สารที่มีฤทธิ์ต้านอนุมูลอิสระจากเอื้องครั่ง

จุหาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2560 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

FREE RADICAL SCAVENGING COMPOUNDS FROM DENDROBIUM PARISHII

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy Program in Pharmacognosy Department of Pharmacognosy and Pharmaceutical Botany Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2017 Copyright of Chulalongkorn University

Chulalongkorn University

Thesis Title	FREE RADICAL SCAVENGING COMPOUNDS FROM
	DENDROBIUM PARISHII
Ву	Mr. Virunh Kongkatitham
Field of Study	Pharmacognosy
Thesis Advisor	Associate Professor Boonchoo Sritularak, Ph.D.
Thesis Co-Advisor	Professor Kittisak Likhitwitayawuid, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree _____Dean of the Faculty of Pharmaceutical Sciences (Assistant Professor Rungpetch Sakulbumrungsil, Ph.D.) THESIS COMMITTEE Chairman (Associate Professor Rutt Suttisri, Ph.D.) ______Thesis Advisor (Associate Professor Boonchoo Sritularak, Ph.D.) Thesis Co-Advisor (Professor Kittisak Likhitwitayawuid, Ph.D.)Examiner (Assistant Professor Taksina Chuanasa, Ph.D.)Examiner (Chaisak Chansriniyom, Ph.D.) External Examiner

(Duangpen Pattamadilok, Ph.D.)

วิรุฬห์ คงคติธรรม : สารที่มีฤทธิ์ต้านอนุมูลอิสระจากเอื้องครั้ง (FREE RADICAL SCAVENGING COMPOUNDS FROM *DENDROBIUM PARISHII*) อ.ที่ปรึกษาวิทยานิพนธ์ หลัก: รศ. ภก. ดร. บุญชู ศรีตุลารักษ์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ศ. ภก. ดร. กิตติศักดิ์ ลิขิตวิทยาวุฒิ, หน้า.

การศึกษาทางพฤกษเคมีของสารสกัดหยาบด้วยเอทิลอะซีเตตจากเอื้องครั่ง สามารถแยก สารบริสุทธิ์ชนิดใหม่ได้ 2 ชนิด ได้แก่ 4,3',4'-trihydroxy-3,5-dimethoxybibenzyl ซึ่งเป็นอนุพันธ์ ของสารในกลุ่ม bibenzylและ (-)-dendroparishiol ซึ่งเป็นอนุพันธ์ของสารในกลุ่ม bibenzyldihydrophenanthrene และยังพบสารที่เคยมีการรายงานไว้แล้วอีก 5 ชนิด ซึ่งประกอบด้วย flavanthrinin, moscatilin, 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl, dendrocandin E และ asiatic acid โดยสารทุกชนิดจะถูกพิสูจน์โครงสร้างทางเคมีด้วยวิธีการทางสเปกโตรสโคปี (NMR and HR-ESI-MS) และจะถูกนำไปทดสอบฤทธิ์ต้านอนุมูลอิสระด้วยการทดสอบต่าง ๆ ได้แก่ DPPH free radical scavenging assay, oxygen radical absorbance capacity assay และ deoxyribose degradation assay จากผลการทดสอบพบว่า สาร (-)-dendroparishiol มีฤทธิ์ยับยั้งอนุมูลอิสระ ได้ดีที่สุดในทุกการทดสอบ และสารดังกล่าวจึงถูกเลือกเพื่อใช้ในการทดสอบฤทธิ์ต้านอนุมูลอิสระใน เซลล์ murine macrophage RAW264.7 ซึ่งถูกเหนี่ยวนำโดย H₂O₂ ให้เกิดภาวะ oxidative stress โดยการทดสอบดังกล่าวพบว่าสาร (-)-dendroparishiol สามารถลดการสร้างอนุมูลอิสระในเซลล์ RAW264.7 ได้มากขึ้นตามขนาด dose ที่เพิ่มขึ้น และเพิ่มการทำงานของเอนไซม์ที่ยับยั้งอนุมูลอิสระ (SOD, GPx and CAT) ได้มากขึ้นตามขนาด dose ที่เพิ่มขึ้นเช่นเดียวกัน จากผลการทดสอบทั้งหมดนี้ แสดงว่า สาร (–)-dendroparishiol มีศักยภาพที่จะสามารถพัฒนาต่อเป็นสารต้านอนุมูลอิสระที่ใช้ ประโยชน์ได้ต่อไป

Chulalongkorn University

ภาควิชา	เภสัชเวทและเภสัชพฤกษศาสตร์	ลายมือชื่อนิสิต
สาขาวิชา	เภสัชเวท	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา	2560	ลายมือชื่อ อ.ที่ปรึกษาร่วม

6076117033 : MAJOR PHARMACOGNOSY

KEYWORDS: DENDROBIUM PARISHII / FREE RADICALS / ORCHIDACEAE / BIBENZYLS / PHENANTHRENES / DIHYDROPHENANTHRENES

VIRUNH KONGKATITHAM: FREE RADICAL SCAVENGING COMPOUNDS FROM *DENDROBIUM PARISHII*. ADVISOR: ASSOC. PROF. BOONCHOO SRITULARAK, Ph.D., CO-ADVISOR: PROF. KITTISAK LIKHITWITAYAWUID, Ph.D., pp.

In this study, the EtOAc extract of Dendrobium parishii Rchb. f. was separated to obtain two new compounds including a bibenzyl derivative, 4,3',4'-trihydroxy-3,5dimethoxybibenzyl, and а bibenzyl-dihydrophenanthrene derivative. (_)dendroparishiol, and five known compounds including flavanthrinin, moscatilin, 4,5,4'trihydroxy-3,3'-dimethoxybibenzyl, dendrocandin E and asiatic acid. The structures of all of the isolated compounds were determined by analysis of spectroscopic data (NMR and HR-ESI-MS). They were then evaluated for antioxidant activities using DPPH free radical scavenging activity, deoxyribose degradation and oxygen radical absorbance capacity assays. Among the tested compounds, (-)-dendroparishiol showed the strongest free radicals reduction and was further investigated for antioxidant activity in H₂O₂-induced oxidative stress in RAW264.7 murine macrophage cells. (-)-Dendroparishiol could decrease ROS production in RAW264.7 cells in a dosedependent manner and enhanced the activities of cellular anti-oxidative enzymes (SOD, GPx and CAT). These results indicate that compound (-)-dendroparishiol has the potential to be developed as a useful antioxidant agent.

Department:	Pharmacognosy and	Student's Signature
	Pharmaceutical Botany	Advisor's Signature
Field of Study:	Pharmacognosy	Co-Advisor's Signature
Academic Year:	2017	

ACKNOWLEDGEMENTS

I wish to express my appreciation to my thesis advisor, Associate Professor Dr. Boonchoo Sritularak and my co-advisor, Professor Dr. Kittisak Likhitwitayawuid, for their valuable guidance, endless support and encouragement throughout this thesis. I would not have succeeded my thesis research without all the advice, kindness and helps that I have always received from them.

I am grateful for all assistance and beneficial advice from the members of my thesis committee and all staff members of the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, especially Mr. Napat Kyokong, for all their assistance and help.

I would like to thank Associate Professor Dr. Pornchai Rojsitthisak, Mr. Chawanphat Muangnoi and Mr. Wuttinont Thaweesest from the Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University for their helps and support.

In addition, I would like to thankfully acknowledge Chulalongkorn University Graduate Scholarship to Commemorate the 72nd Anniversary of His Majesty King Bhumibol Adulyadej for supporting my research.

Finally, I want to express my special gratitude to my family and friends for their love, support and encouragement.

CONTENTS

Page
THAI ABSTRACTiv
ENGLISH ABSTRACTv
ACKNOWLEDGEMENTSvi
CONTENTS
LIST OF TABLES 1
LIST OF FIGURES
LIST OF SCHEMES
ABBREVIATIONS & SYMBOLS
CHAPTER I INTRODUCTION
CHAPTER II HISTORICAL
1. Chemical constituents of <i>Dendrobium</i> species
2. Traditional uses and biological activities of <i>Dendrobium</i> species
CHAPTER III EXPERIMENTAL
1. Source of plant materials
2. General techniques
2.1 Thin-layer chromatography (TLC)
2.2 Column chromatography110
2.2.1 Vacuum liquid chromatography (VLC)110
2.2.2 Flash column chromatography (FCC)110
2.2.3 Gel filtration chromatography111
2.3 Spectroscopy111
2.3.1 Mass spectra111

	5
2.3.2 1-D and 2-D nuclear magnetic resonance spectra	111
2.3.3 Ultraviolet (UV) spectra	112
2.3.4 Infrared (IR) spectra	112
2.3.5 Optical rotation	112
2.4 Solvents	112
3. Extraction and isolation	112
3.1 Extraction	112
3.2 Isolation	113
3.2.1 Isolation of compound DPR-1 (4,3',4'-Trihydroxy-3,5-	
dimethoxybibenzyl)	118
3.2.2 Isolation of compound DPR-6 (Dendrocandin E)	118
3.2.3 Isolation of compound DPR-2 [(-)-Dendroparishiol] and	
DPR-7 (Asiatic acid)	118
3.2.4 Isolation of compound DPR-3 (Flavanthrinin)	118
3.2.5 Isolation of compound DPR-4 (Moscatilin)	119
3.2.6 Isolation of compound DPR-5 (4,5,4'-Trihydroxy-3,3'-	
dimethoxybibenzyl)	119
4. Physical and spectral data of isolated compounds	119
4.1 Compound DPR-1 (4,3',4'-Trihydroxy-3,5-dimethoxybibenzyl)	119
4.2 Compound DPR-2 [(–)-Dendroparishiol]	120
4.3 Compound DPR-3 (Flavanthrinin)	120
4.4 Compound DPR-4 (Moscatilin)	120
4.5 Compound DPR-5 (4,5,4'-Trihydroxy-3,3'-dimethoxybibenzyl)	121
4.6 Compound DPR-6 (Dendrocandin E)	121

Page

viii

	Page
4.7 Compound DPR-7 (Asiatic acid)	121
5. Free radical scavenging activity assays	122
5.1 DPPH free radical scavenging activity assay	122
5.1.1 Materials and instruments	122
5.1.2 Determination of DPPH free radical scavenging activity assay	122
5.2 Oxygen radical absorbance capacity (ORAC) assay	123
5.2.1 Materials and instruments	123
5.2.2 Determination of ORAC assay	123
5.3 Deoxyribose degradation assay	124
5.3.1 Materials and instruments	124
5.3.2 Determination of deoxyribose degradation assay	125
5.4 Intracellular antioxidant activity in cell cultures	125
5.4.1 Materials and instruments	126
5.4.2 Determination of intracellular antioxidant activity in cell	
cultures ค.งกรณ์มหาวิทยาลัย	126
5.5 Effects on antioxidant enzymes in cell cultures	127
5.5.1 Materials and instruments	127
5.5.2 Determination of effects on antioxidant enzyme in cell culture	es . 128
CHAPTER IV RESULTS AND DISCUSSION	129
1. Structure determination of isolated compounds	129
1.1 Structure determination of compound DPR-1	129
1.2 Structure determination of compound DPR-2	132
1.3 Structure determination of compound DPR-3	135

1.4 Structure determination of compound DPR-4	137
1.5 Structure determination of compound DPR-5	140
1.6 Structure determination of compound DPR-6	142
1.7 Structure determination of compound DPR-7	144
2. Free radical scavenging activities	148
CHAPTER V CONCLUSION	153
REFERENCES	154
APPENDIX	168
VITA	. 190

Page

Х

LIST OF TABLES

Table 1 Bibenzyls and derivatives in the genus Dendrobium	23
Table 2 Flavonoids in the genus Dendrobium	62
Table 3 Terpenoids in the genus Dendrobium	70
Table 4 Terpenoids in the genus Dendrobium	80
Table 5 1 H NMR 300 MHz and 13 C NMR 75 MHz spectral data of	
compound DPR-1 (in acetone- d_6)	131
Table 6 ¹ H NMR 500 MHz and ¹³ C NMR 125 MHz spectral data of	
compound DPR-2 (in CD ₃ OD)	134
Table 7 ¹ H NMR 300 MHz and ¹³ C NMR 75 MHz spectral data of	
compound DPR-3 (in acetone- d_6) and flavanthrinin (in CDCl ₃)	136
Table 8 ¹ H NMR 300 MHz and ¹³ C NMR 75 MHz spectral data of	
compound DPR-4 (in acetone- d_6) and moscatilin (in acetone- d_6)	<u>1</u> 39
Table 9 ¹ H NMR 300 MHz and ¹³ C NMR 75 MHz spectral data of	
compound DPR-5 (in acetone- d_6) and 4,5,4'-trihydroxy-3,3'-	
dimethoxybibenzyl (in acetone- d_6)	141
Table 10 ¹ H NMR 300 MHz and ¹³ C NMR 75 MHz spectral data of	
compound DPR-6 (in acetone- d_6) and dendrocandin E (in acetone- d_6)	143
Table 11 ¹ H NMR 300 MHz and ¹³ C NMR 75 MHz spectral data of	
compound DPR-7 (in CD ₃ OD) and asiatic acid (in CD ₃ OD)	146
Table 12 Percentage of free radical inhibition by compounds DPR-1 – DPR-7	149
Table 13 $\operatorname{Trolox}^{\otimes}$ equivalent (TE) (in micromole per gram) of compounds	
DPR-1 – DPR-7 for deoxyribose degradation assay	150
Table 14 Inhibitory effects on ROS production in RAW 264.7	
murine macrophage cells induced by H_2O_2 of isolated	
compounds from <i>D. parishii</i>	151

Table 15 Inhibitory effects on ROS production in RAW 264.7	
murine macrophage cells induced by H_2O_2 of (–)-dendropar	rishiol
at non-toxic concentrations	
Table 16 Effects of compound (-)-dendroparishiol on antioxidant en	zymes in
induced RAW 264.7 macrophage cells	

LIST OF FIGURES

Figure 1 Dendrobium parishii Rchb. f	21
Figure 2 Structures of bibenzyls and derivatives isolated	
from <i>Dendrobium</i> species	43
Figure 3 Structures of flavonoids isolated from <i>Dendrobium</i> species	66
Figure 4 Structures of terpenoids isolated from <i>Dendrobium</i> species	74
Figure 5 Structures of miscellaneous compounds isolated	
from <i>Dendrobium</i> species	92
Figure 6 Mass spectrum of compound DPR-1	169
Figure 7 Infrared spectrum of compound DPR-1	
Figure 8 UV spectrum of compound DPR-1	170
Figure 9 ¹ H-NMR (300 MHz) spectrum of compound DPR-1 (in acetone- d_6)	170
Figure 10 ¹³ C-NMR (75 MHz) spectrum of compound DPR-1 (in acetone- d_6)	171
Figure 11 HSQC spectrum of compound DPR-1 (in acetone- d_6)	171
Figure 12 NOESY spectrum of compound DPR-1 (in acetone- d_6)	172
Figure 13 HMBC spectrum of compound DPR-1 (in acetone- d_6)	172
Figure 14 Mass spectrum of compound DPR-2	173
Figure 15 Infrared spectrum of compound DPR-2	
Figure 16 UV spectrum of compound DPR-2	
Figure 17 ¹ H-NMR (500 MHz) spectrum of compound DPR-2 (in CD ₃ OD)	174
Figure 18 13 C-NMR (125 MHz) spectrum of compound DPR-2 (in CD ₃ OD)	
Figure 19 HSQC spectrum of compound DPR-2 (in CD ₃ OD)	
Figure 20 HMBC spectrum of compound DPR-2 (in CD ₃ OD)	
Figure 21 HMBC spectrum of compound DPR-2 (in CD_3OD) (continue).	
Figure 22 NOESY spectrum of compound DPR-2 (in CD ₃ OD)	177
Figure 23 Mass spectrum of compound DPR-3	177

Figure 24 ¹ H-NMR (300 MHz) spectrum of compound DPR-3 (in acetone- d_6)	178
Figure 25 ¹³ C-NMR (75 MHz) spectrum of compound DPR-3 (in acetone- d_6)	178
Figure 26 HSQC spectrum of compound DPR-3 (in acetone- d_6)	179
Figure 27 NOESY spectrum of compound DPR-3 (in acetone- d_6)	179
Figure 28 HMBC spectrum of compound DPR-3 (in acetone- d_6)	
Figure 29 Mass spectrum of compound DPR-4	
Figure 30 ¹ H-NMR (300 MHz) spectrum of compound DPR-4 (in acetone- d_6)	181
Figure 31 ¹³ C-NMR (75 MHz) spectrum of compound DPR-4 (in acetone- d_6)	181
Figure 32 NOESY spectrum of compound DPR-4 (in acetone- d_6)	
Figure 33 HMBC spectrum of compound DPR-4 (in acetone- d_6)	182
Figure 34 Mass spectrum of compound DPR-5	183
Figure 35 ¹ H-NMR (300 MHz) spectrum of compound DPR-5 (in acetone- d_6)	183
Figure 36 ¹³ C-NMR (75 MHz) spectrum of compound DPR-5 (in acetone- d_6)	184
Figure 37 NOESY spectrum of compound DPR-5 (in acetone- d_6)	
Figure 38 HMBC spectrum of compound DPR-5 (in acetone- d_6)	185
Figure 39 Mass spectrum of compound DPR-6	185
Figure 40 ¹ H-NMR (300 MHz) spectrum of compound DPR-6 (in acetone- d_6)	186
Figure 41 ¹³ C-NMR (75 MHz) spectrum of compound DPR-6 (in acetone- d_6)	186
Figure 42 NOESY spectrum of compound DPR-6 (in acetone- d_6)	
Figure 43 HMBC spectrum of compound DPR-6 (in acetone- d_6)	
Figure 44 Mass spectrum of compound DPR-7	188
Figure 45 ¹ H-NMR (300 MHz) spectrum of compound DPR-7 (in CD ₃ OD)	188
Figure 46 ¹³ C-NMR (75 MHz) spectrum of compound DPR-7 (in CD ₃ OD)	189
Figure 47 HMBC spectrum of compound DPR-7 (in CD ₃ OD)	189

LIST OF SCHEMES

Scheme 1	Separation of the MeOH extract of Dendrobium parishii	114
Scheme 2	Separation of the EtOAc extract of <i>Dendrobium parishii</i>	115

ABBREVIATIONS & SYMBOLS

AAPH	=	2,2-Azobis (2-amidinopropane) dihydrochloride
Acetone-d ₆	=	Deuterated acetone
Ara	=	Arabinose
α	=	Alpha
β	=	Beta
br s	=	Broad singlet (for NMR spectra)
br d	=	Broad doublet (for NMR spectra)
°C	=]	Degree Celsius
CAT	= /	Catalase
CC	=	Column chromatography
CDCl ₃	=	Deuterated chloroform
CD ₃ OD	= 😪	Deuterated methanol
CH ₂ Cl ₂	=	Dichloromethane
cm	ลุ หาย	Centimeter 17 19 1 2 8
¹³ C-NMR	<u>Ch</u> ulai	Carbon-13 Nuclear Magnetic Resonance
1-D NMR	=	One-dimensional Nuclear Magnetic Resonance
2-D NMR	=	Two-dimensional Nuclear Magnetic Resonance
d	=	Doublet (for NMR spectra)
dd	=	Doublet of doublets (for NMR spectra)
δ	=	Chemical shift
DCFH	=	2′,7′-Dichlorofluorescein
DCFH-DA	=	2′,7′-Dichlorofluorescein diacetate

DEPT	=	Distortionless Enhancement by Polarization Transfer
DMEM	=	Dulbecco's modified eagle's medium
DMSO	=	Dimethyl sulfoxide
DPPH	=	2,2-Diphenyl-1-picrylhydrazyl
3	=	Molar absorptivity
EDTA	=	Ethylene diamine tetra-acetic acid
ESI-MS	=	Electrospray Ionization Mass Spectrometry
EtOAc	=	Ethyl acetate
FBS	=	Fetal bovine serum
FCC	= 2	Flash Column Chromatography
FL	=	Fluorescein
g	=	Gram
GF	=	Gel Filtration
Glc	- 8	Glucose
GPx	=	Glutathione peroxidase
GR	จุฬา 	Glutathione reductase
GST	UHULA =	Glutathione-S-transferase
НМВС	=	¹ H-detected Heteronuclear Multiple Bond Correlation
HR-ESI-MS	=	High Resolution Electrospray Ionization Mass
		Spectrometry
¹ H-NMR	=	Proton Nuclear Magnetic Resonance
HSQC	=	¹ H-detected Heteronuclear Single Quantum Coherence
Hz	=	Hertz
IC ₅₀	=	Concentration exhibiting 50% inhibition

IR	=	Infrared
J	=	Coupling constant
Kg	=	Kilogram
L	=	Liter
λ_{max}	=	Wavelength at maximal absorption
[M+Na] ⁺	=	Sodium-adduct molecular ion
т	=	Multiplet (for NMR spectra)
MDA	=	Malondialdehyde
MeOH	=	Methanol
mg	= /	Milligram
min	=	Minute
mL	=	Milliliter
mm	=	Millimeter
mМ	- 8	Millimolar
MS	=	Mass spectrum
MW	จุหาะ	Molecular weight
m/z	GHULAI =	Mass to charge ratio
μg	=	Microgram
μL	=	Microliter
μΜ	=	Micromolar
nm	=	Nanometer
NMR	=	Nuclear Magnetic Resonance
NOESY	=	Nuclear Overhauser Effect Spectroscopy
NOS	=	Nitric oxide synthase

ν_{max}	=	Wave number at maximal absorption
OEt	=	Ethoxy group
OMe	=	Methoxy group
ORAC	=	Oxygen radical absorbance capacity
ppm	=	Part per million
PRX	=	Peroxiredoxins
Rha	=	Rhamnose
ROS	=	Reactive oxygen species
S	=	Singlet (for NMR spectra)
SOD	= /	Superoxide dismutase
t	=	Triplet (for NMR spectra)
ТВА	=	Thiobarbituric acid
TCA	=	Trichloroacetic Acid
ТСМ	- 8	Traditional Chinese medicine
TE	=	Trolox® equivalent
TLC	จุฬา	Thin Layer Chromatography
TRX	=	Thioredoxins
UV-VIS	=	Ultraviolet and Visible spectrophotometry
VLC	=	Vacuum Liquid Column Chromatography
Xyl	=	Xylose

CHAPTER I

Free radicals are atoms or molecules that contain unpair electrons. They are highly reactive, very short lived, unstable and can donate electrons to or receive electrons from many molecules (Mohammed et al., 2015). Researchers have found that free radicals are involved in many human diseases such as aging (Devasagayam et al., 2004). In general, free radicals can be divided into 2 types by atom of radicals; (1) oxygen containing molecules (reactive oxygen species, ROS) such as ozone (O₃), singlet oxygen $({}^{1}O_{2})$, organic hydroperoxide (ROOH), peroxyl radical (ROO \cdot), hydrogen peroxide (H_2O_2) , hydroxyl radical (OH) and superoxide (O_2^{-1}) and (2) nitrogen containing molecules (reactive nitrogen species, RNS) such as nitric oxide (NO-), peroxy nitrite (ONOO-), peroxy nitrous acid (ONOOH) and nitrogen dioxide (NO₂) (Phaniendra et al., 2015). Free radicals can be generated from endogenous and exogenous sources. Examples of endogenous factors are electron transport chain in mitochondria, enzyme activities such as NADPH oxidase, xanthine oxidase, and nitric oxide synthase (NOS), stress and inflammatory cytokines. Exogenous factors are from environmental sources such as air, water, foods, chemicals, UV light, radiation, alcohol. They can produce both ROS and RNS (Lobo et al., 2010; Pham-Huy et al., 2008).

The situation in which the body has excessive levels of free radicals or very low levels of antioxidants, which can cause an imbalance between antioxidants and free radicals, is called oxidative stress (Thanan *et al.*, 2014). Oxidative stress can cause many human diseases or damage to many target organs in the body such as cardiovascular diseases (hypertension, ischemia, atherosclerosis, heart failure), eyes (cataract, retinal disease), kidneys (chronic renal failure, glomerulonephritis), lungs (asthma, chronic bronchitis), joints inflammation (arthritis, rheumatism), brain diseases (Parkinson's disease, Alzheimer's disease, stroke) and multi-organs (cancer, aging, diabetes, inflammations, infections) (Pham-Huy *et al.*, 2008). Moreover, oxidative stress can cause damage to proteins, which results in protein dysfunction. Lipid peroxidation and oxysterol formation are caused by oxidative reactions to lipids which affect phospholipid functions. In addition, oxidative stress can alter oncogenes and tumor suppressor genes, resulting in mutations, epigenetic changes and genetic instability (Thanan *et al.*, 2014).

Normally, humans have the system or substances called antioxidants which can protect many organs from oxidative damage or neutralize free radicals. Antioxidants are molecules which can counteract the effect of free radicals before they interact with the target organs. They can be endogenous compounds or exogenous compounds from foods or dietary supplements. Endogenous antioxidants, which are important for maintaining cellular function, are enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione-S-transferase (GST), thioredoxins (TRX), peroxiredoxins (PRX) or substances such as melatonin or coenzyme Q10. We can obtain exogenous antioxidant compounds that could enhance the activity of endogenous antioxidants from external sources such as ascorbic acid (vitamin C), α -tocopherol (vitamin E), selenium, β carotene (carotenoids), omega-3 or omega-6 fatty acids, and flavonoids (Fraunberger *et al.*, 2016; Nimse and Pal, 2015). There are many antioxidant compounds from plants that have been used as dietary supplements. *Dendrobium* plants have been known to produce a large number of antioxidant compounds.

Dendrobium, which is the largest genus in the Orchidaceae family, contains more than 1,110 species (Teixeira da Silva *et al.*, 2017a). Dendrobium plants are known in China as Shi hu and their distributions are in Asia and Australia (Wang *et al.*, 2014). There are 74 species in China which are used traditionally for relieving the stomach, nourishing the kidney, promoting the body's immunity and prolonging life (Zhitao *et al.*, 2017). The chemical constituents of Dendrobium have been isolated and classified as bibenzyls, alkaloids, fluorenones, phenanthrenes, coumarins, sesquiterpenoids, polysaccharides. They showed many biological activities including antioxidant, antiinflammation, neuroprotective, immunomodulatory, anticancer, antimicrobial, antifungal and antiplatelet aggregating activities (Lam *et al.*, 2015). In Thailand, there are more than 100 species of *Dendrobium*, which have been reported and identified as follows (Forest herbarium, forest and plant conservation research office, department of national parks, wildlife and plant conservation, 2014).

