

การวิเคราะห์อณูพันธุศาสตร์ของพืชสกุล Phyllanthus ที่พบในประเทศไทย โดยใช้วิธีอาร์เอพีดีร่วมกับการหาลำดับนิวคลีโอไทด์

นางสาวจุฑาทิพย์ มานิสสรณ์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2553 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

MOLECULAR ANALYSIS OF PHYLLANTHUS SPP. IN THAILAND

BASED ON RAPD AND DNA SEQUENCING

Miss Juthatip Manissorn

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Pharmacognosy Department of Pharmacognosy and Pharmaceutical Botany Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2010 Copyright of Chulalongkorn University

Chulalongkorn University

THAILAND BASED ON RAPD AND DNA SEQUENCING

Ву	Miss Juthatip Manissorn
Field of Study	Pharmacognosy
Thesis Advisor	Associate Professor Nijsiri Ruangrungsi, Ph.D.
Thesis Co-Advisor	Assistant Professor Suchada Sukrong, Ph.D.
Thesis Co-Advisor	Professor Hajime Mizukami, Ph.D.

Accepted by the Graduate School, Chulalongkorn University in Partial Fulfillment of the Requirements for the Doctoral Degree

..... Dean of the Faculty of

Pharmaceutical Sciences

(Associate Professor Pintip Pongpech, Ph.D.)

THESIS COMMITTEE

Chulalongkorn University จุฬาลอกรณ์มหาวิทยาลัย

จุฑาทิพย์ มานิสสรณ์ : การวิเคราะห์อณูพันธุศาสตร์ของพืชสกุล *Phyllanthus* ที่พบใน ประเทศไทยโดยใช้วิธีอาร์เอพีดีร่วมกับการหาลำดับนิวคลีโอไทด์ (MOLECULAR ANALYSIS OF *PHYLLANTHUS* SPP. IN THAILAND BASED ON RAPD AND DNA SEQUENCING) อ. ที่ปรึกษาวิทยานิพนธ์หลัก : รศ. ดร. นิจศิริ เรื่องรังษี, อ. ที่ปรึกษา วิทยานิพนธ์ร่วม : ผศ. ดร. สุชาดา สุขหร่อง, Professor Hajime Mizukami, Ph.D., 124 หน้า.

พืชสกุลมะขามป้อม (*Phyllanthus* spp.) วงศ์ Euphorbiaceae มีการกระจายพันธุ์อยู่ใน บริเวณเขตร้อนและกึ่งร้อน พืชในสกุลนี้เป็นแหล่งของสารจากธรรมชาติและสารออกฤทธิ์ทาง ชีวภาพที่สำคัญจึงถูกนำมาใช้เป็นยาในหลายประเทศ ถทธิ์ทางยาที่สำคัญของพืชสกุล Phyllanthus ได้แก่ ฤทธิ์ลดไข้ แก้ปวด ต้านการอักเสบ ต้านความเป็นพิษต่อตับ และต้านไวรัส ใน การวิจัยนี้ ได้ศึกษาความผันแปรทางพันธุกรรมของพืชสกุล Phyllanthus จำนวน 23 ชนิด ที่พบใน ประเทศไทย โดยใช้วิธีอาร์เอพีดีในการจำแนกพืชสกุล Phyllanthus จากการคัดเลือกไพรเมอร์แบบ ้สุ่มทั้งหมดจำนวน 80 ไพรเมอร์ พบว่ามี 9 ไพรเมอร์ ที่สามารถบอกความแตกต่างทางพันธุกรรม ໄດ້ແກ່ OPS-01, OPS-03, OPS-07, OPS-08, OPS-12, OPS-19, OPD-02, OPD-04, ແລະ OPD-07 และสามารถสร้างเป็นลายพิมพ์ดีเอ็นเอที่แสดงเอกลักษณ์จำเพาะต่อ Phyllanthus ทั้ง 12 ชนิด จากการวิเคราะห์ลำดับนิวคลีโอไทด์บริเวณ internal transcribed spacers (ITS) ซึ่งเป็นดีเอ็นเอ ในนิวเคลียส นำมาสร้างเป็นเครื่องหมายโมเลกุลพีซีอาร์-อาร์เอฟแอลพี สามารถใช้ในการจำแนก พืชสมุนไพร Phyllanthus ที่สำคัญทั้ง 3 ชนิด ออกจากกัน คือ P. amarus, P. debilis, และ P. และพบว่าเทคนิคนี้ยังประสบความสำเร็จในการนำไปประยุกต์ใช้กับตัวอย่างเครื่องยา urinaria สมุนไพรที่ได้มาจากตลาดเครื่องยาในประเทศไทยด้วย

ภาควิชา <u>เกล้ชเวทและเกล้ชพฤกษศาสตร์</u>	ลายมือชื่อนิสิต
้สาขาวิชา <u>เกสัชเวท</u>	ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์หลัก
ปีการศึกษา <u>. 2553</u>	ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์ร่วม <u>.</u>
	ลายมือชื่ออ.ที่ปรึกษาวิทยานิพนธ์ร่วม

Chulalongkorn University จุฬาลอกรณ์มหาวิทยาลัย

##4676954033 : MAJOR PHARMACOGNOSY KEYWORDS : *PHALLANTHUS* / RAPD / DNA FINGERPRINTING / INTERNAL TRANSCRIBED SPACER / PCR-RFLP / DNA AUTHENTICATION / MOLECULAR PHYLOGENETIC ANALYSIS

JUTHATIP MANISSORN : MOLECULAR ANALYSIS OF *PHYLLANTHUS* SPP. IN THAILAND BASED ON RAPD AND DNA SEQUENCING. THESIS ADVISOR : ASSOC. PROF. NIJSIRI RUANGRUNGSI, Ph.D., THESIS CO-ADVISOR : ASSIST. PROF. SUCHADA SUKRONG, Ph.D., PROF. HAJIME MIZUKAMI. Ph.D., 124 pp.

The genus *Phyllanthus* (Euphorbiaceae) is distributed in tropical and subtropical regions, and its members are widely used as medicinal plants in many countries. Plants in this genus are important source of natural products and bioactive compounds. The medicinal effects of *Phyllanthus* are diverse including antipyretic, analgesic, anti-inflammatory, antihepatotoxic and antiviral activity. In this study the genetic variation of twenty-three *Phyllanthus* species existing in Thailand were analyzed. Random amplified polymorphic DNA (RAPD) markers were used to discriminate between *Phyllanthus* species. Nine out of eighty arbitrary primers were screened for DNA polymorphism. Primer OPS-01, OPS-03, OPS-07, OPS-08, OPS-12, OPS-19, OPD-02, OPD-04, and OPD-07 produced unique DNA fingerprints that individuated the twelve *Phyllanthus* species. In this study, we also analyzed the nucleotide sequences of the internal transcribed spacers (ITS) of nuclear ribosomal DNA. Furthermore, a simple protocol to discriminate three important medicinal *Phyllanthus* species, *P. amarus*, *P. debilis*, and *P. urinaria*, was developed using a Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) method based on ITS sequences and successfully applied to the crude drug samples obtained in Thai markets.

Department : Pharmacognosy and Pharmaceutical Botany	Student's Signature
Field of Study : <u>Pharmacognosy</u>	Advisor's Signature
Academic Year : <u>2010</u>	Co-Advisor's Signature
	Co-Advisor's Signature

۷

Chulalongkorn University จุฬาลอกรณ์มหาวิทยาลัย

ACKNOWLEDGEMENTS

I would like to express my deepest gratitude and appreciation to Assoc. Prof. Dr. Nijsiri Ruangrungsi, my thesis advisor, for his guidance, valuable suggestion, encouragement, support throughout my study

My deepest gratitude and appreciation is also expressed to Assist. Prof. Dr. Suchada Sukrong, my thesis co-advisor, for her kindness, suggestion, guidance, encouragement throughout my study.

I would like to express my gratitude and sincere thanks to Prof. Hajime Mizukami and all members of Pharmacognosy laboratory, Graduate School of Pharmaceutical Sciences, Nagoya City University for his support, advice and kindness throughout my research and during my stay in Japan.

My appreciation and gratitude to Assoc. Prof. Thatree Phadungcharoen for her kindness and great helps in collecting plant specimens.

I am very grateful to Assist. Prof. Dr. Jessada Denduangboripant, Department of Biology, Faculty of Science, Chulalongkorn University, for his valuable advice and encouragement.

I wish to express my thanks to the members of thesis committee for their critical perusal and valuable advices.

I would like to thank the Thailand Research Fund (TRF) for the 2003 Royal Golden Jubilee (RGJ) Ph.D. Scholarship and the Graduate School of Chulalongkorn University for granting partial financial support.

I would like to thank all staff members and everyone in the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for kindness and friendship.

I would like to express my appreciation to my family for their love, understanding, encouragement, and support throughout my study.

CONTENTS

ABSTRACT (T	hai)			iv
ABSTRACT (E	nglish)			۷
ACKNOWLED	GEMEN	TS		vi
CONTENTS				vii
LIST OF TABL	.ES			Х
LIST OF FIGU	RES			xi
LIST OF ABBR	REVIATIO	ONS		XV
CHAPTER				
Ι	INTRO	DUCTIC	DN	1
П	LITERA	ATURE F	REVIEW	3
	2.1	Genus	Phyllanthus	3
		2.1.1	Taxonomic study	3
		1.1.2	Phytochemical study and medicinal usage in	
			Phyllanthus spp	9
	2.2	Molecu	ılar markers	11
		2.2.1	PCR-based molecular markers	11
		2.2.2	DNA sequencing-based markers	13
	2.3	Phylog	enetic analysis	13
		2.3.1	Distance based method	14
		2.3.2	Character based method	15
	2.4	Molecu	lar study of nuclear Internal Transcribed Spacer	
		(ITS)		16
	2.5 Mc	lecular	markers in <i>Phyllanthus</i> spp	18
111	RAPD	ANALYS	SIS OF PHYLLANTHUS SPP	20
	3.1	Materia	als and methods	20
		3.1.1	Plant materials	20

CHAPTER				Page
		3.1.2	DNA extraction from fresh specimens	23
		3.1.3	Primer screening and PCR condition	23
		3.1.4	Phylogenetic tree reconstruction	25
	3.2	Result	S	26
		3.2.1	DNA determination	26
		3.2.2	RAPD fingerprint analysis	29
		3.2.3	Phylogenetic relationship of Phyllanthus spp. by	
			RAPD analysis	45
	3.3	Discu	ssion	47
IV	SEQL	JENCE A	NALYSIS OF NUCLEAR ITS IN PHYLLANTHUS SPP	49
	4.1	Materi	als and methods	49
		4.1.1	Plant materials	49
		4.1.2	DNA extraction and purification from herbarium	
			specimens	53
		4.1.3	Primer design	53
		4.1.4	PCR amplification from nuclear ITS region	54
		4.1.5	PCR product purification and DNA sequencing	55
		4.1.6	Phylogenetic tree reconstruction	55
	4.2	Result	S	56
		4.2.1	PCR product from nuclear ITS region	57
		4.2.2	Sequence analysis of nuclear ITS region	60
		4.2.3	Phylogenetic relationship of Phyllanthus spp. by	
			nuclear ITS sequencing	65
	4.3	Discus	ssion	70

CHAPTER				Page
V	ITS SEQUENCE-BASED AUTHENTICATION OF PHYLLANTHUS			
	AMAF	AMARUS, P. DEBILIS AND P. URINARIA BY A PCR-RFLP		
	METH	IOD		73
	5.1	Materi	al and methods	73
		5.1.1	Plant materials	73
		5.1.2	PCR amplification	74
		5.1.3	Restriction enzyme digestion	74
	5.2	Result	S	75
		5.2.1	PCR-RFLP analysis	75
	5.3 Di	scussior	٦	79
VI	CONC	CLUSION	VS	81
REFERENCES	S			83
APPENDICES				93
APPE	NDIX A.			94
APPE	NDIX B.			106
APPE	NDIX C.			118
VITA				124

LIST OF TABLES

Table		Page
2.1	The list of <i>Phyllanthus</i> species in Thailand	4
3.1	List of <i>Phyllanthus</i> species used for RAPD analysis	21
3.2	List of deca-oligonucleotide primers used for RAPD screening (Kit D,	
	N, O, S)	24
3.3	Sequence list of deca-oligonucleotide primers used for RAPD analysis	
	in inter- and intra-species	28
3.4	Summary of PCR products generated by RAPD primer from twelve	
	Phyllanthus species	29
3.5	Summary of PCR products within intra-species of selected Phyllanthus	35
	species generated by RAPD primer	
3.6	Nei and Li's genetic similarity index of twelve species based on RAPD	
	markers	46
4.1	List of <i>Phyllanthus</i> species used for DNA sequencing in this study	50
4.2	PCR amplification primers and sequencing primers of ITS region used	
	in this study	54
4.3	Summary of variation within the ITS region	61
4.4	Nucleotide variation of the ITS sequence between intra-species spp	61
4.5	Detail of the ITS nucleotide sequences of <i>Phyllanthus</i> species	62
5.1	List of crude drug samples obtained in Thai local markets	73

LIST OF FIGURES

Figure		Page
2.1	Structure of (A) Phyllanthin and (B) Hypophyllanthin	10
2.2	Schematic diagram of the nuclear rDNA internal transcribed spacer	
	region. The three rDNA subunits: 18S, 5.8S and 26S are separated by	
	internal transcribed spacers (ITS1 and ITS2)	16
3.1	Agarose gel electrophoresis of genomic DNA from Phyllanthus	
	species	27
3.2	Variation of MgCl ₂ concentration (A) RAPD patterns of <i>P. taxodiifolus</i>	
	using primer OPS-03 (B) RAPD patterns of P. reticulatus using primer	
	OPS-19	27
3.3	RAPD patterns of twelve Phyllanthus species generated by primer	
	OPD-02	30
3.4	RAPD patterns of twelve Phyllanthus species generated by primer	
	OPD-04	30
3.5	RAPD patterns of twelve Phyllanthus species generated by primer	
	OPD-07	31
3.6	RAPD patterns of twelve Phyllanthus species generated by primer	
	OPS-01	31
3.7	RAPD patterns of twelve Phyllanthus species generated by primer	
	OPS-03	32
3.8	RAPD patterns of twelve Phyllanthus species generated by primer	
	OPS-07	32
3.9	RAPD patterns of twelve Phyllanthus species generated by primer	
	OPS-08	33
3.10	RAPD patterns of twelve Phyllanthus species generated by primer	
	OPS-12	33
3.11	RAPD patterns of twelve Phyllanthus species generated by primer	
	OPS-19	34

Figure		Page
3.12	RAPD patterns from intra-species variation of <i>P. amarus</i> generated by	
	primer OPD-02	36
3.13	RAPD patterns from intra-species variation of <i>P. amarus</i> generated by	
	primer OPD11	36
3.14	RAPD patterns from intra-species variation of <i>P. amarus</i> generated by	
	primer OPN-04	37
3.15	RAPD patterns from intra-species variation of <i>P. amarus</i> generated by	
	primer OPN-06	37
3.16	RAPD patterns from intra-species variation of <i>P. amarus</i> generated by	
	primer OPN-09	38
3.17	RAPD patterns from intra-species variation of <i>P. amarus</i> generated by	
	primer OPN-15	38
3.18	RAPD patterns from intra-species variation of <i>P. amarus</i> generated by	
	primer OPO-18	39
3.19	RAPD patterns from intra-species variation of <i>P. amarus</i> generated by	
	primer OPS-03	39
3.20	RAPD patterns from intra-species variation of <i>P. amarus</i> generated by	
	primer OPS-19	40
3.21	RAPD patterns from intra-species variation of <i>P. emblica</i> generated	
	by primer OPS-03	40
3.22	RAPD patterns from intra-species variation of <i>P. emblica</i> generated	
	by primer OPS-12	41
3.23	RAPD patterns from intra-species variation of <i>P. emblica</i> generated	
	by primer OPS19	41
3.24	RAPD patterns from intra-species variation of <i>P. acidus</i> generated by	
	primer OPN-10	42
3.25	RAPD patterns from intra-species variation of <i>P. acidus</i> generated by	
	primer OPN-12	42

	Page
RAPD patterns from intra-species variation of <i>P. acidus</i> generated by	
primer OPN-18	43
RAPD patterns from intra-species variation of <i>P. acidus</i> generated by	
primer OPS-03	43
RAPD patterns from intra-species variation of <i>P. acidus</i> generated by	
primer OPS-12	44
RAPD patterns from intra-species variation of <i>P. acidus</i> generated by	
primer OPS-19	44
Unweighted pair group method with arithmetic average (UPGMA) tree	
showing the genetic relationships between twelve Phyllanthus species	
as determined by RAPD marker	46
Structure of ITS region and localization of primers used for the	
amplification and sequencing of the ITS region	53
Genomic DNA extracted from herbarium specimens	56
The PCR products of ITS region amplified from fresh samples	57
The PCR products of ITS region amplified from herbarium specimens.	

	(A) The first PCR amplification, (B) Nested PCR amplification	58
4.5	The purified PCR products of ITS region amplified from herbarium	
	specimens	59
4.6	Molecular phylogenetic tree of Phyllanthus species distributed in	
	Thailand based on the ITS sequences using a maximum parsimony	
	algorithm	67
4.7	Molecular phylogenetic tree of Phyllanthus species distributed in	
	Thailand based on the ITS sequences using a Maximum Likelihood	
	algorithm	68
4.8	Molecular phylogenetic tree of Phyllanthus species distributed in	

Thailand based on the ITS sequences using a Neighbor-joining

algorithm.....

Figure

3.26

3.27

3.28

3.29

3.30

4.1

4.2

4.3

4.4

69

Figure

5.1	Dde I restriction sites prediction of ITS region in P. amarus, P.	
	urinaria, and P. debilis. ITS nucleotide position start from the first	
	position of this region	74
5.2	Genomic DNA from 11 crude drugs of <i>Phyllanthus</i> species	75
5.3	Sequence alignment of the ITS1-5.8S rDNA-ITS2 region of the nuclear	
	ribosomal gene of Phyllanthus amarus, P. urinaria, and P. debilis. The	
	boxed sequences correspond to 5.8S rDNA. Arrows indicate Dde I	
	restriction sites	76
5.4	PCR-RFLP analysis of the ITS1-5.8S rDNA-ITS2 region amplified from	
	Phyllanthus amarus, P. urinaria, and P. debilis. The PCR products	
	from the samples (lanes 1, 3, and 5) were digested by Dde I (lanes 2,	
	4, and 6)	77
5.5	DNA-based authentication of Thai crude drugs "Luk Tai Bai (ลูกใต้ใบ)"	
	and "Ya Tai Bai (หญ้าใต้ใบ)" by PCR-RFLP analysis of ITS locus	78

Page

LIST OF ABBREVIATIONS

5.8s rDNA	5.8s ribosomal DNA
18s rDNA	18s ribosomal DNA
26s rDNA	26s ribosomal DNA
A, T, C, G	nucleotide containing the base adenine, thymine,
	cytosine, and guanine, respectively
AFLP	amplified fragment length polymorphism
bp	base pair
°C	degree celcius
CI	consistency index
DNA	deoxyribonucleic acid
dNTPs	deoxyribonucleotide triphosphates (dATP,
	dTTP, dGTP, dCTP)
EDTA	ethylenediaminetetraacetic acid
g	gram
h	hour
ITS	internal transcribed spacer
kb	kilobase
L	liter
М	molar
MgCl ₂	magnesium chloride
min	minute
ml	milliliter
mM	millimolar
ng	nanogram
nrDNA	nuclear ribosomal DNA
nt	nucleotide
PAUP	phylogenetic analysis using parsimony

PCR-RFLP	polymerase chain reaction – restriction
	fragment length polymorphism
RC	rescaled consistency index
рН	the negative logarithm of the concentration
	of hydrogen ions
RAPD	random amplified polymorphic DNA
rDNA	ribosomal deoxyribonucleic acid
RFLP	restriction fragment length polymorphism
RI	retention index
RNA	ribonucleic acid
rRNA	ribosomal ribonucleic acid
RNase A	ribonuclease A
rpm	revolution per minute
SCAR	sequence characterized amplified regions
sp.	species
TAE buffer	tris-acetate and EDTA buffer
U	unit
UV	ultraviolet
μg	microgram
μΙ	microliter
μΜ	micromolar

CHAPTER I

INTRODUCTION

Phyllanthus is a large genus of the family Euphorbiaceae. It comprises over 800 species, distributed in tropical and subtropical regions (Govaerts et al., 2000). We found 36 species of trees, shrubs, or herbs of this genus in Thailand (Chantaranothai, 2007). Plants of the genus Phyllanthus are important sources of medicines, exhibiting a wide array of pharmacological activities including diuretic, antipyretic, antioxidative, and antiinflammatory effects. They are used as folk medicines in many countries such as India, China, and Thailand to treat jaundice, coughs, diabetes, fevers, and stomachaches (Chang et al., 2003; Rao et al., 2006; Unander et al., 1992; Unander et al., 1995; Zhang et al., 2004). Among medicinal Phyllanthus species, P. amarus has attracted attention because it shows effective hepatoprotective activity due to anti-hepatitis B virus activity (Ott et al., 1997; Rai et al., 2005; Unander et al., 1991). In Thailand, P. amarus, P. debilis, and P. urinaria are popular medicinal plants found in the herbal markets. P. amarus and P. debilis are known as "Luk Tai Bai (ลูกใต้ไบ)" while P. urinaria is called "Ya Tai Bai (หญ้าได้ใบ)" in Thai. Furthermore, the dried aerial parts of these plants are well known as "Luk Tai Bai (ลูกใต้ไบ)" regardless of the original species, in the markets and used mostly as anti-fever treatments. These three species have very similar habitats and thus are difficult to identify morphologically, which leads to confusion and misuse of crude drugs.

In the past few decades, DNA-based techniques have been applied to authenticate important medicinal plants and crude drugs because they are less affected by age or environmental factors (Joshi *et al.*, 2004) and a small sample from non-specific tissue is sufficient for analysis (Mihalov *et al.*, 2000; Zhang *et al.*, 2007). Random amplified polymorphic DNA (RAPD) is a robust and simple assay and one of the most commonly used DNA techniques for primary assay of genomic DNA (Bussell *et al.*, 2005; Hon *et al.*, 2003; Na *et al.*, 2004). One of the most important applications of RAPD is the identification of plant species with no prior sequence data or clarification of the difference between species (Williams *et al.*, 1990). Moreover, ribosomal RNA (rRNA) genes are an attractive target for molecular analysis, because (1) a large number of

copies of these genes are present in the plant genome, and (2) the regions encoding 18S-, 5.8S-, and 26S-rRNA are highly conserved. Variable internal transcribed spacers (ITS1 and ITS2) are useful as DNA markers for plant identification (Joshi *et al.*, 2004). However, to reduce cost and time PCR-RFLP is the appropriate approach to use for detect an adulterant in herbal medicine (Cai *et al.*, 1999; Guo *et al.*, 2006; Hon *et al.*, 2003). In this method the target DNA even known entire sequence is first amplified by PCR and then digested with a restriction endonuclease to generate a unique restriction profile.

The objectives of this dissertation were to discriminate *Phyllanthus* species in Thailand based on the RAPD technique and determined nucleotide sequences of their nuclear internal transcribed spacer (ITS) 1-5.8S ribosomal DNA (rDNA)-ITS2 of rRNA gene. Based on the sequence alignment of these plant samples together with the sequences retrieved from the DNA database, we analyzed the molecular phylogenetic relationship of *Phyllanthus* species distributed in Thailand for the first time. Furthermore, we established a polymerase chain reaction-restriction fragment length polymorphisms (PCR-RFLP) approach to discriminate between the three Thai medicinal plants, *P. amarus*, *P. debilis*, and *P. urinaria*, and to authenticate the source species of the important Thai crude drug "Luk Tai Bai".

CHAPTER II

LITERATURE REVIEW

2.1 Genus Phyllanthus

The genus *Phyllanthus* was first described by Linnaeus (1753). It comprises 750-800 species (Radcliffe-Smith, 2001) mainly in the tropics and subtropics. The genus is often superficially similar to *Breynia*, *Glochidion* and *Sauropus*. Some studies have upheld the genus as separate entity (van Welzen, 2000), although there are new molecular data that suggest it is paraphyletic (Kathriarachchi *et al.*, 2006). *Phyllanthus* is left in the Euphobiaceae to maintain consistency with the Flora of Thailand (Chantaranothai, 2005; Chayamarit and van Welzen, 2005) although recent research firmly establishes it in a separate family Phyllanthaceae (Wurdack *et al.*, 2005)

2.1.1 Taxonomic study

The taxonomic description of *Phyllanthus* spp. was reported by Chantaranothai (2007) as following

"*Phyllanthus* spp. are trees, shrubs or herbs (or climbing), often with the stems and branches differentiated into orthotropic long shoots of unlimited growth and plagiotropic leafy and/or floriferous shoots of limited growth, resembling pinnate leaves. *Indumentum* simple hairs, rarely dendritic. *Leaves* often of 2 types: scale-like cataphylls on the orthotropic shoots, and foliage-leaves usually only on the plagiotropic shoots. *Foliage-leaves* alternate, often distichous, shortly petolate, stipulate, simple, entire, penninerved; nerves brochidodromous. *Flowers* small, axillary; staminate flower usually fasciculate in the lower axils; postulate flowers solitary in the upper leaf axils, rarely the fascicles bisexual. *Staminate flowers* pedicellate; pedicel often filiform; sepals (4)5 or 6, subequal, imbricate; petals absent; disc glands (4)5 or 6, free, altermisepalous, or rarely disc annular; stamens 2-6, filaments free or some or all partially or completely fused, anthers basifixed, extrorse; pistillode absent. *Pistillate flowers*: pedicel more robust than in the staminate flower; sepals more or less as in the staminate flower but often larger; petals absent; disc annular or copular, entire or variously-lobate, rarely of distinct glands; ovary sessile or stipitate, 3(-10)-locular, ovules 2 per locule; styles 3(4), free or slightly connate; stigmas usually recurved. *Fruite* either a 3 (or more)-lobed capsule, dry, septicidally and loculicidally dehiscent into 3 or more 2-valved cocci or separate valves, or the fruit fleshy and more or less indehiscent. Seeds 2 per locule, segmentiform, trigonous, dorsally convex, rarely plano-convex, verruculose, tuberculate, ridged, lineate or smooth, ecarunculate".

There are 36 species in Thailand (Table 2.1), at least 700 species in the tropics (Chantaranothai, 2007). Plant morphology of *Phyllanthus* species is shown in Appendix A.

