ดีเอ็นเอบาร์โค้ดของพืชสกุล Bacopa ที่พบในประเทศไทย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2559 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

DNA BARCODES OF BACOPA PLANTS FOUND IN THAILAND

Mr. Chayapol Tungphatthong

จุฬาลงกรณมหาวิทยาลย Chulalongkorn University

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy Program in Pharmacognosy Department of Pharmacognosy and Pharmaceutical Botany Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2016 Copyright of Chulalongkorn University

Thesis Title	DNA BARCODES OF BACOPA PLANTS FOUND IN
	THAILAND
Ву	Mr. Chayapol Tungphatthong
Field of Study	Pharmacognosy
Thesis Advisor	Associate Professor Suchada Sukrong, Ph.D.
Thesis Co-Advisor	Assistant Professor Waranyoo Phoolcharoen, Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

>Dean of the Faculty of Pharmaceutical Sciences (Assistant Professor Rungpetch Sakulbumrungsil, Ph.D.)

THESIS COMMITTEE

Chairman
(Associate Professor Kornkanok Ingkaninan, Ph.D.)
Thesis Advisor
(Associate Professor Suchada Sukrong, Ph.D.)
Thesis Co-Advisor
(Assistant Professor Waranyoo Phoolcharoen, Ph.D.)
Examiner
(Associate Professor Rutt Suttisri, Ph.D.)
Examiner
(Associate Professor Boonchoo Sritularak, Ph.D.)
Examiner
(Associate Professor Jessada Denduangboripant, Ph.D.)

ชยพล ตั้งพัฒน์ทอง : ดีเอ็นเอบาร์โค้ดของพืชสกุล *Bacopa* ที่พบในประเทศไทย (DNA BARCODES OF *BACOPA* PLANTS FOUND IN THAILAND) อ.ที่ปรึกษาวิทยานิพนธ์ หลัก: รศ. ภญ. ร.ต.อ.หญิง ดร.สุชาดา สุขหร่อง, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ผศ. ดร. วรัญญู พูลเจริญ, 105 หน้า.

พรมมิ (Bacopa monnieri) เป็นสมุนไพรที่จัดอยู่ในวงศ์ Plantaginaceae มีสรรพคุณใน การฟื้นฟูความจำ และสติปัญญา ปรากฏอยู่ในตำรายาอายุรเวทและตำรายาไทย สารออกฤทธิ์ที่ สำคัญคือบาโคไซด์เอ ซึ่งเป็นสารกลุ่มไตรเทอปีนอยด์แซโปนิน ในประเทศไทยพบพืชใน สกุล Bacopa จำนวนสามชนิด ได้แก่ พรมมิ [B. monnieri (L.) Wettst] ลานไพลิน [B. caroliniana (Walter) B. L. Rob.] และผักสามหลั่น [B. floribunda (R. Br.) Wettst.] เนื่องจาก การจำแนกชนิดของพืชในรูปวัตถุดิบแห้งหรือวัตถุดิบผงเป็นไปได้ยาก ดังนั้นการศึกษานี้เป็นการ พัฒนาหาวิธีที่มีความแม่นยำสูงในการจำแนกพืชในสกุล Bacopa ที่พบในประเทศไทย โดยใช้ดีเอ็นเอ บาร์โค้ด ซึ่งบริเวณของดีเอ็นเอใช้ในการศึกษามีทั้งสิ้น 6 บริเวณได้แก่ ITS, matK, rbcL, ycf1, psbAtrnH และ trnL-F จากการศึกษาพบว่าการใช้ดีเอ็นเอบาร์โค้ดบริเวณ ycf1 และ trnL-F ร่วมกับ เทคนิควิเคราะห์ high resolution melting ประสบความสำเร็จในการแยกชนิดของพืชใน สกุล Bacopa ได้ โดยอาศัยค่าของอุณหภูมิที่ทำให้ดีเอ็นเอแยกสายได้ครึ่งหนึ่ง (T_m) ที่จำเพาะของ พืชแต่ละชนิด ซึ่งเป็นการศึกษาครั้งแรกในการประยุกต์ใช้เทคนิคดีเอ็นเอบาร์โค้ดในการแยกชนิดของ