Dendrobium acerosum Lindl.	กล้วยไม้มีอนาง Kluai mai mue nang (Chumphon)
D. aciculare Lindl.	เอื้องใบเข็ม
D. acinaciforme Roxb.	เอื้องยอดสร้อย Ueang yot soi (Northern)
D. aduncum Lindl.	N/A
D. albosanguineum Lindl.	เอื้องตางัว Ueang ta ngua (Mae Hong Son)
D. aloifolium (Blume) Rchb.f.	เอื้องมณี Ueang mani (Bangkok)
D. anceps Sw.	N/A
D. angulatum Lindl.	N/A
D. anosmum Lindl.	เอื้องสาย Ueang sai (Chiang Mai, Peninsular)
D. aphyllum (Roxb.) C.E.C. Fisch.	เอื้องงวงช้าง Ueang nguang chang
	(Mae Hong Son)
D. bellatulum Rolfe	เอื้องแซะภู Ueng sae phu
D. bensoniae Rchb.f.	เอื้องสายดอกขาว
D. bicameratum Lindl.	เอื้องเข็ม Ueang khem (Northern)
<i>D. bifarium</i> Lindl.	N/A
D. bilobulatum Seidenf.	กล้วยไม้ก้างปลา Kluai mai kang pla (General)
<i>D. blumei</i> Lindl.	N/A
D. brevimentum Seidenf.	N/A
D. brymerianum Rchb.f.	เอื้องคำฝอย Ueang kham foi (Northern)
<i>D. calicopis</i> Ridl.	N/A
<i>D. capillipes</i> Rchb.f.	เอื้องคำกิ่ว Ueang kham kio (Lampang, Phrae)
D. cariniferum Rchb.f.	เอื้องกาจก Ueang kachok (Chiang Mai)

<i>D. chittimae</i> Seidenf.	เอื้องจิตติมา Ueang chittima (General)
D. christyanum Rchb.f.	เอื้องแซะภูกระดึง Ueang sae phu kradueng (Loei)
D. chrysanthum Lindl.	เอื้องสายมรกต Ueang sai morakot (Bangkok)
D. chrysotoxum Lindl.	เอื้องคำ Ueang kham (Northern)
D. ciliatilabellum Seidenf.	หวายเขาเขียว Wai khao khiao (General)
<i>D. clavator</i> Ridl.	N/A
D. compactum Rolfe ex Hackett	เอื้องข้าวตอก Ueang khao tok (Northern)
D. compressum Lindl.	หวายแบนตะนาวศรี Wai baen tanao si (General)
D. concinnum Miq.	หางเปีย Hang pia (Narathiwat)
D. confinale Kerr	N/A
D. cowenii P. O'Byrne & J.J. Verm.	N/A
D. crepidatum Lindl. & Paxton	เอื้องสายน้ำเขียว Ueang sai nam khiao (General)
D. cretaceum Lindl.	N/A
D. crocatum Hook.f.	เอื้องนางนวล Ueang nang nuan (Peninsular)
D. cruentum Rchb.f.	เอื้องนกแก้ว Ueang nok kaeo (Bangkok)
D. crumenatum Sw.	หวายตะมอย Wai tamoi (Central, Peninsular)
D. crystallinum Rchb.f.	เอื้องนางฟ่อน Ueang nang fon (Chiang Mai)
D. cumulatum Lindl.	เอื้องสายสี่ดอก Ueang sai si dok
	(Northern, Southeastern)
D. curviflorum Rolfe	N/A
D. cuspidatum Lindl.	เอื้องข้าวตอกปากแหลม
D. dantaniense Guillaumin	เอื้องเข็ม Ueang khem (Chiang Mai)
D. delacourii Guillaumin	เอื้องดอกมะขาม Ueang dok ma kham (General)

N/A

D. deltatum Seidenf.

13

D. denneanum Kerr	N/A
D. densiflorum Lindl.	เอื้องมอนไข่ Ueang mon khai (Northern)
D. denudans D. Don	เอื้องสายจำปา Ueang sai champa (General)
D. devonianum Paxton	เอื้องเมี่ยง Ueang miang (Chiang Mai)
D. dickasonii L. O. Williams	เอื้องเคี้ยะ Ueang khia (Chiang Mai)
D. dixanthum Rchb.f.	เอื้องเทียน Ueang thian (Northern)
D. dixonianum Rolfe ex Downie	เอื้องข้าวตอกเหลือง
D. draconis Rchb.f.	เอื้องเงิน Ueang ngoen (Northern)
D. elliottianum P. O'Byrne	หวายเจดีย์ Wai chedi (Kanchanaburi)
D. ellipsophyllum Tang & Wang	เอื้องทอง Ueang thong (Genaeral)
D. erostelle Seidenf.	N/A
D. erosum (Blume) Lindl.	N/A
D. eserre Seidenf.	N/A
D. exile Schltr.	เอื้องเสี้ยน Ueang sian (General)
D. falconeri Hook.	เอื้องสายวิสูตร Ueang sai wisut (Bangkok)
D. farmeri Paxton	เอื้องมัจฉาณุ Ueang matchanu (Bangkok)
D. fimbriatum Hook.	เอื้องคำน้อย Ueang kham noi (Chiang Mai)
D. findlayanum C.S.P.	พวงหยก Phuang yok (Bangkok)
Parish & Rchb.f.	
<i>D. flexile</i> Ridl.	N/A
D. formosum Roxb. ex Lindl.	เอื้องเงินหลวง Ueang ngoen luang (Chiang Mai)
D. friedericksianum Rchb.f.	เอื้องเหลืองจันทบูร Ueang lueang chantabun
	(Bangkok)
D. fuerstenbergianum Schltr.	เอื้องแซะภูกระดึง Ueang sae phukradueng
	(General)

D. fyychianum Bateman ex Rchb.f.

D. garrettii Seidenf.

D. gibsonii Paxton

D. grande Hook.f.

D. gratiotissimum Rchb.f.

D. gregulus Seidenf.

D. griffithianum Lindl.

D. harveyanum Rchb.f.

D. hendersonii Hawkes & Heller

D. henryi Schltr.

D. hercoglossum Rchb.f.

D. heterocarpum Lindl.

D. hymenanthum Rchb.f.

หวายพม่า Wai phama (General) หวายการ์เร็ต Wai karet (General) เอื้องคำสาย Ueang kham sai (Northern) เอื้องแผงใบใหญ่ Ueang pheang bai yai (Peninsular)

เอื้องกิ่งดำ Ueang king dam (Bangkok) เอื้องมะต่อม Ueang ma tom (Chiang Mai) เอื้องมัจฉาณุ Ueang matchanu (Bangkok) เอื้องคำฝอย Ueang kham foi (Chiang Mai) หวายตะมอยน้อย Wai tamoi noi (Peninsular) เอื้องสุริยัน Ueang suriyan (Loei) เอื้องดอกมะเขือ Ueang dok ma kuea (Bangkok) เอื้องสีตาล Ueang si tan (Chiang Mai) เอื้องน้อยกลีบบาง Ueang noi klip bang (Chiang Mai, Kanchanaburi)

D. hymenopterum Hook.f.

D. incurvum Lindl. CHULALONG (N/A UNVERSITY

D. indivisum (Blume) Miq. ตานเสี้ยนไม้ Tan sian mai (Chumphon)
var. indivisum
D. indivisum (Blume) Miq. N/A
var. lampangense Rolfe
D. indivisum (Blume) Miq. ก้างปลา Kang pla (General)
var. pallidum Seidenf.
D. indragiriense Schltr. N/A
D. infundibulum Lindl.
ต้องตาเห็น Ueang ta hoen (General)

D. intricatum Gagnep.		เอื้องชมพู Ueang chomphu (Chanthaburi)		
	<i>D. jenkinsii</i> Wall. ex Lindl.	เอื้องผึ้งน้อย Ueang phueng noi (Chiang Mai)		
	D. kanburiense Seidenf.	หวายเมืองกาญจน์ Wai muang kan (Kanchanaburi)		
	<i>D. keithii</i> Ridl.	หางเปีย Hang pia (General)		
	D. kentrophyllum Hook.f.	ก้างปลาใหญ่		
	D. kontumense Gagnep.	เอื้องเงินวิลาศ Ueang ngoen wilat (Northeastern)		
	D. kratense Kerr	N/A		
	D. lagarum Seidenf.	N/A		
	D. lanpongense J.J.Sm.	N/A		
	D. lamyaiae Seidenf.	N/A		
	D. leonis (Lindl.) Rchb.f.	เอื้องตะขาบใหญ่ Ueang ta khap yai (General)		
	D. lindleyi Steud.	เอื้องผึ้ง Ueang phueng (Northern)		
	D. linguella Rchb.f.	N/A		
	D. lituiflorum Lindl.	เอื้องสายม่วง Ueang sai muang (Northern,		
		Bangkok)		
	D. lueckelianum Fessel & Wolff	ก์∕หาวิทยาลัย		
	D. mannii Ridl.	เอื้องหางปลา Ueang hang pla (General)		
	D. metachilinum Rchb.f.	N/A		
	D. monticola Hunt & Summerh	N/A		
	D. moschatum (BuchHam.) Sw.	เอื้องจำปา Ueang champa (Northern)		
	D. mucronatum Seidenf.	N/A		

N/A

D. nanocompactum Seidenf.

D. nathanielis Rchb.f.

D. ochreatum Lindl.

เอื้องตะขาบ Ueang ta khap (Chiang Mai)

เกล็ดนิ่ม Klet nim (Chantaburi)

D. oligophyllum Gagnep.

D. pachyglossum Parish & Rchb.f

D. pachyphyllum (Kuntze) Bakh.f.

D. palpebrae Lindl.

D. pandaneti Ridl.

D. panduriferum Hook.f.

D. parciflorum Rchb.f. ex Lindl.

D. parcum Rchb.f.

D. parishii Rchb.f.

D. parvum Seidenf.

D. peguanum Lindl.

D. pendulum Roxb.

D. perpaulum Seidenf.

D. planibulbe Lindl.

D. polyanthum Wall. ex Lindl.

D. porphyrochilum Lindl.

D. praecinctum Rchb.f.

D. proteranthum Seidenf.

D. pulchellum Roxb. ex Lindl.

D. pychnostachyum Lindl.

D. rhodostele Ridl.

ข้าวตอกปราจีน Khao tok prachin (General)

เอื้องขนหมู Ueang khon mu (Mae Hong Son)

เอื้องน้อย Ueang noi (General)

เอื้องมัจฉา Ueang matcha (Bangkok)

N/A

N/A

เอื้องดอกขาวใบแบน Ueang dok khao bai baen (General)

เอื้องก้านกิ่ว Ueang kan kio (Bangkok)

เอื้องครั่ง Ueang khrang (Northern)

N/A

หวายเปกู Wai peku (General)

เอื้องไม้เท้าฤาษี Ueang mai thao ruesi (Bangkok, Chiang Mai)

เอื้องข้าวตอกอินทนนท์ Ueang khao tok inthanon (General)

HULALONGK^{N/A}I UNIVERSITY

เอื้องสายประสาท Ueang sai prasat (Bangkok)

เอื้องเฉวียน Ueang chawian (General)

หวายภูหลวง Wai phu luang (General)

หวายน้อยภูหลวง Wai noi phu luang (Loei)

เอื้องคำตาควาย Ueang kham ta khwai (Mae Hong Son)

เศวตสอดสี Sawet sot si (Chiang Mai)

N/A

D. salaccense (Blume) Lindl.	เอื้องใบไผ่ Ueang bai phai (Chiang Mai)
D. sanguinolentum Lindl.	N/A
D. scabrilingue Lindl.	เอื้องแซะ Ueang sae (Mae Hong Son)
D. schilhaueri Ormerod &	N/A
Pedersen	
D. secundum (Blume) Lindl.	เอื้องแปรงสีฟัน Ueang preang si fan (Bangkok)
D. senile Parish & Rchb.f.	เอื้องซะนี Ueang chani (Bangkok)
D. setifolium Ridl.	N/A
D. signatum Rchb.f.	เอื้องเค้ากิ่ว Ueang khao kio (Northern)
D. singaporense Hawkes & Heller	N/A
D. sinuatum (Lindl.) Lindl. ex Rchb.f.	N/A
D. sociale J.J.Sm.	Ν/Α
D. strongylanthum Rchb.f.	เอื้องเย้าลม Ueang yao lom (Northern)
D. stuposum Lindl.	เอื้องสาย Ueang sai (Chiang Mai)
D. subulatum (Blume) Lindl.	N/A
D. sukhakulii hort.	หวายสุขะกุล Wai sukhakun (General)
D. sulcatum Lindl. CHULALONG	เอื้องจำปาน่าน Ueang champa nan (Bangkok)
D. superbiens Rchb.f.	หวายคิง Wai khing (Bangkok)
D. sutepense Rolfe ex Downie	เอื้องมะลิ Ueang mali (Chiang Mai)
D. terminale Parish & Rchb.f	เอื้องแผงโสภา Ueang phaeng sopha (Peninsular)
D. thyrsiflorum Rchb.f	เอื้องมอนไข่ใบมน Ueang mon khai bai mon
	(Northern)
D. tortile Lindl.	เอื้องไม้ตึง Ueang mai tueng (Mae Hong Son)
D. trigonopus Rchb.f.	เอื้องคำเหลี่ยม Ueang kham liam (Chiang Mai)
D. trinervium Ridl.	เทียนลิง Thian ling (Chumphon)

D. truncatum Lindl.	N/A
D. umbonatum Seidenf.	N/A
D. unicum Seidenf.	เอื้องครั่งแสด Ueang krang saet (General)
D. uniflorum Griff.	เอื้องทอง Ueang thong (Pattani)
D. venustum Teijsm. & Binn	ข้าวเหนียวลิง Khao niao ling (Central)
<i>D. villosulum</i> Lindl.	กล้วยหญ้านา Kluai ya na (Bangkok)
D. viridulum Ridl.	N/A
D. wardianum R. Warner	เอื้องมณีไตรรงค์ Ueang mani trairong (Northern)
D. wattii (Hook.f.) Rchb.f.	เอื้องแซะ Ueang sae (Northern)
D. williamsonii Day & Rchb.f.	NZA
D. xanthophlebium Lindl.	เอื้องแซะภูลังกา
D. ypsilon Seidenf.	เอื้องแบนปากตัด Ueang baen pak tat (General)
Stee	

Dendrobium parishii Rchb. f. is known as "Ueang khrang" (เอื้องครั้ง) in Thai. Its stems are round, 15-30 cm in length. Leaves are 5-6 cm long, in alternate 2-ranked arrangement. It produces inflorescence of flower with red purple sepals and petals with purple lips (**Fig. 1**). The flowering period is during February to March. This orchid has been found in the north and northeast of Thailand (Sanga Sabhasri Research and Development Department, The Botanical Garden Organization, 2011).

At present, there has been only one report on the chemical constituents of *Dendrobium parishii* Rchb. f., describing an imidazole alkaloid named anosmine (Leander and Luning, 1968). No studies have been done on the biological activities of this plant. In a preliminary study, an ethyl acetate, butanol and aqueous extracts obtained from this plant were tested for DPPH radical scavenging activity. The ethyl acetate extract, at 100 μ g/mL, showed 80% DPPH radical scavenging activity. The activity was not observed in the butanol and aqueous extracts. This study attempted

to find out the constituents and antioxidant activities of *D. parishii*, which might be useful for the development of drugs from natural sources.

The major objectives of this study were as follows.

1. To isolate and purify the constituents from *Dendrobium parishii* and analyze the chemical structure of each compound.

2. To investigate the antioxidant activities of the isolated compounds.

จุหาลงกรณมหาวิทยาลัย

Figure 1 Dendrobium parishii Rchb. f.

CHAPTER II

HISTORICAL

1. Chemical constituents of Dendrobium species

Plants of the genus *Dendrobium* are known to produce several classes of secondary metabolites, which can be categorized as bibenzyls, flavonoids, terpenoids and miscellaneous compounds (**Fig. 2-5**).

Bibenzyls and their derivatives, as shown in **Table 1**, belong to the stilbene group. Stilbenoids are formed by a molecule of cinnamic acid with three malonyl- CoA units. First, cinnamic acid from the shikimic acid pathway is hydroxylated and activated to 4-coumaroyl-CoA. Three acetate units from malonyl-CoA are then added to this activated 4-coumaroyl-CoA using stilbene synthase enzyme. After cyclization, they form a tetraketide, an unstable intermediate which is transformed into either a chalcone or a stilbene (stilbenes, bibenzyls, phenanthrenes, 9,10-dihydrophenanthrenes) (Tsopmo *et al.*, 2013). Modifications to the chalcone structure including glycosylation, methylation and hydroxylation give various flavonoids (Dewick, 2002), as shown in **Table 2**.

Terpenoids (**Table 3**) are synthesized from two pathways including the mevalonic acid pathway and the methylerythritol phosphate pathway. These two pathways provide the precursors for biosynthesis of isoprenes (C5), monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesterterpenes (C25), triterpenes (C30) and tetraterpenes (C40) (Schrader and Bohlmann, 2015).

Several minor compounds are grouped together and presented as miscellaneous compounds (**Table 4**) including aliphatic compounds, phenolic compounds, benzoic acid derivatives, lignans, neolignans, alkaloids, phenylpropanoids, fluorenones and coumarins.

Table 1 Bibenz	yls and deriv	vatives in the	genus Dendr	obium

Compounds	Plant	Plant part	Reference
Aloifol I [1]	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
Amoenylin [2]	D. amoenum	Whole plant	Majumder <i>et al.,</i> 1999
	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
Batatasin [3]	D. longicornu	Stem	Hu <i>et a</i> l., 2008a
	D. plicatile	Stem	Yamaki and Honda, 1996
Batatasin III [4]	D. aphyllum	Whole plant	Chen <i>et al.</i> , 2008a
		Stem	Yang <i>et al.</i> , 2015
Ś	D. cariniferum	Stem	Chen <i>et al.</i> , 2008
l l	D. chrysotoxum	Whole plant	Li et al., 2009c
จุ ห	D. draconis	Stem	Sritularak <i>et al.,</i>
Сни	lalongkorn U	NIVERSITY	2011a
	D. formosum	Whole plant	Inthongkaew <i>et al.,</i> 2017
	D. gratiosissimum	Stem	Zhang <i>et al.</i> , 2008a
	D. loddigesii	Stem	Ito <i>et al.,</i> 2010
	D. venustum	Whole plant	Sukphan <i>et al.,</i> 2014
Brittonin A [5]	D. secundum	Stem	Sritularak <i>et al.,</i> 2011b

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Chrysotobibenzyl [6]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
	var. denneanum		
	D. capillipes	Stem	Phechrmeekha
			et al., 2012
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006a
	D. chryseum	Stem	Ma et al., 1998
	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
	D. pulchellum	Stem	Chanvorachote
			et al., 2013
Chrysotoxine [7]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
ຊ ຈຸນ Chul	var. denneanum	8	
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006a
	D. chryseum	Stem	Ma et al., 1998
	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
	D. pulchellum	Stem	Chanvorachote
			et al., 2013
Crepidatin [8]	D. aurantiacum	Whole plant	Liu <i>et al.,</i> 2009b
	var. denneanum		
	D. capillipes	Stem	Phechrmeekha
			et al., 2012
	D. chrysanthum	Stem	Yang <i>et a</i> l., 2006a
Table 1 (continued)

Compounds	Plant	Plant part	Reference
Crepidatin [8]	D. crepidatum	Whole plant	Majumder and
			Chatterjee, 1989
	D. nobile	Stem	Zhang <i>et al.</i> , 2007b
	D. pulchellum	Stem	Chanvorachote
			et al., 2013
Cumulatin [9]	D. cumulatum	Whole plant	Majumder and Pal,
			1993
Dendrobin A [10]	D. nobile	Stem	Wang and Zhao,
			1985;
			Ye and Zhao,
			2002b
3,3'-Dihydroxy-4,5-	D. williamsonii	Whole plant	Rungwichaniwat
dimethoxybibenzyl [11]		3	et al., 2014
3,4'-Dihydroxy-5-	D. amoenum	Whole plant	Majumder <i>et al.,</i>
methoxybibenzyl [12]	าลงกรณมหาวท	เยาลย	1999
3,4'-Dihydroxy-5,5'-	D. nobile	Stem	Hwang <i>et al.,</i> 2010
dimethoxydihydro			
stilbene [13]			
4,5-Dihydroxy-3,3'-	D. nobile	Stem	Ye and Zhao,
dimethoxybibenzyl [14]			2002b

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Erianin [15]	D. chrysotoxum	Stem	Hu et al., 2012
Gigantol [16]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008a
	D. aurantiacum	Whole plant	Liu <i>et al.,</i> 2009b
	var. denneanum		
	D. brymerianum	Whole plant	Klongkumnuankarn
		2	et al., 2015
	D. densiflorum	Stem	Fan <i>et al</i> ., 2001
	D. devonianum	Whole plant	Sun <i>et al.,</i> 2014
	D. draconis	Stem	Sritularak <i>et al.,</i>
			2011a
	D. formosum	Whole plant	Inthongkaew <i>et al.,</i>
C.			2017
	D. gratiosissimum	Stem	Zhang <i>et al</i> ., 2008a
ຈຸ ພ	D. loddigesii	Whole plant	lto <i>et al.,</i> 2010
Chul	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
	D. nobile	Stem	Zhang <i>et al.</i> , 2007b
	D. officinale	Stem	Zhao <i>et al.,</i> 2018
	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
	D. venustum	Whole plant	Sukphan <i>et al.,</i> 2014

Table 1 (continued)

Compounds	Plant	Plant part	Reference
4-Hydroxy-3,5,3´- trimethoxybibenzyl	D. nobile	Stem	Ye and Zhao, 2002b
[17]			
5-Hydroxy-3,4,3´,4´,5´-	D. secundum	Stem	Phechrmeekha
pentamethoxybibenzyl			et al., 2012
[18]		2	
Isoamoenylin [19]	D. amoenum	Whole plant	Majumder <i>et al.,</i>
			1999
Moniliformine [20]	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
Moscatilin [21]	D. amoenum	Whole plant	Majumder <i>et al.,</i>
			1999
	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
	var. denneanum	13	
จุห	D. brymerianum	Whole plant	Klongkumnuankarn
Сни	alongkorn Ui	IVERSITY	et al., 2015
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006a
	D. densiflorum	Stem	Fan <i>et al.</i> , 2001
	D. ellipsophyllum	Whole plant	Tanagornmeatar
			et al., 2014
	D. formosum	Whole plant	Inthongkaew <i>et al.,</i>
			2017
	D. gratiosissimum	Stem	Zhang <i>et al</i> ., 2008a

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Moscatilin [21]	D. loddigesii	Whole plant	Chen <i>et al.</i> , 1994;
			Ito <i>et al.,</i> 2010
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
	D. moscatum	Whole plant	Majumder and Sen,
	s (a) (a) (a) (a)		1987
	D. nobile	Stem	Miyazawa <i>et al.</i> ,
			1999
	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
	D. pulchellum	Stem	Chanvorachote
			et al., 2013
	D. secundum	Stem	Sritularak <i>et al.,</i>
Ó	-2220000	B	2011b
	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
3,3´,4-Trihydroxy	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
bibenzyl [22] CHU	lalongkorn U	NIVERSITY	
3,3´,5-Trihydroxy	D. cariniferum	Whole plant	Liu <i>et al.</i> , 2009a
bibenzyl [23]			
3,5,4´-Trihydroxy	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
bibenzyl [24]			

Table 1 (continued)

Compounds	Plant	Plant part	Reference
4,5,4´-Trihydroxy-3,3´- dimethoxybibenzyl	D. secundum	Stem	Sritularak <i>et al.,</i> 2011b
[25]	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i> 2014
Tristin [26]	D. aphyllum	Stem	Yang <i>et al.,</i> 2015
	D. chrysotoxum	Stem	Hu et al., 2012
	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
	D. officinale	Stem	Zhao <i>et al.</i> , 2018
	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
Dendromoniliside E [27]	D. nobile	Stem	Miyazawa <i>et al.,</i> 1999
Dendrophenol [28]	D. candidum	Stem	Li et al., 2008
3,4-Dihydroxy-5,4'-	D. candidum	Stem	Li et al., 2008
[29]	D. signatum	Whole plant	Mittraphab <i>et al.,</i> 2016
	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016

Table 1 (continued)

Compounds	Plant	Plant part	Reference
4,4'-Dihydroxy-3,5- dimethoxybibenzyl	D. candidum	Stem	Li <i>et al.,</i> 2008
[30]	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i> 2014
	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
Loddigesiinol C [31]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
3-O-Methylgigantol	D. candidum	Stem	Li et al., 2008
[32]	D. plicatile	Stem	Yamaki and Honda, 1996
Dendrocandin A [33]	D. candidum	Stem	Li et al., 2008
Dendrocandin B [34]	D. candidum	Stem	Li et al., 2008
	D. signatum	Whole plant	Mittraphab <i>et al.,</i> 2016
Dendrocandin C [35]	D. candidum	Stem	Li <i>et al.</i> , 2009b
Dendrocandin D [36]	D. candidum	Stem STY	Li <i>et al.,</i> 2009b
Dendrocandin E [37]	D. candidum	Stem	Li <i>et al.,</i> 2009b
Dendrocandin F [38]	D. candidum	Stem	Li <i>et al.</i> , 2009b
Dendrocandin G [39]	D. candidum	Stem	Li et al., 2009b
Dendrocandin H [40]	D. candidum	Stem	Li <i>et al.</i> , 2009b

Compounds	Plant	Plant part	Reference
Dendrosinen A [41]	D. sinense	Whole plant	Chen <i>et al.</i> , 2014a
Dendrosinen B [42]	D. sinense	Whole plant	Chen <i>et al.</i> , 2014a
Dendrosinen C [43]	D. sinense	Whole plant	Chen <i>et al.</i> , 2014a
Dendrosinen D [44]	D. sinense	Whole plant	Chen <i>et al.</i> , 2014a
Dendrocandin I [45]	D. candidum	Stem	Li <i>et al.,</i> 2009b
	D. signatum	Whole plant	Mittraphab <i>et al.,</i>
			2016
Densiflorol A [46]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
Longicornuol A [47]	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
Trigonopol A [48]	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
Trigonopol B [49]	D. chrysotoxum	Stem	Hu et al., 2012
	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
Crepidatuol A [50]	D. crepidatum	Stem	Li et al., 2013
Crepidatuol B [51]	D. crepidatum	Stem	Li et al., 2013
Loddigesiinol D [52]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
Dencryol A [53]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
Dencryol B [54]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009