No.	Scientific name	Thai name
1	Phyllanthus acidus (L.) Skeels	Mayom (มะยม) (General); Star
		gooseberry
2	<i>P. acutissimus</i> Miq.	Chan tia (จันเตี้ย) (Loei); Pla lai phueak
		(ปลาไหลเผือก) (Nakhon Ratchasima);
		Phak wan chang khlong (ผักหวานช้าง
		โขลง) (Nakhon Si Thammarat)
3	P. airy-shawii Brunel & J.P.Roux	-
4	P. albidiscus (Ridl.) Airy Shaw	Phak wan tai (ผักหวานใต้) (Peninsular)
5	P. amarus Schum. & Thonn.	Ma kham pom din (มะขามป้อมดิน)
		(Northern); Luk tai bai (ลูกใต้ใบ)
		(Central); Ya tai bai khao (หญ้าใต้ใบ
		ขาว) (Surat thani)
6	P. ankorensis Beille in Lecomte	Siao yai (เสียวใหญ่) (Udon Thani);
		Mayom khamen (มะยมเขมร) (Eastern)
7	P. caroliniensis Walter	-

Table 2.1 The list of Phyllanthus species in Thailand

No.	Scientific name	Thai name
8	P. chamaepeuce Ridl.	Ma kham khwak (มะขามขวัก);
		Makham nam (มะขามน้ำ) (Lampang)
9	<i>P. clarkei</i> Hook.f.	Mayom doi (มะยมดอย) (Chiang Mai)
10	<i>P. collinsiae</i> Craib	Kha naeng phroi (แขนงพร้อย), Khang
		ten (ค่างเต้น), Cha kham pom (ช้าขาม
		ป้อม) (Prachuap Khiri Khan); Siao
		(เสียว) (Saraburi)
11	P. columnaris Müll.Arg.	Khao san (ข้าวสาร) (General); Ma
		kham pom din luang (มะขามป้อมดิน
		หลวง) (Chiang Mai); San tui (สานตุ้ย)
		(Northern); Si siat cho (สีเสียดช่อ)
		(Peninsular); Hue-ni (ฮีชนิ) (Karen-
		mae Hong Son)
12	<i>P. debilis</i> Klein ex Willd.	Luk tai bai (ลูกใต้ใบ)
13	<i>P. elegans</i> Wall. ex Müll.Arg.	Cha phak wan (จ๊าผักหวาน)
		(Lamphun); Ton tai bai (ต้นใต้ใบ), Tai
		bai thuean (ใต้ใบเถื่อน), Phak wan
		chang (ผักหวานช้าง) (Surat Thani);
		Phak wan (ผักหวาน) (Satun); Phak
		wan khwae (ผักหวานแขว)
		(Chumphon); Phak wan song
		(ผักหวานดง) (Trat)
14	P. emblica L.	Kan-tot (กันโตด) (Khmer-Chanthaburi);
		Kam thuat (กำทวด) (Ratchavuri); Ma
		kham pom (มะขามป้อม) (General);
		Mang-luu (มั่งลู่), San-yaa-saa (สันยา
		สา) (Karen-Mae Hong Son); Emblic
		myrabolan, Malacca tree
15	P. geoffrayi Beille in Lecomte	Sa-phak-wan(ซ้ำผักหวาน) (Laos); Phak
		wan (ผักหวาน) (Prachin Buri)

No.	Scientific name	Thai name
16	P. gracilipes (Miq.) Müll.Arg.	Chum racha (ชุมภาชา), Phak wan raet
		(ผักหวานแรด) (Pattani)
17	P. harmandii Beille in Lecomte	-
18	<i>P. kerrii</i> Airy Shaw	Mayom don (มะยมดอน) (General)
19	P. lingulatus Beille	Mayom nuea (มะยมเหนือ) (Northern)
20	P. microcarpus (Benth.) Müll.Arg.	Mayom dong (มะยมดง) (General); Mat
		come (หมัดคำ)
21	P. mirabilis Müll.Arg.	Khi lek ruesi (ขี้เหล็กฤาษี) (Saraburi);
		Ai thao (ไอ้เทา) (Phetchaburi)
22	P. myrtifolius (Wight) Müll.Arg.	-
23	P. orientalis (Craib) Airy Shaw	Kang pla (ก้ำงปลา) (Lampang), Kang
		pla thet (ก้างปลาเทศ), Ya som kung
		(หญ้าส้มกุ้ง) (Northern); Khamao raet
		(เขม่าแรด) (Saraburi)
24	P. oxyphyllus Miq.	Yom hin (ยมหิน) (Surat Thani); Yai
		chung lan (ยายจูงหลาน) (Chumphon);
		Yai thip lan (ยายถีบหลาน) (Trang)
25	P. pachyphyllus Müll.Arg.	Mayom tai (มะยมใต้) (Peninsular)
26	P. pulcher Wall. ex Müll.Arg.	Kra thuep yop (กระที่บยอบ)
		(Chumphon); Kang pla (ก้างปลา)
		(Narathiwat); Kang pla din (ก้างปลา
		ดิน), Dok tai bai (ดอกใต้ใบ) (Nakhon Si
		Thammarat); Kang pla daeng
		(ก้างปลาแดง), Khrip yot (ครีบยอด)
		(Surat Thani); Khot sai (Songkhla);
		Dee-ko-noh (เดอก้อเนาะ) (Malay-
		Narathiwat); Trueng baa daan (ตริง
		บาดาล) (Prachuap Khiri Khan); Ru ri
		(รูรี) (Satun); Wan thorani san (ว่าน
		ธรณีสาร), Saniat (เสนียด) (Bangkok)

No.	Scientific name	Thai name
27	P. pulcheroides Beille in Lecomte	Mayom chat (มะยมฉัตร) (Loei)
28	<i>P. reticulatus</i> Poir.	Kraong (กระออง) (Prachuap Khiri
		Khan); Kang pla khao (ก้างปลาขาว)
		(Ang Thong, Chiang Mai); Kang pla
		khruea (ก้างปลาเครือ) (General); Kang
		pla daeng (ก้างปลาแดง) (Surat Thani);
		Kla khlong (ข่าคล่อง) (Suphan Buri);
		Ta-kha-kho-khuey (ต่าคะโคคีย), Sa-
		brae-thi (สะแบรที่) (Karen-Mae Hong
		Son); Mat kham (หมัดคำ) (Phrae); Ma
		yiao (หมาเยี่ยว) (Nakhon Pathom); Am
		ai (อำอ้าย) (Nakhon Ratchasima)
29	P. ridleyanus Airy Shaw	Mayom bai khaeng (มะยมใบแข็ง)
		(General)
30	P. roseus (Craib & Hutch.) Beille in Lecomte	Phak yot tong (ผักยอดทอง) (Chiang
		Mai); Ma yom pa (มะยมป่า)
		(Chanthaburi)
31	P. sikkimensis Müll.Arg.	Phak wan khao (ผักหวานเขา)
		(Chumphon)
32	P. sootepensis Craib	Plia luk phon (เปลี้ยลุกฟ้อน)
		(Lampang); Ma kham pom din (มะขาม
		ป้องดิน) (Chiang Mai)
33	P. taxodiifolius Beille	Khrai hang nak (ไคร้หางนาค), Siao
		nam (เสียวน้ำ), (Prachin Buri); Ta khrai
		hang sing (ตะไคร้หางสิงห์) (Suphan
		Buri); Siao noi (เสียวน้อย), Siao lek
		(เสี่ยวเล็ก) (Khon Kaen)

No.	Scientific name	Thai name
34	P. urinaria L.	Fai duean ha (ไฟเดือนห้า) (Chon
		Buri); Ma kham pom din
		(มะขามป้อมดิน) (Northern); Ya tai bai
		(หญ้าใต้ใบ) (Ang Thong, Surat
		Thani); Mak khai lang (หมากไข่หลัง)
		(Loei)
35	P. virgatus G.Forst.	Khang amphai (ขางอำไพ) (Phrae);
		Phaeng kham hoi (แพงคำห้อย) (Si Sa
		Ket); Luk tai bai (ลูกใต้ใบ) (Central)
36	P. welwitschianus Müll.Arg.	Mayom thiam (มะยมเทียม)

2.1.2 Phytochemical study and medicinal usage in *Phyllanthus* spp.

Genus *Phyllanthus* has been the subject of much phytochemical research to determine the active constituents and their pharmacological activities. This genus is a rich source of phytochemical compounds. Various groups of medicinally interesting compounds are present in *Phyllanthus*, including lignans, terpenoids, flavonoids, alkaloids, and ellagitannins. These compounds are found in the leaf, stem and root of the plants (de Padus *et al.*, 1999; Youkwan *et al.*, 2005; Zhang *et al.*, 2004). Major lignans are isolated from *Phyllanthus* spp. such as phyllanthin (Figure 2.1A) and hypophyllanthin (Figure 2.1B) (Chang *et al.*, 2003; Khatoon *et al.*, 2006).

Phyllanthus plants have been shown to possess cytotoxic and antioxidant activities (Chang et al., 2003; Xu et al., 2007). Moreover, lignans from Phyllanthus plants are reported to reduce hepatotoxicity (Naaz et al., 2007; Padma and Setty, 1999; Pramyothin et al., 2007; Shyamsunder et al, 1985). In Thai folk medicine, many species of Phyllanthus have long been used such as P. amarus, P. urinaria, P. emblica, P. taxodiifolius, P. acidus, P. pulcher, P. debilis, P. virgatus, P. ankorensis, P. reticulatus, P. oxyphyllus, P. roseus, and P. welwitschianus (คณะเภสัชศาสตร์ มหาวิทยาลัยมหิดล, 2539, 2541, 2543; ลีนา ผู้พัฒนพงศ์, 2530; วุฒิ วุฒิธรรมเวช, 2540; Rao et al., 2006; Unander et al., 1990; Unander et al., 1992). The medicinal effect of Phyllanthus species are treated jaundice, diabetes, cough, fevers, and stomachaches (Chang et al., 2003; Padma and Setty, 1999; Sousa et al., 2007; Unander et al., 1995; Zhang et al., 2004) The herbaceous plants *P. amarus* is an important herbal medicine due to its effectively antiviral activities especially anti-hepatitis B virus (Bhattacharyya et al., 2003; Ott et al., 1997; Rai et al., 2005; Unander et al., 1991). Other Phyllanthus species are also used for dye and tanning purposes (P. emblica, P. reticulatus), as edible fruits (P. acidus, P. emblica), and as ornamentals (*P. pulcher*) (de Padus et al., 1999).

Figure 2.1 Structure of (A) Phyllanthin and (B) Hypophyllanthin.

2.2 Molecular markers

2.2.1 PCR-based molecular markers

PCR-based molecular markers have now become a popular means for the identification and authentication of medicinal plants. Various types of PCR-based molecular techniques are utilized to evaluate DNA polymorphism. These techniques include RAPD, SCAR, PCR-RFLP.

Random Amplified Polymorphic DNA (RAPD)

PCR with random sequence primers offers a fast approach to genome profiling. The most popular technique of this type is called RAPD. RAPD were first developed in 1990 using PCR to randomly anonymous segments of nuclear DNA (Williams et al., 1990). RAPD marker has frequently been used for the detection of the genetic variability in plants. The advantage of the approach are its rapidity, simplicity, and the absence of any need for prior genetic information of the plant (Hon et al, 2003). In the reaction, a single species of primer anneals to the genomic DNA at two different sites on complementary strands of DNA template (Sharma et al., 2008). The primers used are normally 10 bases in length. This is short enough for annealing to occur at a number of positions in the genome. When annealing of the single primer in the reaction occurs on opposite strands of a strength of DNA which is short enough to form a template for PCR, a product will be formed. It is probable that this situation will occur at several points in the genome, giving rise to several PCR products which can be resolved by gel electrophoresis to give a characteristic pattern. Small sequence differences at a point of primer annealing will prevent annealing and amplification from that part of the genome. Additionally, insertions or deletions between primer annealing positions will lead to a change in the length of the PCR product (Hammond and Spanswick, 1997). RAPD marker was applied to differentiate various kinds of medicinal plants. For instance, it was used to differentiate Thai Piper from Japanese Piper (Chaveerach et al., 2002). This marker has been used for detecting the origin between Korean and Chinese Astragali radix (Na, et. al., 2004) and used to confirm the relationships among Boesenbergia

species (Vanijajiva *et al.*, 2005). However, the limitation of RAPD is poor reproducibility of PCR product.

Sequence Characterized Amplified Region (SCAR)

SCAR marker can be used for detection or differentiation of samples by using specific primers designed from polymorphic RAPD. The main steps of this method are first identification of a polymorphic band using RAPD, then nucleotide sequencing of the polymorphic band, and finally PCR reproduction of the polymorphic band as template DNA using a pair of long primer (25-30 bp) that are specific to the band. The conversion of a RAPD to a SCAR improves reproducibility of PCR product and enhances the discriminatory power and reliability of the identification methods (Hui *et al.*, 2000). For instance, this method has been used to discriminate *Artemisia* Herbs (Lee *et al.*, 2006) and used to authenticate of *Pueraria tuberosa* (Roxb. ex. Willd.) DC. in Indian medicinal herbs (Devaiah and Venkatasubramanian, 2008).

Polymerase Chain Reaction – Restriction Fragment Length Polymorphism (PCR-RFLP)

The concept of PCR-RFLP is amplification of DNA fragments from know primers and digested the product with restriction enzymes. This technique uses endonucleases to digest PCR products of regions with sequence polymorphisms. By using an endonuclease which recognizes and cleaves at the polymorphic sites, the digestion of a longer PCR fragment into smaller fragments will change the banding pattern (Yip *et al*, 2007). PCR-RFLP has been use for authentication of various medicinal plants, for instance, authenticate of *Panax* species (Um *et al.*, 2001), *Atractylodes* species (Mizukami *et al.*, 2000), *Rheum* species (Yang *et al.*, 2004) and differentiate of *Codonopsis* from their adulterants (Fu *et al.*, 1999). Screening PCR products by using various restriction enzymes can be an alternative of sequencing to find out polymorphic regions among samples. This method is more reproducible than random priming methods, but it is limited by the degree of polymorphism among individuals within a species.

2.2.2 DNA sequencing-based markers

DNA polymorphisms can be studies by several methods but the most direct approach is determination of nucleotide sequences of a defined region. For this technique, the primer is specifically designed based on a defined region of gene sequences. Variations due to transitions, transversion, insertion or deletion can be assessed directly and information on a defined locus can be obtained (Joshi *et al.*, 2004). This approach provides a highly reproducible and informative data that can be used for identifying species. Currently, DNA sequencing is applied to distinguish species and study phylogenetic relationship, population genetics, systematics and evolution (Zhang *et al.*, 2007). There are many reports concerning the application of DNA sequencing-based markers to differentiate medicinal plants from its substitutes or adulterants. Most of them involves the sequencing of internal transcribed spacer (ITS) of ribosomal DNA (rDNA) (Mihalov *et al.*, 2000), *trn*K genes (Mizukami *et al.*, 1998), 5S-rRNA gene (Ma *et al.*, 2000), 18S rRNA gene (Zhu *et al.*, 2003), *mat*K (Liu *et al.*, 2009) and *trn*H-*psb*A Chloroplast DNA (Vangsak *et al.*, 2008).

2.3 Phylogenetic analysis

Phylogenetic analysis of DNA or protein sequences has become an important tool for studying the evolutionary history of organisms. Since the rate of sequence evolution varies extensively with gene or DNA segment, one can study the evolutionary relationships of virtually all levels of classification of organisms such as families, genera, species, and intra-specific populations by using different genes or DNA segments (Li, 1997).

Traditionally, phylogenies have been constructed from morphological data but following the growth of genetic information it has become common practice to construct phylogenies based on molecular data. The data is most commonly in the form of DNA or protein sequences but can also be in the form of molecular marker such as RAPD, AFLP or microsatellite. The most important method for inferring phylogenetic relationships of life is that of acquiring DNA sequences. Comparisons of homologous regions of DNA among the taxa under study yield the characters and character states that are used to infer relationships in phylogenetic analyses (Simpson, 2006). Each molecular marker provides different type of data. Nevertheless, these can be gathered to two categories, distance based method and character based method.

2.3.1 Distance based method

Unweighted Pair-Group Method with Arithmetic Mean (UPGMA)

UPGMA is a clustering method. The program first finds the pair of taxa with the smallest distance between them and defines the branching between them as half of that distance in effect placing a node at the midpoint of the branch. It then combines the two taxa into a "cluster" and rewrites the matrix with the distance from the cluster to each of the remaining taxa. Since the "cluster" serves as a substitute for two taxa, the number of entries in the matrix is now reduce by one. That process is repeated on the new matrix and reiterated until the matrix consists of a single entry. That set of matrices is then used to build up the tree by starting at the root and moving out to the first two nodes represented by the last two clusters (Hall, 2004). UPGMA is intended to reconstruct a species tree, although topological errors often occur when the rate of gene substitution is not constant or when the number of genes or nucleotides used is small (Nei and Kumar, 2000).

Neighbor Joining (NJ)

NJ is similar to UPGMA in that it manipulates a distance matrix, reducing it in size at each step, then reconstructs the tree from that series of matrices. It differs from UPGMA in that it does not construct clusters but directly calculates distances to internal nodes. (Hall, 2004; Saitou and Nei, 1987). One of the important concepts in the NJ method is neighbors, which are defined as two taxa that are connected by a single node in an unrooted tree (Nei and Kumar, 2000). NJ is, like parsimony, a minimum-change

method, but it does not guarantee finding the tree with the smallest overall distance (Hall, 2004).

2.3.2 Character based method

Maximum Parsimony (MP)

MP is one of the most commonly use for phylogenetic analysis. Parsimony is based on the assumption that the most likely tree is the one that requires the fewest number of changes to explain the data in the alignment. The algorithm is used to evaluate a possible tree at each informative site (Hall, 2004). MP is a computationally hard problem so heuristics are used to find good solutions. Since there can be equally good solutions, the majority consensus tree of the set of optimal solution is returned.

Maximum Likelihood (ML)

ML is currently considered to be one of the most reliable criteria for phylogenetic inference from nucleotide or amino acid sequence data. In the ML method of the phylogenetic inferences the likelihood of observing a given set of sequence data for a specific substitution model is maximized for each topology, and the topology that gives the highest maximum likelihood is chosen as the final tree (Nei and Kumar, 2000). Construction of ML trees is extremely time-consuming, especially when large data and complex substitution models are used (Piontkivska, 2004).

Bootstrap values

A popular way of evaluating the reliability of an inferred phylogenetic tree is bootstrap analysis. The concept of bootstrap analysis is to re-sample the alignment columns with replacement. A high bootstrap score is a sign of greater reliability.

2.4 Molecular study of nuclear Internal Transcribed Spacer (ITS)

Nuclear DNA data provide valuable information in phylogenetic study of plants, and the internal transcribed spacer (ITS) of the nrDNA have been used in numerous systematic studies at the generic and specific levels of a wide array of plant taxa (Baldwin, 1992, 1993; Baldwin *et al*, 1995, Sang *et al*, 1995). The internal transcribed spacers, ITS1 and ITS2, are located between genes encoding the 5.8S, 18S and 26S nuclear ribosomal RNA (nrRNA) subunits (Figure 2.2). The ITS1 and ITS2 spacers, in addition to the 5.8 nrRNA gene are referred to as the ITS region.

Figure 2.2 Schematic diagram of the nuclear rDNA internal transcribed spacer region. The three rDNA subunits: 18S, 5.8S and 26S are separated by internal transcribed spacers (ITS1 and ITS2).

Several factors make the ITS region valuable for use in phylogenetic analyses at interspecific-level and intergeneric-level among angiosperms and other eukaryotes (Baldwin *et al.*, 1995). First, the ITS region is highly repeated in plant nuclear genomes, along with the other components of the nrDNA multigene family including a highly variable region between the ribosomal repeat, the intergenic spacer. The high copy number of the nrDNA repeat facilitates the amplification and sequencing of the nrDNA. Second, the nrDNA multigene family undergoes rapid concerted evolution. This property of the ITS region is most important from a phylogenetic standpoint and promotes accurate reconstruction of species relationships from sequencing. However, nonhomologous copies are occasionally present with point mutations and/or insertion/ deletion events, causing small variation among the copies within a species. Third, the small size of the ITS region (<700 bp in angiosperms) and the presence of highly conserved sequences flanking each of the two spacers make this region easy to amplify, even from herbarium material, using universal eukaryotic primers.

The ITS1 sequences from different families are virtually too diverse to unambiguously align. In spite of this variability, Liu and Schardl (1994) reported that a conserved sequence, GGCRY-(4 to 7n)-GYGYCAAGGAA (Y = C or T; R = G or A; n = A or G or C or T), is present in ITS1 of many flowering plant species. Conservation of the AAGGAA motif suggests that it may be such a recognition factor.

In recent literature, the ITS region is frequently used for authentication of medicinal plants such as *Dendrobium* (Lau *et al.*, 2000; Ding *et al.*, 2002), *Atractylodes* (Guo *et al.*, 2006; Shiba *et al.*, 2006) *Angelica* (Feng *et al.*, 2010). Another example of the utility of ITS is detection of narcotic species: *Mitragyna speciosa* (Sukrong *et al.*, 2007).

For plant systematic, the ITS region was able been used in reconstructing a phylogeny such as *Panax* (Araliaceae) (Wen and Zimmer, 1996), and *Clerodendrum* (Lamiacea) (Steane *et al.*, 1999).

2.5 Molecular markers in *Phyllanthus* spp.

Classification of the genus *Phyllanthus* has long been controversial as this genus shares many overlapping vegetative and floral characters with other members of the Phyllanthaceae and Euphorbiaceae (APG, 2003), and very few morphological characters can be designated as representative indicators for identification purposes.

In Thailand, there are several *Phyllanthus* species have been used in traditional medicine and some species are subjected for phytochemical analysis. However, there have been a few molecular reported in this genus. By using RAPD markers, Jain *et al.* (2003), have studied the molecular diversity in *Phyllanthus amarus* and develop SCAR markers for identification of *P. amarus*, *P. fraternus*, *P. debilis* and *P. urinaria* in Indian herbal drug (Jain *et al.*, 2008). Moreover, RAPD-SCAR marker has developed for identification of *P. hyllanthus emblica* Linn. (Dnyaneshwar *et al.*, 2006) and identification of *P. amarus*, *P. debilis*, and *P. urinaria* (Theerakulpisut *et al.*, 2008). However, there have not been reported for authentication in Thai herbal drug.

As for molecular phylogenetic analysis by DNA sequencing, there have been several studied in Family Phyllanthaceae. Wurdack *et al.* (2004) have studied plastid *rbcL* and Samuel *et al.* (2005) studied platid *mat*K and nuclear *phy*C sequences. In addition, Kathriarachchi *et al.* (2005) have analysed molecular phylogenetics of Phyllanthaceae family inferred from five genes (plastid *atp*B, *mat*K, 3'*ndh*F, *rbcL* and nuclear *phy*C) and analysed nuclear ITS and plastid *mat*K sequence data in Tribe Phyllantheae (Kathriarachchi *et al.*, 2006). Lee *et al.* (2006) have investigated phylogeny of medicinal *Phyllanthus* species in China based on nuclear ITS and chloroplast *atp*B and *rbcL* sequences. They also developed multiplex PCR for detection of *P. amaurs*, *P. niruri* and *P. urinaria*.

As previous reports, there have been many molecular studies of family Phyllanthaceae. However, there have been a few reports in Thailand. Due to the medicinal usage of *Phyllanthus* spp. and questionable classification based on morphological characters, a preliminary molecular marker was analyzed using RAPD analysis. Furthermore, a phylogenetic study was conducted using a highly variable region of nuclear ribosomal DNA and the simple technique, PCR-RFLP was applied to generated the DNA fingerprinting for the important medicinal *Phyllanthus* species.

CHAPTER III

RAPD ANALYSIS OF PHYLLANTHUS SPP.

3.1 Materials and methods

3.1.1 Plant materials

In this present study, 51 individuals from twelve *Phyllanthus* species, *Phyllanthus amarus*, *P. urinaria*, *P. emblica*, *P. taxodiifolius*, *P. collinsiae*, *P. acidus*, *P. pulcher*, *P. debilis*, *P. virgatus*, *P. acutissimus*, *P. ankorensis*, and *P. reticulatus*, were collected from various locations in Thailand. Plant specimens were identified by Assoc. Prof. Dr. Nijsiri Ruangrungsi and Assoc. Prof. Thatree Phadungcharoen. Voucher specimens are deposited at the Museum of Natural Medicines, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Thailand. Plant materials are presented in Table 3.1.
Species	Sample	Provinces	Date of	Voucher ID
	Codes		Collection	
P. amarus Schum. & Thonn.	P1B1	Bangkok	10.2005	MJT-4810101
	P1K1	Kanchanaburi	10.2005	MJT-4810102
	P1S1	Sakon Nakhon	10.2006	MJT-4910103
	P1PM1	Nakhon Phanom	10.2006	MJT-4910106
	P1NK1	Nong Khai	10.2006	MJT-4910107
	P1UT1	Udon Thani	10.2006	MJT-4910108
	P1KK1	Khon Kaen	10.2006	MJT-4910109
	P1CM1	Chiang Mai	11.2006	MJT-4911110
P. urinaria L.	P2B1	Bangkok	10.2005	MJT-4810201
	P2HK1	Nong Khai	10.2006	MJT-4910204
	P2NP1	Nakhon Pathom	03.2007	MJT-5003205
	P2RT1	Ratchaburi	09.2007	NSR-5009206
P. emblica L.	P3B1	Bangkok	10.2005	MJT-4810301
	P3S1	Sakon Nakhon	06.2006	MJT-4906302
	P3PM1	Nakhon Phanom	10.2006	MJT-4910303
	P3HK1	Nong Khai	10.2006	MJT-4910304
	P3UT1	Udon Thani	10.2006	MJT-4910305
	P3KS1	Kalasin	10.2006	MJT-4910306
	P3KK1	Khon Kaen	10.2006	MJT-4910307
	P3CM1	Chiang Mai	11.2006	MJT-4911309
P. taxodiifolius Beille	P4B1	Bangkok	10.2005	MJT-4810401
	P4NP1	Nakhon Pathom	01.2006	MJT-4901402
	P4PR1	Prachinburi	06.2007	TRP-5006403
P. collinsiae Craib	P5B1	Bangkok	10.2005	MJT-4810501
	P5R1	Rayong	10.2005	TRP-4810503

Table 3.1 List of *Phyllanthus* species used for RAPD analysis.

Species	Sample	Provinces	Date of	Voucher ID
	Codes		Collection	
P. acidus L.	P6B1	Bangkok	10.2005	MJT-4810601
	P6S1	Sakon Nakhon	06.2006	MJT-4906602
	P6NN1	Nakhon Nayok	10.2006	TT-4910603
	P6CR1	Chiang Rai	10.2006	NR-4910604
	P6KK1	Khon Kaen	10.2006	MJT-4910611
	P6NS1	Nakhon Si Thammarat	10.2006	TT-4910612
	P6ST1	Satun	10.2006	TT-4910613
	P6CM1	Chiang Mai	11.2006	MJT-4911615
P. pulcher Wall. ex Müll.Arg.	P7B1	Bangkok	10.2005	MJT-4810701
	P7K1	Kanchanaburi	10.2005	MJT-4810702
	P7CM1	Chiang Mai	11.2006	MJT-4911703
	P7NP1	Nakhon Pathom	03.2007	MJT-5003704
	P7R1	Rayong	08.2007	NSR-5008705
P. debilis Klein ex Willd.	P9B1	Bangkok	10.2005	NSR-4810801
	P9NP1	Nakhon Pathom	01.2006	MJT-4901802
P. virgatus G.Forst.	P12B1	Bangkok	10.2005	TRP-4810901
	P12PR1	Prachinburi	01.2006	TRP-4901902
	P12PL	Pattalung	04.2007	TRP-5004903
	P12C1	Chachoengsao	08.2007	TRP-5008904
	P12R1	Ratchaburi	09.2007	NSR-5009905
<i>P. acutissimus</i> Miq.	P13C1	Chachoengsao	01.2006	TRP-4901101
	P13UB1	Ubon Ratchathani	04.2007	TRP-5004102
P. ankorensis Beille in Lecomte	P14NP1	Nakhon Pathom	01.2006	MJT-4901111
	P14NP2	Nakhon Pathom	03.2007	NSR-5008112
P. reticulatus Poir.	P17B1	Bangkok	02.2006	MJT-4902121
	P17NP1	Nakhon Pathom	03.2007	MJT-5003124

Total

12 Phyllanthus species, 51 samples

3.1.2 DNA extraction from fresh specimens

Fresh and silica gel-dried leaves were ground in liquid nitrogen for DNA extraction. Total genomic DNA was extracted by DNeasy[™] Plant Mini Kit (QIAGEN, Germany), follow the manufacturer's protocol. Then, genomic DNA was purified using GENECLEAN[®] II Kit (Qbiogene, Germany). Total genomic DNA was performed on 0.8% agarose gel electrophoresis stained by ethidium bromide and visualized under UV light to determine quality and quantity. 2-Log DNA Ladder[®] (New England BioLabs, USA) was used as standard molecular size. The extracted DNA was kept at -20°C for further use as template in PCR amplification.

3.1.3 Primer screening and PCR condition

PCR amplification were carried out using eighty arbitrary deca-oligonucleotide primers, kit D, N, O, and S, obtained from Operon DNA Technologies (Alameda, USA) (Table 3.2). Screening and selecting the proper primers was the prior step in PCR experiment for this study. The PCR reaction mixture in 25 µl contained 10 mM Tris-HCl (pH 9.0), 50 mM KCl, 0.1% Triton[®] X-100, 3.5 mM MgCl₂, 0.2 mM each dNTP, 0.4 µM random primers, 0.6 U of *Taq* Polymerase (Promega, USA) and 5-40 ng of template DNA. RAPD amplification was carried out with the Eppendorf Mastercycler[®] (Perkin-Elmer, USA). Initial denaturation was at 95°C for 3 min, followed by 45 cycles of 95°C for 1 min, 36°C for 1 min, 72°C for 2 min and a final extension for 4 min. PCR products were separated on a 1.5% agarose gel and stained with ethidium bromide. RAPD fragments were analyzed using Gel Doc[™] XR System PC/Mac (Bio-Rad Laboratories, USA). The selected primers should give high enough polymorphism and a constant pattern was chosen for further study.

Primer code	Sequence (5'-3')	Primer code	Sequence (5'-3')
OPD-01	ACCGCGAAGG	OPN-11	TCGCCGCAAA
OPD-02	GGACCCAACC	OPN-12	CACAGACACC
OPD-03	GTCGCCGTCA	OPN-13	AGCGTCACTC
OPD-04	TCTGGTGAGG	OPN-14	TCGTGCGGGT
OPD-05	TGAGCGGACA	OPN-15	CAGCGACTGT
OPD-06	ACCTGAACGG	OPN-16	AAGCGACCTG
OPD-07	TTGGCACGGG	OPN-17	CATTGGGGAG
OPD-08	GTGTGCCCCA	OPN-18	GGTGAGGTCA
OPD-09	CTCTGGAGAC	OPN-19	GTCCGTACTG
OPD-10	GGTCTACACC	OPN-20	GGTGCTCCGT
OPD-11	AGCGCCATTG	OPO-01	GGCACGTAAG
OPD-12	CACCGTATCC	OPO-02	ACGTAGCGTC
OPD-13	GGGGTGACGA	OPO-03	CTGTTGCTAC
OPD-14	CTTCCCCAAG	OPO-04	AAGTCCGCTC
OPD-15	CATCCGTGCT	OPO-05	CCCAGTCACT
OPD-16	AGGGCGTAAG	OPO-06	CCACGGGAAG
OPD-17	TTTCCCACGG	OPO-07	CAGCACTGAC
OPD-18	GAGAGCCAAC	OPO-08	CCTCCAGTGT
OPD-19	CTGGGGACTT	OPO-09	TCCCACGCAA
OPD-20	ACCCGGTCAC	OPO-10	TCAGAGCGCC
OPN-01	CTCACGTTGG	OPO-11	GACAGGAGGT
OPN-02	ACCAGGGGCA	OPO-12	CAGTGCTGTG
OPN-03	GGTACTCCCC	OPO-13	GTCAGAGTCC
OPN-04	GACCGACCCA	OPO-14	AGCATGGCTC
OPN-05	ACTGAACGCC	OPO-15	TGGCGTCCTT
OPN-06	GAGACGCACA	OPO-16	TCGGCGGTTC
OPN-07	CAGCCCAGAG	OPO-17	GGCTTATGCC
OPN-08	ACCTCAGCTC	OPO-18	CTCGCTATCC
OPN-09	TGCCGGCTTG	OPO-19	GGTGCACGTT
OPN-10	ACAACTGGGG	OPO-20	ACACACGCTG

Table 3.2 List of deca-oligonucleotide primers used for RAPD screening (Kit D, N, O, S).