Chulalongkorn University

ภาควิชา	เภสัชเวทและเภสัชพฤกษศาสตร์	ลายมือชื่อนิสิต
สาขาวิชา		ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา	2559	ลายมือชื่อ อ.ที่ปรึกษาร่วม

5976103833 : MAJOR PHARMACOGNOSY

KEYWORDS: DNA BARCODE / BACOPA / HIGH RESOLUTION MELTING ANALYSIS (HRM) CHAYAPOL TUNGPHATTHONG: DNA BARCODES OF *BACOPA* PLANTS FOUND IN THAILAND. ADVISOR: ASSOC. PROF. SUCHADA SUKRONG, Ph.D., CO-ADVISOR: ASST. PROF. WARANYOO PHOOLCHAROEN, Ph.D., 105 pp.

Bacopa monnieri (Family Plantaginaceae) commonly known as 'Brahmi' or 'Prom-mi' is a medicinal plant used for a remedy of cognitive impairment and intelligence in Ayurvedic Materia Medica and Thai traditional medicine. Bacoside A, the major active constituents, is classified as triterpenoid saponin. In Thailand, there are three Bacopa species including Prom mi [B. monnieri (L.) Wettst.], Lan pailin [B. caroliniana (Walter) B. L. Rob.] and Phak sam lan [B. floribunda (R. Br.) Wettst.]. Since the dried or powdered raw materials are difficult to identify plant species, this study attempted to develop a method for accurate identification of Bacopa spp. found in Thailand by using DNA barcode. Six DNA regions, ITS, matK, rbcL, ycf1, psbA-trnH and *trn*L-F, were proposed for the study. DNA barcodes of *ycf1* and *trn*L-F coupled with high resolution melting (HRM) analysis were successfully used for species identification. The characteristic of specific melting temperature (T_m) was able to distinguish among the Bacopa species. This is the first study using DNA barcode techniques to differentiate Bacopa spp. and identify the medicinal plant B. monnieri from the related species. Moreover, DNA barcodes are useful asset for standardization and quality control purposes.

Department:	Pharmacognosy and	Student's Signature
'	Pharmaceutical Botany	Advisor's Signature
Field of Study:	Pharmacognosy	Co-Advisor's Signature
Academic Year:	2016	

ACKNOWLEDGEMENTS

This research would not have been achieved without the support and assistance from my supporter. I would like to express my sincerely thank you.

My advisor Assoc. Prof. Dr. Suchada Sukrong and co-advisor Asst. Prof. Dr. Waranyoo Phoolcharoen of the Department of Pharmacognosy & Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University for helpful advice, motivation, inspiration, continuously help and kindness. The thesis committee members, for their useful suggestions in order to fulfill my research

Assoc. Prof. Dr. Kornkanok Ingkaninan of the Department of Pharmaceutical Chemistry & Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University for her kind assistance in providing plants materials and other information on Bacopa monnieri.

Assoc. Prof. Dr. Jessada Denduangboripant of the Department of Biology, Faculty of Sciences, Chulalongkorn University for his kind advice and assistance in the molecular analysis of DNA barcodes.

Assoc. Prof. Thatree Phadungcharoen of the Faculty of Pharmacy, Rangsit University for her kind assistance in the idenfication of plant samples

Dr.Jirayut Jaipaew for his kind assistance for laboratory work and my thesis draft and Jutharat Somnuek for her assiduous help in finding the plant samples.

All of the staff and student members of the Department of Pharmacognosy & Pharmaceutical Botany for kind assistance.

