Dendrobium*, for example, moscatilin and apigenin from *D. williamsonii* (Rungwichaniwat *et al.*, 2014), hircinol and gigantol from *D. draconis* (Sritularak *et al.*, 2011a), and dendrocandins H and I from *D. candidum* (Li *et al.*, 2009b).

At present, more than 150 species of genus *Dendrobium* have been identified in Thailand, as described below (Vaddhanaphuti, 2005; Plant varieties protection office, 2013; Forest herbarium, 2014):

Dendrobium acerosum Lindl.	กล้วยไม้มีอนาง Kluai mai mue nang
D. aciculare Lindl. GHULALONGKOR	เอื้องใบเข็ม Ueang bai khem
D. acinaciforme Roxb.	เอื้องยอดสร้อย Ueang yot soi
D. aduncum Lindl.	N/A
D. albosanguineum Lindl.	เอื้องตางัว Ueang ta ngua
<i>D. aloifolium</i> (Blume) Rchb.f.	เอื้องมณี Ueang mani
D. amethylstoglossum Rchb.f.	N/A
D. anceps Sw.	N/A
D. angulatum Lindl.	N/A

- D. anosmum Lindl.
- D. antennatum Lindl.
- D. aphyllum (Roxb.) C.E.C.Fisch.
- D. arcuatum J.J.Sm.
- D. bellatulum Rolfe
- D. bensoniae Rchb.f.
- D. bicameratum Lindl.
- D. bifarium Lindl.
- D. bilobulatum Seidenf.
- D. blumei Lindl.
- D. brevimentum Seidenf.
- D. brymerianum Rchb.f.
- D. calicopis Ridl.
- D. capillipes Rchb.f.
- D. cariniferum Rchb.f. 🤋
- D. chittimae Seidenf.
- D. christyanum Rchb.f.
- D. chrysanthum Lindl.
- D. chryseum Rolfe
- D. chrysocrepis Par. & Rchb.f.
- D. chrysotoxum Lindl.
- D. ciliatilabellum Seidenf.
- D. clavator Ridl.

เอื้องสาย Ueang sai กระต่ายหูบิด Kratai hu bid เอื้องงวงช้าง Ueang nguang chang เอื้องนกกระเรียนขาว Ueang nok krarien khao เอื้องแซะภู Ueng sae phu เอื้องสายดอกขาว Ueang sai dok khao เอื้องเข็ม Ueang khem N/A **กล้วยไม้ก้างปลา** Kluai mai kang pla หวายนายบลูม Wai nai blum เอื้องสายสี่ดอกใต้ Ueang sai si dok tai เอื้องคำฝอย Ueang kham foi **เอื้องสายทะเลบันม่วง** Ueang sai talay bun muang **เอื้องคำกิ่ว** Ueang kham kio เอื้องกาจก Ueang kachok

เอื้องจิตติมา Ueang chittima

- เอื้องแซะภูกระดึง Ueang sae phu kradueng
- เอื้องสายมรกต Ueang sai morakot
- N/A
- N/A

เอื้องคำ Ueang kham

หวายเขาเขียว Wai khao khiao

N/A

D	com	nactum	Rolfe	eх	Hackett
$\mathcal{D}.$	COIII	pactum	nouc	CV	TIACKELL

- D. compressum Lindl.
- D. concinnum Miq.
- D. confinale Kerr
- D. cowenii P.O'Byrne & J.J.Vern.
- D. crepidatum Lindl. & Paxton
- D. cretaceum Lindl.
- D. crocatum Hook.f.
- D. cruentum Rchb.f.
- D. crumenatum Sw.
- D. crystallinum Rchb.f.
- D. cumulatum Lindl.
- D. curviflorum Rolfe
- D. cuspidatum Lindl.

เอื้องข้าวตอก Ueang khao tok หวายแบนตะนาวศรี Wai baen tanao si หางเปีย Hang pia N/A N/A เอื้องสายน้ำเขียว Ueang sai nam khiao เอื้องสายน้ำนม Ueang sai nam nom เอื้องนางนวล Ueang nang nuan เอื้องนางนวล Ueang nang nuan เอื้องนางเพื่อน Ueang nok kaeo หวายตะมอย Wai tamoi เอื้องนางเพื่อน Ueang nang fon เอื้องสายสี่ดอก Ueang sai si dok N/A เอื้องข้าวตอกปากแหลม Ueang khao tok pak laem

เอื้องเข็ม Ueang khem D. dantaniense Guillaumin เอื้องดอกมะขาม Ueang dok ma kham D. delacourii Guillaumin D. deltatum Seidenf. N/A D. denneanum Kerr N/A เอื้องมอนไข่ Ueang mon khai D. densiflorum Lindl. เอื้องสายจำปา Ueang sai champa D. denudans D.Don เอื้องเมี่ยง Ueang miang D. devonianum Paxton เอื้องเคี้ยะ Ueang khia D. dickasonii L.O.Williams **เอื้องเทียน** Ueang thian D. dixanthum Rchb.f.

<i>D. dixonianum</i> Rolfe ex Downie	เอื้องข้าวตอกเหลือง Ueang khao tok lueang
<i>D. draconis</i> Rchb.f.	เอื้องเงิน Ueang ngoen
D. elliottianum P.O'Byrne	หวายเจดีย์ Wai chedi
D. ellipsophyllum Tang & F.T.Wang	เอื้องทอง Ueang thong
D. eriiflorum Griff.	เอื้องข้าวตอก Ueang khao tok
D. erostelle Seidenf.	N/A
<i>D. erosum</i> (Blume) Lindl.	N/A
D. eserre Seidenf.	N/A
D. exile Schltr.	เอื้องเสี้ยน Ueang sian
D. falconeri Hook.	เอื้องสายวิสูตร Ueang sai wisut
D. farmeri Paxton	เอื้องมัจฉาณุ Ueang matchanu
D. fimbriatum Hook.	เอื้องคำน้อย Ueang kham noi
D. findlayanum Parish & Rchb.f.	พวงหยก Phuang yok
D. flexile Ridl.	N/A
D. formosum Roxb. ex Lindl.	เอื้องเงินหลวง Ueang ngoen luang
D. friedericksianum Rchb.f.	เอื้องเหลืองจันทบูร Ueang lueang chantabun
D. fuerstenbergianum Schltr.	เอื้องแซะภูกระดึง Ueang sae phukradueng
<i>D. fychianum</i> Bateman ex Rchb.f.	หวายพม่า Wai phama
D. garrettii Seidenf.	หวายการ์เร็ต Wai karet
D. gibsonii Paxton	เอื้องคำสาย Ueang kham sai
D. grande Hook.f.	เอื้องแผงใบใหญ่ Ueang pheang bai yai
D. gratiotissimum Rchb.f.	เอื้องกิ่งดำ Ueang king dam
D. gregulus Seidenf.	เอื้องมะต่อม Ueang ma tom
D. griffithianum Lindl.	เอื้องมัจฉาณุ Ueang matchanu

- เอื้องคำฝอย Ueang kham foi D. harveyanum Rchb.f. หวายตะมอยน้อย Wai tamoi noi D. hendersonii Hawkes & Heller เอื้องสุริยัน Ueang suriyan D. henryi Schltr. เอื้องดอกมะเขือ Ueang dok ma kuea D. hercoglossum Rchb.f. เอื้องสีตาล Ueang si tan D. heterocarpum Lindl. เอื้องน้อยกลีบบาง Ueang noi klip bang D. hymenanthum Rchb.f. D. hymenopterum Hook.f. N/A N/A D. incurvum Lindl. ตานเสี้ยนไม้ Tan sian mai D. indivisum (Blume) Miq. var. indivisum D. indivisum (Blume) Miq. N/A var. lampangense Rolfe ก้างปลา Kang pla D. indivisum (Blume) Miq. var. pallidum Seidenf. เอื้องอินทิรา Ueang inthira D. indragiriense Schltr. เอื้องตาเหิน Ueang ta hoen D. infundibulum Lindl. เอื้องชมพู Ueang chomphu D. intricatum Gagnep. เอื้องผึ้งน้อย Ueang phueng noi D. jenkinsii Wall. ex Lindl. หวายเมืองกาญจน์ Wai muang kan D. kanburiense Seidenf. หางเปีย Hang pia D. keithii Ridl. **ก้างปลาใหญ่** Kang pla yai D. kentrophyllum Hook.f. เอื้องเงินวิลาศ Ueang ngoen wilat D. kontumense Gagnep. เอื้องข้าวตอกปากจัก Ueang khao tok pak jak D. kratense Kerr D. lagarum Seidenf. N/A
- D. lampongense J.J.Sm.

หวายลำปอง Wai lum pong

N/A

- D. lamyaiae Seidenf.
- D. leonis (Lindl.) Rchb.f.
- D. lindleyi Steud.
- D. linguella Rchb.f.
- D. lituiflorum Lindl.
- D. lueckelianum Fessel & Wolff
- D. mannii Ridl.
- D. metachilinum Rchb.f.
- D. monticola Hunt & Summerh.
- D. moschatum (Buch.-Ham.) Sw.
- D. mucronatum Seidenf.
- D. nanocompactum Seidenf.
- D. nathanielis Rchb.f.
- D. nobile Lindl.
- D. ochreatum Lindl.
- D. oligophyllum Gagnep.
- D. pachyglossum Parish & Rchb.f
- D. pachyphyllum (Kuntze) Bakh.f.
- D. palpebrae Lindl.
- D. pandaneti Ridl.
- D. panduriferum Hook.f.
- D. parciflorum Rchb.f. ex Lindl.

เอื้องครั่งแสดน้อย Ueang krang saet noi เอื้องตะขาบใหญ่ Ueang ta khap yai เอื้องผึ้ง Ueang phueng เอื้องดอกมะเขือใต้ Ueang dok ma kuea tai เอื้องสายม่วง Ueang sai muang N/A **เอื้องหางปลา** Ueang hang pla เอื้องทองใต้ Ueang thong tai เอื้องข้าวตอกมรกต Ueang khao tok morakot เอื้องจำปา Ueang champa N/A N/A เกล็ดนิ่ม Klet nim **เอื้องเก้ากิ่ว** Ueang kao kio เอื่องตะขาบ Ueang ta khap ข้าวตอกปราจีน Khao tok prachin เอื้องขนหมู Ueang khon mu เอื้องน้อย Ueang noi เอื้องมัจฉา Ueang matcha เอื้องปักษาปากส้ม Ueang paksa pak som หวายดินสอ Wai dinso

<mark>เอื้องดอกขาวใบแบน</mark> Ueang dok khao bai baen

<i>D. parcum</i> Rchb.f.	เอื้องก้านกิ่ว Ueang kan kio
<i>D. parishii</i> Rchb.f.	เอื้องครั่ง Ueang khrang
D. parvum Seidenf.	N/A
D. peguanum Lindl.	หวายเปกู Wai peku
D. pendulum Roxb.	เอื้องไม้เท้าฤาษี Ueang mai thao ruesi
D. perpaulum Seidenf.	เอื้องข้าวตอกอินทนนท์ Ueang khao tok
	inthanon
D. planibulbe Lindl.	N/A
D. podagraria Hk. F.	N/A
D. polyanthum Wall. ex Lindl.	เอื้องสายประสาท Ueang sai prasat
D. porphyrochilum Lindl.	เอื้องเฉวียน Ueang chawian
D. praecinctum Rchb.f.	หวายภูหลวง Wai phu luang
D. primulinum Lindl.	เอื้องสายน้ำผึ้ง Ueang sai num phueng
D. proteranthum Seidenf.	หวายน้อยภูหลวง Wai noi phu luang
D. pulchellum Roxb. ex Lindl.	เอื้องคำตาควาย Ueang kham ta khwai

D. pychnostachyum Lindl. เศวตสอดสี Sawet sot si

D. rhodopterygium Rchb.f.

D. rhodostele Ridl.

- D. salaccense (Blume) Lindl.
- D. sanguinolentum Lindl.
- D. scabrilingue Lindl.
- D. schilhqueri Ormerod & Pedersen
- D. secundum (Blume) Lindl.
- D. senile Parish & Rchb.f.

เอื้องแมงเงาแดง Ueang mang ngao dang เอื้องใบไผ่ Ueang bai phai เอื้องสายทะเลบัน Ueang sai taley bun เอื้องแซะ Ueang sae N/A เอื้องแปรงสีฟัน Ueang preang si fan

เอื้องซะนี Ueang chani

N/A NIVERSITY

<i>D. setifolium</i> Ridl.	เอื้องตุ้มหู Ueang tum hu
D. signatum Rchb.f.	เอื้องเค้ากิ่ว Ueang khao kio
D. singaporense Hawkes & Heller	N/A
D. sinuatum (Lindl.) Lindl. ex Rchb.f.	N/A
D. sociale J.J.Sm.	เอื้องมะลิปากชมพู Ueang mali pak chompu
D. strongylanthum Rchb.f.	เอื้องเข้าลม Ueang yao lom
D. stuartii Bailey	N/A
D. stuposum Lindl.	เอื้องสาย Ueang sai
D. subulatum (Blume) Lindl.	N/A
D. sukhakulii hort.	หวายสุขะกุล Wai sukhakun
D. sulcatum Lindl.	<mark>เอื้องจำปาน่าน</mark> Ueang champa nan
D. superbiens Rchb.f.	หวายคิง Wai khing
D. sutepense Rolfe ex Downie	เอื้องมะลิ Ueang mali
D. terminale Parish & Rchb.f	เอื้องแผงโสภา Ueang phaeng sopha
D. tetrodon Rchb.f. ex Lindl.	เอื้องสายดอกเขียว Ueang said ok khiao
D. thyrsiflorum Rchb.f	เอื้องมอนไข่ใบมน Ueang mon khai bai mon
<i>D. tortile</i> Lindl.	เอื้องไม้ตึง Ueang mai tueng
D. trigonopus Rchb.f.	เอื้องคำเหลี่ยม Ueang kham liam
D. trinervium Ridl.	เทียนลิง Thian ling
D. truncatum Lindl.	N/A
D. umbonatum Seidenf.	หวายอัมโบ Wai umbo
D. unicum Seidenf.	เอื้องครั่งแสด Ueang krang saet
D. uniflorum Griff.	เอื้องทอง Ueang thong
D. venustum Teijsm. & Binn	ข้าวเหนียวลิง Khao niao ling

<i>D. villosulum</i> Lindl.	กล้วยหญ้านา Kluai ya na
<i>D. viridulum</i> Ridl.	N/A
D. wardianum R.Warner	เอื้องมณีไตรรงค์ Ueang mani trairong
<i>D. wattii</i> (Hook.f.) Rchb.f.	เอื้องแซะ Ueang sae
D. williamsonii Day & Rchb.f.	เอื้องเงินแสด Ueang ngoen saet
<i>D. wilmsianum</i> Schltr.	N/A
D. xanthophlebium Lindl.	เอื้องแซะภูลังกา Ueang sae phu langka
D. ypsilon Seidenf.	เอื้องแบนปากตัด Ueang baen pak tat

D. palpebrae Lindl., locally known as "Ueang matcha" (เอื้องมัจฉา), is distributed in dry evergreen forests in the northern, northeastern and southern region of Thailand. Moreover, this plant has been found in India, China, Myanmar and Laos. *D. palpebrae* is an epiphytic orchid with subclavate and sulcate stems. Its leaves are oblong-elliptic, 3 to 5 leaves sprout at apex of the stem. *D. palpebrae* produces raceme of white colored flowers, 3 cm in diameter of which their sepals and petals are completely white, except their labellum being white with golden yellow base. The flowering period is in January to March. (Vaddhanaphuti, 2005; Plant varieties protection office, 2013; Forest herbarium, 2014)

Although *D. palpebrae* Lindl. has been found growing in several countries, no phytochemical researches have been conducted on this orchid. In this study, we evaluated the DPPH free radical scavenging activity of crude ethyl acetate extract of *D. palpebrae*. This result showed that the extract, at 100 µg/mL, exhibited more than 80% reduction of DPPH free radical scavenging activity. This study thus aimed to investigate the chemical constituents of *D. palpebrae* and to identify the compounds responsible for the free radical scavenging activity. The result might be useful for the antioxidant studies or any related studies in the future.

The major objectives of this study were as follows.

- 1. To isolate and purify the chemical constituents from *Dendrobium palpebrae*.
- 2. To characterize the chemical structures of the isolated compounds.
- 3. To investigate the free radical scavenging activities of the isolated compounds.

Figure 1 Dendrobium palpebrae Lindl.

CHAPTER II HISTORICAL

1. Chemical constituents of Dendrobium

A wide variety of secondary metabolites including bibenzyls and derivatives, flavonoids, terpenoids and miscellaneous compounds (**Figures 2-5**) have been identified from several species of the genus *Dendrobium*.

The lists of bibenzyls and flavonoids are shown in **Table 1** and **Table 2**, respectively. Bibenzyls and derivatives are members of the stilbenes which share similar biosynthetic pathway with flavonoids. Stilbenes and flavonoids are plant-specific metabolites with different metabolic functions in plants, for example, increasing immunity against various herbivors and microbial pathogens, coloration and UV protection. In the shikimic acid pathway, stilbenes and flavonoids are synthesized from the combination of a coenzyme A (CoA) activated phenylpropanoid unit and three malonyl-CoA units. Afterward, the diverging point of stilbenes and flavonoids depends on the polyketide synthase activity. In case of stilbene synthase, the product of subsequent folding and cyclization of the generated tetraketide intermediate will be a stilbene structure which can be stilbenes, bibenzyls or dihydrostilbenes, bis-bibenzyls, phenanthrenes and 9,10-dihydrophenanthrenes. On the contrary, if polyketide synthase is chalcone synthase, the product of this biosynthesis will be a chalcone structure which is subsequently modified to be flavonoids (Watts *et al.*, 2006; Dubrovina and Kiselev, 2017).

The terpenoids in *Dendrobium* are shown in **Table 3**. Generally, terpenoids are one of the largest families of natural plant products. In plants, terpenoids are used as signal molecules to attract the insects to support plant's pollination or as defense against biotic and abiotic stresses similar to bibenzyls and flavonoids (Singh and Sharma, 2015). The first step of terpenoid biosynthesis is the generation of a C_5 unit called isopentenyl diphosphate (IPP) via two IPP generating pathways: are the acetate-mevalonate pathway and the non-mevalonate pathway. We can classify the

terpenoids by the homologous series of the number of five-carbon isoprene units in their structures including hemiterpenes (1 isoprene unit; C_5), monoterpenes (2 isoprene units; C_{10}), sesquiterpenes (3 isoprene units; C_{15}), diterpenes (4 isoprene units; C_{20}), sesterterpenes (5 isoprene units; C_{25}), triterpenes (6 isoprene units; C_{30}), tetraterpenes (8 isoprene units; C_{40}), and polyterpenes (C_5)_n where "n" can be 9 to 30,000 isoprene units (Dubey *et al.*, 2003; Singh and Sharma, 2015).

Dendrobium orchids do not produce only bibenzyls, flavonoids, and terpenoids, but they also biosynthesize other small groups of compounds which are displayed together in **Table 4** as miscellaneous compounds, including aliphatic compounds, benzoic acid derivatives, phenylpropanoids, fluorenones, coumarins, lignans and neolignans (Xu *et al.*, 2013).

Compounds	Plant	Plant part	Reference
Dendrocandin A [1]	D. candidum	Stem	Li et al., 2008
	D. wardianum	Stem	Zhang <i>et al.</i> , 2017
Dendrocandin C [2]	D. candidum	Stem	Li <i>et al.,</i> 2009a
Dendrocandin D [3]	D. candidum	Stem	Li <i>et al.,</i> 2009a
Dendrocandin E [4]	D. candidum	Stem	Li <i>et al.,</i> 2009a)
Dendrocandin B [5]	D. candidum	Stem	Li <i>et al.,</i> 2008
	D. signatum	Whole plant	Mittraphab <i>et al.</i> , 2016
	D. officinale	Stem	Yang <i>et al.</i> , 2015a
Dendrocandin T [6]	D. officinale	Stem	Yang <i>et al.</i> , 2015a
Dendrocandin U [7]	D. officinale	Stem	Yang <i>et al.</i> , 2015a
	D. wardianum	Stem	Zhang <i>et al.,</i> 2017
Dendrocandin V [8]	D. wardianum	Stem	Zhang <i>et al.</i> , 2017
Dendrocandin F [9]	D. candidum	Stem	Li <i>et al.,</i> 2009b
Dendrocandin G [10]	D. candidum	Stem	Li <i>et al.,</i> 2009b
Dendrocandin H [11]	D. candidum	Stem	Li <i>et al.,</i> 2009b
Dendrosinen A [12]	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Dendrosinen B [13]	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Dendrosinen C [14]	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Dendrosinen D [15]	D. sinense	Whole plant	Chen <i>et al.,</i> 2014

 Table 1 Distribution of bibenzyls and derivatives in the genus Dendrobium

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Aloifol I [16]	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
	D. williamsonii	Whole plant	Yang <i>et al.</i> , 2017a
Amoenylin [17]	D. amoenum	Whole plant	Majumder <i>et al.</i> , 1999
	D. williamsonii	Whole plant	Yang <i>et al.</i> , 2017a
Batatasin [18]	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
	D. plicatile	Stem	Yamaki and Honda, 1996
Batatasin III [19]	D. aphyllum	Stem	Yang <i>et al.,</i> 2015b
	D. cariniferum	Stem	Chen <i>et al.,</i> 2008a
	D. chrysotoxum	Whole plant	Li <i>et al.,</i> 2009c
	D. draconis	Stem	Sritularak <i>et al.,</i> 2011a
	D. formosum	Whole plant	Inthongkaew <i>et al.</i> , 2017
	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
	D. loddigesii	Stem	Ito <i>et al.</i> , 2010
	D. venustum	Whole plant	Sukphan <i>et al.</i> , 2014
Brittonin A [20]	D. secundum	Stem	Sritularak <i>et al.,</i> 2011b
Chrysotobibenzyl	D. aurantiacum	Stem	Yang <i>et al.</i> , 2006a
[21]	var. denneanum		
	D. capillipes	Stem	Phechrmeekha <i>et al.,</i> 2012
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006b
	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
	D. pulchellum	Stem	Chanvorachote <i>et al.</i> , 2013

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Chrysotoxine	D. aurantiacum	Stem	Yang <i>et al.</i> , 2006a
[22]	var. denneanum		
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006b
	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
	D. pulchellum	Stem	Chanvorachote <i>et al.,</i> 2013
Crepidatin [23]	D. aurantiacum	Whole plant	Liu <i>et al.,</i> 2009a
	var. denneanum		
	D. capillipes	Stem	Phechrmeekha et al., 2012
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006b
	D. crepidatum	Whole plant	Majumder and Chatterjee,
	1 Street	V Oraceee	1989
	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
	D. pulchellum	Stem	Chanvorachote <i>et al.</i> , 2013
Cumulatin [24]	D. cumulatum	Whole plant	Majumder and Pal, 1993
Dendrobin A [25]	D. nobile ONGKO	Stem	Wang et al., 1985; Ye and
			Zhao, 2002a
3,3'-Dihydroxy-	D. williamsonii	Whole plant	Rungwichaniwat et al., 2014
4,5- dimethoxy-			
bibenzyl [26]			
3,4'-Dihydroxy-5-	D. amoenum	Whole plant	Majumder <i>et al.,</i> 1999
methoxybibenzyl			
[27]			

Table 1 (continued)

Compounds	Plant	Plant part	Reference
3,4 [′] -Dihydroxy-5,5 [′] - dimethoxydihydro stilbene [28]	D. nobile	Stem	Hwang <i>et al.,</i> 2010
Erianin [29]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
Gigantol [30]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008c
	D. aurantiacum	Whole plant	Liu <i>et al.,</i> 2009a
	var. denneanum		
	D. brymerianum	Whole plant	Klongkumnuankarn <i>et</i> <i>al.</i> , 2015
	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. devonianum	Whole plant	Sun <i>et al.,</i> 2014
Ş	D. draconis	Stem	Sritularak <i>et al.,</i> 2011a
-	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
ຈຸ x CHUI	D. formosum	Whole plant	Inthongkaew <i>et al.</i> , 2017
	D. loddigesii	whole plant	Ito <i>et al.,</i> 2010
	D. longicornu	Stem	Hu et al., 2008a
	D. nobile	Stem	∠hang <i>et al.</i> , 2007a
	D. officinale	Stem	Zhao <i>et al.,</i> 2018
	D. polyanthum	Stem	Hu <i>et al.</i> , 2009

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Gigantol [30]	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
(continued)			
	D. venustum	Whole plant	Sukphan <i>et al</i> ., 2014
	D. wardianum	Stem	Zhang <i>et al.,</i> 2017
Gigantol-5- <i>Ο</i> -β-D-	D. fimbriatum	Stem	Xu et al., 2017
glucopyranoside [31]		3	
4-Hydroxy-3,5,3'-	D. nobile	Stem	Ye and Zhao, 2002a
trimethoxybibenzyl	2/11		
[32]	-///>84		
5-Hydroxy-3,4,3 ' ,4 ' ,	D. secundum	Stem	Phechrmeekha <i>et al.,</i>
5'-pentamethoxy-		2	2012
bibenzyl [33]	A second second		
Isoamoenylin [34]	D. amoenum	Whole plant	Majumder <i>et al.,</i> 1999
Moscatilin [35]	D. amoenum	Whole plant	Majumder <i>et al.,</i> 1999
କ	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a
Сн	Var. denneanum	JNIVERSITY	
	D. brymerianum	Whole plant	Klongkumnuankarn <i>et</i>
			al., 2015
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006b
	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i> 2014