Primer code	Sequence $(5'-3')$	Primer code	Sequence (5'-3')
OPS-01	CTACTGCGCT	OPS-11	AGTCGGGTGG
OPS-02	CCTCTGACTG	OPS-12	CTGGGTGAGT
OPS-03	CAGAGGTCCC	OPS-13	GTCGTTCCTG
OPS-04	CACCCCCTTG	OPS-14	AAAGGGGTCC
OPS-05	TTTGGGGCCT	OPS-15	CAGTTCACGG
OPS-06	GATACCTCGG	OPS-16	AGGGGGTTCC
OPS-07	TCCGATGCTG	OPS-17	TGGGGACCAC
OPS-08	TTCAGGGTGG	OPS-18	CTGGCGAACT
OPS-09	TCCTGGTCCC	OPS-19	GAGTCAGCAG
OPS-10	ACCGTTCCAG	OPS-20	TCTGGACGGA

3.1.4 Phylogenetic tree reconstruction

Standard DNA marker (Hyper Ladder I, Bioline, USA) was used to assign the size of each RAPD fragment. Only fragments that could be accurately scored (0.3–2.5 kb) were chosen. RAPD fragments were assigned a DNA length and recorded in a binary matrix for each individual as presence (1) or absence (0) of a given band. Phylogenetic relationship of *Phyllanthus* species was constructed using Dice clustering of NTSYS-pc version 2.11T (Exeter Software, Setauket, N.Y.) based on a UPGMA method (Nei and Li, 1979).

3.2 Results

3.2.1 DNA determination

Total genomic DNA was isolated from fresh and silica-gel dried leaves using a DNeasy Plant Mini Kit (Qiagen, Germany) purified using GENECLEAN[®] II Kit (Qbiogene, Germany) follow the manufacturer's protocol. From 1.0% agarose gel as compare with standard DNA markers, 2-Log DNA Ladder[®] (New England BioLabs, USA) and Hyper Ladder I (Bioline, USA), the extracted DNA show good quality and consisted of high molecular weight DNA greater than 10.0 kb (Figure 3.1). The amount of DNA that was extracted from fresh leaves of Phyllanthus was approximately 5-40 ng/µl, which is adequate for RAPD analysis. In addition, we employed a DNA purification step to remove a large amount of polysaccharides and alkaloids, which from some plant species, insures a high DNA quality that is considered the major factor affecting the reproducibility of RAPD. The PCR reaction step of RAPD was first investigated and optimized since it could affect the pattern of PCR products and held constant throughout the experiment. The concentration of magnesium chloride varied from 2 to 5 mM. The optimum magnesium concentration was 3.5 mM since it could produce clear and reproducible RAPD bands (Figure 3.2). Gradient PCR was used to investigate the suitable annealing temperature that was set up at 36°C in this study.

Figure 3.1 Agarose gel electrophoresis of genomic DNA from twelve *Phyllanthus* species.

Lane M1: 2-Log DNA Ladder

Lane M2: HyperLadder I

Lane 1-12: typical genomic DNA of *P. amarus*, *P. urinaria*, *P. emblica*, *P. taxodiifolius*, *P. collinsiae*, *P. acidus*, *P. pulcher*, *P. debilis*, *P. virgatus*, *P. acutissimus*, *P. angkorensis*, *P. reticulatus*.

Figure 3.2 Variation of MgCl₂ concentration (A) RAPD patterns of *P. taxodiifolus* using primer OPS-03 (B) RAPD patterns of *P. reticulatus* using primer OPS-19.

Lane M: HyperLadder I DNA ladder

Lane 1-7: 2.0 mM, 2.5 mM, 3mM, 3.5 mM, 4 mM, 4.5 mM, and 5 mM MgCl₂

Primer screening

PCR amplification were carried out using eighty arbitrary deca-oligonucleotide primers, kit D, N, O, and S, obtained from Operon DNA Technologies (Alameda, USA) (Table 3.2). In preliminary screening, eighteen primers could be used to amplified DNA from *Phyllanthus* species (Table 3.3). Only nine, OPD-02, OPD-04, OPD-07, OPS-01, OPS-03, OPS-07, OPS-08, OPS-12, and OPS-19, out of eighteen primers produced clear and reproducible polymorphic RAPD band and used as the markers for investigating the genetic variation across all twelve *Phyllanthus* species (Figure 3.3-3.11). The RAPD patterns of individuals between intra-species were compared using primer OPD-02, OPD-04, OPD-07, OPD-11, OPN-04, OPN-06, OPN-09, OPN-10, OPN12, OPN-15, OPN-18, OPO-18, OPS-01, OPS-03, OPS-07, OPS-07, OPS-08, OPS-12, and OPS-12, and OPS-12, and OPS-19 (Figure 3.12-3.29)

 Table 3.3 Sequence list of deca-oligonucleotide primers used for RAPD analysis in interand intra- species.

Primer code	Sequence $(5'-3')$	Primer code	Sequence (5'-3')
OPD-02	GGACCCAACC	OPN-15	CAGCGACTGT
OPD-04	TCTGGTGAGG	OPN-18	GGTGAGGTCA
OPD-07	TTGGCACGGG	OPO-18	CTCGCTATCC
OPD-11	AGCGCCATTG	OPS-01	CTACTGCGCT
OPN-04	GACCGACCCA	OPS-03	CAGAGGTCCC
OPN-06	GAGACGCACA	OPS-07	TCCGATGCTG
OPN-09	TGCCGGCTTG	OPS-08	TTCAGGGTGG
OPN-10	ACAACTGGGG	OPS-12	CTGGGTGAGT
OPN-12	CACAGACACC	OPS-19	GAGTCAGCAG

3.2.2 RAPD fingerprint analysis

Analysis of genetic variation in inter-species

Genetic variation within inter-species were produced by OPD-02, OPD-04, OPD-07, OPS-01, OPS-03, OPS-07, OPS-08, OPS-12, and OPS-19 that were totally 363 scorable bands ranging from 0.3 to 2.5 kb in size (Table 3.4). The largest number of RAPD bands was detected for primer OPS-03 (52 bands, Figure 3.7), while the lowest was scored for OPS-08 (24 bands, Figure 3.9).

 Table 3.4 Summary of PCR products generated by RAPD primer from twelve Phyllanthus

 species

Primer	Number of	Size range	No. of	% of polymorphic	
	scorable band	(bp)	monomorphic/polymorphic	bands	
			bands		
OPD-02	49	500-1800	0/49	100	
OPD-04	34	300-1500	0/34	100	
OPD-07	47	400-2300	0/47	100	
OPS-01	45	300-2500	0/45	100	
OPS-03	52	300-1800	0/52	100	
OPS-07	50	400-2500	0/50	100	
OPS-08	24	300-1500	0/24	100	
OPS-12	37	400-1800	0/37	100	
OPS-19	26	500-1500	0/26	100	

Lane 1-12: P. amarus, P. urinaria, P. emblica, P. taxodiifolius, P. collinsiae, P. acidus, P. pulcher, P. debilis, P. virgatus, P. acutissimus, P. angkorensis, P. reticulatus

Figure 3.4 RAPD patterns of twelve *Phyllanthus* species generated by primer OPD-04.

Lane M: HyperLadder I DNA ladder

Lane 1-12: *P. amarus*, *P. urinaria*, *P. emblica*, *P. taxodiifolius*, *P. collinsiae*, *P. acidus*, *P. pulcher*, *P. debilis*, *P. virgatus*, *P. acutissimus*, *P. angkorensis*, *P. reticulatus*

bp 4000	М	1	2	3	4	5	6	7	м	8	9	10	11	12
2500											-	14		_
1500 —	- annual			-		-	112		-	=	-	-	=	-
1000— 800—	=			=	-	-	=		=	Ξ	-		=	-
600 —		-	-		11		-	=	-		_		=	_
400 —	-	_						-	-	-	1			
200 —	-													

Figure 3.5 RAPD patterns of twelve *Phyllanthus* species generated by primer OPD-07. Lane M: HyperLadder I DNA ladder

Lane 1-12: *P. amarus*, *P. urinaria*, *P. emblica*, *P. taxodiifolius*, *P. collinsiae*, *P. acidus*, *P. pulcher*, *P. debilis*, *P. virgatus*, *P. acutissimus*, *P. angkorensis*, *P. reticulatus*

Figure 3.6 RAPD patterns of twelve *Phyllanthus* species generated by primer OPS-01.

Lane M: HyperLadder I DNA ladder

Lane 1-12: *P. amarus*, *P. urinaria*, *P. emblica*, *P. taxodiifolius*, *P. collinsiae*, *P. acidus*, *P. pulcher*, *P. debilis*, *P. virgatus*, *P. acutissimus*, *P. angkorensis*, *P. reticulatus*

Figure 3.7 RAPD patterns of twelve *Phyllanthus* species generated by primer OPS-03.
Lane M: HyperLadder I DNA ladder
Lane 1-12: *P. amarus*, *P. urinaria*, *P. emblica*, *P. taxodiifolius*, *P. collinsiae*, *P. acidus*, *P. pulcher*, *P. debilis*, *P. virgatus*, *P. acutissimus*, *P. angkorensis*, *P. reticulatus*

Figure 3.8 RAPD patterns of twelve *Phyllanthus* species generated by primer OPS-07.
Lane M: HyperLadder I DNA ladder
Lane 1-12: *P. amarus*, *P. urinaria*, *P. emblica*, *P. taxodiifolius*, *P. collinsiae*, *P. acidus*, *P. pulcher*, *P. debilis*, *P. virgatus*, *P. acutissimus*, *P. angkorensis*, *P. reticulatus*

4000	bp	М	1	2	3	4	5	6	7	Μ	8	9	10	11	12
2500															-
2000 1500		=						-		Ξ		-		Ħ	=
1000 800		=	=				-		-	=	-	-	-	-	=
600		-			-		-			-			-		
400		-							-	-					
200	,	-	0.8					-		-					
								2							

Figure 3.9 RAPD patterns of twelve *Phyllanthus* species generated by primer OPS-08. Lane M: HyperLadder I DNA ladder

Lane 1-12: *P. amarus*, *P. urinaria*, *P. emblica*, *P. taxodiifolius*, *P. collinsiae*, *P. acidus*, *P. pulcher*, *P. debilis*, *P. virgatus*, *P. acutissimus*, *P. angkorensis*, *P. reticulatus*

Figure 3.10 RAPD patterns of twelve *Phyllanthus* species generated by primer OPS-12. Lane M: HyperLadder I DNA ladder

Lane 1-12: *P. amarus*, *P. urinaria*, *P. emblica*, *P. taxodiifolius*, *P. collinsiae*, *P. acidus*, *P. pulcher*, *P. debilis*, *P. virgatus*, *P. acutissimus*, *P. angkorensis*, *P. reticulatus*

Figure 3.11 RAPD patterns of twelve *Phyllanthus* species generated by primer OPS-19.
Lane M: HyperLadder I DNA ladder
Lane 1-12: *P. amarus*, *P. urinaria*, *P. emblica*, *P. taxodiifolius*, *P. collinsiae*, *P. acidus*, *P. pulcher*, *P. debilis*, *P. virgatus*, *P. acutissimus*, *P. angkorensis*, *P. reticulatus*

Analysis of genetic variation in intra-species

P. amarus, *P. emblica*, and *P. acidus* were chosen to study of genetic variation within intra-species since they were most generally found in various parts of Thailand. RAPD fingerprints were produced by OPD-02, OPD-04, OPD-07, OPD-11, OPN-04, OPN-06, OPN-09, OPN-10, OPN12, OPN-15, OPN-18, OPO-18, OPS-01, OPS-03, OPS-07, OPS-08, OPS-12, and OPS-19. The PCR products were totally 693 scorable bands ranging from 350 to 2500 bp in size (Table 3.5). The largest number of RAPD bands was detected for OPN-04 in *P. amaus* (66 bands) (Figure 3.14), while the lowest was scored for OPN-10 in *P. acidus* (8 bands, Figure 3.27).

 Table 3.5 Summary of PCR products within intra-species of selected *Phyllanthus*

 species generated by RAPD primer.

Species	Primer	Size range	Number of	No. of	% of
		(bp)	scorable	monomorphic/polymorphic	polymorphic
			band	band	band
P. amarus	OPD-02	1000-1600	40	40/0	0.00
	OPD-11	500-1500	49	32/17	34.69
	OPN-04	400-2300	66	32/34	51.51
	OPN-06	500-1200	57	56/1	1.75
	OPN-09	500-1600	46	32/14	30.43
	OPN-15	800-900	10	8/2	20.00
	OPO-18	600-1500	42	32/10	2.38
	OPS-03	350-1200	55	24/31	56.36
	OPS-19	590-2300	37	24/13	35.14
P. emblica	OPS-03	350-1000	47	8/39	82.98
	OPS-12	400-1300	21	8/13	61.90
	OPS-19	580-1200	20	8/12	60.00
P. acidus	OPN-10	800	8	8/0	0.00
	OPN-12	550-1400	30	24/6	20.00
	OPN-18	500-1000	30	8/22	73.33
	OPS-03	400-1500	49	24/25	51.02
	OPS-12	390-2500	38	32/6	15.79
	OPS-19	490-1400	40	8/36	90.00

Figure 3.12 RAPD patterns from intra-species variation of *P. amarus* generated by primer OPD-02.

Lane M: HyperLadder I DNA ladder

Lane 1-8: *P. amarus* obtained from Bangkok, Kanchanaburi, Nong Khai, Nakhon Phanom, Udon Thani, Khon Kaen, Sakon Nakhon, and Chiang Mai, respectively.

Figure 3.13 RAPD patterns from intra-species variation of *P. amarus* generated by primer OPD-11.

Lane M: HyperLadder I DNA ladder

Lane 1-8: P. amarus obtained from Nong Khai, Nakhon Phanom, Khon Kaen,

Udon Thani, Sakon Nakhon, Bangkok, Chiang Mai and Kanchanaburi,

respectively.

Figure 3.14 RAPD patterns from intra-species variation of *P. amarus* generated by primer OPN-04

Lane 1-8: *P. amarus* obtained from Nong Khai, Nakhon Phanom, Khon Kaen, Udon Thani, Sakon Nakhon, Bangkok, Chiang Mai and Kanchanaburi, respectively.

Figure 3.15 RAPD patterns from intra-species variation of *P. amarus* generated by primer OPN-06

Lane M: HyperLadder I DNA ladder

Lane 1-8: *P. amarus* obtained from Nong Khai, Nakhon Phanom, Khon Kaen, Udon Thani, Sakon Nakhon, Bangkok, Chiang Mai and Kanchanaburi, respectively.

Lane 1-8: *P. amarus* obtained from Nong Khai, Nakhon Phanom, Khon Kaen, Udon Thani, Sakon Nakhon, Bangkok, Chiang Mai and Kanchanaburi, respectively.

Figure 3.17 RAPD patterns from intra-species variation of *P. amarus* generated by primer OPN-15

Lane M: HyperLadder I DNA ladder

Lane 1-8: *P. amarus* obtained from Nong Khai, Nakhon Phanom, Khon Kaen, Udon Thani, Sakon Nakhon, Bangkok, Chiang Mai and Kanchanaburi, respectively.

Lane 1-8: *P. amarus* obtained from Nong Khai, Nakhon Phanom, Khon Kaen, Udon Thani, Sakon Nakhon, Bangkok, Chiang Mai and Kanchanaburi, respectively.

Figure 3.19 RAPD patterns from intra-species variation of *P. amarus* generated by primer OPS-03.

Lane M: HyperLadder I DNA ladder

Lane 1-8: *P. amarus* obtained from Bangkok, Kanchanaburi, Nong Khai, Nakhon Phanom, Udon Thani, Khon Kaen, Sakon Nakhon, and Chiang Mai, respectively.

Lane 1-8: *P. amarus* obtained from Bangkok, Kanchanaburi, Nong Khai, Nakhon Phanom, Udon Thani, Khon Kaen, Sakon Nakhon, and Chiang Mai, respectively.

Figure 3.21 RAPD patterns from intra-species variation of *P. emblica* generated by primer OPS-03.

Lane M: HyperLadder I DNA ladder

Lane 1-8: *P. emblica* obtained from Bangkok, Sakon Nakhon, Kalasin, Khon Kaen, Udon Thani, Nakhon Phanom, Nong Khai, and Chiang Mai, respectively.

Lane 1-8: *P. emblica* obtained from Bangkok, Sakon Nakhon, Kalasin, Khon Kaen, Udon Thani, Nakhon Phanom, Nong Khai, and Chiang Mai, respectively.

Figure 3.23 RAPD patterns from intra-species variation of *P. emblica* generated by primer OPS19.

Lane M: HyperLadder I DNA ladder

Lane 1-8: *P. emblica* obtained from Bangkok, Sakon Nakhon, Kalasin, Khon Kaen, Udon Thani, Nakhon Phanom, Nong Khai, and Chiang Mai, respectively.

Figure 3.24 RAPD patterns from intra-species variation of *P. acidus* generated by primer OPN-10.

Lane 1-8: *P. acidus* obtained from Nakhon Nayok, Bangkok, Chiang Rai, Khon Kaen, Nakhon Si Thammarat, Sakon Nakhon, Satun and Chiang Mai, respectively.

Lane M: HyperLadder I DNA ladder

Lane 1-8: *P. acidus* obtained from Nakhon Nayok, Bangkok, Chiang Rai, Khon Kaen, Nakhon Si Thammarat, Sakon Nakhon, Satun and Chiang Mai, respectively.

Figure 3.26 RAPD patterns from intra-species variation of *P. acidus* generated by primer OPN-18.

Lane 1-8: *P. acidus* obtained from Nakhon Nayok, Bangkok, Chiang Rai, Khon Kaen, Nakhon Si Thammarat, Sakon Nakhon, Satun and Chiang Mai, respectively.

Figure 3.27 RAPD patterns from intra-species variation of *P. acidus* generated by primer OPS-03.

Lane M: HyperLadder I DNA ladder

Lane 1-8: *P. acidus* obtained from Nakhon Nayok, Bangkok, Chiang Rai, Khon Kaen, Nakhon Si Thammarat, Sakon Nakhon, Satun and Chiang Mai, respectively.

Figure 3.28 RAPD patterns from intra-species variation of *P. acidus* generated by primer OPS-12

Lane 1-8: *P. acidus* obtained from Nakhon Nayok, Bangkok, Chiang Rai, Khon Kaen, Nakhon Si Thammarat, Sakon Nakhon, Satun and Chiang Mai, respectively.

Figure 3.29 RAPD patterns from intra-species variation of *P. acidus* generated by primer OPS-19.

Lane M: HyperLadder I DNA ladder

Lane 1-8: *P. acidus* obtained from Nakhon Nayok, Bangkok, Chiang Rai, Khon Kaen, Nakhon Si Thammarat, Sakon Nakhon, Satun and Chiang Mai, respectively.

3.2.3 Phylogenetic relationship of Phyllanthus spp. by RAPD analysis

One individual representative of each species was selected for construction of a phylogenetic tree since it showed the same pattern of the major RAPD band in RAPD analysis. To evaluate the genetic relationship between Phyllanthus species, RAPD bands of twelve Phyllanthus species produced by nine primers (OPD-02, OPD-04, OPD-07, OPS-01, OPS-03, OPS-07, OPS-08, OPS-12, and OPS-19), were scored and constructed as a phylogenetic tree. Standard DNA marker (Hyper Ladder I, Bioline, USA) was used to assign the size of each RAPD fragment. Only fragments that could be accurately scored (0.3-2.5 kb) were chosen. RAPD fragments were assigned a DNA length and recorded in a binary matrix for each individual as presence (1) or absence (0) of a given band. Phylogenetic relationship of Phyllanthus species was constructed using Dice (Nei and Li, 1979) clustering of NTSYS-pc version 2.11T (Exeter Software, Setauket, N.Y.) based on a UPGMA method (Figure 3.30). Among the twelve species of Phyllanthus, Dice similarity index (S.I.) ranged from 0.125 to 0.500 (Table 3.4) and could be divided into four clusters. Cluster I includes four species showing 0.375-0.500 similarity index (P. amarus, P. pulcher, P. taxodiifolius, and P. reticulatus). Cluster II includes two species showing similarity index 0.462 (P. virgatus and P. ankorensis) and cluster III includes five species with 0.258-0.500 similarity index (P. urinaria, P. emblica, P. collinsiae, P. acidus, and P. acutissimus). P. debilis is the distinct species in cluster IV. It was only 12% genetically similar to the rest of the 11 species. In addition, the four most closely related species were P. pulcher and P. amarus (cluster I) and P. collinsiae and *P. emblica* (cluster III) with the highest similarity index (0.500).

Species		1	2	3	4	5	6	7	8	9	10	11	12
P. amarus	1	1.000											
P. urinaria	2	0.237	1.000										
P. emblica	3	0.419	0.479	1.000									
P. taxodiifolius	4	0.298	0.321	0.373	1.000								
P. collinsiae	5	0.393	0.400	0.500	0.302	1.000							
P. acidus	6	0.305	0.412	0.451	0.321	0.462	1.000						
P. pulcher	7	0.500	0.230	0.344	0.449	0.345	0.230	1.000					
P. debilis	8	0.227	0.151	0.286	0.146	0.240	0.340	0.174	1.000				
P. virgatus	9	0.296	0.286	0.212	0.196	0.333	0.381	0.286	0.125	1.000			
P. acutissimus	10	0.189	0.387	0.338	0.240	0.407	0.258	0.145	0.298	0.351	1.000		
P. ankorensis	11	0.426	0.171	0.329	0.207	0.358	0.400	0.381	0.255	0.462	0.344	1.000	
P. reticulatus	12	0.375	0.356	0.447	0.426	0.314	0.411	0.333	0.276	0.353	0.418	0.400	1.000

Table 3.6 Nei and Li's genetic similarity index of twelve species based on RAPD markers.

Figure 3.30 Unweighted pair group method with arithmetic average (UPGMA) tree showing the genetic relationships between twelve *Phyllanthus* species as determined by RAPD marker.

3.3 Discussions

In this present study, we discriminated twelve species in the genus Phyllanthus by RAPD with nine primers, OPD-02, OPD-04, OPD-07, OPS-01, OPS-03, OPS-07, OPS-08, OPS-12, and OPS-19, since they generated the unique DNA profiles. RAPD is a simple, rapid and inexpensive method for detecting DNA polymorphism in various organisms because it has the advantage no need prior knowledge of the genome of the plants (Hon et al, 2003). However, one obvious disadvantage of RAPD is its sensitivity to slight changes in reaction conditions. The amount and purity of DNA template can affect to RAPD profile. The impurity in DNA templates such as polysaccharide and phenolic compound might inhibit PCR amplification. The optimization of each PCR component is also very essential. From the results, optimization concentration of magnesium chloride, Taq DNA polymerase, DNA template and annealing temperature were found to be important for RAPD analysis. The annealing temperature was suggested to be the first choice variable to optimize for PCR amplification condition. The optimize magnesium concentration used in this study was most suitable for 3.5 mM. High concentration of magnesium causes nonspecific amplification whereas low concentration of magnesium causes low activity of Taq DNA polymerase (Weising et al, 2005). Therefore, the reaction conditions and PCR cycling conditions should be stringently controlled to obtain high reproducibility (Cheng et al, 1997).

RAPD analysis revealed high genetic diversity with 100% of polymorphic bands among twelve *Phyllanthus* species in Thailand. To consider genetic diversity within intraspecies that collected from various parts of Thailand, the genetic diversity varied from 0.00% – 90.00% of polymorphic bands. Regarding the percent of polymorphic bands in Table 3.5, it indicated that *P. emblica* showed greater intra-species variation than *P. amarus* and *P. acidus*. The minor bands were observed within intra-species but the major bands were still showed the same RAPD pattern. Thus, intra-species variation was not affected by geographic locations.

In addition, there is a risk of misinterpretation in a genetic analysis from different RAPD patterns with similar size. This can be minimized by the use of several RAPD primers (Ambak *et al*, 2006). For example, PCR amplification using primer OPS-19 (Figure 3.11) showed a unique fragment approximately 590 bp in both *P. amarus* (Lane 1) and *P. debilis* (Lane 8). It was difficult to identify those two species by OPS-19. Meanwhile, amplification using OPS-03 (Figure 3.7) produced four major fragments, 300, 580, 700 and 1000 bp, in *P. amarus* and three major fragments, 390, 420, and 1000 bp, in *P. debilis*, so it could be identified by using this primer. Sequencing characterized amplified region (SCAR) markers could be further developed as a tool to prevent misuse among *Phyllanthus* species.

To evaluate the genetic relationship between *Phyllanthus* species, RAPD bands of twelve Phyllanthus species produced by nine primers (OPD-02, OPD-04, OPD-07, OPS-01, OPS-03, OPS-07, OPS-08, OPS-12, and OPS-19), were scored and constructed as a phylogenetic tree. A genetic similarity index was derived from Dice (Nei and Li, 1979) and UPGMA tree was constructed by using NTSYS-pc version 2.11T (Exeter Software, Setauket, N.Y.) (Figure 3.30). From RAPD based dendrogram, it clearly showed that the twelve *Phyllanthus* species could be divided into 4 clusters. The three frequently misidentify herbaceous Phyllanthus species, P. amarus, P. urinaria, and P. debilis were separated into different clusters. Among these three species, the similarity index of the pair P. urinaria and P. debilis, P. amaurs and P. debilis, P. urinaria and P. amarus were 0.151, 0.227, and 0.237, respectively. It indicated that P. amaurs and P. urinaria is more closely related than P. debilis. In Thailand, P. amarus, P. debilis and P. urinaria are common weed species which are very similar and often found growing together in the same habitat (Chantaranothai, 2007). They were usually harvested for production of medicinal products (Jain et al., 2008, Theerakulpisut et al., 2008). In addition, the two other well-known medicinal species P. urinaria and P. emblica were grouped in the same cluster (Cluster III) with 0.479 similarity index that corresponded to the previous report of Theerakulpisut et al. (2008). However, phylogenetic relationship based on RAPD analysis showed that the morphology variation of twelve Phyllanthus species is not reflected a DNA level. In this experiment, we can use nine primers to discriminate all twelve Phyllanthus species and generated the unique RAPD profiles.

CHAPTER IV

SEQUENCE ANALYSIS OF NUCLEAR ITS IN PHYLLANTHUS SPP.

4.1 Material and methods

4.1.1 Plant materials

Samples of 23 *Phyllanthus* species were collected from various habitats in Thailand. Fresh plant samples were identified by Assoc. Prof. Dr. Nijsiri Ruangrungsi and Assoc. Prof. Thatree Phadungcharoen of Chulalongkorn University, and voucher samples were deposited in the Museum of Natural Medicines, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Thailand. In addition, herbarium specimens for DNA extraction were collected from Bangkok Herbarium (BKF), Bangkok, Thailand (Table 4.1).

Species	Sample Codes	Provinces	Date of Collection	Voucher ID	GenBank accession
P. amarus Schum. & Thonn.	P1K1	Kanchanaburi	10.2005	MJT-4810102	AB550080
	P1B2	Bangkok	10.2005	MJT-4810101	
	P1CM1	Chiang Mai	11.2006	MJT-4911110	
	P1KK1	Khon Kaen	10.2006	MJT-4910109	
	P1NP1	Nakhon Pathom	03.2007	MJT-5003111	
	P1PM1	Nakhon Phanom	10.2006	MJT-4910106	
	P1UT1	Udon Thani	10.2006	MJT-4910108	
P. urinaria L.	P2B1	Bangkok	10.2005	MJT-4810201	AB550081
	P2B2	Bangkok	02.2006	MJT-4810202	
	P2B3	Bangkok	06.2007	MJT-4810203	
	P2NP1	Nakhon Pathom	03.2007	MJT-5003205	
P. emblica L.	P3B1	Bangkok	10.2005	MJT-4810301	AB550082
	P3CM1	Chiang Mai	11.2006	MJT-4911309	
	P3HK1	Nong Khai	10.2006	MJT-4910304	
	P3KK1	Khon Kaen	10.2006	MJT-4910307	
	P3KS1	Kalasin	10.2006	MJT-4910306	
	P3PL1	Pattalung	04.2007	MJT-5004311	
	P3S1	Sakon Nakhon	06.2006	MJT-4906302	

 Table 4.1 List of Phyllanthus species used for DNA sequencing in this study.