CONTENTS

	Page
THAI ABSTRACT	iv
ENGLISH ABSTRACT	V
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF TABLES	ix
LIST OF FIGURES	X
CHAPTER I INTRODUCTION	1
CHAPTER II LITERATURE REVIEW	4
2.1 Bacopa plants	4
2.2 Chemical constituents of <i>Bacopa monnieri</i>	8
2.3 Pharmacological activities and clinical study	8
2.4 Medicinal plant authentication methods	
2.4.1 Morphological method	23
2.4.2 Cytological method	24
2.4.3 Chemical analysis method	24
2.4.4 Molecular method	25
2.5 Authentication of Bacopa monnieri	27
2.6 Barcoding – high resolution melting (HRM) analysis	31
CHAPTER III MATERIALS AND METHODS	34
3.1 Plant materials	34
3.2 DNA extraction	34
3.3 PCR amplification, sequencing and data analysis	36

 3.4 Phylogenetic analysis
CHAPTER IV RESULTS
 4.1 DNA barcoding analysis of <i>Bacopa</i> species
 4.2 Phylogenetic analysis of the three <i>Bacopa</i> taxa based on six loci DNA barcodes
49 4.3 Barcoding – HRM analysis for identification of the three <i>Bacopa</i> plants
4.3 Barcoding – HRM analysis for identification of the three <i>Bacopa</i> plants
CHAPTER V DISCUSSIONS
5.1 DNA barcoding analysis for <i>Bacopa</i> species67
5.2 Phylogenetic analysis of <i>Bacopa</i> plants found in Thailand71
5.3 HRM analysis for authentication of <i>Bacopa</i> plants materials
CHAPTER VI CONCLUSIONS
REFERENCES
VITA

LIST OF TABLES

Table 1 The list of Bacopa species existing in Thailand	4
Table 2 Triterpenoid saponins with jujubogenin aglycone units isolated from B.	
monnieri	9
Table 3 Triterpenoid saponins with pseudojujubogenin aglycone units isolated from B. monnieri	10
Table 4 Summary of pharmacological activities in Bacopa plants	11
Table 5 Summary of clinical trial studies of B. monnieri	21
Table 6 Summary of chemical analysis method of B. monnieri	29
Table 7 Plant Material and their accession number for DNA barcodes	35
Table 8 Primers used for amplification and sequencing	38
Table 9 Designed primer for species identification using real-time PCR coupling with HRM analysis.	42
Table 10 Sequence analysis of the selected DNA regions of plants in the genus	
Васора	43
Table 11 Interspecific distance analysis among three Bacopa plants	48

LIST OF FIGURES

Figure 1 Bacopa monnieri (A) Bacopa caroliniana (B) and Bacopa floribunda (C)7
Figure 2 The diagram of fluorescence dye activities while Pre-PCR, PCR (PCR
amplification) and post-PCR (DNA denaturation) which inferred to the HRM
analysis
Figure 3 The diminishes of fluorescence intensity during the increment of
temperature on DNA denaturation process which inferred the melting curve in
HRM analysis
Figure 4 The schematic of melting curve from real-time PCR couple with HRM
analysis for plant species identification
Figure 5 The schematic diagram of the amplificated loci and primer pairs for
amplifications and sequencing
Figure 6 The schematic diagram of the amplificated loci and primer pair for real-
time PCR coupling with HRM analysis42
Figure 7 The phylogenetic assessment of plant in the genus Bacopa based on ITS50
Figure 8 The phylogenetic assessment of plant in the genus Bacopa based on
matK region
Figure 9 The phylogenetic assessment of plant in the genus Bacopa based on
<i>rbc</i> L region
Figure 10 The phylogenetic assessment of plant in the genus Bacopa based on
<i>ycf</i> 1 region53
Figure 11 The phylogenetic assessment of plant in the genus Bacopa based on
<i>psb</i> A- <i>trn</i> H region54
Figure 12 The phylogenetic assessment of plant in the genus Bacopa based on
trnL-F region

