CHAPTER III

EXPERIMENTAL

3.1 The chemical agents and equipments

The chemical agents

- 1. Resorcinol (C₆H₄(OH)₂) 99 % (Fluka)
- 2. Formaldehyde (HCHO) solution 38 %w/w (BDH)

3. Sodium carbonate (Na₂CO₃) analytical grade (Ajax)

4. t – Butanol (C_4H_9OH) analytical grade (Ajax)

5. Potassium carbonate (K₂CO₃) analytical grade (BDH)

6. Cesium carbonate (Cs₂CO₃) analytical grade (Fluka)

7. Calcium nitrate tetra hydrate (Ca(NO₃)₂.4H₂O analytical grade (Ajax)

8. De-ionized water

9. Nitrogen gas 99.999 %

10. Carbon dioxide 99.8 %

The equipments

- 1. Ultrasonic generator 20 kHz (Sonic vibra cell, model VC 130)
- 2. Ultrasonic probe 6 mm diameter
- 3. Cooling bath
- 4. Freeze dryer
- 5. Tube furnace
- 6. Quartz tube
- 7. Oven
- 8. Water pump

3.2 Preparation of 3D interconnected macroporous carbon monoliths (3D – IMM)

1. Preparation of RF gel

The chemical agents are used to prepare RF gel compose of resorcinol (R), formaldehyde (F) ,sodium carbonate (C) and de-ionized Water (W). The ratio of chemical agents using are shown in Table 3.1.

· Chemical agent	Ratio	
W	10 cc	
R/F	0.5 mol/mol	
C/W	8 mol/m ³	
R/C	1000 mol/mol	

Table 3.1 The chemical ratios to prepare RF gel

The resorcinol is dissolved in water and sodium carbonate is added into this solution. After that formaldehyde is poured into solution and stir until well mixing. After that the resorcinol – formaldehyde solution 10 cm³ is poured into reactor. The ultrasonic irradiation is applied into this solution. The power output of ultrasonic irradiation and the temperature of cooling water are controlled at 22 watt and 30 °C, respectively. After applying ultrasonic for about 7 hours, RF gel is formed in monolith shape by using a glass tube (8 mm inside diameter) as a mold.

RF gel is kept in mold for a day and then RF gel is aged at 75 °C for 3 days. After aging, solvent exchanging in RF gel is processed. The t –Butanol is used as solvent. The RF gel is immersed in solvent for 3 times. The RF gel is dried by freeze drying at – 40 °C for 2 days. 2. Preparation of RF carbon

The dried RF gel is carbonized in nitrogen atmosphere at 750 °C in horizontal tube furnace. RF gel which is contained in ceramic boat is inserted into quartz tube. Nitrogen flow rate is controlled at 200 cm³/min. The pattern of carbonization is show in Figure 3.1.

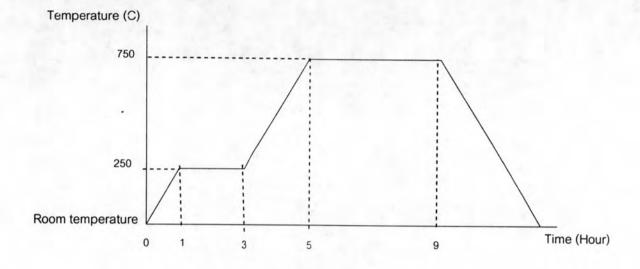


Figure 3.1 The diagram of carbonization pattern

3.3 Gas activation

In this section the effect of activation agents and the effect activation patterns are studied.

3.3.1 Effect of activation agents

The studied factor: activation agents

- Steam
- Carbon dioxide (CO₂)

21

The controlled factors

- Activation temperature: 800 °C
- Activation time: 1 hour
- Heating rate: 10 °C/min
- Water feed rate: 0.8 g/min
- CO₂ flow rate: 200 cm³/min
- Nitrogen flow rate: 200 cm³/min
- Sample length: 1.5 ± 0.1 cm

The dried RF gel is carbonized and then the obtain RF carbon is activated in quartz tube. During heating up and cooling down state, nitrogen is flowed (200 cm³/min) in quartz tube. When temperature is risen up to desire level (800 °C), the activation agent is used instead of nitrogen gas. The diagram of activation process is shown in Figure 3.2.

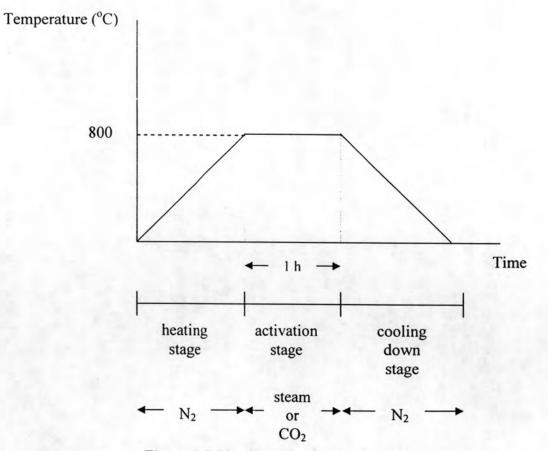


Figure 3.2 The diagram of activation process

In case of steam activation, water flow rate of 0.8 g/min is heated to produce steam. This steam is mixed with nitrogen ($200 \text{ cm}^3/\text{min}$) before feed into quartz tube. The process of steam activation is shown below.

RF gel carbonization RF carbon steam activation

For CO₂ activation, CO₂ is fed into quartz tube with CO₂ flow rate of 200 cm^3/min . The process of CO₂ activation is shown below.

RF gel carbonization CO₂ activation CO₂ activation

The activation conditions are summarized in Table 3.2.