Species	Sample Codes	Provinces	Date of Collection	Voucher ID	GenBank accession
P. taxodiifolius Beille	P4NP1	Nakhon Pathom	01.2006	MJT-4901402	AB550083
	P4B1	Bangkok	10.2005	MJT-4810401	
	P4PR1	Prachinburi	06.2007	TRP-5006403	
P. collinsiae Craib	P5B1	Bangkok	10.2005	MJT-4810501	AB550084
	P5B2	Bangkok	10.2005	MJT-4810502	
P. acidus L.	P6NN1	Nakhon Nayok	10.2006	TT-4910603	AB550085
	P6CM1	Chiang Mai	11.2006	MJT-4911615	
	P6CR1	Chiang Rai	10.2006	NR-4910604	
	P6NN1	Nakhon Nayok	10.2006	TT-4910603	
	P6NS1	Nakhon Si Thammarat	10.2006	TT-4910612	
	P6S1	Sakon Nakhon	06.2006	MJT-4906602	
	P6ST1	Satun	10.2006	TT-4910613	
P. pulcher Wall. ex Müll.Arg.	P7CM1	Chiang Mai	11.2006	MJT-4911703	AB550086
	P7K1	Kanchanaburi	10.2005	MJT-4810702	
	P7NP1	Nakhon Pathom	03.2007	MJT-5003704	
	P7R1	Rayong	08.2007	NSR-5008705	
	P7B1	Bangkok	10.2005	MJT-4810701	
<i>P. debilis</i> Klein ex Willd.	P9B1	Bangkok	10.2005	NSR-4810801	AB550087
	P9NP1	Nakhon Pathom	01.2006	MJT-4901802	

Species	Sample Codes	Provinces	Date of Collection	Voucher ID	GenBank accession	
P. virgatus G.Forst.	P12C1	Chachoengsao	08.2007	TRP-5008904	AB550088	
	P12RT1	Ratchaburi	09.2007	NSR-5009905	AB550089	
	P12B1	Bangkok	10.2005	TRP-4810901		
<i>P. acutissimus</i> Miq.	P13UB1	Ubon Ratchathani	04.2007	TRP-5004102	AB550090	
	P13C1	Chachoengsao	01.2006	TRP-4901101		
P. angkorensis Beille in Lecomte	P14NP1	Nakhon Pathom	01.2006	MJT-4901111	AB550091	
	P14NP2	Nakhon Pathom	03.2007	MJT-4901112		
<i>P. reticulatus</i> Poir.	P17B1	Bangkok	02.2006	MJT-4902121	AB550092	
P. microcarpus (Benth.) Müll.Arg.	P22H2	Narathiwat	11.2000	BKF136348	AB550093	
P. columnaris Müll.Arg.	P24H1	Chiang Mai	12.1985	BK59507	AB550094	
P. gracilipes (Miq.) Müll.Arg.	P27H2	Trat	12.1972	BKF57742	AB550095	
P. harmandii Beille in Lecomte	P28H1	Si Sa Ket	10.1984	BKF111044	AB550096	
<i>P. lingulatus</i> Beille	P30H1	Chiang Mai	03.1967	BK39827	AB550097	
P. myrtifolius (Wight) Müll.Arg.	P32H1	Bangkok	06.1976	BK55987	AB550098	
P. orientalis (Craib) Airy Shaw	P33H1	Lampang	02.1983	BK21398	AB550099	
P. oxyphyllus Miq.	P34H3	Phuket	04.2007	BKF149043	AB550100	
P. roseus (Craib & Hutch.) Beille in Lecomte	P37H1	Si Sa Ket	08.1976	BK21430	AB550101	
P. sikkimensis Müll.Arg.	P38H1	Prachuap Khiri Khan	10.1973	BK50143	AB550102	
P. welwitschianus Müll.Arg.	P40H1	Saraburi	06.1974	BK51174	AB550103	
Total 23 Phyllanthus species, 56 samples						

4.1.2 DNA extraction and purification form herbarium specimens

Total genomic DNA of fresh and herbarium specimens were extracted using a DNeasy Plant Mini Kit (Qiagen, Germany) and purified using a High Pure PCR Product Purification Kit (Roche Diagnostics, Japan) according to the manufacturer's protocol. DNA content was estimated using a DyNA Quant 200 Fluorometer (GE Healthcare, Sweden) with calf thymus DNA (Sigma, USA) as a standard.

4.1.3 Primer design

PCR primers were designed for *Phyllanthus* species based on the rRNA gene sequence of *P. amarus* retrieved from the Genbank Nucleotide Sequence Database (accession no. AY725467). The forward primer (Phyll-ITS-1F) and the reverse primer (Phyll-ITS-1R) were used to amplify the entire ITS region (ITS1-5.8S rDNA-ITS2) from fresh plants. For herbarium specimens, it was difficult to amplify the whole ITS region, so nested PCR was performed. In such case, the inner primers, In-18S-26S-F, In-18S-26S-R, and In2R were designed. Annealing positions of these PCR primers were shown in Figure 4.1 and detail of these primers are presented in Table 4.2.

Figure 4.1 Structure of ITS region and localization of primers used for the amplification and sequencing of the ITS region.

Direction	Primer	Sequence (5'-3')	Length (bp)	Tm (^o C)
Forward	Phyll-ITS-1F	GGA GAA GTC GTA ACA AGG TT	20	54.3
	In-18S-26S-F	AAT TGC AGA ATC CCG TGA AC	20	54.3
Reverse	Phyll-ITS-1R	GTA ATC CCG CCT GAC CTG	18	58.1
	In-18S-26S-R	TTG CGT TCA AAG ACT CGA TG	20	54.3
	In2R	CGT CGA ATA CAT AGA GGG TC	20	56.3

 Table 4.2 PCR amplification primers and sequencing primers of ITS region used in this

 study

4.1.4 PCR amplification from nuclear ITS region

The PCR mixture (25 µl) used to amplify the region from fresh samples contained 10 mM Tris-HCl (pH 8.8), 2 mM potassium chloride, 0.2 mM dNTP, 0.4 µM each primer, 0.02 units *Taq* DNA Polymerase (Roche Diagnostics, Japan), and 4–40 ng of DNA template. Amplification was carried out under the following conditions: a preliminary denaturation at 94 °C for 2 min, 30 cycles of denaturation at 94 °C for 30 s, annealing at 50 °C for 1 min, and elongation at 72 °C for 1 min, with a final extension at 72 °C for 5 min. When the DNA preparations from the herbarium specimens were used as PCR templates, the reaction mixture (20 µl) contained 25 mM TAPS (tris-hydroxymethylmethyl-amino-propanesulfonic acid, sodium salt), pH 9.3, 50 mM KCl, 2 mM MgCl₂, 1 mM β -mercaptoethanol, 0.2 mM dNTP, 0.4 µM each primer, 0.02 unit Nova*Taq* Hot Start DNA Polymerase (Novagen, USA), and 0.1 ng DNA template. The amplification was performed with 35 cycles consisting of precycling at 95 °C for 10 min, denaturation at 94 °C for 30 s, annealing at 55 °C for 1 min, and elongation at 72 °C for 3 min, with a final extension at 72 °C for 7 min. PCR products were separated by 1.2% agarose gel electrophoresis and detected by staining with ethidium bromide.

4.1.5 PCR product purification and DNA sequencing

PCR products were incubated with ExoSAP-IT solution (GE Healthcare, Sweden) according to the manufacturer's protocol, purified using Wizard SV Gel and PCR Clean-Up System (Promega, USA.), and applied to sequencing reactions. The nucleotide sequences were determined using an ABI PRISM 3100-Avant Genetic Analyzer (Applied Biosystems, USA) or DSQ-2000L (Shimadzu, Japan). For each sample, forward and reverse sequencing reactions were performed to confirm the results and assembled using BioEdit (Hall, 1999). The nucleotide additive polymorphic sites (Aguilar and Feliner, 2003) were confirmed by comparing their intensity ratio of forward and reverse sequencing electropherograms. The nucleotide additive sequences were assigned according to the IUPAC codes, only species showing no additivity at the variable sites in ITS sequences were included in the phylogenetic analysis (Sang *et al*, 1995).

4.1.6 Phylogenetic tree reconstruction.

DNA sequences of the ITS1-5.8S rDNA-ITS2 were aligned using Clustal X version 2.0.7 (Larkin *et al.*, 2007) and Muscle version 3.6 (Edgar, 2004), and then the alignment was manually adjusted. Maximum parsimony (MP) was conducted using PAUP version 4.0b 10 (Swofford, 2003). Strict and semi-strict 50% consensus trees were calculated from all parsimonious trees. The consistency (CI) and retention indices (RI) were calculated. Bootstrap analyses were performed using 1000 replicates and the heuristic search algorithm. The same sequence data were also analyzed using maximum likelihood (ML) and neighbor-joining (NJ) method.

4.2 Results

Genomic DNA

Total genomic DNA was isolated from leaves of herbarium specimens using a DNeasy Plant Mini Kit (Qiagen, Germany). Herbarium specimens need the incubation period more than the fresh specimens and must be purified before the PCR amplification. Purified DNA was examined on 1.0% agarose gel electrophoresis. Genomic DNA from herbarium specimens was shown in Figure 4.2 and genomic DNA from fresh samples was shown in Figure 3.1, Chapter III. The EZ Load 1kb Molecular Ruler (Bio-Rad Laboratories, USA) was used as DNA marker.

M: EZ Load 1kb Molecular Ruler

Lane 1-7: DNA patterns of herbarium specimens extracted from *P. microcarpus*, *P. columnaris*, *P. gracilipes*, *P. harmandii*, *P. lingulatus*, *P. myrtifolius*, *P. orientalis*, respectively.
4.2.1 PCR product from nuclear ITS region

Forty-five of total genomic DNA were extracted from the fresh samples. The PCR products were amplified in the entire ITS region using two primers, Phyll-ITS-1F and Phyll-ITS-1R, which designed on the rDNA sequence of *P. amarus* retrieved from the DNA database. All fresh samples were successfully amplified (Table 4.1) and the size of the obtained PCR product was about 700 bp long (Figure 4.3).

Lane M: 2-Log DNA Ladder

Lane 1-7: *P. amarus*, *P. urinaria*, *P. emblica*, *P. taxodiifolius*, *P. collinsiae*, *P. acidus*, *P. pulcher*, *P. debilis*, *P. virgatus*, *P. acutissimus*, *P. angkorensis*, *P. reticulatus*

For eleven of herbarium specimens, the DNA was highly degraded into small fragments and showed low DNA concentration (Figure 4.2). It did not yield a PCR product when DNA preparations from these samples were used as PCR templates. Therefore, the two strategies were used for amplified these herbarium specimens. 1) A pair of primer Phyll-ITS-1F and Phyll-Its-1R were used to amplified the entire ITS region using nested PCR technique (Figure 4.4). 2) ITS1 and ITS2 were separately amplified using inner primers annealed to the 5'- and 3'-end of the 5.8S rDNA (Figure 4.1). Then, the PCR product was sliced and purified using Wizard SV Gel and PCR Clean-Up System (Promega, USA) before sequencing (Figure 4.5). The PCR products were

directly applied to sequence reactions following treatment with endonuclease/alkaline phosphatase, and their nucleotide sequences were determined. The nucleotide sequences have been submitted to the DDBJ/EMBL/GenBank Nucleotide Sequence Database under the accession numbers shown in Table 4.1.

The amplified ITS regions of herbarium specimens showed the same size of PCR product with fresh samples about 700 bp long (Figure 4.5). In addition, The inner primer, In-18S-26S-F, In-18S-26S-R, and In2R, were separately amplified ITS1 and ITS2 fragments, giving PCR product size about 400 and 320 bp long, respectively. The full nucleotide sequence of the ITS region was determined by combination of two separate

Figure 4.4 The PCR products of ITS region amplified from herbarium specimens. (A) The first PCR amplification, (B) Nested PCR amplification

Lane M: 2-Log DNA Ladder

Lane 1-9: ITS patterns of herbarium specimens amplified from *P. microcarpus*, *P. columnaris*, *P. gracilipes*, *P. harmandii*, *P. lingulatus*, *P. myrtifolius*, *P. orientalis*, *P. oxyphyllus*, and *P. roseus*, respectively.

Lane M: 2-Log DNA Ladder

Lane 1-8: Nested PCR of herbarium specimens from amplified from *P. microcarpus*, *P. columnaris*, *P. gracilipes*, *P. harmandii*, *P. lingulatus*, *P. myrtifolius*, *P. orientalis*, *P. oxyphyllus*, and *P. roseus*, respectively.

4.2.2 Sequence analysis of nuclear ITS region

PCR products encompassing ITS1, 5.8S rDNA and ITS2 were amplified from 56 plant samples covering 23 *Phyllanthus* species collected from various habitats in Thailand (Table 4.1) using a PCR primer sets and their nucleotide sequences were determined. The boundaries of ITS1, ITS2, and adjacent coding regions were determined by comparing the published sequences from GenBank.

The size of the ITS1 and ITS2 regions were 197–222 bp and 196–210 bp, respectively, varying according to species. The 5.8S rDNA size was 163 bp, irrespective of species. The alignment of the entire ITS region is shown in Appendix B. The GC contents were in range of 51-60%. Details of the entire ITS nucleotide sequences of Phyllanthus species are listed in Table 4.5. Within the entire region, ITS2 provides a greater number of variable sites, 174, than ITS1, 169 sites but ITS1 contributes a greater number of informative sites, 145, than ITS2 (137 sites). In 5.8S, 30 variable sites were found with 20 being parsimony informative (12.3%). Of the variable nucleotide sites in the entire region, 302 (44.6%), are phylogenetically informative. A summary of the variation is shown in Table 4.3. However, some intra-species variation was found in the nucleotide sequence of ITS1 and ITS2, the numbers of intra-specifically varied nucleotides were within the range of one (*P. taxodiifolius*) to 27 (*P. virgatus*), and much smaller than those between species (Table 4.4). Within a species, pairwise difference ranges from 0.00% in most species to high of 7.00% in *P. virgatus* (Appendix C). Moreover, a conserved sequence, GGCRC-(NNNNN) -GYGCCAAGGAA (Y = C or T; R = G or A; N = A or G or C or T), was found at position 124-144 in the ITS1 of all plant samples of 23 Phyllanthus species examined.

Region	Length	Number of	Phylogenetically	%Phylogenetically
	(bp)	Variable	Informative sites	Informative
		sites		
ITS1	197-222	169	145	61.2
5.8S nrDNA	163	30	20	12.3
ITS2	196-210	174	137	56.4
Entire Region	566-595	373	302	44.6

Table 4.3 Summary of variation within the ITS region.

 Table 4.4 Nucleotide variation of the ITS sequence between intra-species spp.

Species	No. of Sample	No. of nucleotide	% Intra-species variation	
		variation		
P. urinaria	4	20	3.40	
P. emblica	7	2	0.34	
P. taxodiifolius	3	1	0.18	
P. virgatus	3	27	4.54	

Species	Sample	ITS1	5.8S	ITS2	Entire region	% GC
	codes	(bp)	(bp)	(bp)	(bp)	content
P. amarus	P1K1	219	163	202	584	56
	P1B2	219	163	202	584	56
	P1CM1	219	163	202	584	56
	P1KK1	219	163	202	584	56
	P1NP1	219	163	202	584	56
	P1PM1	219	163	202	584	56
	P1UT1	219	163	202	584	56
P. urinaria	P2B1	222	163	202	587	50
	P2B2	222	163	202	587	50
	P2B3	222	163	202	587	50
	P2NP1	222	163	202	587	50
P. emblica	P3B1	220	163	204	587	53
	P3CM1	220	163	204	587	53
	P3HK1	220	163	204	587	53
	P3KK1	220	163	204	587	53
	P3KS1	220	163	204	587	53
	P3PL1	220	163	204	587	53
	P3S1	220	163	204	587	53
P. taxodiifolius	P4NP1	199	163	202	564	52
	P4B1	199	163	202	564	52
	P4PR1	199	163	202	564	52
P. collinsiae	P5B1	221	163	205	589	52
	P5B2	221	163	205	589	52
P. acidus	P6NN1	222	163	204	589	56
	P6CM1	222	163	204	589	56
	P6CR1	222	163	204	589	56
	P6NN1	222	163	204	589	56
	P6NS1	222	163	204	589	56
	P6S1	222	163	204	589	56
	P6ST1	222	163	204	589	56

Table 4.5 Detail of the ITS nucleotide sequences of *Phyllanthus* species.

Phyllanthus	Sample	ITS1	5.8S	ITS2	Entire region	% GC
Species	codes	(bp)	(bp)	(bp)	(dd)	content
P. pulcher	P7CM1	198	163	207	568	54
	P7K1	198	163	207	568	54
	P7NP1	198	163	207	568	54
	P7R1	198	163	207	568	54
	P7B1	198	163	207	568	54
P. debilis	P9B1	220	163	197	580	56
	P9NP1	220	163	197	580	56
P. virgatus	P12C1	222	163	210	595	51
	P12RT1	222	163	209	594	51
	P12B1	222	163	210	595	51
P. acutissimus	P13UB1	197	163	206	566	54
	P13C1	197	163	206	566	54
P. angkorensis	P14NP1	221	163	205	589	52
	P14NP2	221	163	205	589	52
P. reticulatus	P17B1	221	163	204	588	60
P. microcarpus	P22H2	221	163	201	585	51
P. columnaris	P24H1	221	163	204	588	51
P. gracilipes	P27H2	221	163	205	589	52
P. harmandii	P28H1	221	163	208	592	52
P. lingulatus	P30H1	220	163	207	590	51
P. myrtifolius	P32H1	222	163	206	591	53
P. orientalis	P33H1	221	163	205	589	51
P. oxyphyllus	P34H3	221	163	204	588	51
P. roseus	P37H1	218	163	202	583	56
P. sikkimensis	P38H1	198	163	206	567	52
P. welwitschianus	P40H1	222	163	196	581	55

The obtained ITS sequences were all aligned as shown in Appendix B. The results revealed that genetic variations of ITS region were mostly caused from nucleotide substitutions. Nucleotide deletion was found in ITS1 mostly in *P. taxodiifolius*, *P. pulcher*, *P. acutissimus* and *P. sikkimensis* at position 192 to 210, and 219 to 224. In addition, based on the direct sequencing technique, the electropherograms of some samples appeared to have double signaling peaks at one nucleotide position. From a single PCR product sequencing, the obtained electropherogram showed similarity in both forward and reverse sequencing. This phenomenon has been called nucleotide additive sites (Sang *et al.*, 1995).

The obtained entire ITS sequences (Appendix B) indicated that *P. urinaria*, *P. emblica*, *P. taxodiifolius*, and *P. debilis* appeared to have nucleotide additive sites. Whereas nineteen *Phyllanthus* species, including *P. amarus*, *P. collinsiae*, *P. acidus*, *P. pulcher*, *P. virgatus*, *P. acutissimus*, *P. angkorensis*, *P. reticulatus*, *P. microcarpus*, *P. columnaris*, *P. gracilipes*, *P. harmandii*, *P. lingulatus*, *P. myrtifolius*, *P.orientalis*, *P. oxyphyllus*, *P. roseus*, *P. sikkimensis*, and *P. welwitchianus* have no nucleotide additive sites. The number of the nucleotide additives was in the range of 1 to 13 sites. *P. urinaria* was found to contain several nucleotide additive sites. The nucleotide additive positions were assigned following the IUPAC codes (Y=C/T, R=A/G, W=A/T, K=G/T, M=A/C, S=C/G).

4.2.3 Phylogenetic relationship of Phyllanthus spp. by nuclear ITS sequencing

The obtained sequences of entire ITS region were used to manipulate the data matrices. The ITS sequence data matrices were analyzed for the phylogenetic raltionship by using PAUP version 4.0b 10 (Swofford, 2003) program. All of possible phylogentic trees were consensus with semi-strict method. Bootstraping analysis was performed with 1000 replications. The entire ITS of *Margaritaria cyanosperma*, *Savia bahamensis*, *Flueggea leucopyrus*, and *Lingelsheimia* sp. were used as the outgroups.

The entire ITS sequences of twenty-four taxa representing twenty-three *Phyllanthus* species were used to produce the data matrix. The obtained ITS data matrix was 677 characters, 373 variable characters and 302 informative characters. Based on these data matrix, maximum parsimony method could be simulated for possible parsimony trees as 198 equally parsimonious trees. Maximum Parsimony analysis produced one parsimonious tree of 1397 steps, with a Cl of 0.467, Rl of 0.771, and RC of 0.360. The semi-strict consensus tree with bootstrap percentages is shown in Figure 4.6. The Maximum Likelihood algorithm was applied to the same dataset, resulting in one ML tree which was identical with the MP tree (Figure 4.7). Furthermore, the NJ analysis gave an essentially identical topology to the parsimony tree (Figure 4.8). It could be concluded that the phylogentic relationship of the twenty-three *Phyllanthus* species was the non-monophyletic embedded with *Sauropus* and *Breynia* (Clade M).

Previously, Kathriarachchi *et al.* analyzed the ITS sequences of 79 species belonging to *Phyllanthus* sensu lato, and classified these species into 15 clades (clade A–O) (Kathriarachchi *et al.*, 2006). In the present investigation, *Phyllanthus* species in Thailand were found to be classified to 8 of the 15 clades of Kathariarachchi. Of the 12 species whose nucleotide sequences were determined in the present investigation for the first time, 8 belonged to clade N, 3 to clade C, and 1 to clade E. Moreover, the phylogram showed that *P. virgatus, P. myrtifolius, P. welwitschianus, P. reticulatus, P. pulcher, P. amarus, P. debilis, P. urinaria, P. emblica, P. oxyphyllus, and P. acidus*

were very close to those previously described with bootstrap percentages from 50% to 100%, which confirmed the identification of these species (Figure 4.6).

Figure 4.6 Molecular phylogenetic tree of *Phyllanthus* species distributed in Thailand based on the ITS sequences using a maximum parsimony algorithm. Semi-strict consensus tree of 198 equally parsimonious trees (1397 steps, CI = 0.467, RI = 0.771, RC = 0.360) was determined by heuristic analysis. Bootstrap percentages >50 are shown below branches. Sequences from this study are highlighted in gray. Clade names follow Kathriarachchi *et al.* (2006). The sequence data of the species followed by accession numbers in brackets were retrieved from the GenBank DNA Database.

Figure 4.7 Molecular phylogenetic tree of *Phyllanthus* species distributed in Thailand based on the ITS sequences using a Maximum Likelihood algorithm. Substitution model is HKY+G. Bootstrap percentages >50 are shown below branches. Sequences from this study are highlighted in gray. Clade names follow Kathriarachchi *et al.* (2006). The sequence data of the species followed by accession numbers in brackets were retrieved from the GenBank DNA Database.

Figure 4.8 Molecular phylogenetic tree of *Phyllanthus* species distributed in Thailand based on the ITS sequences using a Neighbor-joining algorithm. Bootstrap percentages >50 are shown below branches. Sequences from this study are highlighted in gray. Clade names follow Kathriarachchi *et al.* (2006). The sequence data of the species followed by accession numbers in brackets were retrieved from the GenBank DNA Database.

4.3 Discussions

Genetic Variation of Phyllanthus species

This study has revealed the genetic variation of twenty-three *Phyllanthus* species in Thailand by determining their entire ITS nucleotide sequence. Based on all the obtained ITS sequences, the length of ITS1 regions are in range of 197-222 bp while that of ITS regions are in range of 196-210 bp. The ITS1 region of most of all *Phyllanthus* species is consistently longer than the ITS2 region, excepted in *P. taxodiifolius*, *P. pulcher*, *P. acutissimus* and *P. sikkimensis*. These four species appeared nucleotide deletion in the ITS1. Length variation between species is due to insertion-deletion events (indels) in the ITS1 and ITS2. Baldwin *et al.*, (1995) reported the ITS1 region is longer than ITS2 in most angiosperms. As a result in Table 4.3, the percentage of potentially informative is greater in ITS1.

Their 5.8S coding regions are all 163 bp in length. This region is an evolutionary highly conserved sequence in angiosperms (Baldwin *et al.*, 1995). The apparent entire ITS sequences of all 23 *Phyllanthus* species are in the range from 566-595 bp long. The GC contents of their ITS region are 51%-60%. In the ITS1 region, Liu and Schardl (1994) reported a conserved sequence that can be aligned across many flowering plant families. The conserved motif is 21 bp long, was found at position 124–144 in all plant samples of 23 *Phyllanthus* species examined. This position places the motif in a similar location to that in other angiosperms Liu and Schardl (1994). The highly conserved sequence in ITS1 suggests that this region may have a key function in processing rRNA gene transcripts.

From RAPD analysis in Chapter III, RAPD pattern of *P. collinsiae* and *P. ankorensis* were different that implied those two species should be different species. However, the resulting of sequence alignment of *P. collinsiae* and *P. ankorensis* showed the identical ITS sequences. The result indicated those two sequences were from the same species as *P. ankorensis* and suggested those two species was misidentified. There seems to be some confusion of plant habit and morphology between young plant and adult plant of *P. ankorensis*. The result emphasizes that the sequencing method is more accurate than RAPD method since RAPD pattern may be changed by many factors.

In this experiment, we found that the high purity of genomic DNA or PCR products could be critical for successful ITS sequencing. DNA template purity appears to be important for ITS sequencing. This problem can be solved by further purification of genomic DNA before PCR amplification step.

Phylogenetic Analysis of *Phyllanthus* Species Based on the Nucleotide Sequence of the ITS Region

The molecular phylogenetic relationship among the *Phyllanthus* species distributed in Thailand was analyzed based on approximately 0.4 kb sequences of the ITS locus obtained in the present investigation together with those retrieved from the DNA database. The data set contained 54 ingroups and 4 outgroups, namely *Margaritaria cyanosperma*, *Savia bahamensis*, *Flueggea leucopyrus*, and *Lingelsheimia* sp. Maximum Parsimony (MP), Maximum Likelihood (ML), and Neighbor joining (NJ) methods were used to construct the phylogentic tree with the same data set, resulting an identical topology tree.

Kathriarachchi *et al.* (2006) analyzed ITS sequences of 79 species belonging to *Phyllanthus* sensu lato, and revealed these species were classified into 15 clades (clade A to clade O). *Phyllanthus* species in Thailand were found to belong to eight clades of these 15 clades. Of 12 species newly analyzed in the present investigation, eight belonged to clade N, three to clade C, and one to clade E. Taxonomy of *Phyllanthus* in Thailand are rather limited and not well studied. Based on Kathriarachchi *et al.* reported, we can classify twenty tree *Phyllanthus* in Thailand into five subgenera as follows; Clade A belonged to *Isocladus*, Clade B and O belonged to *Kirganelia*, Clade C belonged to *Eriococus* and *Isocladus*, Clade E and G belonged to *Phyllanthus*, and Clade N

belonged to *Phyllanthus* and *emblica*. Phylogenetic tree confirmed the previous finding that *Phyllanthus* species are non-monophyletic but embedded with *Sauropus* and *Breynia*, and suggested that these three taxa may be changed at the generic rank in the future.

According to phylogenetic analysis from ITS and RAPD data, the results showed that *P. pulcher* and *P. taxodiifolius* were grouped in the same clade (Clade I of RAPD and Clade C of ITS) and *P. urinaria*, *P. emblica*, and *P. collinsiae* were grouped in Clade III of RAPD and Clade N of ITS whereas the other members fell in different clades. Topological incongruence between ITS and RAPD may be caused by the limit of plant samples and/or the interpretation from RAPD data.

CHAPTER V

ITS SEQUENCE-BASED AUTHENTICATION OF *PHYLLANTHUS AMARUS*, *P. DEBILIS* AND *P. URINARIA* BY A PCR-RFLP METHOD

5.1 Material and methods

5.1.1 Plant materials

The aerial part of three *Phyllanthus* species, *P. amarus*, *P. urinaria* and *P. debilis* were used in this study. All of the collected plant materials and their localities are listed in Table 3.1 in Chapter III. The crude drug samples of "Luk Tai Bai (ลูกใต้ใบ)" were obtained from local Thai markets are listed in Table 5.1.

Sample no.	Crude drug name	Type of crude drug	Year of collection	Drug market
1	ลูกใต้ใบ (Luk Tai Bai)	Dried Segments	2006	Bangkok
2	ลูกใต้ใบ (Luk Tai Bai)	Dried Segments	2007	Songkhla
3	หญ้าใต้ใบ (Ya Tai Bai)	Dried Segments	2006	Bangkok
4	ลูกใต้ใบ (Luk Tai Bai)	Dried Segments	2006	Bangkok
5	ลูกใต้ใบ (Luk Tai Bai)	Powder	2006	Bangkok
6	ลูกใต้ใบ (Luk Tai Bai)	Capsule	2010	Bangkok
7	ลูกใต้ใบ (Luk Tai Bai)	Capsule	2006	Nakhon Phathom
8	ลูกใต้ใบ (Luk Tai Bai)	Dried Segments	2009	Bangkok
9	ลูกใต้ใบ (Luk Tai Bai)	Capsule	2010	Suphanburi
10	ลูกใต้ใบ (Luk Tai Bai)	Capsule	2010	Phetchaburi
11	ลูกใต้ใบ (Luk Tai Bai)	Capsule	2010	Samutprakan

 Table 5.1 List of crude drug samples obtained in Thai local markets.

5.1.2 PCR amplification

The ITS region was amplified using Phyll-ITS-1F and Phyll-ITS-1R as forward and reverse primers, respectively. For fresh plants, PCR amplification was carry out using *Taq* DNA Polymerase (Roche Diagnostics, Japan) as previously described in Chapter IV. For crude drugs, Nova*Taq* Hot Start DNA Polymerase (Novagen, USA) was used for PCR amplification.

5.1.3 Restriction enzyme digestion

The restriction sites of ITS region were analyzed by using NEBcutter program (http://tools.neb.com/NEBcutter2/). *Dde* I restriction enzyme was selected for identification and the prediction sites are shown in Figure 5.1. The PCR products of ITS region approximately 700 bp were digested with 2.5 units of *Dde* I restriction enzyme (Roche Diagnostics, Japan) at 37°C for 3 h, separated by 2.5% agarose gel electrophoresis, and visualized by ethidium bromide staining under UV light. The 100 bp plus DNA Ladder (Vivantis, USA) was used as a DNA marker.

Figure 5.1 *Dde I* restriction sites prediction of ITS region in *P. amarus*, *P. urinaria*, and *P. debilis*. ITS nucleotide position start from the first position of this region.

5.2 Results

Genomic DNA from crude drug samples

Genomic DNA isolated from 11 crude drug samples (no.1-11) that were obtained from local Thai markets are shown in Figure 5.2.

Figure 5.2 Genomic DNA from 11 crude drugs of *Phyllanthus* species.

Lane M: EZ Load 1kb Molecular Ruler

Lane 1-11: Crude drug sample no. 1 to 11

5.2.1 PCR-RFLP analysis

Sequence alignment of the ITS regions from three most popular medicinal *Phyllanthus* species, *P. amarus*, *P. urinaria*, and *P. debilis* revealed the presence of a *Dde* I recognition site (C^TNAG) at nt 450–454 (from 5'-end) of the ITS region of *P. amarus* and at nt 198–202 (from 5'-end) of *P. debilis*. In contrast, *Dde* I restriction site was absent in the ITS region of *P. urinaria* (Figure 5.3).

Figure 5.3 Sequence alignment of the ITS1-5.8S rDNA-ITS2 region of the nuclear ribosomal gene of *Phyllanthus amarus*, *P. urinaria*, and *P. debilis*. The boxed sequences correspond to 5.8S rDNA. Arrows indicate *Dde* I restriction sites.