Figure 13 The phylogenetic assessment of plant in the genus <i>Bacopa</i> based on five loci plastid genome
Figure 14 The schematic structure of the amplificated <i>rbc</i> L loci and the <i>rbc</i> L1-1P primer pairs for barcoding-HRM analysis
Figure 15 The schematic structure of the amplificated <i>ycf</i> 1 loci and the <i>ycf</i> 1-1P primer pairs of for barcoding HRM analysis
Figure 16 The barcoding-HRM melting curve of PCR amplicons amplified by <i>rbc</i> L- 1P primer set to identify <i>Bacopa</i> plants60
Figure 17 The barcoding-HRM melting curve of PCR amplicons amplified by ycf1-1P primer set to identify Bacopa plants
Figure 18 The schematic structure of the amplificated ycf1 loci and the ycf1-MP primer pair of for barcoding-HRM analysis
Figure 19 The schematic structure of the amplificated <i>trn</i> L-F intergenic spacer loci and the <i>trn</i> L-F-MP primer pair of for barcoding HRM analysis
Figure 20 The barcoding-HRM melting curve of PCR amplicons amplified by <i>ycf</i> 1- MP primer set to identify <i>Bacopa</i> plants
Figure 21 The barcoding-HRM melting curve of PCR amplicons amplified by <i>trn</i> L- F-MP primer set to identify <i>Bacopa</i> plants
Figure 22 Multiple sequence alignment of ITS of the three <i>Bacopa</i> plants97
Figure 23 Multiple sequence alignment of <i>mat</i> K gene of the three <i>Bacopa</i> plants98
Figure 24 Multiple sequence alignment of <i>rbc</i> L gene of the three <i>Bacopa</i> plants . 100
Figure 25 Multiple sequence alignment of <i>ycf</i> 1 gene of the three <i>Bacopa</i> plants 102
Figure 26 Multiple sequence alignment of <i>psbA-trn</i> H intergenic spacer of the three <i>Bacopa</i> plants
Figure 27 Multiple sequence alignment of trnL-F intergenic spacer of the three <i>Bacopa</i> plants

LIST OF ABBREVIATIONS

5-HT	=	Serotonin
AFLP	=	Amplified fragment length polymorphism
Akt	=	Protein kinase B
ATP	=	Adenosine triphosphate
bp	=	Base pair
BuOH	=	Butanol
BZD	=	Benzodiazepines
са	=	Approximately (Circa)
CA	=	Cornu ammonis
CaM	=	Calmodulin
CBOL	= 2	Consortium for the barcode of Life
CREB	= /	cAMP response element-binding protein
°C	=	Degree Celsius
DA	=	Dopamine
DEN	= 🚱	Diethylnitrosamine
DNA	=	Deoxyribonucleic acid
dNTP	= จุห	Deoxyribonucleotide triphosphate
e.g.	€HUL	For example (Exampli gratia)
ELISA	=	Enzyme-linked immunosorbent assay
ERK	=	Extracellular signal-regulated kinase
ESLD	=	Evaporative light scattering detector
EtOAc	=	Ethyl acetate
FST	=	Forced swim test
GLAST	=	Glutamate aspartate transporter
H ₂ O	=	Water
H_2O_2	=	Hydrogen peroxide
HPLC	=	High-performance liquid chromatography
HPTLC	=	High-performance thin layer chromatography
H. pyroli	=	Helicobacter pylori

HRM	=	High-resolution melting
Hsp70	=	70 kilodalton heat shock proteins
ICV-STZ	=	injections of intracerebroventricular of streptozotocin
IGS	=	Intergenic spacer
inos	=	Inducible nitric oxide synthase
IP ₃	=	Inositol trisphosphate
IL-6	=	Interleukin 6
ISSR	=	Inter-simple sequence repeats
ITS	=	Internal transcribed spacer
Kb	=	Kilobase
l-NNA	=	Nitro-L-arginine
LPO	=	Lipid peroxidation
LPS	= ,	Lipopolysaccharide
LTP	= 2	Long term potentiation
LZP	=	Lorazepam
matK	=	Maturase K
MAP	= 😪	Mitogen-activated protein
mGlu5	=	Metabotropic glutamate receptor 5
min	= จุฬ	Minute(s)
mm	€HUL	Millimeter
mRNA	=	messenger RNA
NA	=	Noradrenaline
NO	=	Nitric oxide
NMDAR	=	N-methyl-D-aspartate receptor
PBPE	=	Polybrominated diphenyl ether
PCP	=	Phencyclidine
PCR	=	Polymerase chain reaction
pCREB	=	Phosphorylation of cyclic AMP response element
		binding
PC-SFC-DAD	=	Packed column supercritical-fluid chromatography with
		photodiode-array detection