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Moscatilin [35]	D. formosum	Whole plant	Inthongkaew <i>et al.,</i> 2017
(continued)	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
	D. loddigesii	Whole plant	Chen <i>et al.</i> , 1994; Ito <i>et al.</i> ,
			2010
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
	D. moscatum	Whole plant	Majumder and Sen, 1987
	D. nobile	Stem	Miyazawa <i>et al.</i> , 1999; Yang
	-//m		<i>et al.,</i> 2007b
	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
	D. pulchellum	Stem	Chanvorachote <i>et al.,</i> 2013
	D. secundum	Stem	Sritularak <i>et al.,</i> 2011b
	D. wardianum	Stem	Zhang <i>et al.</i> , 2017
	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017a
Moscatilin	D. loddigesii	Stem	Chen <i>et al.,</i> 1994
diacetate [36]	จุหาลงกรณ์ม	หาวิทยาลั	
3,3 ⁴ ,4-Trihydroxy	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
bibenzyl [37]			
3,3 ' ,5-Trihydroxy	D. cariniferum	Whole plant	Liu <i>et al.,</i> 2009b
bibenzyl [38]			
3,5,4 ⁴ -Trihydroxy	D. gratiosissimum	Stem	Zhang <i>et al.</i> , 2008a
bibenzyl [39]			

Table 1 (continued)

Compounds	Plant	Plant part	Reference
4,5,4 [′] -Trihydroxy-	D. secundum	Stem	Sritularak <i>et al.,</i> 2011b
3,3'-dimethoxy	D. ellipsophyllum	Whole plant	Tanagornmeatar et al.,
bibenzyl [40]			2014
Tristin [41]	D. aphyllum	Stem	Yang <i>et al.,</i> 2015b
	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
	D. officinale	Stem	Zhao <i>et al.,</i> 2018
	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
Dendromoniliside E	D. nobile	Stem	Miyazawa <i>et al</i> ., 1999
[42]	Q	e e	
Dendrophenol [43]	D. candidum	Stem	Li <i>et al.,</i> 2008
3,4-Dihydroxy-5,4 ' -	D. candidum	Stem	Li <i>et al.,</i> 2008
dimethoxybibenzy	D. signatum	Whole plant	Mittraphab <i>et al.</i> , 2016
[44]	D. tortile	Whole plant	Limpanit <i>et al.</i> , 2016
	D. wardianum	Stem	Zhang <i>et al.</i> , 2017
	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017a
4,4 ' -Dihydroxy-3,5-	D. candidum	Stem	Li <i>et al.,</i> 2008
dimethoxybibenzyl [45]	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i> 2014
	D. williamsonii	Whole plant	Yang <i>et al.</i> , 2017a

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Loddigesiinol C [46]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
3-O-Methylgigantol [47]	D. candidum	Stem	Li et al., 2008
	D. plicatile	Stem	Yamaki and Honda,
			1996
Dendrocandin I [48]	D. candidum	Stem	Li <i>et al.,</i> 2009b
	D. signatum	Whole plant	Mittraphab <i>et al.,</i>
			2016
Densiflorol A [49]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
Longicornuol A [50]	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
Trigonopol A [51]	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
Trigonopol B [52]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
Crepidatuol A [53]	D. crepidatum	Stem	Li et al., 2013
Crepidatuol B [54]	D. crepidatum	Stem	Li et al., 2013
Loddigesiinol D [55]	D. loddigesii	Whole plant	Ito et al., 2010
Dencryol A [56]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
Dencryol B [57]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
Dengraol A [58]	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
Dengraol B [59]	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
4-[2-(3-Hydroxyphenol)-	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
1-methoxyethyl]-2,6-			
dimethoxy phenol [60]			

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Nobilin A [61]	D. nobile	Stem	Zhang <i>et al.</i> , 2006
Nobilin B [62]	D. nobile	Stem	Zhang <i>et al.,</i> 2006
Nobilin C [63]	D. nobile	Stem	Zhang <i>et al.,</i> 2006
Nobilin D [64]	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
Nobilin E [65]	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
Dendrofalconerol A [66]	D. falconeri D. signatum	Stem Whole plant	Sritularak and Likhitwitayawuid, 2009 Mittraphab <i>et al.,</i> 2016
	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016
Dendrofalconerol B [67]	D. falconeri	Stem	Sritularak and Likhitwitayawuid, 2009
Dendrowillol A [68]	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017a
Dendrosignatol [69]	D. signatum	Whole plant	Mittraphab <i>et al.,</i> 2016
2,2'-Dihydroxy-3,3',4,4', 7,7-hexamethoxy-9,9', 10,10'-tetrahydro-1,1'- biphenanthrene [70]	D. nobile	Stem วิทยาลัย JNIVERSITY	Yang <i>et al.,</i> 2007b
2,2'-Dimethoxy-4,4',7,7'- tetrahydroxy-9,9',10,10'- tetrahydro-1,1'- biphenanthrene [71]	D. plicatile	Stem	Yamaki and Honda, 1996

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Flavanthrin [72]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008c
Phoyunnanin C [73]	D. venustum	Whole plant	Sukphan <i>et al.,</i> 2014
Phoyunnanin E [74]	D. venustum	Whole plant	Sukphan <i>et al.,</i> 2014
Amoenumin [75]	D. amoenum	Whole plant	Veerraju <i>et al.</i> , 1989
Crystalltone [76]	D. chrysotoxum	Stem	Hu et al., 2012
	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
Chrysotoxol A [77]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
Chrysotoxol B [78]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
Confusarin [79]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. formosum	Whole plant	Inthongkaew et al.,
	A the second sec		2017
Ré	D. nobile	Stem	Zhang <i>et al.,</i> 2008b
-	D. officinale	Stem	Zhao <i>et al.,</i> 2018
2,6-Dihydroxy-1,5,7-	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
trimethoxyphenanthrene [80]	longkorn U i	IIVERSITY	
Dendrochrysanene [81]	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006b
Bulbophyllanthrin [82]	D. nobile	Stem	Yang <i>et al.,</i> 2007b
Denthyrsinin [83]	D. thyrsiforum	Stem	Zhang <i>et al.</i> , 2005

Table 1 (continued)

Compounds	Plant	Plant part	Reference
5-Hydroxy-2,4-	D. loddigesii	Whole plant	Ito <i>et al.</i> , 2010
dimethoxyphenanthrene			
[84]			
3-Hydroxy-2,4,7-	D. nobile	Stem	Yang <i>et al.,</i> 2007b
trimethoxyphenanthrene			
[85]	- 11 M 11/10	7	
Cypripedin [86]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
Densiflorol B [87]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
2	D. venustum	Whole plant	Sukphan <i>et al.,</i> 2014
Denbinobin [88]	D. moniliforme	Stem	Lin <i>et al.,</i> 2001
	D. nobile	Stem	Yang <i>et al.,</i> 2007b
0	D. wardianum	Stem	Zhang <i>et al.,</i> 2017
Fimbriatone [89]	D. nobile	Stem	Zhang <i>et al.,</i> 2008b
-10	D. pulchellum	Stem	Chanvorachote <i>et</i>
จุหา	ลงกรณมหาว	ทยาลย	al., 2013
Loddigesiinol B [90] HUL	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
Dendronone [91]	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006b
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
Ephemeranthoquinone	D. plicatile	Stem	Yamaki and Honda,
[92]			1996

Table 1 (continued)

Compounds	Plant	Plant part	Reference
5-Methoxy-7-hydroxy-	D. draconis	Stem	Sritularak <i>et al.</i> , 2011a
9,10-dihydro-1,4-	D. formosum	Whole plant	Inthongkaew et al.,
phenanthrenequinone			2017
Moniliformin [94]	D. moniliforme	Stem	Lin <i>et al.,</i> 2001
Moscatin [95]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006b
	D. chrysotoxum	Whole plant	Li <i>et al.,</i> 2009c
	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
Coelonin [96]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008
	D. formosum	Whole plant	Inthongkaew <i>et al.,</i>
	E.	10	2017
	D. nobile	Stem	Yang <i>et al.,</i> 2007b
9,10-Dihydromoscatin	D. polyanthum	Stem	Hu et al., 2009
[97] C HI	ILALONGKORN U	INIVERSITY	
9,10-Dihydrophenan	D. officinale	Stem	Zhao <i>et al.</i> , 2018
threne-2,4,7-triol [98]	D. polyanthum	Stem	Hu <i>et al.,</i> 2009

Table 1 (continued)

Compounds	Plant	Plant part	Reference
4,5-Dihydroxy-2,3-	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i>
dimethoxy-9,10-			2014
dihydrophenanthrene	D. sinense	Whole plant	Chen <i>et al.</i> , 2013
[99]			
4,5-Dihydroxy-2,6-	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
dimethoxy-9,10-	25 M M M 12	a .	
dihydrophenanthrene			
[100]			
4,5-Dihydroxy-3,7-	D. nobile	Stem	Ye and Zhao, 2002a
dimethoxy-9,10-	- A B		
dihydrophenanthrene			
[101]			
4,5-Dihydroxy-2-	D. nobile	Stem	Zhang <i>et al.</i> , 2007b
methoxy-9,10-	D. officinale	Stem	Zhao <i>et al.</i> , 2018
dihydrophenanthrene		-	
(Orchinol) [102]	หาลงกรณ์มหา	วิทยาลัย	
Lusianthridin [103]	D. brymerianum	Whole plant	Klongkumnuankarn <i>et</i>
			al., 2015
	D. formosum	Whole plant	Inthongkaew <i>et al.,</i>
			2017
	D. plicatile	Stem	Yamaki and Honda,
			1996
	D. venustum	Whole plant	Sukphan <i>et al</i> ., 2014

Table 1 (continued)

Compounds	Plant	Plant part	Reference
2,7-Dihydroxy-3,4,6- trimethoxy-9,10- dihydrophenanthrene [104]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
2,8-Dihydroxy-3,4,7- trimethoxy-9,10- dihydrophenanthrene [105]	D. nobile	Stem	Yang <i>et al.,</i> 2007b
4,7-Dihydroxy-2,3,6- trimethoxy-9,10- dihydrophenanthrene [106]	D. rotundatum	Whole plant	Majumder and Pal, 1992
Ephemeranthol A [107]	D. nobile D. officinale	Stem	Yang <i>et al.</i> , 2007b; Hwang <i>et al.</i> , 2010 Zhao <i>et al.</i> , 2018
Ephemeranthol C	D. nobile	Stem 8 1 a 8	Yang <i>et al.,</i> 2007b; Hwang <i>et al.,</i> 2010
Erianthridin [109]	D. nobile D. formosum D. plicatile	Stem Whole plant Stem	Hwang <i>et al.,</i> 2010 Inthongkaew <i>et al.,</i> 2017 Yamaki and Honda, 1996
Flavanthridin [110]	D. nobile	Stem	Hwang <i>et al.</i> , 2010

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Hircinol [111]	D. aphyllum	Stem	Yang <i>et al.,</i> 2015b
	D. draconis	Stem	Sritularak <i>et al.,</i> 2011a
	D. formosum	Whole plant	Inthongkaew <i>et al.,</i> 2017
3-Hydroxy-2,4,7-	D. nobile	Stem	Yang <i>et al.,</i> 2007b
trimethoxy-9,10-			
dihydrophenanthrene		122.	
[112]	8		
2-Hydroxy-4,7-	D. nobile	Stem	Yang <i>et al.,</i> 2007b
dimethoxy-9,10-	-///68		
dihydrophenanthrene	AG		
[113]			
7-Methoxy-9,10-	D. draconis	Stem	Sritularak <i>et al.,</i> 2011a
dihydrophenanthrene	ALLEN A		
-2,4,5-triol [114]	E A	100	
2,5,7-Trimethoxy-4-	D. formosum	Whole plant	Inthongkaew <i>et al.,</i> 2017
methoxy-9,10-	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
dihydrophenanthrene	JLALUNGKUKN	UNIVERSI	T
[115]			
Plicatol C [116]	D. plicatile	Stem	Honda and Yamaki, 2000
Rotundatin [117]	D. rotundatum	Whole plant	Majumder and Pal, 1992

Table 1 (continued)

Compounds	Plant	Plant part	Reference
2,5-Dihydroxy-3,4	D. nobile	Stem	Yang <i>et al.,</i> 2007b
dimethoxyphenanthrene			
[118]			
2,5-Dihydroxy-4,9-	D. nobile	Stem	Zhang <i>et al.,</i> 2008b
dimethoxyphenanthrene			
[119]			
2,8-Dihydroxy-3,4,7-	D. nobile	Stem	Yang <i>et al.,</i> 2007b
trimethoxyphenanthrene			
[120]			
Epheranthol B [121]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. plicatile	Stem	Yamaki and Honda,
	ARA		1996
Fimbriol B [122]	D. nobile	Stem	Yang <i>et al.,</i> 2007b;
-6			Hwang <i>et al.,</i> 2010
Flavanthrinin [123] จุฬา	D. brymerianum	Whole plant	Klongkumnuankarn <i>et</i>
CHULA	Longkorn Ui	IIVERSITY	al., 2015
	D. nobile	Stem	Zhang <i>et al</i> ., 2008b
	D. venustum	Whole plant	Sukphan <i>et al.,</i> 2014
Loddigesiinol A [124]	D. loddigesii	Whole plant	Ito <i>et al.</i> , 2010
	D. wardianum	Stem	Zhang <i>et al.,</i> 2017

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Nudol [125]	D. formosum	Whole plant	Inthongkaew et al.,
			2017
	D. nobile	Stem	Yang <i>et al.,</i> 2007b
	D. rotundatum	Whole plant	Majumder and Pal,
			1992
Plicatol A [126]	D. nobile	Stem	Yang <i>et al.</i> , 2007b
	D. plicatile	Stem	Honda and Yamaki,
			2000
Plicatol B [127]	D. plicatile	Stem	Honda and Yamaki,
			2000
2,3,5-Trihydroxy-4,9-	D. nobile	Stem	Yang <i>et al.,</i> 2007b
dimethoxyphenanthrene			
[128]	All concestonori		
3,4,8-Trimethoxyphenan-	D. nobile	Stem	Hwang <i>et al.,</i> 2010
threne-2,5-diol [129]			
Aphyllone [130]	D. nobile	Stem	Hwang <i>et al.,</i> 2010
9,10-Dihydro-aphyllone A-	D. fimbriatum	Stem	Xu et al., 2017
5- O - β -D-glucopyranoside			
[131]			
(S)-2,4,5,9-Tetrahydroxy-	D. fimbriatum	Stem	Xu et al., 2014
9,10-dihydro-			
phenanthrene [132]			

Table 1 (continued)

D. nobile	Stem	Kim <i>et al.</i> , 2015
D. moniliforme	Whole plant	Zhao <i>et al.,</i> 2016
D. primulinum	Whole plant	Ye <i>et al.,</i> 2016
D. loddigesii	Stem	Lu <i>et al.,</i> 2014
D. loddigesii	Stem	Lu <i>et al.,</i> 2014
D. loddigesii	Stem	Lu <i>et al.,</i> 2014
D. loddigesii	Stem	Lu <i>et al.,</i> 2014
D. officinale	Stem	Zhao <i>et al.,</i> 2018
D. officinale	Stem	Zhao <i>et al.</i> , 2018
	D. nobile D. moniliforme D. primulinum D. loddigesii D. loddigesii D. loddigesii D. loddigesii D. officinale D. officinale	D. nobileStemD. moniliformeWhole plantD. moniliformeWhole plantD. primulinumWhole plantD. loddigesiiStemD. officinaleStem

CHULALONGKORN UNIVERSITY

Figure 2 Structures of bibenzyls and derivatives previously isolated from *Dendrobium* species

[12] Dendrosinen A: R_1 = OMe, R_2 = OH

[13] Dendrosinen B: $R_1 = OH$, $R_2 = H$

	R_1	R_2	R_3	R_4	R_5	R_6
[16] Aloifol I	OMe	OH	OMe	OH	Н	Н
[17] Amoenylin	ОМе	ОН	OMe	Н	OMe	Н
[18] Batatasin	OMe	H	Н	OH	Н	ОН
[19] Batatasin III	ОН	H	OMe	Н	Н	ОН
[20] Brittonin A	OMe	OMe	OMe	OMe	OMe	OMe
[21] Chrysotobibenzyl	OMe	OMe	OMe	OMe	OMe	Н
[22] Chrysotoxine	OMe	ОН	OMe	OMe	OMe	Н
[23] Crepidatin	OMe	OMe	OMe	OMe	OH	Н
[24] Cumulatin	OMe	OMe	ОН	OH	OMe	OMe
[25] Dendrobin A	ОН	OH	OMe	Н	Н	OMe
[26] 3,3 ⁴ -Dihydroxy-4,5- dimethoxybibenzyl	OMe	OMe	OH RSIT	Н	Η	ОН
[27] 3,4 ′ -Dihydroxy-5- methoxybibenzyl	ОН	Η	OMe	Η	ОН	Η
[28] 3,4 ' -Dihydroxy-5,5 ' - Dimethoxydihydrostilbene	ОН	Η	OMe	OMe	ОН	Η

R_1	R ₂	K ₃	K ₄	R_5	R ₆
OMe	OMe	OMe	Η	OMe	OH
OMe	Н	Η	Η	OH	OMe
ОМе	Н	OGlc	Η	OH	OMe
ОМе	ОН	OMe	Η	Η	OMe
OMe	OMe	ОН	OMe	OMe	OMe
OMe	OMe	OMe	Η	Η	ОН
OMe	ОН	OMe	Н	OH	OMe
OMe	OAc	OMe	Η	OAc	OMe
ОН	OH	Η	Η	Н	ОН
ОН	/ERSI1 H	ОН	Н	Н	ОН
OH	Н	ОН	Н	ОН	Н
OMe	ОН	ОН	Н	ОН	OMe
ОН	Н	ОН	Н	ОН	OMe
OGlc	OGlc	ОМе	Н	ОМе	Н
	R1 OMe OH OH OH OH OH OH OH	R1 R2 OMe OMe OMe H OMe H OMe OH OMe OMe OMe OH OMe OH OMe OH OMe OH OH H OMe OH OH H OH H OH H	R1 R2 R3 OMe OMe OMe OMe H H OMe H OGlc OMe OH OMe OMe OH OGlc OMe OH OMe OMe OH OMe OMe OH OMe OMe OMe OMe OMe OH OMe OMe OH OH OH H OH OH H OH OH OH OH OH OH OH OH H OH OH OH OH OH OH OH OH OH OH OH	R1R2R3R4OMeOMeOMeHOMeHHHOMeHOGlcHOMeOHOGlcHOMeOMeOHOMeOMeOMeOHOHOMeOMeOMeHOMeOMeOMeHOMeOMeOMeHOMeOMeOMeHOMeOMeOMeHOMeOAcOMeHOHHOHHOHOHOHHOMeOHOHHOMeOHOHHOMeOHOHHOHHOHHOHOHOHHOHOHOHHOHOHOHHOHOHOHHOHOHOHHOHOHOHHOHOHOHHOHOHOHHOHOHOHHOHOHOHHOHOHOHHOHOHOHHOHOHOHHOH<	R1R2R3R4R5OMeOMeOMeOMeOMeOMeHHHOHOMeHOGlcHOHOMeOHOMeHOHOMeOHOMeOMeHHOMeOMeOMeOMeHHOMeOMeOHOMeHHOMeOMeOMeOMeHOHOMeOMeOMeIHOHOMeOAcOMeHOAcOHOAOHHOHOHOHOHHOHOHOHOHHOHOHOHOHHOHOHOHOHHOHOHOHOHHOHOHOHOHHOHOHOHOHHOHOHOHOHHOHOHOHOHHOHOHOHOHHOHOHOHOHHOHOHOHOHHOHOHOHOHHOHOHOHOHHOH <td< td=""></td<>

Figure 2 Structures of bibenzyls and derivatives previously isolated from *Dendrobium* species (continued)

Figure 2 Structures of bibenzyls and derivatives previously isolated from *Dendrobium* species (continued)

[**73**] Phoyunnanin C

Figure 2 Structures of bibenzyls and derivatives previously isolated from *Dendrobium* species (continued)

 $R_4 R_3$

 R_2

 R_5

	R_1	R_2	R_3	R_4	R_5	R_6	R_7
[104] 2,7-Dihydroxy-3,4,6- trimethoxy-9,10-dihydro phenanthrene	ОН	OMe	OMe	Η	OMe	ОН	Η
[105] 2,8-Dihydroxy-3,4,7- trimethoxy-9,10-dihydro phenanthrene	ОН	OMe	OMe	Η	Η	OMe	ОН
[106] 4,7-Dihydroxy-2,3,6- trimethoxy-9,10-dihydro phenanthrene	OMe	OMe	ОН	Η	OMe	ОН	Η
[107] Ephemeranthol A	ОН	H	H	ОН	OMe	OMe	Н
[108] Ephemeranthol C	ОН	ОН	OMe	ОН	Н	Н	Н
[109] Erianthridin	ОН	OMe	OMe	Н	Н	ОН	Н
[110] Flavanthridin	ОН	H	ERSIT H	OMe	OH	OMe	Н
[111] Hircinol	ОН	Н	OMe	ОН	Н	Н	Н
[112] 3-Hydroxy-2,4,7- trimethoxy-9,10-dihydro phenanthrene	OMe	ОН	OMe	Η	Η	OMe	Η

Chulalongkorn University

R_1	R_2	R_3	R ₄	R_5	R_6	R ₇
OH	OMe	OMe	ОН	Η	Η	Η
ОН	H	OMe	ОН	Η	Н	OMe
ОН	OMe	OMe	Н	OMe	ОН	Η
H	Н	OMe	ОН	OMe	Н	Н
ОН	OMe	OH	Η	Η	Η	Н
H	Н	OMe	Н	ОН	Η	Η
	к ₁ ОН ОН Н ОН	к1 к2 ОН ОМе ОН Н ОН ОМе Н Н ОН ОМе Н Н ОН ОМе	R1R2R3OHOMeOMeOHHOMeOHOMeOMeOHHOMeOHOMeOHHHOMeOHHOMe	R1 R2 R3 R4 OH OMe OMe OH OH H OMe OH OH H OMe OH OH H OMe OH OH OMe OMe H OH OMe OMe H H H OMe OH H H OMe H H H OMe H H H OMe H	R_1 R_2 R_3 R_4 R_5 OHOMeOMeOHHOHHOMeOHHOHOMeOMeOHHOHOMeOMeHOMeHHOMeOHHOHHOMeOHHHHOMeOHHHHOMeHOHHHOMeHOH	R_1 R_2 R_3 R_4 R_5 R_6 OHOMeOMeOHHHOHHOMeOHHHOHOMeOMeOHHHOHOMeOMeHOMeOHHHOMeOHOMeHOHHOMeOHHHHHOMeOHHHHHOMeHOHHHHOMeHOHH

Chulalongkorn University

Figure 2 Structures of bibenzyls and derivatives previously isolated from *Dendrobium* species (continued)

4-O- β -D-glucopyranoside

Compounds	Plant	Plant part	Reference
(25)-Homoeriodictyol	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
[142]			
	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i>
			2014
Naringenin [143]	D. aurantiacum	Stem	Yang <i>et al.</i> , 2006a
	var. denneanum	1	
	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
(2 <i>S</i>)-Eriodictyol [144]	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i>
			2014
	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016
Vicenin-2 [145]	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
	var. denneanum		
Apigenin [146]	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
GHU	D. williamsonii	Whole plant	Rungwichaniwat et al.,
			2014
5,6-Dihydroxy-4 ' -	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
methoxyflavone [147]			
Luteolin [148]	D. aurantiacum	Whole plant	Liu <i>et al.,</i> 2009a
	var. denneanum		
	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.</i> , 2014
			2017

 Table 2 Distribution of flavonoids in the genus Dendrobium

Table 2 (continued)

Compounds	Plant	Plant part	Reference
Chrysoeriol [149]	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et</i>
			al., 2014
6-C-(α -Arabinopyrano-	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
syl)-8-C-[(2-O- a -rhamno-			
pyranosyl)-β-galacto-			
pyranosyl] apigenin [150]	. Shini in a		
6-C-(α -Arabinopyrano-	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
syl)-8-C-[(2-O- α -rhamno-			
pyranosyl)-β-gluco- 🛛			
pyranosyl] apigenin [151]	///b@a		
6'''-Glucosvl-vitexin	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
[152]			
Isoschaftoside [153]	D. nuosnanense	Aerial part	Chang <i>et al.</i> , 2010
Isoviolanthin [154]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
6-C-[(2-O- α -Rhamno-	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
pyranosyl)-β-glucopyra-	ลงกรณมหาวท	ยาลย	
nosyl]-8-C-(a -arabino-	LONGKORN UNI	VERSITY	
pyranosyl) apigenin [155]			
6-C-(β-Xylopyranosyl)-8-	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
C-[(2-O- α -rhamnopyra-			
nosyl)-β-glucopyranosyl]			
apigenin [156]			
	1	1	

Compounds	Plant	Plant part	Reference
Kaempferol [157]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a)
	var. denneanum		
Kaempferol-3- <i>Ο-</i> α -L-	D. secundum	Stem	Phechrmeekha <i>et</i>
rhamnopyranoside [158]			al., 2012
Kaempferol-3,7-O-di- $lpha$ -L-	D. secundum	Stem	Phechrmeekha <i>et</i>
rhamnopyranoside [159]			al., 2012
Kaempferol-3- <i>Ο</i> - α -L-	D. capillipes	Stem	Phechrmeekha <i>et</i>
rhamnopyranosyl-(1→2)-			al., 2012
β -D-gluco pyranoside [160]			
Kaempferol-3- <i>Ο</i> - α -L-	D. capillipes	Stem	Phechrmeekha <i>et</i>
rhamnopyranosyl-(1→2)-		l.	al., 2012
β -D-xylopyranoside [161]			
Quercetin-3-0-L-	D. secundum	Stem	Phechrmeekha <i>et</i>
rhamnopyranoside [162]			al., 2012
Quercetin-3- <i>O</i> - a -L-	D. capillipes	Stem	Phechrmeekha <i>et</i>
rhamnopyranosyl-(1′,2)-β-)ngkorn Univ	ERSITY	al., 2012
D-xylopyranoside [163]			
5-Hydroxy-3-methoxy-	D. devonianum	Stem	Sun <i>et al.,</i> 2014
flavone-7-0-[β-D-apiosyl-			
(1 → 6)]-β-D-glucoside			
[164]			