Compounds	Plant	Plant part	Reference
Dengraol A [55]	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
Dengraol B [56]	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
4-[2-(3-	D. longicornu	Stem	Hu <i>et al.</i> , 2008a
Hydroxyphenol)-1-			
methoxyethyl]-2,6-			
dimethoxy phenol	- 50 M 1 1 1 1	27	
[57]			
Nobilin A [58]	D. nobile	Stem	Zhang <i>et al.</i> , 2006
Nobilin B [59]	D. nobile	Stem	Zhang <i>et al.</i> , 2006
Nobilin C [60]	D. nobile	Stem	Zhang <i>et al.</i> , 2006
Nobilin D [61]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Nobilin E [62]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Dendrofalconerol A	D. falconeri	Stem	Sritularak and
[63]			Likhitwitayawuid,
ຈຸ ທ	าลงกรณมหาว	ทยาลย	2009
GHU	D. signatum	Whole plant	Mittraphab et al.,
			2016
	D. tortile	Whole plant	Limpanit <i>et al.,</i>
			2016
Dendrofalconerol B	D. falconeri	Stem	Sritularak and
[64]			Likhitwitayawuid,
			2009
Dendrosignatol [65]	D. signatum	Whole plant	Mittraphab <i>et al.,</i>
			2016

Table 1 (continued)

Compounds	Plant	Plant part	Reference
2,2´-Dihydroxy-	D. nobile	Stem	Yang <i>et al.</i> , 2007a
3,3′,4,4′,7,7-			
hexamethoxy-			
9,9',10,10'-tetrahydro-			
1,1'-biphenanthrene			
[66]		J.	
2,2'-Dimethoxy-4,4',7,	D. plicatile	Stem	Yamaki and Honda,
7'-tetrahydroxy-	<i>Z</i> ///		1996
9,9′,10,10′-tetrahydro-			
1,1'-biphenanthrene			
[67]			
Flavanthrin [68]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008a
Phoyunnanin C [69]	D. venustum	Whole plant	Sukphan <i>et al.,</i>
			2014
Phoyunnanin E [70] 🧃 🕅	D. venustum	Whole plant	Sukphan <i>et al.,</i>
Сни	lalongkorn U	NIVERSITY	2014
Amoenumin [71]	D. amoenum	Whole plant	Veerraju <i>et al.</i> ,
			1989
Crystalltone [72]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
Chrysotoxol A [73]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
Chrysotoxol B [74]	D. chrysotoxum	Stem	Hu <i>et al.</i> , 2012

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Confusarin [75]	D. chryseum	Stem	Ma et al., 1998
	D. chrysotoxum	Stem	Hu et al., 2012
	D. formosum	Whole plant	Inthongkaew <i>et al.</i> ,
			2017
	D. nobile	Stem	Zhang <i>et al</i> ., 2008c
	D. officinale	Stem	Zhao <i>et al</i> ., 2018
2,6-Dihydroxy-1,5,7-	D. densiflorum	Stem	Fan <i>et al.</i> , 2001
trimethoxy-	7///A.		
phenanthrene [76]			
Dendrochrysanene	D. chrysanthum	Stem	Yang <i>et a</i> l., 2006a
[77]			
Bulbophyllanthrin [78]	D. nobile	Stem	Yang <i>et al.,</i> 2007a
Denthyrsinin [79]	D. thyrsiforum	Stem	Zhang <i>et al.</i> , 2005
5-Hydroxy-2,4-	D. loddigesii	Whole plant	Ito <i>et al.</i> , 2010
dimethoxy-			
phenanthrene [80]		NIVENJITI	
3-Hydroxy-2,4,7-	D. nobile	Stem	Yang <i>et a</i> l., 2007a
trimethoxy-			
phenanthrene [81]			
Cypripedin [82]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
Densiflorol B [83]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. venustum	Whole plant	Sukphan <i>et al.</i> ,
			2014

Compounds	Plant	Plant part	Reference
Denbinobin [84]	D. moniliforme	Stem	Lin <i>et al.,</i> 2001
	D. nobile	Stem	Yang <i>et al.,</i> 2007a
Fimbriatone [85]	D. nobile	Stem	Zhang <i>et al.</i> , 2008c
	D. pulchellum	Stem	Chanvorachote <i>et al.,</i> 2013
Loddigesiinol B [86]	D. loddigesii	Whole plant	Ito <i>et al.</i> , 2010
Dendronone [87]	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006a
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
Ephemeranthoquinone [88]	D. plicatile	Stem	Yamaki and Honda, 1996
5-Methoxy-7-hydroxy-	D. draconis	Stem	Sritularak <i>et al.</i> ,
9,10-dihydro-1,4-			2011a
phenanthrenequinone	D. formosum	Whole plant	Inthongkaew et al.,
[89]	าลงกรณ์มหาวิ	ทยาลัย	2017
Moniliformin [90] CHUI	D. moniliforme	Stem STY	Lin <i>et al.,</i> 2001
Moscatin [91]	D. aphyllum	Whole plant	Chen <i>et al.</i> , 2008a
	D. chrysanthum	Stem	Yang <i>et al.</i> , 2006a
	D. chrysotoxum	Whole plant	Li <i>et al.</i> , 2009c
	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. polyanthum	Stem	Hu et al., 2009

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Coelonin [92]	D. aphyllum	Whole plant	Chen <i>et al.</i> , 2008a
	D. formosum	Whole plant	Inthongkaew et al.,
			2017
	D. nobile	Stem	Yang <i>et al.,</i> 2007a
9,10-Dihydromoscatin	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
[93]			
9,10-Dihydrophenan	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
threne-2,4,7-triol [94]			
4,5-Dihydroxy-2,3-	D. ellipsophyllum	Whole plant	Tanagornmeatar
dimethoxy-9,10-			et al., 2014
dihydrophenanthrene	D cipanca	Whole plant	Chap at al 2014a
[95]	D. sinense		Cheff <i>et a</i> t., 2014a
4,5-Dihydroxy-2,6-	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
dimethoxy-9,10-			
dihydrophenanthrene	าลงกรณ์มหาวิ	ทยาลัย	
[96] Chui	alongkorn U	VIVERSITY	
4,5-Dihydroxy-3,7-	D. nobile	Stem	Ye and Zhao,
dimethoxy-9,10-			2002b
dihydrophenanthrene			
[97]			

Table 1 (continued)

Compounds	Plant	Plant part	Reference
4,5-Dihydroxy-2-	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
methoxy-9,10-			
dihydrophenanthrene			
[98]			
Lusianthridin [99]	D. brymerianum	Whole	Klongkumnuankarn
		plant	et al., 2015
	D. formosum	Whole	Inthongkaew <i>et al.</i> ,
		plant	2017
1	D. plicatile	Stem	Yamaki and Honda,
	ACA		1996
	D. venustum	Whole	Sukphan <i>et al.</i> ,
		plant	2014
2,7-Dihydroxy-3,4,6-	D. densiflorum	Stem	Yang <i>et al.,</i> 2007a
trimethoxy-9,10-		A.	
dihydrophenanthrene	o	~	
[100]	เงกรณมหาวทย องุcyopy Цพ	มาลย /EDCITY	
2,8-Dihydroxy-3,4,7-	D. nobile	Stem	Fan <i>et al</i> ., 2001
trimethoxy-9,10-			
dihydrophenanthrene			
[101]			

Table 1 (continued)

Compounds	Plant	Plant part	Reference
4,7-Dihydroxy-2,3,6- trimethoxy-9,10-	D. rotundatum	Whole plant	Majumder and Pal, 1992
dihydrophenanthrene			
[102]			
Ephemeranthol A [103]	D. nobile	Stem	Yang <i>et al.,</i> 2007a
		-	Hwang <i>et al.,</i> 2010
	D. officinale	Stem	Zhao <i>et al.,</i> 2018
Ephemeranthol C [104]	D. nobile	Stem	Yang <i>et a</i> l., 2007a
			Hwang <i>et al.,</i> 2010
Erianthridin [105]	D. formosum	Whole plant	Inthongkaew et al.,
			2017
	D. nobile	Stem	Hwang <i>et al</i> ., 2010
1 Contraction of the second seco	D. plicatile	Stem	Yamaki and Honda,
			1996
Flavanthridin [106]	D. nobile	Stem	Hwang <i>et al.</i> , 2010
Hircinol [107]	D. aphyllum	Stem	Yang <i>et al.,</i> 2015
	D. draconis	Stem	Sritularak <i>et al.,</i>
			2011a
	D. formosum	Whole plant	Inthongkaew <i>et al.,</i> 2017

Table 1 (continued)

Compounds	Plant	Plant part	Reference
3-Hydroxy-2,4,7- trimethoxy-9,10- dihydrophenanthrene [108]	D. nobile	Stem	Yang <i>et al.,</i> 2007a
2-Hydroxy-4,7- dimethoxy-9,10- dihydrophenanthrene [109]	D. nobile	Stem	Yang <i>et al.,</i> 2007a
7-Methoxy-9,10- dihydrophenanthrene- 2,4,5-triol [110]	D. draconis	Stem	Sritularak <i>et al.</i> , 2011a
2,5,7-Trihydroxy-4- methoxy-9,10-	D. formosum	Whole plant	Inthongkaew <i>et al.,</i> 2017
dihydrophenanthrene [111]	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
Plicatol C [112] CHULA	D. plicatile	Stem WERSITY	Honda and Yamaki, 2000
Rotundatin [113]	D. rotundatum	Whole plant	Majumder and Pal, 1992

Compounds	Plant	Plant part	Reference			
2,5-Dihydroxy-3,4	D. nobile	Stem	Yang <i>et al.,</i> 2007a			
dimethoxyphenanthrene						
[114]						
2,5-Dihydroxy-4,9-	D. nobile	Stem	Zhang <i>et al.,</i> 2008a			
dimethoxyphenanthrene						
[115]						
2,8-Dihydroxy-3,4,7-	D. nobile	Stem	Yang <i>et al.,</i> 2007a			
trimethoxyphenanthrene						
[116]						
Epheranthol B [117]	D. chrysotoxum	Stem	Hu et al., 2012			
2	D. plicatile	Stem	Yamaki and Honda,			
			1996			
Fimbriol B [118]	D. nobile	Stem	Yang <i>et al.</i> , 2007a;			
			Hwang <i>et al.,</i> 2010			
Flavanthrinin [119] 🧃 🗤 🏹	D. brymerianum	Whole plant	Klongkumnuankarn			
Chula	longkorn Un	IVERSITY	et al., 2015			
	D. nobile	Stem	Zhang <i>et al.</i> , 2008c			
	D. venustum	Whole plant	Sukphan <i>et al.</i> ,			
			2014			
Loddigesiinol A [120]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010			

Table 1 (continued)

Compounds	Plant	Plant part	Reference
Nudol [121]	D. formosum	Whole plant	Inthongkaew et al.,
			2017
	D. nobile	Stem	Yang <i>et al.,</i> 2007a
	D. rotundatum	Whole plant	Majumder and Pal,
			1992
Plicatol A [122]	D. nobile	Stem	Yang <i>et al.,</i> 2007a
	D. plicatile	Stem	Honda and Yamaki,
			2000
Plicatol B [123]	D. plicatile	Stem	Honda and Yamaki,
			2000
2,3,5-Trihydroxy-4,9-	D. nobile	Stem	Yang <i>et a</i> l., 2007a
dimethoxyphenanthrene	ALEXANDE.		
[124]		X	
3,4,8-Trimethoxy	D. nobile	Stem	Hwang <i>et al.</i> , 2010
phenanthrene-2,5-diol [125]	กรณมหาวท	ยาลย	
CHULALO	NGKORN UNI	/ERSITY	livers at al 2010
	D. NOORE	Stem	Hwang <i>et at.</i> , 2010
(S)-2,4,5,9-Tetrahydroxy-	D. fimbriatum	Stem	Xu <i>et al.</i> , 2014
9,10-dihydro			
phenanthrene [127]			
1,5,7-Trimethoxy	D. nobile	Stem	Kim <i>et al.,</i> 2015
phenanthren-2-ol [128]			

Table 1 (continued)

Compounds	Plant	Plant part	Reference
1,5-Dihydroxy-	D. moniliforme	Whole plant	Zhao <i>et al.,</i> 2016
3,4,7-trimethoxy-9,10-			
dihydrophenanthrene			
[129]			
2,5,9S-Trihydroxy-9,10-	D. primulinum	Whole plant	Ye <i>et al.</i> , 2016
dihydro	- 5 M 112.		
phenanthrene-4- <i>O</i> - β -D-		2	
glucopyranoside [130]			
Loddigesiinol G [131]	D. loddigesii	Stem	Lu <i>et al.,</i> 2014
Loddigesiinol H [132]	D. loddigesii	Stem	Lu et al., 2014
Loddigesiinol I [133]	D. loddigesii	Stem	Lu et al., 2014
Loddigesiinol J [134]	D. loddigesii	Stem	Lu <i>et al.,</i> 2014
Dendrowillol A [135]	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017a
Dendrocandin P1 [136]	D. officinale	Stem	Zhao <i>et al.</i> , 2018
Dendrocandin P2 [137]	D. officinale	Stem	Zhao <i>et al.</i> , 2018
Orchinol [138]	D. officinale	Stem	Zhao <i>et al</i> ., 2018
2,4,7-Trihydroxy-	D. officinale	Stem	Zhao <i>et al.,</i> 2018
9,10-dihydro-			
phenanthrene [139]			
4-Methoxy-5,9R-	D. nobile	Stem	Zhou <i>et al.,</i> 2017
dihydroxy-9,10-dihydro			
phenanthrene 2- <i>O</i> - β -D-			
glucopyranoside [140]			

Figure 2 Structures of bibenzyls and derivatives isolated from *Dendrobium* species (continued)

Figure 2 Structures of bibenzyls and derivatives isolated from *Dendrobium* species (continued)

[49] Trigonopol B

Figure 2 Structures of bibenzyls and derivatives isolated from *Dendrobium* species (continued)

[**56**] Dengraol B: R_1 = OMe, R_2 = OMe

[65] Dendrosignatol

Figure 2 Structures of bibenzyls and derivatives isolated from *Dendrobium* species (continued)

	R_1	R_2	R_3	R_4	R_5	R_6
[92] Coelonin	ОН	Н	OMe	Н	Н	ОН
[93] 9,10-Dihydromoscatin	Н	Н	ОН	OMe	Н	ОН
[94] 9,10-Dihydrophenan threne-2,4,7-triol	ОН		ОН	Н	Н	ОН
[95] 4,5-Dihydroxy-2,3- dimethoxy-9,10-dihydro phenanthrene	OMe	OMe	OH	ОН	Η	Η
[96] 4,5-Dihydroxy-2,6- dimethoxy-9,10-dihydro phenanthrene	OMe -	н	ОН	ОН	OMe	Η
[97] 4,5-Dihydroxy-3,7- dimethoxy-9,10-dihydro phenanthrene	หลงกร	OMe ฉัมห	OH าวิทย	OH กลัย	Η	OMe
[98] 4,5-Dihydroxy-2-CHULA methoxy-9,10-dihydro- phenanthrene	OMe	KARN	ОН	ОН	н	Η
[99] Lusianthridin	OMe	Н	OH	Н	Н	OH

		R_1	R_2	R_3	R_4	R_5	R_6	R_7
[100]	2,7-Dihydroxy-3,4,6-	OH	OMe	OMe	Н	OMe	ОН	Н
	trimethoxy-9,10-dihydro)-						
	phenanthrene		nini di p	9				
[101]	2,8-Dihydroxy-3,4,7-	OH	ОМе	OMe	Н	Н	OMe	ОН
	trimethoxy-9,10-dihydro)			>			
	phenanthrene	///	74 \					
[102]	4.7-Dihvdroxv-2.3.6-	OMe	OMe	OH	Н	OMe	ОН	Н
[-•-]	trimethoxy-9.10-dihydro					ente	011	
	phenanthrene	//%		\$ Q				
	I	Free						
[103]	Ephemeranthol A	ОН	H	H	OH	OMe	OMe	Н
[104]	Ephemeranthol C	ОН	ОН	OMe	ОН	Н	Н	Н
[105]	Erianthridin	ОН	OMe	OMe	H,	Н	ОН	Н
[106]	Flavanthridin	ОН		H	ОМе	ОН	OMe	Н
[107]	Hircinol	ОН	Н	ОМе	ОН	Н	Н	Н
[108]	3-Hydroxy-2,4,7-	OMe	ОН	OMe	Н	Н	OMe	Н
	trimethoxy-9,10-dihydro)-						
	nhenanthrene							
	prenartinene							

	R_1	R_2	R_3	R_4	R_5
[109] 2-Hydroxy-4,7-	OMe	Н	OMe	Н	Н
dimethoxy-9,10-dihydro-					
phenanthrene		222			
[110] 7-Methoxy-9,10-	ОН	OH	OMe	Н	Н
dihydrophenanthrene-					
2,4,5-triol					
[111] 2,5,7-Trihydroxy-	OMe	ОН	ОН	Н	Н
4-methoxy-9,10-		4			
dihydrophenanthrene					
[112] Plicatol C	H	ОМе	ОН	Η	OMe
[113] Rotundatin	Н	OMe	ОН	Η	ОН
จุหาลงกร					
			RSITY		

	R_1	R_2	R_3	R ₄	R_5	R ₆	R_7	
[114] 2,5-Dihydroxy-3,4-	OH	OMe	OMe	ОН	Н	Н	Н	
dimethoxyphenanthrer	ne	र लेगे जे ज						
[115] 2,5-Dihydroxy-4,9-	OH	н	OMe	ОН	Н	Н	OMe	
dimethoxyphenanthrer	ne			>				
[116] 2,8-Dihydroxy-3,4,7-	ОН	OMe	ОМе	Н	OMe	ОН	Н	
trimethoxyphenanthre	ne							
[117] Epheranthol B	H	Н	OMe	OH	OMe	Н	Н	
[118] Fimbriol B	ОН	OMe	ОН	Н	Н	Н	Н	
[119] Flavanthrinin	H	H	OMe	Н	OH	Н	Н	
จุหาลงกรณ์มหาวิทยาลัย								

[130] 2,5,9*S*-Trihydroxy-9,10-dihydrophenanthrene 4-*O*-β-D-glucopyranoside

[**131**] Loddigesiinol G: R = H

[132] Loddigesiinol H: R = OH

[135] Dendrowillol A

Figure 2 Structures of bibenzyls and derivatives isolated from *Dendrobium* species (continued)

 Table 2 Flavonoids in the genus Dendrobium

Compounds	Plant	Plant part	Reference
(25)-Homoeriodictyol	D. densiflorum	Stem	Fan <i>et al.</i> , 2001
[141]	D. ellipsophyllum	Whole plant	Tanagornmeatar
			et al., 2014
Naringenin [142]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
	var. denneanum		
	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
(2 <i>S</i>)-Eriodictyol [143]	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
4	D. ellipsophyllum	Whole plant	Tanagornmeatar
			et al., 2014
	D. tortile	Whole plant	Limpanit <i>et al.</i> ,
^C	ALEX XXX		2016
Vicenin-2 [144]	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
จุ ห	var. denneanum	ุทยาลัย	
Apigenin [145] GHUL	D. crystallinum	Stem STY	Wang <i>et al.</i> , 2009
	D. williamsonii	Whole plant	Rungwichaniwat
			et al., 2014
5,6-Dihydroxy-4'-	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
methoxyflavone [146]			
Chrysoeriol [147]	D. ellipsophyllum	Whole plant	Tanagornmeatar
			et al., 2014

Table 2 (continued)

Compounds	Plant	Plant part	Reference
Luteolin [148]	D. aurantiacum	Whole plant	Liu <i>et al.,</i> 2009b
	var. denneanum		
	D. ellipsophyllum	Whole plant	Tanagornmeatar
			et al., 2014
6-C-(α -Arabino	D. huoshanense	Aerial part	Chang <i>et al.</i> , 2010
pyranosyl)-8-C-[(2- <i>Ο</i> -α-			
rhamnopyranosyl)- β -			
galactopyranosyl]			
apigenin [149]	//b84		
6-C-(α -Arabino	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
pyranosyl)-8-C-[(2-O-α-	/ NECESA		
rhamnopyranosyl)- β -			
glucopyranosyl] apigenin	ANN AND		
[150]			
6‴-Glucosyl-vitexin [151]	D. crystallinum	Stem	Wang <i>et al</i> ., 2009
Isoschaftoside [152]	D. huoshanense	Aerial part	Chang <i>et al.</i> , 2010
Isoviolanthin [153]	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
6-C-[(2- <i>O</i> - α -Rhamno	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
pyranosyl)- β -gluco			
pyranosyl]-8-C-($lpha$ -			
arabinopyranosyl)			
apigenin [154]			
	1		

Table 2 (continued)

Compounds	Plant	Plant part	Reference
6-C-(β -Xylopyranosyl)-	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
8-C-[(2-0- α -rhamno			
pyranosyl)- β -gluco			
pyranosyl]apigenin			
[155]			
Kaempferol [156]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
	var. denneanum		
Kaempferol-3- O - $lpha$ -L	D. secundum	Stem	Phechrmeekha
rhamnopyranoside			et al., 2012
[157]	ACA		
Kaempferol-3,7- O -di- $lpha$ -	D. secundum	Stem	Phechrmeekha
L-rhamnopyranoside	All conception of		et al., 2012
[158]	ATTRACTOR OF	6	
Kaempferol-3- ${\cal O}$ -A-L-	D. capillipes	Stem	Phechrmeekha
rhamnopyranosyl-			et al., 2012
(1 → 2)- β -D-gluco	เสงบระแมหาว	ทยาสย	
pyranoside [159]	ALONGKORN UN	IIVERSITY	
Kaempferol-3- O - $lpha$ -L-	D. capillipes	Stem	Phechrmeekha
rhamnopyranosyl-			et al., 2012
(1 → 2)- β -D-xylo			
pyranoside [160]			
Quercetin-3-0-L-	D. secundum	Stem	Phechrmeekha
rhamnopyranoside			et al., 2012
[161]			

Compounds	Plant	Plant part	Reference
Quercetin-3- O - $lpha$ -L-	D. capillipes	Stem	Phechrmeekha
rhamnopyranosyl-			et al., 2012
(1 → 2)- β -D-			
xylopyranoside [162]			
5-Hydroxy-3-methoxy-	D. devonianum	Stem	Sun <i>et al.,</i> 2014
flavone-7- <i>O</i> -[β-D-	an 11111120		
apiosyl-(1 → 6)]- β -D-			
glucoside [163]			
Isorhamnetin-3- <i>O</i> - β -D-	D. nobile	Stem	Zhou <i>et al.,</i> 2017
rutinoside [164]	AGA		

CHULALONGKORN UNIVERSITY

[144] Vicenin-2

[141] (25)-Homoeriodictyol: R = OMe

- [142] Naringenin: R = H
- [143] (25)-Eriodictyol: R = OH

Figure 3 Structures of flavonoids isolated from Dendrobium species

Figure 3 Structures of flavonoids isolated from *Dendrobium* species (continued)

Figure 3 Structures of flavonoids isolated from *Dendrobium* species (continued)

[163] 5-Hydroxy-3-methoxy-flavone-7-O-[β -D-apiosyl-(1 \rightarrow 6)]- β -D-glucoside

Figure 3 Structures of flavonoids isolated from Dendrobium species (continued)

 Table 3 Terpenoids in the genus Dendrobium

Compounds	Plant	Plant part	Reference
Aduncin [165]	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
Amoenin [166]	D. aduncum	Whole plant	Dahmen and
			Leander, 1978
	D. williamsonii	Whole plant	Yang <i>et a</i> l., 2017a
Amotin [167]	D. amoenum	Whole plant	Majumder <i>et al</i> .,
			1999
lpha-Dihydropicrotoxinin	D. amoenum	Whole plant	Majumder <i>et al</i> .,
[168]			1999
Dendrobane A [169]	D. moniliforme	Stem	Bi et al., 2004
Dendronobilin A [170]	D. nobile	Stem	Zhang <i>et al</i> ., 2007a
Dendronobilin B [171]	D. wardianum	Stem	Zhang <i>et al.</i> , 2007a
Dendronobilin C [172]	D. crystallium	Stem	Wang <i>et al.</i> , 2009
Dendronobilin D [173]	D. nobile	Stem	Zhang <i>et al.</i> , 2007a
Dendronobilin E [174]	D. nobile	Stem	Zhang <i>et al.</i> , 2007a
Dendronobilin F [175]	D. nobile	Stem	Zhang <i>et al.</i> , 2007a
Dendronobilin G [176]	D. nobile	Stem	Zhang <i>et al.</i> , 2007a
Dendronobilin H [177]	D. nobile	Stem	Zhang <i>et al.</i> , 2007a
Dendronobilin I [178]	D. nobile	Stem	Zhang <i>et al.</i> , 2007a
Dendronobilin J [179]	D. nobile	Stem	Zhang <i>et al.</i> , 2007a
Dendronobilin K [180]	D. wardianum	Stem	Fan <i>et al.,</i> 2013
Dendronobilin L [181]	D. nobile	Stem	Zhang <i>et al.,</i> 2007a

Compounds	Plant	Plant part	Reference
Dendronobilin M [182]	D. nobile	Stem	Zhang <i>et al.</i> , 2008a
Dendronobilin N [183]	D. nobile	Stem	Zhang <i>et al.</i> , 2008a
Dendrowardol A [184]	D. nobile	Stem	Zhang <i>et al.</i> , 2008a
Dendrowardol B [185]	D. nobile	Stem	Zhang <i>et al.</i> , 2008a
Dendrowardol C [186]	D. wardianum	Stem	Fan <i>et a</i> l., 2013
Corchoionoside C [187]	D. wardianum	Stem	Fan <i>et a</i> l., 2013
Crystallinin [188]	D. wardianum	Stem	Fan <i>et a</i> l., 2013
Findlayanin [189]	D. polyanthum	Stem	Hu et al., 2009
3-Hydroxy-2-	D. findlayanum	Whole plant	Qin <i>et al.,</i> 2011
oxodendrobine [190]			
Dendrobine [191]	D. nobile	Stem	Wang and Zhao,
8		3	1985
Dendromoniliside A [192]	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
Dendromoniliside B [193]	D. moniliforme	Stem	Zhao <i>et al</i> ., 2003
Dendromoniliside C [194]	D. moniliforme	Stem	Zhao <i>et al.</i> , 2003
Dendromoniliside D [195]	D. moniliforme	Stem	Zhao <i>et al.</i> , 2003
Dendronobiloside A [196]	D. moniliforme	Stem	Zhao <i>et al.</i> , 2003
	D. nobile	Stem	Zhao <i>et al.</i> , 2001;
			Ye and Zhao,
			2002b

Table 3 (continued)