PD	=	Parkinson disease
PHT	=	Phenytoin
PGs	=	Pepsinogen
PINK1	=	PTEN-induced putative kinase 1
psbA	=	Photosystem II protein D1
RAPD	=	Random amplified polymorphic DNA
RFLP	=	Restriction fragment length polymorphism
ROS	=	Reactive oxygen species
RP	=	Reversed phase
rbcL	=	Ribulose bisphosphate carboxylase large chain
rDNA	=	Ribosomal deoxyribonucleic acid
SCAR	=	Sequence characterized amplified region
SDAT	= ,	Senile dementia-Alzheimer type
SNP	= 2	Single Nucleotide Polymorphism
SNP	=	Sodium nitroprusside
SOD	=	Superoxide dismutase
spp	= 😪	Species (plural)
TLC	=	Thin layer chromatography
T _m	= จุห	Melting temperature
TST	S HUL	Tail suspension test
trnF	=	Transfer RNA of Phenylalanine
trnH	=	Transfer RNA of Histidine
trnL	=	Transfer RNA of Leucine
TNF	=	Tumor necrosis factor
UV	=	Ultraviolet
ycf1	=	Hypothetical chloroplast open reading frame 1
V	=	Volt
VGLUT	=	vesicular glutamate transporter

CHAPTER I

Medicinal plants have been used in the historical of humanity for a long time. They were used to maintain the health and to treat illness and disease (Ganie *et al.*, 2015). *Bacopa monnieri* (Family Plantaginaceae) commonly known as 'Prom-mi' is a medicinal plant used for a remedy of cognitive impairment and intellect. The aerial part was used in Ayurvedic Materia Medica for three thousand years. Bacoside A and B, the major active constituents, were classified in type of a triterpenoid saponin (Russo and Borrelli, 2005). In Thailand, there are three species of plants in the genus *Bacopa* including *Bacopa monnieri* (L.) Wettst. (Prom mi), *Bacopa caroliniana* (Walter) B. L. Rob. (Lan Pailin) and *Bacopa floribunda* (R. Br.) Wettst. (Phak sam lan) (Department of National Park, 2014).

Nevertheless, the adulteration and substitution of wrong materials have become a crucial concern for customers in sense of safety and efficacy of medicinal plant products (Ganie *et al.*, 2015). Therefore, authentication of medicinal plants is the essential step for medicinal plant manufacturer. In general, the authentication of medicinal plants is divided into four major methods including morphology (eye), cytology (microscope), chemistry and genetic. The morphological and cytological methods were not practically for using in manufacturer because the raw materials were usually imported as chopped pieces or fined powder. Moreover, an expertise person was needed. The chemical method is the commonly standard technique in the present. Although the chemical analysis technique can be useful for processed materials. The environment was affected to the major chemical constituents and plant in same genus might have similar chemical profile. Therefore, the chemical methods are not always proper for medicinal plant authentication. Due to the plant genome were persisted in plant materials and commercial products, then molecular analysis was a solution for identification of medicinal plants.

DNA barcodes, the short regions from genome used to distinguish organism species, were successful used for identification of plants (Hebert *et al.*, 2003). Candidate barcode resions that have potential for discriminations among plants have been reported in several studies. Six DNA regions, including ITS (nuclear) and *matK*, *rbcL*, *psbA-trnH*, *trnL*-F and *ycf*1 (plastid), were proposed as the candidate barcode for plants identifications (Li *et al.*, 2011; Vijayan and Tsou, 2010). *Ycf*1, the novel candidate DNA barcode was proposed in the recent year, was successfully discriminated the land plants (Dong *et al.*, 2015). Moreover, the DNA barcode can use for phylogeny analysis for genetic relationship of *Bacopa* plant species or apply for the discovery the new sources of bioactive constituents.

High-resolution melting (HRM) analysis is the new technique for analysis of mutations. This technique was applied for screening the samples without probe. This technique is a method for detection of DNA dissociation and useful method for detection of point mutation and indels. The fluorescence dye was intercalated with DNA duplex for detecting the accumulation of PCR products during the PCR reactions and for monitoring the melting temperature (T_m) of PCR amplicons. HRM analysis is the sequencing-free method that reasonable to identify medicinal plant products (Osathanunkul *et al.*, 2015).