Figure 3 Structures of flavonoids previously isolated from *Dendrobium* species

	R_1	R_2	R_3	
[152] 6 ^{′′′′} -Glucosyl-vitexin	Н	Н	-Glc	
[153] Isoschaftoside	H.	-Ara	-Glc	
[154] Isoviolanthin		-Rha	-Glc	
[155] 6-C-[(2-O-α-Rhamnopyranosyl)-	H	-Glc-Rha	-Ara	
β-glucopyranosyl]-8-C-	III III III III III III III III III II			
($lpha$ -arabinopyranosyl) apigenin	4			
[156] 6-C-(β-Xylopyranosyl)-8-C-	н	-Xyl	-Glc-Rha	
[(2-O- α -rhamnopyranosyl)-				
β-glucopyranosyl] apigenin	AL-CO			
[157] Kaempferol	ОН	Н	Н	
	าวิทยาลั			
Chulalongkorn University				

Figure 3 Structures of flavonoids previously isolated from *Dendrobium* species (continued)

Figure 3 Structures of flavonoids previously isolated from *Dendrobium* species (continued)

[164] 5-Hydroxy-3-methoxyflavone-7-O-[β -D-apiosyl-(1 \rightarrow 6)]- β -D-glucoside

Figure 3 Structures of flavonoids previously isolated from *Dendrobium* species

(continued)

Compounds	Plant	Plant part	Reference
Aduncin [165]	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
Amoenin [166]	D. amoenum	Whole plant	Dahmen and Leander,
			1978
	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
Amotin [167]	D. amoenum	Whole plant	Majumder <i>et al.</i> , 1999
Dendrowillin A [168]	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
Dendrowillin B [169]	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
lpha-Dihydropicrotoxinin	D. amoenum	Whole plant	Majumder <i>et al.,</i> 1999
[170]	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
Picrotin [171]	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
Dendrobane A [172]	D. moniliforme	Stem	Bi <i>et al.,</i> 2004
Dendronobilin A [173]	D. nobile	Stem	Zhang <i>et al.</i> , 2007a
Dendronobilin B [174]	D. wardianum	Stem	Zhang <i>et al.</i> , 2007b
ຈຸາ	D. nobile	Stem	Wang <i>et al.</i> , 2009;
Сни	LALONGKORN	University	Meng <i>et al.,</i> 2017
Dendronobilin C [175]	D. crystallium	Stem	Wang <i>et al.,</i> 2009
Dendronobilin D [176]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Dendronobilin E [177]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Dendronobilin F [178]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Dendronobilin G [179]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Dendronobilin H [180]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b

 Table 3 Distribution of terpenoids in the genus Dendrobium

Compounds	Plant	Plant part	Reference
Dendronobilin I [181]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Dendronobilin J [182]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Dendronobilin K [183]	D. wardianum	Stem	Fan <i>et al.,</i> 2013
Dendronobilin L [184]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Dendronobilin M [185]	D. nobile	Stem	Zhang <i>et al.</i> , 2008c;
		2	Meng <i>et al.</i> , 2017
Dendronobilin N [186]	D. nobile	Stem	Zhang <i>et al.,</i> 2008c
Dendrowardol A [187]	D. nobile	Stem	Zhang <i>et al.,</i> 2008c
Dendrowardol B [188]	D. nobile	Stem	Zhang <i>et al.,</i> 2008c
Dendrowardol C [189]	D. wardianum	Stem	Fan <i>et al.,</i> 2013
Corchoionoside C [190]	D. wardianum	Stem	Fan <i>et al.,</i> 2013
Crystallinin [191]	D. wardianum	Stem	Fan <i>et al.,</i> 2013
Findlayanin [192]	D. nobile	Stem	Meng et al., 2017
จุหาะ	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
3-Hydroxy-2- CHULA	D. findlayanum	Whole plant	Qin <i>et al.,</i> 2011
oxodendrobine [193]			
Dendrobine [194]	D. nobile	Stem	Wang <i>et al.</i> , 1985
			Meng <i>et al.</i> , 2017
(-)-(1 <i>R</i> ,2 <i>S</i> ,3 <i>R</i> ,4 <i>S</i> ,5 <i>R</i> ,6 <i>S</i> ,9 <i>S</i> ,	D. nobile	Stem	Meng <i>et al.,</i> 2017
11 <i>R</i>)-11-Carboxymethyl			
dendrobine [195]			
Dendromoniliside A [196]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b

Compounds	Plant	Plant part	Reference
Dendromoniliside B [197]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
Dendromoniliside C [198]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
Dendromoniliside D [199]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
Dendronobiloside A [200]	D. moniliforme	Stem	Zhao <i>et al.</i> , 2003
	D. nobile	Stem	Zhao <i>et al.</i> , 2001;
			Ye and Zhao, 2002a
Dendronobiloside B [201]	D. nobile	Stem	Zhao <i>et al.,</i> 2001;
			Ye and Zhao, 2002a
Dendronobiloside C [202]	D. nobile	Stem	Zhao <i>et al.</i> , 2001;
			Ye and Zhao, 2002a
Dendronobiloside D [203]	D. nobile	Stem	Zhao <i>et al.,</i> 2001;
			Ye and Zhao, 2002a
Dendronobiloside E [204]	D. nobile	Stem	Zhao <i>et al.,</i> 2001;
			Ye and Zhao, 2002a
Dendroside A [205]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
ຈຸນາ	D. nobile	Stem	Zhao <i>et al.</i> , 2001;
CHULA	ilongkorn Ui	IVERSITY	Ye and Zhao, 2002a
Dendroside B [206]	D. nobile	Stem	Ye and Zhao, 2002a;
			Zhao <i>et al.</i> , 2003
Dendroside C [207]	D. moniliforme	Stem	Zhao <i>et al.</i> , 2003
	D. nobile	Stem	Ye and Zhao, 2002a

Compounds	Plant	Plant part	Reference
Dendroside D [208]	D. nobile	Stem	Ye and Zhao, 2002a
Dendroside E [209]	D. nobile	Stem	Ye <i>et al.,</i> 2002b
Dendroside F [210]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
Dendroside G [211]	D. nobile	Stem	Ye <i>et al.,</i> 2002b
Wardianumine A [211]	D. wardianum	Stem	Zhang <i>et al.,</i> 2017

Chulalongkorn University

Figure 4 Structures of terpenoids previously isolated from *Dendrobium* species (continued)

Figure 4 Structures of terpenoids previously isolated from *Dendrobium* species (continued)

[**197**] Dendromoniliside B

[**198**] Dendromoniliside C

[199] Dendromoniliside D

Figure 4 Structures of terpenoids previously isolated from *Dendrobium* species (continued)

Figure 4 Structures of terpenoids previously isolated from *Dendrobium* species (continued)

ΟH

Category and	Plant	Plant part	References
Compound			
Aliphatic acid derivativ	/es		
Aliphalic acids [213]	D. clavatum var.	Stem	Chang <i>et al.</i> , 2001
	aurantiacum		
Aliphatic alcohols	D. clavatum var.	Stem	Chang <i>et al.</i> , 2001
[214]	aurantiacum	2 June	
Malic acid [215]	D. huoshanense	Aerial part	Chang <i>et al.</i> , 2001
Dimethyl malate [216]	D. huoshanense	Aerial part	Chang <i>et al.</i> , 2010
(-)-Shikimic acid [217]	D. fuscescens	Whole plant	Talapatra <i>et al.,</i> 1989
	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
(D. pulchellum	Stem	Chanvorachote <i>et al.,</i>
		0	2013
Isopentyl butyrate	D. huoshanense	Aerial part	Chang <i>et al.</i> , 2010
[218]	ซาลงกรณ์มห า ^ร	วิทยาลัย	
Decumbic acid [219]	D. nobile	Stem	Zhou <i>et al.,</i> 2016
Benzoic acid derivative	es and phenolic co	mpounds	
3-Hydroxy-2-methoxy-	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
5,6-dimethylbenzoic			
acid [220]			
Salicylic acid [221]	D. huoshanense	Aerial part	Chang <i>et al.</i> , 2010
	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017a

 Table 4 Distribution of miscellaneous compounds in the genus Dendrobium

Category and	Plant	Plant part	Reference
Compound			
Vanilloside [222]	D. denneanum	Stem	Pan <i>et al.,</i> 2012
<i>p</i> -Hydroxybenzoic	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017a
acid [223]			
Gallic acid [224]	D. longicornu	Whole plant	Li <i>et al.,</i> 2009d
Syringic acid [225]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
Vanillic acid [226]	D. crystallinum	Stem	Hu <i>et al.,</i> 2012
	D. williamsonii	Whole plant	Li <i>et al.,</i> 2009d
Protocatechuic acid	D. nobile	Stem	Ye and Zhao, 2002a
[227]			
Antiarol [228]	D. chrysotoxum	Stem	Sun <i>et al.,</i> 2014
Ethylhaematommate	D. longicornu	Whole plant	Sritularak and
[229]	2		Likhitwitayawuid,
			2009
<i>p</i> -Hydroxybenz-	D. devonianum	Whole plant	Limpanit <i>et al.,</i> 2016
aldehyde [230]	D. falconeri	Stem	Yang <i>et al.</i> , 2017a
	D. tortile	Whole plant	Yang <i>et al.,</i> 2017a
Vanillin [231]	D. williamsonii	Whole plant	Hu <i>et al.,</i> 2008a
Methyl 4-hydroxy-	D. williamsonii	Whole plant	Hu <i>et al.</i> , 2012
benzoate [232]			

Category and	Plant	Plant part	Reference
Compound			
Methyl β -orsellinate	D. longicornu	Stem	Li <i>et al.,</i> 2009d
[233]			
Tachioside [234]	D. denneanum	Stem	Pan <i>et al.</i> , 2012
Dendroside [235]	D. nobile	Stem	Zhou <i>et al.,</i> 2017
Phenylpropanoids		3	
Alkyl 4 [′] -hydroxy- <i>trans</i> -	D. clavatum var.	Stem	Chang <i>et al.,</i> 2001
cinnamates [236]	aurantiacum		
Alkyl trans-ferulates	D. clavatum var.	Stem	Chang <i>et al.,</i> 2001
[237]	aurantiacum		
Defuscin [238]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a
	var. denneanum		
	D. moniliforme	Stem	Bi <i>et al.,</i> 2004
n-Octacosyl ferulate	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a
[239] CHUL	var. denneanum	IIVERSITY	
	D. moniliforme	Stem	Bi <i>et al.,</i> 2004
<i>n</i> -Triacontyl <i>p</i> -hydroxy-	D. moniliforme	Stem	Bi <i>et al.,</i> 2004
cis-cinnamate [240]			

Table 4 (continued)

Category and	Plant	Plant part	Reference
Compound			
Tetratriacontanyl-	D. williamsonii	Whole plant	Rungwichaniwat et al.,
<i>trans-p</i> -coumarate			2014)
[241]			
n-Docosyl trans-	D. longicornu	Whole plant	Li <i>et al.,</i> 2009d
ferulate [242]	D. williamsonii	Whole plant	Rungwichaniwat <i>et al.,</i>
			2014
trans-Tetracosyl	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016
ferulate [243]			
<i>cis</i> -Hexacosanoyl	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016
ferulate [244]			
Ferulaldehyde [245]	D. longicornu	Whole plant	Li <i>et al.,</i> 2009d
Ferulic acid [246]	D. secundum	Stem	Sritularak <i>et al.,</i> 2011b
2-(p-Hydroxyphenyl)	D. falconeri	Stem	Sritularak and
ethyl <i>p</i> -coumarate	หาลงกรณ์มห	าวิทยาลัย	Likhitwitayawuid, 2009
[247] CHU	LALONGKORN	Universit	1
Dihydroconiferyl	D. formosum	Whole plant	Inthongkaew <i>et al.,</i> 2017
dihydro-p-coumarate	D. nobile	Stem	Zhang <i>et al.</i> , 2006
[248]	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017a

Category and	Plant	Plant part	Reference
Compound			
1-[4-(β-D-Glucopyra-	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
nosyloxy)-3,5-	var. denneanum		
dimethoxyphenyl]-			
1- propanone [249]			
Coniferyl alcohol	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
[250]		12	
<i>p</i> -Hydroxyphenyl	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008c
propionic methyl			
ester [251]			
Phloretic acid [252]	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i>
			2014
Dihydroconiferyl	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
alcohol [253]			
Salidrosol [254]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
Shashenoside I	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
[255]	-ULALONGKORN	UNIVERSIT	1
Syringin [256]	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
	var. denneanum		
Tetracosyl(Z)-p-	D. falconeri	Whole plant	Sritularak and
coumarate [257]			Likhitwitayawuid, 2009
Coumarins			
Ayapin [258]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001

Category and	Plant	Plant part	Reference	
Compound				
Coumarin [259]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a	
	var. denneanum			
	D. clavatum var.	Stem	Chang <i>et al.,</i> 2001	
	aurantiacum			
Denthyrsin [260]	D. thyrsiflorum	Stem	Zhang <i>et al.</i> , 2005	
Scoparone [261]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001	
_	D. thyrsiflorum	Stem	Zhang <i>et al.</i> , 2005	
-	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017a	
Scopoletin [262]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001	
Lignans and neolignans				
	(Bragger Street Street St	~		
Dehydrodiconiferyl	D. chrysanthum	Stem	Ye et al., 2004	
Dehydrodiconiferyl alcohol-4- <i>O</i> -β-D-	D. chrysanthum	Stem	Ye <i>et al.</i> , 2004	
Dehydrodiconiferyl alcohol-4- <i>O</i> -β-D- glucoside [263]	D. chrysanthum	Stem	Ye <i>et al.</i> , 2004	
Dehydrodiconiferyl alcohol-4- <i>O</i> -β-D- glucoside [263] Balanophonin [264]	D. chrysanthum D. williamsonii	Stem Whole plant	Ye <i>et al.,</i> 2004 Yang <i>et al.,</i> 2017a	
Dehydrodiconiferyl alcohol-4- <i>O</i> -β-D- glucoside [263] Balanophonin [264] Episyringaresinol [265]	D. chrysanthum D. williamsonii D. chrysotoxum	Stem Whole plant Stem	Ye <i>et al.</i> , 2004 Yang <i>et al.</i> , 2017a Hu <i>et al.</i> , 2012	
Dehydrodiconiferyl alcohol-4- <i>O</i> -β-D- glucoside [263] Balanophonin [264] Episyringaresinol [265]	D. chrysanthum D. williamsonii D. chrysotoxum D. longicornu	Stem Whole plant Stem Stem	Ye <i>et al.,</i> 2004 Yang <i>et al.,</i> 2017a Hu <i>et al.,</i> 2012 Hu <i>et al.,</i> 2008a	
Dehydrodiconiferyl alcohol-4- <i>O</i> -β-D- glucoside [263] Balanophonin [264] Episyringaresinol [265]	D. chrysanthum D. williamsonii D. chrysotoxum D. longicornu D. nobile	Stem Whole plant Stem Stem Stem	Ye <i>et al.</i> , 2004 Yang <i>et al.</i> , 2017a Hu <i>et al.</i> , 2012 Hu <i>et al.</i> , 2008a Zhang <i>et al.</i> , 2008b	
Dehydrodiconiferyl alcohol-4- <i>O</i> -β-D- glucoside [263] Balanophonin [264] Episyringaresinol [265]	D. chrysanthum D. williamsonii D. chrysotoxum D. longicornu D. nobile D. moniliforme	Stem Whole plant Stem Stem Stem Stem	Ye et al., 2004 Yang et al., 2017a Hu et al., 2012 Hu et al., 2008a Zhang et al., 2008b Zhao et al., 2003	
Dehydrodiconiferyl alcohol-4- <i>O</i> -β-D- glucoside [263] Balanophonin [264] Episyringaresinol [265] Episyringaresinol 4 ^{''} - <i>O</i> - β-D-glucopyranoside	D. chrysanthum D. williamsonii D. chrysotoxum D. longicornu D. nobile D. moniliforme	Stem Whole plant Stem Stem Stem Stem	Ye <i>et al.</i> , 2004 Yang <i>et al.</i> , 2017a Hu <i>et al.</i> , 2012 Hu <i>et al.</i> , 2008a Zhang <i>et al.</i> , 2008b Zhao <i>et al.</i> , 2003	

Category and	Plant	Plant part	Reference
Compound			
(-)-(7 <i>5</i> ,8 <i>R</i> ,7 [′] <i>E</i>)-4-Hydroxy-	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
3,3',5,5'-tetramethoxy-	var. denneanum		
8,4'-oxyneolign-7'-ene-			
7,9,9 ' -triol-7,9 ' -bis-O-β-D-			
glucopyranoside [267]	- 66 M 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-	
Lyoniresinol [268]	D. chrysanthum	Stem	Ye <i>et al.,</i> 2004
(-)-Syringaresinol-4,4'-bis-	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
O - β -D-glucopyranoside 🥒	var. denneanum		
[269]	AGA		
Syringaresinol-4-O-D-	D. aurantiacum	Stem	Xiong <i>et al.</i> , 2013
monoglucopyranoside	var. denneanum		
[270]	ANN NEW C		
(-)-Medioresinol [271]	D. loddigesii	Whole plant	lto <i>et al.,</i> 2010
(-)-Pinoresinol [272]	D. loddigesii	Whole plant	lto <i>et al.,</i> 2010
Dendrolactone [273]	D. nobile	Stem	Zhou <i>et al.,</i> 2016
Erythro-1-(4- <i>Ο</i> -β-D-	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
glucopyranosyl-3-			
methoxyphenyl)-2-[4-(3-			
hydroxypropyl)-2,6-			
dimethoxyphenoxy]-1,3-			
propanediol [274]			
	1	1	

Category and	Plant	Plant part	Reference
Compound			
Syringaresinol [275]	D. secundum	Stem	Sritularak <i>et al.</i> , 2011b
	D. williamsonii	Whole plant	M. Yang <i>et al.,</i> 2017a
Acanthoside B [276]	D. chrysanthum	Stem	Ye <i>et al.,</i> 2004
Liriodendrin [277]	D. pulchellum	Stem	Chanvorachote et al.,
		0.00	2013
(-)-(8 <i>R</i> ,7 ' <i>E</i>)-4-Hydroxy-	D. auranticum	Stem	Li <i>et al.,</i> 2014
3,3',5,5'-tetra-	2/1		
methoxy-8,4 ' -	1600		
oxyneolign-7 ' -ene-	ACA		
9,9 ' -diol-4,9-bis- <i>Ο</i> -β-			
D-glucopyranoside			
[278]			
(-)-(8 <i>5</i> ,7 ' <i>E</i>)-4-Hydroxy-	D. auranticum	Stem	Li <i>et al.,</i> 2014
3,3',5,5'-tetra-	สาลงกรณ์มหา	วิทยาลัย	
methoxy-8,4'-	LALONGKORN L	INIVERSITY	
oxyneolign-7 ' -ene-			
9,9 ′ -diol 4,9-bis- <i>Ο</i> -β-			
D-glucopyranoside			
[279]			

Category and	Plant	Plant part	Reference
Compound			
(-)-(8 <i>R</i> ,7 [′] <i>E</i>)-4-hydroxy-	D. auranticum	Stem	Li <i>et al.,</i> 2014
3,3',5,5',9'-penta-			
methoxy-8,4'-			
oxyneolign-7 ' -ene-9-			
ol-4,9-bis- <i>O</i> -β-D-gluco-	人名德国 道力		
pyranoside [280]			
Fluorenones			
Denchrysan A [281]	D. chrysotoxum	Whole plant	Li <i>et al.,</i> 2009c
Denchrysan B [282]	D. brymerianum	Whole plant	Klongkumnuankarn
			et al., 2015
	D. chrysanthum	Whole plant	Ye <i>et al.,</i> 2003
Dendroflorin [283]	D. aurantiacum	Stem	Yang <i>et al.</i> , 2006a
(Green and Control of the Control of	var. denneanum		
	D. brymerianum	Whole plant	Klongkumnuankarn
์ พ ด	เสขาวรหรายเร	ทยาสย	et al., 2015
Dengibsin [284]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006a
	var. denneanum		
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006b
	D. chrysotoxum	Whole plant	Li <i>et al.</i> , 2009c

Category and	Plant	Plant part	Reference
Compound			
Nobilone [285]	D. brymerianum	Whole plant	Klongkumnuankarn
			et al., 2015
	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
1,4,5-Trihydroxy-7-	D. chrysotoxum	Whole plant	Chen <i>et al.</i> , 2008b
methoxy-9H-fluoren-			
9-one [286]			
2,4,7-Trihydroxy-5-	D. chrysotoxum	Stem	Yang <i>et al.,</i> 2004
methoxy-9-			
fluorenone [287]			
2,4,7-Trihydroxy-1,5-	D. chrysotoxum	Stem	Yang <i>et al.,</i> 2004
dimethoxy-9-			
fluorenone [288]			
Others		J.S.	
3,6,9-Trihydroxy-3,4-	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
dihydroanthracen-1-	หาลงกรณมหา	วทยาลย -	
(2 <i>H</i>)-one [289] CHI	JLALONGKORN U	JNIVERSITY	
Palmarumycin JC2	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
[290]			
Dehydrovomifoliol [291]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010

Category and	Plant	Plant part	Reference
Compound			
4-(2-Hydroxypropyl)-	D. tortile	Whole plant	Limpanit <i>et al.</i> , 2016
2(5H)-furanone [292]			
5,7-Dihydroxy-	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et</i>
[293]	.shill / 1	9	<i>u</i> ., 2014
		12-1	

จุฬาสงกรณมหาวทยาลย Chulalongkorn University

CH₃-(CH₂)_n-CH₂-R

[213] Aliphatic acids: R = COOH, n = 19-31

[214] Aliphatic alcohol: R = OH, n = 22-32

[220] 3-Hydroxy-2-methoxy-5,6-dimethylbenzoic acid

[**245**] Ferulaldehyde: R = CHO

[254] Salidrosol

[**270**] Syringaresinol-4-*O*-D-monoglucopyranoside: R = H

[278] (-)-(8R,7'E)-4-Hydroxy-3,3',5,5'-tetramethoxy-8,4'-oxyneolign-7'-ene-9,9'-diol

4,9-bis-O- β -D-glucopyranoside: R = OH; 8R

[279] (-)-(85,7'E)-4-Hydroxy-3,3',5,5'-tetramethoxy-8,4'-oxyneolign-7'-ene-9,9'-diol

4,9-bis-O- β -D-glucopyranoside: R = OH; 8S

[280] (-)-(8*R*,7'*E*)-4-Hydroxy-3,3',5,5',9'-pentamethoxy-8,4'-oxyneolign-7'-ene-9-ol

4,9-bis-O- β -D-glucopyranoside: R = OMe; 8R

Figure 5 Structures of miscellaneous compounds previously isolated from *Dendrobium* species (continued)

Figure 5 Structures of miscellaneous compounds previously isolated from *Dendrobium* species (continued)

2. Traditional uses and biological activities of Dendrobium species

Several *Dendrobium* species have been used as folk medicine for a thousand years in many countries, for example, China, India, and Japan. In China, more than seventy species of *Dendrobium* were mentioned in many Chinese pharmacopoeias under the same Chinese name "Shi hu". Their ethnopharmacological properties were recorded that they are a source of astringent, tonic, analgesic, antipyretic, and anti-inflammatory substances. Thus, they have been used to treat plenty of disorders, such as, enhancing the production of body fluids, supplementing the stomach, clearing heat and nourishing Yin (Xu *et al.*, 2013; Cakova *et al.*, 2017). In addition, they are also used as medicinal herbs for reducing fever, eye, kidney and lung disorders, stomach diseases, red tongue, swelling, dry mouth, hyperglycemia, diabetes, and immunomodulatory as well as anti-aging effects (Yang *et al.*, 2007a; Rungwichaniwat *et al.*, 2014).

Dendrobium orchids are known to produce a variety of secondary metabolites, for instance, bibenzyls, phenanthrenes, sesquiterpenes, fluorenones, and alkaloids, which have been studied for a number of pharmacological activities (Lo *et al.*, 2004). At present, accumulating researches provide evidence that different *Dendrobium* species demonstrate numerous medicinal activities, including anti-inflammatory, antiplatelet aggregation, hemagglutinating, anti-fibrotic, anti-viral, anti-fungal, antimicrobial, antimalarial, anti-diabetic, inhibition of cataractogenesis, anticancer, antiangiogenesis, hepatoprotective, neuroprotective, immunomodulatory, free radical scavenging and antioxidant activities (Ng *et al.*, 2012; Cakova *et al.*, 2017).