The ITS regions were amplified from *P. amarus*, *P. debilis*, and *P. urinaria* using a pair of primers, Phyll-ITS-1F and Phyll-ITS-1R, and the PCR products were incubated with *Dde* I. As shown in Figure 5.4, the PCR product from *P. amarus* was digested into two fragments of 500 and 190 bp, and that from *P. debilis* into 440 and 250 bp; however, the product from *P. urinaria* remained undigested.

Figure 5.4 PCR-RFLP analysis of the ITS1-5.8S rDNA-ITS2 region amplified from *Phyllanthus amarus*, *P. urinaria*, and *P. debilis*. The PCR products from the samples (lanes 1, 3, and 5) were digested by *Dde* I (lanes 2, 4, and 6). Lane M: VC 100bp Plus DNA Ladder

The *Dde* I restriction sites also were examined whether in the ITS regions of the 36 *Phyllanthus* species in Thailand. *P. roseus* has a *Dde* I site at the same position as *P. amarus*, and 13 species (*P. emblica*, *P. collinsiae*, *P. acidus*, *P. pulcher*, *P. angkorensis*, *P. reticulatus*, *P. columnaris*, *P. harmandii*, *P. lingulatus*, *P. oxyphyllus*, *P. orientalis*, *P. gracilipes*, *P. microcarpus*) besides *P. urinaria* has no *Dde* I site.

PCR-RFLP protocol was applied to crude drug samples of "Luk Tai Bai (an line l_{II})" obtained from the markets. The ITS fragments from nine samples (No. 1–9) were digested into two fragments of 500 and 200 bp with *Dde* I, while the fragments from two crude drug samples (No. 10 and No. 11) exhibited three fragments of 700, 500, and 200 bp after *Dde* I digestion (Figure 5.5). The result indicated that samples No. 1–9 were crude drugs from *P. amarus*, while samples No. 10 and 11 were mixtures of *P. amarus* and presumably *P. urinaria*.

Figure 5.5 DNA-based authentication of Thai crude drugs "Luk Tai Bai (ลูกใต้ใบ)" and "Ya Tai Bai (หญ้าใต้ใบ)" by PCR-RFLP analysis of ITS locus. The ITS-5.8S rDNA-ITS2 fragments were amplified from 11 crude drug samples obtained in the market and separated by agarose gel electrophoresis either without Dde I digestion (left 11 lanes) or after Dde I treatment (right 11 lanes).

Lane M: VC 100bp Plus DNA Ladder

Lane 1-11: Crude drug sample no. 1-11

5.3 Discussion

In the present study, PCR-RFLP method was performed for identification of three most popular medicinal *Phyllanthus* species (*P. amarus, P. debilis*, and *P. urinaria*). We used Phyll-ITS-1F and Phyll-ITS-1R as forward and reverse primers for amplification of fresh and crude drug samples. The patterns of *Dde* I digestion were analyzed by using NEB cutter program. The PCR product from *P. amarus* was digested into two fragments of 500 and 190 bp, and that from *P. debilis* into 440 and 250 bp; however, the product from *P. urinaria* remained undigested. From 36 *Phyllanthus* species in Thailand, We found that *P. roseus* has a *Dde* I site at the same position as *P. amarus*. However, these two species are morphologically different and are found in different habitats. *P. amarus, P. debilis* and *P. urinaria* are most popular species in the Thai herbal markets, and this protocol may provide us with a convenient method to identify and/or discriminate *P. amarus, P. debilis*, and *P. urinaria* obtained from markets, without sequencing.

We applied the PCR-RFLP protocol to crude drug samples of "Luk Tai Bai (ลูกใต้ ใบ)" obtained from the various crude drug markets in Thailand. The ITS fragments from nine samples (No. 1–9) were digested into two fragments of 500 and 200 bp with *Dde* I, while the fragments from two crude drug samples (No. 10 and No. 11) exhibited three fragments of 700, 500, and 200 bp after *Dde* I digestion. It was indicated that samples No. 1–9 were crude drugs from *P. amarus*, while samples No. 10 and 11 were mixtures of *P. amarus* and presumably *P. urinaria*. It is interesting to note that No. 3 is derived from *P. amarus* although it was sold as "Ya Tai Bai (หญ้าใต้ไป)" which is the common plant name of *P. urinaria*. The amount of the PCR products (the intensities of the product bands) varied among the samples. However, this may not reflect the amounts of the particular crude drugs in the samples because the yield of the PCR products are affected by many factors including the amount of target nuclear DNA and/or impurities in the total DNA preparation from each sample.

Phyllanthus amarus has effective antiviral activities especially with respect to the hepatitis B virus. In Thai folk medicine, it is usually confused with other herbs such as *P*. *urinaria* and *P. debilis* because they are morphologically similar and share the same

drug name in the market. Although these three species can be discriminated based on the difference in nucleotide sequence of their respective ITS region, sequencing is timeconsuming and relatively costly. The present study revealed that *P. amarus* as well as the crude drug derived from it can be easily discriminated from *P. debilis* and *P. urinaria* based on the PCR-RFLP profile after *Dde* I digestion of the amplified ITS regions.

CHAPTER VI

CONCLUSIONS

- We discriminated twelve *Phyllanthus* species in Thailand by RAPD marker. Screening of eighty random deca-nucleotide primers, only nine primers (OPD-02, OPD-04, OPD-07, OPS-01-, OPS-03, OPS-07, OPS-08, OPS-12, and OPS-19) can be used to amplify all twelve *Phyllanthus* species and generated the unique RAPD profiles.
- We successfully amplified the ITS region of twenty-three *Phyllanthus* in Thailand by using direct sequencing method. The results revealed that genetic variations of the ITS region were mostly from nucleotide substitutions. Nucleotide deletion was found in ITS1 mostly in *P. taxodiifolius*, *P. pulcher*, *P. acutissimus* and *P. sikkimensis*.
- 3. A conserved sequence, GGCRC-(NNNNN)-GYGCCAAGGAA (Y = C or T; R = G or A; N = A or G or C or T) was found in ITS1 of all twenty-three *Phyllanthus* species. The highly conserved sequence in ITS1 suggests that this region may have a key function in processing rRNA gene transcripts.
- Phylogentic tree was reconstructed from ITS region. The results showed that topologies of the obtained parsimony tree, maximum likelihood tree, and neighbor joining tree were identical.
- 5. Phylogenetic relationship of all twenty-three *Phyllanthus* species was shown to non-monophyletic type with embedded *Sauropus* and *Breynia*. The results suggested that these three taxa may be changed at the generic rank in the future.
- We applied PCR-RFLP to discriminate three medicinal *Phyllanthus* species. The results showed that this protocol was rapid and accurate to identify *P. amarus* from *P. debillis* and *P. urinaria*.

In conclusion, RAPD marker is a rapid and useful technique to discriminate *Phyllanthus* species since this technique could be generate polymorphic DNA patterns.

However, this technique shows low reproducibility. The present study indicates that DNA authentication using the ITS sequence is a reliable method to identify and/or discriminate between *Phyllanthus* species distributed in Thailand. The established PCR-RFLP protocol is a rapid and accurate method to identify *P. amarus*-derived "Luk-Tai-Bai (ลูกใต้ใบ)" in Thai herbal markets.

References

Thai

- คณะเภสัชศาสตร์, มหาวิทยาลัยมหิดล. 2539. <u>สมุนไพรไม้พื้นบ้าน (1)</u>. พิมพ์ครั้งแรก. กรุงเทพ: ประชาชน.
- คณะเภสัชศาสตร์, มหาวิทยาลัยมหิดล. 2541. <u>สมุนไพรไม้พื้นบ้าน (2)</u>. พิมพ์ครั้งแรก. กรุงเทพ: ประชาชน.
- คณะเภสัชศาสตร์, มหาวิทยาลัยมหิดล. 2543. <u>สมุนไพรไม้พื้นบ้าน (4)</u>. พิมพ์ครั้งแรก. กรุงเทพ: ประชาชน.
- คณะเภสัชศาสตร์, มหาวิทยาลัยมหิดล. 2543. <u>สมุนไพรไม้พื้นบ้าน (5)</u>. พิมพ์ครั้งแรก. กรุงเทพ: ประชาชน.
- ลีนา ผู้พัฒนพงศ์. 2530. <u>สมุนไพรไทย ตอนที่ 5</u>. พิมพ์ครั้งแรก. กรุงเทพ: ชุติมาการพิมพ์.

วุฒิ วุฒิธรรมเวช. 2540. <u>สารานุกรมสมุนไพร</u>. พิมพ์ครั้งแรก. กรุงเทพ: โอ. เอส. พริ้นติ้ง เฮ้าส์.

English

- Aguilar, J. F., and Feliner, G. N. 2003. Additive polymorphisms and reticulation in an ITS phylogeny of thrifts (*Armeria*, Plumbaginaceae). <u>Mol Phylogenet Evol</u> 28: 430-447.
- Ambak, M. A., Bolong, A. A., Ismail, P., and Tam, B. M. 2006. Genetic variation of Snakehead Fish (*Channa striata*) populations using random amplified polymorphic DNA. <u>Biotechnology</u> 5(1): 104-110.
- APG (The Angiosperm Phylogeny Group). 2003. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG II. <u>Bot J Linn Soc</u> 141: 399-436.
- Baldwin, B. G. 1992. Phylogentic utility of the internal transcribed spacers of nuclear ribosomal DNA in plants: An example from the Compositae. <u>Mol Phylogenet</u> <u>Evol</u> 1: 3-16.
- Baldwin, B. G. 1993. Molecular phylogenetics of *Calycadenia* (Compositae) based on ITS sequences of nuclear ribosomal DNA: chromosomal and morphological evolution reexamined. <u>Am J Bot</u> 80: 222-238.

- Baldwin, B. G., Sanderson, M. J., Porter, J. M., Wojciechowski, M. F., Campbell, C. S., and Donoghue, M. J. 1995. The ITS region of nuclear ribosomal DNA: a valuable source of evidence on angiosperm phylgeny. <u>Ann Mo Bot Gard</u> 82: 247-277.
- Bhattacharyya, R., Bhattacharya, S., Wenzel-Mathers, M., and Buckwold, V. E. 2003. *Phyllanthus amarus* root clone with significant activity against bovine diarrhea virus – a surrogate model of hepatitis C virus. <u>Curr Sci</u> 84(4): 529-533.
- Bussell, J., Waycott, M., and Chappill, J. A. 2005. Arbitrarily amplified DNA markers as characters for phylogenetic inference. <u>Perspect Plant Ecol Evol Syst</u> 7: 3-26.
- Cai, Z. H., Li, P., Dong, T. T. X., and Tsimi, K. W. K. 1999. Molecular diversity of 5SrRNA Spacer Domain in Fritillaria Species Revealed by PCR Analysis. <u>Planta</u> <u>Med</u> 65: 360-364.
- Chang, C., Lien, Y., Liu, K. C. S. C., and Lee, S. 2003. Lignans from *Phyllanthus urinaria*. <u>Phytochemistry</u> 63: 825-833.
- Chantaranothai, P. 2005. Taxonomic Notes on the genus *Phyllanthus* L. (Euphobiaceae) in Thailand. <u>Thai For Bull (Bot)</u> 33: 16-20.
- Chantaranothai, P. 2007. <u>Flora of Thailand Euphorbiaceae (Genera G-Z): Phyllanthus</u> vol.8 part 2. Bangkok: Prachachon.
- Chaveerach, R., Kunitake, H., Nuchadomrong, S., Sattayasai, N., and Komatsu, K.
 2002. RAPD patterns as a useful tool to differentiate Thai *Piper* from morphologically alike Japanese *Piper*. <u>Sci Asia</u> 28: 221-225.
- Chayamarit, K., and van Welzen, P. 2005. <u>Flora of Thailand Euphorbiaceae (Genera A-</u><u>F) vol.8 part 1</u>. Bangkok: Prachachon.
- Cheng, K. T., Chang, H. C., Su, C. H., and Hsu, F. 1997. Identification of dried rhizomes of *Coptis* species using random amplified polymorphic DNA. <u>Bot Bull</u> <u>Acad Sin</u> 38: 241-244.
- Devaiah, K. M., and Venkatasubramanian, P. 2008. Development of SCAR marker for authentication of *Pueraria tuberose* (Roxb. ex. Willd.) DC. <u>Curr Sci</u> 94(10): 1306-1309.

- Ding, X. Xu, L., Wang, Z. Zhou, K., Xu, H., and Wang, Y. 2002. Authentication of stems of *Dendrobium officinale* by rDNA ITS region sequences. <u>Planta Med</u> 68: 191-192.
- Dnyaneshwar, W., Preeti, C., Kalpana, J., and Bhushan, P. 2006. Development and application of RAPD-SCAR marker for identification of *Phyllanthus emblica* Linn. <u>Biol Pharm Bull</u> 29(11): 2313-2316.
- Edgar, R. C. 2004. Muscle: multiple sequence alignment with high accuracy and high throughput. <u>Nucleic Acids Res</u> 32: 1792-1797.
- Fu, R. Z., Wang, J., Zhang, Y. B., Wang, Z. T., But, P. P., Li, N., et al. 1999. Differentiation of medicinal *Codonopsis* species from adulterants by polymerase chain reaction-restriction fragment length polymorphism. <u>Planta Med</u> 65: 648-650.
- Feng, T., Liu, S., and He, X. J. 2010. Molecular authentication of the traditional Chinese medicinal plant *Angelica sinensis* based on internal transcribed spacer of nrDNA. <u>J Biotechnol</u> 13(1): 1-10.
- Govaerts, R., Frodin, D. G., and Radcliffe-Smith, A. 2000. <u>World checklist and</u> <u>bibliography of Euphorbiaceae (and Pandaceae) Vol.4</u>. England: Royal Botanic Gardens, Kew.
- Guo, Y., Kondo, K., Terabayashi, S., Yamamoto, Y., Shimada, H., Fujita, M., et al. 2006. DNA authentication of So-jutu (*Atractylodes lancea* rhizome) and Byaku-jutsu (*Atractylodes* rhizome) obtained in the market based on the nucleotide sequence of the 18S-5.8S rDNA internal transcribed spacer region. <u>J Nat Med</u> 60: 149-156.
- Guo, Y., Tsuruga, A., Yamaguchi, S., Oba, K., Iwai, K., Sekita, S., et al. 2006. Sequence analysis of Chloroplast *chlB* gene of medicinal *Ephedra* species and its application to authentication of Ephedra Herb. <u>Biol Pharm Bull</u> 29: 1207-1211.
- Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. <u>Nucl Acids Symp Ser</u> 41: 95-98.
- Hall, B. G. 2004. <u>Phylogenetic Tree Made Easy</u>. 2nd. MA: Sinaver.

- Hammond, J. B. W., and Spanseick, G. S. 1997. A demonstration of genomic DNA profiling by RAPD analysis. Biochem Educ 25(2): 109-111.
- Hon, C. C., Chow, Y. C., Zeng, F. Y., and Leung, F. C. 2003. Genetic authentication of ginseng and other traditional Chinese medicine. <u>Acta Pharmacol Sin</u> 24: 841-846.
- Hui, C., Yuping, L., Komatsu, K., But, P. P. H., and Shaw, P. C. 2000. DNA molecular profiling: A new approach to quality control of Chinese drugs. <u>CJIM</u> 6(1): 71-75.
- Jain, N., Shasany, A. K., Sundaresan, V., Rajkummar, S., Darokar, M. P., Bagchi, G. D., et al. 2003. Molecular diversity in *Phyllanthus amarus* assessed through RAPD analysis. <u>Curr Sci</u> 85(10): 1454-1458.
- Jain, N., Shasany, A. K., Singh, S., Khanuja, S. P. S., and Kumar, S. 2008. SCAR markers for correct identification of *Phyllanthus amarus*, *P. fraternus*, *P. debilis* and *P. urinaria* used in scientific investigations and dry leaf bulk herb trade. <u>Planta Med</u> 74: 296-301.
- Joshi, K., Chavan, P., Warude, D., and Patwardhan, B. 2004. Molecular markers in herbal drug technology. <u>Curr Sci</u> 87: 159-165.
- Kathriarachchi, H., Hoffmann, P., Samuel, R., Wurdack, K. J., and Chase M. W. 2005.
 Molecular phylogenetics of Phyllanthaceae inferred from five genes (plastid *atp*B, *mat*K, 3'*ndh*F, *rbc*L and nuclear *phy*C). <u>Mol Phylogenet Evol</u> 36: 112-134.
- Kathriarachchi H., Samuel R., Hoffmann P., Mlinarec J., Wurdack K. J., Ralimanana H., et al. 2006. Phylogenetics of tribe Phyllanthaceae (Phyllanthaceae; Euphobiaceae sensu lato) based on nrITS and plastid *mat*K DNA sequence data. <u>Am J Bot</u> 93: 637-655.
- Khatoon, S., Rai, V., Rawat, A. K. S., and Mehrotra, S. 2006. Comparative pharmacognostic studies of three *Phyllanthus* species. <u>J Ethnopharmacol</u> 104: 79-86.
- Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam,
 H., et al. 2007. Clustal W and Clustal X version 2.0. <u>Bioinformatics</u> 23: 2947-2948.

- Lau, D. T. W., Shaw, P. C., Wang, J., and But, P. P. H. 2001. Authentication of medicinal *Dendrobium* species by the internal transcribed spacer of ribosomal DNA. <u>Planta Med</u> 67: 456-460.
- Lee, M. Y., Doh, E. J., Park, C. H., Kim, Y. H., Kim, E. S., Ko, B. S., et al. 2006. Development of SCAR marker for discrimination of *Artemisia princeps* and *A. argyi* from other *Artemisia* herbs. <u>Biol Pharm Bull</u> 29(4): 629-633.
- Lee, S. K. Y., Li, P. T., Lau, D.T. W., Yung, P.P., Kong, R. Y. C., and Fong, W. F. 2006. Phylogeneny of medicinal *Phyllanthus* species in China based on nuclear ITS and chloroplast *atp*B-*rbc*L sequences and multiplex PCR detection assay analysis. <u>Planta Med</u> 72: 721-726.
- Li, W. H. 1997. Molecular Evolution. MA: Sinauer.
- Linneaus, C. 1753. <u>Species Plantarum</u>. 1st ed. Stockholm.
- Liu, J., He, T., and Chun, Z. 2009. Analysis and authentication of chloroplast *mat*K gene sequences of Herba Dendrobii. <u>Yao Xue Xue Bao</u> 44(9): 1051-5
- Liu, J. S., Schardl C. L. 1994. A conserved sequence in internal transcribed spacer 1 of plant nuclear rRNA genes. <u>Plant Mol Bio</u> 26: 775-778.
- Ma, X. Q., Duan, J. A., Zhu, D. Y., Dong, T. T. X., and Tsim, K. W. K. 2000. Species identification of Radix Astragali (Huangqi) by DNA sequence of its 5S-rRNA spacer domain. <u>Phyochemistry</u> 54: 363-368.
- Mihalov, J. J., Marderosian, A. D., and Pierce J. C. 2000. DNA Identification of Commercial Ginseng Samples. <u>J Agric Food Chem</u> 48: 3744-3752.
- Mizukami, H., Shimizu, R., Kohjyouma, M., Kohda, H., Kawanishi, F. and Hiraoka, N. 1998. Phylogenetic analysis of *Atractylodes* plants based on chloroplast *trn*K sequence. <u>Biol Pharm Bull</u> 21(5): 474-478.
- Mizukami, H., Okabe, Y., Kohda, H., and Hiraoka, N. 2000. Identification of the crude drug artractylodes rhizome (Byaku-jutsu) and atractylodes lancea rhizome (Sojutsu) using chloroplast *Trn*K sequence as a molecular marker. <u>Biol Pharm Bull</u> 23: 589-594.

- Na, H. J., Um, J. Y., Kim, S. C., Koh, K. H., Hwang, W. J., Lee, K. M., et al. 2004. Molecular discrimination of medicinal Astragali radix by RAPD analysis. <u>Immunopharmacol Immunotoxicol</u> 26: 265-272.
- Naaz, F., Javed S., and Abdin, M.Z. 2007. Hepatoprotective effect of ethanolic extract of *Phyllanthus amarus* Schum. et Thonn. on aflatoxin B₁-induced liver damage in mice. <u>J Ethnopharmacol</u> 113(3): 503-509.
- Nei, M., and Li, W.H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. <u>Proc Natl Acad Sci</u> 76: 5269-5273.
- Nei, M., and Kumar, S. 2000. <u>Molecular Evolution and Phylogenetics</u>. Oxford: Oxford University Press.
- Ott, M., Thyagarajan, S. P., and Gupta, S. 1997. *Phyllanthus amarus* suppresses hepatitis B virus by interrupting interactions between HBV enhancer I and cellular transcription factors. <u>Eur J Clin Invest</u> 27: 908-915.
- Padma, P., and Setty, O. H. 1999. Protective effect of *Phyllanthus fraternus* against carbon tetrachloride-induced mitochondrial dysfunction. <u>Life Sci</u> 64 (25): 2411-2417.
- de Padua, L. S., Bunyapraphatsara, N., and Lemmens, R. H. M. J. 1999. <u>Plant</u> <u>resources of South-East Asia: Medicinal and poisonous plants 1</u>. Indonesia.
- Piontkivska, H. 2004. Efficiencies of maximum likelihood methods of phylogenetic inferences when different substitution models are used. <u>Mol Phylogenet Evol</u> 31: 865-873.
- Pramyothin, P., Ngamtin, C., Poungshompoo, S., and Chaichantipyuth, C. 2007. Hepatoprotective activity of *Phyllanthus amarus* Schum. Et. Thonn. Extract in ethanol treated rats: *In vitro* and *in vivo* studies. <u>J Ethnopharmacol</u> 114: 169-173.
- Radcliffe-Smith, A. 2001. <u>Genera Euphobiaceae</u>. England: Royal Botanic Gardens, Kew.
- Rai, V., Khatoon, S., Bisht, S. S., and Mehrotra, S. 2005. Effect of cadmium on growth, ultramorphology of leaf and secondary metabolites of *Phyllanthus amarus* Schum. and Thonn. <u>Chemosphere</u> 61: 1644-1650.

- Rao, Y. K., Fang, S., and Tzeng, Y. 2006. Anti-inflammatory activities of constituents isolated from *Phyllanthus polyphyllus*. <u>J Ethnopharmacol</u> 103: 181-186.
- Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. <u>Mol Biol Evol</u> 4: 406-425.
- Samuel, R., Kathriarachchi, H., Hoffmann, P., Barfuss, M. H. J., Wurdack, K. J., Davis, C.
 C., et al. 2005. Molecular phylogenetics of Phyllanthaceae: evidence from plastid *mat*K and nuclear *phy*C sequences. <u>Am J Bot</u> 92: 132-141.
- Sang, T., Crawford, D. J., and Stuessy, T. F. 1995. Documentation of reticulate evolution in peonies (Paeonia) using internal transcribed spacer sequences of nuclear ribosomal DNA: Implications for biogeography and concerted evolution. <u>Proc Natl Acad Sci</u> 92: 6813-6817.
- Sharma, A., Ajay, G., Namdeo, G., Mahadik, K. R. 2008. Molecular markers: New prospects in plant genome analysis. <u>Phcog Rev</u> 2(3): 23-34.
- Shiba, M., Kondo, K., Miki, E., Yamaji, H., Morota, T., Terabayashi, S., et al. 2006. Identification of medicinal *Atractylodes* based on ITS sequences of nrDNA. <u>Biol</u> <u>Pharm Bull</u> 29(2): 315-320.
- Shyamsunder, K. V., Singh, B., Thakur, R. S., Hussain, A., Kiso, Y., and Hikino, J. 1985.
 Antihepatotoxic principles of *Phyllanthus niruri* herb. <u>J Ethnopharmacol</u> 14: 41-44.
- Simpson, M. G. 2004. Plant systematics. MA: Elsevier Academic Press.
- Sousa, M., Ousingsawat, J., Seitz, R., Puntheeranurak, S., Regalado, A., Schmidt, A., et al. 2007. An extract from the medicinal plant *Phyllanthus acidus* and its isolated compounds induce airway chloride secretion: a potential treatment for cystic fibrosis. <u>Mol Pharmacol</u> 71: 366-376.
- Steane, D. A., Scotland, R. W., Mabberley, D. J., and Olmstead, R. G. 1999. Molecular systematic of *Clerodendrum* (Lamiaceae): ITS sequences and total evidence. <u>Am J Bot</u> 86(1): 98-107.

- Sukrong, S., Zhu, S., Ruangrungsi, N., Phadungcharoen, T., Palanuvej, C., and Komatsu, K. 2007. Molecular analysis of the genus *Mitragyna* existing in Thailand based on rDNA ITS sequences and its application to identify a narcotic species: *Mitragyna speciosa*. <u>Biol Pharm Bull</u> 30: 1284-1288.
- Swofford, D. L. 2003. <u>PAUP: phylogenetic analysis using parsimony, version 4.0b 10</u>. MA: Sinauer.
- Theerakulpisut, P., Kanawapee, N., Maensiri, D., Bunnag, S., and Chantaranothai, P. 2008. Development of species-specific SCAR markers for identification of three medicinal species of *Phyllanthus*. <u>J Syst Evol</u> 46(4): 614-621.
- Um, J. Y., Chung, H. S., Kim, M. S., Na, H. J., Kwon, H. J., Kim, J. J., et al. 2001. Molecular authentication of *Panax ginseng* species by RAPD analysis and PCR-RFLP. <u>Biol Pharm Bull</u> 24: 872-875.
- Unander, D. W., Webster, G. L., and Blumberg, B. S. 1990. Records of usage or assays in *Phyllanthus* (Euphorbiaceae) I. Subgenera *Isocladus*, *Kirganelia*, *Cicca* and *Emblica*. <u>J Ethnopharmacol</u> 30: 233-264.
- Unander, D. W., Webster, G. L., and Blumberg B. S. 1991. Uses and bioassays in *Phyllanthus* (Euphorbiaceae): a compilation II. The subgenus *Phyllanthus*. <u>J</u> <u>Ethnopharmacol</u> 34: 97-133.
- Unander, D. W., Webster, G. L., and Blumberg, B. S. 1992. Uses and bioassays in *Phyllanthus* (Euphorbiaceae): a compilation III. The subgenus *Eriococcus*, *Conami*, *Gomphidium*, Botryanthus, Xyolphylla and Phyllanthodendron and a complete list of the species cited in the three-part series. <u>J Ethnopharmacol</u> 36: 103-112.
- Unander, D. W., Webster, G. L., and Blumberg, B. S. 1995. Uses and bioassays in *Phyllanthus* (Euphorbiaceae) IV. Clustering of antiviral uses and other effects. <u>J</u> <u>Ethnopharmacol</u> 45: 1-18.
- Vanijajiva, O., Sirirugsa, P., and Suvachittanont, W. 2005. Confirmation of relationships among *Boesenvergia* (Zingiberaceae) and related genera by RAPD. <u>Biochem</u> <u>Syst Ecol</u> 33: 159-170.

- Vongsak, B., Kengtong, S., Vajrodaya, S., and Sukrong, S. 2008. Sequencing analysis of the Medicinal plant *Stemona tuberose* and five related species existing in Thailand based on *trn*H-*psb*A Chloroplast DNA. <u>Planta Med</u> 74: 1764-1766.
- Weising, K., Nybom, H., Wolff, K., and Kahl, G. 2005. <u>DNA Fingerprinting in Plants</u>. FL: CRC Press.
- van Welzen, P. 2000. The distichous Euphorbiaceae genera of Thailand. <u>Thai For Bull</u> (Bot) 28: 51-58.
- Wen, J. and Zimmer, E. A. 1996. Phylogeny and biogeography by Panax L. (the Ginseng genus, Araliaceae): Inderences from ITS sequences of nuclear ribosomal DNA. <u>Mol Phylogenet Evol</u> 5: 167-177.
- Williams, J. G. K., Kubelik, A. R., Livak, J. A., Rafalski, J. A., and Tingy, S. V. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. <u>Nucleic Acids Res</u> 18: 6533-6535.
- Wurdack, K. J., Hoffmann, P., Samuel, R., Bruijn, A. D., Bank, M. V. D., and Chase, M.
 W. 2004. Molecular phylogenetic analysis of Phyllanthaceae (Phyllanthoideae pro parte, Euphorbiaceae sensu lato) using plastid *rbcL* DNA sequences. <u>Am J</u>
 <u>Bot</u> 91: 1882-1900.
- Wurdack, K. J., Hoffmann, P., and Chase, M. W. 2005. Molecular phylogenetic analysis of univulate *Euphorbiaceae* (*Euphorbiaceae sensu stricto*) using plastid *rbcL* and *trn*L-F DNA sequences. <u>Am J Bot</u> 92: 1397-1420.
- Xu, M., Zha, Z. J., Qin, X. L., Zhang X. L., Yang, C. R., and Zhang, Y. J. 2007. Phenolic antioxidants from the whole plants of *Phyllanthus urinaria*. <u>Chem Biodivers</u> 4(9): 2246-2252.
- Yang, D. Y., Fushimi, H., Cai, S. Q., and Komatsu, K. 2004. Polymerase chain reactionrestriction fragment length polymorphism (PCR-RFLP) and amplification refractory mutation system (ARMS) analyses of medicinally used *Rheum* species and their application for identification of Rhei rhizoma. <u>Biol Pharm Bull</u> 27(5): 661-669.
- Yip, P. Y., Chau, C. F., Mak, C. Y., and Kwan, H. S. 2007. DNA methods for identification of Chinese medicinal materials. <u>Chin Med</u>. 2(9): 1-19.

- Youkwan, J., Srisomphot, P., and Sutthivaiyakit, S. 2005. Bioactive constituents of the leaves of *Phyllanthus polyphyllus* var. *siamensis*. <u>J Nat Prod</u> 68: 1006-1009.
- Zhang, Y., Nagao, T., Tanaka, T., Yang, C., Okabe, H., and Kouno, I. 2004. Antiproliferative activity of the main constituents from *Phyllanthus emblica*. <u>Biol</u> <u>Pharm Bull</u> 27: 251-255.
- Zhang, Y., Shaw, P., Sze, C., Wang, Z., and Tong, Y. 2007. Molecular authentication of Chinese Herbal Materials. <u>J Food Drug Anal</u> 15: 1-9.
- Zhu, S., Fushimi, H., Cai, S., and Komatsu, K. 2003. Phylogenetic relationship in the genus Panax: inferred from chloroplast *trn*K gene and nuclear 18S rRNA gene sequences. <u>Planta Med</u> 69: 647-653.
APPENDICES

APPENDIX A

Plant morphology of *Phyllanthus* spp.