Compounds	Plant	Plant part	Reference
Dendronobiloside B	D. nobile	Stem	Zhao <i>et al.</i> , 2001;
[197]			Ye and Zhao,
			2002b
Dendronobiloside C	D. nobile	Stem	Zhao <i>et al</i> ., 2001;
[198]			Ye and Zhao,
			2002b
Dendronobiloside D	D. nobile	Stem	Zhao <i>et al</i> ., 2001;
[199]			Ye and Zhao,
-			2002b
Dendronobiloside E	D. nobile	Stem	Zhao <i>et al.,</i> 2001;
[200]			Ye and Zhao,
			2002b
Dendroside A [201]	D. moniliforme	Stem	Zhao <i>et al.</i> , 2003
จุห	D. nobile	Stem	Zhao <i>et al.</i> , 2001
CHUL	alongkorn Un	Stem	Ye and Zhao,
			2002b
Dendroside B [202]	D. nobile	Stem	Ye and Zhao,
			2002b
Dendroside C [203]	D. moniliforme	Stem	Zhao <i>et al.</i> , 2003
	D. nobile	Stem	Ye and Zhao,
			2002b
Dendroside D [204]	D. nobile	Stem	Ye and Zhao,
			2002b

Compounds	Plant	Plant part	Reference
Dendroside E [205]	D. nobile	Stem	Ye <i>et al.,</i> 2002a
Dendroside F [206]	D. moniliforme	Stem	Zhao <i>et al.</i> , 2003
Dendroside G [207]	D. nobile	Stem	Ye <i>et al.,</i> 2002a
Dendrowillin A [208]	D. williamsonii	Whole plant	Yang <i>et al</i> ., 2017a
Dendrowillin B [209]	D. williamsonii	Whole plant	Yang <i>et al</i> ., 2017a
(-)-Picrotin [210]	D. williamsonii	Whole plant	Yang <i>et al</i> ., 2017a

Chulalongkorn University

Figure 4 Structures of terpenoids isolated from *Dendrobium* species

Figure 4 Structures of terpenoids isolated from Dendrobium species (continued)

Figure 4 Structures of terpenoids isolated from *Dendrobium* species (continued)

[196] Dendronobiloside A: R = H

[197] Dendronobiloside B: R = OH

Figure 4 Structures of terpenoids isolated from *Dendrobium* species (continued)

Categories and	Plant	Plant part	Reference
compounds			
Aliphatic acid derivativ	es		
Aliphatic acids [211]	D. clavatum var.	Stem	Chang <i>et al.,</i> 2001
	aurantiacum		
Aliphatic alcohols	D. clavatum var.	Stem	Chang <i>et al.</i> , 2001
[212]	aurantiacum		
Malic acid [213]	D. huoshanense	Aerial part	Chang <i>et al.</i> , 2010
Dimethyl malate [214]	D. huoshanense	Aerial part	Chang <i>et al.</i> , 2010
(-)-Shikimic acid [215]	D. fuscescens	Whole plant	Talapatra <i>et al.,</i>
			1989
	D. huoshanense	Aerial part	Chang <i>et al.</i> , 2010
Sec. 1	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
	D. pulchellum	Stem	Chanvorachote
ຈຸາທ	าลงกรณ์มหาวิ	ทยาลัย	et al., 2013
Isopentyl butyrate	D. huoshanense	Aerial part	Chang <i>et al.,</i> 2010
[216]			
Benzoic acid derivative	es and phenolic con	npounds	
3-Hydroxy-2-methoxy-	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
5,6-dimethylbenzoic			
acid [217]			
Salicylic acid [218]	D. huoshanense	Aerial part	Chang <i>et al.</i> , 2010
	D. williamsonii	Whole plant	Yang <i>et al.</i> , 2017b

D. denneanum

Stem

Pan *et al.*, 2012

Vanilloside [**219**]

Table 4 Miscellaneous compounds in the genus Dendrobium

Categories and	Plant	Plant part	Reference
compounds			
Benzoic acid derivative	s and phenolic co	mpounds	
Gallic acid [220]	D. longicornu	Whole plant	Li <i>et al.,</i> 2009a
Syringic acid [221]	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
Vanillic acid [222]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
	D. williamsonii	Whole plant	Rungwichaniwat et al., 2014
Antiarol [223]	D. chrysotoxum	Stem	Hu et al., 2012
Ethylhaematommate [224]	D. longicornu	Whole plant	Li <i>et al.</i> , 2009a
<i>p</i> -Hydroxy-	D. devonianum	Whole plant	Sun <i>et al.,</i> 2014
benzaldehyde [225]	D. falconeri	Stem	Sritularak and Likhitwitayawuid, 2009
จุพ Chul	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016
	D. williamsonii	Whole plant	Yang <i>et al.</i> , 2017b
Methyl β-orsellinate [226]	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
Protocatechuic acid [227]	D. nobile	Stem	Ye and Zhao, 2002b
Tachioside [228]	D. denneanum	Stem	Pan <i>et al.,</i> 2012

Categories and	Plant	Plant part	Reference
compounds			
Benzoic acid derivatives a	nd phenolic comp	ounds	
Alkyl 4'-hydroxy-trans-	D. clavatum var.	Stem	Chang <i>et al.,</i> 2001
cinnamates [229]	aurantiacum		
Alkyl <i>trans</i> -ferulate	D. clavatum var.	Stem	Chang <i>et al.</i> , 2001
[230]	aurantiacum		
Defuscin [231]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
	var. denneanum		
	D. moniliforme	Stem	Bi <i>et al.,</i> 2004
<i>n</i> -Octacosyl ferulate [232]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
	var. denneanum		
S	D. moniliforme	Stem	Bi <i>et al.,</i> 2004
<i>n</i> -Triacontyl <i>p</i> -hydroxy-	D. moniliforme	Stem	Bi <i>et al.,</i> 2004
cis-cinnamate [233]	งกรณ์มหาวิท	ยาลัย	
Tetratriacontanyl-trans-p-	D. williamsonii	Whole	Rungwichaniwat
coumarate [234]		plant	et al., 2014
n-Docosyl trans-ferulate	D. longicornu	Whole	Li <i>et al.,</i> 2009a
[235]		plant	
	D. williamsonii	Whole	Rungwichaniwat
		plant	et al., 2014
trans-Tetracosyl ferulate	D. tortile	Whole	Limpanit <i>et al.,</i>
[236]		plant	2016

Categories and	Plant	Plant part	Reference
compounds			
Benzoic acid derivative	s and phenolic con	npounds	
<i>cis</i> -Hexacosanoyl	D. tortile	Whole plant	Limpanit <i>et al.,</i>
ferulate [237]			2016
Ferulaldehyde [238]	D. longicornu	Whole plant	Li <i>et al.</i> , 2009a
Ferulic acid [239]	D. secundum	Stem	Sritularak <i>et al.,</i>
			2011b
2-(p-Hydroxyphenyl)	D. falconeri	Stem	Sritularak and
ethyl <i>p</i> -coumarate			Likhitwitayawuid,
[240]			2009
Dihydroconiferyl	D. formosum	Whole plant	Inthongkaew et al.,
dihydro-p-coumarate			2017
[241]	D. nobile	Stem	Zhang <i>et al.,</i> 2006
1-[4-(β -D-	D. aurantiacum	Stem	Xiong <i>et al.</i> , 2013
Glucopyranosyloxy)-	var. denneanum	IVERSITY	
3,5-dimethoxyphenyl]-			
1-propanone [242]			

Categories and	Plant	Plant part	Reference	
compounds				
Benzoic acid derivatives and phenolic compounds				
3-Hydroxy-1-(4-	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b	
hydroxy-3,5-				
dimethoxyphenyl)-1-				
propanone [243]	- 58 11/120			
Coniferyl alcohol [244]	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b	
Decumbic acid A [245]	D. nobile	Stem	Zhou <i>et al.,</i> 2016	
Decumbic acid B [246]	D. nobile	Stem	Zhou <i>et al.,</i> 2016	
(–)-Decumbic acid	D. nobile	Stem	Zhou <i>et al</i> ., 2016	
[247]				
(+)-Dendrolactone	D. nobile	Stem	Zhou <i>et al.</i> , 2016	
[248]				
4-(3-Hydroxyphenyl)-2-	D. nobile	Stem	Zhou <i>et al.</i> , 2016	
butanone [249]	าลงกรณ์มหาวิเ	ุกยาลัย		
3-Hydroxy-1(3-	D. nobile	Stem	Zhou <i>et al.,</i> 2016	
methoxy-4-				
hydroxyphenyl)-				
propan-1-one [250]				
3',4',5'-Trimethoxy	D. nobile	Stem	Zhou <i>et al.,</i> 2016	
cinnamyl acetate [251]				
<i>p</i> -Hydroxyphenyl	D. aphyllum	Whole plant	Chen <i>et al.</i> , 2008a	
propionic methyl ester				
[252]				

Categories and	Plant	Plant part	Reference
compounds			
Benzoic acid derivatives ar	nd phenolic compou	nds	
Phloretic acid [253]	D. ellipsophyllum	Whole	Tanagornmeatar
		plant	et al., 2014
Dihydroconiferyl alcohol	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
[254]			
Salidrosol [255]	D. chrysotoxum	Stem	Hu <i>et al.</i> , 2012
Shashenoside I [256]	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
	var. denneanum		
Syringin [257]	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
	var. denneanum		
Tetracosyl(<i>Z</i>)- <i>p</i> -coumarate	D. falconeri	Whole	Sritularak and
[258]		plant	Likhitwitayawuid,
จุฬาล	งกรณ์มหาวิทยา	ลัย	2009
(7 <i>5</i> ,8 <i>R</i>)-Dehydrodiconiferyl	D. nobile	Stem	Zhou <i>et al.,</i> 2017
alcohol 9´- β -D-			
glucopyranoside [259]			
Koaburaside [260]	D. nobile	Stem	Zhou <i>et al.,</i> 2017
Juniperoside [261]	D. nobile	Stem	Zhou <i>et al.,</i> 2017
Dehydrodiconiferylalcohol-	D. nobile	Stem	Zhou <i>et al.</i> , 2017
4-β-D-glucoside [262]			

Categories and	Plant	Plant part	Reference
compounds			
Benzoic acid derivative	s and phenolic com	npounds	
(3R,3'S,4R,4'S)-3,3',4,4'-	D. williamsonii	Whole plant	Yang <i>et al.</i> , 2017b
Tetrahydro-6,6'-			
dimethoxy[3,3'-bi-2H-			
benzopyran]-4,4'-diol		/	
[263]			
Coumarins			
Ayapin [264]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
Coumarin [265]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
	var. denneanum		
	D. clavatum var.	Stem	Chang <i>et al.,</i> 2001
Č.	aurantiacum	25	
Denthyrsin [266]	D. thyrsiflorum	Stem	Zhang <i>et al.,</i> 2005
Scoparone [267]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. thyrsiflorum	Stem	Zhang <i>et al.,</i> 2005
	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
Scopoletin [268]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001

Categories and	Plant	Plant part	Reference
compounds			
Lignans and neolignans			
Episyringaresinol [269]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
	D. nobile	Stem	Zhang <i>et al.,</i> 2008b
Episyringaresinol 4"-O-	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
β -D-glucopyranoside			
[270]			
(-)-(7 <i>S</i> ,8 <i>R</i> ,7' <i>E</i>)-4-Hydroxy	D. aurantiacum	Stem	Xiong <i>et al.</i> , 2013
-3,3´,5,5´-tetramethoxy-	var. denneanum		
8,4'-oxyneolign-7'-ene-			
7,9'-bis- <i>O</i> - β -D-			
glucopyranoside [271]		15	
Lyoniresinol [272]	D. chrysanthum	Stem	Ye <i>et al.,</i> 2004
(-)-Syringaresinol-4,4'-	D. aurantiacum	Stem	Xiong <i>et al.</i> , 2013
bis-O- β -D-	var. denneanum		
glucopyranoside [273]			
Dendrocoumarin [274]	D. nobile	Stem	Zhou <i>et al.,</i> 2018
Itolide A [275]	D. nobile	Stem	Zhou <i>et al.,</i> 2018

Categories and	Plant	Plant part	Reference	
compounds				
Lignans and neolignans				
Syringaresinol-4-O-D-	D. aurantiacum	Stem	Xiong <i>et al.</i> , 2013	
monoglucopyranoside	var. denneanum			
[276]				
(-)-Medioresinol [277]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010	
(-)-Pinoresinol [278]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010	
Syringaresinol [279]	D. secundum	Stem	Sritularak <i>et al.,</i>	
			2011b	
	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b	
Erythro-1-(4- <i>Ο</i> - β -D-	D. longicornu	Stem	Hu <i>et al.,</i> 2008a	
glucopyranosyl-3-	AUX/XUE			
methoxyphenyl)-2-[4-				
(3-hydroxypropyl)-2,6-				
dimethoxyphenoxy]-	าลงกรณ์มหาวิเ	ายาลัย		
1,3-propanediol [280]	alongkorn Un	IVERSITY		
Acanthoside B [281]	D. chrysanthum	Stem	Ye <i>et al.,</i> 2004	
Liriodendrin [282]	D. brymerianum	Whole plant	Chen <i>et al.</i> , 2014b	
	D. pulchellum	Stem	Chanvorachote	
			et al., 2013	

Categories and	Plant	Plant part	Reference		
compounds					
Lignans and neolignans	Lignans and neolignans				
(-)-(8 <i>R</i> ,7' <i>E</i>)-4-Hydroxy-	D. auranticum	Stem	Li et al., 2014		
3,3',5,5'-tetramethoxy-	var. denneanum				
8,4'-oxyneolign-7'-ene-					
9,9´-diol 4,9-bis- <i>Ο</i> -β-D-	41/11/1	· · · ·			
glucopyranoside [283]					
(-)-(8 <i>S</i> ,7' <i>E</i>)-4-Hydroxy-	D. auranticum	Stem	Li et al., 2014		
3,3',5,5'-tetramethoxy-	var. denneanum				
8,4'-oxyneolign-7'-ene-					
9,9´-diol 4,9-bis- <i>Ο</i> - β -D-					
glucopyranoside [284]					
(-)-(8 <i>R</i> ,7' <i>E</i>)-4-Hydroxy-	D. auranticum	Stem	Li <i>et al.</i> , 2014		
3,3',5,5',9'-penta	var. denneanum	10			
methoxy-8,4'-	าลงกรณ์มหาวิเ	ายาลัย			
oxyneolign-7'-ene-9-ol	alongkorn Um	IIVERSITY			
4,9-bis- <i>Ο</i> - β -D-					
glucopyranoside [285]					

Categories and	Plant	Plant part	Reference
compounds			
Fluorenones			
Denchrysan A [286]	D. chrysotoxum	Whole plant	Li et al., 2009c
Denchrysan B [287]	D. brymerianum	Whole plant	Klongkumnuankarn
			et al., 2015
	D. chrysotoxum	Whole plant	Li <i>et al.,</i> 2009c
Dendroflorin [288]	D. aurantiacum	Stem	Yang <i>et al.</i> , 2006b
	var. denneanum		
	D. brymerianum	Whole plant	Klongkumnuankarn
			et al., 2015
Dengibsin [289]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
9	var. denneanum	× D	
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006a
ຈຸນ	D. chrysotoxum	Whole plant	Li et al., 2009c
Nobilone [290] CHUL	D. brymerianum	Whole plant	Klongkumnuankarn
			et al., 2015
	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
1,4,5-Trihydroxy-7-	D. chrysotoxum	Whole plant	Li et al., 2009c
methoxy-9 <i>H</i> -			
fluoren-9-one [291]			
2,4,7-Trihydroxy-1,5-	D. chrysotoxum	Stem	Yang <i>et al.</i> , 2004
dimethoxy-9-			
fluorenone [292]			

Categories and	Plant	Plant part	Reference
compounds			
Others			
3,6,9-Trihydroxy-3,4-	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
dihydroanthracen-1-			
(2 <i>H</i>)-one [293]			
Palmarumycin JC2 [294]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
Dehydrovomifoliol [295]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
2,6-Dimethoxy	D. chryseum	Stem	Ma et al., 1998
Benzoquinone [296]			
4-(2-Hydroxypropyl)-	D. tortile	Whole plant	Limpanit <i>et al.,</i>
2(5 <i>H</i>)-furanone [297]			2016
5,7-Dihydroxy-chromen-	D. ellipsophyllum	Whole plant	Tanagornmeatar
4-one [298]		<u>s</u>	et al., 2014
Balanophonin [299]	D. williamsonii	Whole plant	Yang <i>et al.</i> , 2017b
Ergosta-8(9),22-diene-	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
3,5,6,7-tetraol [300]	ALONGKUKN UN	IVEKSIIY	
Stigmast-4-	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
en-3α, 6 β -diol [301]			
3 β -Hydroxy-5α,8α-	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
epidioxyergosta-6,9,22-			
triene [302]			
Betulin [303]	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b
β-Sitosterol [304]	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2017b

Categories and	Plant	Plant part	Reference
compounds			
Others			
Daucosterol [305]	D. williamsonii	Whole plant	Yang <i>et al.</i> , 2017b
Anosmine [306]	D. parishii	Whole plant	Leander and Luning,
			1968

CH₃-(CH₂)_n-CH₂-R

[211] Aliphatic acids: R = COOH, n = 19-31

[**212**] Aliphatic alcohol: R = OH, n = 22-32

[**214**] Dimethyl malate: $R_1 = R_2 = OMe$

[235] *n*-Docosyl *trans*-ferulate: $R = COOCH_2(CH_2)_{20}CH_3$

- [236] *trans*-Tetracosyl ferulate: $R = COOCH_2(CH_2)_{22}CH_3$
- [237] *cis*-Hexacosanoyl ferulate: $R = COOCH_2(CH_2)_{24}CH_3$
- [238] Ferulaldehyde: R = CHO

[241] Dihydroconiferyl dihydro-p-coumarate

[242] 1-[4-(β-D-Glucopyranosyloxy)-3,5- [243] 3-Hydroxy-1-(4-hydroxy-3,5dimethoxyphenyl]-1-propanone dimethoxyphenyl)-1-propanone

[**259**] (7*S*,8*R*)-Dehydrodiconiferyl alcohol 9΄-β-D-glucopyranoside

dimethoxy[3,3'-bi-2H-benzopyran]-4,4'-diol

[**269**] Episyringaresinol: R = H

[270] Episyringaresinol 4"-O- β -D-glucopyranoside

[271] (-)-(7*S*,8*R*,7'*E*)-4-Hydroxy-

[272] Lyoniresinol

3,3',5,5'-tetramethoxy-8,4'-oxyneolign-

7'-ene-7,9'-bis-O- β -D-glucopyranoside

[273] (-)-Syringaresinol-4,4'-bis-O- β -D-glucopyranoside: R = Glc

[**275**] Itolide A: R₁ = OH, R₂ = H

- [**283**] (-)-(8R,7'E)-4-Hydroxy-3,3',5,5'-tetramethoxy-8,4'-oxyneolign-7'-ene-9,9'-diol 4,9-bis-O- β -D-glucopyranoside: R = OH; 8R
- [284] (-)-(8*S*,7*E*)-4-Hydroxy-3,3',5,5'-tetramethoxy-8,4'-oxyneolign-7'-ene-9,9'-diol 4,9-bis-O- β -D-glucopyranoside: R = OH; 8*S*
- [285] (-)-(8R,7'E)-4-Hydroxy-3,3',5,5',9'-pentamethoxy-8,4'-oxyneolign-

7'-ene-9-ol 4,9-bis-O- β -D-glucopyranoside: R = OMe; 8R

[**293**] 3,6,9-Trihydroxy-3,4-

[294] Palmarumycin JC2

dihydroanthracen-1-(2H)-one

Figure 5 Structures of miscellaneous compounds isolated from *Dendrobium* species (continued)

103

[**300**] Ergosta-8(9),22-diene-3,5,6,7-tetraol

[**301**] Stigmast-4-en-3 α , 6 β -diol

[**305**] Daucosterol: R = Glc

2. Traditional uses and biological activities of Dendrobium species

Dendrobium plants have been used for the treatment of many diseases in traditional Chinese medicine (TCM). For example, they are used to promote the body fluid production, reduce fever, headache and swelling, treat red tongue, dry mouth, diabetes, and hyperglycemia. Furthermore, they are used to remedy kidney, stomach and lung diseases and relieve various symptoms such as thirst with blurred vision and dryness of the throat (Ng *et al.*, 2012; Rungwichaniwa *et al.*, 2014).

Several pharmacological activities of the chemical constituents of *Dendrobium* have been reported. Examples are antioxidant, anti-inflammatory, antiviral, antibacterial, antimalarial, antiplatelet aggregation, hemagglutinating, antidiabetic, anti-hyperthyroidism, hepatoprotective, neuroprotective, anticancer, antiangiogenic and immunomodulating activities, as well as beneficial action on bones and inhibition of cataractogenics (Teixeira da Silva and Ng, 2017b).

Regarding antioxidant activity, the ethyl acetate extract, *n*-butanol extract and water extract of D. aurantiacum have been shown to inhibit 2,2-diphenyl-1picrylhydrazyl (DPPH) radical with the IC₅₀ values of 126.9, 49.5 and 132.5 µg/mL, respectively (Yang et al., 2007b). The extract of D. candidum has been studied for antidiabetic activity. It could reduce blood glucose concentration in streptozotocin and epinephrine-induced diabetic rats via increasing insulin secretion from β -cells, glycogenolysis and glycogen synthesis and decreasing glucagon secretion (Jiang et al., 2014). Furthermore, galactose-induced cataract formation in rats could be protected by the extract from the stem of *D. aurantiacum* var. *denneanum* through reducing aldose reductase and promoting nitric oxide synthase (NOS) activities (Fang et al., 2015). The compound dendrocandin E [37] from D. candidum was tested in DPPH assay and showed stronger activity (IC₅₀ = 15.6 μ M) as compared with vitamin C (positive control, IC_{50} = 23.2 μ M) (Li *et al.*, 2009b). Another compound, aphyllone B from D. aphyllum at the concentration of 100 µg/mL exhibited 87.97% inhibition of DPPH radical, comparing with Trolox[®] as positive control (Yang *et al.*, 2015). Moreover, eight compounds (nobilin D [61], nonilin E [62], crepidatin [8], dendrobin A [10], chrysotoxine [7], moscatilin [21], gigantol [16] and dendroflorin [288]) from the stem of *D. nobile* demonstrated inhibitory activity against DPPH radical (IC₅₀ = 19.9, 21.0, 21.8, 40.3, 14.0, 14.5, 56.4 and 16.2, respectively) (Zhang *et al.*, 2007b).

In addition, Dendrofalconerol A [63] and (2*S*)-eriodictyol [143] from *D. tortile* were able to inhibit the enzyme α -glucosidase with IC₅₀ = 18.0 and 276.2 µM, respectively. In another study, loddigesiinols G-J [131-134] and crepidatuol B [51] from the stem of *D. loddigesii* showed stronger α -glucosidase inhibitory activity (IC₅₀ = 16.7, 10.9, 2.7, 3.2, and 18.9 µM, respectively) than *trans*-resveratrol (Lu *et al.*, 2014). Moreover, confusarin [75] and 5-methoxy-7-hydroxy-9,10-dihydro-1,4-phenanthrene-quinone [89] from the whole plant of *D. formosum* displayed stronger α -glucosidase inhibitory activity (IC₅₀ = 189.78 and 126.88 µM, respectively) than acarbose. Both compounds also inhibited pancreatic lipase with IC₅₀ = 154.61 and 69.45 µM, respectively (Inthongkaew *et al.*, 2017).

Phoyunnanin E [**70**] and densiflorol B [**83**] from *D. venustum* showed stronger antimalarial activity than batatasin III [**4**], gigantol [**16**], and phoyunnanin C [**69**] (Sukphan *et al.*, 2014). In assays for platelet aggregation-inhibitory effect, moscatilin [**21**] and moscatin [**91**] from *D. loddigesii* stems could inhibit collagen and arachidonic acid-induced platelet aggregation *in vitro* (Chen *et al.*, 1994). Moscatilin [**21**] trigonopol A [**48**] from *D. trigonopus* also exhibited antiplatelet aggregation activity (Fan *et al.*, 2001; Hu *et al.*, 2008b).

Several compounds from *Dendrobium* plants displayed anticancer activity. For instance, the bibenzyl derivatives from *D. brymerianum*, including moscatilin [21], gigantol [16] and lusianthridin [99], demonstrated cytotoxicity against human lung cancer cells with $IC_{50} = 196.7$, 23.4 and 65.0 µg/mL, respectively (Klongkumnuankarn *et al.*, 2015). Moreover, the bibenzyl derivatives (3,4-dihydroxy-5,4'-dimethoxybibenzyl [29], dendrocandin I [45], dendrofalconerol A [63], dendrocandin B [34] and dendrosignatol [65]) from *D. signatum* were cytotoxic against breast cancer, hepatoma (HepG) and colorectal cancer cells (Mittraphab *et al.*, 2016). In a previous study, chrysoeriol [147], luteolin [148], 4,4'-dihydroxy-3,5-dimethoxybibenzyl [41] and 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl [25] from *D. ellipsophyllum* exhibited cytotoxic,

antimetastatic, apoptosis-inducing and anoikis-sensitizing activities on H292 human lung cancer cells (Tanagornmeatar *et al.*, 2014).

Chulalongkorn University

CHAPTER III EXPERIMENTAL

1. Source of plant materials

The whole plant of *Dendrobium parishii* Rchb. f. was purchased from Chatuchak market, Bangkok, in November 2012. Identification of this plant was performed by Assoc. Prof. Thatree Phadungcharoen (Faculty of Pharmaceutical Sciences, Rangsit University). A voucher specimen (BS-DPar-112555) has been deposited at the herbarium in the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

2. General techniques

2.1 Thin-layer chromatography (TLC)

Technique :	One-dimension ascending
Absorbent :	Silica gel 60 F254 (E. Merck) precoated plate
Temperature :	Laboratory temperature (30-35 °C)
Detection :	1. Ultraviolet light (UV) at wavelengths of 254 and 365 nm.
	igcap 2. Spraying with anisaldehyde reagent (p-anisaldehyde 15 g in
	ethanol 250 mL and conc. Sulfuric acid 2.5 mL) and heating at
	105 °C for 10 min.