Scientific literature reports a large number of studies on the free radical scavenging activity or antioxidative activity of the extracts from *Dendrobium* orchids. For instance, the methanolic extracts of *D. tosaense* and *D. moniliforme* at a concentration of 0.4 mg/mL were able to scavenge DPPH radical at 95.9 and 83.4%, respectively (Lo *et al.*, 2004). In another study, several compounds isolated from the aerial part of *D. secundum* (moscatilin [**35**], 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl [**40**], ferulic acid [**246**], and syringaresinol [**275**]) were measured for their DPPH radical scavenging activity and found to appreciable activity (IC₅₀ = 5.14, 15.87, 37.52, and 0.24 μ M, respectively) compared with quercetin and Trolox[®] as the positive controls (IC₅₀ =

2.47 and 11.68 μ M, respectively) (Sritularak *et al.*, 2011b). Batatasin III [19], gigantol [31], 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrenequinone [93], and hircinol [111] also showed DPPH free radical scavenging activity similar to quercetin and Trolox[®] (Sritularak *et al.*, 2011a). Moscatilin [35] demonstrated the strongest DPPH radical scavenging activity with IC₅₀ 8.5 μ M, whereas 3,3'-dihydroxy-4,5-dimethoxybibenzyl [26] and apigenin [146] exhibited appreciable activity (IC₅₀ 19.5 and 19.3 μ M, respectively) compared with the positive controls quercetin and vitamin C (IC₅₀ 8.3 and 42.4 μ M, respectively) (Rungwichaniwat *et al.*, 2014). In the ORAC assay, chrysotoxine [22], crepidatin [23], gigantol [30], moscatilin [35], nobilin D [64], dendroflorin [283], and nobilone [285] showed higher antioxidant activity than vitamin C (Zhang *et al.*, 2007a). In another study, polysaccharides isolated from *D. denneanum*, *D. fimbriatum*, *D. huoshanense*, *D. nobile*, and *D. officinale* manifested potential antioxidant and free radical scavenging activities toward DPPH, hydroxyl, and ABTS free radicals (Luo *et al.*, 2009; Luo *et al.*, 2011; Luo and Fan, 2011; Tian *et al.*, 2013; Luo *et al.*, 2016).

With regard to the antidiabetic activity of contituents of *Dendrobium*, research has been focused on hypoglycemic and α -glucosidase inhibitory activity. The polyphenolic loddigesiinols G-J [136-139] and a bibenzyl derivative named crepidatuol B [54] from D. loddigesii were examined for the α -glucosidase inhibitory activity by spectrophotometry. All compounds were significantly stronger α -glucosidase inhibitors than the positive control trans-resveratrol (Lu et al., 2014). In another study in D. formosum, confusarin [79] and 5-methoxy-7-hydroxy-9,10-dihydro-1,4phenanthrenequinone [93] at a concentration of 50 µg/ml, were evaluated. They inhibited α -glucosidase more than 50% and their IC₅₀ (189.78 and 126.88 μ M, respectively) are lower than that of acarbose (745.9 µM). Moscatilin [36] at 100 µg/ml and lusianthridin [103] at 1 and 10 µg/ml, isolated from D. formosum in the same study, demonstrated glucose uptake stimulatory effect without toxicity in L6 skeletal muscle cells (Inthongkaew et al., 2017). In addition, a flavonol glycoside named 5hydroxy-3-methoxy-flavone-7-O-[β -D-apiosyl-(1-6)]- β -D-glucoside [164] and a bibenzyl named gigantol [30] from D. devonianum were also analyzed for their α -glucosidase inhibitory activity. Their enzyme inhibition at the concentration of 437.5 mmol/L were 43.4 and 36.7%, respectively, and these results were higher than that of acarbose (Sun *et al.*, 2014).

An investigation on the antiplatelet aggregation activity of the stem of *D. loddigesii* revealed that the phenanthrene moscatin [**95**], and the bibenzyls moscatilin [**35**] and moscatilin diacetate [**36**] could significantly inhibit rabbit platelet aggregation induced by arachidonic acid, collagen, and platelet-activating factor or PAF (Chen *et al.*, 1994). In another *in vitro* study with coherent results, gigantol [**30**], moscatilin [**35**], homoeriodictyol [**142**], scoparone [**261**], and scopoletin [**262**] isolated from *D. densiflorum* also demonstrated potent antiplatelet aggregation activity on rat platelet aggregation in preliminary tests *in vitro* (Fan *et al.*, 2001). Moreover, trigonopol A [**51**], a compound from *D. trigonopus*, at 0.0014 M exhibited antiplatelet aggregation activity with a moderate inhibitory ratio (67.55%) in a preliminary pharmacological test *in vitro* (Hu *et al.*, 2008b).

In the search for new anticancer substances, the bibenzyls and related compounds from *D. brymerianum* including gigantol [30], moscatilin [35], lusianthridin [103], and dendroflorin [283] displayed appreciable cytotoxic properties against human lung cancer cell lines with IC₅₀ values of 196.7, 23.4, 65.0, and 125.8 μ g/mL, respectively. Moreover, lusianthridin [103] and dendroflorin [283] also exhibited antimigratory activity at nontoxic concentrations (Klongkumnuankarn et al., 2015). Moscatilin [35] from *D. pulchellum* could suppress the motility and invasion of human non-small cell lung cancer H23 cells at nontoxic concentrations, which indicated the antimetastatic potential of this agent (Kowitdamrong et al., 2013). Gigantol [30] from D. draconis could hinder the non-small cell lung cancer H460 cell migration (Charoenrungruang et al., 2014). 4,5,4'-Trihydroxy-3,3'-dimethoxybibenzyl [40], 4,4'dihydroxy-3,5-dimethoxybibenzyl [45], chrysoeriol [148] and luteolin [149] from D. ellipsophyllum, at non-toxic concentrations, manifested anoikis-sensitizing effect and apoptosis induction (Tanagornmeatar et al., 2014). Dendrocandin B [5], 3,4-dihydroxy-5,4'-dimethoxybibenzyl [44], dendrocandin I [48], dendrofalconerol A [66], and dendrosignatol [69] from D. signatum showed potential cytotoxic property against many human cancer cell lines, including HepG2, HT-29, and MDA-231 cells (Mittraphab *et al.*, 2016).

In addition, 2-(*p*-hydroxyphenyl) ethyl *p*-coumarate [**247**], a phenylpropanoid from *D. falconeri* was evaluated for anti-herpes simplex virus type 1 (HSV-1) activity using the plaque reduction method with acyclovir as the positive control. It exhibited moderate anti-HSV-1 activity with an EC₅₀ value of 352.1 μ M, whereas the EC₅₀ of acyclovir was 0.25 μ M (Sritularak and Likhitwitayawuid, 2009). Another study on, densiflorol B [**87**] and phoyunnanin E [**73**] from *D. venustum* demonstrated moderate antimalarial activity (IC₅₀ = 1.3 and 1.1 μ M, respectively) compared with dihydroartemisinin and mefloquine as positive controls (IC₅₀ = 0.002 and 0.031 nM) (Sukphan *et al.*, 2014).

Chulalongkorn University

CHAPTER III EXPERIMENTAL

1. Source of plant materials

The whole plant of *Dendrobium palpebrae* Lindl. was purchased from Jatujak market, Bangkok, Thailand, in November 2012. Authentication was performed by Associate Professor Thatree Phadungcharoen (Faculty of Pharmacy, Rangsit University) and comparison with the database of the Botanical Garden Organization. A voucher specimen (BS-DPal-112555) has been deposited at the herbarium of the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

2. General techniques

2.1 Analytical thin-layer chromatography (TLC)

2.1.1 Normal-phase thin-layer chromatography

Technique	:	One-dimension ascending				
Absorbent	:	Silica gel 60 F254 precoated plate (E. Merck)				
Temperature	:	Laboratory temperature (30-35 °C)				
Detection	etection : 1. Ultraviolet light at wavelengths of 254 and 365 nm.					
		2. Spraying with anisaldehyde reagent (<i>p</i> -anisaldehyde 15 g in				
		ethanol 250 mL and concentrated sulfuric acid 2.5 mL) and				
		heating at 105 °C for 10 minutes.				
2	.1.2 F	Reverse-phase thin-layer chromatography				
Technique	:	One-dimension ascending				
Absorbent	:	RP C-18 precoated on aluminum sheet (Anal Tech)				
Temperature	:	Laboratory temperature (30-35 °C)				
Detection	:	Ultraviolet light at wavelengths of 254 and 365 nm.				

2.2 Column chromatography (CC)

2.2.1 Vacuum liquid chromatography (VLC)

Adsorbent	:	Silica gel 60 (No. 1.07734.2500), size 0.063-0.200 mm (E. Merck)			
Packing method : Dry packing					
Sample loading	:	The sample was dissolved in a small volume of organic solvent, mixed with a small quantity of the adsorbent, triturated, dried and then gradually placed on top of the column.			
Detection	:	Each fraction was examined by TLC under UV light at the			
		wavelengths of 254 and 365 nm.			
2.2	2.2 F	lash column chromatography (FCC), normal phase			
Adsorbent	:	Silica gel 60 (No. 1.09385.2500), size 0.040-0.063 mm (E. Merck)			
Packing method	:	Dry packing			
Sample loading	:	The sample was dissolved in a small volume of organic solvent, mixed with a small quantity of the adsorbent, triturated, dried and then gradually placed on top of the column.			
Detection	:	Fractions were examined as described in section 2.2.1			
2.2	2.3 F	lash column chromatography (FCC), reverse phase			
Adsorbent	:	C-18 (No. 1.10167.1000), size 40-63 µm (E. Merck)			
Packing method	:	Wet packing			
Sample loading	:	The sample was dissolved in a small volume of organic solvent,			
		and then gradually loaded on top of the column.			
Detection	:	Fractions were examined as described in section 2.2.1			

2.2.4 Gel filtration chromatography

- **Gel filter** : Sephadex LH-20 particle size 25-100 µm (GE Healthcare)
- Packing method : An appropriate organic solvent was used as the eluent. Gel filter was suspended in the eluent, left standing about 24 hours prior to use and then poured into the column and left to set tightly.
- Sample loading : The sample was dissolved in a small volume of the eluent and then gradually distributed on top of the column.
- Detection : Fractions were examined in a similar manner as described in section 2.2.1

2.3 Spectroscopy

2.3.1 Ultraviolet (UV) spectra

UV spectra were recorded on a Milton Roy Spectronic 3000 Array spectrophotometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.3.2 Infrared (IR) spectra

IR spectra were recorded on a Perkin-Elmer FT-IR 1760X spectrophotometer (Scientific and Technology Research Equipment Center, Chulalongkorn University).

2.3.3 Mass spectra

Mass spectra were recorded on a Bruker micro TOF mass spectrometer (ESI-MS) (Department of Chemistry, Faculty of Sciences, Mahidol University).

2.3.4 Proton and carbon-13 nuclear magnetic resonance (¹H and ¹³C-NMR) spectra

¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectra were recorded on a Bruker Avance DPX-300 FT-NMR spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University). ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) spectra were recorded on a Bruker Avance III HD 500 NMR spectrometer (Scientific and Technology Research Equipment Center, Chulalongkorn University).

Solvents for NMR spectra were deuterated acetone (acetone- d_6), deuterated methanol (CD₃OD) and deuterated chloroform (CDCl₃). Chemical shifts were reported in ppm scale using the chemical shift of the solvent as the reference signal.

2.4 Solvents

All organic solvents employed throughout this work were of commercial grade and were redistilled prior to use.

3. Extraction and isolation

3.1 Extraction

The dried and ground whole plants of *D. palpebrae* (1.7 kg) were macerated with 10 liters of methanol for 72 hours three times. The organic solvent was evaporated under reduced pressure to give 170 g of methanol crude extract. This extract was suspended in water and partitioned with EtOAc and then *n*-butanol to give an EtOAc extract (70 g), an *n*-butanol extract (40 g), and an aqueous extract (58 g). All three extracts were screened for free radical scavenging activity by DPPH radical scavenging assay. The EtOAc extract showed the highest activity with >80% reduction at 100 µg/mL. Thus, the EtOAc extract was selected for further investigation (**Scheme 1**).

3.2 Isolation

The EtOAc extract (70 g) was initially fractionated by vacuum liquid chromatography (VLC) as described in section 2.2.1. (**Scheme 2**) Silica gel (No.7734) was used as the stationary phase and a step gradient of hexane-EtOAc (1:0 to 0:1) as the mobile phase. The eluates were collected about 500 mL per fraction, examined by TLC (silica gel, hexane-EtOAc) and combined to give six fractions (A-F).

Scheme 1 Separation of the MeOH extract of Dendrobium palpebrae

Scheme 2 Separation of the EtOAc extract of Dendrobium palpebrae

Scheme 2 Separation of the EtOAc extract of Dendrobium palpebrae (continued)

Scheme 2 Separation of the EtOAc extract of Dendrobium palpebrae (continued)

3.2.1 Isolation of compound DPB-1 (Dendropalpebrone)

Fraction E (10.6 g) was separated by FCC over silica gel (No. 9385) as the stationary phase with a gradient mixture of hexane-EtOAc (1:0 to 0:1) to give nineteen fractions (EI-EXIX).

Fraction EXV (413 mg) was further separated by FCC using silica gel as the stationary phase with a gradient of hexane-EtOAc (1:0 to 0:1) to afford eight fractions (EXV1-EXV8).

Fraction EXV6 was purified on a Sephadex LH-20 column, eluted with methanol, to give twenty-one fractions (EXV6a-EXV6u). Fraction EXV6o was subjected to repeated separation by FCC over silica gel with a gradient mixture of hexane-EtOAc (1:0 to 0:1) to give four sub-fractions (1-4)

Finally, sub-fraction 2 was purified on a Sephadex LH-20 column (methanol) to yield compound DPB-1 as an orange amorphous solid (3 mg). DPB-1 was characterized as a new dimeric structure consisting of a phenanthrene and a phenanthraquinone unit and named as dendropalpebrone.

3.2.2 Isolation of compound DPB-2 (Gigantol)

Fraction EX (745 mg) was fractionated on a silica gel column using as a gradient mixture of hexane-EtOAc (1:0 to 0:1) as the mobile phase. Then, it was further purified on Sephadex LH-20 (methanol) to give compound DPB-2 (33 mg). It was identified as gigantol.

3.2.3 Isolation of compound DPB-3 (Lusianthridin)

Fraction EXI (1.1 g) was fractionated by FCC using silica gel (No. 9385) as the stationary phase with a step gradient mixture of hexane-EtOAc (1:0 to 0:1). Nine sub-fractions (EXI1-EXI9) were obtained.

Fraction EXI5 (361 mg) was further purified on Sephadex LH-20 (methanol) to give compound DPB-3 (115 mg) as a brown amorphous solid. It was later identified as lusianthridin.

3.2.4 Isolation of compound DPB-4 (Nobilone)

Fraction EXI6 (649 mg) was separated by CC using C-18 as the stationary phase with a mixture of methanol- H_2O (1:9) as the mobile phase. Compound DPB-4 was obtained after purification on CC over silica gel (CH_2Cl_2 -hexane gradient (1:0 to 0:1)) as a red amorphous solid (11 mg) and was later identified as nobilone.

3.2.5 Isolation of compound DPB-5 (3,7-Dihydroxy-2,4,8-trimethoxyphenanthrene) and DPB-6 (2,5-Dihydroxy-4,9-dimethoxyphenanthrene)

Fraction EXI7 (156 mg) was purified by CC over Sephadex LH-20, eluted with methanol to give compound DPB-5 as a yellowish white crystal (7 mg). It was identified as 3,7-dihydroxy-2,4,8-trimethoxyphenanthrene and compound DPB-6 as a light-yellow powder (13 mg). It was identified as 2,5-dihydroxy-4,9-dimethoxyphenanthrene.

3.2.6 Isolation of compound DPB-7 (Moscatilin)

Fraction EXI8 (491 mg) was further fractionated on a Sephadex LH-20 column and methanol as mobile phase to afford DPB-7 as a brown amorphous solid (238 mg). It was later identified as moscatilin.

3.2.7 Isolation of compound DPB-8 (Scoparone), DPB-9 (4,5,4'-Trihydroxy-3,3'-dimetho-xybibenzyl), and DPB-10 (Dendroflorin)

Fraction EXIII (486 mg) was separated by FCC using silica gel (No. 9385) as the stationary phase with a step gradient mixture of hexane-EtOAc (1:0 to 0:1). Fifteen fractions (EXIII1-EXIII15) were obtained.

Then, fraction EXIII9 (21 mg) was further purified on Sephadex LH20 (methanol) to yield compound DPB-8 as a pale brown powder (5 mg), DPB-9 as a brown amorphous solid (3 mg), and DPB-10 as a red amorphous solid (4 mg). These compounds were later identified as scoparone, 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl, and dendroflorin, respectively.

4. Physical and spectral data of isolated compounds

4.1 Compound DPB-1 (Dendropalpebrone)

Compound DPB-1 was obtained as an orange amorphous solid (3.0 mg, 0.00018% based on dried weight of whole plant). It was soluble in methanol.

UV	:	λ_{max} nm (log ϵ), in methanol: 221 (4.28), 258 (4.23), 283 (4.14);				
		see Figure 6				
FT-IR	:	ν cm $^{\text{-1}}$ (film): 3433, 2918, 2850, 1731, 1627, 1469, 1180; see Figure 7				
HR-ESI-MS	:	[M+H] ⁺ ion at <i>m/z</i> 559.1368 (C ₃₂ H ₂₄ O ₈); see Figure 8				
¹ H NMR	:	δ ppm, 500 MHz, in CD $_3$ OD; see Table 5, Figure 9				
¹³ C NMR	:	δ ppm, 125 MHz, in CD $_3$ OD; see Table 5, Figure 10				
4.2	Con	npound DPB-2 (Gigantol)				

Compound DPB-2 was obtained as a brown amorphous solid (33.0 mg, 0.00194% based on dried weight of whole plant). It was soluble in acetone.

- HR-ESI-MS : $[M+H]^+$ ion at m/z 297.1111 ($C_{16}H_{18}O_4$); see Figure 14
- ¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 6, Figure 15
- ¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 6, Figure 16

4.3 Compound DPB-3 (Lusianthridin)

Compound DPB-3 was obtained as a brown amorphous solid (115.0 mg, 0.00676% based on dried weight of whole plant). It was soluble in acetone.

- **HR-ESI-MS** : $[M+H]^+$ ion at m/z 265.0845 ($C_{15}H_{14}O_3$); see Figure 18
- ¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 7, Figure 19
- ¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 7, Figure 20

4.4 Compound DPB-4 (Nobilone)

Compound DPB-4 was obtained as a red amorphous solid (11.0 mg, 0.00065% based on dried weight of whole plant). It was soluble in acetone.

HR-ESI-MS	:	$[M+H]^+$ ion at m/z 265.0479 (C ₁₄ H ₁₀ O ₄); see Figure 24	ł
-----------	---	---	---

¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 8, Figure 25

¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 8, Figure 26

4.5 Compound DPB-5 (3,7-Dihydroxy-2,4,8-trimethoxyphenanthrene)

Compound DPB-5 was obtained as pale-yellow crystals (7.0 mg, 0.00041% based on dried weight of whole plant). It was soluble in acetone.

HR-ESI-MS : $[M+H]^+$ ion at m/z 323.0896 ($C_{17}H_{16}O_5$); see **Figure 30**

¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 9, Figure 31

¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 9, Figure 32

4.6 Compound DPB-6 (2,5-Dihydroxy-4,9-dimethoxyphenanthrene)

Compound DPB-6 was obtained as a light-yellow powder (13.0 mg, 0.00076% based on dried weight of whole plant). It was soluble in acetone.

HR-ESI-MS : $[M+H]^+$ ion at m/z 293.0791 ($C_{16}H_{14}O_4$); see **Figure 36**

- ¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 10, Figure 37
- ¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 10, Figure 38

4.7 Compound DPB-7 (Moscatilin)

Compound DPB-7 was obtained as a brown amorphous solid (238.0 mg, 0.014% based on dried weight of whole plant). It was soluble in acetone.

HR-ESI-MS : $[M+H]^+$ ion at m/z 327.1219 ($C_{17}H_{20}O_5$); see **Figure 42**

- ¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 11, Figure 43
- ¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 11, Figure 44

4.8 Compound DPB-8 (Scoparone)

Compound DPB-8 was obtained as a pale brown powder (5.0 mg, 0.00029% based on dried weight of whole plant). It was soluble in chloroform.

HR-ESI-MS : $[M+H]^+$ ion at m/z 229.0470 ($C_{11}H_{10}O_4$); see Figure 48

¹ H NMR	:	δ ppm,	300 MHz,	in CDCl ₃ ; see	Table 12,	Figure 49
--------------------	---	---------------	----------	----------------------------	-----------	-----------

¹³C NMR : δ ppm, 75 MHz, in CDCl₃; see Table 12, Figure 50

4.9 Compound DPB-9 (4,5,4'-Trihydroxy-3,3'-dimethoxybibenzyl)

Compound DPB-9 was obtained as a brown amorphous solid (3.0 mg, 0.00018% based on dried weight of whole plant). It was soluble in acetone.

HR-ESI-MS	:	[M+H] ⁺ i	on at <i>m/z</i>	313.1060	$(C_{16}H_{18}O_5);$	see Figure 53
-----------	---	----------------------	------------------	----------	----------------------	---------------

¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 13, Figure 54

¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 13, Figure 55

4.10 Compound DPB-10 (Dendroflorin)

Compound DPB-10 was obtained as a red amorphous solid (4.0 mg, 0.00024% based on dried weight of whole plant). It was soluble in acetone.

HR-ESI-MS : $[M+H]^+$ ion at m/z 281.0417 ($C_{14}H_{10}O_5$); see Figure 59

¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 14, Figure 60

¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 14, Figure 61

5. Free radical scavenging activity assays

5.1 Sample preparation Solumning

Approximately 3 mg of the sample was dissolved in 300 µL of dimethyl sulfoxide (DMSO) to give a "stock solution". The stock solution was further diluted with DMSO for the oxygen radical absorbance capacity assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay. For the deoxyribose degradation assay, results can be interfered by high concentration of DMSO. Therefore, the stock solution in this case was diluted with distilled water before use.

5.2 Oxygen radical absorbance capacity assay (ORAC assay)

At present, there are many methods for evaluation of antioxidant proper *in vitro*. The oxygen radical absorbance capacity (ORAC) assay has been widely used to determine the antioxidant property in the pharmaceutical, nutraceutical, and food

industries (Huang *et al*, 2002). The ORAC assay is based on a competitive reaction between an agent with antioxidation activity and a fluorescent probe, which is fluorescein (FL), for a radical (usually peroxyl radical) initiated by the thermal decomposition of azo-compounds, namely, 2,2'-azobis(2-amidinopropane)-dihydrochloride (AAPH). The removal of peroxyl radicals by the sample or the positive control which has antioxidant property, decreases the degradation of fluorescein. Results of the attack of radicals and defense by the antioxidant are displayed as area under the curve (AUC) of the fluorescence declination. A standard calibration line is plotted by evaluating the radical clearing activity of a standard antioxidant, for example, Trolox[®] (Lucas-Abellán *et al.*, 2008; Roy *et al.*, 2010).

5.2.1 Materials and instruments

- 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) (Sigma-Aldrich)
- Trolox[®] (Sigma-Aldrich)
- Fluorescein (FL) (Sigma-Aldrich)
- Black 96-well microplate (Corning)
- Microplate reader (CLARIOstar, BMG LABTECH)
- Ultrasonic bath (Transsonic 570/H, Elma)
- Vortex mixer (Vortex-Genie2, Scientific Industries)

5.2.2 Determination of oxygen radical absorbance capacity assay

The ORAC assay in this study used black 96-well plates with a microplate reader. The assay was conducted at 37 °C under pH 7.4 with a blank sample in parallel. FL was used as the substrate, and Trolox[®], which is a water-soluble analogue of vitamin E, was applied as a positive control at concentrations 0 – 100 μ M. 2,2'-Azobis(2-amidinopropane) dihydrochloride (AAPH) was used to generate peroxyl radical. The reaction mixture contained the sample, at 50 μ g/mL, or in positive control, Trolox[®] (25 μ L), fluorescein in buffer pH 7.4 (150 μ L) and AAPH (25 μ L), while the blank was a reaction mixture without sample or Trolox[®]. The fluorescence of FL was recorded every minute

after addition of AAPH by microplate reader at an excitation wavelength of 485 nm and an emission wavelength of 530 nm. The fluorescent results were expressed relative to the initial reading. Moreover, the results were calculated using net areas under the FL decay curves (AUC) obtained by subtracting the AUC of the blank from the AUC of the sample. Trolox[®] concentrations against the average net AUC of the two measurements (Trolox[®] and sample) for each concentration were plotted as the standard curve. The final values were expressed as micromole Trolox[®] equivalent (TE) per gram of sample (µmol TE/g) (Huang *et al.*, 2002).

5.3 2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay

2,2-Diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity assay was popularly used as the first method to screen the antioxidant property of a crude extract, a compound, or other biological sources. This is due to the speed and simplicity of the method. DPPH radicals are stable. They can delocalize the spare electron over another DPPH molecules. Thus, unlike most other free radicals, they do not bind each other to become dimeric molecule. Moreover, because of the delocalization, their color is deep violet with absorbance at around 517 nm. If DPPH radicals are mixed with a substance which is able to donate a hydrogen atom, they will change to the reduced form and gradually become yellow (Kedare and Singh, 2011).