A1. *Phyllanthus* L.: Staminate flowers (1 = flower from outside, 2 = with few sepals removed to show disc glands and androecium). A: *P. columnaris* with long androphore; B. small flower of *P. debilis*; C. *P. gracilipes* with fimbriate sepal margins and small stamens; D. *P. ridleyanus* with long fimbriate sepals; E. *P. taxodiifolius* with four sepals (Chantaranothai, 2007).

A2. *Phyllanthus* L.: Pistellate flowers, fruits and seeds. A: Postillate flower of *P. albidiscus*, 1 = with sepals; 2 = part sepals removed showing high disc; B. dehiscent small fruit of *P. amarus*; C. indehiscent, somewhat fleshy fruit of *P. reticulatus*; D. inflated, dehiscing fruit of *P. roseus*; E. scaly fruit of *P. urinaria*; F. ribbed seed of *P. debilis*; G. smooth seed of *P. roseus*; H. knobbly and ribbed seed of *P. virgatus* (Chantaranothai, 2007).

A3. *Phyllanthus acidus*: A. habit; B. inflorescences; C. staminate flower; D. fruit. (Chantaranothai, 2007).

A4. Phyllanthus amarus: A. habit; B. fruit (Chantaranothai, 2007).

A5. *Phyllanthus collinsiae*: A. habit; B. leaves enlarged; C. staminate and pistillate flowers (Chantaranothai, 2007).

A6. *Phyllanthus columnaris*: A. habit; B. flowers; C. staminate flowers; D. fruits (Chantaranothai, 2007).

A7. *Phyllanthus elegans*: A. habit; B.-D. staminate flowers; E. fruits (Chantaranothai, 2007).

A8. Phyllanthus mirabilis: A. habit; B. staminate flowers; C. fruits (Chantaranothai, 2007).

A9. Phyllanthus oxyphyllus: habit (Chantaranothai, 2007).

A10. Phyllanthus reticulatus: habit (Chantaranothai, 2007).

A11. Phyllanthus urinaria: A. fruiting branch; B. fruit (Chantaranothai, 2007).

APPENDIX B

Complete sequence alignment for *Phyllanthus* species. Position 1 to 227 is the ITS1 region, the 5.8S nrDNA region corresponds to position 228 to 390, and the ITS2 region corresponds to position 391-605. The same sequences are indicated by dot (.). Hyphen (-) denotes alignment gap. The characters indicate nucleotide additives. Y=C/T, R=A/G, W=A/T, K=G/T, M=A/C, S=C/G.

		10	20	30	40	50	60
	••••	• • • • • • • • •			.	•••• •••• •	••••
P2NP1	TCGATACC	FTTAAC AAG	AATGACC-GC	GAACAAT-TY	TATTCAC	TGTGGAT-GC	GTGCC
P2B2	•••••	•••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		•••••	
P2B1	•••••	••••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••		•••••	
P2B3	• • • • • • • • •	•••••••••••••••••••••••••••••••••••••••		•••••••••••••••••••••••••••••••••••••••		•••••	
P17B1	A	GCCACGCA.	T.CC	G	C	C.CG	
P1B2	A	GC.TGGCA.	CC	G	C	G.CCA	
P1K1	A	GC.TGGCA.	CC	G	C	G.CCA	
P1PM1	A	GC.TGGCA.	CC	G	c	G.CCA	• • • •
P1NP1	A	GC.TGGCA.	CC	G	C	G.CCA	• • • •
P1KK1	A	GC.TGGCA.	CC	G	c	G.CCA	• • • •
P1CM1	A	GC.TGGCA.	CC	G	c	G.CCA	
P1UT1	A	GC.TGGCA.	CC	G	c	G.CCA	
P37H1	A	.GG.TGGGA.	cc	G	c	G.CCA	
P9B1	A	GCT.TGCA.	TC	G	A	CCA	
P9NP1	A	.GCT.TGCA.	TC	G	A	CCA	
P6NN1	A	.GCTGCA.	т.сс.т	GTG	c	CA	
P6CM1	A	.GCTGCA.	т.сс.т	GTG	c	CA	
P6CR1	A	.GCTGCA.	т.сс.т	GTG	c	CA	••••
P6KK1	A	.GCTGCA.	т.сс.т	G T G	c	CA	
P6NS1	A	.GCTGCA.	т.сс.т	G T G	c	CA	
P6S1	A	.GCTGCA.	т.сс.т	GTG	c	CA	
P6ST1	A	.GCTGCA.	т.сс.т	GTG	c	CA	
P3KS1	A.A	.GTTG	тс	G	G	c	
P3CM1	A.A	.GTTG	T	G	G	c	
P3S1	A.A	.GTTG	тс	G	G	c	
P3HK1	A.A	.GTTG	тс.	G	G		
P3PL1	A.A	.GTTG	тс	G	G	c	
P3B1	A.A	.GTTG	тс.	G	G		
P3KK1		.GTTG	TC	G		C	
P24H1	A . A	.GTTG	ттс	G	A		. Т.
P30H1	A.AT-	.GT.GTG	TGC	G			
P34H3		.GTT'	гт.	G			
P22H2	A . AT	.GTTG'	гс.	G			
P33H1		.GTTG	G		G		
P28H1	A . A	.GTTG'	ГС.	G	. G		
P5B2	. A. A.	.GTTG'	ТС.		G		
P5B1	A . A	.GTTG'	ГС.	G	. G		
P14NP1	A . A	.GTTG'	ГС.	G			
P14NP2	A . A	.GTTG'	ГС.	G			
P27H2	. A. A	. GT TG'	ГС.	G-	G		
P4NP1	A	GC. ATGCA.	ГА.			CA	
P4PR1	A	GC. ATGCA.	ГА.	TG	С		
P4B1	A	GC. ATGCA.	ГА.	TG	С	. C A	
P13C1	A	GC CGCA	CC	GT.	С		
P13UB1	A	GCCGCA.	C. C.	GT.	С		
P7B1	Δ	GC TGCA	ссс	G-		C AG	
р7к1	Δ	GC TGCA	сс	G-		C AG	
P7CM1	Δ	GC TGCA	сс	G-		C AG	
P7NP1	Δ	GC TGCA	с	G-			
P7R1	Δ	GC. TGCA	с	G-			
P38H1	Δ	GC TGCA	с с	G	•••••	С С-	••••
D40H1	Δ_	CCCT CCA	с С			$C \Delta \Delta_{-}$	••••
D32H1	Δ	GCC GCA	с	тс			••••
D12D1	····Α···-	CCC CCA		тс_	יייער.	$\Delta C \qquad \lambda = 0$	 с
	Δ	GCC GCA	сс	тс_	ייי בריסיייי מיש ברי	$\mathbf{C} \mathbf{A}_{-}$	с
D1201	····A···-	CCC CCA		тс_			с с
	••••	. JCC JCA.			••••CA.10		J

		70	80	9	90	100	110	120
				• • • •				
P2NP1	TTGTGCA	CCTGAAGCC	AGGCCTCG	TGTGAT	GCTATA	YGCTCAYTKC	GRGTGCCA	TGTAAA
P2B2								
P2B1								
P2B3								
P17B1	ССТ	ccg	C	G.G.	G. <mark>C</mark> -	c	AGG	CCG
P1B2	.CG	CA		.AG.G.	.т	c	. TT G	C
P1K1	. C G			AG.G.	.т	C	.TTG	C
р1рм1	. C G	. С А		AG.G.	.т	C	TTG	C
P1NP1	C. G	. C A		AG.G.	.т	C	TTG	C
D1KK1	C G	С д			т –	C	TTG	C –
D1CM1	сс	сл	••••••••		·····		. TTC	C -
	.c	сА	•••••••		· · · · ·	· · · · · · · · · · · · · · · · · · ·		C
	.cG		•••••••	AG.G.	····	C	. I I G	C
	. C G	A		.AG.G.	.1		. I IG	c
P9BI	1	· · · · · C · · G		. IG.G.			IG	c
P9NPI	T	G	· · · · · C · ·	.TG.G.	••••C-	c	TG	C
P6NN1	C	CA	C	G.G.	••••-		AG	C
P6CM1	•••••C	CA	C	G.G.	••••	C	AG	C
P6CR1	C	CA	C	G.G.	••••-	C	AG	C
P6KK1	••••C	CA	C	G.G.	••••	C	AG	C
P6NS1	C	CA	C	G.G.	••••-	C	AG	C
P6S1	C	CA	C	G.G.	••••	C	AG	C
P6ST1	C	CA	C	G.G.		C	AG	C
P3KS1			A	C.G.G.			AG	C A
P3CM1		Y	A	C.G.G.		c	AG	C A
P3S1		Υ	A	C.G.G.		c	AG	СА
РЗНК1			A(G.G.		C	AG.	CA
P3P1.1			A (G.G.	-	C	AG.	CA
P3B1			A (GG		- C	AG	CA
D3KK1	•••••	т	Δ (- C C		- C	AG	CD
D24H1		Δ	Δ		· · · · · · _	- A C	AG	С т
D30H1	с л	A۲	Λ	G G	••••	- C		
	.c	А Л	A		····-	C	A.AG	
P34H3		A	A		• • • • • -	-1		
PZZHZ		A	A	G.G.	••••		A.AG	Ст с т
P33H1	•••••G•••	A	A	AG.G.	••••-		AG	ст
PZ8HI	.CG	A	A	AG.G.	••••-	c	AG	Ст
P5B2	.CG	A	A	AG.G.	••••	C	AG	Ст
P5BL	.CG.	A	A	AG.G.	••••-	c	AG	ст
P14NP1	.CG.	A	A	AG.G.	••••-	C	AG	СТ
P14NP2	.CG	••••A	A	AG.G.	••••	C	AG	СТ
Р27Н2	.CG	A	A	AG.G.	••••	C	AG	СТ
P4NP1	СТ.	TA	C	CG.GA	A.C-	C	T GG	CCC
P4PR1	СТ.	TA	C	CG.GA	A.C-	c	T GG	CCC
P4B1	СТ.	TA	C	CG.GA	A.C-		T GG	CCC
P13C1	СТ.	CA	C	.C.G.	A	CA	T G(C.A
P13UB1	СТ.	CA	c	.C.G.	A	CA	T G	C.A
P7B1	т.	CA	c	G.	–	CAC	T G	CAAG
P7K1	т.	CA	c	G.	–	CAC	T G	CAAG
P7CM1	т.	CA	c	G.	–	CAC	T G	CAAG
P7NP1	Т	CA	C.	G		CAC.	T G	CAAG.
P7R1	т		C	G			T G	CAAG
р38н1	····⊥. т	С л	сс С	сс	Δ		тс (TAAG
D40U1	· · · · · · · · · · · · · · · · · · ·	C 70	· · · · · · C · · ·	с.с.	с			ΔΔΔ
1020U1	······	CA	·····	.g.g.			۰۰۰۰۰.CA رسس	λ λ
		CA		.G.G.			· • • • • • • ± ± £	ч.н С
FIZBI D10Dm1	····T.	CA		.A.G.	.GG.A-		4.1T.	G
PI2CI	·····T·	CCA	TCT.C	.A.G.	.GG.A-	-A.A.CACA	ч.тт. \ — —	A
FTSCT	Т.	CCA	TCT . C	. A. G.	$(iG \cdot A^{-1})$	-A.A.CAC.A	А. Т Т.	A

		130	140	150	160	170	180
	•••• •	••• •••• •	••••	• • • • • • • • •	• • • • • •	••• •••• ••••	• • • •
P2NP1	CCAAGC	CCGGCGCGG	ATGCGCC.	AAGGAAAA <mark>C</mark> AAA	ACATAAAA	GCGAGAACTCTA	CATTCA
P2B2	C.	•••••	•••••	•••••••	W	•••••	•••••
P2B1	C.	•••••	•••••	•••••••	A	•••••	•••••
P2B3	C.	•••••	• • • • • • •	•••••	A	•••••	• • • • • •
P17B1	.AC.	•••••	.A		GG. <mark>C</mark> G.	.AG.C.CC	•••••
P1B2	.AC.	••••••	.A		GT	C.GT	GAA
P1K1	.AC.	••••••	.A	CG.	G <mark>T</mark>	C.GT	GAA
P1PM1	.AC.		.A		G <mark>T</mark>	C.GT	GAA
P1NP1	.AC.		.A		G <mark>T</mark>	C.GT	GAA
P1KK1	.AC.		.A		GT	C.GT	GAA
P1CM1	.AC.		.A		G <mark>T</mark>	C.GT	GAA
P1UT1	.AC.		.A		G <mark>T</mark>	C.GT	GAA
P37H1	.AC.		.A		G <mark>T</mark>	C.GT	GAA
P9B1	.AC.		.A			C.A	.GG.T
P9NP1	.AC.		.A			C.A	.GG.T
P6NN1	.AC.		.A		G. <mark>C</mark>	TC.C	A
P6CM1	.AC.		.A		G. <mark>C</mark>	TC.C	A
P6CR1	.AC.		.A		G. <mark>C</mark>	TC.C	
P6KK1	.AC.		.A		G. <mark>C</mark>	TC.C	.A
P6NS1	.AC.		.A		G. <mark>C</mark>	TC.C	.A
P6S1	.AC.		.A			TC.C	.A
P6ST1	.AC.		.A			TC.C	.A
P3KS1	C.				тс	.A	G.G.
P3CM1	C.				тс	.A	G.G.
P3S1	C.				тс	.A	G.G.
РЗНК1	С			G	TC.	. А	G.G.
P3PI,1	С			G	TC.	. A	G G
P3B1	С			G	TC.	. А	G G
D3KK1	с. С			с.	тС	Δ	G G
р24н1	с. С		•••••	с.	тС	Δ	00
р30н1	с. С	т	т		т.	Δ	••••
D34H3	c	• • • • • • • • • • • •	±	•••••••••••••••••••••••••••••••••••••••	т <u>с</u>	Δ	••••
D22U2	c	·····	т	с	т.	λ	••••
D33H1	c.	• • • • • • • • • • • •	±		т.	Δ	••••
D28U1	· · · · · C ·	•••••	•••••		т. Т.	Λ	••••
PZOHI		•••••	•••••		· · · · · · · · · · · · · · · · · · ·	.A	••••
P362 D501		•••••	•••••		ш. т	.A	••••
		•••••			·····	.A	••••
P14NP1		•••••	•••••		1 m	.A	••••
P14NPZ		•••••	•••••		1 m	.A	••••
PZ/HZ	····C·	•••••	7		Т	A	••••
P4NP1	.AC.	•••••	.A	TT	· · · · · · · · · · · · · · · · · · ·	.AG.GACC.	••••
P4PRI	.AC.	•••••	.A		••••G•••	.AG.GACC.	••••
P4BI	.AC.	•••••	.A		G	.AG.GACC.	
PI3CI	.AC.	•••••	.A		TGAGG	C.GACC.	.A
PIJUBI	.AC.	•••••	.A	$\cdots $	TGAGG	C.GACC.	.A
P7B1	.AC.	•••••	.A	<u>T</u>	.GAGG	.A T .GACC.	.A.T.
P7K1	.AC.	•••••	.A		.GAGG	.A T .GACC.	.A.T.
P7CM1	.AC.	•••••	.A	T	.GAGG	.AT.GACC.	.A.T.
P7NP1	.AC.	•••••	.A	T	.GAGG	.AT.GACC.	.A.T.
P7R1	.AC.	•••••	.A	T	.GAGG	.AT.GACC.	.A.T.
P38H1	.AC.	• • • • • • • • • •	.A	T	.GA.G	.A T .GACC.	.A.T.
P40H1	.AC.		.A		AG.G.	.TCGA.GCT	'CA
P32H1	.AC.	•••••	.A		T GA	CCT	CA.TG
P12B1	C.		.A		AG.	.TATCCT	GA.G
P12RT1	C.	A	.A.T		.GA	.TATCCT	CA.G
P12C1	C.	A	.A.T		.GA	.TATCCT	CA.G

	190	200	210	220	230	240
	•••• •••• ••••	••••		••••	• • • • • • • • •	••••
P2NP1	CCTC GGAAACGATGT	GTGTTTTGTA	GTTCATTCT	CTTTCATAA	CCAATACGACT	CTCGG
P2B2			G		W	
P2B1			G		A	••••
P2B3			G		A	
P17B1	C	<mark>CC</mark> .G.G.	rg <mark>c</mark> g		A	
P1B2	C	C.CGA	.G <mark>C</mark> GT.G		ATG.A	
P1K1	C	C.CGA	.G <mark>C</mark> GT.G		ATG.A	
P1PM1	C	C.CGA	.G <mark>C</mark> GT.G		ATG.A	
P1NP1	CGC	C.CGA	.G <mark>C</mark> GT.G		ATG.A	
P1KK1	C	C.CGA	.G <mark>CGT</mark> .G		ATG.A	
P1CM1	C	C.CGA	.GCGT.G		ATG.A	
P1UT1	C	C.CGA	.G <mark>CGT</mark> .G		ATG.A	
P37H1	CGC	C.CGA	.GCGT.G	TA	A <mark>T</mark> GGA	
P9B1	CGC	CCT.	.A-G T	A.G	AR	
P9NP1	C	CCT.	A-GT	A.G	AR	
P6NN1	C	CG	.G.GT		A	
P6CM1	C	CG	.G.GT		A	
P6CR1	C	CG	.G.GT		A	
P6KK1	C	CG	.G.G <mark>T</mark>		A	
P6NS1	C	CG	.G.GT		A	
P6S1	C	CG	G.GT		A	
P6ST1	C	CG	.G.GT		A	
P3KS1		CA			A	
P3CM1		CA			A	
P3S1		CA			A	
P3HK1		CA			A	
P3PL1		CA			A	
P3B1		CA	G.A		A	
P3KK1		CA				
P24H1		CG			A	
P30H1		CA.C	G <mark>C</mark>	Т	A	
P34H3		AAG			A	
P22H2		CA.C		т	A	
P33H1		CA.C	G <mark>C</mark>		A	
P28H1		CA.C	GC		A	
P5B2		CA.C			A	
P5B1		CA.C	GC		A	
P14NP1		CA.C	GC		A	
P14NP2		CA.C			A	
P27H2		CA.C	GC		A	
P4NP1	GT.GCG.A		T	A	AA	
P4PR1	GT.GCG.A		T		A. A	
P4B1	GT.GCG.A		T			
P13C1	.T.G			A	AA	
P13UB1	. T . G			A	A. A	
P7B1	.T.GT			. CA	АА	
P7K1	.T.GT			. CA	A A	
P7CM1	т с т			CA		
P7NP1	Т. G Т			. C A		
P7R1	.T.G T			. C A	A A .	••••
P38H1	T.G		· · · · ·	A	A A .	
P40H1		CAGG	GA, TC		Т. А	
P32H1		ссс.	G GT	G AT	т А	
D12R1			G GT A A	GG A	Δ Δ	••••
P12RT1		C.CA GAGG.	G.GT A A	GG A	ΤΑ	••••
P12C1	A.C.A.G. T.G. C	C.CA.GAGG	G.GT. A A	GG A	T. A	
		· · · · · · · · · · · · · · · · · · ·	- · · · · · · · · · · · · · · · · · · ·			• • • •

		250	260	270	280	290	300
	•••• •	.	.				••
P2NP1	CAACGO	GATATCTYGG	CTCTCGCATCG	ATGAAGAACGT	AGCGAAATGC	GATACTTGGT(GTG
P2B2							
P2B1							
P2B3							
P17B1						• • • • • • • • • •	
P1B2							
P1K1							
P1PM1							
P1NP1							•••
P1KK1							
P1CM1	• • • • • •						
P1UT1							
P37H1	· · · · · ·			.A			
P9B1							•••
P9NP1			•••••	•••••			•••
P6NN1	• • • • • •					••••••••	••
P6CM1	• • • • • •					••••••	••
P6CR1	• • • • • •				· · · · · · · · · · · ·	••••••	••
P6KK1	• • • • • •		•••••	•••••	· · · · · · · · · · · ·		• •
P6NS1	• • • • • •	•••••	•••••	•••••	· · · · · · · · · · · ·	•••••	• •
P6S1	••••	•••••	•••••	••••••	· · · · · · · · · · · ·	•••••	• •
P6ST1	••••	•••••	•••••	••••••	•••••••••••	•••••	• •
P3KS1	•••••	•••••	•••••	••••••	•••••••	•••••	••
P3CM1	••••	•••••	•••••	••••••	••••••••	•••••	••
P3SI D3UV1	•••••	••••••	•••••	•••••	••••••••••	•••••	••
P3HAL 1 IGCO	•••••	•••••	•••••	•••••	••••••	•••••	••
	•••••	•••••	•••••	•••••	••••••	•••••	•••
דסכד 1אש נ ס	•••••	•••••	•••••	•••••	••••••	•••••	•••
P3KK1 D2/U1	•••••	•••••	•••••	•••••	••••••	•••••	•••
D30H1	 т	•••••	•••••	Δ	Δ	•••••	••
D34H3	± · · · · ·			• • • • • • • • • • • •	••••		••
D22H2	т			•••••			••
P33H1	Δ			•••••	۰۰۰۰۰۰۰۰ ۵		••
P28H1				••••••	•••••••••	••••••	••
P5B2							•••
P5B1							
P14NP1							
P14NP2							
P27H2				• • • • • • • • • • •	. .		
P4NP1							••
P4PR1							• •
P4B1							••
P13C1			•••••	• • • • • • • • • • • •			••
P13UB1	••••		•••••	· • • • • • • • • • • •	· · · · · · · · · · · · · · · · · · ·		••
P7B1	••••		•••••	· • • • • • • • • • • •	••••••		••
P7K1	••••		•••••	•••••	•••••	• • • • • • • • • •	••
P7CM1	••••	•••••	•••••	•••••	•••••	•••••	••
P7NP1	••••	•••••	•••••	•••••	•••••	•••••	••
P7R1	••••	•••••	•••••	•••••	•••••	•••••	••
P38H1	•••••	•••••	•••••	•••••	•••••	•••••	••
P40HL	•••••	•••••	••••••	•••••	•••••	•••••	••
PJ2H1	•••••	•••••	••••••	•••••	•••••	•••••	••
FTZRT D1 JDm1	•••••	•••••	••••••	•••••	•••••	•••••	•••
D12C1	•••••	••••••	•••••	•••••	•••••	•••••	••
	• • • • • • •	••••••	• • • • • • • • • • •	•••••	•••••	•••••	••

		310	320	330	340	350	360
	•••• •	••• •••• •		•• ••• ••	•• •••• ••	•• •••• •••	••
P2NP1	AATTGC.	AGAATCCCGT	GAACCATCGAG	TTTTTGAACG	CAAGTTGCGC	CCAAAGCCTT	GG
P2B2	•••••	•••••	••••••••••••	•••••	••••••	••••••	•••
P2B1	••••	•••••	• • • • • • • • • • • •	•••••	• • • • • • • • • •	•••••	• • •
P2B3	•••••	•••••	• • • • • • • • • • • •		••••••	••••••	•••
PI7BI	•••••	••••••	••••••••	.C	••••••	••••••	•••
PIBZ	•••••	•••••	•••••••••		••••••	••••••	• • •
PIKI D1DM1	•••••	•••••	• • • • • • • • • • • •		••••••	••••••	• • •
	•••••	•••••	• • • • • • • • • • • •	. C	••••••	••••••	•••
PINFI D1KK1	•••••	••••••	• • • • • • • • • • • • •	C	•••••	••••••	•••
	•••••	•••••	• • • • • • • • • • • •	C	••••••	••••••	•••
	••••		• • • • • • • • • • • • •	С	••••••	••••••	•••
P37H1	•••••	••••••	• • • • • • • • • • • • •	С	G.	••••••	•••
P9B1						С	••
P9NP1							
P6NN1				.C			
P6CM1				.c			
P6CR1				.c			
P6KK1				.c	• • • • • • • • • •		
P6NS1				.c			••
P6S1				.C			••
P6ST1				.C			•••
P3KS1	· · · · · ·			.C			••
P3CM1	· · · · · ·	• • • • • • • • • •	· · · · · · · · · · · ·	.C			••
P3S1	•••••		· · · · · · · · · · · · ·	.C			••
P3HK1	•••••		· · · · · · · · · · · ·	.C			••
P3PL1	•••••	••••••	••••••	.C	•••••	••••••	••
P3B1	•••••	••••••••	••••••	.C	••••••	••••••	••
P3KK1	•••••	•••••••••	••••••	.C	••••••	•••••••	••
P24H1	•••••	· · · · · · · · · · · ·	•••••••	.C	••••••	••••••	••
P30H1	•••••	. T	••••••••	.C	••••••	••••••	••
P34H3	•••••	•••••••••••	•••••••	.C	••••••	•••••	••
PZZHZ	•••••	т	••••••		••••••	•••••	••
P33H1	•••••	••••••••••	••••••		••••••	••••••	••
PZ0HI DED0	•••••	••••••••••	••••••		••••••	••••••	••
	•••••	••••••••••	••••••			••••••	••
PJDI D1AND1	• • • • • • •	••••••••••	•••••	. C		•••••	••
D14ND2	•••••		••••••••••	C		•••••	••
P27H2	•••••			С		••••••	••
P4NP1				. C			••
P4PR1				.C		C	
P4B1				.C		C	
P13C1							
P13UB1							
P7B1						.G	
P7K1						.G	
P7CM1						.G	
P7NP1						.G	
P7R1						.G	
P38H1		· · · · · · · · · · · ·					••
P40H1		•••••••		.C		••••••	••
P32H1		•••••••		.C		T.C	••
P12B1		• • • • • • • • • • •		.C		••••••	••
P12RT1		•••••••	••••••	.c		•••••	••
P12C1				.C			

		370	380	390	400	410	420
	•••• ••	•• ••• ••	•• •••• •••	.		• • • • • • • •	••
P2NP1	GTCGAGG	GCACGTCTGC	CTGGGTGTCAC	GCATCGTCGT	TCCCTCACTC	CC-TCATTT(GGG
P2B2	•••••	•••••	•••••	••••••	•••••	••-••••	
P2B1	•••••	•••••	••••••	••••••	•••••	••-••••	• • •
P2B3	•••••	•••••	••••••		••••	••-••••	• • •
P17B1	.C	•••••	••••••	AC	CCA	C.GC.C.	•••
P1B2	•••••	•••••	•••••	AC		••••••••••••••••••••••••••••••••••••••	•••
PIKI	•••••	•••••	•••••	AC		TG	••
PIPMI D1ND1	•••••	•••••	••••••	AC		TG	••
PINPI D1WW1	••••••	•••••	••••••	AC	•	TG	••
PIKKI	•••••	•••••	••••••	AC	· · · · · · · · · · · ·	TG	••
	•••••	•••••	••••••	AC	· · · · · · · · · · · · ·	IG	••
PIUII 1271	••••	•••••	••••••	AC	· · · · · · · · · · · ·	IG	••
	•••••	•••••	•••••	AC	· · · · · · · · · · · · · ·	VCC	•• т
	•••••	•••••	•••••	AC	· · · · · · · · · · · · ·	. IGC.	т. т
DENN1	•••••	•••••	•••••	Δ Ο	· • • • • • • • • • • • •	с _л	± •
P6CM1	•••••	• • • • • • • • • • • •	••••••	Δ Ο	••••••	С д	••
P6CR1	••••••	•••••		A C	•••••		••
P6KK1	••••••	•••••	••••••	A. C	•••••		••
P6NS1		•••••	•••••••••••	A C		C A	••
P6S1				A		.C	
P6ST1				A C		C A	
P3KS1				A C	т	. С Т . G	
P3CM1				A C	Т	.C. T.G.	
P3S1				A C	т	.CT.G	
P3HK1				A C	т.	.CT.G	
P3PL1				AC	т.	.CT.G	••
P3B1				AC	т.	.CT.G	
P3KK1				AC	т.	.CT.G	
P24H1				AC	т.	.TAG.A	
P30H1				AC	т.	.CAG.A	••
P34H3				AC	т.	.CG.A	••
P22H2				AC	ТА	G.A	
P33H1	· · · · · · · ·	т.		AC	т.	.CAG.A	
P28H1				AC	т.	.CAG.A	••
P5B2				AC	т.	.CAG.A	••
P5B1				AC	т.	.CAG.A	••
P14NP1	•••••		•••••	AC	т.	.CAG.A	
P14NP2	· · · · · · · ·		•••••	AC	т.	.CAG.A	••
P27H2	· · · · · · · ·		•••••	AC	т.	.CAG.A	••
P4NP1	.CTA		•••••	AC	A.T.	.TCAC	••
P4PR1	.CTA		•••••	AC	A.T.	.TCACK.	••
P4B1	.CTA		•••••	AC	A.T.	.TCACK.	••
P13C1	.CT		•••••	AC	CAA	.TCTGG.	••
P13UB1	.CT		•••••	C	CAA	.TCTGG.	••
P7B1	.C	••••••	•••••	AC	CAA	.T.TGC.G.	••
P7K1	.C	•••••	•••••		CAA	.T.TGC.G.	••
P7CM1	.C	••••••	••••••		CAA	.T.TGC.G.	••
P7NP1	.C	•••••	•••••		CAA	.T.TGC.G.	••
P7R1	.C	•••••	•••••		CAA	.T.TGC.G.	••
P38H1	.CT	•••••	••••••		CAA	.T.TGC.G.	••
P40H1	.CT	•••••	••••••		TAAT.	.CATT.G.	••
P32H1	.CT	••••••	••••••		A.TT.	.CAGG.T	••
PI2B1	.CT	•••••	•••••		AC.TTT	TAA	••
PIZRTI	. CTA	•••••	•••••••••		AC.TTT	TAA	••
FTSCT	.CTA				AC . TT T	ТАА	