2.2 Column chromatography

2.2.1 Vacuum liquid chromatography (VLC)

Adsorbent	:	Silica gel 60 (No. 7734) particle size 0.063-0.200 mm		
		(E. Merck)		
Packing method	:	Dry packing		
Sample loading	:	The sample was dissolved in a small amount of appropriate organic solvent, mixed with the adsorbent as much as necessary, triturated, dried and then placed on top of the column.		
Detection		Each fraction was examined by TLC under UV light at the wavelengths of 254 and 365 nm.		
2.2.2 Flash column chromatography (FCC)				
Adsorbent	:	Silica gel 60 (No. 9385) particle size 0.040-0.063 mm		
		(E. Merck)		
Packing method	- 33	Dry packing		
Sample loading	จุฬาส CHULA	The sample was dissolved in a small amount of appropriate organic solvent, mixed with the adsorbent as much as necessary, triturated, dried and then placed on top of the column.		
Detection	:	Fractions were examined as described in section 2.2.1.		

2.2.3 Gel filtration chromatography

Gel filter : Sephadex LH-20 (GE Healthcare)

Packing method : Gel filter was suspended in an appropriate organic solvent and left to equilibrate for 24 hours prior to use and then poured into the column and left to set tightly.

Sample loading : The sample was dissolved in the same solvent for column packing and then filled on the top of the column.

Detection : Fractions were examined as described in section 2.2.1

2.3 Spectroscopy

2.3.1 Mass spectra

Mass spectra were recorded on a Bruker micro TOF mass spectrometer (HR-ESI-MS) (Department of Chemistry, Faculty of Science, Mahidol University).

2.3.2 1-D and 2-D nuclear magnetic resonance spectra

1-D NMR (¹H NMR, 300 MHz and ¹³C NMR, 75 MHz) and 2-D NMR (NOESY, HSQC and HMBC) spectra were recorded on a Bruker Avance DPX-300 FT-NMR spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University) or a Varian Unity INOVA-500 MHz NMR spectrometer (Scientific and Technological Research Equipment Centre, Chulalongkorn University)

Solvents for NMR spectra were deuterated acetone (acetone- d_6), deuterated chloroform (CDCl₃) and deuterated methanol (CD₃OD). Chemical shifts were reported in ppm scale using the chemical shift of the solvent as the reference signal.

2.3.3 Ultraviolet (UV) spectra

UV spectra (in methanol) were obtained on a Milton Roy Spectronic 3000 Array spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.3.4 Infrared (IR) spectra

IR spectra were recorded on a Perkin-Elmer FT-IR 1760X spectrophotometer (Scientific and Technology Research Equipment Center, Chulalongkorn University).

2.3.5 Optical rotation

Optical rotation was measured on a Perkin-Elmer 341 polarimeter (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.4 Solvents

All organic solvents employed throughout this work were of commercial grade and were redistilled prior to use.

3. Extraction and isolation

3.1 Extraction จุฬาลงกรณ์มหาวิทยาลัย

The dried whole plants of *D. parishii* (2.2 kg) were powdered and macerated with methanol (3×10 L) for 5 days three times. The solvent was evaporated under reduced pressure by rotary evaporator to give 166 g of methanol crude extract. Then, this extract was suspended in water and partitioned with EtOAc and *n*-butanol to give an EtOAc extract (72 g), an *n*-butanol extract (50 g), and an aqueous extract (35 g). All these extracts were tested for the DPPH radical scavenging activity assay. The EtOAc extract showed the highest activity with more than 80% inhibition at 100 µg/mL. Thus, the EtOAc extract was selected for further study (**Scheme 1**).

3.2 Isolation

The EtOAc extract (72 g) was fractionated by vacuum liquid chromatography (VLC) as described in section 2.2.1 (**Scheme 2**). Silica gel (No.7734) was used as stationary phase, and a step gradient of hexane-EtOAc (1:0 to 0:1) was used as the mobile phase. About 500 mL of the eluates were collected per fraction, examined by TLC and combined to give seven fractions (A-G).

Scheme 1 Separation of the MeOH extract of Dendrobium parishii

Scheme 2 Separation of the EtOAc extract of Dendrobium parishii

Scheme 2 Separation of the EtOAc extract of Dendrobium parishii (continued)

Scheme 2 Separation of the EtOAc extract of Dendrobium parishii (continued)

3.2.1 Isolation of compound DPR-1 (4,3´,4´-Trihydroxy-3,5dimethoxybibenzyl)

Fraction G (2.8 g) was separated by FCC using silica gel (No. 9385) and eluated with a gradient mixture of hexane-EtOAc (1:0 to 0:1) to give twenty fractions (GI-GXX).

Fraction GX (788 mg) was separated on a Sephadex LH-20 column, eluted with acetone to give 11 fractions (GX1-GX11). Fraction GX6 (47 mg) was further separated on a C-18 column, with a mixture of methanol-water (1:1) as the mobile phase. Then this fraction was purified by CC using silica gel and eluted with hexane-EtOAc (7:3) to afford DPR-1 (14 mg). This compound was characterized as 4,3',4'-trihydroxy-3,5-dimethoxybibenzyl [**307**], a new structure.

3.2.2 Isolation of compound DPR-6 (Dendrocandin E)

Fraction GXI (575 mg) was purified by Sephadex LH-20 using acetone as the mobile phase to give DPR-6 (8 mg), which was identified as dendrocandin E [**37**].

3.2.3 Isolation of compound DPR-2 [(-)-Dendroparishiol] and DPR-7 (Asiatic acid)

Fraction GXV (65 mg) was separated on a Sephadex LH-20 using acetone as the mobile phase and then purified by CC on C-18, eluted with methanolwater (1:1) to give compound DPR-2 (5 mg) and DPR-7 (20 mg). Compound DPR-2 was characterized as a new compound named (–)-dendroparishiol [**308**]. Compound DPR-7 was identified as asiatic acid [**309**].

3.2.4 Isolation of compound DPR-3 (Flavanthrinin)

Fraction F (3.8 g) was separated by FCC using silica gel (No. 9385) and eluted with a gradient mixture of hexane-EtOAc (1:0 to 0:1) to give thirteen fractions (FI-FXIII). Sephadex LH20 using methanol as the mobile phase was used to purify fraction FVIII (220 mg) to give compound DPR-3 (12 mg), which was later identified as flavanthrinin [**119**].

3.2.5 Isolation of compound DPR-4 (Moscatilin)

Fraction FX (920 mg) was purified on Sephadex LH-20 using methanol as the mobile phase column to afford compound DPR-4 (530 mg). It was identified as moscatilin [**21**].

3.2.6 Isolation of compound DPR-5 (4,5,4´-Trihydroxy-3,3´dimethoxybibenzyl)

Fraction FXII (460 mg) was purified on Sephadex LH-20 using acetone as the mobile phase to give compound DPR-5 (70 mg). This compound was identified as 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl [**25**].

4. Physical and spectral data of isolated compounds

4.1 Compound DPR-1 (4,3',4'-Trihydroxy-3,5-dimethoxybibenzyl)

Compound DPR-1 was obtained as a brown amorphous solid, (14.0 mg, 0.00064 % based on dried weight of whole plant). It was soluble in acetone and methanol.

HR-ESI-MS	: $[M+Na]^+$ ion at m/z 313.1052 ($C_{16}H_{18}O_5Na$); see Fig	gure	6
-----------	---	------	---

- FT-IR : V_{max} (film): 3434, 2918, 2851, 1698, 1616, 1518, 1463, 1109 cm⁻¹; see Figure 7
- UV : λ_{max} in methanol at 218 nm (log ϵ = 4.10) and 282 nm (log ϵ = 3.59); see Figure 8
- ¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 5, Figure 9
- ¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 5, Figure 10

4.2 Compound DPR-2 [(-)-Dendroparishiol]

Compound DPR-2 was obtained as a red amorphous powder (5.0 mg, 0.00023 % based on dried weight of whole plant). It was soluble in methanol.

HR-ESI-MS : $[M+Na]^+$ ion at m/z 537.1521 (C₃₀H₂₆O₈Na); see Figure 14

IR : V_{max} (film): 3245, 2934, 2847, 1606, 1514, 1467, 1263, 1235 cm⁻¹; see Figure 15

UV : λ_{max} in methanol at 203 nm (log ϵ = 4.82) and 282 nm (log ϵ = 4.40); see Figure 16

Optical rotation : $[\alpha]_{D}^{20}$: -9.2 (*c* 0.1, MeOH)

¹H NMR : δ ppm, 500 MHz, in CD₃OD; see Table 6, Figure 17

¹³C NMR : δ ppm, 125 MHz, in CD₃OD; see Table 6, Figure 18

4.3 Compound DPR-3 (Flavanthrinin)

Compound DPR-3 was obtained as a brown amorphous solid (12.0 mg, 0.00054 % based on dried weight of whole plant). It was soluble in acetone.

HR-ESI-MS	: $[M+Na]^+$ ion at m/z 263.0686 ($C_{15}H_{12}O_3Na$); see Figure 23

- ¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 7, Figure 24
- ¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 7, Figure 25

4.4 Compound DPR-4 (Moscatilin)

Compound DPR-4 was obtained as a brown amorphous solid (530.0 mg, 0.024 % based on dried weight of whole plant). It was soluble in acetone.

HR-ESI-MS : $[M+Na]^+$ ion at m/z 327.1219 ($C_{17}H_{20}O_5Na$); see **Figure 29**

- ¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 8, Figure 30
- ¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 8, Figure 31

4.5 Compound DPR-5 (4,5,4'-Trihydroxy-3,3'-dimethoxybibenzyl)

Compound DPR-5 was obtained as a brown amorphous solid (70.0 mg, 0.0032 % based on dried weight of whole plant). It was soluble in acetone.

HR-ESI-MS : $[M+Na]^+$ ion at m/z 313.1058 (C₁₆H₁₈O₅Na); see Figure 34

¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 9, Figure 35

¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 9, Figure 36

4.6 Compound DPR-6 (Dendrocandin E)

Compound DPR-6 was obtained as a red amorphous solid (8.0 mg, 0.00036 % based on dried weight of whole plant). It was soluble in acetone.

HR-ESI-MS	: [M+Na] ⁺ ic	n at <i>m/z</i> 299.0900	(C ₁₅ H ₁₆ O ₅ Na); see	Figure 39
-----------	--------------------------	--------------------------	--	-----------

- ¹H NMR : δ ppm, 300 MHz, in acetone- d_6 ; see Table 10, Figure 40
- ¹³C NMR : δ ppm, 75 MHz, in acetone- d_6 ; see Table 10, Figure 41

4.7 Compound DPR-7 (Asiatic acid)

Compound DPR-7 was obtained as a white powder (20.0 mg, 0.00091 % based on dried weight of whole plant). It was soluble in methanol.

- HR-ESI-MS : $[M+Na]^+$ ion at m/z 511.3497 ($C_{30}H_{48}O_5Na$); see Figure 44
- ¹H NMR : δ ppm, 300 MHz, in CD₃OD; see Table 11, Figure 45
- ¹³C NMR : δ ppm, 75 MHz, in CD₃OD; see Table 11, Figure 46

5. Free radical scavenging activity assays

5.1 DPPH free radical scavenging activity assay

The 2,2-diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging activity assay is one of the widely used method for evaluating antioxidant potential of plant constituents. The method makes use of the stable free radical DPPH, which can produce a violet color. Any sample that can donate a hydrogen atom to the DPPH radical (antioxidant) will turn the color to yellow. The proportion of changing color from violet to yellow is determined as radical scavenging activity (RSA) (Likhitwitayawuid *et al.*, 2006).

5.1.1 Materials and instruments

- 2,2-diphenyl-1-picryl-hydrazyl (DPPH) (Sigma-Aldrich)
- Dimethyl sulfoxide (DMSO) (Sigma-Aldrich)
- 96-well microplate (Corning)
- Microplate reader (CLARIOstar, BMG LABTECH)
- Ultrasonic bath (Transsonic 570/H, Elma)
- Vortex mixer (Vortex-Genie2, Scientific Industries)

5.1.2 Determination of DPPH free radical scavenging activity assay

DPPH was dissolved in methanol to make a solution with concentration of 150 μ M. Each sample 3 mg was dissolved in 300 μ L of dimethyl sulfoxide (DMSO) to give a stock solution. The stock solution was diluted with methanol to achieve a concentration of 50 μ g/mL. 22 μ L of the diluted sample was transferred into a 96-well plate and 200 μ L of 150 μ M DPPH was added. The plate was covered and left standing in the dark at room temperature for 30 min. Then, the absorbance was measured at 517 nm using a microplate reader (CLARIOstar, BMG LABTECH, Germany). The absorbance was converted to the percentage of radical scavenging activity (%RSA) using the following formula:

 $\%RSA = [(A_{blank} - A_{sample}) / A_{blank}] \times 100$

Where A_{blank} and A_{sample} are the absorbance. The experiment was performed in triplicate, and each concentration consisted of three repetitions. Methanol was used as a blank.

5.2 Oxygen radical absorbance capacity (ORAC) assay

ORAC assay is an antioxidant test for the peroxyl radical which can be generated by the reaction between 2,2'-azobis (2-amidinopropane) dihydrochloride (AAPH) and oxygen. The generated peroxyl radical may react with fluorescein (fluorescent substance) and then decrease the absorbance of fluorescein. Any sample that can donate a hydrogen atom to the peroxyl radical (antioxidant) can protect the fluorescence of fluorescein from peroxyl radical damaging (Huang *et al.*, 2002).

5.2.1 Materials and instruments

- 2,2-azobis (2-amidinopropane) dihydrochloride (AAPH) (Sigma-Aldrich)

- 6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox[®]) (Sigma-Aldrich)

- 96-well microplate (Corning)
- Fluorescein (Sigma-Aldrich)
- Black 96-well microplate (Corning)
 Microplate reader (CLARIOstar, BMG LABTECH)
- Ultrasonic bath (Transsonic 570/H, Elma)
- Vortex mixer (Vortex-Genie2, Scientific Industries)

5.2.2 Determination of ORAC assay

The ORAC assay was performed at 37 °C under pH 7.4 condition. Trolox[®] was used as a standard for making a standard curve. Each sample 3 mg was dissolved in 300 μ L of dimethyl sulfoxide (DMSO) to give a stock solution. Fluorescein (FL) was used as a substrate. The diluted sample at 50 μ g/mL or Trolox[®] 25 μ L was added into a black 96-well plate and then 150 μ L of

fluorescein in buffer pH 7.4 and 25 µL of AAPH were added. The blank contained the same mixture without the sample or Trolox[®]. To monitor this reaction, fluorescence intensity of FL was recorded every minute after the addition of AAPH, at excitation and emission wavelengths of 485 and 530 nm, respectively. Each result was derived from the difference between the area under the curve of the blank and that of the sample compared with the Trolox[®] standard curve. The final results were determined as micromole Trolox[®] equivalent (TE) per gram of the sample (µmol TE/g).

5.3 Deoxyribose degradation assay

The deoxyribose degradation assay is a method for testing antioxidant activity against the hydroxyl radical. Hydroxyl radicals can be generated from the reaction between the complex of FeCl₃ with ethylene diamine tetra-acetic acid (EDTA) and hydrogen peroxide (H_2O_2). Then, the generated hydroxyl radical can react with deoxyribose to give malondialdehyde (MDA). Thiobarbituric acid (TBA) is then added to form a complex with MDA in acidic condition to yield a malondialdehyde–thiobarbituric acid complex (pink color). The absorbance of the reaction mixture is then measured. Any sample that can donate a hydrogen atom to the hydroxyl radical (antioxidant) can reduce MDA formation and decrease the absorbance. (Gutteridge and Halliwell, 1988).

5.3.1 Materials and instruments

- 96-well microplate (Corning)
- KH₂PO₄ (Merck)
- KOH (Merck)
- Deoxyribose (Sigma-Aldrich)
- Ferric chloride (FeCl₃) (Sigma-Aldrich)
- Ethylene diamine tetra acetic acid (EDTA) (Merck)
- Ascorbic acid (Sigma-Aldrich)
- Hydrogen peroxide (H_2O_2) (Merck)

- Thiobarbituric acid (TBA) (Sigma-Aldrich)

- Trichloroacetic Acid (TCA) (Merck)

- 6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox[®]) (Sigma-Aldrich)

- Microplate reader (CLARIOstar, BMG LABTECH)

- Ultrasonic bath (Transsonic 570/H, Elma)

- Vortex mixer (Vortex-Genie2, Scientific Industries)

5.3.2 Determination of deoxyribose degradation assay

Each sample 3 mg was dissolved in 300 μ L of dimethyl sulfoxide (DMSO) to give a stock solution. The reaction mixture contained 200 μ L of 100 mM KH₂PO₄/KOH, 200 μ L of 15 mM deoxyribose, 200 μ L of 500 μ M FeCl₃, 100 μ L of 1 mM EDTA, 100 μ L of 1 mM ascorbic acid, 100 μ L of 10 mM H₂O₂ and 100 μ L of the diluted sample (concentration 50 μ g/mL), which gave the final volume of 1 mL. The mixtures were incubated at 37 °C for 1 hour. After that, 1 mL of 1% w/v TBA and 1 mL of 2.8% w/v TCA were added to the mixture. Then, the mixture was heated on a water bath at 90 °C for 20 min to form a complex of malondialdehyde–thiobarbituric acid (pink color), and the absorbance was measured at wavelength 532 nm. Blank contained the same mixture without the sample. The percentage of hydroxyl radical inhibition of samples was calculated using the following formula:

% hydroxyl radical inhibition = $[(A_{blank} - A_{sample})/A_{blank}] \times 100$

Where A_{blank} and A_{sample} are the absorbance of the blank and the sample, respectively.

5.4 Intracellular antioxidant activity in cell cultures

Seven compounds (DPR-1 – DPR-7) were tested for antioxidant activity in H_2O_2 induced cells. The reduction of cellular ROS synthesis was estimated for the intracellular antioxidant activity of these compounds. Non-fluorescent DCFH-DA (2',7'- dichlorofluorescein diacetate) diffuses into cells containing esterases to cleave DCFH-DA to form DCFH, which can be oxidized by ROS to the fluorescent DCF (2',7'dichlorofluorescein). Therefore, ROS levels were measured by monitoring fluorescent signals generated from the oxidized DCFH-DA (Soh, 2006).

5.4.1 Materials and instruments

- RAW 264.7 (ATCC TIB71) murine macrophage cell lines
- 2',7'-Dichlorofluorescein diacetate (DCFH-DA) (Sigma-Aldrich)
- Hydrogen peroxide (H₂O₂) (Merck)
- Dulbecco's modified eagle's medium (DMEM) (Invitrogen)
- Heat-inactivated fetal bovine serum (FBS) (Invitrogen)
- Penicillin (Invitrogen)
- Streptomycin (Invitrogen)
- Quercetin (Sigma-Aldrich)
- Black 96-well culture plate (Corning)
- Fluorescence microplate reader (CLARIOstar, BMG LABTECH)
- Incubator (Forma Series II, Thermo Scientific)
- Ultrasonic bath (Transsonic 570/H, Elma)
- Vortex mixer (Vortex-Genie2, Scientific Industries)

5.4.2 Determination of intracellular antioxidant activity in cell cultures

Murine macrophage RAW264.7 cells (ATCC TIB71) were cultured in 100 μ g/mL penicillin, 100 μ g/mL streptomycin and DMEM supplemented with 10% heat-inactivated FBS. Cell cultures were kept at 37 °C in humidified atmosphere of 5% CO₂/95% air.

RAW 264.7 cells were plated at 2×10^4 cells/mL in black 96-well culture plates. Then, they were incubated at 37 °C in a humidified atmosphere of 5%

 $CO_2/95\%$ air for 24 hours. Cells were washed with serum-free medium (free phenol red) and treated with 50.0 µg/mL of seven compounds (DPR-1–DPR-7) for 24 hours. Cells were washed, added with 5 µM DCFH-DA in serum free medium and incubated for 30 minutes. Then, 1 mM H₂O₂ was added to induce cellular oxidative stress and further incubated for 30 minutes. The fluorescence intensity was determined by fluorescence microplate reader at 485 nm (excitation state) and 530 nm (emission state). The percentage of ROS inhibition of samples was calculated using the following formula:

%ROS inhibition = $100 - [(FL_{sample} \times 100) / FL_{Hydrogen peroxide})]$

Where $FL_{Hydrogen peroxide}$ and FL_{sample} are the fluorescent intensity of the H₂O₂-treated cells and the sample, respectively.

In addition, (–)-dendroparishiol [DPR-2, **308**] was selected for further evaluation of intracellular antioxidant activity in cell culture at the concentrations that did not affect cell viability (12.5, 25.0, and 50.0 µg/mL).

5.5 Effects on antioxidant enzymes in cell cultures

The imbalance between antioxidants and the ROS system in the cells is called oxidative stress. In human cells, there are many antioxidative mechanisms such as antioxidant enzymes including glutathione peroxidase (GPx), catalase (CAT) and superoxide dismutase (SOD). The co-operation of these three enzymes can neutralize the superoxide radical through converting the radical into H_2O_2 and O_2 by SOD. Then, GPx and CAT can degrade H_2O_2 into O_2 and H_2O (Weydert and Cullen, 2010).

5.5.1 Materials and instruments

- RAW 264.7 (ATCC TIB71) murine macrophage cell lines
- Hydrogen peroxide (H₂O₂) (Merck)
- lysis buffer (Sigma-Aldrich)
- Quercetin (Sigma-Aldrich)
- Dulbecco's modified eagle's medium (DMEM) (Invitrogen)

- Heat-inactivated fetal bovine serum (FBS) (Invitrogen)

- Penicillin (Invitrogen)
- Streptomycin (Invitrogen)
- SOD, GPx, and CAT cellular activity assay kit (Cayman Chemical)
- 6-well culture plates (Corning)
- Fluorescence microplate reader (CLARIOstar, BMG LABTECH)
- Incubator (Forma Series II, Thermo Scientific)
- Ultrasonic bath (Transsonic 570/H, Elma)
- Vortex mixer (Vortex-Genie2, Scientific industries)

5.5.2 Determination of effects on antioxidant enzyme in cell cultures

Murine macrophage RAW264.7 cells (ATCC TIB71) were cultured in 100 μ g/mL penicillin, 100 μ g/mL streptomycin and DMEM supplemented with 10% heat-inactivated FBS. Cell cultures were kept at 37 °C in humidified atmosphere of 5% CO₂/95% air.

RAW 264.7 cells were plated with 1×10^{6} cells/mL in 6-well culture plates. Then, they were incubated at 37 °C in a humidified atmosphere of 5% CO₂/95% air for 24 hours. Cells were washed with serum-free medium (free phenol red) and treated with 12.5, 25.0 and 50.0 µg/mL of (–)-dendroparishiol for 24 hours. Then, 1 mM H₂O₂ was added to induce cellular oxidative stress, and the mixture was incubated for 30 minutes. Treated cells were resuspended in an ice-cold lysis buffer at 4 °C for 30 minutes and centrifuged at 13,500×g at 4 °C for 5 minutes to produce cell lysate for measurement of antioxidant enzyme activities. The CAT, GPx and SOD activity was each evaluated by using CAT, GPx and SOD cellular activity assay kits.

CHAPTER IV RESULTS AND DISCUSSION

In this study, the dried and ground whole plants of *Dendrobium parishii* (2.2 kg) was extracted with methanol to give a dried methanol extract (166 g) after removal of the solvent. The methanol extract was suspened in water and then partitioned with EtOAc and *n*-butanol to give 72 g of EtOAc extract, 50 g of *n*-butanol extract and 35 g of aqueous extract. At 100 µg/mL, only the EtOAc extract showed more than 80% inhibition in the DPPH radical scavenging assay. Thus, the EtOAc extract was subjected to repeated chromatographic separation to give 7 compounds including two new compounds (DPR-1 and DPR-2), one phenanthrene (DPR-3), three bibenzyls (DPR-4, DPR-5 and DPR-6) and one triterpenoid (DPR-7). These isolated structures were characterized by spectroscopic techniques, including MS and NMR and were tested for free radical scavenging activities.

1. Structure determination of isolated compounds

1.1 Structure determination of compound DPR-1

Compound DPR-1 was obtained as a brown amorphous solid. The HR-ESI mass spectrum (**Figure 6**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 313.1052 (calcd. for C₁₆H₁₈O₅Na 313.1051), suggesting the molecular formula C₁₆H₁₈O₅. The IR spectrum (**Figure 7**) presented hydroxyl (3434 cm⁻¹), aromatic ring (2918, 1698 cm⁻¹) and methylene (1463 cm⁻¹) bands. The UV maximal absorption peaks (**Figure 8**) at 218 nm (log $\boldsymbol{\varepsilon}$ = 4.10) and 282 nm (log $\boldsymbol{\varepsilon}$ = 3.59) were suggestive of a bibenzyl nucleus (Zhang *et al.*, 2007b).

The ¹H-NMR spectrum (**Figure 9** and **Table 5**) indicated the presence of four methylene protons at $\delta_{\rm H}$ 2.75 (*br* s, H₂- α , H₂- α '), five aromatic protons at $\delta_{\rm H}$ 6.49 (2H, *s*, H-2 and H-6), 6.54 (1H, *br d*, *J*=8.0 Hz, H-6'), 6.70 (1H, *d*, *J*=3.0 Hz, H-2') and 6.72 (1H, *d*, *J*=8.0 Hz, H-5') and two methoxyl groups at $\delta_{\rm H}$ 3.78 (6H, *s*). The ¹H-NMR spectrum for ring A, presented a singlet of two equivalent protons H-2 and H-6 at $\delta_{\rm H}$ 6.49. For

ring B, the ¹H-NMR spectrum showed an ABM spin system at $\delta_{\rm H}$ 6.54 (1H, J=8.0 Hz, H-6') and 6.72 (1H, J=8.0 Hz, H-5') and 6.70 (1H, d, J=3.0 Hz, H-2'). These spectral data presented the symmetrical substitution on the ring A and two substitutions on the ring B.

The ¹³C-NMR spectrum (**Figure 10** and **Table 5**) displayed sixteen carbon signals, including two equivalent methoxyl groups at the same chemical shift (at δ_c 55.7). The other fourteen carbon signals of DPR-1 could be classified as representing two methylene carbons at δ_c 37.4 (C- α ') and 38.1 (C- α), five methine carbons at δ_c 105.9 (C-2 and C-6), 115.0 (C-5'), 115.5 (C-2') and 119.6 (C-6') and seven quaternary carbon signals at δ_c 132.4 (C-4), 133.7 (C-1'), 134.1 (C-1), 143.0 (C-4'), 144.8 (C-3') and 147.6 (C-3 and C-5). HSQC spectrum (**Figure 11**) showed proton signals for a bibenzyl structure at δ_H 2.75 (H₂- α , H₂- α ') that had correlation peaks with carbon atoms at δ_c 37.4 (C- α ') and 38.1 (C- α).