In this study, we aim to establish the DNA barcodes of plants in the genus *Bacopa* found in Thailand and apply the barcoding sequences with HRM analysis for rapid and reliable identification of *Bacopa* plant species and guarantee the medicinal plant *B. monnieri* products for the regulatory authorities in terms of plant identity for quality control and may develop check-points during the long supply chain starting from local collectors to the market shelves.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER II

LITERATURE REVIEW

2.1 Bacopa plants

The genus *Bacopa*, which classified in family Plantaginaceae, is aquatic or parudal plants consist of approximately one hundred species (Raus, 2003). *Bacopa* plants are distributed in tropical and subtropical regions around the world in wet, damp and marshy regions (Russo and Borrelli, 2005).

In Thailand, there are three species of plant in the genus Bacopa including B.

monnieri, B. caroliniana and B. floribunda (Department of National Park, 2014).

(Table 1).

จุฬาลงกรณ์มหาวิทยาลัย Cuu a onecopy IInvegery

Table 1 The list of Bacopa species existing in Thailand

No.	Scientific name	General name	Thai name
1	Bacopa monnieri (L.) Wettst.	Herpestis,	พรมมิ, ผักมิ
		Water hyssop	
2	Bacopa caroliniana (Walter) B. L. Rob.	Giant Red Bacopa,	ลานไพลิน
		Lemon Bacopa,	
		Water hyssop	
3	Bacopa floribunda (R. Br.) Wettst.	N/A	ผักสามหลั่น

The characteristics of the genus *Bacopa* have been described in the Flora of Thailand (Yamazaki, 1990) as following ;

"...Annual or perennial herbs; stems prostrate or erect. *Leaves* opposite, sessile, entire or minutely toothed. *Flowers* solitary and axillary. *Bracteoles* 2, persistent. *Calyx* 5-lobes almost to the base; upper lobe largest, ovate or broadly ovate; lateral two lobes smallest, lanceolate or linear. *Corolla* tubular or didynamous; anther-loculi parallel, contiguous. *Ovary* ellipsoidal, glabrous. Capsule ovoid or globose, included within persistent calyx, loculicidally bivalved. *Seeds* numerous, minute, cylindric or oblong, with coarse reticulation and longitudinal ridges..."

The characteristics of *Bacopa monnieri* (Figure 1A) and *Bacopa floribunda* (Figure 1C) have been described in the Flora of Thailand (Yamazaki, 1990) as following ;

Bacopa monnieri (L.) Wettst.

"...Prostrate herbs; stems 10 – 40 cm, much branched, rooting at the nodes. Leaves spathulate or obovate, obtuse at apex, entire, 6 – 20 by 1 – 5 mm. Pedicels 6 – 15 mm long, glabrous. Bracteoles linear, 2 – 3 mm. Calyx 5 – 6 mm long, glabrous; upper one lower two sepal ovate, acute or subacute, 2.5 mm wide; two lateral ones lanceolate, acuminate, 1.5 mm wide. *Corolla* white or pale violet, 8 – 10 mm long; lobes subequal, oblong-obovate, rounded or subemarginate at apex, ca 4 by 2.5 mm. *Capsule* ovoid, 5 by 3 mm. *Seeds* ca 0.5 – 0.6 by 0.3 mm ..."

Bacopa floribunda (R. Br.) Wettst.

"... Annual herbs; stems erect 20 – 50 cm. *Leaves* linear-lanceolate, acute at apex, narrowly attenuate to base, distally serrulate or entire, 1 – 7 by 0.2 – 0.5 cm; glabrous. *Pedicels* 0.5-2 mm long, scabrid. *Bracteoles* subulate, 1.5 – 2 mm, scabrid. *Calyx* 5 – 6 mm long in flower, 6 – 7 mm long in fruit, sparsely glandularpilose on both surface, scabrid on margins; upper sepal largest, orbicular-ovate, 4 – 5 mm wide; two lower ones ovate, acute, ca 3 mm wide; two lateral ones smallest, linear, acuminate, 0.3-0.5 mm wide. *Corolla* whitish, 4 – 5 mm long, lobes orbicular, ca 0.8 mm long and wide. *Capsule* globose, 4 mm long and wide. *Seeds* ca 0.3 – 0.35 by 0.2 mm ..."