GHULALONGKORN UNIVERSIT

5.3.1 Materials and instruments

- 2,2-Diphenyl-1-picrylhydrazyl (DPPH) (Sigma-Aldrich)
- 96-well microplate (Corning)
- Microplate reader (CLARIOstar, BMG LABTECH, Germany)
- Ultrasonic bath (Transsonic 570/H, Elma)
- Vortex mixer (Vortex-Genie2, Scientific Industries)

5.3.2 Determination of DPPH radical scavenging activity assay

The DPPH assay was carried out according to Lu *et al.* (Lu *et al.*, 2014). The radical scavenging activity (RSA) was evaluated by the change of color from violet to yellow. A diluted sample at 50 μ g/mL or 22 μ L of stock solution was added to wells in a 96-well microplate, and 200 μ L of 150 μ M DPPH in methanol was added to the well subsequently. The microplate was covered and kept in the dark at room temperature for 30 minutes. The absorbance was monitored at wavelength of 517 nm by microplate reader. The result was expressed as percentage of radical scavenging activity (%RSA) calculated by the following formula:

%RSA =
$$\left[\frac{(\text{Absorbance of blank} - \text{Absorbance of sample})}{\text{Absorbance of blank}}\right] \times 100$$

5.4 Deoxyribose degradation assay

The reaction of the complex of iron and ethylene diamine tetraacetic acid $(Fe^{2+}-EDTA)$ with hydrogen peroxide (H_2O_2) in the presence of ascorbic acid generates the hydroxy radical (*OH). Then, this radical attacks deoxyribose to produce malondialdehyde (MDA). The reaction of MDA with thiobarbituric acid (TBA) at low pH and high temperature condition produces a pink chromogen of MDA-TBA adduct. Its absorbance can be measured at 532 nm. If a compound with antioxidant activity interrupts the degradation of deoxyribose by hydroxy radical attack, the absorbance at 532 nm of the pink chromogen will decrease (Halliwell *et al.*, 1987; Cheeseman *et al.*, 1988).

5.4.1 Materials and instruments

- KH₂PO₄ (Merck)
- KOH (Merck)
- Deoxyribose (Sigma-Aldrich)
- Ferric chloride (FeCl₃) (Sigma-Aldrich)
- Ethylene diamine tetraacetic acid (EDTA) (Merck)

- Ascorbic acid (Sigma-Aldrich)
- Hydrogen peroxide (H₂O₂) (Merck)
- Thiobarbituric acid (TBA) (Sigma-Aldrich)
- Trichloroacetic Acid (TCA) (Merck)
- 96-well microplate (Corning)
- Microplate reader (CLARIOstar, BMG LABTECH, Germany)
- Ultrasonic bath (Transsonic 570/H, Elma)
- Vortex mixer (Vortex-Genie2, Scientific Industries)

5.4.2 Determination of deoxyribose degradation assay

The reaction mixture contained, in a final volume of 1 mL, the following reagents:

- 200 μL of 100 mM KH_2PO_4/KOH buffer
- 200 µL of 15 mM deoxyribose
- 200 μL of 500 μM FeCl₃
- 100 µL of 1 mM EDTA
- 100 µL of 1 mM ascorbic acid
- 100 μ L of 10 mM H₂O₂ MGKORN UNIVERSITY
- 100 μL of diluted sample at concentration 50 $\mu g/mL$ or diluted Trolox $^{\tiny (B)}$ used as positive control

The mixture was incubated at 37 °C for 1 hour. One mL of 1 %w/v TBA was added to each mixture followed by the addition of 1 mL of 2.8 %w/v TCA. The mixture solution was heated at 90 °C for 20 minutes by water bath to develop the pink color of malondialdehyde–thiobarbituric acid, and the absorbance was measured at 532 nm. The percent of hydroxyl radical scavenging activity of the sample was calculated using the following formula:

% Hydroxyl radical scavenging activity =
$$\left[\frac{(AB - AS)}{AB}\right] \times 100$$

where, AB is absorbance of blank, and AS is absorbance of sample

5.5 Intracellular antioxidant activity in cell culture

Cells were simultaneously treated with the test sample and H_2O_2 . The antioxidant ability of each test compound was assessed by measuring the reduction of cellular ROS synthesis.

Nonfluorescent DCFH-DA (2',7'-dichlorofluorescein diacetate) diffuses into cells containing esterase that has the ability to cleave diacetate to form DCFH (2',7'-dichlorodihydrofluorescein). ROS can oxidize the nonfluorescent DCFH to yield fluorescent DCF (2',7'-dichlorofluorescein). Therefore, the ROS level in the cell was evaluated by observing fluorescent signal generated from oxidized DCFH-DA (Soh, 2006).

5.5.1 Materials and instruments

- RAW 264.7 murine macrophage cell lines (ATCC TIB71)
- Dulbecco's modified eagle's medium (DMEM) (Invitrogen)
- Heat-inactivated fetal bovine serum (FBS) (Invitrogen)
- Streptomycin (Invitrogen)
- Penicillin (Invitrogen)
- 2′,7′-Dichlorofluorescein diacetate (DCFH-DA) (Sigma-Aldrich)
- Hydrogen peroxide (H₂O₂) (Merck)
- Quercetin (Sigma-Aldrich)
- Black 96-well culture plate (Corning)
- Fluorescence microplate reader (CLARIOstar, BMG LABTECH)
- Incubator (Forma Series II, Thermo Scientific)
- Ultrasonic bath (Transsonic 570/H, Elma)
- Vortex mixer (Vortex-Genie2, Scientific Industries)

5.5.2 Determination of intracellular antioxidant activity in cell culture

For cell culturing, RAW 264.7 cells, which are murine macrophage cells, were cultured in DMEM supplemented with 10% heat-inactivated FBS, 100 μ g/mL streptomycin, and penicillin. This study was done at the controlled temperature of 37 °C and humidified atmosphere of 5% CO₂/95% air.

RAW 264.7 cells were plated at 2×10^4 cells/mL in black 96-well culture plates and incubated for 24 hours. Cells were washed with serum-free medium and treated with 50 µg/mL of each compound for 24 hours. Therefrom, the cells were washed and treated with 5 µM of DCFH-DA in serum-free medium for 30 minutes before the addition of 1 mM of H₂O₂ for 30 minutes to induce ROS production. The fluorescence intensity was monitored by using a fluorescence microplate reader with excitation at 485 nm and emission at 530 nm. The ROS production in the cells related to the monitored fluorescence intensity and the %ROS inhibition was calculated using the following formula:

%ROS inhibition =
$$\left[\frac{\left(Fluorescence_{control} - Fluorescence_{sample}\right)}{Fluorescence_{control}}\right] \times 100$$

In addition, dendroflorin was selected for further evaluation for intracellular antioxidant activity in cell culture, at concentrations which were not toxic to cell (12.5, 25.0, and 50.0 μ g/mL), by the above-mentioned procedure.

5.6 Activity of antioxidant enzymes in cell culture

A cellular imbalance between the ROS system and antioxidant levels is known as oxidative stress. Mechanisms of action of several anti-oxidative compounds are related to antioxidant enzymes, namely, superoxide dismutase (SOD), glutathione peroxidase (GPx) and catalase (CAT). SOD can convert the superoxide radical into H_2O_2 and O_2 which are less toxic, while CAT can convert H_2O_2 into O_2 and H_2O . In case of GPx, H_2O_2 were converted into H_2O only. In summary, the net result is that the two potentially harmful species, superoxide radical and H_2O_2 , are changed to H_2O by these enzymes (Weydert and Cullen, 2010).

5.6.1 Materials and instruments

- RAW 264.7 murine macrophage cell lines (ATCC TIB71)
- Dulbecco's modified eagle's medium (DMEM) (Invitrogen)
- Heat-inactivated fetal bovine serum (FBS) (Invitrogen)
- Streptomycin (Invitrogen)
- Penicillin (Invitrogen)
- Hydrogen peroxide (H₂O₂) (Merck)
- Lysis buffer (Sigma-Aldrich)
- Quercetin (Sigma-Aldrich)
- SOD, GPx, and CAT cellular activity assay kit (Cayman Chemical)
- Six-well culture plates (Corning)
- Fluorescence microplate reader (CLARIOstar, BMG LABTECH)
- Incubator (Forma Series II, Thermo Scientific)
- Ultrasonic bath (Transsonic 570/H, Elma)
- Vortex mixer (Vortex-Genie2, Scientific Industries)

5.6.2 Determination of effect of dendroflorin on antioxidant

enzymes activity in cell culture

Murine macrophage cells (RAW 264.7) were cultured according to the protocol, reagents and conditions previously described in 5.5.2.

RAW 264.7 cells were plated at 1×10^6 cells/mL in six-well culture plates. Cells were incubated at 37 °C in a humidified atmosphere of 5% CO₂/95% air for 24 hours. Cells were washed with serum-free medium (free phenol red) and treated with 12.5, 25.0 and 50.0 µg/mL of dendroflorin for 24 hours. Cellular oxidative stress was induced by adding 1 mM of H₂O₂ for 30 minutes. Treated and induced cells were resuspended in an ice-cold lysis buffer at 4°C for 30 minutes and centrifuged at 13,500×g at 4°C for 5 minutes to attain cell lysate for evaluation of antioxidant enzyme activities. The SOD, GPx, and CAT activity was monitored by using SOD, GPx, and CAT cellular activity assay kits.

Chulalongkorn University

CHAPTER IV RESULTS AND DISCUSSION

In this research, the methanol extract of the dried and ground whole plants of *Dendrobium palpebrae* (1.7 kg) were suspended in water and partitioned with ethyl acetate (EtOAc) and *n*-butanol, respectively. The EtOAc extract demonstrated the strongest DPPH radical scavenging activity with more than 80% inhibition at a concentration of 100 μ g/mL. The EtOAc extract was further separated using several chromatographic techniques to afford ten compounds. The structures of these compounds were characterized using several spectroscopic techniques, including MS and NMR, as follows.

1. Structure determination of isolated compounds

1.1 Structure determination of compound DPB-1

Compound DPB-1 was obtained as an orange amorphous solid. The UV spectrum (**Figure 6**) of DPB-1 displayed absorptions at 221, 258, and 283 nm, and the IR spectrum (**Figure 7**) presented absorption bands for hydroxyl (3433 cm⁻¹), ketone (1731 cm⁻¹), and aromatic (2918 and 1627 cm⁻¹) functionalities. The HR-ESI mass spectrum (**Figure 8**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 559.1368 (calculated for C₃₂H₂₄O₈Na; 559.1369), suggesting the molecular formula C₃₂H₂₄O₈.

The ¹H NMR spectrum of DPB-1 (**Figure 9** and **Table 5**) displayed ten aromatic proton signals between 6.75 and 8.09 ppm and signals of four methoxy groups at $\delta_{\rm H}$ 3.56 (5-OMe), 3.81 (9'-OMe), 3.95 (7-OMe), and 4.13 (4'-OMe).

The ¹³C-NMR spectrum of this compound (**Figure 10** and **Table 5**) and the HSQC (**Figure 11**) spectral data displayed thirty-two carbon signals, including signals for four methoxy groups at δ_c 55.5 (9'-OMe), 55.7 (5-OMe), 56.2 (7-OMe) and 58.5 (4'-OMe). The other twenty-eight carbon signals could be differentiated into ten methine carbon signals at 99.6 (C-3'), 100.6 (C-8), 101.6 (C-10'), 102.8 (C-6), 115.1 (C-8'), 118.1 (C-6'), 123.3 (C-10), 128.6 (C-7'), 133.0 (C-9) and 136.6 (C-2) and eighteen quaternary carbon

signals at 110.7 (C-4a'), 112.2 (C-1'), 118.1 (C-4b), 121.4 (C-4b'), 129.0 (C-8a'), 131.8 (C-10a), 136.7 (C-4a), 136.8 (C-10a'), 140.9 (C-8a), 151.1 (C-3), 155.1 (C-5'), 155.6 (C-9'), 156.2 (C-2'), 157.6 (C-4'), 159.5 (C-5), 162.9 (C-7), 186.0 (C-1) and 190.1 (C-4). Moreover, two quaternary carbons at $\delta_{\rm C}$ 186.0 (C-1) and 190.1 (C-4) were carbonyl carbon, which is characteristic of a ketone group ($\delta_{\rm C}$ 190-215 ppm) (Hishinuma, *et al.*, 2015). The above spectral data were suggestive of a phenanthrene-phenanthraquinone dimeric structure.

For the phenanthraquinone unit, the following ¹H NMR signals appeared: a singlet proton signal at $\delta_{\rm H}$ 6.99 (1H, s, H-2), two pairs of doublet proton signals at $\delta_{\rm H}$ 6.75 (1H, d, J = 1.7 Hz, H-6), 7.01 (1H, d, J = 1.7 Hz, H-8), 8.04 (1H, d, J = 8.6 Hz, H-9), and 8.09 (1H, d, J = 8.6 Hz, H-10), and two methoxy groups at $\delta_{\rm H}$ 3.56 (3H, *s*, 5-OMe) and 3.95 (3H, *s*, 7-OMe). The phenanthrene unit showed ¹H NMR resonances for four aromatic protons and two methoxyls at $\delta_{\rm H}$ 6.75 (1H, *s*, H-10'), 6.88 (1H, *s*, H-3') 7.18 (1H, dd, J = 7.8, 1.4 Hz, H-6'), 7.45 (1H, *t*, J = 7.8 Hz, H-7'), 7.88 (1H, dd, J = 7.8, 1.4 Hz, H-8'), 3.81 (3H, *s*, 9'-OMe), and 4.13 (3H, *s*, 4'-OMe). The NMR data of the phenanthrene unit were similar to those of 2,5-dihydroxy-4,9-dimethoxyphenanthrene [**119**] which was previously reported (Leong *et al.*, 1997). However, the ¹H NMR spectrum of DPB-1 demonstrated the absence of the doublet proton of H-1' and the presence of a singlet proton of H-3' at $\delta_{\rm H}$ 6.88 (1H, *s*), as compared with 2,5-dihydroxy-4,9-dimethoxyphenanthrene [**119**].

The NOESY (**Figure 12**) and HMBC (**Figure 13**) experiments were performed to confirm the proposed structure. The NOESY spectrum displayed interactions of 5-OMe with H-6, 7-OMe with H-6 and H-8, 4'-OMe with H-3', and 9'-OMe with H-8' and H-10'. These interactions confirmed the locations of the methoxy groups at C-5, C-7, C-4', and C-9', respectively. The locations of H-6, H-8, and H-9 were supported by the NOESY cross-peaks of H-8 and H-9 and their HMBC correlations with C-4b (δ_c 118.1). The assignment of H-2 was confirmed from its HMBC correlations with C-4 (δ_c 190.1) and C-10a (δ_c 131.8). The linkage between C-1' of the phenanthrene unit and C-3 of the phenanthraquinone unit was deduced from the HMBC correlation between the signals

of H-2 and C-1^{\prime}. This was corroborated by the absence of H-3 in phenanthraquinone unit and H-1^{\prime} in phenanthrene unit of DPB-1.

Based on there spectral data, the structure of DPB-1 was established as shown, and this compound was named dendropalpebrone [**294**].

Table 5 NMR spectral data of compound DPB-1 (in CD₃OD)

Position	$\delta_{ m H}$ (mult., J in Hz)	δ _c	HMBC (correlation with ¹ H)
1		186.0	10
2	6.99 (s)	136.6	19
3	CHULALONGKOR	151.1 ER	SITY 2*
4	-	190.1	2
4a	-	136.7	10
4b	-	118.1	6, 8, 9
5	-	159.5	5-OMe, 6*
6	6.75 (d, 1.7)	102.8	8
7	-	162.9	6*, 7-OMe, 8*
8	7.01 (<i>d</i> , 1.7)	100.6	6, 9
8a	-	140.9	9*, 10

* Two-bonding coupling

Position	$\delta_{ extsf{H}}$ (mult., J in Hz)	δ_{C}	HMBC (correlation with ¹ H)
9	8.04 (<i>d</i> , 8.6)	133.0	8
10	8.09 (<i>d</i> , 8.6)	123.3	-
10a	-	131.8	2, 9
1'	-	112.2	2, 3′, 10′
2'	- 	156.2	3'*
3'	6.88 (<i>s</i>)	99.6	-
4'		157.6	3'*,4'-OMe
4a '		110.7	3 ′ , 10 ′
4b ′	-////	121.4	6 ′ , 8 ′
5 ′	- / / ***	155.1	6 ′ *, 7 ′
6 '	7.18 (dd, 7.8, 1.4)	118.1	8′
7'	7.45 (t, 7.8)	128.6	-
8'	7.88 (<i>dd</i> , 7.8, 1.4)	115.1	6'
8a '	CHULALONGKOR	129.0	SITY 7', 10'
9'	-	155.6	8', 9'-OMe, 10'*
10'	6.75 (<i>s</i>)	101.6	-
10a '	-	136.8	-
5-OMe	3.56 (<i>s</i>)	55.7	-
7-OMe	3.95 (<i>s</i>)	56.2	-
4'-OMe	4.13 (s)	58.5	-
9 ' -OMe	3.81 (<i>s</i>)	55.6	-

Table 5 NMR spectral data of compound DPB-1 (in CD_3OD) (continued)

* Two-bonding coupling

1.2 Structure determination of compound DPB-2

Compound DPB-2 was obtained as a brown amorphous solid. The HR-ESI mass spectrum (**Figure 14**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 297.1111 (calculated for C₁₆H₁₈O₄Na; 297.1103), suggesting the molecular formula C₁₆H₁₈O₄.

The ¹H NMR spectrum of compound DPB-2 (**Figure 15** and **Table 6**) indicated the presence of four methylene proton signals at $\delta_{\rm H}$ 2.80 (4H, m, H₂- α , H₂- α'). The ¹H NMR data also displayed six aromatic proton signals at $\delta_{\rm H}$ 6.28 (1H, t, J = 2.1 Hz, H-2), 6.31 (1H, t, J = 2.1 Hz, H-4), 6.35 (1H, t, J = 2.1 Hz, H-6), 6.67 (1H, dd, J = 8.1, 1.5 Hz, H-6'), 6.76 (1H, d, J = 8.1 Hz, H-5'), and 6.81 (1H, d, J = 1.5 Hz, H-2'), together with two methoxy signals at $\delta_{\rm H}$ 3.71 (3H, s, 3-OMe) and 3.79 (3H, s, 3'-OMe).

The ¹³C NMR data (**Figure 16** and **Table 6**) demonstrated sixteen carbon signals, including two methoxyl carbons at $\delta_{\rm C}$ 54.5 (C-3-OMe) and 55.3 (C-3'-OMe), two methylene carbons at $\delta_{\rm C}$ 37.1 (C- α') and 38.2 (C- α), six methine carbons at $\delta_{\rm C}$ 98.9 (C-4), 105.5 (C-6), 108.1 (C-2), 112.1 (C-5'), 114.7 (C-2') and 120.8 (C-6'), and six quaternary carbons at $\delta_{\rm C}$ 133.3 (C-1'), 144.4 (C-4'), 144.6 (C-1), 147.2 (C-3'), 158.4 (C-3) and 161.0 (C-5). These NMR data suggested that DPB-2 was a bibenzyl compound. The locations of methoxy groups were assigned at C-3' and C-3 according to the NOESY interactions (Figure 17) of 3'-OMe with H-2', and 3-OMe with H-2 and H-4, respectively.

Through comparison of ¹H and ¹³C NMR data of this compound with previously reported values (Klongkumnuankarn *et al.*, 2015), compound DPB-2 was identified as gigantol [**30**]. Gigantol [**30**] is a bibenzyl which is a major constituent frequently discovered in several species in the genus *Dendrobium*, for instance, *D. aphyllum* (Chen *et al.*, 2008c), *D. aurantiacum* var. *denneanum* (Liu *et al.*, 2009a), *D. brymerianum* (Klongkumnuankarn *et al.*, 2015), *D. densiflorum* (Fan *et al.*, 2001), *D. devonianum* (Sun *et al.*, 2014), *D. draconis* (Sritularak *et al.*, 2011a), *D. gratiosissimum* (Zhang *et al.*, 2008a), *D. formosum* (Inthongkaew *et al.*, 2017), *D. loddigesii* (Ito *et al.*, 2010), *D. longicornu* (Hu *et al.*, 2008a), *D. nobile* (Zhang *et al.*, 2007a), *D. officinale* (Zhao *et al.*, 2018), *D. polyanthum* (Hu *et al.*, 2009), *D. trigonopus* (Hu *et al.*, 2008b), *D. venustum* (Sukphan *et al.*, 2014), and *D. wardianum* (Zhang *et al.*, 2017).

Furthermore, gigantol [**30**] was previously reported that it had many pharmacological activities including appreciable DPPH radical scavenging activity (Sritularak *et al.*, 2011a), antiplatelet aggregation activity (Fan *et al.*, 2001), potent α -glucosidase inhibitory activity (Sun *et al.*, 2014), antimigratory of lung cancer cells activity in a time-dependent manner (Klongkumnuankarn *et al.*, 2015), moderate antimalarial activity and weak anti-herpetic activity (Sukphan *et al.*, 2014). It also exhibited appreciable cytotoxic activity against human lung cancer H460 cells (Klongkumnuankarn *et al.*, 2015), human leukemic promyelocytic HL-60 cells (Zhang *et al.*, 2008a), human acute monocytic leukemia THP-1 cells (Zhao *et al.*, 2018).

Position	Compound DF	°B-2	Gigantolª		
POSICION	$\delta_{ m H}$ (mult., J in Hz)	δ_{c}	$\delta_{ extsf{H}}$ (mult., J in Hz)	δ_{c}	
1	-	144.6	-	145.4	
2	6.28 (<i>t</i> , 2.1)	108.1	6.22 (<i>t</i> , 2.0)	108.8	
3	-	158.4	-	159.1	
4	6.31 (<i>t</i> , 2.1)	98.9	6.28 (t, 2.0)	99.6	
5	-	161.0	-	161.7	
6	6.35 (t, 2.1)	105.5	6.30 (<i>t</i> , 2.0)	106.2	
1′	///	133.3	<u> </u>	134.0	
2'	6.81 (<i>d</i> , 1.5)	114.7	6.79 (<i>d</i> , 1.5)	115.4	
3'	_	147.2	<u> </u>	147.9	
4'	-	144.4	<u> </u>	145.1	
5 ′	6.76 (d, 8.1)	112.1	6.69 (<i>d</i> , 8.0)	112.8	
6'	6.67 (dd, 8.1, 1.5)	120.8	6.64 (<i>dd</i> , 8.0, 1.5)	121.5	
α	2.80 (m) ONG	38.2	VERS 2.78 (m)	39.0	
α'	2.80 (m)	37.1	2.78 (m)	37.9	
3-OMe	3.71 (<i>s</i>)	55.3	3.78 (<i>s</i>)	55.2	
3'-OMe	3.79 (<i>s</i>)	54.5	3.69 (s)	56.0	

Table 6 NMR spectral data of compound DPB-2 and gigantol (in acetone- d_6)

^a Klongkumnuankarn *et al.,* 2015

1.3 Structure determination of compound DPB-3

Compound DPB-3 was obtained as a brown amorphous solid. The HR-ESI mass spectrum (**Figure 18**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 265.0845 (calculated for $C_{15}H_{14}O_3Na$; 265.0841), suggesting the molecular formula $C_{15}H_{14}O_3$.

The ¹H-NMR spectrum of compound DPB-3 (**Figure 19** and **Table 7**) exhibited five aromatic proton signals at $\delta_{\rm H}$ 6.37 (1H, d, J = 2.1 Hz, H-1), 6.44 (1H, d, J = 2.1 Hz, H-3), 6.69 (1H, dd, J = 9.3, 2.7 Hz, H-6), 6.71 (1H, d, J = 2.7 Hz, H-8), and 8.22 (1H, d, J = 9.3 Hz, H-5), together with a methoxy signal at $\delta_{\rm H}$ 3.74 (3H, *s*, 2-OMe). Additional NMR signals were observed for two methylene groups at $\delta_{\rm H}$ 2.68 (4H, *s*, H₂-9, H₂-10).

The ¹³C-NMR and DEPT 135° (**Figure 20** and **Table 7**) spectra presented fifteen carbon signals, corresponding to one methoxy carbon, five aromatic methine carbons, two methylene carbons, and seven quaternary carbons. The appearance of the methylene proton signals at $\delta_{\rm H}$ 2.68 (4H, *s*, H₂-9, H₂-10), which showed HSQC correlations (**Figure 21**) to two carbon signals at $\delta_{\rm C}$ 29.9 (C-9), 30.6 (C-10), indicated a dihydrophenanthrene skeleton. Therefore, the structure of DPB-3 should be a dihydrophenanthrene with a methoxyl and two hydroxyl substitutions.

On ring B, the proton signal at δ_{H} 8.22 (1H, d, J = 9.3 Hz, H-5) showed a NOESY interaction (**Figure 22**) with the proton at δ_{H} 6.69 (1H, dd, J = 9.3, 2.7 Hz, H-6). The H-1 assignment was obtained from its NOESY interaction with protons at C-10 and C-2-OMe. Moreover, the position of H-8 was assigned from its NOESY interaction with protons at C-9. The position of 2-OMe was confirmed by its NOESY interaction with H-1 and H-3. Moreover, the HMBC correlation (**Figure 23**) from 2-OMe to C-2 supported the location of a methoxy group at C-2.

On the basis of these ¹H and ¹³C NMR data, compound DPB-3 was identified as lusianthridin [**103**] which was previously reported from *Pholidota yunnanensis*, a plant in the family Orchidaceae (Guo *et al.*, 2007). Furthermore, lusianthridin has also been found in *Dendrobium* species such as *D. brymerianum* (Klongkumnuankarn *et al.*, 2015), *D. venustum* (Sukphan *et al.*, 2014), and *D. formosum* (Inthongkaew *et al.*, 2017).