The NOESY spectrum (**Figure 12**) suggested that the two methoxyl groups $(\delta_{\rm H} = 3.78, s, 6{\rm H})$ should be at the positions C-3 and C-5 ($\delta_{\rm C} = 147.6$), based on correlation peak of the proton signals at $\delta_{\rm H}$ 6.49 (H-2 and H-6) with the methoxy signals at $\delta_{\rm H}$ 3.78 (3-OMe and 5-OMe). From HMBC spectrum (**Figure 13**), C-3 and C-5 ($\delta_{\rm C} = 147.6$) showed a correlation peak with methoxy proton signals, placing the two methoxyl groups at C-3 and C-5.

Based on the above spectral evidence, DPR-1 was characterized as a new compound and its structure was quite similar to moscatilin [**21**]. It was established as 4,3',4'-trihydroxy-3,5-dimethoxybibenzyl [**307**].

4,3',4'-trihydroxy-3,5-dimethoxybibenzyl [**307**]

Position	Compound DPR-1		
	$\delta_{_{ m H}}$ (mult., J in Hz)	δ_{c}	
1		134.1	
2	6.49 (s)	105.9	
3		147.6	
4		132.4	
5		147.6	
6	6.49 (<i>s</i>)	105.9	
า ¹ ัพาล	งกรณ์มหาวิทยาส	133.7	
CHULAL	6.70 (<i>d</i> , 3.0)	115.5 SITY	
3′	-	144.8	
4′	_	143.0	
5′	6.72 (<i>d</i> , 8.0)	115.0	
6′	6.54 (br d, 8.0)	119.6	
α	2.75 (br s)	38.1	
α΄	2.75 (br s)	37.4	
3-OMe	3.78 (s)	55.7	
5-OMe	3.78 (<i>s</i>)	55.7	

1.2 Structure determination of compound DPR-2

Compound DPR-2 was obtained as a red amorphous powder. The HR-ESI mass spectrum (**Figure 14**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 537.1521 (calcd. for C₃₀H₂₆O₈Na; 537.1525), suggesting the molecular formula C₃₀H₂₆O₈. The IR spectrum (**Figure 15**) showed the presence of hydroxyl (3245 cm⁻¹), aromatic ring (2934, 1514 cm⁻¹) and ether (1235 cm⁻¹) bands. The UV maximal absorption peaks (**Figure 16**) at 203 nm (log $\boldsymbol{\varepsilon}$ = 4.82) and 282 nm (log $\boldsymbol{\varepsilon}$ = 4.40) were suggestive of a bibenzyl-dihydrophenanthrene skeleton (Guo *et al.*, 2007; Yao *et al.*, 2008).

The ¹H-NMR spectrum (**Figure 17** and **Table 6**) exhibited aliphatic protons at $\delta_{\rm H}$ 2.60 (2H, *m*, H-8'), 2.75 (2H, *m*, H-8), 2.57, 2.75 (1H, *m*, H-7') and 4.26 (1H, *t*, *J*=5.5 Hz, H-7). The ¹³C-NMR spectrum (**Figure 18** and **Table 6**) represented thirty carbons including two methoxyl groups at $\delta_{\rm C}$ 56.0 (11-OMe) and 61.6 (1-OMe), methylene carbon signals at $\delta_{\rm C}$ 26.4 (C-7'), 30.9 (C-8') and 45.8 (C-8), a methine carbon signal at $\delta_{\rm C}$ 39.6 (C-7) and aromatic carbon signals at $\delta_{\rm C}$ 102.9 (C-2'), 110.1 (C-4), 113.6 (C-12'), 114.6 (C-4'), 114.7 (C-10 and C-10'), 115.3 (C-13), 117.5 (C-5), 119.2 (C-6'), 123.3 (C-14), 126.5 (C-14'), 130.5 (C-13'), 130.8 (C-9), 137.1 (C-1), 138.3 (C-2), 138.8 (C-5'), 140.6 (C-6 and C-9'), 142.3 (C-3), 145.7 (C-12), 147.9 (C-11), 152.7 (C-3'), 154.7 (C-1') and 156.3 (C-11').

Comparison of ¹H and ¹³C NMR spectra of DPR-2 with those of dendrosignatol [65] which is a bibenzyl-dihydrophenanthrene derivative from *Dendrobium signatum* (Mittraphab *et al.*, 2016), showed close similarity in rings A, A' and B'. On ring B' showed the ABM spin system at $\delta_{\rm H}$ 6.63 (1H, *dd*, *J*=9.0, 2.5 Hz, H-12'), 6.65 (1H, *br s*, H-10') and 8.16 (1H, *d*, *J*=9.0 Hz, H-13'). The ¹H NMR spectrum showed two methoxyl signals at $\delta_{\rm H}$ 3.51 (3H, *s*) and 3.75 (3H, *s*), two doublet signals at $\delta_{\rm H}$ 5.89 (*J*=2.0 Hz, H-10) and 6.47 (*J*=8.0 Hz, H-13), and a double doublet at $\delta_{\rm H}$ 6.03 (*J*=8.0, 2.0 Hz, H-14). The HSQC spectrum (Figure 19) showed the correlation peaks between H-8', H-8, H-7' and H-7 with carbon atoms at $\delta_{\rm C}$ 30.9 (C-8'), 45.8 (C-8), 26.4 (C-7') and 39.6 (C-7), respectively, indicated a bibenzyl-dihydrophenanthrene skeleton.
In the HMBC spectrum (Figure 20, and 21), the signal of H-7 at $\delta_{\rm H}$ 4.26 (t, 5.5) had correlation peaks with C-4 ($\delta_{\rm C}$ = 110.1), C-6 ($\delta_{\rm C}$ = 140.6), C-9 ($\delta_{\rm C}$ = 130.8), C-3' ($\delta_{\rm C}$ = 152.7) and C-5' ($\delta_{\rm C}$ = 138.8) proposed that ring A' of dihydrophenanthrene connected to ring A of bibenzyl by an ether linkage and methine bridge. Furthermore, the singlet H-4 proton of ring A at $\delta_{\rm H}$ 6.40 showed HMBC correlations with C-2 ($\delta_{\rm C}$ = 138.3), C-6 ($\delta_{\rm C}$ = 140.6), and C-7 ($\delta_{\rm C}$ = 39.6). The signal at $\delta_{\rm H}$ 6.41 was determined as that of H-2' of ring A' based on 3-bond correlation to C-4' ($\delta_{\rm C}$ = 114.6) and C-6' ($\delta_{\rm C}$ = 119.2). The NOESY correlation of H-10' and H-8' and the HMBC correlation of H-10' and C-8' ($\delta_{\rm C}$ = 30.9) predicted a hydroxyl group position at C-11'. H-10 and H-14 had correlation peaks with C-8 indicated a methoxy group or a hydroxyl group was di-oxygenated at C-11 and C-12. The NOESY (Figure 22) correlation between the signal of a methoxyl group and H-10, placing this methoxyl group at C-11. In addition, this compound had a chiral carbon at C-7 then, the optical rotation was measured in methanol with value -9.2 (c 0.1).

Based on the above spectral data, compound DPR-2 was characterized as a new bibenzyl-dihydrophenanthrene derivative. It was named as (–)-dendroparishiol [308].

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

(-)-Dendroparishiol [308]

Table 6 1 H NMR 500 MHz and 13 C NMR 125 MHz spectral data of compound DPR-2 (in CD₃OD)

	Compound DPR-2			Compound DP	PR-2
Position	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ	Position	$oldsymbol{\delta}_{ extsf{H}}$ (mult., J in Hz)	δ_{c}
1	- /	137.1	2′	6.41 (s)	102.9
2	-	138.3	3′	-	152.7
3	-	142.3	4'	-	114.6
4	6.40 (<i>s</i>)	110.1	5′	-	138.8
5	- 8	117.5	6′	-	119.2
6		140.6	7'	2.57 (m), 2.75 (m)	26.4
7	4.26 (t, 5.5)	39.6	8′	a g 2.60 (m)	30.9
8	2.75 (m)	45.8	9' 9'	ASITY -	140.6
9	-	130.8	10′	6.65 (br s)	114.7
10	5.89 (<i>d</i> , 2.0)	114.7	11′	-	156.3
11	-	147.9	12′	6.63 (dd, 9.0, 2.5)	113.6
12	-	145.7	13′	8.16 (<i>d</i> , 9.0)	130.5
13	6.47 (<i>d</i> , 8.0)	115.3	14′	-	126.5
14	6.03 (dd, 8.0, 2.0)	123.3	1-OMe	3.75 (3H, <i>s</i>)	61.6
1′	-	154.7	11-OMe	3.51 (3H, <i>s</i>)	56.0

1.3 Structure determination of compound DPR-3

Compound DPR-3 was obtained as a brown amorphous solid. The HR-ESI-MS of this compound (**Figure 23**) showed an $[M+Na]^+$ peak at m/z 263.0686 (calcd. for $C_{15}H_{12}O_3Na$; 263.0684), suggesting the molecular formula $C_{15}H_{12}O_3$.

The ¹H-NMR spectrum of DPR-3 (**Figure 24** and **Table 7**) exhibited the presence of a phenanthrene skeleton. It showed the signals of *ortho*- coupled aromatic protons at $\delta_{\rm H}$ 7.52 (1H, *d*, *J*=9.0 Hz, H-10) and 7.65 (1H, *d*, *J*=9.0 Hz, H-9). The signals of aromatic protons of ring A appeared at $\delta_{\rm H}$ 7.45 (1H, *d*, *J*=7.5 Hz, H-5), $\delta_{\rm H}$ 7.11 (1H, *dd*, *J*=7.5, 2.5 Hz, H-6) and $\delta_{\rm H}$ 7.43 (1H, *d*, *J*=2.5 Hz, H-8). For ring B, the ¹H-NMR spectrum showed two doublets at $\delta_{\rm H}$ 7.00 (1H, *d*, *J*=2.5 Hz, H-3) and $\delta_{\rm H}$ 7.08 (1H, *d*, *J*=2.5 Hz, H-1). In addition, the ¹H-NMR spectrum revealed signals for one methoxyl group at $\delta_{\rm H}$ 4.17 (*s*, 4-OMe).

The ¹³C-NMR (**Figure 25** and **Table 7**) and HSQC (**Figure 26**) spectral data displayed fifteen carbon signals, including one signal of methoxyl group at δ_c 57.7. The other fourteen carbon signals could be differentiated into seven methine carbon signals at δ_c 106.9 (C-1), 101.7 (C-3), 126.6 (C-5), 116.1 (C-6), 120.2 (C-8), 128.9 (C-9) and 126.1 (C-10) and seven quaternary carbon signals at δ_c 156.5 (C-2), 155.5 (C-4), 113.0 (C-4a), 118.9 (C-4b), 154.3 (C-7), 134.1 (C-8a), 136.2 (C-10a).

The NOESY spectrum (Figure 27), showed correlation from the methoxy protons ($\delta_{\rm H}$ = 4.17) to the signal of H-3, supporting the position of the methoxyl group at C-4. The HMBC (Figure 28) correlation from this methoxy proton signal to C-4 confirmed this placement.

Based on the above data and comparison of its ¹H, ¹³C-NMR and MS with previously reported data (Klongkumnuankarn *et al.*, 2015), DPR-3 was identified as flavanthrinin [**119**]. The first report of flavanthrinin in *Dendrobium* species has been from *D. nobile* (Zhang *et al.*, 2008c). Besides, this compound also has been found in other *Dendrobium* species such as *D. venustum* (Sukphan *et al.*, 2014) and *D. brymerianum* (Klongkumnuankarn *et al.*, 2015).

Flavanthrinin [119]

Table 7 ¹H NMR 300 MHz and ¹³C NMR 75 MHz spectral data of compound DPR-3 (in acetone- d_6) and flavanthrinin (in CDCl₃)

Position	Compound DPR-3		Flavanthrin	inª
	$\delta_{_{ m H}}$ (mult., J in Hz)	δ	$\delta_{_{ m H}}$ (mult., J in Hz)	δ _c
1	7.08 (d, 2.5)	106.9	6.97 (<i>d</i> , 2.5)	107.7
2	///	156.5	<u> </u>	156.3
3	7.00 (<i>d</i> , 2.5)	101.7	6.84 (<i>d</i> , 2.5)	102.5
4	-	155.5	_	157.3
4a	-	113.0	-0 -	114.0
4b	- 2	118.9		119.9
5	7.45 (d, 7.5)	126.6	ยาลั <i>3</i> .47 (<i>d</i> , 7.6)	127.4
6	7.11 (dd, 7.5, 2.5)	KO 116.1	7.22 (dd, 7.6, 1.5)	116.9
7	-	154.3	-	155.2
8	7.43 (d, 2.5)	120.2	7.40 (<i>d</i> , 1.5)	121.0
8a	-	134.1	-	134.9
9	7.65 (d, 9.0)	128.9	7.62 (<i>d</i> , 8.8)	129.7
10	7.52 (<i>d</i> , 9.0)	126.1	7.43 (<i>d</i> , 8.8)	126.9
10a	-	136.2	-	137.0
4-OMe	4.17 (<i>s</i>)	57.7	4.08 (<i>s</i>)	58.5

^a(Klongkumnuankarn *et al.*, 2015).

1.4 Structure determination of compound DPR-4

Compound DPR-4 was obtained as a brown amorphous solid. The HR-ESI-MS of this compound (**Figure 29**) showed an $[M+Na]^+$ peak at m/z 327.1219 (calcd. for $C_{17}H_{20}O_5Na$; 327.1208), suggesting the molecular formula $C_{17}H_{20}O_5$.

Comparing the ¹H-NMR spectrum of DPR-4 with DPR-1, it was found that the aromatic proton peaks were quite similar to DPR-1, suggesting that DPR-4 also possessed a bibenzyl skeleton. The ¹H-NMR spectrum of compound DPR-4 (**Figure 30** and **Table 8**) showed methylene proton signals at $\delta_{\rm H}$ 2.84 (4H, *m*, H₂- α , H₂- α'), signals of three methoxy groups at $\delta_{\rm H}$ 3.86 (9H, *s*, 3'-OMe, 3-OMe, 5-OMe) and five aromatic protons at $\delta_{\rm H}$ 6.38 (2H, *s*, H-2, H-6), 6.66 (1H, *d*, *J*=2.0 Hz, H-2'), 6.70 (1H, *dd*, *J*=8.0, 2.0 Hz, H-6') and 6.86 (1H, *d*, *J*=8.0 Hz, H-5'). This spectrum showed the presence of five substituted on the two aromatic rings, with one ring symmetrically substituted.

The ¹³C-NMR spectrum (**Figure 31** and **Table 8**) showed signals of seventeen carbons consisting of two methylene carbons at δ_c 38.0 (C- α ') and 38.5 (C- α), five methines carbon at δ_c 105.2 (C-2 and C-6), 111.3 (C-2'), 114.2 (C-5') and 121.1 (C-6'), seven quaternary carbons at δ_c 132.9 (C-1, C-4), 133.7 (C-1'), 143.8 (C-4'), 146.3 (C-3') and 146.9 (C-3, C-5) and three methoxyl groups at δ_c 55.9 (3'-OMe) and 56.3 (3-OMe and 5-OMe).

In the NOESY spectrum (Figure 32), the methoxyl group at $\delta_{\rm H}$ 3.86 (3'-OMe) had a correlation peak with H-2'. Two other methoxyl groups at $\delta_{\rm H}$ 3.86 (3-OMe and 5-OMe) exhibited a cross peak with H-2 (H-6). These observations supported the location of the methoxyl groups at C-3', C-3 and C-5, respectively. From the HMBC spectrum (Figure 33), the three methoxy protons had correlation peaks with C-3', C-3 and C-5, respectively, confirming their positions.

Based on the above data and comparison of the ¹H, ¹³C-NMR and MS data of this compound with previously published data (Majumder and Sen, 1987), DPR-4 was identified as moscatilin [**21**]. This compound has been frequently found in *Dendrobium* plants, such as *D. amoenum* (Majumder *et al.*, 1999), *D. chrysanthum* (Yang *et al.*,

2006a), *D. densiflorum* (Fan *et al.*, 2001), *D. gratiosissimum* (Zhang *et al.*, 2008a), *D. moscatum* (Majumder and Sen, 1987), *D. nobile* (Miyazawa *et al.*, 1999), *D. loddigesii* (Chen *et al.*, 1994; Ito *et al.*, 2010), and *D. secundum* (Sritularak *et al.*, 2011b).

Position	Compound DPR-4		Moscatilin ^a	
POSICION	$\delta_{_{H}}$ (mult., J in Hz)	δ_{c}	$\delta_{_{H}}$ (mult., J in Hz)	δ_{c}
1	_	132.9	_	132.8
2	6.38 (<i>s</i>)	105.2	6.36 (<i>s</i>)	105.2
3	-	146.9	-	146.8
4	-	132.9	-	133.5
5		146.9	- -	146.8
6	6.38 (<i>s</i>)	105.2	6.36 (s)	105.2
α	2.84 (m)	38.5	2.89 (s)	38.3
α΄	2.84 (m)	38.0	2.89 (<i>s</i>)	37.7
1΄	-//3	133.7	<u> </u>	132.8
2′	6.66 (<i>d</i> , 2.0)	111.3	6.65 (<i>d</i> , 2.0)	111.2
3′	-A.9	146.3		146.1
4′	Contraction of the second seco	143.8		143.7
5′	6.86 (<i>d</i> , 8.0)	114.2	6.94 (<i>d</i> , 8.0)	114.1
6΄	6.70 (<i>dd</i> , 8.0, 2.0)	121.1	6.75 (dd, 8.0, 2.0)	121.0
3'-OMe	3.86 (<i>s</i>)	55.9	3.81 (<i>s</i>)	55.8
3-OMe	3.86 (<i>s</i>)	56.3	3.81 (<i>s</i>)	56.1
5-OMe	3.86 (<i>s</i>)	56.3	3.81 (s)	56.1

Table 8 ¹H NMR 300 MHz and ¹³C NMR 75 MHz spectral data of compound DPR-4 (in acetone- d_6) and moscatilin (in acetone- d_6)

^a(Majumder and Sen, 1987)

1.5 Structure determination of compound DPR-5

Compound DPR-5 was obtained as a brown amorphous solid. The HR-ESI-MS of this compound (**Figure 34**) showed an $[M+Na]^+$ peak at m/z 313.1058 (calcd. for $C_{16}H_{18}O_5Na$; 313.1052), suggesting the molecular formula $C_{16}H_{18}O_5$.

Comparing the ¹H-NMR spectrum of DPR-5 with DPR-1 and DPR-4, it was found that the splitting patterns of aromatic protons of DPR-5 were quite similar to DPR-1 and DPR-4. It was suggestive that DPR-5 had a bibenzyl skeleton. The ¹H-NMR spectrum of compound DPR-5 (**Figure 35** and **Table 9**) showed signals of four methylene protons at $\delta_{\rm H}$ 2.74 (4H, *m*, H₂- α , H₂- α '), two methoxyl groups at $\delta_{\rm H}$ 3.77 (3H, *s*, 3-OMe) and 3.78 (3H, *s*, 3'-OMe) and five aromatic protons at $\delta_{\rm H}$ 6.25 (1H, *d*, *J*=2.0 Hz, H-2), 6.30 (1H, *d*, *J*=2.0 Hz, H-6), 6.59 (1H, *dd*, *J*=8.0, 2.0 Hz H-6'), 6.65 (1H, *d*, *J*=2.0 Hz, H-2') and 6.69 (1H, *d*, *J*=8.0 Hz, H-5'). This spectral data showed the presence of five substituted on the two aromatic rings, with one methoxyl group substituted on each ring.

The ¹³C-NMR spectrum (**Figure 36** and **Table 9**) showed sixteen carbon signals, including those of two methoxy carbons at δ_c 54.9 (3'-OMe) and 55.1 (3-OMe), two methylene carbons at δ_c 37.5 (C- α ') and 37.9 (C- α), five methane carbons at δ_c 103.7 (C-2), 108.7 (C-6), 112.1 (C-2'), 114.5 (C-5') and 120.6 (C-6'). and seven quaternary carbons at δ_c 131.7 (C-1), 132.8 (C-4), 133.5 (C-1'), 144.1 (C-4'), 144.9 (C-5), 147.2 (C-3') and 148.0 (C-3).

UDE CHULALONGKORN UNIVERSITY

In the NOESY spectrum (**Figure 37**), the proton signals at $\delta_{\rm H}$ 3.78 (3'-OMe) was correlated to proton signals at $\delta_{\rm H}$ 6.65 (H-2') and the proton signals at $\delta_{\rm H}$ 3.77 (3-OMe) showed the correlation peak with H-2. These observations supported the locations of the two methoxyl groups at C-3' and C-3, respectively. From the HMBC spectrum (**Figure 38**), the methoxyl signal at $\delta_{\rm H}$ 3.78 (3'-OMe) had a correlation peak with C-3', and the other methoxyl signal at $\delta_{\rm H}$ 3.77 (3-OMe) had a correlation peak with C-3.

By comparing ¹H, ¹³C-NMR and MS data of this compound with previously published data (Sritularak *et al.*, 2011), DPR-5 was identified as 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl [**25**].

4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl [25]

Table 9 1 H NMR 300 MHz and 13 C NMR 75 MHz spectral data of compound DPR-5(in acetone- d_6) and 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl (in acetone- d_6)

Position	Compound DPR-5		4,5,4´-trihydroxy-3,3´-dimethoxybibenzylª	
POSICION	$\delta_{_{ m H}}$ (mult., J in Hz)	δ	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ _c
1		131.7		130.4
2	6.25 (<i>d</i> , 2.0)	103.7	6.21 (d, 2.0)	103.5
3		148.0	<u> </u>	146.6
4	-	132.8	<u> </u>	133.7
5		144.9	-	143.7
6	6.30 (<i>d</i> , 2.0)	108.7	6.42 (d, 2.0)	108.6
α	2.74 (m)	37.9	2.75 (m)	38.2
α΄	2.74 (m)	37.5	2.78 (m	37.7
1′	จุฬาลงกรณ์ Cuu ALONCK	133.5	ยาลัย	133.8
2´	6.65 (<i>d</i> , 2.0)	112.1	6.60 (<i>d</i> , 2.0)	111.2
3′	-	147.2	-	146.2
4′	-	144.1	-	143.7
5′	6.69 (<i>d</i> , 8.0)	114.5	6.80 (<i>d</i> , 8.0)	114.1
6′	6.59 (<i>dd</i> , 8.0, 2.0)	120.6	6.65 (<i>dd</i> , 8.0, 2.0)	121.0
3´-OMe	3.78 (<i>s</i>)	54.9	3.83 (s)	55.9
3-OMe	3.77 (<i>s</i>)	55.1	3.80 (s)	56.1

^a(Sritularak *et al.*, 2011)

1.6 Structure determination of compound DPR-6

Compound DPR 6 was obtained as a red amorphous solid. The HR-ESI-MS of this compound (**Figure 39**) showed an $[M+Na]^+$ peak at m/z 299.0900 (calcd. for $C_{15}H_{16}O_5Na$; 299.0895), suggesting the molecular formula $C_{15}H_{16}O_5$.

Comparing the ¹H-NMR spectrum of DPR-6 with DPR-1, DPR-4 and DPR-5, it was found that the aromatic proton peaks of this compound were quite similar to those of DPR-1, DPR-4 and DPR-5. It was suggestive that DPR-6 had a bibenzyl skeleton. The ¹H-NMR spectrum of compound DPR-6 (**Figure 40** and **Table 10**) exhibited signals of four methylene protons at $\delta_{\rm H}$ 2.71 (4H, *m*, H₂- α , H₂- α '), a methoxy group at $\delta_{\rm H}$ 3.78 (3H, *s*, 3-OMe) and five aromatic protons at $\delta_{\rm H}$ 6.36 (1H, *br s*, H-2), 6.37 (1H, *br s*, H-6), 6.55 (1H, *dd*, *J*=8.0, 2.0 Hz H-6'), 6.71 (1H, *br s*, H-2') and 6.73 (1H, *d*, *J*=8.0 Hz, H-5').

The ¹³C-NMR spectrum (**Figure 41** and **Table 10**) showed fifteen carbon signals belonging to one methoxyl group at δ_c 55.5 (3-OMe), two methylene carbons at δ_c 37.4 (C- α ') and 37.9 (C- α), five methane carbons at δ_c 103.7 (C-2), 108.8 (C-6), 115.0 (C-5'), 115.5 (C-2'), and 119.6 (C-6'), and seven quaternary carbons at δ_c 131.8 (C-4), 132.9 (C-1), 133.8 (C-1'), 145.2 (C-5), 143.0 (C-4'), 144.8 (C-3') and 147.9 (C-3).

In the NOESY spectrum (Figure 42), the proton at $\delta_{\rm H}$ 3.78 (3-OMe) showed correlation peak with H-2 signal at $\delta_{\rm H}$ 6.36. From HMBC spectrum (Figure 43), the methoxyl signal at $\delta_{\rm H}$ 3.78 (3-OMe) had a correlation peak with C-3, confirming the location of methoxyl group at C-3.

Based on the previous spectral evidence and comparing 1 H, 13 C-NMR and MS data of this compound with previously published data (Li *et al.*, 2009b), DPR-6 was identified as dendrocandin E [**37**].

Dendrocandin E [37]

Table 10 ¹H NMR 300 MHz and ¹³C NMR 75 MHz spectral data of compound DPR-6 (in acetone- d_6) and dendrocandin E (in acetone- d_6)

Position	Compound DPR-6		Dendrocandin E ^a	
1 Osition	$\delta_{_{ m H}}$ (mult., J in Hz)	δ _c	$\delta_{_{ m H}}$ (mult., J in Hz)	δ_{c}
1		132.9		134.3
2	6.36 (br s)	103.7	6.22 (<i>d</i> , 1.5)	105.1
3		147.9	<u> </u>	149.4
4	-	131.8	<u> </u>	133.1
5		145.2	-	146.3
6	6.37 (br s)	108.8	6.17 (<i>d</i> , 1.5)	109.9
α	2.71 (s)	37.9	2.62 (s)	39.3
α΄	2.71 (s)	37.4	2.62 (<i>s</i>)	38.7
1′	CHULALONGKO	133.8	VERSITY	135.0
2´	6.71 (br s)	115.5	6.52 (<i>d</i> , 2.0)	116.7
3′	-	144.8	-	145.9
4′	-	143.0	-	144.2
5′	6.73 (d, 8.0)	115.0	6.58 (<i>d</i> , 8.0)	116.2
6΄	6.55 (<i>dd</i> , 8.0, 2.0)	119.6	6.41 (<i>dd</i> , 8.0, 2.0)	120.8
3-OMe	3.78 (s)	55.5	3.70 (<i>s</i>)	56.5

^a(Li *et al.*, 2009b)

1.7 Structure determination of compound DPR-7

Compound DPR-7 was isolated as a white powder. Its HR-ESI-MS (**Figure 44**) showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 511.3497 (calcd. for $C_{30}H_{48}O_5Na$; 511.3399), suggesting the molecular formula $C_{30}H_{48}O_5$.