Samples	Starting Material	Activation agent	Activation agent flow rate	Activation temperature (°C)	Activation time (h)
TS	RF carbon	steam	steam (water flow rate 0.8 g/min) mix with nitrogen (200 cm ³ /min)	800	1
TC	RF carbon	CO ₂	200 cm ³ /min	800	1

Table 3.2 The activation conditions for activation agents study

3.3.2 Effect of activation patterns

The study factor: activation patterns

- One step activation
- Two step activation

The controllable factors

- Activation temperature: 800 °C
- Activation time: 1 hour
- Heating rate: 10 °C/min
- Water feed rate: 0.8 g/min
- CO₂ flow rate: 200 cm³/min
- Nitrogen flow rate: 200 cm³/min
- Sample length: 1.5 ± 0.1 cm

The experimental procedure in one step and two step activation can be described as follow.

One step activation

RF gel is activated with activation agents (CO₂ and steam), at 800 °C for 1 hour. During heating up and cooling down state, nitrogen is flowed (200 cm³/min) in quartz tube. When temperature is risen up to desire level (800 °C), the activation gas is used instead of nitrogen gas.

In case of steam activation, water flow rate 0.8 g/min is heated to produce steam. This steam is mixed with nitrogen ($200 \text{ cm}^3/\text{min}$) before feed into quartz tube.

RF gel _____ activated RF carbon steam activation

Another case in CO_2 activation, CO_2 is fed into quartz tube with CO_2 flow rate at 200 cm³/min.

RF gel CO₂ activation activated RF carbon

Two step activation

In the first step, RF gel is carbonized in inert atmosphere. After that, the obtained RF carbon is activated with activation agents (CO₂ and steam) at 800 °C for 1 hour. During heating up and cooling down state, nitrogen is flowed (200 cm³/min) in quartz tube. When temperature is risen up to desire level (800 °C), the activation agent is used instead of nitrogen gas. The experimental procedure in this part is similar with the procedure in section 3.3.1.

The activation conditions are summarized in Table 3.3

Samples	Starting Material	Activation agent	Activation agent flow rate (cm ³ /min)	Activation temperature (°C)	Activation time (h)
one step a	ctivation				
OS	RF gel	steam	steam (water flow rate 0.8 g/min) mix with nitrogen (200 cm ³ /min)	800	1
OC	RF ge!	CO ₂	200	800	1
two step a	activation				
TS	RF carbon	steam	steam (water flow rate 0.8 g/min) mix with nitrogen (200 cm ³ /min)	800	1
TC	RF carbon	CO ₂	200	800	1

Table 3.3 The activation conditions for activation patterns study

3.4 Gas activation with metals loading

In this part the effect of alkali and alkaline earth compounds which are impregnated into RF gel will be studied. The procedures for experiment are described in details.

3.4.1 Preparation of impregnated RF gel

1. RF gel is prepared at controlled length of 1.5 ± 0.1 cm.

2. The Na₂CO₃, K₂CO₃, Cs₂CO₃ and Ca(NO₃)₂.4H₂O solution with 0.4 M and 75 cm³ are prepared.

. 3. RF gel is impregnated by immersion in the solution for 3 days with constant stirring.

4. After impregnation, the impregnated RF gel is dried at room temperature at least 12 h and then RF carbon is dried at 75 °C until constant weight.

3.4.2 Activation of impregnated RF carbon stage

The impregnated RF carbon is activated with CO_2 is fixed activation time and flow rate at 30 min and 50 cm³/min, respectively. During heating up and cooling down state, nitrogen is flowed (200 cm³/min) in quartz tube. The CO_2 is switched instead of nitrogen gas when temperature rises up to desire level. The activation conditions are summarized in table 3.4.

RF gel impregnation impregnation impregnated RF gel CO₂ activated RF carbon

Samples	Impregnation agents	Activation temperature (°C)	Activation gas	
Effect of chemical (section 4.2.1)	agents in activation p	rocess		
Ca800	$Ca(NO_3)_2.4H_2O$	800	CO ₂	
Na800 Na ₂ CO ₃		800	CO ₂	
K800	K ₂ CO ₃	800	CO ₂	
OC800		800	CO ₂	
Effect of carbon d (section 4.2.2)	lioxide couple with cal	cium in activation pr	ocess	
Ca850	Ca(NO ₃) ₂ .4H ₂ O	850	CO ₂	
Ca-heat	Ca(NO3)2.4H2O	NO ₃) ₂ .4H ₂ O 850		
OC850		850	CO ₂	
Effect of activatio (section 4.2.3)	n temperature with ca	alcium in activation p	process	
Ca900	Ca(NO ₃) ₂ .4H ₂ O	900	CO ₂	
Ca850	Ca(NO ₃) ₂ .4H ₂ O	850	CO ₂	
Ca800	Ca(NO ₃) ₂ .4H ₂ O	800	CO ₂	
Ca700	Ca(NO ₃) ₂ .4H ₂ O	700	CO ₂	

Table 3.4 The activation conditions for gas activation with metals loading

Note; Starting material is RF gel and activation time for 30 min

N₂ flow rate is 200 cm³/min

CO₂ flow rate is 50 cm³/min

3.5 Characterization

1. Porosity is characterized by nitrogen adsorption – desorption at – 196 °C (BEL; BELSORP – mini)

1.1 BET surface (S_{BET}) is determined by BET equation

1.2 micropore volume (V_{mic}) is calculated by t – method

1.3 mesopore volume (V_{mes}) is estimated by DH – method

2. Microstructure is characterized by SEM (Scanning Electron Microscope) (JEOL; JSM - 5800LV)