Lusianthridin [103]

Desition	Compound D	DPB-3	Lusianthridin ^a		
Position	$\delta_{ m H}$ (mult., J in Hz)	δς	$\delta_{ m H}$ (mult., J in Hz)	δ _c	
1	6.37 (<i>d</i> , 2.1)	105.0	6.37 (d, 2.6)	106.0	
2	- ///	158.4	-	159.3	
3	6.44 (<i>d</i> , 2.1)	100.7	6.44 (d, 2.6)	101.6	
4	-	155.1	-	155.9	
4a		114.9	_	115.9	
4b	- 25	125.0	-	125.9	
5	8.22 (<i>d</i> , 9.3)	129.0	8.22 (<i>d</i> , 7.5)	129.9	
6	6.69 (dd, 2.7, 9.3)	112.6	6.68 (dd, 2.7, 7.5)	113.5	
7	-	155.2	-	156.1	
8	6.71 (<i>d</i> , 2.7)	114.1	6.69 (m)	115.0	
8a	-	138.9	-	139.8	
9	2.68 (<i>s</i>)	29.9	2.67 (m)	30.8	
10	2.68 (s)	30.6	2.67 (m)	31.5	
10a	-	140.5	-	141.4	
2-OMe	3.74 (s)	54.4	3.74 (<i>s</i>)	55.3	

Table 7 NMR spect	ral data of com	pound DPB-3 and	lusianthridin (ir	n acetone- d_6)
-------------------	-----------------	-----------------	-------------------	--------------------

^a Guo *et al.*, 2007
1.4 Structure determination of compound DPB-4

Compound DPB-4 was obtained as a red amorphous solid. The HR-ESI mass spectrum (**Figure 24**) demonstrated a sodium-adduct molecular ion $[M+Na]^+$ at m/z 265.0479 (calculated for $C_{14}H_{10}O_4Na$; 265.0477), and its molecular formula was determined as $C_{14}H_{10}O_4$.

The ¹H-NMR spectrum of compound DPB-4 (**Figure 25** and **Table 8**) exhibited signals for a methoxy proton at $\delta_{\rm H}$ 4.15 (3H, *s*, 4-OMe), and five aromatic protons at $\delta_{\rm H}$ 6.80 (1H, *d*, *J* = 2.1 Hz, H-3), 6.82 (1H, *d*, *J* = 2.1 Hz, H-1), 6.96 (1H, *dd*, *J* = 7.2, 1.8 Hz, H-6), 7.12 (1H, *d*, *J* = 1.8 Hz, H-8), and 7.16 (1H, *d*, *J* = 7.2 Hz, H-5). In the ¹³C-NMR spectrum (**Figure 26** and **Table 8**), fourteen carbon signals were observed, including those of a methoxyl, five aromatic methines, seven aromatic quaternary carbons and a carbonyl carbon at $\delta_{\rm C}$ 192.4 (C-9), which is characteristic of a ketone group ($\delta_{\rm C}$ 190-215 ppm) (Hishinuma, *et al.*, 2015). The HSQC data (**Figure 27**) confirmed the presence of protons at C-1, C-3, C-5, C-6, and C-8.

The assignment of substitutions on ring A started with the proton at C-1, which was confirmed by HMBC correlation (**Figure 28**) between the signal of C-9 (ketone group) and H-1. Secondly, *meta*-coupling constant of H-1 doublet led to the assignment of the coupled proton at H-3. Thirdly, the NOESY experiment (**Figure 29**) illustrated correlations of 4-OMe with H-3, therefore a methoxy group could be located at C-4. For the assignment of protons on ring B, the proton at C-8 could be deduced by the HMBC cross-peak between C-4b and this proton signal. Then, *meta*-coupling constant of H-6/H-8 supported the assignment of H-6, which, in turn, *ortho*-coupled to H-5.

From the above data, and through comparison of its ¹H-NMR and ¹³C-NMR spectra with previously reported data (Klongkumnuankarn *et al.*, 2015), compound DPB-4 was identified as the fluorenone nobilone [**285**]. Nobilone has been found in several of *Dendrobium* species, for example, *D. brymerianum* (Klongkumnuankarn *et al.*, 2015), and *D. nobile* (Zhang *et al.*, 2007a).

Nobilone [**285**]

Position	Compound DPB-4		Nobiloneª	
	$\delta_{ m H}$ (mult., J in Hz)	δς	$\delta_{ m H}$ (mult., J in Hz)	δ _c
1	6.82 (<i>d</i> , 2.1)	105.1	6.80 (<i>d</i> , 2.0)	105.9
2	- ///	160.1	<u> </u>	160.9
3	6.80 (<i>d</i> , 2.1)	105.4	6.78 (d, 2.0)	106.2
4	-	152.7	_	153.5
4a	- 8	121.7	- 3	122.6
4b	-	127.1	-	128.0
5	7.16 (<i>d</i> , 7.2)	129.3	ยาลั <mark>ว</mark> .13 (d, 7.5)	130.2
6	6.96 (<i>dd</i> , 1.8, 7.2)	124.2	6.93 (dd, 1.5, 7.5)	125.0
7	-	150.8	-	151.6
8	7.12 (<i>d</i> , 1.8)	115.9	7.10 (<i>d</i> , 1.5)	116.7
8a	-	135.0	-	135.8
9	-	192.4	-	193.2
9a	-	136.4	-	137.2
4-OMe	4.15 (<i>s</i>)	56.7	4.13 (<i>s</i>)	57.5

Table 8 NMR spectral data of compound DPB-4 and nobilone (in acetone- d_6)

^a Klongkumnuankarn *et al.,* 2015

134

1.5 Structure determination of compound DPB-5

Compound DPB-5 was obtained as pale-yellow crystals. The HR-ESI mass spectrum (**Figure 30**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 323.0896 (calculated for $C_{17}H_{16}O_5Na$; 323.0895), suggesting the molecular formula $C_{17}H_{16}O_5$.

The ¹H-NMR spectrum of DPB-5 (**Figure 31** and **Table 9**) showed the presence of a singlet aromatic proton at $\delta_{\rm H}$ 7.26 (1H, *s*, H-1), along with two pairs of *ortho*coupled aromatic protons at $\delta_{\rm H}$ 7.25 (1H, *d*, *J* = 9.3 Hz, H-6) with 9.17 (1H, *d*, *J* = 9.3 Hz, H-5) and $\delta_{\rm H}$ 7.68 (1H, *d*, *J* = 9.0 Hz, H-10) with 7.86 (1H, *d*, *J* = 9.0 Hz, H-9). Besides, the ¹³C-NMR (**Figure 32** and **Table 9**) and HSQC (**Figure 33**) spectral exhibited three signals representing three methoxy groups at $\delta_{\rm C}$ 55.4, 58.7 and 60.4 ppm.

The assignment of the singlet proton at C-1 on ring A was based on the NOESY cross peak (**Figure 34**) between $\delta_{\rm H}$ 7.26 (H-1) and $\delta_{\rm H}$ 7.68 (H-10), together with the HMBC correlation (**Figure 35**) from $\delta_{\rm c}$ 127.2 (C-10) to this proton signal. The locations of the methoxy groups were also confirmed from NOESY interactions. The NOESY cross peaks were observed for the following pairs of protons: H-1 ($\delta_{\rm H}$ 7.26) and 2-OMe ($\delta_{\rm H}$ 3.92), H-5 ($\delta_{\rm H}$ 9.17) and 4-OMe ($\delta_{\rm H}$ 3.94), and H-9 ($\delta_{\rm H}$ 7.86) and 8-OMe ($\delta_{\rm H}$ 4.00).

On the basis of there spectral evidence and through comparison of its NMR and MS data with previously reported data (Tuchinda *et al.*, 1988; Majumder and Sen, 1991), DPB-5 was identified as 3,7-dihydroxy-2,4,8-trimethoxyphenanthrene [**80**] (another reported name: 1,5,7-trimethoxyphenanthrene-2,6-diol). This compound has been earlier reported from *Dendrobium densiflorum* (Fan *et al.*, 2001). It has also been identified from other plants in the family Orchidaceae, for example, *Eulophia nuda* (Tuchinda *et al.*, 1988) and *Cymbidium pendulum* (Majumder and Sen, 1991).

3,7-dihydroxy-2,4,8-trimethoxyphenanthrene [80]

Position	Compound DPB-5		3,7-Dihydroxy-2,4,8- trimethoxyphenanthrene	
10310011	$\delta_{ m H}$ (mult., J in Hz)	δ _c	$\delta_{\rm H}$ (mult., J in Hz) ^a	$\delta_{C}{}^{b}$
1	7.26 (s)	105.0	7.25 (<i>s</i>)	104.8
2	-	147.7	-	146.8
3	-	140.3		139.3
4	_	144.5	-	144.0
4a	- 7	119.2	<u> </u>	119.2
4b	- ///	123.8	<u> </u>	124.2
5	9.17 (d, 9.3)	123.3	9.16 (<i>dd</i> , 0.8, 9.3)	123.9
6	7.25 (d, 9.3)	117.0	7.24 (d, 9.3)	116.0
7		146.4	_	145.5
8		141.2	-	140.8
8a	จุหาลงกร	127.5	ยาลัย	126.5
9	7.86 (<i>d</i> , 9.0)	KO 117.7	7.85 (dd, 0.8, 9.2)	117.8
10	7.68 (<i>d</i> , 9.0)	127.2	7.67 (d, 9.2)	127.3
10a	-	125.4	-	125.6
2-OMe	3.92 (s)	55.4	3.92 (<i>s</i>)	56.0
4-OMe	3.94 (<i>s</i>)	58.7	3.93 (<i>s</i>)	59.6
8-OMe	4.00 (<i>s</i>)	60.4	4.00 (<i>s</i>)	61.7

Table 9 NMR spectral data of compound DPB-5 (in acetone- d_6) and 3,7-dihydroxy-2,4,8-trimethoxyphenanthrene (in CDCl3)

^a Tuchinda *et al.*, 1988

^b Majumder and Sen, 1991

1.6 Structure determination of compound DPB-6

Compound DPB-6 was obtained as a light-yellow powder. The HR-ESI mass spectrum (**Figure 36**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 293.0791 (calculated for C₁₆H₁₄O₄Na; 293.0790), suggesting the molecular formula C₁₆H₁₄O₄.

The ¹H-NMR and ¹³C-NMR spectra of compound DPB-6 (**Figure 37** and **38** and **Table 10**) revealed signals which were suggestive of a phenanthrene skeleton, and were similar to those of DPB-5. The ¹H-NMR spectrum of DPB-6 showed a singlet at $\delta_{\rm H}$ 6.93 (1H, *s*, H-10), two *meta*-coupled doublets at $\delta_{\rm H}$ 6.81 (1H, *d*, *J* = 2.4 Hz, H-3) and 6.99 (1H, *d*, *J* = 2.4 Hz, H-1), a triplet at $\delta_{\rm H}$ 7.43 (1H, *t*, *J* = 8.1 Hz, H-7), and two double doublets at $\delta_{\rm H}$ 7.11 (1H, *dd*, *J* = 8.1, 1.2 Hz, H-6) and 7.85 (1H, *dd*, *J* = 8.1, 1.2 Hz, H-8). The HSQC data (**Figure 39**) supported the presence of protons at C-1, C-3, C-6, C-7, C-8, and C-10.

The positions of the aromatic protons and methoxyl groups were deduced from NOESY correlations (**Figure 40**), together with HMBC correlations (**Figure 41**). At the beginning on ring A, the position of H-1 was confirmed by the HBMC correlation of $\delta_{\rm H}$ 6.99 (H-1) and $\delta_{\rm C}$ 101.9 (H-10). The *meta*-coupling peak of H-1 led to placing of proton at C-3. The NOSEY correlations from $\delta_{\rm H}$ 6.81 (H-3) to $\delta_{\rm H}$ 4.11 (4-OMe), and from $\delta_{\rm H}$ 6.93 (H-10) to $\delta_{\rm H}$ 4.03 (9-OMe) supported the locations of the methoxyl groups at C-4 and C-9, respectively. Then, the HMBC correlations from $\delta_{\rm C}$ 154.1 (C-9) to $\delta_{\rm H}$ 4.03 (9-OMe), 6.93 (H-10), and 7.85 (H-8) were used to assign the proton at C-8. Then, the location of protons at C-6 and C-7 were deduced by their coupling patterns displayed at $\delta_{\rm H}$ 7.11 (H-6), 7.43 (H-7), and 7.85 (H-8).

From the above data and through comparison with previously reported data (Leong *et al.*, 1997), DPB-6 was identified as 2,5-dihydroxy-4,9-dimethoxyphenanthrene [**119**]. It was earlier isolated from the stems of *Dendrobium nobile* (Zhang *et al.*, 2008b). Previously, it was found in another orchid, *Bulbophyllum vaginatum* (Leong *et al.*, 1997).

2,5-dihydroxy-4,9-dimethoxyphenanthrene [119]

Table 10 NMR spectral data of compound DPB-6 (in acetone- d_6) and 2,5-dihydroxy-4,9-dimethoxyphenanthrene (in CDCl₃)

	Compound DPB-6		2,5-Dihydroxy-4,9-	
Position			dimethoxyphenanthrene ^a	
	$\delta_{ m H}$ (mult., J in Hz)	δ _c	$\delta_{ m H}$ (mult., J in Hz)	δ _c
1	6.99 (d, 2.4)	106.1	6.88 (d, 2.6)	106.3
2	///	156.7	<u> </u>	154.3
3	6.81 (<i>d</i> , 2.4)	99.4	6.69 (d, 2.6)	99.4
4	-	155.4	_	155.4
4a	- 8	109.1	- 20 -	110.5
4b	-	120.1	-	119.9
5	จุหาลงกร	154.3	ยาลัย	153.8
6	7.11 (<i>dd</i> , 1.2, 8.1)	116.7	7.25 (dd, 1.5, 7.9)	117.3
7	7.43 (t, 8.1)	126.2	7.50 (t, 7.9)	126.9
8	7.85 (<i>dd</i> , 1.2, 8.1)	113.5	7.94 (dd, 1.5, 7.9)	114.1
8a	-	128.3	-	128.5
9	-	154.1	-	154.6
10	6.93 (<i>s</i>)	101.9	6.73 (<i>s</i>)	101.5
10a	-	136.9	-	136.8
4-OMe	4.11 (<i>s</i>)	57.6	4.06 (<i>s</i>)	58.3
9-OMe	4.03 (<i>s</i>)	55.1	4.04 (<i>s</i>)	55.5

^a Leong *et al.*, 1997

1.7 Structure determination of compound DPB-7

Compound DPB-7 was obtained as a brown amorphous solid. The HR-ESI mass spectrum (**Figure 42**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 327.1219 (calculated for $C_{17}H_{20}O_5Na$; 327.1208), suggesting the molecular formula $C_{17}H_{20}O_5$.

The ¹H-NMR spectrum of DPB-7 (**Figure 43** and **Table 11**) showed characteristics of a bibenzyl skeleton, it similar to the spectrum of compound DPB-2. The differences were on ring A, showing the presence of another methoxy group at C-5, and a hydroxyl group at C-4, making ring A of DPB-7 symmetrically substituted. This was confirmed by the ¹H-NMR signals of this ring which displayed a two-protons singlet at $\delta_{\rm H}$ 6.38 (H-2/H-6), instead of three *meta*-coupled triplets (of H-2, H-4 and H-6) as observed in DPB-2.

The ¹³C NMR (Figure 44 and Table 11) and HSQC (Figure 45) spectra displayed seventeen carbon signals, including five methine carbons at $\delta_{\rm C}$ 105.2 (C-2), 105.2 (C-6), 111.3 (C-2'), 114.2 (C-5') and 121.1 (C-6'), seven quaternary carbons at $\delta_{\rm C}$ 132.9 (C-1), 132.9 (C-4), 133.7 (C-1'), 143.8 (C-4'), 146.3 (C-3'), 146.9 (C-3) and 146.9 (C-5)), two methylene carbons $\delta_{\rm C}$ 37.9 (C- α) and 38.5 (C- α '), and three methoxy carbons $\delta_{\rm C}$ 56.3 (C-3-OMe,C-5-OMe) and 55.9 (C-3'-OMe). The positions of these methoxyl groups were deduced from the NOESY (Figure 46) and HMBC (Figure 47) correlations.

Through comparison of the ¹H, ¹³C-NMR and MS data of this compound with reported values (Majumder and Sen, 1987), DPB-7 was identified as moscatilin [**35**]. Moscatilin [**35**] is a major compound isolated from several *Dendrobium* species, for example, *D. amoenum* (Majumder *et al.*, 1999), *D. aurantiacum* var. *denneanum* (Yang *et al.*, 2006a), *D. brymerianum* (Klongkumnuankarn *et al.*, 2015), *D. chrysanthum* (Yang *et al.*, 2006b), *D. densiflorum* (Fan *et al.*, 2001), *D. ellipsophyllum* (Tanagornmeatar *et al.*, 2014), *D. formosum* (Inthongkaew *et al.*, 2017), *D. gratiosissimum* (Zhang *et al.*, 2008a), *D. loddigesii* (Chen *et al.*, 1994), *D. longicornu* (Hu *et al.*, 2008a), *D. moscatum* (Majumder and Sen, 1987), *D. nobile* (Miyazawa *et al.*, 1999), *D. polyanthum* (Hu *et al.*, 2009), *D. pulchellum* (Chanvorachote *et al.*, 2013), *D. secundum* (Sritularak *et al.*, 2011b), *D. wardianum* (Zhang *et al.*, 2017), and *D. williamsonii* (Yang *et al.*, 2017a).

In addition, moscatilin [**35**] was previously evaluated for several pharmacological activities, for example, antiplatelet DPPH radical scarvenging activity (Sritularak *et al.*, 2011b), aggregation activity (Chen *et al.*, 1994; Fan *et al.*, 2001), antimutagenic activity (Miyazawa *et al.*, 1999). It also showed various activities against many types of cancer cell lines including cytotoxic and antimigratory activities in human lung cancer H460 cells (Klongkumnuankarn *et al.*, 2015), cytotoxic and anoikis sensitizing activities in human lung cancer H23 cells (Chanvorachote *et al.*, 2013), and cytotoxic activity in human leukemia HL-60 cells (Zhang *et al.*, 2008a; Yang *et al.*, 2017a).

Position	Compound DPB-7		Moscatilinª	
POSICION	$\delta_{ m H}$ (mult., J in Hz)	δ_{c}	$\delta_{ m H}$ (mult., J in Hz)	δ _c
1	-	132.9	-	132.8
2	6.38 (<i>s</i>)	105.2	6.30 (<i>s</i>)	105.2
3	-	146.9	-	146.8
4	-	132.9	-	133.53
5	-	146.9	-	146.8
6	6.38 (s)	105.2	6.30 (<i>s</i>)	105.2
1′	-	133.7	-	132.8
2′	6.64 (<i>d</i> , 2.0)	111.3	6.60 (<i>d</i> , 2.0)	111.2
3'	-	146.3	-	146.1
4 ′	3	143.8		143.7
5 ′	6.86 (<i>d</i> , 8.0)	114.2	6.77 (<i>d</i> , 8.0)	114.1
6'	6.70 (<i>dd</i> , 2.0, 8.0)	121.1	6.74 (<i>dd</i> , 2.0, 8.0)	121.0
α	2.84 (<i>s</i>)	38.5	2.79 (s)	38.3
α'	2.84 (<i>s</i>)	37.9	2.79 (s)	37.8
3-OMe	3.86 (<i>s</i>)	56.3	3.81 (<i>s</i>)	56.2
5-OMe	3.86 (<i>s</i>)	56.3	3.81 (<i>s</i>)	56.2
3 ' -OMe	3.85 (s)	55.9	3.81 (s)	55.8

Table 11 NMR spectral data of compound DPB-7 (in acetone- d_6) and moscatilin (in CDCl₃)

^a Majumder and Sen, 1987

1.8 Structure determination of compound DPB-8

Compound DPB-8 was obtained as colorless needles. The HR-ESI mass spectrum (**Figure 48**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 229.0470 (calculated for $C_{11}H_{10}O_4Na$; 229.0477), suggesting the molecular formula $C_{11}H_{10}O_4$.

The ¹H NMR spectrum of compound DPB-8 (**Figure 49** and **Table 12**) showed signals largely different from those of the other compounds isolated from *D. palpebrae*. This suggested that compound DPB-8 should not have a bibenzyl, phenanthrene, dihydrophenanthrene or fluorenone structure. The ¹H NMR spectrum illustrated signals for six methoxy protons at $\delta_{\rm H}$ 3.92 (3H, *s*, 6-OMe) and 3.94 (3H, *s*, 7-OMe), and four aromatic protons at $\delta_{\rm H}$ 6.27 (1H, *d*, *J* = 9.6 Hz, H-3), 6.82 (1H, *s*, H-8), 6.86 (1H, *s*, H-5) and 7.64 (1H, *d*, *J* = 9.6 Hz, H-4). Furthermore, in the ¹³C-NMR and HSQC spectra (**Figures 50-51** and **Table 12**), eleven carbon signals were detected, comprising two methoxyl carbons, four aromatic methines, four quaternary carbons, and an ester carbonyl carbon which resonated at $\delta_{\rm C}$ 161.4 (C-2). The HMBC correlations (**Figure 52**) supported the placement of the methoxyl groups at C-6 and C-7.

Based on the above ¹H NMR, ¹³C NMR, HMBC and MS data, DPB-8 should be a coumarin substituted with two methoxy groups. It was identified as scoparone [**261**] (Fan *et al.*, 2001). This compound has been isolated from many *Dendrobium* species such as *D. densiflorum* (Fan *et al.*, 2001), *D. thyrsiflorum* (Zhang *et al.*, 2005), and *D. williamsonii* (Yang *et al.*, 2017a).

Scoparone [261]

Position	Compound DPB-8		Scoparoneª	
POSICION	$\delta_{ m H}$ (mult., J in Hz)	δ _c	$\delta_{ m H}$ (mult., J in Hz)	δ _c
2	-	161.4	-	161.4
3	6.27 (<i>d</i> , 9.6)	113.5	6.28 (d, 9.5)	113.5
4	7.64 (<i>d</i> , 9.6)	143.3	7.63 (d, 9.5)	143.3
4a	-	111.4	-	111.4
5	6.86 (<i>s</i>)	108.0	6.87 (s)	108.0
6		146.3		146.3
7	//	152.8	-	152.8
8	6.82 (<i>s</i>)	100.0	6.84 (<i>s</i>)	99.9
8a	-	150.0	-	150.0
6-OMe	3.92 (s)	56.4	3.92 (<i>s</i>)	56.3
7-OMe	3.94 (s)	56.4	3.95 (s)	56.4
^a Jerezano <i>et al.</i> , 2011				
จุหาลงกรณ์มหาวิทยาลัย				

Table 12 NMR spectral data of compound DPB-8 and scoparone (in CDCl₃)

1.9 Structure determination of compound DPB-9

Compound DPB-9 was obtained as a brown amorphous solid. The HR-ESI mass spectrum (**Figure 53**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 313.1060 (calculated for C₁₆H₁₈O₅Na; 313.1052), suggesting the molecular formula C₁₆H₁₈O₅.

The ¹H-NMR spectrum of compound DPB-9 (**Figure 54** and **Table 13**) revealed signals for four methylene protons at $\delta_{\rm H}$ 2.73 (2H, *m*, H₂- α) and 2.76 (2H, *m*, H₂- α'), and two methoxyl singlet peaks at $\delta_{\rm H}$ 3.75 (3H, *s*, 3-OMe) and 3.79 (3H, *s*, 3'-OMe). In the aromatic region, the ¹H NMR spectrum displayed two *meta*-coupled doublets of ring A at $\delta_{\rm H}$ 6.34 (1H, *d*, *J* = 1.8 Hz, H-2) and 6.36 (1H, *d*, *J* = 1.8 Hz, H-6). In the part of ring B, three signals of a 1,3,4- trisubstituted aromatic ring at $\delta_{\rm H}$ 6.65 (1H, *dd*, *J* = 1.8, 8.1 Hz, H-6'), 6.71 (1H, *dd*, *J* = 8.1 Hz, H-5'), and 6.79 (1H, *dd*, *J* = 1.8 Hz, H-2') could be observed.

The ¹³C-NMR and HSQC spectra (**Figures 55** and **56** and **Table 13**) showed sixteen carbon signals, corresponding to two methoxyls at $\delta_{\rm C}$ 55.3 (C-3') and 55.5 (C-3), two aliphatic methylenes at 37.6 (C- α') and 38.0 (C- α). Other aromatic carbon signals could be separated into those of five methine carbons at $\delta_{\rm C}$ 103.7 (C-2), 108.9 (C-6), 112.1 (C-2'), 114.6 (C-5'), 120.8 (C-6'), and seven quaternary carbons at $\delta_{\rm C}$ 131.8 (C-1), 132.9 (C-4), 133.4 (C-1'), 144.7 (C-4'), 145.2 (C-5), 147.2 (C-3'), and 147.9 (C-3). The locations of the methoxy groups were assigned by the NOESY (**Figure 57**) and HMBC spectra (**Figure 58**). The first methoxy group at $\delta_{\rm H}$ 3.75 could be located at C-3 according to its NOESY correlation with H-2 and HMBC correlation from 3-OMe to C-3. The other methoxy group at $\delta_{\rm H}$ 3.79 was placed at C-3' based on its NOESY interaction with H-2', together with the HMBC correlation from 3'-OMe to C-3'.

Through analysis of there spectroscopic data and comparison with previously reported values (Sritularak *et al.*, 2011b), DPB-9 was identified as 4,5,4[']-trihydroxy-3,3[']-dimethoxybibenzyl [**40**]. The presence of this bibenzyl in *Dendrobium* species has been previously reported from *D. secundum* (Sritularak *et al.*, 2011b; Phechrmeekha *et al.*, 2012), and *D. ellipsophyllum* (Tanagornmeatar *et al.*, 2014).