The ¹H-NMR spectrum (**Figure 45** and **Table 11**) showed an olefinic proton signal at $\delta_{\rm H}$ 5.24 (*br s*, H-12), four methine proton signals at $\delta_{\rm H}$ 2.25 (*d*, *J*=11.3 Hz, H-18), 3.30 (*d*, *J*=10.5 Hz, H-23), 3.40 (*d*, *J*=9.5 Hz, H-3) and 3.72 (*br t*, H-2), four tertiary methyl groups at $\delta_{\rm H}$ 0.74 (*s*, H-24), 0.84 (*s*, H-26), 0.90 (*d*, *J*=6.5 Hz, H-29) and 1.05 (*s*, H-25), two secondary methyl groups at $\delta_{\rm H}$ 0.98 (*br s*, H-30) and 1.14 (*s*, H-27) and overlapped signals at $\delta_{\rm H}$ 1.2 - 2.1 (H-1, H-6, H-7, H-11, H-16, H-18, H-21 and H-22) suggesting an ursane-type triterpenoid.

The ¹³C-NMR spectrum (**Figure 46** and **Table 11**) revealed thirty carbon signals including a carboxylic carbon at δ_c 177.7 (C-28), two olefinic carbon signals at δ_c 125.2 (C-12) and 138.5 (C-13), two oxygenated methine carbon signals at δ_c 68.1 (C-2) and 77.6 (C-3), a hydroxymethylene signal at 66.3 (C-23) and six methyl signals at 13.0 (C-24), 16.7 (C-29), 16.8 (C-25), 16.9 (C-26), 20.6 (C-30) and 23.1 (C-27). These spectral data suggested that compound DPR-7 was an ursane-28-oic-acid.

From the HMBC spectrum (**Figure 47**), the oxygenated methylene protons at $\delta_{\rm H}$ 3.30 (*d*, *J*=10.5 Hz, H-23) had correlation peaks with C-3 ($\delta_{\rm C}$ = 77.6), C-4 ($\delta_{\rm C}$ = 42.5) and C-5 ($\delta_{\rm C}$ = 47.5), presenting that one hydroxyl was linked at C-23. Furthermore, the HMBC correlations from the H-2 ($\delta_{\rm H}$ = 3.72) to C-1 ($\delta_{\rm C}$ = 46.7), C-3 ($\delta_{\rm C}$ =77.6) and from H-3 ($\delta_{\rm H}$ = 3.40) to C-2 ($\delta_{\rm C}$ = 68.1) and C-4 ($\delta_{\rm C}$ = 42.5) confirmed the location of two hydroxyl groups at C-2 and C-3.

Based on the ¹H- and ¹³C-NMR data and comparing with previously reported data, compound DPR-7 was identified as asiatic acid [**309**]. Asiatic acid is a triterpenoid which was previously reported from *Centella asiatica* (Monti *et al.*, 2005). This compound has been found in *Oenothera cheiranthifolia* (Nakanishi *et al.*, 2007), *Mucuna birdwoodaina* (Ding *et al.*, 1991), *Schefflera octophylla* (Sung *et al.*, 1992),

Symplocos lancifolia (Acebey-Castellon *et al.*, 2011), *Actinidia arguta* (Jang *et al.*, 2008), *Combretum nelsonii* (Masoko *et al.*, 2008) and *Melastoma malabathricum* (Wong *et al.*, 2012). This compound was found at the first time in *Dendrobium* plants.

Position	Compound DPR-7		Asiatic acio	dª
	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ_{c}	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ _c
1	1.2 - 2.1	46.7	*	47.6
2	3.72 (br t)	68.1	3.67 (<i>d</i> , 4.0)	69.7
3	3.40 (<i>d</i> , 9.5)	77.6	3.33 (<i>d</i> , 9.5)	78.3
4	-	42.5		44.1
5	//	47.5	<u> </u>	48.2
6	1.2 - 2.1	17.8	*	19.1
7	1.2 - 2.1	32.6	*	33.7
8	_	39.5	<u> </u>	40.8
9	-	47.3	-	47.6
10	- 8	37.7		39.0
11	1.2 - 2.1	23.2	*	24.5
12	5.24 (br s)	125.2	ยาลัย 5.23 (br s)	126.7
13	CHULALONG	138.5	VERSITY _	139.8
14	-	42.1	-	43.4
15	-	27.9	-	29.2

Table 11 1 H NMR 300 MHz and 13 C NMR 75 MHz spectral data of compound DPR-7 (in CD₃OD) and Asiatic acid (in CD₃OD)

^a(Monti *et al.*, 2005) * = Not reported

Position	Compound DPR-7		Asiatic acio	J ^a
	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ_{c}	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ_{c}
16	1.2 - 2.1	24.1	*	25.3
17	-	47.4	-	48.0
18	2.25 (d, 11.3)	53.0	2.20 (d, 11.3)	53.5
19	-	39.0	-	40.4
20	-	38.9	-	40.4
21	1.2 - 2.1	30.4	*	31.8
22	1.2 - 2.1	36.7	*	38.1
23	3.30 (d, 10.5)	66.3	3.26 (d, 10.5)	66.4
24	0.74 (s)	13.0	0.69 (s)	13.9
25	1.05 (s)	16.8	1.04 (s)	17.7
26	0.84 (<i>s</i>)	16.9	0.84 (<i>s</i>)	17.9
27	1.14 (<i>s</i>)	23.1	1.13 (s)	24.2
28	จุฬาลงกร ค	177.7	ยาลย	181.6
29	0.90 (<i>d</i> , 6.5)	16.7	0.89 (<i>d</i> , 6.5)	17.6
30	0.98 (br s)	20.6	0.96 (br s)	21.6

Table 11 1 H NMR 300 MHz and 13 C NMR 75 MHz spectral data of compound DPR-7 (in CD₃OD) and Asiatic acid (in CD₃OD) (continued)

^a{Monti, 2005 #122} * = Not reported

2. Free radical scavenging activities

The compounds from *D. parishii* were evaluated at a concentration of 50 µg/mL in assays for free radical scavenging activity including DPPH, ORAC and deoxyribose degradation assays. Results from the DPPH assay (**Table 12**) and the deoxyribose degradation assay (**Table 13**) are reported as %inhibition. In the ORAC assay, the results were determined as micromole Trolox[®] equivalent (TE) per gram (µmol TE/g).

As shown in **Table 12**, seven pure compounds were tested in the DPPH assay. The new compounds (4,3',4'-trihydroxy-3,5-dimethoxybibenzyl [DPR-1, **307**] and (–)dendroparishiol [DPR-2, **308**]) exhibited 9.91 \pm 0.31 and 40.59 \pm 1.61 %inhibition of DPPH radical, respectively. The other five compounds (flavanthrinin [DPR-3, **119**], moscatilin [DPR-4, **21**], 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl [DPR-5, **25**], dendrocandin E [DPR-6, **37**] and asiatic acid [DPR-7, **309**]) will able to inhibit DPPH radical 18.86 \pm 1.13, 25.65 \pm 0.56, 9.41 \pm 0.71, 27.73 \pm 0.64 and 4.00 \pm 0.89%, respectively.

In the deoxyribose degradation assay (**Table 12**), among the isolated compounds, (-)-dendroparishiol [DPR-2, **308**] manifested the highest %inhibition of hydroxyl radical ($62.66 \pm 0.32\%$), but the activity was still less than the positive control (Trolox[®], 90.45 ± 0.54%). The other six compounds (4,3',4'-trihydroxy-3,5-dimethoxy-bibenzyl [DPR-1, **307**], flavanthrinin [DPR-3, **119**], moscatilin [DPR-4, **21**], 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl [DPR-5, **25**], dendrocandin E [DPR-6, **37**] and asiatic acid [DPR-7, **309**]) inhibited hydroxyl radical by 32.58 ± 0.87 , 17.99 ± 0.38 , 34.84 ± 1.51 , 21.92 ± 0.66 , 24.96 ± 1.02 and $38.52 \pm 1.41\%$, respectively.

Compounds	%Inhibition		
	DPPH radical	Hydroxyl radical	
4,3',4'-Trihydroxy-3,5-	9.91 ± 0.31	32.58 ± 0.87	
dimethoxybibenzyl [DPR-1, 307]			
(–)-Dendroparishiol [DPR-2, 308]	40.59 ± 1.61	62.66 ± 0.32	
Flavanthrinin [DPR-3, 119]	18.86 ± 1.13	17.99 ± 0.38	
Moscatilin [DPR-4, 21]	25.65 ± 0.56	34.84 ± 1.51	
4,5,4'-Trihydroxy-3,3'-	9.41 ± 0.71	21.92 ± 0.66	
dimethoxybibenzyl [DPR-5, 25]			
Dendrocandin E [DPR-6, 37]	27.73 ± 0.64	24.96 ± 1.02	
Asiatic acid [DPR-7, 309]	4.00 ± 0.89	38.52 ± 1.41	
Positive control (Trolox®)		90.45 ± 0.54	

Table	12 Percentage	of DPPH and	hydroxyl	radical	inhibition	by compour	nds DPR-1 –
	DPR-7						

For ORAC assay, as shown in **Table 13**, among the isolated compounds, (-)-dendroparishiol [DPR-2, **308**] exhibited the strongest peroxyl radical reduction equivalent to $510.93 \pm 14.27 \mu mol Trolox^{\circ}/g$. The other six pure compounds (4,3',4'-trihydroxy-3,5-dimethoxybibenzyl [DPR-1, **307**], flavanthrinin [DPR-3, **119**], moscatilin [DPR-4, **21**], 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl [DPR-5, **25**], dendrocandin E [DPR-6, **37**] and asiatic acid [DPR-7, **309**]) were able to reduce peroxyl radical equivalent to 407.95 ± 22.74 , 441.79 ± 18.59 , 434.26 ± 16.19 , 455.54 ± 11.37 , 446.65 ± 25.56 and $259.11 \pm 10.42 \mu mol Trolox^{\circ}/g$, respectively.

EN MARCE

Compounds	µmol TE/g
	Peroxyl radical
4,3´,4´-Trihydroxy-3,5-	407.95 ± 22.74
dimethoxybibenzyl [DPR-1, 307]	
(-)-Dendroparishiol [DPR-2, 308]	510.93 ± 14.27
Flavanthrinin [DPR-3, 119]	441.79 ± 18.59
Moscatilin [DPR-4, 21]	434.26 ± 16.19
4,5,4'-Trihydroxy-3,3'-	455.54 ± 11.37
dimethoxybibenzyl [DPR-5, 25]	
Dendrocandin E [DPR-6, 37]	446.65 ± 25.56
Asiatic acid [DPR-7, 309]	259.11 ± 10.42

Table 13 Trolox® equivalent (TE) (in micromole per gram) of compoundsDPR-1 – DPR-7 in deoxyribose degradation assay

The inhibitory effects of isolated compounds on intracellular ROS production in RAW 264.7 murine macrophage cells induced by H_2O_2 are shown in **Table 14**. (–)dendroparishiol [DPR-2, **308**] also showed the strongest %ROS inhibition with 66.67 ± 0.62% similar to the results in the DPPH, deoxyribose degradation and ORAC assays. Therefore, (–)-dendroparishiol was selected for further study for antioxidant activity in RAW 264.7 murine macrophage cells at non-toxic concentrations (12.5 – 50.0 µg/mL). As shown in **Table 15**, (–)-dendroparishiol can reduce ROS production in a dosedependent manner in H_2O_2 treated-RAW 264.7 cells. Furthermore, (–)-dendroparishiol at a concentration of 50 µg/ml showed more than 50% reduction of ROS production in cells (302.00 ± 9.00) when compared with 1 µg/mL of H_2O_2 treated group (1023.00 ± 7.55).

Table 14 Inhibitory effects on ROS production in RAW 264.7 murine macrophage cellsinduced by H_2O_2 of isolated compounds from *D. parishii*

Compounds	%ROS inhibition
4,3′,4′-Trihydroxy-3,5-dimethoxybibenzyl	
[DPR-1, 307]	29.87 ± 1.16
(–)-Dendroparishiol [DPR-2, 308]	66.67 ± 0.62
Flavanthrinin [DPR-3, 119]	23.92 ± 1.27
Moscatilin [DPR-4, 21]	30.85 ± 0.89
4,5,4'-Trihydroxy-3,3'-dimethoxybibenzyl [DPR-5, 25]	22.68 ± 1.24
Dendrocandin E [DPR-6, 37]	37.60 ± 1.00
Asiatic acid [DPR-7, 309]	40.90 ± 1.55

Table 15 Inhibitory effects on ROS production in RAW 264.7 murine macrophage cellsinduced by H_2O_2 of (–)-dendroparishiol at non-toxic concentrations

Groups	ROS production (AU)
Control	293.67 ± 9.61
H ₂ O ₂ (1 µg/mL) JALONGKORN UNIVE	tSIT ^{1023.00 ± 7.55}
(–)-Dendroparishiol (12.5 μ g/mL) + H ₂ O ₂	877.33 ± 13.32
(–)-Dendroparishiol (25.0 μ g/mL) + H ₂ O ₂	654.67 ± 6.03
(–)-Dendroparishiol (50.0 μ g/mL) + H ₂ O ₂	355.00 ± 12.53
(–)-Dendroparishiol (50.0 µg/mL)	302.00 ± 9.00

The effects of seven isolated compounds on antioxidant enzymes in induced RAW 264.7 cells are shown in **Table 16**. (–)-Dendroparishiol can significantly increase the SOD, GPx and CAT activities in a dose-dependent manner with p < 0.05 in H₂O₂ induced RAW 264.7 cells. Thus, (–)-dendroparishiol exhibited antioxidant activities by reduction the ROS production and enhancing the anti-oxidative enzyme activities in H₂O₂ induced-RAW 264.7 murine macrophage cells.

 Table 16 Effects of compound (–)-dendroparishiol on antioxidant enzymes in induced

 RAW 264.7 macrophage cells

Groups	Antioxidant enzymes		
	SOD (Unit per mg protein)	GPx (nmol min ⁻¹ mg ⁻¹ protein)	CAT (nmol min ⁻¹ mg ⁻¹ protein)
Control	31.52 ± 1.17	92.37 ± 5.13	34.47 ± 2.30
H ₂ O ₂ (1 mM)	$12.77 \pm 0.32^*$	45.67 ± 4.12 [*]	14.43 ± 0.78 [*]
(–)-Dendroparishiol (12.5 μg/mL) + H ₂ O ₂	15.20 ± 0.74 [#]	53.49 ± 4.86 [#]	16.98 ± 0.78 [#]
(–)-Dendroparishiol (25.0 μg/mL) + H ₂ O ₂	21.72 ± 0.14 [#]	61.97 ± 6.14 [#]	19.36 ± 1.35 [#]
(–)-Dendroparishiol (50.0 μg/mL) + H ₂ O ₂	26.56 ± 0.52 [#]	76.58 ± 25.90 [#]	23.60 ± 0.78 [#]
(–)-Dendroparishiol (50.0 μg/mL)	29.90 ± 1.02	99.50 ± 4.73	41.09 ± 3.89

* p < 0.05 indicates significant differences from the control group value.

p < 0.05 indicates significant differences from the H₂O₂ stimulation value.

CHAPTER V CONCLUSION

In this study, the EtOAc extract of Dendrobium parishii Rchb.f. (Orchidaceae) was separated using several chromatographic techniques to give two new compounds i.e. 4,3',4'-trihydroxy-3,5-dimethoxybibenzyl [307] and (-)-dendroparishiol [308] and five known compounds including flavanthrinin [119], moscatilin [21], 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl [25], dendrocandin E [37] and asiatic acid [309]. All the isolated compounds were investigated for their antioxidant activities. The new compound (-)dendroparishiol [308] showed the strongest free radicals (DPPH, peroxyl and hydroxyl radical) reduction when compared with other six compounds. Moreover, (-)dendroparishiol exhibited the strongest %ROS inhibition in H₂O₂-induced RAW 264.7 murine macrophage cells. Thus, (-)-dendroparishiol was further studied for antioxidant activity in H₂O₂-treated RAW 264.7 murine macrophage cells at non-toxic concentrations (12.5 – 50.0 μ g/m. At a concentration of 50 μ g/ml, it could reduce ROS production more than 50% and, in a dose-dependent manner. Furthermore, (-)dendroparishiol could enhance the anti-oxidative enzymes (SOD, GPx and CAT) activities in a dose-dependent manner. The phytochemical data obtained in this study would be useful for the chemotaxonomic study of *Dendrobium* plants. The data on free radical scavenging and antioxidant activities of the isolated compounds would be of interest to the natural product research community.

REFERENCES

- Acebey-Castellon, I. L., Voutquenne-Nazabadioko, L., Doan, T. M. H., Roseau, N., Bouthagane, N., Muhammad, D. and Lavaud, C. (2011). Triterpenoid saponins from *Symplocos lancifolia*. <u>Journal of Natural Products</u> 74(2), 163-168.
- Bi, Z. M., Wang, Z. T. and Xu, L. S. (2004). Chemical constituents of *Dendrobium moniliforme*. <u>Acta Botanica Sinica</u> 46(1), 124-126.
- Chang, C. C., Ku, A. F., Tseng, Y. Y., Yang, W. B., Fang, J. M. and Wong, C. H. (2010). 6,8di-C-glycosyl flavonoids from *Dendrobium huoshanense*. <u>Journal of Natural</u> <u>Products</u> 73(2), 229-232.
- Chang, S. J., Lin, T. H. and Chen, C. C. (2001). Constituents from the stems of *Dendrobium clavatum* var. *aurantiacum*. <u>Journal of Chinese Medicine</u> 12(3), 211-218.
- Chanvorachote, P., Kowitdamrong, A., Ruanghirun, T., Sritularak, B., Mungmee, C. and Likhitwitayawuid, K. (2013). Anti-metastatic activities of bibenzyls from *Dendrobium pulchellum*. <u>Natural Product Communications</u> 8(1), 115-118.
- Chen, C. C., Wu, L. G., Ko, F. N. and Teng, C. M. (1994). Antiplatelet aggregation principles of *Dendrobium loddigesii*. Journal of Natural Products 57(9), 1271-1274.
- Chen, X. J., Mei, W. L., Cai, C. H., Guo, Z. K., Song, X. Q. and Dai, H. F. (2014a). Four new bibenzyl derivatives from *Dendrobium sinense*. <u>Phytochemistry Letters</u> 9(1), 107-112.
- Chen, X. J., Mei, W. L., Zuo, W. J., Zeng, Y. B., Guo, Z. K., Song, X. Q. and Dai, H. F. (2013). A new antibacterial phenanthrenequinone from *Dendrobium sinense*. Journal of Asian Natural Products Research 15(1), 67-70.
- Chen, Y., Liu, Y., Jiang, J., Zhang, Y. and Yin, B. (2008). Dendronone, a new phenanthrenequinone from *Dendrobium cariniferum*. <u>Food Chemistry</u> 111(1), 11-12.

- Chen, Y. G., Li, J. T., Wang, L. Q. and Liu, Y. (2008a). Aromatic compounds from *Dendrobium aphyllum*. <u>Biochemical Systematics and Ecology</u> 36(5-6), 458-460.
- Chen, Y. G., Yu, H. and Liu, Y. (2014b). Chemical constituents from *Dendrobium brymerianum* Rchb. f. <u>Biochemical Systematics and Ecology</u> 57, 175-177.
- Dahmen, J. and Leander, K. (1978). Amotin and amoenin, two sesquiterpenes of the picrotoxane group from *Dendrobium amoenum*. <u>Phytochemistry</u> 17(11), 1949-1952.
- Devasagayam, T. P. A., Tilak, J. C., Boloor, K. K., Sane, K. S., Ghaskadbi, S. S. and Lele, R.D. (2004). Free radicals and antioxidants in human health: Current status and future prospects. Journal of the Association of Physicians of India 52, 794-804.
- Dewick, P. M. (2002). The shikimate pathway: Aromatic amino acids and phenylpropanoids. *Medicinal Natural Products*. Nottingham: Wiley.
- Ding, Y., Kinjo, J., Yang, C. R. and Nohara, T. (1991). Triterpenes from *Mucuna* birdwoodiana. <u>Phytochemistry</u> 30(11), 3703-3707.
- Fan, C. Q., Wang, W., Wang, Y. P., Qin, G. W. and Zhao, W. M. (2001). Chemical constituents from *Dendrobium densiflorum*. <u>Phytochemistry</u> 57(8), 1255-1258.
- Fan, W. W., Xu, F. Q., Dong, F. W., Li, X. N., Li, Y., Liu, Y. Q. and Hu, J. M. (2013). Dendrowardol C, a novel sesquiterpenoid from *Dendrobium wardianum* Warner. <u>Natural Products and Bioprospecting</u> 3(3), 89-92.
- Fang, H., Hu, X., Wang, M., Wan, W., Yang, Q., Sun, X. and Wei, X. (2015). Anti-osmotic and antioxidant activities of gigantol from *Dendrobium aurantiacum* var. *denneanum* against cataractogenesis in galactosemic rats. <u>Journal of</u> <u>Ethnopharmacology</u> 172, 238-246.
- Fraunberger, E. A., Scola, G., Laliberte, V. L., Duong, A. and Andreazza, A. C. (2016). Redox modulations, antioxidants, and neuropsychiatric disorders. <u>Oxidative</u> <u>Medicine and Cellular Longevity</u>. Advanced online publication, DOI: 10.1155/ 2016/4729192.

- Guo, X. Y., Wang, J., Wang, N. L., Kitanaka, S. and Yao, X. S. (2007). 9, 10-Dihydrophenanthrene derivatives from *Pholidota yunnanensis* and scavenging activity on DPPH free radical. <u>Journal of Asian Natural Products Research</u> 9(2), 165-174.
- Forest herbarium, forest and plant conservation research office, department of national parks, wildlife and plant conservation. (2014). *Thai plant names Tem Smitinand, revised* edition 2014. In (pp. 185-191). Bangkok: National Buddhist Department Printing.
- Gutteridge, J. M. C. and Halliwell, B. (1988). The deoxyribose assay: An assay both for 'free' hydroxyl radical and for site-specific hydroxyl radical production. <u>Biochemical Journal Letters</u> 253(3), 932-933.
- Honda, C. and Yamaki, M. (2000). Phenanthrenes from *Dendrobium plicatile*. <u>Phytochemistry</u> 53(8), 987-990.
- Hu, J. M., Chen, J. J., Yu, H., Zhao, Y. X. and Zhou, J. (2008a). Five new compounds from *Dendrobium longicornu*. <u>Planta Medica</u> 74(5), 535-539.
- Hu, J. M., Chen, J. J., Yu, H., Zhao, Y. X. and Zhou, J. (2008b). Two novel bibenzyls from Dendrobium trigonopus. Journal of Asian Natural Products Research 10(7-8), 653-657.
- Hu, J. M., Fan, W. W., Dong, F. W., Miao, Z. H. and Zhou, J. (2012). Chemical components of *Dendrobium chrysotoxum*. <u>Chinese Journal of Chemistry</u> 30(6), 1327-1330.
- Hu, J. M., Zhao, Y. X., Miao, Z. H. and Zhou, J. (2009). Chemical components of *Dendrobium polyanthum*. <u>Bulletin of the Korean Chemical Society</u> 30(9), 2098-2100.
- Huang, D. J., Ou, B., Hampsch-Woodill, M., Flanagan, J. and Prior, R. L. (2002). Highthroughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. Journal of Agricultural and Food Chemistry 50(16), 4437-4444.

- Hwang, J. S., Lee, S. A., Hong, S. S., Han, X. H., Lee, C., Kang, S. J. and Hwang, B. Y. (2010). Phenanthrenes from *Dendrobium nobile* and their inhibition of the LPSinduced production of nitric oxide in macrophage RAW 264.7 cells. <u>Bioorganic</u> <u>and Medicinal Chemistry Letters</u> 20(12), 3785-3787.
- Inthongkaew, P., Chatsumpun, N., Supasuteekul, C., Kitisripanya, T., Putalun, W., Likhitwitayawuid, K. and Sritularak, B. (2017). α-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from *Dendrobium formosum*. <u>Revista Brasileira de Farmacognosia</u> 27(4), 480-487.
- Ito, M., Matsuzaki, K., Wang, J., Daikonya, A., Wang, N. L., Yao, X. S. and Kitanaka, S. (2010). New phenanthrenes and stilbenes from *Dendrobium loddigesii*. <u>Chemical and Pharmaceutical Bulletin</u> 58(5), 628-633.
- Jang, D. S., Lee, G. Y., Kim, J., Lee, Y. M., Kim, J. M., Kim, Y. S. and Kim, J. S. (2008). A new pancreatic lipase inhibitor isolated from the roots of *Actinidia arguta*. <u>Archives of Pharmacal Research</u> 31(5), 666-670.
- Jiang, W., Jiang, B., Mantri, N., Wu, Z., Mao, L., Lu, H. and Tao, Z. (2014). Comparative ecophysiological analysis of photosynthesis, biomass allocation, polysaccharide and alkaloid content in three *Dendrobium candidum* cultivars. <u>Plant Omics</u> <u>Journal</u> 7(2), 117-122.
- Kim, J. H., Oh, S. Y., Han, S. B., Uddin, G. M., Kim, C. Y. and Lee, J. K. (2015). Antiinflammatory effects of *Dendrobium nobile* derived phenanthrenes in LPSstimulated murine macrophages. <u>Archives of Pharmacal Research</u> 38(6), 1117-1126.
- Klongkumnuankarn, P., Busaranon, K., Chanvorachote, P., Sritularak, B., Jongbunprasert,
 V. and Likhitwitayawuid, K. (2015). Cytotoxic and antimigratory activities of
 phenolic compounds from *Dendrobium brymerianum*. Evidence-Based
 <u>Complementary and Alternative Medicine</u>. Advanced online publication, DOI:
 10.1155/2015/350410.