B. caroliniana were not described in Flora of Thailand. This species were not found in Orientals. However, the characteristic of *B. caroliniana* were described in the botanical taxonomic key in western country (North and South America).

The botanical characteristic of *B. caroliniana* (**Figure 1C**) have been described in Southern Wetland Flora (The United States Department of Agriculture, 1999) as following ;

Bacopa caroliniana (Walter) B. L. Rob.

"... Stems: Floating, creeping, or ascending, hairy, the upright part up to 1 foot tall. *Leaves*: Opposite, simple, ovate, rounded at the tip, clasping at the base, dotted, aromatic, up to 1 inch long, up to ½ inch wide, without teeth, sparsely hairy on the veins of the lower surface. *Flowers:* Solitary in the axils of the leaves, the stalks very short at first but lengthening as the fruit develops; each flower with a pair of small bractlets at its base. *Sepals:* 5, green, some of them ovate and up to ¼ inch long, the others linear and shorter. *Petals:* 5, blue, united, up to ½ inch long. *Stamens:* 4, the longer 2 exserted from the corolla. *Pistils:* Ovary superior. *Fruits:* Capsules ovoid, up to ¼ inch long; seeds grayish brown, distinctly veiny ... "

Figure 1 Bacopa monnieri (A) Bacopa caroliniana (B) and Bacopa floribunda (C)

2.2 Chemical constituents of Bacopa monnieri

Initially, bacoside A and B, the triterpenoid saponins, have been isolated from in *B. monnieri*. Recently, these two compounds were revealed as a mixture of twenty saponins which classified into two groups based on the aglycone moieties; jujubogenin (**Table 2**) and pseudojujubogenin (**Table 3**)

2.3 Pharmacological activities and clinical study

Pharmacological activities of the three *Bacopa* were investigated by various research laboratories. The summary of biological activities have been investigated in *B. monnieri* and *B. caroliniana*. (**Table 4**)

Standardized extract of *B. monnieri* was studied in clinical trials as herbal supplements for brain booster as summarized. (**Table 5**)

Chulalongkorn University

Name	IUPAC Name	References
Bacoside A_1	jujubogenin 3-O-[$m lpha$ -L-arabinofuranosyl(1 \longrightarrow 3)]- $m lpha$ -L-arabinopyranoside	Jain and Kulshreshtha, 1993
Bacoside A_3	jujubogenin 3-0- $lpha$ -L-arabinofuranosyl-(1 $ ightarrow$ 2)-[eta -D-glucopyranosyl-(1 $ ightarrow$ 3)]- eta -D-glucopyranoside	Rastogi <i>et al.</i> , 1994
Bacopasaponin A	Bacopasaponin A jujubogenin 3,20-di-O- $oldsymbol{lpha}$ -L-arabinopyranoside	Garai <i>et al.</i> , 1996a
Bacopasaponin E	Bacopasaponin E jujubogenin 3-O- α -L-arabinofuranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 3)]- α -L-arabinopyranoside, 20-	Mahato <i>et al.</i> , 2000
	O- Q -L-arabinopyranoside	
Bacopasaponin F	jujubogenin 3-0- α -L-arabinofuranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 3)]- β -D-glucopyranoside,20-O-	
	Q -L-arabinopyranoside	
Bacopasaponin G	Bacopasaponin G jujubogenin 3-O-[$m lpha$ -L-arabinofuranosyl-(1 $ ightarrow$ 2)]- $m lpha$ -L-arabinopyranoside	Hou <i>et al.</i> , 2002
Bacopaside III	jujubogenin 3-0- $lpha$ -L-arabinofuranosyl-(1 \longrightarrow 2)- $m{f B}$ -D-glucopyranosyl	Chakravarty <i>et al.</i> , 2003
Bacopaside IV	jujubogenin 3-0- eta -D-glucopyranosyl-(1 \longrightarrow 3)- $mlpha$ -L-arabinopyranosyl	
Bacopaside IX	jujubogenin 3-O-{ β -D-glucopyranosyl(1 \rightarrow 4)[α -L-arabinofuranosyl -(1 \rightarrow 2)]- β -D-glucopyranosyl}-20-O- α - Zhou <i>et al.</i> , 2009	Zhou <i>et al.</i> , 2009
	L-arabinopyranosyl	