	430	440	450	460	470	480
	••••	.	••••		• • • • • • • •	••••
P2NP1	A- TYGT -GAA TT AO	GGGA <mark>C</mark> GGAAA	ATGGCCTCC	CGTGAATATY	TACATTGCGGT	TGGCC
P2B2		ζ	•••••	R	••••••	Т
P2B1	C		•••••	•••••G••••	••••••	т
P2B3	Y		•••••	•••••G••••	••••••	т
P17B1	GCTG.GC	AGG.	• • • • • • • • •	G	.CGTC	••••
P1B2	GCGT.	T G		T.GCCC.	G.G <mark>T.</mark> A	••••
P1K1	GCGT.	T G		T.GCCC.	G.G <mark>T.</mark> A	••••
P1PM1	GCGT.	T G		T.GCCC.	G.G <mark>T.</mark> A	••••
P1NP1	GCGT.	T G		T.GCCC.	G.G <mark>T.</mark> A	••••
P1KK1	GCGT.	T G		T.GCCC.	G.G <mark>T.</mark> A	••••
P1CM1	GCGT.	T G		T.GCCC.	G.G <mark>T.</mark> A	••••
P1UT1	GCGT.	T G		T.GCCC.	G.G <mark>T.</mark> A	••••
P37H1	GCGT.	T G		T.GCCC.	G.G <mark>T.</mark> A	••••
P9B1	GAGTC	AG <mark>1</mark>	••••••	CTC.	.CGC	
P9NP1	GAGTC	AG <mark>1</mark>	••••••	CTC.	.CGC	
P6NN1	GCC.	G		CT	GTG	
P6CM1	GCC.	G		CT	GTG	
P6CR1	GCC.	G		CT	GTG	
P6KK1	GCC.	G		CT	G T G	
P6NS1	GCC.	G		CT	G <mark>T</mark> G	
P6S1	GCC.	G		CT	G <mark>T</mark> G	
P6ST1	GCC.	G		CT	G T G	
P3KS1	GCG.	AG	т	.A.ACT	G.GT	
P3CM1	GCG.	AG	т	.A.ACT	G.GT	
P3S1	GCG.	AG	T	.A.ACT	G.G T	
P3HK1	GCG.	AG	T	.A.ACT	G.G T	
P3PL1	GCG.	AG	т	.A.ACT	G.G T	
P3B1	GCG.	AG	T	.A.ACT	G.GT	
P3KK1	GCG.	AG	T	.A.ACT	G.GT	
P24H1	GCT.	G	T	.ACC.A	ACGT	
P30H1	GCAAT.	GT	TT	.ACC	A.GT	
P34H3	GCT.	G	T	.ACC?	A.GT	
P22H2	GCAT.	G	т	.ACC	A.GT	
P33H1	GCAT.	G	T	.ACC?	A.GT	
P28H1	GCAT.	G	т	.ACC	A.GT	
P5B2	GCAT.	G	т	.ACC	A.GT	
P5B1	GCAT.	G	т	.ACC	A.GT	
P14NP1	GCAT.	G	т	.ACC	A.GT	••••
P14NP2	GCAT.	G	т	.ACC	A.GT	••••
P27H2	GCAT.	G	т	.ACC	A.GT	
P4NP1	TTAGTC	AG		TCT	-G	••••
P4PR1	TTAGTC	AG		TCT	-G	
P4B1	TTAGTC	AG		TCT	-G	
P13C1	TCTCGGTT	AGG.		G <mark>CT.</mark> -2	ATGT.C	
P13UB1	TCTCGGTT	AGG.		G <mark>CT</mark> A	ATGT.C	
P7B1	TCTCGGTT	AG		GCC.A	GGT	
P7K1	TCTCGGTT	AG		GCC.A	GGT	
P7CM1	TCTCGGTT	AG		GCC.A	GGT	
P7NP1	TCTCGGTT	AG		GCC.A	.GGT	
P7R1	TC. TCGGTT	AG		GCC A	GGT	
P38H1	ТСТС	AG		GCT A	GGT	
P40H1	TC	AG.		A.GC GAG	ACCC T	
P32H1	GA.A C	TT.AG.	G	GCTAG	TGT.C T	т
P12B1	. ТАА. А- С	TT. AG.	 Т	GCT A	TGT. T	т
20- Р12рт1		TT.AG.	G	GCT A	TGT.C T	т
P12C1	.TAAAA-AG	TT.AG	G	GCT A	TGT.C.T.	Т

		490	500	510	520	530	540
	•••• •	••• ••••	• • • • • • • •	• • • • • • •	• • • • • • • • •	• • • • • • • •	••••
P2NP1	CAAACA	Y-GAGACC	AGGTCGGTCAC	GTGCCGTGG	CATTCGGTGG-1	TGAAAATACC	C-TTA
P2B2	•••••	• - • • • • •	••••••••	•••••	•••••	••••••	•-••
P2B1	•••••	•-•••	••••••••	•••••	••••••	••••••	•-••
P2B3	•••••	•-•••	••••••••	•••••	••••••	••••••	•-••
P17B1	A.	T	. A CGG .	C	.G	· • • • • • • • • • • • • • • • • • • •	·-··
P1B2	•••••	• - • • • • • •	.AC	T	A	· · · · · ⁻ T · · · ·	TC.
PIKI	• • • • • •	• - • • • • • •	.AC		A	· • • • • - T • • • •	TC.
PIPMI D1ND1	•••••	• - • • • • • •	.AC		A	· · · · · ⁻ T · · · ·	TC.
PINPI D1WW1	•••••	• - • • • • • •	.AC		A	T	TC.
PIKKI D1CM1	•••••	• - • • • • • •	.AC	· · · L · · · · · · · · · · · · · · · ·	A	···· [_] 1····	TC.
	• • • • • •	• - • • • • • •	AC	.	A	· · · · · [_] L · · · ·	TC.
PIUII ספרע	• • • • • • •		лС		Λ		TC.
D9B1	т			· · · ± · · · · · ·			- C
P9NP1	т			· · · · · · · · · · · · · · · · · · ·			- C
P6NN1		-	. A C				. – . C.
P6CM1		-	.AC				C.
P6CR1			.AC				C.
P6KK1			.AC		· · · · · · · · · ·		C.
P6NS1	• • • • • • • •		.AC		· · · · · · · · · ·		C.
P6S1	· · · · · · ·		.AC				C.
P6ST1	· · · · · · ·		.AC				C.
P3KS1	· · · · · · ·					•••••	A.
P3CM1	• • • • • • •				••••	•••••	A.
P3S1	•••••			•••••	••••	•••••	A.
P3HK1	•••••			•••••	•••••	•••••	A.
P3PL1	•••••		•••••••••	•••••	•••••	•••••	A.
P3B1	•••••		•••••••••	•••••	•••••	••••••	A.
P3KK1	•••••		· · · · · · · · · · · · ·	•••••	•••••	••••••	A.
P24H1	•••••		.A	•••••	· · · · · · · · · · · - ·	•••••	A.
P30HL	· · C · · ·	A	AA	•••••	· · · · · · · · · · - ·	••••••	.A
P34H3	• • • • • • •		A	•••••••	•••••	••••••	A.
PZZHZ D22U1	• • • • • •		A	••••••	•••••	•••••	.A
РЭЭПІ D28Ц1	•••••		Λ	••••••	····-·-·	••••••	.н Л
P 20111 D5B2	•••••		Δ	••••••	· · · · · · · · · · · · · · · · · · ·	••••••	Δ
P5B1	•••••	_ · · · · · · ·	Δ	•••••••		••••••	Δ
P14NP1			A				. A
P14NP2			A				. A
P27H2			A			GC	.A
P4NP1	T	т	.ACA	T .C.A.		.CAGTT	.c
P4PR1	т	т	ACA	T.C. A.		.CAGTT	.c
P4B1	T	т	ACA			.CAGTT	.c
P13C1	A.A	А	AG.A	C.AC.A.	т.	.A T A.	.c
P13UB1	A.A	а т А	AG.A	C.AC.A.	т.	.A T A.	.C
P7B1	A.A	T	AG.A	C.AT.C.A.	T.	.A T G.	.C
P7K1	A.A	T	AG.A	C.AT.C.A.	T.	.A T G.	.C
P7CM1	A.A	T	AG.A	C.AT.C.A.	T.	.A T G.	.C
P7NP1	A.A	T	AG.A	C.AT.C.A.	· · · · · · · T .	.ATG.	.C
P7R1	A.A	T	AG.A	C.AT.C.A.	T .	.A T G.	.C
P38H1	A		AG.A	C.AT.C.A.	т.	.ATA.	.C
P40H1	Т	T	ACG	•••••	· · · T · · · · - ·	CG.	TG
P32HL	A	T	ACG	•••••	••••••	TCAT.A	.TAG.
PIZBI D1 0Dm1	A	T	ATCA.A	А л	•••••	T. CAT.A	T.G.
P12C1	Δ	 _ T	ACA	A A	· · · · · · · · · ·		. т. с. т. с.
	41. · · · · ·		··· · · · · · · · · · · · · · · · · ·	· · · · · · · · · ·	• • • • • • • • • • •	••••••••••	• • • • •

	550	560	570	580	590	600
	•••• •••• ••••	• • • • • • • •	.		.	•••
P2NP1	CAACGCCTCGTTCA	TTTGATC-GA	ACCAAATT-AGT	CCTCAAAG	ACCCTATG-A	GTAT
P2B2		••••••	T G	т		
P2B1		•••••	T G			• • • •
P2B3		· · · · · · · - · ·	T G			
P17B1	.G.TGTTC	C.GC'	rgcag.A	ATC.	C.T-T	· · · · ·
P1B2	G T G	TC	AG.ATG	TG.C.	T	••••
P1K1	G T G	TC	AG.ATG	TG.C.	T	••••
P1PM1	G T G	TC		TG.C.	T	••••
P1NP1	G T G	TC	AG.A <mark>T</mark> G	TG.C.	T	••••
P1KK1	GTG	TC		TG.C.	T	••••
P1CM1	G T G	TC		TG.C.	T	••••
P1UT1	G T G	TC		TG.C.	T	••••
P37H1	G T G	TC	AG.ATG	TG.C.	C.A-T	••••
P9B1	A	G <mark>C</mark> C	G.TAA-G	TTC.	C.A	с
P9NP1	A	G <mark>C</mark> C	G.TAA-G	TTC.	C.A	с
P6NN1	A	G <mark>C.</mark>		TC.	C.A-T	• • • •
P6CM1	A	G <mark>C.</mark>		TC.	C.A-T	
P6CR1	A	G <mark>C</mark>		TC.	C.A-T	
P6KK1	A	G <mark>C</mark>		TC.	C.A-T	
P6NS1	A	G <mark>C.</mark>		тс.	C.A-T	
P6S1	A	G <mark>C.</mark>		тс.	C.A-T	
P6ST1	A	G <mark>C.</mark>		тс.	C.A-T	
P3KS1	A	G <mark>C.</mark>	GCAC-G.A	тс.	C.A-T	
P3CM1	A	G <mark>C</mark>	GCAC-G.A	тс.	C.A-T	
P3S1	A	G <mark>C</mark>	GCAC-G.A	тс.	C.A-T	
P3HK1	A	G <mark>C</mark>	GCAC-G.A	TC.	C.A-T	
P3PL1	A		GCAC-G.A	TC.	C.A-T	
P3B1	A		GCAC-G.A	TC.	C.A-T	
P3KK1	A	G <mark>C</mark>	GCAC-G.A	TC.	C.A-T	
P24H1	A	G <mark>C</mark>	.ACAA-G.A	TC.	C.A-T	
P30H1	AT	G <mark>C</mark>	CGA-G.A	TC.	C.A-T	
P34H3	A		CAA-G.A	TC.	C.ATT	
P22H2	A	CCA.	CAA-G.A	TC.	C.A-T	• • • •
P33H1	A	GC	CAA-G.A	TC.	C.A-T	• • • •
P28H1	A	G <mark>C</mark> .G	CAAGG.A	TC.	C.A-T	••••
P5B2	A	GC	CAA-G.A	TC.	C.A-T	••••
P5B1	A	GC	CAA-G.A	TC.	C.A-T	••••
P14NP1	A	GC	CAA-G.A	TC.	C.A-T	••••
P14NP2	A	GC	CAA-G.A	TC.	C.A-T	• • • •
P27H2	A	GC	CAA-G.A	TC.	C.A-T	• • • •
P4NP1	$\dots T.T.GTAG.\dots$	AGTGCAGT	TTCAA-G	TGC.	TCT-T.	Α
P4PR1	TGTAG	AGTGCAGT	TTCAA-G	TGC.	TCT-T.	Α
P4B1	$\dots T.T.GTAG.\dots$	AGTGCAGT	TTCAA-G	TGC.	TCT-T.	Α
P13C1	GT.T.GTCGG.	AGTGCAGT	.GCAA-G.A	TC.	CAC	ACT.
P13UB1	GT.T.GTCGG.	AGTGCAGT	GCAA-G.A	TC.	CAC	ACT.
P7B1	GT.T.GTCGGC	ACTGC1	.GCAA-G.A	TC.	CAT	ACTC
P7K1	GT.T.GTCGGC	ACTGCI	GCAA-G.A	TC.	CAT	ACTC
P7CM1	GT.T.GTCGGC	ACTGCI	.GCAA-G.A	TC.	CAT	ACTC
P7NP1		ACTGCI	.GCAA-G.A	TC.	CAT	ACTC
P7R1	GT.T.GTCGGC	ACTGCI	.GCAA-G.A	TC.	CAT	ACTC
P38H1	GT.T.GTTGG.	AGTGCI	.GCAA-G.A	TC.	CAT	ACT.
P40H1	G.CG.ATG.TCA	GCGC	CAA-G.A	TTG.	\cdots	AC
P32H1	T.TTG.T	AGCA	CAA-G.A	TT.G.		2
P12B1	T.TTGTAA.T.C	CGC.AA	CAA-G.A	T.A.G.	.ccT.A-T	AA
PI2RT1	T.TTGTAA.T.C	CGC.AA	TAA-G.A	TG.	CT.A-T	AA
PTZC1	T.TTGTAA.T.C	C.GC.AA	T AA-G.A'	T	.CCT.A-T/	AA

	••••
P2NP1	TCGAC
P2B2	••••
P2B1	••••
P2B3	••••
Р17В1	C
P1B2	••••
P1K1	••••
P1PM1	••••
P1NP1	••••
P1KK1	••••
P1CM1	••••
P1UT1	• • • • •
P37H1	• • • • •
P9B1	C
P9NP1	C
P6NN1	C
P6CM1	C
P6CR1	C
P6KK1	C
P6NS1	C
P6S1	C
P6ST1	C
P3KS1	СҮ
P3CM1	СТ
P3S1	СТ
P3HK1	СТ
P3PL1	СТ
P3B1	СТ
P3KK1	C
P24H1	••••
P30H1	••••
P34H3	••••
P22H2	••••
P33H1	••••
P28H1	••••
P5B2	••••
P5B1	••••
P14NP1	••••
P14NP2	••••
P27H2	••••
P4NP1	.T
P4PR1	.T
P4B1	.T
P13C1	.T
P13UB1	.T
P7B1	.T
P7K1	.T
P7CM1	.T
P7NP1	.T
P7R1	.T
P38H1	.T
P40H1	СТ
P32H1	••••
Р12В1	C
P12RT1	СТ
P12C1	СТ

APPENDIX C

Genetic Distance of 52 *Phyllanthus* species and 6 outgroups calculated by Uncorrected ("p") distance matrix.

1	1	9
-	-	-

	1	2	3	4	5	6	7
1 P. calycinus[AY936674]	-						
2 P. taxodiifolius	0.14607	-					
3 P. acutissimus	0.14216	0.13468	-				
4 P. cinereus[AY936682]	0.14088	0.13148	0.05828	-			
5 P. pulcher	0.14498	0.14631	0.05829	0.04807	-		
6 P. pulcher[AY936726]	0.14507	0.14807	0.06017	0.05149	0.00332	-	
P. SIKKIMENSIS	0.13810	0.13004	0.04533	0.03995	0.02831	0.02485	- 10110
0 P. IOSEUS 9 D. amarus	0.184/5	0.19768	0.10301	0.10103	0.10517	0.10904	0.10110
10 P amarus [AV936668]	0.18107	0.19037	0.17546	0.17290	0.17621	0.18108	0.17243
11 P. amarus[AY936669]	0.18285	0.19209	0.18058	0.17463	0.18129	0.18613	0.17751
12 Sauropus villosus	0.18287	0.18690	0.16572	0.16611	0.17269	0.17307	0.16227
13 Breynia cernua	0.17273	0.17934	0.15944	0.14982	0.16542	0.16748	0.15672
14 P. urinaria[AY936736]	0.18830	0.18906	0.19792	0.19619	0.19834	0.19840	0.18918
15 P. urinaria	0.18296	0.19405	0.19433	0.19600	0.19280	0.19284	0.18541
16 P. urinaria[AY936735]	0.18306	0.19408	0.19429	0.19595	0.19279	0.19284	0.18544
17 P. muellerianus[AY936711]	0.14584	0.15095	0.14629	0.14687	0.15219	0.15362	0.14143
18 P. reticulatus	0.14674	0.15093	0.14795	0.14877	0.15554	0.15702	0.14326
19 P. reticulatus[AY936728]	0.14666	0.15078	0.14793	0.14875	0.15721	0.15869	0.14493
20 <i>P. casticum</i> [AY936676]	0.14512	0.14633	0.14481	0.14890	0.15248	0.15396	0.14178
21 P. pervilleanus[AY936723]	0.14804	0.14915	0.14779	0.15182	0.15369	0.15515	0.14301
22 P. emplica	0.1794	0.1/982	0.19088	0.17606	0.1914/	0.19481	0.18400
25 P. empilea [A1950009]	0.1/043	0.18000	0.19108	0.17022	0.19108	0.19505	0.10421
24 F. IIIguiacus 25 P. columnaris	0.16929	0.20140 0.17177	0.20517	0.19805	0.21008	0.21391	0.20559
26 P polyphyllus[AY936725]	0.17156	0.17156	0.18072	0.17266	0.18131	0.18463	0.17721
27 P. oxyphyllus	0.16363	0.17200	0.17798	0.17158	0.18028	0.18361	0.17614
28 P. oxyphyllus[AY936719]	0.16522	0.17518	0.17947	0.17307	0.18176	0.18509	0.17764
29 P. microcarpus	0.16956	0.18295	0.18334	0.18194	0.19252	0.19583	0.18851
30 P. orientalis	0.17307	0.18158	0.18533	0.18076	0.18945	0.19271	0.18542
31 P. harmandii	0.16285	0.17469	0.17806	0.17355	0.18212	0.18535	0.17808
32 P. collinsiae	0.16288	0.17474	0.17867	0.17412	0.18278	0.18603	0.17874
33 P. angkorensis	0.16288	0.17474	0.17867	0.17412	0.18278	0.18603	0.17874
34 P. gracilipes	0.16623	0.17803	0.18200	0.17742	0.18608	0.18933	0.18204
35 <i>P. mannianus</i> [AY936708]	0.17055	0.18169	0.18284	0.18332	0.18663	0.18524	0.17948
36 P. debilis	0.18120	0.17023	0.17218	0.18078	0.17965	0.17823	0.17097
37 P. debilis[AY936686]	0.17752	0.16839	0.16713	0.17576	0.17463	0.17319	0.16593
20 D gopialig[AV926722]	0.17305	0.16453	0.1/205	0.1//01	0.10420	0.10700	0.17902
40 P ninnatus[AY936724]	0.15682	0.15977	0.15525	0.15606	0.16759	0.17112	0.15878
41 P. acidus	0.15786	0.15739	0.15637	0.15369	0.16219	0.16550	0.15651
42 P. acidus[AY936666]	0.15786	0.15739	0.15637	0.15369	0.16219	0.16550	0.15651
43 P. chacoensis[AY936677]	0.16487	0.16577	0.16481	0.16209	0.17061	0.17200	0.16304
44 Margaritaria cyanosperma	0.21353	0.21149	0.19596	0.20395	0.19663	0.19660	0.19783
45 Lingelsheimia sp.	0.18252	0.19280	0.17947	0.17996	0.18680	0.18844	0.18452
46 Savia bahamensis	0.17971	0.19355	0.17865	0.17782	0.18219	0.18421	0.17352
47 Flueggea leucopyrus	0.18188	0.19775	0.17614	0.18025	0.17340	0.17202	0.17967
48 P. cochinchinensi[AY936684]	0.21746	0.19673	0.18862	0.19407	0.19617	0.19798	0.19106
49 P. welwitschianus	0.19888	0.19339	0.18718	0.19250	0.19133	0.19309	0.18269
50 P. welwitschianus[AY936739]	0.20241	0.19398	0.18718	0.19476	0.19190	0.19369	0.18320
51 P. garanerianus[AY936694]	0.21230	0.22232	U.21217	0.21258	U.21267	U.21759	U.ZIUI7
52 P. Virgatus (1)	0.21309	0.22452	0.21135	0.21350	0.21183	0.21008	0.21452
53 r. viiyalus (2) 54 P chrysanthus [10036680]	0.21232	0.22303	0.21240	0.21401	0.21600	0.21//4	0.2104
55 P virgatus[AY936738]	0.21525	0.21320	0.20090	0.21297	0.21009	0.22092	0.21040
56 <i>P. wheeleri</i> [AY936740]	0.21692	0.22682	0.21478	0.21506	0.21007	0.21403	0.20515
57 P. myrtifolius	0.19298	0.20337	0.17509	0.18024	0.18418	0.18886	0.17817
58 P. myrtifolius[AY936712]	0.19471	0.20140	0.17512	0.18035	0.18426	0.18773	0.17704
_	8	9	10	11	12	13	14
8 P. roseus	-						
9 P. amarus	0.01450	-					
LU P. amarus[AY936668]	0.01450						
12 Sauropus willogus	0.02256	U.UUXU5 0 15005	0.00805	-			
13 Brownia cernus	0.15880	0.10200	0.12233	0.15/10	0 06271	-	
14 P. urinaria[AY936736]	0.16237	0.15082	0.15083	0.14915	0.14388	0.14320	-
15 P. urinaria	0.16707	0.15556	0.15556	0.15388	0.14859	0.14626	0.02724
16 P. urinaria[AY936735]	0.16896	0.15746	0.15746	0.15418	0.15207	0.14975	0.03366

			8	9	10	11	12	13	14
17	Ρ.	<pre>muellerianus[AY936711]</pre>	0.15475	0.14321	0.14321	0.14630	0.16004	0.14973	0.17859
18	P.	reticulatus	0.15933	0.14935	0.14935	0.15245	0.16354	0.15149	0.18180
19	P.	reticulatus[AY936728]	0.15771	0.14773	0.14773	0.15084	0.16028	0.14818	0.17994
20	P.	casticum[AY936676]	0.15335	0.14340	0.14340	0.14653	0.16240	0.15035	0.18056
21	P.	pervilleanus[AY936723]	0.16429	0.15433	0.15433	0.15746	0.17146	0.15628	0.18798
22	P.	emblica	0.14873	0.14366	0.14366	0.14525	0.12437	0.12168	0.10496
23	P.	emblica[AY936689]	0.15711	0.15045	0.15045	0.15205	0.13200	0.12629	0.10813
24	P.	lingulatus	0.16278	0.16097	0.16097	0.16259	0.14486	0.13751	0.12954
25	P.	columnaris	0.13909	0.13404	0.13404	0.13563	0.11589	0.11515	0.10779
26	Ρ.	polyphyllus[AY936725]	0.14699	0.14191	0.14191	0.14350	0.12557	0.11822	0.11106
27	Ρ.	oxyphyllus	0.13766	0.13256	0.13256	0.13416	0.11452	0.11368	0.10004
28	Ρ.	oxyphyllus[AY936719]	0.13913	0.13402	0.13402	0.13561	0.11618	0.11196	0.10334
29	Ρ.	microcarpus	0.15362	0.14858	0.14858	0.15168	0.12820	0.12351	0.11493
30	Ρ.	orientalis	0.14818	0.14311	0.14311	0.14470	0.12239	0.11968	0.10628
31	Ρ.	harmandii	0.14134	0.13629	0.13629	0.13785	0.11592	0.11323	0.10465
32	Ρ.	collinsiae	0.14006	0.13499	0.13499	0.13656	0.11602	0.11328	0.10473
33	Ρ.	angkorensis	0.14006	0.13499	0.13499	0.13656	0.11602	0.11328	0.10473
34	Ρ.	gracilipes	0.14146	0.13642	0.13642	0.13/99	0.11931	0.11655	0.10/9/
35	Ρ.	mannianus[AY936708]	0.14661	0.13824	0.13824	0.13821	0.16047	0.14954	0.14153
30	P.	debilis	0.13780	0.12946	0.12946	0.13242	0.131/4	0.12925	0.14454
3/	P.		0.13743	0.12909	0.12909	0.13206	0.12853	0.12598	0.14142
20	P.	Raessnerr[A1950/00]	0.14033	0.13303	0.13303	0.13001	0.13072	0.13562	0.15/12
10	P.	sepialis[A1930732]	0.12070	0.12210	0.12210	0.12300	0.12005	0.12074	0.12450
40	P.	prinacus[A1936724]	0.11270	0.10772	0.10772	0.10932	0.11960	0.11541	0.12994
41	Р. Л	actous	0.11370	0.10555	0.10555	0.10711	0.10962	0.10362	0.11503
42	г. D	chacoensis[AV936677]	0.11378	0.10355	0.10355	0.10711	0.10902	0.10302	0.11303
44	г. Мэт	rgaritaria gyanosnerma	0.12079	0.11375	0.11375	0.11920	0.21364	0.10072	0.12407
45	T.in	ngelsheimia sp	0.18921	0.17925	0.17925	0 18076	0 18449	0.17491	0.19759
46	Sat	via bahamensis	0 17649	0 16808	0 16808	0 17456	0 18685	0 18445	0 19727
47	Fli	leggea leucopyrus	0.17251	0.16420	0.16420	0.16729	0.19050	0.18482	0.19435
48	P.	cochinchinensis[AY936684]	0.20423	0.19559	0.19559	0.19893	0.21770	0.20344	0.22266
49	Р.	welwitschianus[AY936739]	0.20079	0.19049	0.19049	0.19387	0.21682	0.19947	0.20968
50	 Р.	welwitschianus	0.20120	0.19089	0.19089	0.19430	0.21559	0.19825	0.21001
51	 Р.	gardnerianus[AY936694]	0.20265	0.19763	0.19763	0.19762	0.23359	0.22852	0.23609
52	Ρ.	virgatus (1)	0.22604	0.21775	0.21775	0.21776	0.23656	0.22708	0.24378
53	Ρ.	virgatus (2)	0.22704	0.21876	0.21876	0.21879	0.23760	0.22644	0.24369
54	Ρ.	chrysanthus[AY936680]	0.20830	0.20327	0.20327	0.20163	0.22429	0.22094	0.22668
55	Ρ.	virgatus[AY936738]	0.21179	0.20675	0.20675	0.20513	0.22430	0.22098	0.23190
56	P.	wheeleri[AY936740]	0.20969	0.19976	0.19976	0.20298	0.21696	0.22029	0.22488
57	P.	myrtifolius	0.18476	0.17484	0.17484	0.17645	0.19321	0.19265	0.20174
58	P.	myrtifolius[AY936712]	0.18336	0.17339	0.17339	0.17502	0.19314	0.19258	0.20348
			15	16	17	18	19	20	21
15	P.	urinaria	-						
16	P.	urinaria[AY936735]	0.00641	-					
17	P.	muellerianus[AY936711]	0.17814	0.17995	-				
18	P.	reticulatus	0.18462	0.18639	0.02889	-			
19	P.	reticulatus[AY936728]	0.18113	0.18290	0.03209	0.00640	-		
20	P.	casticum[AY936676]	0.18018	0.18200	0.02890	0.02564	0.02723	-	
21	P.	pervilleanus[AY936723]	0.18438	0.18622	0.04005	0.03680	0.03680	0.01122	-
22	P.	emblica	0.11765	0.12242	0.14663	0.14664	0.14503	0.14698	0.15783
23	P.	emblica[AY936689]	0.12249	0.12728	0.15015	0.15019	0.15177	0.15374	0.16457
24	P.	lingulatus	0.13747	0.14254	0.16855	0.17036	0.16877	0.17084	0.18156
25	P.	columnaris	0.11734	0.12081	0.15109	0.15429	0.15429	0.15151	0.16392
26	P.	polyphyllus[AY936725]	0.12213	0.12556	0.15110	0.15428	0.15266	0.14826	0.15908
27	P.	oxyphyllus	0.11126	0.11472	0.14838	0.14993	0.14830	0.14714	0.15799
28	Ρ.	oxyphyllus[AY936719]	0.11444	0.11786	0.14651	0.14808	0.14646	0.14528	0.15614
29	P.	microcarpus	0.12289	0.12794	0.15557	0.15720	0.15556	0.15755	0.16843
30	Ρ.	orientalis	0.11738	0.12240	0.15634	0.15920	0.15759	0.15799	0.16879
31	Ρ.	harmandii	0.11249	0.11752	0.14467	0.14624	0.14461	0.14498	0.15583
32	Ρ.	collinsiae	0.11256	0.11757	0.14474	0.14635	U.14473	0.14509	0.15594
33	Ρ.	angkorensis	0.11256	0.11757	0.14474	U.14635	0.14473	0.14509	0.15594
34 25	г. Г	yracrites	U.115/9	0.14624	U.14/96	0.14954	U.14/93	0.12567	0.15914
35	Р. Г	mannitanus[AI930/U8]	0.1395/	0.14034	0.14342	0.12007	0.12655	0.1356/	U.141/5
20	Γ.	UEDITIS	∪.⊥44∠⊥	0.14920	0.14000	0.13201	0.13033	∪.⊥3∠⊥3	∪.⊥4⊥48