- Lam, Y., Ng, T. B., Yao, R. M., Shi, J., Xu, K., Sze, S. C. and Zhang, K. Y. (2015). Evaluation of chemical constituents and important mechanism of pharmacological biology in *Dendrobium* plants. <u>Evidence-Based</u> Complementary and Alternative <u>Medicine</u>. Advanced online publication, DOI: 10.1155/2015/841752.
- Leander, K. and Luning, B. (1968). Studies on Orchidaceae alkaloids VIII: An imidazolium salt from *Dendrobium anosmum* Lindl. and *Dendrobium parishii* Rchb. f. <u>Tretrahedron Letters</u> 9(8), 905-908.
- Li, C. B., Wang, C., Fan, W. W., Dong, F. W., Xu, F. Q., Wan, Q. L. and Zhou, J. (2013). Chemical components of *Dendrobium crepidatum* and their neurite outgrowth enhancing activities. <u>Natural Products and Bioprospecting</u> 3(2), 70-73.
- Li, J. T., Yin, B. L., Liu, Y., Wang, L. Q., & Ye, Y. G. (2009a). Mono-aromatic constituents of *Dendrobium longicornu*. <u>Chemistry of Natural Compounds</u> 45(2), 234-236.
- Li, X. H., Guo, L., Yang, L., Peng, C., He, C. J., Zhou, Q. M. and Zhang, T. M. (2014). Three new neolignan glucosides from the stems of *Dendrobium aurantiacum* var. *denneanum*. <u>Phytochemistry Letters</u> 9(1), 37-40.
- Li, Y., Wang, C. L., Guo, S. X., Yang, J. S. and Xiao, P. G. (2008). Two new compounds from *Dendrobium candidum*. <u>Chemical and Pharmaceutical Bulletin</u> 56(10), 1477-1479.
- Li, Y., Wang, C. L., Wang, Y. J., Guo, S. X., Yang, J. S., Chen, X. M. and Xiao, P. G. (2009b). Three new bibenzyl derivatives from *Dendrobium candidum*. <u>Chemical and</u> <u>Pharmaceutical Bulletin</u> 57(2), 218-219.
- Li, Y. P., Qing, C., Fang, T. T., Liu, Y. and Chen, Y. G. (2009c). Chemical constituents of *Dendrobium chrysotoxum*. <u>Chemistry of Natural Compounds</u> 45(3), 414-416.
- Likhitwitayawuid, K., Sornsute, A., Sritularak, B. and Ploypradith, P. (2006). Chemical transformations of oxyresveratrol (trans-2,4,3',5'-tetrahydroxystilbene) into a potent tyrosinase inhibitor and a strong cytotoxic agent. <u>Bioorganic and Medicinal Chemistry Letters</u> 16(21), 5650-5653.

- Limpanit, R., Chuanasa, T., Likhitwitayawuid, K., Jongbunprasert, V. and Sritularak, B. (2016). α -Glucosidase inhibitors from *Dendrobium tortile*. <u>Records of Natural</u> <u>Products</u> 10(5), 609-616.
- Lin, T. H., Chang, S. J., Chen, C. C., Wang, J. P. and Tsao, L. T. (2001). Two phenanthraquinones from *Dendrobium moniliforme*. <u>Journal of Natural</u> <u>Products</u> 64(8), 1084-1086.
- Liu, Y., Jiang, J. H., Yin, B. L. and Chen, Y. G. (2009a). Chemical constituents of *Dendrobium cariniferum*. <u>Chemistry of Natural Compounds</u> 45(2), 237-238.
- Liu, Y., Jiang, J. H., Zhang, Y. and Chen, Y. G. (2009b). Chemical constituents of *Dendrobium aurantiacum* var. *denneanum*. <u>Chemistry of Natural Compounds</u> 45(4), 525-527.
- Lobo, V., Patil, A., Phatak, A. and Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. <u>Pharmacognosy Reviews</u> 4(8), 118-126.
- Lu, Y., Kuang, M., Hu, G. P., Wu, R. B., Wang, J., Liu, L. and Lin, Y. C. (2014). Loddigesiinols G-J: Alpha-glucosidase inhibitors from *Dendrobium loddigesii*. <u>Molecules</u> 19(6), 8544-8555.
- Ma, G. X., Wang, T. S., Yin, L., Pan, Y., Xu, G. J. and Xu, L. S. (1998). Studies on chemical constituents of *Dendrobium chryseum*. Journal of Chinese Pharmaceutical <u>Sciences</u> 7(1), 52-54.
- Majumder, P. L. and Chatterjee, S. (1989). Crepidatin, a bibenzyl derivative from the orchid *Dendrobium crepidatum*. <u>Phytochemistry</u> 28(7), 1986-1989.
- Majumder, P. L., Guha, S. and Sen, S. (1999). Bibenzyl derivatives from the orchid *Dendrobium amoenum*. <u>Phytochemistry</u> 52(7), 1365-1369.
- Majumder, P. L. and Pal, S. (1992). Rotundatin, a new 9,10-dihydrophenanthrene derivative from *Dendrobium rotundatum*. <u>Phytochemistry</u> 31(9), 3225-3228.

- Majumder, P. L. and Pal, S. (1993). Cumulatin and tristin, two bibenzyl derivatives from the orchids *Dendrobium cumulatum* and *Bulbophyllum triste*. <u>Phytochemistry</u> 32(6), 1561-1565.
- Majumder, P. L. and Sen, R. C. (1987). Moscatilin, a bibenzyl derivative from the orchid *Dendrobium moscatum*. <u>Phytochemistry</u> 26(7), 2121-2124.
- Masoko, P., Mdee, L. K., Mampuru, L. J. and Eloff, J. N. (2008). Biological activity of two related triterpenes isolated from *Combretum nelsonii* (Combretaceae) leaves. <u>Natural Product Research</u> 22(12), 1074-1084.
- Mittraphab, A., Muangnoi, C., Likhitwitayawuid, K., Rojsitthisak, P. and Sritularak, B. (2016). A new bibenzyl-phenanthrene derivative from *Dendrobium signatum* and its cytotoxic activity. <u>Natural Product Communications</u> 11(5), 657-659.
- Miyazawa, M., Shimamura, H., Nakamura, S. I., Sugiura, W., Kosaka, H. and Kameoka, H. (1999). Moscatilin from *Dendrobium nobile*, a naturally occurring bibenzyl compound with potential antimutagenic activity. <u>Journal of Agricultural and Food Chemistry</u> 47(5), 2163-2167.
- Mohammed, M. T., Kadhim, S. M., Jassimand, A. M. N. and Abbas, S. I. (2015). Free radicals and human health. <u>International Journal of Innovation Sciences and</u> <u>Research</u> 4(6), 218-223.
- Monti, D., Candido, A., Cruz Silva, M. M., Kren, V., Riva, S. and Danieli, B. (2005). Biocatalyzed generation of molecular diversity: Selective modification of the saponin asiaticoside. <u>Advanced Synthesis and Catalysis</u> 347(7-8), 1168-1174.
- Nakanishi, T., Inatomi, Y., Murata, H., Ishida, S. S., Fujino, Y., Miura, K. and Murata, J. (2007). Triterpenes and flavonol glucuronides from *Oenothera cheiranthifolia*. <u>Chemical and Pharmaceutical Bulletin</u> 55(2), 334-336.
- Ng, T. B., Liu, J., Wong, J. H., Ye, X., Wing Sze, S. C., Tong, Y. and Zhang, K. Y. (2012). Review of research on *Dendrobium*, a prized folk medicine. <u>Applied</u> <u>Microbiology and Biotechnology</u> 93(5), 1795-1803.

- Nimse, S. B. and Pal, D. (2015). Free radicals, natural antioxidants, and their reaction mechanisms. <u>RSC Advances</u> 5(35), 27986-28006.
- Pan, H. M., Chen, B., Li, F. and Wang, M. K. (2012). Chemical Constituents of *Dendrobium denneanum*. <u>Chinese Journal of Appplied Environmental Biology</u> 18(3), 378-380.
- Pham-Huy, L. A., He, H. and Pham-Huy, C. (2008). Free radicals, antioxidants in disease and health. <u>International Journal of Biomedical Science</u> 4(2), 89-96.
- Phaniendra, A., Jestadi, D. B. and Periyasamy, L. (2015). Free radicals: Properties, sources, targets, and their implication in various diseases. <u>Indian Journal of Clinical Biochemistry</u> 30(1), 11-26.
- Phechrmeekha, T., Sritularak, B. and Likhitwitayawuid, K. (2012). New phenolic compounds from *Dendrobium capillipes* and *Dendrobium secundum*. Journal of Asian Natural Products Research 14(8), 748-754.
- Qin, X. D., Qu, Y., Ning, L., Liu, J. K. and Fan, S. K. (2011). A new picrotoxane-type sesquiterpene from *Dendrobium findlayanum*. <u>Journal of Asian Natural Products Research</u> 13(11), 1047-1050.
- Rungwichaniwat, P., Sritularak, B. and Likhitwitayawuid, K. (2014). Chemical constituents of *Dendrobium williamsonii*. <u>Pharmacognosy Journal</u> 6(3), 36-41.
- Sanga Sabhasri Research and Development Department, The Botanical Garden Organization. <u>BGO Plant Databases</u>. [Online]. 2011. Available from: http://www.qsbg.org/database/botanic_book%20full%20option/search_detail. asp?botanic_id=1308. [2017, Sep 20]
- Schrader, J. and Bohlmann, J. (2015). *Biotechnology of isoprenoids*. New York: Springer.
- Soh, N. (2006). Recent advances in fluorescent probes for the detection of reactive oxygen species. <u>Analytical and Bioanalytical Chemistry</u> 386(3), 532-543.
- Sritularak, B., Anuwat, M. and Likhitwitayawuid, K. (2011a). A new phenanthrenequinone from *Dendrobium draconis*. Journal of Asian Natural Products Research 13(3), 251-255.

- Sritularak, B., Duangrak, N. and Likhitwitayawuid, K. (2011b). A new bibenzyl from *Dendrobium secundum*. <u>Zeitschrift für Naturforschung</u> 66c(5-6), 205-208.
- Sritularak, B. and Likhitwitayawuid, K. (2009). New bisbibenzyls from *Dendrobium falconeri*. <u>Helvetica Chimica Acta</u> 92(4), 740-744.
- Sukphan, P., Sritularak, B., Mekboonsonglarp, W., Lipipun, V. and Likhitwitayawuid, K. (2014). Chemical constituents of *Dendrobium venustum* and their antimalarial and anti-herpetic properties. <u>Natural Product Communications</u> 9(6), 825-827.
- Sun, J., Zhang, F., Yang, M., Zhang, J., Chen, L., Zhan, R. and Chen, Y. (2014). Isolation of alpha-glucosidase inhibitors including a new flavonol glycoside from *Dendrobium devonianum*. <u>Natural Product Research</u> 28(21), 1900-1905.
- Sung, T. V., Lavaud, C., Porzel, A., Steglich, W. and Adam, G. (1992). Triterpenoids and their glycosides from the bark of *Schefflera octophylla*. <u>Phytochemistry</u> 31(1), 227-231.
- Talapatra, B., Das, A. K. and Talapatra, S. K. (1989). Defuscin, a new phenolic ester from Dendrobium fuscescens: Conformation of shikimic acid. <u>Phytochemistry</u> 28(1), 290-292.
- Tanagornmeatar, K., Chaotham, C., Sritularak, B., Likhitwitayawuid, K. and Chanvorachote, P. (2014). Cytotoxic and anti-metastatic activities of phenolic compounds from *Dendrobium ellipsophyllum*. <u>Anticancer Research</u> 34(11), 6573-6580.
- Teixeira da Silva, J. A., Hossain, M. M., Sharma, M., Dobránszki, J., Cardoso, J. C. and Zeng, S. (2017a). Acclimatization of in vitro-derived *Dendrobium*. <u>Horticultural</u> <u>Plant Journal</u> 3(3), 110-124.
- Teixeira da Silva, J. A. and Ng, T. B. (2017b). The medicinal and pharmaceutical importance of *Dendrobium* species. <u>Applied Microbiology</u> and <u>Biotechnology</u> 101(6), 2227-2239.

- Thanan, R., Oikawa, S., Hiraku, Y., Ohnishi, S., Ma, N., Pinlaor, S. and Murata, M. (2014). Oxidative stress and its significant roles in neurodegenerative diseases and cancer. <u>International Journal of Molecular Sciences</u> 16(1), 193-217.
- Tsopmo, A., Awah, F. M. and Kuete, V. (2013). Lignans and stilbenes from African medicinal plants (Medicinal Plant Research in Africa: Pharmacology and Chemistry) Atlanta: Elsevier, 435-478.
- Veerraju, P., Rao, N. S. P., Rao, L. J., Rao, K. V. J. and Rao, P. R. M. (1989). Amoenumin, A 9, 10-dihydro-5H-phenanthro-(4,5-b,c,d)-pyran from *Dendrobium amoenum*. <u>Phytochemistry</u> 28(3), 950-951.
- Wang, H. and Zhao, T. F. (1985). Dendrobine and 3-hydroxy-3-oxodendrobine from *Dendrobium nobile*. Journal of Natural Products 48(5), 796-801.
- Wang, L., Zhang, C. F., Wang, Z. T., Zhang, M., & Xu, L. S. (2009). Five new compounds from *Dendrobium crystallinum*. Journal of Asian Natural Products Research 11(11), 903-911.
- Wang, Q., Sun, P., Li, G., Zhu, K., Wang, C. and Zhao, X. (2014). Inhibitory effects of *Dendrobium candidum* Wall ex Lindl. on azoxymethane- and dextran sulfate sodium-induced colon carcinogenesis in C57BL/6 mice. <u>Oncology Letters</u> 7(2), 493-498.
- Weydert, C. J. and Cullen, J. J. (2010). Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. <u>Nature Protocols</u> 5(1), 51-66.
- Wong, K. C., Hag Ali, D. M. and Boey, P. L. (2012). Chemical constituents and antibacterial activity of *Melastoma malabathricum* L. <u>Natural Product Research</u> 26(7), 609-618.
- Xiong, L., Cao, Z. X., Peng, C., Li, X. H., Xie, X. F., Zhang, T. M. and Guo, L. (2013). Phenolic glucosides from *Dendrobium aurantiacum* var. *denneanum* and their bioactivities. <u>Molecules</u> 18(6), 6153-6160.

- Xu, F. Q., Xu, F. C., Hou, B., Fan, W. W., Zi, C. T., Li, Y. and Hu, J. M. (2014). Cytotoxic bibenzyl dimers from the stems of *Dendrobium fimbriatum* Hook. <u>Bioorganic</u> <u>and Medicinal Chemistry Letters</u> 24(22), 5268-5273.
- Yamaki, M. and Honda, C. (1996). The stilbenoids from *Dendrobium plicatile*. <u>Phytochemistry</u> 43(1), 207-208.
- Yang, D., Liu, L. Y., Cheng, Z. Q., Xu, F. Q., Fan, W. W., Zi, C. T. and Hu, J. M. (2015). Five new phenolic compounds from *Dendrobium aphyllum*. <u>Fitoterapia</u> 100, 11-18.
- Yang, H., Chou, G. X., Wang, Z. T., Guo, Y. W., Hu, Z. B. and Xu, L. S. (2004). Two new compounds from *Dendrobium chrysotoxum*. <u>Helvetica Chimica Acta</u> 87(2), 394-399.
- Yang, H. K., Sung, S. H. and C., K. Y. (2007a). Antifibrotic phenanthrenes of *Dendrobium nobile* stems. <u>Journal of Natural Products</u> 70(12), 1925–1929.
- Yang, L., Han, H., Nakamura, N., Hattori, M., Wang, Z. and Xu, L. (2007b). Bio-guided isolation of antioxidants from the stems of *Dendrobium aurantiacum* var. *denneanum*. <u>Phytotherapy Research</u> 21(7), 696-698.
- Yang, L., Qin, L. H., Bligh, S. W., Bashall, A., Zhang, C. F., Zhang, M. and Xu, L. S. (2006a).
 A new phenanthrene with a spirolactone from *Dendrobium chrysanthum* and its anti-inflammatory activities. <u>Bioorganic and Medicinal Chemistry</u> 14(10), 3496-3501.
- Yang, L., Wang, Z. T. and Xu, L. S. (2006b). Phenols and a triterpene from *Dendrobium* aurantiacum var. denneanum (Orchidaceae). <u>Biochemical Systematics and</u> <u>Ecology</u> 34(8), 658-660.
- Yang, M., Chen, L. J., Zhang, Y. and Chen, Y. G. (2017a). Two new picrotoxane-type sesquiterpenoid lactones from *Dendrobium williamsonii*. <u>Journal of Asian</u> <u>Natural Products Research</u> Advanced online publication, DOI: 10.1080/ 10286020.2017.1394294
- Yang, M., Zhang, Y., Chen, L. and Chen, Y. (2017b). A new (propylphenyl)bibenzyl derivative from *Dendrobium williamsonii*. <u>Natural Product Research</u> 32(14) 1-7.

- Yao, S., Tang, C. P., Li, X. Q. and Ye, Y. (2008). Phochinenins A– F, dimeric 9,10dihydrophenanthrene derivatives, from *Pholidota chinensis*. <u>Helvetica Chimica</u> <u>Acta</u> 91(11), 2122-2129.
- Ye, Q. H., Mei, Y., Yang, P. M., Cheng, L. and Kong, D. Y. (2016). A New 9,10dihydrophenanthrene glycoside from *Dendrobium primulinum*. <u>Chemistry of</u> <u>Natural Compounds</u> 52(3), 381-383.
- Ye, Q. H., Qin, G. W. and Zhao, W. M. (2002a). Immunomodulatory sesquiterpene glycosides from *Dendrobium nobile*. <u>Phytochemistry</u> 61(8), 885-890.
- Ye, Q. H. and Zhao, W. M. (2002b). New alloaromadendrane, cadinene and cyclocopacamphane type sesquiterpene derivatives and bibenzyls from *Dendrobium nobile*. <u>Planta Medica</u> 68(8), 723-729.
- Ye, Q. H., Zhao, W. M. and Qin, G. W. (2004). Lignans from *Dendrobium chrysanthum*. Journal of Asian Natural Products Research 6(1), 39-43.
- Zhang, C. F., Wang, M., Wang, L., Iinuma, M., Zhang, M., Xu, L. S. and Wang, Z. T. (2008a). Chemical constituents of *Dendrobium gratiosissimum* and their cytotoxic activities. <u>Indian Journal of Chemistry</u> 47B, 952-956.
- Zhang, G. N., Zhong, L. Y., Bligh, S. W., Guo, Y. L., Zhang, C. F., Zhang, M. and Xu, L. S.
 (2005). Bi-bicyclic and bi-tricyclic compounds from *Dendrobium thyrsiflorum*.
 <u>Phytochemistry</u> 66(10), 1113-1120.
- Zhang, X., Gao, H., Wang, N. L. and Yao, X. S. (2006). Three new bibenzyl derivatives from *Dendrobium nobile*. <u>Journal of Asian Natural Products Research</u> 8(1-2), 113-118.
- Zhang, X., Liu, H. W., Gao, H., Han, H. Y., Wang, N. L., Wu, H. M. and Wang, Z. (2007a). Nine new sesquiterpenes from *Dendrobium nobile*. <u>Helvetica Chimica Acta</u> 90(12), 2386-2394.
- Zhang, X., Tu, F. J., Yu, H. Y., Wang, N. L., Wang, Z. and Yao, X. S. (2008b). Copacamphane, picrotoxane and cyclocopacamphane sesquiterpenes from *Dendrobium nobile*. <u>Chemical and Pharmaceutical Bulletin</u> 56(6), 854-857.

- Zhang, X., Xu, J. K., Wang, J., Wang, N. L., Kurihara, H., Kitanaka, S. and Yao, X. S. (2007b). Bioactive bibenzyl derivatives and fluorenones from *Dendrobium nobile*. Journal of Natural Products 70(1), 24-28.
- Zhang, X., Xu, J. K., Wang, N. L., Kurihara, H. and Yao, X. S. (2008c). Antioxidant phenanthrenes and lignans from *Dendrobium nobile*. <u>Journal of Chinese</u> <u>Pharmaceutical Sciences</u> 17, 314-318.
- Zhao, C. S., Liu, Q. F., Halaweish, F., Shao, B. P., Ye, Y. Q. and Zhao, W. M. (2003). Copacamphane, picrotoxane, and alloaromadendrane sesquiterpene glycosides and phenolic glycosides from *Dendrobium moniliforme*. Journal of <u>Natural Products</u> 66(8), 1140-1143.
- Zhao, G. Y., Deng, B. W., Zhang, C. Y., Cui, Y. D., Bi, J. Y. and Zhang, G. G. (2018). New phenanthrene and 9, 10-dihydrophenanthrene derivatives from the stems of *Dendrobium officinale* with their cytotoxic activities. <u>Journal of Natural</u> <u>Medicines</u> 72(1), 246-251.
- Zhao, N., Yang, G., Zhang, Y., Chen, L. and Chen, Y. (2016). A new 9,10dihydrophenanthrene from *Dendrobium moniliforme*. <u>Natural Product</u> <u>Research</u> 30(2), 174-179.
- Zhao, W. M., Ye, Q. H., Tan, X. J., Jiang, H. L., Li, X. Y., Chen, K. X. and Kinghorn, A. D. (2001). Three new sesquiterpene glycosides from *Dendrobium nobile* with immunomodulatory activity. *Journal of Natural Products* 64(9), 1196-1200.
- Zhitao, N., Shuying, Z., Jiajia, P., Ludan, L., Jing, S. and Xiaoyu, D. (2017). Comparative analysis of *Dendrobium plastomes* and utility of plastomic mutational hotspots. <u>Scientific Reports</u> 7(1), 1-11.
- Zhou, X. M., Zhang, B., Chen, G. Y., Han, C. R., Jiang, K. C., Luo, M. Y. and Lin, S. D. (2018). Dendrocoumarin: a new benzocoumarin derivative from the stem of *Dendrobium nobile*. <u>Natural Product Research</u>, Advanced online publication, DOI:10.1080/14786419.2017.1419241.

- Zhou, X. M., Zheng, C. J., Wu, J. T., Chen, G. Y., Chen, J. and Sun, C. G. (2016). Five new lactone derivatives from the stems of *Dendrobium nobile*. <u>Fitoterapia</u> 115, 96-100.
- Zhou, X. M., Zheng, C. J., Wu, J. T., Chen, G. Y., Zhang, B. and Sun, C. G. (2017). A new phenolic glycoside from the stem of *Dendrobium nobile*. <u>Natural Product</u> <u>Research</u> 31(9), 1042-1046.

Figure 7 Infrared spectrum of compound DPR-1

Figure 9 ¹H-NMR (300 MHz) spectrum of compound DPR-1 (in acetone- d_6)

Figure 10 13 C-NMR (75 MHz) spectrum of compound DPR-1 (in acetone- d_6)

Figure 11 HSQC spectrum of compound DPR-1 (in acetone- d_6)

Figure 12 NOESY spectrum of compound DPR-1 (in acetone- d_6)

Figure 13 HMBC spectrum of compound DPR-1 (in acetone- d_6)

Figure 15 Infrared spectrum of compound DPR-2

Figure 17 1 H-NMR (500 MHz) spectrum of compound DPR-2 (in CD₃OD)

Figure 18 13 C-NMR (125 MHz) spectrum of compound DPR-2 (in CD₃OD)

Figure 19 HSQC spectrum of compound DPR-2 (in CD_3OD)

Figure 21 HMBC spectrum of compound DPR-2 (in CD₃OD) (continued)

Figure 22 NOESY spectrum of compound DPR-2 (in CD₃OD)

Figure 23 Mass spectrum of compound DPR-3

Figure 25 13 C-NMR (75 MHz) spectrum of compound DPR-3 (in acetone- d_6)

Figure 27 NOESY spectrum of compound DPR-3 (in acetone- d_6)

Acquisition Parameter Set Corrector Fill Set Pulsar Pull Set Pulsar Push Set Reflector Set Flight Tube Set Detector TOF 79 V 406 V 388 V 1300 V 9000 V 1910 V lon Polarity Capillary Exit Hexapole RF Skimmer 1 Hexapole 1 Positive 120.0 V 150.0 V 45.0 V 24.3 V Source Type Scan Range Scan Begin Scan End ESI n/a 50 m/z 3000 m/z Intens. x10⁵ +MS, 0.6min #(37) 327.1219 1.5 1.0 631.2593 0.5 0.0 300 100 200 400 500 600 m/z

Figure 29 Mass spectrum of compound DPR-4

Figure 31 ¹³C-NMR (75 MHz) spectrum of compound DPR-4 (in acetone- d_6)

Figure 32 NOESY spectrum of compound DPR-4 (in acetone- d_6)

Figure 33 HMBC spectrum of compound DPR-4 (in acetone- d_6)

Figure 35 ¹H-NMR (300 MHz) spectrum of compound DPR-5 (in acetone- d_6)

Figure 36 ¹³C-NMR (75 MHz) spectrum of compound DPR-5 (in acetone- d_6)

Figure 37 NOESY spectrum of compound DPR-5 (in acetone- d_6)

Figure 39 Mass spectrum of compound DPR-6

Figure 41 13 C-NMR (75 MHz) spectrum of compound DPR-6 (in acetone- d_6)

Figure 43 HMBC spectrum of compound DPR-6 (in acetone- d_6)

Figure 45 ¹H-NMR (300 MHz) spectrum of compound DPR-7 (in CD₃OD)

Figure 46¹³C-NMR (75 MHz) spectrum of compound DPR-7 (in CD₃OD)

Figure 47 HMBC spectrum of compound DPR-7 (in CD₃OD)

VITA

Mr. Virunh Kongkatitham was born on September 24, 1992, in Bangkok, Thailand. He graduated with Bachelor's degree in Pharmacy in 2017 from the Faculty of Pharmaceutical Sciences, Chulalongkorn University. He was awarded 2016 Japan Student Services Organization (JASSO) Scholarship and 2017 Chulalongkorn University Graduate Scholarship to Commemorate the 72nd Anniversary of His Majesty King Bhumibol Adulyadej.

Publications:

Kongkatitham V., Muangnoi C., Kyokong N., Thaweesest W., Likhitwitayawuid K., Rojsitthisak P. and Sritularak B. (2018). Anti-oxidant and antiinflammatory effects of new bibenzyl derivatives from Dendrobium parishii in hydrogen peroxide and lipopolysaccharide treated RAW264.7 cells. Phytochemistry Letters, 24, 31-38.

Kyokong N., Muangnoi C., Thaweesest W., Kongkatitham V., Likhitwitayawuid K., Rojsitthisak P. and Sritularak B. (2018). A new phenanthrene dimer from Dendrobium palpebrae. Journal of Asian Natural Products Research. Advanced online publication, DOI: 10.1080/10286020.2018.1429416

Nuntawong P., Kongkatitham V., Likhitwitayawuid K., Mekboonsonglarp W., Sukrong S., Tanasupawat S. and Sritularak B. (2017). New 2arylbenzofurans from the root bark of Artocarpus gomezianus and their alphaglucosidase inhibitory activity. Natural Product Research. Advanced online publication, DOI: 10.1080/14786419.2017.1419238