Table 13 NMR spectral data of compound DPB-9 (in acetone- d_6) and 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (in CDCl3)

Position	Compound DPB-9		4,5,4'-Trihydroxy-3,3'- dimethoxybibenzylª	
	$\delta_{ m H}$ (mult., J in Hz)	δ _c	$\delta_{ m H}$ (mult., J in Hz)	δ _c
1	-	131.8	<u> </u>	130.4
2	6.34 (d, 1.8)	103.7	6.21 (<i>d</i> , 2.0)	103.5
3		147.9	-	146.6
4	-	132.9	-	133.7
5	S.	145.2	- 6	143.7
6	6.36 (d, 1.8)	108.9	6.42 (<i>d</i> , 2.0)	108.6
1′	จุหาลงกรถ	133.4	ยาลัย	133.8
2′	6.79 (d, 1.8)	0 112.1	VER 6.60 (<i>d</i> , 2.0)	111.2
3'	-	147.2	-	146.2
4 ′	-	144.7	-	143.7
5 ′	6.71 (<i>d</i> , 8.1)	114.6	6.80 (<i>d</i> , 8.0)	114.1
6 '	6.65 (<i>dd</i> , 1.8, 8.1)	120.8	6.65 (<i>dd</i> , 2.0, 8.0)	121.0
α	2.73 (m)	38.0	2.75 (m)	38.7
α'	2.76 (m)	37.6	2.78 (m)	37.7
3-OMe	3.75 (<i>s</i>)	55.5	3.80 (<i>s</i>)	56.1
3'-OMe	3.79 (<i>s</i>)	55.3	3.83 (<i>s</i>)	55.9

^a Sritularak *et al.*, 2011b

1.10 Structure determination of compound DPB-10

Compound DPB-10 was obtained as a red amorphous solid. The HR-ESI mass spectrum (**Figure 59**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 281.0417 (calculated for C₁₄H₁₀O₅Na; 281.0426), suggesting the molecular formula C₁₄H₁₀O₅.

The ¹H NMR spectrum (**Figure 60** and **Table 14**) revealed signals for four aromatic protons at $\delta_{\rm H}$ 6.59 (1H, d, J = 9.0 Hz, H-7), 6.77 (1H, d, J = 1.5 Hz, H-3), 6.79 (1H, d, J = 1.5 Hz, H-1), and 6.86 (1H, d, J = 9.0 Hz, H-6). The ¹H-NMR spectrum also showed methoxyl protons at $\delta_{\rm H}$ 4.10 (3H, *s*, 4-OMe). In addition, the ¹³C NMR and HSQC spectra (**Figures 61-62** and **Table 14**) exhibited fourteen carbon signals, consisting of one methoxyl, four aromatic methines, and eight aromatic quaternary carbons. A keto carbon signal appeared at $\delta_{\rm C}$ 194.4 (*C*-9).

These ¹H and ¹³C NMR data resembled those of DPB-4 or nobilone [**286**]. The ¹H NMR spectrum showed one less proton signal from ring B and the presence of an additional hydroxy group which exhibit proton signal at $\delta_{\rm H}$ 8.44 (1H, *s*, 5-OH). DPB-10 exhibited only two *ortho*-coupled protons in ring B. On ring A, the location of the methoxy group was confirmed by the NOESY (**Figure 63**) and HMBC (**Figure 64**) correlations, which were similar to those of DPB-4.

On the basis of the above ¹H NMR and ¹³C NMR evidence, compound DPB-10 was determined to be dendroflorin [**283**]. This compound has been earlier isolated from several *Dendrobium* species, namely, *D. densiflorum* (Fan *et al.*, 2001), *D. brymerianum* (Klongkumnuankarn *et al.*, 2015), and *D. nobile* (Zhang *et al.*, 2007a).

Dendroflorin [283]

Position	Compound DPB-10		Dendroflorin ^a	
	$\delta_{ extsf{H}}$ (mult., J in Hz)	δ_{c}	$\delta_{ extsf{H}}$ (mult., J in Hz)	δ _c
1	6.79 (<i>d</i> , 1.5)	104.7	6.79 (<i>d</i> , 1.6)	105.6
2	-	160.1	-	160.9
3	6.77 (<i>d</i> , 1.5)	105.1	6.76 (<i>d</i> , 1.6)	106.1
4	-	153.2	-	154.1
4a	-	121.4	-	122.4
4b	-	123.5	<u> </u>	124.3
5	//	144.2	<u> </u>	145.1
6	6.86 (<i>d</i> , 9.0)	128.1	6.87 (d, 9.0)	128.9
7	6.59 (<i>d</i> , 9.0)	118.9	6.58 (<i>d</i> , 9.0)	119.7
8	-	151.9	-	152.8
8a	8	116.6	- 3	117.4
9		194.4	<u> </u>	195.3
9a	จุฬาลงกร Cuu Ar Ang	136.5	ยาลย พรренту	137.4
4-OMe	4.10 (<i>s</i>)	56.5	4.10 (<i>s</i>)	57.4

Table 14 NMR spectral data of compound DPB-10 and dendroflorin (in acetone- d_6)

^a Klongkumnuankarn *et al.,* 2015

2. Free radical scavenging activities

The ethyl acetate (EtOAc) extract of *Dendrobium palpebrae* was preliminarily tested for its free radical scavenging property by DPPH radical scavenging assay, and demonstrated more than 80% inhibition at a concentration of 100 μ g/ml. Thus, the EtOAc extract was subjected to further chemical investigation. Ten pure compounds were isolated (DPB 1-10) and identified as dendropalpebrone [294], gigantol [30], lusianthridin [103], nobilone [285], 3,7-dihydroxy-2,4,8-trimethoxyphenanthrene [80], 2,5-dihydroxy-4,9-dimethoxyphenanthrene [119], moscatilin [35], scoparone [261], 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl [40], and dendroflorin [283], respectively. All compounds were further examined for their free radical scavenging activity at a concentration of 50 μ g/mL, using ORAC, DPPH radical scavenging, and deoxyribose degradation assays (Table 15). Additionally, their inhibitory effects on reactive oxygen species (ROS) production in murine macrophage cells (RAW 264.7) induced by hydrogen peroxide (H₂O₂) were examined, and the results are displayed in Table 16.

As shown in **Table 15**, scoparone (DPB-8, [**261**]), which does not have any phenolic group showed the least potent free radical scavenging activities in all assays. On the other hand, dendroflorin (DPB-10, [**283**]), which have three phenolic groups exhibited the most potent free radical scavenging properties in all assays. In deoxyribose degradation assay, it manifested an outstanding effect with IC₅₀ value of 193 μ M approximating to the IC₅₀ of the positive control Trolox[®] (IC₅₀ value of 160 μ M). However, other isolated compounds (DPB 1-9) were devoid of hydroxy radical inhibitory activity, producing less than 50% inhibition at a concentration of 50 μ g/ml.

Compounds	ORAC value (µmol TE/g)	% Radical scavenging activity (%RSA)	% Hydroxy radical inhibition
Dendropalpebrone (DPB-1) [294]	292.13 ± 17.44	18.07 ± 1.91	32.40 ± 0.71
Gigantol (DPB-2) [30]	386.64 ± 13.50	15.15 ± 1.00	42.06 ± 4.05
lusianthridin (DPB-3) [103]	297.24 ± 34.18	26.73 ± 1.02	24.89 ± 0.97
Nobilone (DPB-4) [285]	383.15 ± 38.76	17.94 ± 0.71	32.40 ± 0.94
3,7-Dihydroxy-2,4,8-trimethoxy-	308.10 ± 26.51	7.74 ± 0.88	27.04 ± 0.95
phenanthrene (DPB-5) [80]			
2,5-Dihydroxy-4,9-dimethoxy- phenanthrene (DPB-6) [119]	270.89 ± 9.70	18.86 ± 0.47	45.28 ± 0.70
Moscatilin (DPB-7) [35]	272.33 ± 17.44	15.36 ± 1.32	22.75 ± 3.88
Scoparone (DPB-8) [261]	241.50 ± 36.91	3.04 ± 0.33	20.60 ± 0.48
4,5,4 [′] -Trihydroxy-3,3 [′] -dimethoxy- bibenzyl (DPB-9) [40]	306.91 ± 41.34	7.16 ± 1.13	25.97 ± 0.61
Dendroflorin (DPB-10) [283]	414.17 ± 22.54	31.14 ± 0.31	51.72 ± 0.76

Table 15 Free radical scavenging activity of isolated compounds from D. palpebrae

This agreed with a previous study (Bendary *et al.*, 2013) which suggested that the phenols in natural compounds played an important role in free radical scavenging ability and may contribute directly to their antioxidative effects.

For the inhibitory effects on intracellular ROS production in activated murine macrophage cells (**Table 16**), dendroflorin also showed the highest % ROS inhibition, which correlated with the results from ORAC, DPPH and deoxyribose degradation assays. Therefore, dendroflorin was further investigated for antioxidant activity in stimulated murine macrophage-like cell line RAW 264.7 at non-toxic concentrations (12.5 – 50.0 µg/mL). It could significantly reduce the H_2O_2 -activated generation of ROS in RAW 264.7 cells in a dose-dependent manner, as shown in **Table 17**. Moreover, dendroflorin at a concentration of 50 µg/ml could reduce ROS more than 50% when compared with control group which was treated with 1 mM of H_2O_2 only.

Table 16 Inhibitory effects on ROS production in RAW 264.7 murine macrophage cellsinduced by H_2O_2 of isolated compounds from *D. palpebrae*

Compounds	% ROS inhibition
Dendropalpebrone (DPB-1) [294]	27.19 ± 1.84
Gigantol (DPB-2) [30]	50.67 ± 2.51
lusianthridin (DPB-3) [103]	23.22 ± 2.95
Nobilone (DPB-4) [285]	48.70 ± 4.84
3,7-Dihydroxy-2,4,8-trimethoxyphenanthrene (DPB-5) [80]	17.37 ± 1.40
2,5-Dihydroxy-4,9-dimethoxyphenanthrene (DPB-6) [119]	20.45 ± 3.67
Moscatilin (DPB-7) [35]	22.23 ± 0.93
Scoparone (DPB-8) [261]	13.71 ± 1.51
4,5,4′-Trihydroxy-3,3′-dimethoxybibenzyl (DPB-9) [40]	21.85 ± 1.85
Dendroflorin (DPB-10) [283]	58.43 ± 6.13

Regarding the effects of dendroflorin [**283**] on the antioxidant enzymes in $H_2O_{2^-}$ induced RAW 264.7 cells, the results indicated that in cellular SOD, GPx and CAT activities RAW 264.7 cells that were pre-incubated with dendroflorin at concentration 12.5 - 50 µg/mL before inducing with H_2O_2 were significantly enhanced (p < 0.05), in a dose-dependent manner (**Table 18**). Therefore, dendroflorin might manifest antioxidant activities by preventing cellular oxidative stress in RAW 264.7 murine macrophage cells.

Table 17 Inhibitory effects of dendroflorin on ROS production in RAW 264.7 murinemacrophage cells induced by H_2O_2 at non-toxic concentration

Groups	ROS production (AU)	%ROS inhibition
Blank	293.67 ± 9.61 ^a	-
Control: H ₂ O ₂ (1 mM)	1023.00 ± 7.55 ^b	-
Dendroflorin (12.5 µg/mL) + H ₂ O ₂	937.33 ± 14.74 ^c	8.37 ± 1.77
Dendroflorin (25.0 µg/mL) + H ₂ O ₂	774.33 ± 10.69 ^d	24.30 ± 1.44
Dendroflorin (50.0 µg/mL) + H2O2	453.33 ± 8.50 ^e	55.68 ± 1.16
Dendroflorin (50.0 µg/mL)	311.33 ± 11.59 ^a	-

Note: Data present in mean \pm SD (n = 3) in the same column followed by different superscript letters are significantly different (p < 0.05).

	Antioxidant enzymes			
Groups	SOD (Unit/mg protein)	GPx (nmol min ⁻¹ mg ⁻¹ protein)	CAT (nmol min ⁻¹ mg ⁻¹ protein)	
Blank	31.85 ± 0.57^{a}	77.53 ± 2.70^{a}	32.48 ± 2.30^{a}	
Control: H ₂ O ₂ (1 mM)	13.03 ± 0.67^{b}	47.98 ± 1.35 ^b	14.98 ± 2.13 ^b	
Dendroflorin (12.5 μg/mL) + H ₂ O ₂	14.17 ± 0.98 ^b	54.35 ± 1.32 ^c	16.78 ± 2.64 ^b	
Dendroflorin (25.0 μg/mL) + H ₂ O ₂	19.54 ± 1.14 ^c	60.51 ± 1.96^{d}	18.69 ± 2.48 ^c	
Dendroflorin (50.0 μg/mL) + H ₂ O ₂	23.66 ± 0.20 ^d	75.27 ± 2.03 ^e	23.18 ± 2.97 ^d	
Dendroflorin (50.0 µg/mL)	30.94 ± 0.41 ^a	79.23 ± 3.46 ^a	37.80 ± 1.90 ^a	

Table 18 Effects of dendroflorin on antioxidant enzymes in induced RAW 264.7macrophage cells

Note: Data present in mean \pm SD (n = 3) in the same column followed by different superscript letters are significantly different (p < 0.05).

CHAPTER V CONCLUSION

Ten pure compounds were isolated from the methanol extract of whole plant of Dendrobium palpebrae. One of them was characterized as a new phenanthrenephenanthraquinone derivative named dendropalpebrone. The other compounds were identified as gigantol [30], lusianthridin [103], nobilone [285], 3,7-dihydroxy-2,4,8trimethoxyphenanthrene [80], 2,5-dihydroxy-4,9-dimethoxyphenanthrene [119], moscatilin [35], scoparone [261], 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl [40] and dendroflorin [283]. All compounds were evaluated for their free radical scavenging activity by ORAC, DPPH, deoxyribose degradation assays, and were examined for intracellular antioxidant activity in H₂O₂-treated RAW 264.7 murine macrophage cells. Dendroflorin [283] exhibited the strongest antioxidant activities in all assays. It also significantly inhibited ROS production in H₂O₂-induced RAW 264.7 cells at non-toxic concentration in a dose-dependent manner. Further investigation of its anti-oxidative mechanism revealed that dendroflorin [283] could protect the RAW 264.7 cells against the oxidative stress by its ability to significant increase the activities of cellular antioxidant enzymes (SOD, GPx and CAT) in a dose-dependent manner.

This study is the first report of natural constituents and biological activities of *D. palpebrae.* All the chemical data obtained in this research should be useful for further phytochemical study of other plants in the genus *Dendrobium*. The information on antioxidant activities of the compounds isolated from *D. palpebrae* should provide a basis for research and development of new antioxidative agents in the future.

REFERENCES

- Bendary, E., Francis, R. R., Ali, H. M. G., Sarwat, M. I., and El Hady, S. (2013). Antioxidant and structure–activity relationships (SARs) of some phenolic and anilines compounds. <u>Annals of Agricultural Sciences</u> 58(2): 173-181.
- Bi, Z. M., Wang, T., and Xu, L. F. (2004). Chemical constituents of *Dendrobium moniliforme*. <u>Acta Botanica Sinica</u> 46(1): 124-126.
- Cakova, V., Bonte, F., and Lobstein, A. (2017). *Dendrobium*: sources of active ingredients to treat age-related pathologies. <u>Aging and Disease</u> 8(6): 827-849.
- Chang, C. C., Ku, A. F., Tseng, Y. Y., Yang, W. B., Fang, J. M., and Wong, C. H. (2010). 6,8-Di-*C*-glycosyl flavonoids from *Dendrobium huoshanense*. <u>Journal of Natural</u> <u>Products</u> 73: 229-232.
- Chang, S. J., Lin, T. H., and Chen, C. C. (2001). Constituents from the stems of *Dendrobium clavatum* var. *aurantiacum*. <u>Journal of Chinese Medicine</u> 12(3): 211-218.
- Chanvorachote, P., Kowitdamrong, A., Ruanghirun, T., Sritularak, B., Mungmee, C., and Likhitwitayawuid, K. (2013). Anti-metastatic Activities of Bibenzyls from *Dendrobium pulchellum*. <u>Natural Product Communications</u> 8(1): 115-118.
- Charoenrungruang, S., Chanvorachote, P., Sritularak, B., and Pongrakhananon, V. (2014). Gigantol, a bibenzyl from *Dendrobium draconis*, inhibits the migratory behavior of non-small cell lung cancer cells. <u>Journal of Natural Products</u> 77(6): 1359-1366.
- Cheeseman, K. H., Beavis, A., and Esterbauer, H. (1988). Hydroxyl-radical-induced ironcatalysed degradation of 2-deoxyribose. <u>Biochemical Journal</u> 252: 649-653.
- Chen, C. C., Wu, L. G., Ko, F. N., and Teng, C. M. (1994). Antiplatelet aggregation principles of *Dendrobium loddigesii*. Journal of Natural Products 57(9): 1271-1274.

- Chen, X. J., Mei, W. L., Cai, C. H., Guo, Z. K., Song, X. Q., and Dai, H. F. (2014). Four new bibenzyl derivatives from *Dendrobium sinense*. <u>Phytochemistry Letters</u> 9: 107-112.
- Chen, X. J., Mei, W. L., Zuo, W. J., Zeng, Y. B., Guo, Z. K., Song, X. Q., and Dai, H. F. (2013). A new antibacterial phenanthrenequinone from *Dendrobium sinense*. Journal of Asian Natural Products Research 15(1): 67-70.
- Chen, Y., Li, J., Wang, L., and Liu, Y. (2008c). Aromatic compounds from *Dendrobium aphyllum*. <u>Biochemical Systematics and Ecology</u> 36(5): 458-460.
- Chen, Y., Li, Y., Qing, C., Zhang, Y., Wang, L., and Liu, Y. (2008b). 1,4,5-Trihydroxy-7methoxy-9H-fluoren-9-one, a new cytotoxic compound from *Dendrobium chrysotoxum*. <u>Food Chemistry</u> 108(3): 973-976.
- Chen, Y., Liu, Y., Jiang, J., Zhang, Y., and Yin, B. (2008a). Dendronone, a new phenanthrenequinone from *Dendrobium cariniferum*. <u>Food Chemistry</u> 111(1): 11-12.
- Conti, V., Izzo, V., Corbi, G., Russomanno, G., Manzo, V., De Lise, F., and Filippelli, A. (2016). Antioxidant supplementation in the treatment of aging-associated diseases. <u>Frontiers in Pharmacology</u> 7(24): DOI:10.3389/fphar.2016.00024.
- Dahmen, J., and Leander, K. (1978). Amotin and amoenin, two sesquiterpenes of the picrotoxane group from *Dendrobium amoenum*. <u>Phytochemistry</u> 17(11): 1949-1952.
- Dubey, V. S., Bhalla, R., and Luthra, R. (2003). An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants. <u>Journal of Biosciences</u> 28(5): 637-646.
- Dubrovina, A. S., and Kiselev, K. V. (2017). Regulation of stilbene biosynthesis in plants. <u>Planta</u> 246(4): 597-623.
- Fan, C., Wang, W., Wang, Y., Qin, G., and Zhao, W. (2001). Chemical constituents from *Dendrobium densiflorum*. <u>Phytochemistry</u> 57(8): 1225-1258.
- Fan, W. W., Xu, F. Q., Dong, F. W., Li, X. N., Li, Y., Liu, Y. Q., and Hu, J. M. (2013). Dendrowardol C, a novel sesquiterpenoid from *Dendrobium wardianum* Warner. <u>Natural Products and Bioprospecting</u> 3(3): 89-92.

- Fiedor, J., and Burda, K. (2014). Potential role of carotenoids as antioxidants in human health and disease. <u>Nutrients</u> 6(2): 466-488.
- Forest herbarium, forest and plant conservation research office, department of national parks, wildlife and plant conservation. (2014). Thai plant names Tem Smitinand, revised edition 2014. In (pp. 185-191). Bangkok: National Buddhist Department Printing.
- Fusco, D., Colloca, G., Lo Monaco, M., and Cesari, M. (2007). Effects of antioxidant supplementation on the aging process. <u>Clinical Interventions in Aging</u> 2(3): 377-387.
- Guo, X. Y., Wang, J., Wang, N. L., Kitanaka, S., and Yao, X. S. (2007). 9, 10-Dihydrophenanthrene derivatives from *Pholidota yunnanensis* and scavenging activity on DPPH free radical. *Journal of Asian Natural Products Research* 9(2): 165-174.
- Halliwell, B., Gutteridge, J. M., and Aruoma, O. I. (1987). The deoxyribose method: a simple "test-tube" assay for determination of rate constants for reactions of hydroxyl radicals. <u>Analytical Biochemistry</u> 165(1): 215-219.
- Hishinuma, T., Osono, T., Fukasawa, Y., Azuma, J. I., and Takeda H. (2015). Application of ¹³C NMR spectroscopy to characterize organic chemical components of decomposing coarse woody debris from different climatic regions. <u>Annals of Forest Research</u> 58(1): 3-13.
- Honda, C., and Yamaki, M. (2000). Phenanthrenes from *Dendrobium plicatile*. <u>Phytochemistry</u> 53(8): 987-990.
- Hu, J. M., Chen, J. J., Yu, H., Zhao, Y. X., and Zhou, J. (2008a). Five new compounds from *Dendrobium longicornu*. <u>Planta Medica</u> 74(5): 535-539.
- Hu, J. M., Chen, J. J., Yu, H., Zhao, Y. X., and Zhou, J. (2008b). Two novel bibenzyls from *Dendrobium trigonopus*. <u>Journal of Asian Natural Products Research</u> 10(7): 653-657.
- Hu, J. M., Fan, W. W., Dong, F. W., Miao, Z. H., and Zhou, J. (2012). Chemical components of *Dendrobium chrysotoxum*. <u>Chinese Journal of Chemistry</u> 30(6): 1327-1330.

- Hu, J. M., Zhao, Y. X., Miao, Z. H., and Zhou, J. (2009). Chemical Components of *Dendrobium polyanthum*. <u>Bulletin of the Korean Chemical Society</u> 30(9): 2098-2100.
- Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A., and Prior, R. L. (2002). Highthroughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. <u>Journal of Agricultural and Food Chemistry</u> 50(16): 4437-4444.
- Hwang, J. S., Lee, S. A., Hong, S. S., Han, X. H., Lee, C., Kang, S., J., and Hwang, B. Y. (2010). Phenanthrenes from *Dendrobium nobile* and their inhibition of the LPSinduced production of nitric oxide in macrophage RAW 264.7 cells. <u>Bioorganic</u> <u>and Medicinal Chemistry Letters</u> 20(12): 3785-3787.
- Inthongkaew, P., Chatsumpun, N., Supasuteekul, C., Kitisripanya, T., Putalun, W., Likhitwitayawuid, K., and Sritularak, B. (2017). α-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from *Dendrobium formosum*. <u>Revista Brasileira de Farmacognosia</u> 27(4): 480-487.
- Ito, M., Matsuzaki, K., Wang, J., Daikonya, A., Wang, N. L., Yao, X. S., and Kitanaka, S. (2010a). New phenanthrenes and stilbenes from *Dendrobium loddigesii*. <u>Chemical and pharmaceutical bulletin</u> 58(5): 628-633.
- Jerezano, A., Jime nez, F., Cruz, M. C., Montiel, L. E., Delgado, F., and Tamariz, J. (2011). New approach for the construction of the coumarin frame and application in the total synthesis of natural products. <u>Helvetica Chimica Acta</u> 94(2): 185-198.
- Kasote, D. M., Katyare, S. S., Hegde, M. V., and Bae, H. (2015). Significance of antioxidant potential of plants and its relevance to therapeutic applications. <u>International</u> <u>Journal of Biological Sciences</u> 11(8): 982-991.
- Kedare, S. B., and Singh, R. P. (2011). Genesis and development of DPPH method of antioxidant assay. Journal of Food Science and Technology 48(4): 412-422.
- Kim, J. H., Oh, S. Y., Han, S. B., Uddin, G. M., Kim, C. Y., and Lee, J. K. (2015). Antiinflammatory effects of *Dendrobium nobile* derived phenanthrenes in LPS-

stimulated murine macrophages. <u>Archives of Pharmacal Research</u> 38(6): 1117–1126.

- Klongkumnuankarn, P., Busaranon, K., Chanvorachote, P., Sritularak, B., Jongbunprasert, V., and Likhitwitayawuid, K. (2015). Cytotoxic and antimigratory activities of phenolic compounds from *Dendrobium brymerianum*. <u>Evidence-Based</u> <u>Complementary and Alternative Medicine</u> 2015: 350410.
- Koekkoek, W. A., and van Zanten, A. R. (2016). Antioxidant vitamins and trace elements in critical illness. <u>Nutrition in Clinical Practice</u> 31(4): 457-474.
- Kowitdamrong, A., Chanvorachote, P., Sritularak, B., and Pongrakhananon, V. (2013). Moscatilin inhibits lung cancer cell motility and invasion via suppression of endogenous reactive oxygen species. <u>BioMed Research International</u> 2013: 765894.
- Krishnaiah, D., Sarbatly, R., and Nithyanandam, R. (2011). A review of the antioxidant potential of medicinal plant species. <u>Food and Bioproducts Processing</u> 89(3): 217-233.
- Leong, Y. W., Kang, C. C., Harrison, L. J., and Powell, A. D. (1997). Phenanthrenes, dihydrophenanthrenes and bibenzyls from the orchid *Bulbophyllum vaginatum*. <u>Phytochemistry</u> 44(1): 157-165.
- Li, C. B., Wang, C., Fan, W. W., Dong, F. W., Xu, F. Q., Wan, Q. L., and Zhou, J. (2013). Chemical components of *Dendrobium crepidatum* and their neurite outgrowth enhancing activities. <u>Natural Products and Bioprospecting</u> 3(2): 70-73.
- Li, J. T., Yin, B. L., Liu, Y., Wang, L. Q., and Chen, Y. G. (2009d). Mono-aromatic constituents of *Dendrobium longicornu*. <u>Chemistry of Natural Compounds</u> 45(2): 234-236.
- Li, X. H., Guo, L., Yang, L., Peng, C., He, C. J., Zhou, Q. M., and Zhang, T. M. (2014). Three new neolignan glucosides from the stems of *Dendrobium aurantiacum* var. *denneanum*. <u>Phytochemistry Letters</u> 9: 37-40.
- Li, Y., Wang, C. L., Wang, Y. J., Wang, F. F., Guo, S. X., Yang, J. S., and Xiao, P. G. (2009b). Four new bibenzyl derivatives from *Dendrobium candidum*. <u>Chemical and</u> <u>Pharmaceutical Bulletin</u> 57(2): 218-219.