0.14107

0.15843 0.15868

0.13080 0.13244

0.13774 0.13957

0.14611

0.13520 0.13827

0.14267

0.11994

0.11932

0.12599 0.12936 0.10102 0.10733 0.10411 0.10601 0.11694

0.13796

0.12003

0.11450

0.13501

0.13617

0.11497

0.11610

0.13055

0.13821

0.12031

0.11158

0.13991

0.14104

0.12642

0.12252

37 P. debilis[AY936686]

38 P. kaessneri[AY936700]

39 P. sepialis[AY936732]

40 P. pinnatus[AY936724] 41 P. acidus

42 P. acidus[AY936666]	15 0.12599	16 0.12936	17 0.10102	18 0.10733	19 0.10411	20 0.10601	21 0.11694
43 P. chacoensis[AY936677]	0.12932	0.13107	0.10103	0.11050	0.10728	0.10756	0.11690
44 Margaritaria cyanosperma	0.22276	0.22456	0.15001	0.15444	0.15460	0.15473	0.16301
45 Lingelsheimia sp.	0.19881	0.20068	0.15030	0.15813	0.15488	0.15340	0.16295
46 Savia bahamensis	0.18686	0.18877	0.14424	0.14886	0.14887	0.14267	0.15045
47 Flueggea leucopyrus	0.19082	0.19271	0.14808	0.15415	0.15250	0.15129	0.15572
48 P. cochinchinensis[AY936684]	0.22221	0.22097	0.16775	0.17401	0.17237	0.16956	0.17569
49 P. welwitschianus	0.21426	0.21297	0.17384	0.17854	0.18017	0.17876	0.18343
50 P. welwitschianus[AY936739]	0.21463	0.21334	0.17255	0.17719	0.17883	0.17746	0.18216
51 P. gardnerianus[AY936694]	0.23589	0.23629	0.17521	0.18308	0.18130	0.18530	0.19131
52 P. virgatus (1)	0.23546	0.23594	0.19652	0.20918	0.20739	0.20324	0.20920
53 P. virgatus (2)	0.23537	0.23586	0.19734	0.20999	0.20837	0.20411	0.20680
54 P. chrysanthus[AY936680]	0.22481	0.22521	0.19197	0.20462	0.20286	0.19872	0.20461
55 P. virgatus[AY936738]	0.23005	0.23049	0.19208	0.20163	0.19983	0.19893	0.20641
56 P. wheeleri[AY936740]	0.22311	0.22493	0.18876	0.19993	0.19811	0.18907	0.19834
5/ P. myrtiiolius	0.20316	0.20510	0.16425	0.17060	0.16863	0.16444	0.1/202
58 P. myrtifolius[A1936/12]	0.2048/	0.20682	0.16443	0.17060	0.1655/	0.16138	0.16898
	22	23	24	25	26	27	28
22 P. emblica	-						
23 P. emblica[AY936689]	0.01125	-					
24 P. lingulatus	0.07417	0.08226	-				
25 P. columnaris	0.04963	0.05764	0.05953				
26 P. polyphyllus[AY936725]	0.04644	0.05126	0.05632	0.03200			
27 P. oxyphyllus	0.04330	0.05134	0.05161	0.02726	0.02247	-	
28 P. oxyphyllus[AY936719]	0.03848	0.04655	0.05001	0.02567	0.01765	0.00482	-
29 P. microcarpus	0.05808	0.06616	0.02744	0.04188	0.04027	0.03551	0.03394
30 P. orientalis	0.05130	0.05934	0.04655	0.03521	0.03841	0.03208	0.03048
31 P. Harmandii	0.04484	0.05289	0.03526	0.02875	0.02880	0.02243	0.02081
22 P. COIIINSIAE	0.04491	0.05297	0.03528	0.02000	0.02000	0.02245	0.02083
33 P. angkorensis	0.04491	0.05297	0.03528	0.02000	0.02000	0.02245	0.02083
35 P mannianus[AV936708]	0.04011	0.03019	0.05051	0.03200	0.03200	0.02304	0.02405
36 P. debilis	0.12924	0.13767	0.15054	0.12448	0.13079	0.13121	0.12938
37 P. debilis[AY936686]	0.12608	0.13453	0.14892	0.12289	0.12921	0.12965	0.12780
38 P. kaessneri[AY936700]	0.14171	0.15011	0.15617	0.13537	0.13837	0.13236	0.13053
39 P. sepialis[AY936732]	0.11055	0.11893	0.13202	0.10741	0.11388	0.10773	0.10922
40 P. pinnatus[AY936724]	0.10811	0.11632	0.13220	0.09995	0.10155	0.10189	0.10016
41 P. acidus	0.08671	0.09494	0.11076	0.08351	0.08510	0.08217	0.08040
42 P. acidus[AY936666]	0.08671	0.09494	0.11076	0.08351	0.08510	0.08217	0.08040
43 P. chacoensis[AY936677]	0.10921	0.11588	0.13001	0.10280	0.10759	0.10475	0.10293
44 Margaritaria cyanosperma	0.20237	0.20941	0.23857	0.21339	0.21176	0.20940	0.20732
45 <i>Lingelsheimia</i> sp.	0.17366	0.18053	0.20887	0.18342	0.18489	0.17908	0.17717
46 Savia bahamensis	0.17676	0.18468	0.20675	0.18620	0.17977	0.17555	0.17368
47 Flueggea leucopyrus	0.17702	0.18490	0.19609	0.18161	0.17519	0.17094	0.16906
48 P. cochinchinensis[AY936684]	0.18892	0.18922	0.21992	0.20204	0.19712	0.19931	0.19745
49 P. WelWitschlanus	0.19219	0.19247	0.21830	0.20048	0.19553	0.19443	0.19260
50 P. WelWitschlanus[A1936/39]	0.19088	0.19115	0.21698	0.19/54	0.19260	0.19153	0.18968
51 P. gardner tanus [A1950094] 52 P. wirgstug (1)	0.21907	0.21920	0.24575	0.21/2/	0.22050	0.21310	0.21400
52 P wirgstus (2)	0.22007	0.22377	0.25135	0.22009	0.22909	0.22500	0.22377
54 P. chrysanthus[AY936680]	0.21296	0.21313	0.23651	0.21123	0.21769	0.21034	0.21177
55 P. virgatus[AV936738]	0.21312	0.21327	0.23347	0.20661	0.21469	0.20407	0.20877
56 P. wheeleri[AY936740]	0.21624	0.21855	0.23984	0.20968	0.21603	0.20879	0.21026
57 P. myrtifolius	0.19141	0.19479	0.21806	0.18799	0.19445	0.18367	0.18512
58 P. myrtifolius[AY936712]	0.19327	0.19992	0.21684	0.18991	0.19312	0.18235	0.18379
	29	30	31	32	33	34	35
29 P. microcarpus	0 0 0 0 0 1						
JU F. ULIEIILAIIS	0.02091	-					

31	P.	harmandii	0.02094	0.01277	-				
32	P.	collinsiae	0.02094	0.01278	0.00412	-			
33	P.	angkorensis	0.02094	0.01278	0.00412	0.00000	-		
34	P.	gracilipes	0.02417	0.01597	0.00318	0.00319	0.00319	-	
35	P.	mannianus[AY936708]	0.14661	0.14706	0.13872	0.13885	0.13885	0.14206	-
36	P.	debilis	0.13937	0.13408	0.12416	0.12425	0.12425	0.12747	0.07692

1	$\gamma\gamma$	
I	22	

		29	30	31	32	33	34	35
37	P. debilis[AY936686]	0.13776	0.13247	0.12256	0.12264	0.12264	0.12586	0.07524
38	P. kaessperi[AY936700]	0.14192	0.14153	0.13313	0.13179	0.13179	0.13501	0.09501
39	P sepialis[AY936732]	0 12259	0 11556	0 10888	0 10902	0 10902	0 11223	0 08029
40	P pippatus[$\lambda V936724$]	0 11698	0 10966	0 10308	0 10319	0 10319	0 10640	0 09920
11	P. primacus[A1950724]	0.11090	0.10900	0.10300	0.10319	0.10319	0.10040	0.09920
41	P. actuus	0.09561	0.08996	0.00344	0.00351	0.00351	0.08670	0.09906
42	P. acidus[AY936666]	0.09561	0.08996	0.08344	0.08351	0.08351	0.08670	0.09906
43	P. chacoensis[AY936677]	0.11509	0.11245	0.10273	0.10279	0.10279	0.10598	0.10552
44	Margaritaria cyanosperma	0.22087	0.22102	0.21278	0.21289	0.21289	0.21609	0.20821
45	<i>Lingelsheimia</i> sp.	0.18929	0.19105	0.18274	0.18292	0.18292	0.18611	0.18997
46	Savia bahamensis	0.19381	0.19391	0.18415	0.18424	0.18424	0.18744	0.18446
47	Flueggea leucopyrus	0.18464	0.18495	0.17530	0.17532	0.17532	0.17850	0.17568
48	P. cochinchinensis[AY936684]	0.20617	0.20316	0.19806	0.19819	0.19819	0.20140	0.21090
49	P. welwitschianus	0.20337	0.19873	0.19520	0.19539	0.19539	0.19861	0.20877
50	P welwitschianus[AY936712]	0 20209	0 19743	0 19393	0 19410	0 19410	0 19732	0 20582
51	P gardnerianus[AV936694]	0 22636	0 22799	0 22123	0 21005	0 21005	0 22316	0 21430
52	P wirestug (1)	0.22000	0.22799	0.22125	0.21000	0.21000	0.22510	0.21150
52	P. Vilgatus (1)	0.23585	0.23097	0.23370	0.23256	0.23256	0.23578	0.22900
53	P. Virgalus (2)	0.23685	0.23999	0.234/3	0.23356	0.23356	0.23675	0.22897
54	P. Chrysanthus[A1936680]	0.22031	0.22189	0.21829	0.21/06	0.21/06	0.22025	0.21667
55	P. virgatus[AY936738]	0.21728	0.21888	0.21528	0.21405	0.21405	0.21724	0.22030
56	P. wheeleri[AY936740]	0.21719	0.21876	0.21386	0.21396	0.21396	0.21717	0.22341
57	P. myrtifolius	0.19843	0.19717	0.19220	0.19237	0.19237	0.19555	0.19802
58	P. myrtifolius[AY936712]	0.19713	0.19909	0.19089	0.19105	0.19105	0.19423	0.19953
		36	37	38	39	40	41	42
36	P. debilis	-						
37	P. debilis[AY936686]	0.00325	-					
38	P. kaessneri[AY936700]	0.09439	0.09090	-				
39	P. sepialis[AY936732]	0.08157	0.07818	0.07465	_			
40	P. pinnatus[AY936724]	0.09458	0.09307	0.09443	0.07147	_		
41	P acidus	0 08766	0 08445	0 08743	0 06784	0 03537	_	
10	P paidua NO26666]	0.00766	0.00445	0.00743	0.00704	0.03537	0 00000	
42	P. actuus[A1930000]	0.08700	0.00445	0.00743	0.00784	0.03537	0.00000	0 02025
		0.095/1	0.09/4/	11 119 / 411		11 11/16 6 4		
43		0.10001	0.10011	0.09230	0.07274	0.04039	0.03035	0.03035
43 44	Margaritaria cyanosperma	0.19391	0.18911	0.19381	0.19095	0.18284	0.17183	0.17183
43 44 45	Margaritaria cyanosperma Lingelsheimia sp.	0.19391 0.17679	0.18911 0.17367	0.19381 0.17288	0.19095 0.17673	0.18284 0.16229	0.17183 0.15318	0.03033 0.17183 0.15318
43 44 45 46	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis	0.19391 0.17679 0.17827	0.18911 0.17367 0.17692	0.19381 0.17288 0.16485	0.19095 0.17673 0.16493	0.18284 0.16229 0.14732	0.17183 0.15318 0.14359	0.17183 0.15318 0.14359
43 44 45 46 47	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus	0.19391 0.17679 0.17827 0.18219	0.18911 0.17367 0.17692 0.17905	0.19381 0.17288 0.16485 0.16536	0.19095 0.17673 0.16493 0.16684	0.18284 0.16229 0.14732 0.15137	0.17183 0.15318 0.14359 0.14245	0.17183 0.15318 0.14359 0.14245
43 44 45 46 47 48	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684]	0.19391 0.17679 0.17827 0.18219 0.19434	0.18911 0.17367 0.17692 0.17905 0.19122	0.19381 0.17288 0.16485 0.16536 0.19728	0.19095 0.17673 0.16493 0.16684 0.19220	0.18284 0.16229 0.14732 0.15137 0.17878	0.17183 0.15318 0.14359 0.14245 0.16399	0.17183 0.15318 0.14359 0.14245 0.16399
43 44 45 46 47 48 49	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363
43 44 45 46 47 48 49 50	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070
43 44 45 46 47 48 49 50 51	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761
43 44 45 46 47 48 49 50 51 52	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. wirratus (1)	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.18761	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.18410
43 44 45 46 47 48 49 50 51 52 52	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. wirgatus (2)	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427	0.13183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410
43 44 45 46 47 48 49 50 51 52 53	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2)	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.21998	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529	0.13183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508
43 44 45 46 47 48 49 50 51 52 53 54	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.21998 0.20752	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859 0.20154	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995	0.13183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318
43 44 45 46 47 48 49 50 51 52 53 54 55	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21447	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.21168 0.21891 0.21998 0.20752 0.20942	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.20398 0.21859 0.20154 0.20649	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19827	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343	0.13183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659
43 44 45 46 47 48 49 50 51 52 53 55 55 56	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.21998 0.20752 0.20942 0.20128	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.20398 0.21859 0.20154 0.20649 0.20874	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19827 0.19487	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823
43 44 45 46 47 48 49 51 53 54 556 57	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440 0.18723	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.21998 0.20752 0.20942 0.20128 0.18234	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859 0.20154 0.20649 0.20874 0.18337	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19827 0.19487 0.16837	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042	0.13183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859 0.20154 0.20649 0.20874 0.18337 0.18191	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19827 0.19487 0.16837 0.16859	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048	0.13183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722	0.17183 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.21998 0.20752 0.20942 0.20942 0.20128 0.18234 0.18381	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859 0.20154 0.20649 0.20874 0.20874 0.18337 0.18191	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19827 0.19487 0.16837 0.16859	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048	0.13183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.21998 0.20752 0.20942 0.20942 0.20128 0.18234 0.18381	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859 0.20154 0.20649 0.20874 0.20874 0.18337 0.18191	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19827 0.19487 0.16837 0.16859	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048	0.13183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.21998 0.20752 0.20942 0.20942 0.20128 0.18234 0.18381	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859 0.20154 0.20649 0.20874 0.20874 0.18337 0.18191	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19827 0.19487 0.16837 0.16859	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 43	Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius P. myrtifolius[AY936712]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859 0.20154 0.20649 0.20874 0.18337 0.18191	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19827 0.19487 0.16837 0.16859	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048	0.13183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722	0.103039 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 43 44	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]</pre>	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 0.17174	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381 44	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859 0.20154 0.20649 0.20874 0.18337 0.18191	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19827 0.19487 0.16837 0.16859	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48	0.103033 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 43 44 45	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]</pre> P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp.	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 - 0.17174 0.15799	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.21168 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381 44	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.20398 0.2080 0.21859 0.20154 0.20649 0.20874 0.18337 0.18191	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20756 0.19159 0.19827 0.19487 0.16837 0.16859	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722
43 44 45 46 47 48 49 50 51 253 55 55 56 57 58 43 44 45 46 45 46 47 48 49 50 51 253 55 56 57 58 43 44 45 58	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]</pre> P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381 44	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.20398 0.22080 0.21859 0.20154 0.20649 0.20874 0.18337 0.18191 45	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19487 0.16837 0.16859 46	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 49
43 44 45 46 47 48 49 50 51 52 53 54 55 55 55 55 57 58 43 44 45 47 43 44 45 47 48 47 48 49 50 51 52 53 54 55 55 56 57 58 43 44 47 46 47 48 46 47 48 46 47 48 49 50 51 52 53 54 55 56 57 57 58 40 47 50 57 57 57 57 57 57 57 57 57 57 57 57 57	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]</pre> P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22486 0.21254 0.21254 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 - 0.17174 0.15799 0.14358 0.15059	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381 44 	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859 0.20154 0.20649 0.20649 0.20649 0.20649 0.20874 0.18337 0.18191 45	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19827 0.19827 0.19887 0.16837 0.16837 0.16859 46	0.18284 0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48	0.17183 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 49
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 43 44 45 46 47 48 45 46 47 48 49 50 51 52 53 54 55 56 57 58 43 44 45 46 47 48 46 47 48 49 50 50 51 52 53 54 55 54 56 57 58 57 57 58 57 57 58 57 57 58 57 57 57 58 57 57 57 57 57 57 57 57 57 57 57 57 57	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius P. myrtifolius[AY936712]</pre> P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY93	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21447 0.20440 0.18723 0.18868 43 	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.219415 0.21891 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381 44 - 0.13421 0.14179 0.14654 0.14654 0.19994	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859 0.20154 0.20649 0.20874 0.20874 0.18337 0.18191 45	0.19095 0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19487 0.16837 0.16859 46	0.18284 0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48	0.17183 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 49
43 44 45 46 57 58 43 49 50 51 52 53 54 55 57 58 43 44 45 46 47 48 49 50 57 58 43 44 45 46 47 48 49 40 40 41 42 43 44 45 46 47 48 49 40 41 42 43 44 44 47 48 49 40 41	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]</pre> P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY93	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.20752 0.20942 0.20128 0.18234 0.18381 44 	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.20398 0.20154 0.20154 0.20649 0.20874 0.18337 0.18191 45 - 0.11419 0.11720 0.18457 0.17275	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20756 0.19159 0.19827 0.19827 0.19887 0.16837 0.16837 0.16859 46 	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48	0.15318 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 49
43 44 45 46 47 48 950 51 52 53 54 55 56 57 43 44 45 47 48 47 48 47 48 47 48 47 48 47 48 40 40 40 41 42 43 44 45 46 47 48 49 43 44 45 46 47 48 49 49 40 41 42 43 44 45 <td><pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]</pre> P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY93</td> <td>0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 0.17174 0.15799 0.14358 0.15059 0.17708 0.17659</td> <td>0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.21168 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381 44 </td> <td>0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.20154 0.20154 0.20874 0.20874 0.20874 0.18337 0.18191 45 </td> <td>0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19358 0.19220 0.20930 0.20756 0.19159 0.19487 0.16837 0.16837 0.16859 46 </td> <td>0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47</td> <td>0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48</td> <td>0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 49</td>	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]</pre> P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY93	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 0.17174 0.15799 0.14358 0.15059 0.17708 0.17659	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.21168 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381 44 	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.20154 0.20154 0.20874 0.20874 0.20874 0.18337 0.18191 45 	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19358 0.19220 0.20930 0.20756 0.19159 0.19487 0.16837 0.16837 0.16859 46 	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48	0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 49
43 44 456 47 48 950 51 52 53 55 57 58 43 445 47 48 55 57 58 43 445 47 48 47 48 50 57 58 43 44 47 48 50 57 58 43 447 48 50 57 58 43 447 48 50 50 50 50 50 51 52 53 54 55 56	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]</pre> P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY93 P. welwitschianus P. welwitschianus[AY936739]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.20752 0.20942 0.20752 0.20942 0.20128 0.18234 0.18381 44 	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.2080 0.21859 0.20154 0.20649 0.20874 0.20874 0.18337 0.18191 45 	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19487 0.16837 0.16837 0.16859 46 	0.18284 0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47 	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18559 0.17823 0.15549 0.15722 48 48	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 49
43 44 456 47 48 49 50 51 52 53 54 556 57 58 43 44 45 46 47 48 40 50 51	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]</pre> P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY93 P. welwitschianus P. welwitschianus P. gardnerianus[AY936739] P. gardnerianus[AY936694]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21254 0.21254 0.21254 0.21254 0.21254 0.21254 0.21254 0.21254 0.21254 0.21254 0.21254 0.21254 0.18723 0.18868 43 0.17174 0.15799 0.14358 0.15059 0.17708 0.17537 0.19902	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21998 0.20752 0.20942 0.20942 0.20128 0.18234 0.18381 44 	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859 0.20154 0.20649 0.20649 0.20649 0.20874 0.18337 0.18191 45 	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19827 0.19487 0.16837 0.16837 0.16859 46 	0.18284 0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47 	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48 	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19400 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 49
43 44 456 47 489 50 51 52 53 54 556 57 58 434 440 441 450 556 57 58 434 440 450 50 51 52	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius P. myrtifolius[AY936712]</pre>	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21447 0.20440 0.18723 0.18868 43 	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381 44 - 0.13421 0.14179 0.14654 0.19994 0.21461 0.20852 0.23058 0.23909	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859 0.20154 0.20649 0.20874 0.18337 0.18191 45 - 0.11419 0.11720 0.18457 0.17975 0.17975 0.17681 0.20848 0.21882	0.19095 0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19487 0.16837 0.16837 0.16859 46 	0.18284 0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47 - 0.17605 0.18056 0.18056 0.18092 0.19739 0.20725	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48 	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 49
43 44 45 47 48 950 512 534 555 57 58 444 45 46 47 48 49 50 57 58 43 44 45 46 47 48 90 51 52 53	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]</pre> P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936739] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2)	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.20752 0.20942 0.20128 0.18234 0.18381 44 - 0.13421 0.14179 0.14654 0.19994 0.214654 0.19994 0.214654 0.23058 0.23058 0.23909 0.23801	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.20398 0.2080 0.21859 0.20154 0.20649 0.20874 0.18337 0.18191 45 	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20756 0.19159 0.20756 0.19159 0.19827 0.19827 0.19887 0.16837 0.16837 0.16859 46 	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47 0.17605 0.18056 0.18056 0.18092 0.180739 0.20725 0.20395	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48 	0.103033 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18761 0.19508 0.18761 0.19508 0.18761 0.19508 0.187549 0.15549 0.15722 49
43 44 45 47 48 50 51 52 54 55 57 58 43 445 46 47 55 57 58 43 445 46 47 489 50 52 53 53 54	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]</pre> P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936739] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.21168 0.21998 0.20752 0.20942 0.20942 0.20128 0.18234 0.18381 44 	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.20154 0.20154 0.20649 0.20874 0.18337 0.18191 45 	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19487 0.16837 0.16859 46 	0.18284 0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47 - 0.17605 0.18056 0.18052 0.18052 0.18052 0.18052 0.18052 0.18052 0.18052 0.18052 0.18052 0.18052 0.18052 0.18052 0.18052 0.18055 0.18052 0.18055 0.18052 0.18055 0.18052 0.18052 0.18055 0.18055 0.18055 0.18052 0.18055 0.20355 0.205	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48 	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 49
43 44 456 47 489 51 53 55 57 44 46 47 489 51 52 55 57 58 43 44 46 47 48 50 57 58 43 44 46 47 48 50 52 53 55	<pre>Nargaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936740] P. myrtifolius[AY936712] P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936739] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936680] P. virgatus[AY936738]</pre>	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.21168 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381 44 	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.20154 0.20154 0.20649 0.20874 0.20874 0.20874 0.20874 0.20874 0.20874 0.20874 0.20874 0.20874 0.20874 0.20874 0.21859 0.20154 0.20154 0.20154 0.20848 0.20848 0.20848 0.20848 0.20848 0.20848 0.20848 0.20848 0.21857 0.27681 0.20848 0.21857 0.27681 0.20848 0.21857 0.27681 0.20174 0.21174	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19487 0.16837 0.16859 46 	0.18284 0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47 	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48 48 	0.17183 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 49 0.15722 49 0.201971 0.201971 0.20247
43 44 456 47 489 512 535 556 57 844 400 520 533 556 57 834 445 447 489 512 533 545 56 56 56 56	<pre>Nargaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936740] P. myrtifolius[AY936712] P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936739] P. gardnerianus[AY936739] P. gardnerianus[AY936684] P. virgatus (1) P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus (2) P. chrysanthus[AY936680] P. virgatus (2) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus (2) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus (2) P. chrysanthus[AY936738] P. wheeleri[AY936738] P. wheeleri[AY936740]</pre>	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.19119 0.21168 0.21891 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381 44 - 0.13421 0.14179 0.14654 0.20852 0.23058 0.23909 0.23801 0.23823	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.20800 0.21859 0.20154 0.20649 0.20874 0.20874 0.20874 0.18337 0.18191 45 	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20756 0.19159 0.19827 0.19487 0.16837 0.16837 0.16859 46 	0.18284 0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47 	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 48 	0.103033 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19508 0.18318 0.18659 0.17823 0.15549 0.15722 49 0.15722 49 0.20197 0.20247 0.20523
43 44 456 47 489 501 52 534 556 58 444 456 447 490 523 545 556 58 434 447 490 512 534 556 57 834 445 447 490 512 534 557 57	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]</pre> P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY93 P. welwitschianus P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936740] P. wirgatus[AY936740] P. myrtifolius	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 	0.18911 0.17367 0.17367 0.17692 0.17905 0.19122 0.19415 0.21891 0.21891 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381 44 	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.22080 0.21859 0.20154 0.20649 0.20874 0.18337 0.18191 45 - 0.11419 0.11720 0.18457 0.17975 0.17681 0.20848 0.21882 0.20848 0.21859 0.2174 0.21217 0.20328 0.17285	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20930 0.20756 0.19159 0.19487 0.16837 0.16837 0.16859 46 	0.18284 0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47 	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18761 0.19410 0.19508 0.18761 0.19508 0.18761 0.19508 0.18761 0.19549 0.15549 0.15549 0.15549 0.15722 48 	0.103033 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18761 0.19410 0.19508 0.18761 0.19508 0.18761 0.19508 0.17823 0.15549 0.15722 49 0.15722 49 0.20498 0.20197 0.20247 0.20247 0.20247 0.20523 0.16748
43 44 46 47 49 51 53 55 57 58 44 45 52 54 55 57 58 44 45 57 58 44 45 50 57 58 44 45 50 57 58 44 45 50 57 58 34 45 57 58 57 58 57 58 57 58 57 58 57 58 58 58 58 57 58	<pre>Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY936684] P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936680] P. virgatus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius[AY936712]</pre> P. chacoensis[AY936684] Margaritaria cyanosperma Lingelsheimia sp. Savia bahamensis Flueggea leucopyrus P. cochinchinensis[AY93 P. welwitschianus P. welwitschianus P. welwitschianus[AY936739] P. gardnerianus[AY936694] P. virgatus (1) P. virgatus (2) P. chrysanthus[AY936738] P. wheeleri[AY936740] P. myrtifolius P. myrtifolius P. myrtifolius P. myrtifolius[P. myrtifolius] P. myrtifolius[P. myrtifolius] P. myrtifolius[P. myrtifolius] P. myrtifolius[P. myrtifolius] P. myrtifolius[P. myrtifolius]	0.19391 0.17679 0.17827 0.18219 0.19434 0.19727 0.19431 0.21669 0.22380 0.22486 0.21254 0.21254 0.21254 0.21254 0.21447 0.20440 0.18723 0.18868 43 	0.18911 0.17367 0.17692 0.17905 0.19122 0.19415 0.21998 0.20752 0.20942 0.20128 0.18234 0.18381 44 	0.19381 0.17288 0.16485 0.16536 0.19728 0.19025 0.18904 0.20398 0.20398 0.20874 0.20874 0.20874 0.20874 0.18337 0.18191 	0.19095 0.17673 0.16493 0.16684 0.19220 0.19358 0.19220 0.19610 0.20756 0.19159 0.19827 0.19827 0.19827 0.19887 0.16837 0.16837 0.16859 46 	0.18284 0.16229 0.14732 0.15137 0.17878 0.17190 0.17056 0.20225 0.20427 0.20529 0.18995 0.19343 0.18952 0.16042 0.16048 47 	0.10303 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18761 0.19410 0.19508 0.18761 0.19508 0.18761 0.19508 0.17823 0.15549 0.15549 0.15722 48 	0.103033 0.17183 0.15318 0.14359 0.14245 0.16399 0.16363 0.16070 0.18761 0.19410 0.19508 0.18761 0.19410 0.19508 0.18761 0.19508 0.18761 0.19508 0.15549 0.15722 49 0.15722 49 0.20498 0.21278 0.20197 0.20247 0.20523 0.16759

	50	51	52	53	54	55	56
50 P. welwitschianus[AY936739]	-						
51 P. gardnerianus[AY936694]	0.20390	-					
52 P. virgatus (1)	0.21069	0.09445	-				
53 P. virgatus (2)	0.21179	0.09467	0.00318	-			
54 P. chrysanthus[AY936680]	0.20091	0.08207	0.06537	0.06532	-		
55 P. virgatus[AY936738]	0.20143	0.08687	0.07009	0.07006	0.02871	-	
56 P. wheeleri[AY936740]	0.20745	0.14112	0.14156	0.14156	0.13662	0.14017	-
57 P. myrtifolius	0.16632	0.10933	0.11485	0.11478	0.10540	0.10704	0.10920
58 P. myrtifolius[AY936712]	0.16441	0.11109	0.11970	0.11965	0.11025	0.11192	0.11573
	57	58					

57	Ρ.	myrtifolius	_	
58	P.	myrtifolius[AY936712]	0.00638	-

Miss Juthatip Manissorn was born on January 25, 1981 in Sakon Nakhon Province, Thailand. She received her Bachelor's Degree of Botany, Second Class Honors in 2003 from the Faculty of Sciences, Chulalongkorn University, Thailand. Throughout her Ph.D. program she was full grant supported from the 2003 Royal Golden Jubilee (RGJ) Ph.D. Scholarship from Thailand Research Fund Thailand (TRF).