- Li, Y., Wang, C. L., Guo, S. X., Yang, J. S., and Xiao, P. G. (2008). Two new compounds from *Dendrobium candidum*. <u>Chemical and Pharmaceutical Bulletin</u> 56(10): 1477-1479.
- Li, Y., Wang, C. L., Wang, Y. J., Guo, S. X., Yang, J. S., Chen, X. M., and Xiao, P. G. (2009a). Three new bibenzyl derivatives from *Dendrobium candidum*. <u>Chemical and</u> <u>Pharmaceutical Bulletin</u> 57(2): 218-219.
- Li, Y. P., Qing, C., Fang, T. T., Liu, Y., and Chen, Y. G. (2009c). Chemical constituents of *Dendrobium chrysotoxum*. <u>Chemistry of Natural Compounds</u> 45(3): 414-416.
- Limpanit, R., Chuanasa, T., Likhitwitayawuid, K., Jongbunprasert, V., and Sritularak, B. (2016). Alpha-glucosidase inhibitors from *Dendrobium tortile*. <u>Records of</u> <u>Natural Products</u> 10(5): 609-616.
- Lin, T. H., Chang, S. J., Chen, C. C., Wang, J. P., and Tsao, L. T. (2001). Two phenanthraquinones from *Dendrobium moniliforme*. <u>Journal of Natural</u> <u>Products</u> 64(8): 1084-1086.
- Liu, Y., Jiang, J. H., Yin, B. L., and Chen, Y. G. (2009b). Chemical constituents of Dendrobium cariniferum. <u>Chemistry of Natural Compounds</u> 45(2): 237-238.
- Liu, Y., Jiang, J. H., Zhang, Y., and Chen, Y. G. (2009a). Chemical constituents of *Dendrobium aurantiacum* var. *denneanum*. <u>Chemistry of Natural Compounds</u> 45(4): 525-527.
- Lo, S. F., Mulabagal, V., Chen, C. L., Kuo, C. L., and Tsay, S. H. (2004). Bioguided fractionation and isolation of free radical scavenging components from *in vitro* propagated chinese medicinal plants *Dendrobium tosaense* Makino and *Dendrobium moniliforme* SW. Journal of Agricultural and Food Chemistry 52(23): 6916-6919.
- Lu, Y., Khoo, T. J., and Wiart, C. (2014). Antioxidant activity determination of citronellal and crude extracts of *Cymbopogon citratus* by 3 different methods. <u>Pharmacology and Pharmacy</u> 5(4): 395-400.
- Lu, Y., Kuang, M., Hu, G. P., Wu, R. B., Wang, J., Liu, L., and Lin, Y. C. (2014). Loddigesiinols G-J: α-glucosidase inhibitors from *Dendrobium loddigesii*. <u>Molecules</u> 19(6): 8544-8555.

- Lucas-Abellán, C., Mercader-Ros, M. T., Zafrilla, M. P., Fortea, M. I., Gabaldón, J. A., and Núñez-Delicado, E. (2008). ORAC-fluorescein assay to determine the oxygen radical absorbance capacity of resveratrol complexed in cyclodextrins. <u>Journal</u> <u>of Agricultural and Food Chemistry</u> 56(6): 2254-2259.
- Luo, A., and Fan, Y. (2011). *In vitro* antioxidant of a water-soluble polysaccharide from *Dendrobium fimhriatum* Hook. var. *oculatum* Hook. <u>International Journal of</u> <u>Molecular Sciences</u> 12(6): 4068-4079.
- Luo, A., Ge, Z., Fan, Y., Luo, A., Chun, Z., and He, X. (2011). *In vitro* and *in vivo* antioxidant activity of a water-soluble polysaccharide from *Dendrobium denneanum*. <u>Molecules</u> 16(2): 1579-1592.
- Luo, A., He, X., Zhou, S., Fan, Y., He, T., and Chun, Z. (2009). *In vitro* antioxidant activities of a water-soluble polysaccharide derived from *Dendrobium nobile* Lindl. extracts. <u>International Journal of Biological Macromolecules</u> 45(4): 359-363.
- Luo, Q. L., Tang, Z. H., Zhang, X. F., Zhong, Y. H., Yao, S. Z., Wang, L. S., and Luo, X. (2016). Chemical properties and antioxidant activity of a water-soluble polysaccharide from *Dendrobium officinale*. <u>International Journal of Biological</u> <u>Macromolecules</u> 89(1): 219-227.
- Majumder, P. L., and Chatterjee, S. (1989). Crepidatin, a bibenzyl derivative from the orchid *Dendrobium crepidatum*. <u>Phytochemistry</u> 28(7): 1986-1988.
- Majumder, P. L., Guha, S., and Sen, S. (1999). Bibenzyl derivatives from the orchid *Dendrobium amoenum*. <u>Phytochemistry</u> 52(7): 1365-1369.
- Majumder, P. L., and Pal, S. (1992). Rotundatin, a new 9,10-dihydrophenanthrene derivative from *Dendrobium rotundatum*. <u>Phytochemistry</u> 31(9): 3225-3228.
- Majumder, P. L., and Pal, S. (1993). Cumulatin and tristin, two bibenzyl derivatives from the orchids *Dendrobium cumulatum* and *Bulbophyllum triste*. <u>Phytochemistry</u> 32(6): 1561-1565.
- Majumder, P. L., and Sen, R. C. (1987). Moscatilin, a bibenzyl derivative from the orchid *Dendrobium moscatum*. <u>Phytochemistry</u> 26(7): 2121-2124.
- Majumder, P. L., and Sen, R. C. (1991). Pendulin, a polyoxygenated phenanthrene derivative from the orchid *Cymbidium pendulum*. <u>Phytochemistry</u> 30(7): 2432-2434.

- Meng, C. W., He, Y. L., Peng, C., Ding, X. J., Guo, L., and Xiong, L. (2017). Picrotoxane sesquiterpenoids from the stems of *Dendrobium nobile* and their absolute configurations and angiogenesis effect. <u>Fitoterapia</u> 121: 206-211.
- Mittraphab, A., Muangnoi, C., Likhitwitayawuid, K., Rojsitthisak, P., and Sritularak, B. (2016). A New Bibenzyl-phenanthrene derivative from *Dendrobium signatum* and its cytotoxic activity. <u>Natural Product Communications</u> 11(5): 657-659.
- Miyazawa, M., Shimamura, H., Nakamura, S. I., Sugiura, W., Kosaka, H., and Kameoka, H. (1999). Moscatilin from *Dendrobium nobile*, a naturally occurring bibenzyl compound with potential antimutagenic activity. <u>Journal of Agricultural and Food Chemistry</u>, 47(5): 2163–2167.
- Ng, T. B., Liu, J., Wong, J. H., Ye, X., Wing Sze, S. C., Tong, Y., and Zhang, K. Y. (2012). Review of research on *Dendrobium*, a prized folk medicine. <u>Applied</u> <u>Microbiology and Biotechnology</u> 93(5): 1795-1803.
- Pan, H., Chen, B., Li, F., and Wang, M. (2012). Chemical constituents of *Dendrobium denneanum*. <u>Chinese Journal Application Environmental Biology</u> 18(3): 378-380.
- Pham-Huy, L., He, H., and Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. <u>International Journal of Biomedical Science</u> 4(2): 89-96.
- Phaniendra, A., Jestadi, D. B., and Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. <u>Indian Journal of Clinical Biochemistry</u> 30(1): 11-26.
- Phechrmeekha, T., Sritularak, B., and Likhitwitayawuid, K. (2012). New phenolic compounds from *Dendrobium capillipes* and *Dendrobium secundum*. Journal of Asian Natural Products Research 14(8): 748-754.
- Plant varieties protection office, department of agriculture, ministry of agriculture and cooperatives. (2013). Dendrobium orchids without blooms identification manual of the competent authority under the plant act B.E. 2518. Bangkok: Chotika Business Print Co., Ltd.
- Qin, X. D., Qu, Y., Ning, L., Liu, J. K., and Fan, S. K. (2011). A new picrotoxane-type sesquiterpene from *Dendrobium findlayanum*. <u>Journal of Asian Natural</u> <u>Products Research</u> 13: 1047-1050.

- Roy, M. K., Koide, M., Rao, T. P., Okubo, T., Ogasawara, Y., and Juneja, L. R. (2010). ORAC and DPPH assay comparison to assess antioxidant capacity of tea infusions: relationship between total polyphenol and individual catechin content. <u>International Journal of Food Sciences and Nutrition</u> 61(2): 109-124.
- Rungwichaniwat, P., Sritularak, B., and Likhitwitayawuid, K. (2014). Chemical constituents of *Dendrobium williamsonii*. <u>Pharmacognosy Journal</u> 6(3): 36-41.
- Singh, B., and Sharma, R. A. (2015). Plant terpenes: defense responses, phylogenetic analysis, regulation and clinical applications. <u>3 Biotech</u> 5(2): 129-151.
- Soh, N. (2006). Recent advances in fluorescent probes for the detection of reactive oxygen species. <u>Analytical and Bioanalytical Chemistry</u> 386(3): 532-543.
- Sritularak, B., Anuwat, M., and Likhitwitayawuid, K. (2011a). A new phenanthrenequinone from *Dendrobium draconis*. Journal of Asian Natural <u>Products Research</u> 13(3): 251-255.
- Sritularak, B., Duangrak, N., and Likhitwitayawuid, K. (2011b). A New Bibenzyl from *Dendrobium secundum*. <u>Zeitschrift für Naturforschung C</u> 66(5): 205-208.
- Sritularak, B., and Likhitwitayawuid, K. (2009). New bisbibenzyls from *Dendrobium falconeri*. <u>Helvetica Chimica Acta</u> 92: 740-744.
- Sukphan, P., Sritularak, B., Mekboonsonglarp, W., Lipipun, V., and Likhitwitayawuid, K. (2014). Chemical constituents of *Dendrobium venustum* and their antimalarial and anti-herpetic properties. <u>Natural Product Communications</u> 9(6): 825-827.
- Sun, J., Zhang, F., Yang, M., Zhang, J., Chen, L., Zhan, R., and Chen, Y. (2014). Isolation of alpha-glucosidase inhibitors including a new flavonol glycoside from *Dendrobium devonianum*. <u>Natural Product Research</u> 28(21): 1900-1905.
- Talapatra, B., Das, A. K., and Talapatra, S. K. (1989). Defuscin, a new phenolic ester from *Dendrobium fuscescens*: Conformation of shikimic acid. <u>Phytochemistry</u> 28(1): 290-292.
- Tanagornmeatar, K., Chaotham, C., Sritularak, B., Likhitwitayawuid, K., and Chanvorachote, P. (2014). Cytotoxic and anti-metastatic activities of phenolic compounds from *Dendrobium ellipsophyllum*. <u>Aniticancer Research</u> 34(11): 6573-6580.

- Tian, C. C., Zha, X. Q., Pan, L. H., and Luo, J. P. (2013). Structural characterization and antioxidant activity of a low-molecular polysaccharide from *Dendrobium huoshanense*. <u>Fitoterapia</u> 91: 247-255.
- Tuchinda, P., Udchachon, J., Khumtaveeporn, K., Taylor, W. C., Engelhardt, L. M., and White, A. H. (1988). Phenanthrenes of *Eulophia nuda*. <u>Phytochemistry</u> 27(10): 3267-3271.
- Vaddhanaphuti, N. (2005). A field guide to the wild orchids of Thailand fourth and expanded edition. In (pp. 117). Bangkok: O.S. Printing House.
- Veerraju, P., Rao, N. S. P., Rao, L. J., Rao, K. V. J., and Rao, P. R. M. (1989). Amoenumin, a 9,10-dihydro-5H-phenanthro-(4,5-*b*,*c*,*d*)-pyran from *Dendrobium amoenum*. <u>Phytochemistry</u> 28(3): 950-951.
- Wang, H., Zhao, T., and Che, C. T. (1985). Dendrobine and 3-hydroxy-2-oxodendrobine from *Dendrobium nobile*. Journal of Natural Products 48(5): 796-801.
- Wang, L., Zhang, C. F., Wang, Z. T., Zhang, M., and Xu, L. S. (2009). Five new compounds from *Dendrobium crystallinum*. Journal of Asian Natural Products Research 11(11): 903-911.
- Watts, K. T., Lee, P. C., and Dannett, C. S. (2006). Biosynthesis of plant-specific stilbene polyketides in metabolically engineered *Escherichia coli*. <u>BMC Biotechnology</u> 6(22): 1-12.
- Weydert, C. J., and Cullen, J. J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. <u>Nature Protocols</u> 5(1): 51-66.
- Xiong, L., Cao, Z. X., Peng, C., Li, X. H., Xie, X. F., Zhang, T. M., and Guo, L. (2013). Phenolic glucosides from *Dendrobium aurantiacum* var. *denneanum* and their bioactivities. <u>Molecules</u> 18(6): 6153-6160.
- Xu, F. Q., Fan, W. W., Zi, C. T., Dong, F. W., Yang, D., Zhou, J., and Hu, J. M. (2017). Four new glycosides from the stems of *Dendrobium fimbriatum* Hook. <u>Natural</u> <u>Product Research</u> 31(7): 797-801.
- Xu, F. Q., Xu, F. C., Hou, B., Fan, W. W., Zi, C. T., Li, Y., and Hu, J. M. (2014). Cytotoxic bibenzyl dimers from the stems of *Dendrobium fimbriatum* Hook. <u>Bioorganic</u> <u>and Medicinal Chemistry Letters</u> 24(22): 5268-5273.

- Xu, J., Han, Q. B., Li, S. L., Chen, X. J., Wang, X. N., Zhao, Z. Z., and Chen, H. B. (2013). Chemistry, bioactivity and quality control of *Dendrobium*, a commonly used tonic herb in traditional Chinese medicine. <u>Phytochemistry Reviews</u> 12(2): 341-367.
- Yamaki, M., and Honda, C. (1996). The stilbenoids from *Dendrobium plicatile*. <u>Phytochemistry</u> 43(1): 207-208.
- Yang, D., Liu, L. Y., Cheng, Z. Q., Xu, F. Q., Fan, W. W., Zi, C. T., and Hu, J. M. (2015b). Five new phenolic compounds from *Dendrobium aphyllum*. <u>Fitoterapia</u> 100: 11-18.
- Yang, H., Chou, G. X., Wang, Z. T., Guo, Y. W., Hu, Z. B., and Xu, L. S. (2004). Two new compounds from *Dendrobium chrysotoxum*. <u>Helvetica Chimica Acta</u> 87(2): 394-399.
- Yang, H., Sung, S. H., and Kim, Y. C. (2007b). Antifibrotic phenanthrenes of *Dendrobium nobile* stems. <u>Journal of Natural Products</u> 70(12): 1925-1929.
- Yang, L., Han, H., Nakamura, N., Hattori, M., Wang, Z., and Xu, L. (2007a). Bio-guided isolation of antioxidants from the stems of *Dendrobium aurantiacum* var. *denneanum*. <u>Phytotherapy Research</u> 21(7): 696-698.
- Yang, L., Liu, S. J., Luo, H. R., Cui, J., Zhou, J., Wang, X. J., and Hu, J. M. (2015a). Two new dendrocandins with neurite outgrowth-promoting activity from *Dendrobium officinale*. Journal of Asian Natural Products Research 17(2): 125-131.
- Yang, L., Qin, L. H., Bligh, S. W., Bashall, A., Zhang, C. F., Zhang, M., and Xu, L. S. (2006b).
 A new phenanthrene with a spirolactone from *Dendrobium chrysanthum* and its anti-inflammatory activities. <u>Bioorganic and Medicinal Chemistry</u>, 14(10): 3496-3501.
- Yang, L., Wang, Z., and Xu, L. (2006a). Phenols and a triterpene from *Dendrobium aurantiacum* var. *denneanum* (Orchidaceae). <u>Biochemical Systematics and</u> <u>Ecology</u> 34(8): 658-660.
- Yang, M., Chen, L. J., Zhang, Y., and Chen, Y. G. (2017b). Two new picrotoxane-type sesquiterpenoid lactones from *Dendrobium williamsonii*. Journal of Asian

- Yang, M., Zhang, Y., Chen, L., and Chen, Y. (2017a). A new (propylphenyl)bibenzyl derivative from *Dendrobium williamsonii*. <u>Natural Product Research</u> 32(14): 1699-1705.
- Ye, Q. H., Zhao, W. M., and Qin, G. W. (2003). New fluorenone and phenanthrene derivatives from *Dendrobium Chrysanthum*. <u>Natural Product Research</u> 17(3): 201-205.
- Ye, Q., Mei, Y., Yang, P., Cheng, L., and Kong, D. (2016). A new 9,10-dihydrophenanthrene glycoside from *Dendrobium primulinum*. <u>Chemistry of Natural Compounds</u> 52(3): 381-383.
- Ye, Q., Qin, G., and Zhao, W. (2002b). Immunomodulatory sesquiterpene glycosides from *Dendrobium nobile*. <u>Phytochemistry</u> 61(8): 885-890.
- Ye, Q., and Zhao, W. (2002a). New alloaromadendrane, cadinene and cyclocopacamphane type sesquiterpene derivatives and bibenzyls from *Dendrobium nobile*. <u>Planta Medica</u> 68(8): 723-729.
- Ye, Q. H., Zhao, W. M., and Qin, G. W. (2004). Lignans from *Dendrobium chrysanthum*. Journal of Asian Natural Products Research 6(1): 39-43.
- Zhang, C., Liu, S. J., Yang, L., Yuan, M. Y., Li, J. Y., Hou, B., and Hu, J. M. (2017). Sesquiterpene amino ether and cytotoxic phenols from *Dendrobium wardianum* Warner. <u>Fitoterapia</u> 122: 76-79.
- Zhang, C. F., Wang, M., Wang, L., Linuma, M., Zhang, M., Xu, L. S., and Wang, Z. T. (2008a). Chemical constituents of *Dendrobium gratiosissimum* and their cytotoxic activities. <u>Indian Journal of Chemistry</u> 47(6): 952-956.
- Zhang, G. N., Zhong, L. Y., Bligh, S. W., Guo, Y. L., Zhang, C. F., Zhang, M., and Xu, L. S. (2005). Bi-bicyclic and bi-tricyclic compounds from *Dendrobium thyrsiflorum*. <u>Phytochemistry</u> 66(10): 1113-1120.
- Zhang, X., Gao, H., Han, H. Y., Liu, H. W., Wang, N. L., Yao, X. S., and Wang, Z. (2007b). Sesquiterpenes from *Dendrobium nobile*. <u>Chinese Traditional and Herbal Drugs</u> 38(12): 1771-1774.

- Zhang, X., Gao, H., Wang, N. L., and Yao, X. S. (2006). Three new bibenzyl derivatives from *Dendrobium nobile*. <u>Journal of Asian Natural Products Research</u> 8(1): 113-118.
- Zhang, X., Tu, F. J., Yu, H. Y., Wang, N. L., Wang, Z., and Yao, X. S. (2008c). Copacamphane, picrotoxane and cyclocopacamphane sesquiterpenes from *Dendrobium nobile*. <u>Chemical and pharmaceutical bulletin</u> 56(6): 854-857.
- Zhang, X., Xu, J. K., Wang, J., Wang, N. L., Kurihara, H., Kitanaka, S., and Yao, X. S. (2007a). Bioactive Bibenzyl Derivatives and fluorenones from *Dendrobium nobile*. Journal of Natural Products 70(1): 24-28.
- Zhang, X., Xu, J. K., Wang, N. L., Kurihara, H., and Yao, X. S. (2008b). Antioxidant phenanthrenes and lignans from *Dendrobium nobile*. <u>Journal of Chinese</u> <u>Pharmaceutical Sciences</u> 17(4): 314-318.
- Zhao, C., Liu, Q., Halaweish, F., Shao, B., Ye, Y., and Zhao, W. (2003). Copacamphane, picrotoxane, and alloaromadendrane sesquiterphene glycosides and phenolic glycosides from *Dendrobium moniliforme*. Journal of Natural Products 66(8): 1140-1143.
- Zhao, G. Y., Deng, B. W., Zhang, C. Y., Cui, Y. D., Bi, J. Y., and Zhang, G. G. (2018). New phenanthrene and 9, 10-dihydrophenanthrene derivatives from the stems of *Dendrobium officinale* with their cytotoxic activities. <u>Journal of Natural</u> <u>Medicines</u> 72(1): 246-251.
- Zhao, N., Yang, G., Zhang, Y., Chen, L., and Chen, Y. (2016). A new 9,10dihydrophenanthrene from *Dendrobium moniliforme*. <u>Natural Product</u> <u>Research</u> 30(2): 174-179.
- Zhao, W., Ye, Q., Tan, X., Jiang, H., Li, X., Chen, K., and Kinghorn, A. D. (2001). Three new sesquiterpene glycosides from *Dendrobium nobile* with immunomodulatory activity. *Journal of Natural Products* 64(9): 1196-1200.
- Zhou, X. M., Zheng, C. J., Wu, J. T., Chen, G. Y., Chen, J., and Sun, C. G. (2016). Five new lactone derivatives from the stems of *Dendrobium nobile*. <u>Fitoterapia</u> 115: 96-100.

Zhou, X. M., Zheng, C. J., Wu, J. T., Chen, G. Y., Zhang, B., and Sun, C. G. (2017). A new phenolic glycoside from the stem of *Dendrobium nobile*. <u>Natural Product</u> <u>Research</u> 31(9): 1042-1046.

Chulalongkorn University

Figure 7 IR spectrum of compound DPB-1

Figure 10¹³C-NMR (125 MHz) spectrum of compound DPB-1 (in CD₃OD)

Figure 11 HSQC spectrum of compound DPB-1 (in CD₃OD)

Figure 13 HMBC spectrum of compound DPB-1 (in CD₃OD)

Figure 15 ¹H-NMR (300 MHz) spectrum of compound DPB-2 (in acetone- d_6)

Figure 16 ¹³C-NMR (75 MHz) spectrum of compound DPB-2 (in acetone- d_6)

Figure 17 NOESY spectrum of compound DPB-2 (in acetone- d_6)

Figure 19 ¹H-NMR (300 MHz) spectrum of compound DPB-3 (in acetone- d_6)

Figure 21 HSQC spectrum of compound DPB-3 (in acetone- d_6)

Figure 23 HMBC spectrum of compound DPB-3 (in acetone- d_6)

Figure 25 ¹H-NMR (300 MHz) spectrum of compound DPB-4 (in acetone- d_6)

Figure 27 HSQC spectrum of compound DPB-4 (in acetone- d_6)

Figure 29 NOESY spectrum of compound DPB-4 (in acetone- d_6)

Figure 31 1 H-NMR (300 MHz) spectrum of compound DPB-5 (in acetone- d_{6})

Figure 33 HSQC spectrum of compound DPB-5 (in acetone- d_6)

Figure 37 ¹H-NMR (300 MHz) spectrum of compound DPB-6 (in acetone- d_6)

Figure 39 HSQC spectrum of compound DPB-6 (in acetone- d_6)

Figure 41 HMBC spectrum of compound DPB-6 (in acetone- d_6)

Figure 43 1 H-NMR (300 MHz) spectrum of compound DPB-7 (in acetone- d_{6})

Figure 45 HSQC spectrum of compound DPB-7 (in acetone- d_6)

Figure 47 HMBC spectrum of compound DPB-7 (in acetone- d_6)

Figure 49 ¹H-NMR (300 MHz) spectrum of compound DPB-8 (in CDCl₃)

Figure 51 HSQC spectrum of compound DPB-8 (in CDCl₃)

Figure 53 Mass spectrum of compound DPB-9

Figure 55 ¹³C-NMR (75 MHz) spectrum of compound DPB-9 (in acetone- d_6)

Figure 57 NOESY spectrum of compound DPB-9 (in acetone- d_6)

Figure 59 Mass spectrum of compound DPB-10

Figure 61 13 C-NMR (75 MHz) spectrum of compound DPB-10 (in acetone- d_6)

Figure 63 NOESY spectrum of compound DPB-10 (in acetone- d_6)

VITA

Mr. Napat Kyokong, was born on October 26, 1992, in Songkhla, Thailand. He graduated with Bachelor's degree in Pharmacy in 2017 from the Faculty of Pharmaceutical Sciences, Chulalongkorn University. He was awarded a Japan student services organization (JASSO) scholarship in 2016 and the scholarship from the graduate school, Chulalongkorn university to commemorate the 72nd anniversary of his Majesty King Bhumibol Adulyadej in 2017.

Publications:

Kyokong, N., Muangnoi, C., Thaweesest, W., Kongkatitham, V., Likhitwitayawuid, K., Rojsitthisak, P., Sritularak, B. (2018). A new phenanthrene dimer from Dendrobium palpebrae. Journal of Asian Natural Products Research. Advanced online publication, DOI: 10.1080/10286020.2018.1429416.

Kongkatitham, V., Muangnoi, C., Kyokong, N., Thaweesest, W., Likhitwitayawuid, K., Rojsitthisak, P., Sritularak, B. (2018). Anti-oxidant and antiinflammatory effects of new bibenzyl derivatives from Dendrobium parishii in hydrogen peroxide and lipopolysaccharide treated RAW264.7 cells. Phytochemistry Letters, 24, 31-38.

CHULALONGKORN UNIVERSITY