Table 2 Triterpenoid saponins with jujubogenin aglycone units isolated from *B. monnieri*

Table 3 Triterpe	Table 3 Triterpenoid saponins with pseudojujubogenin aglycone units isolated from <i>B. monnieri</i>	
Name	IUPAC Name	References
Bacopasaponin B	pseudojujubogenin 3-O-[α -L-arabinofuranosyl-(1→2)]- α -L-arabinopyranoside	Garai <i>et al.</i> , 1996a,b
Bacopasaponin C	pseudojujubogenin 3-O- α -L-arabinofuranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 3)]- α -L-	
	arabinopyranoside	
Bacopasaponin D	pseudojujubogenin 3-O-[$lpha$ -L-arabinofuranosyl-(1 $ ightarrow$ 2)]- $oldsymbol{eta}$ -D-glucopyranoside	
Bacoside A ₂	pseudojujubogenin 3-O- α -L-arabinopyranosyl-(1 \rightarrow 5)-[α -L-arabinofuranosyl-(1 \rightarrow 6)]- α -D-glucofuranoside Rastogi and Kulshreshtha,	Rastogi and Kulshreshtha,
		1999
Bacopaside III	pseudojujubogenin 3-O-[6-O-sulfonyl- B -D-glucopyranosyl-(1 \longrightarrow 3)]- Q -L-arabinopyranoside	Hou <i>et al.</i> , 2002
Bacopaside I	pseudojujubogenin 3-O- α -L-arabinofuranosyl-(1 \rightarrow 2)-[6-O-sulfonyl- eta -D-glucopyranosyl-(1 \rightarrow 3)]- α -	Chakravarty <i>et al.</i> , 2001,
	Larabinopyranoside	2003
Bacopaside V	pseudojujubogenin 3-O-β-D-glucopyranosyl-(1→3)- Q -L-arabinofuranosyl	
Bacopaside II	pseudojujubogenin 3-O- α -L-arabinofuranosyl-(1 \rightarrow 2)-[β -D-glucopyranosyl-(1 \rightarrow 3)]- β -D-glucopyranoside	
Bacopasaponin H	pseudojujubogenin 3-O-[$m lpha$ -L-arabinopyranosyl]	Mandal & Mukhopadhyay,
		2004
Bacopaside XI	pseudojujubogenin 3-O-[β-D-arabinofuranosyl (1→3)]-6-O-sulfonyl-β-D-glucopyranosyl	Bhandari <i>et al.</i> , 2009
Bacopaside XII	pseudojujubogenin 3-O-{ β -D-glucopyranosyl(1 \rightarrow 3)[β -D-arabinofuranosyl(1 \rightarrow 2)]- β -D-glucopyranosyl}-20-	
	Oß-D-arabinopyranosyl	

Pharmacological	Plant	Result	Reference
effects	species		
Memory	B. monnieri	The antiamnesic effects by gamma-aminobutyric	Prabhakar
enhancing effect		acid–benzodiazepine pathway	et al.,
			2008
	B. monnieri	B. monnieri suppressed the diazepam induced	Saraf et
		upregulation of MAP kinase, pCREB and iNOS and	al., 2008
		attenuated the downregulation of nitrite.	
	B. monnieri	B. monnieri significantly attenuated the l-NNA-	Saraf <i>et</i>
		induced anterograde amnesia, partially reversing l-	al., 2009
		NNA-induced retrograde amnesia.	
	B. monnieri	B. monniera reversed the scopolamine induced	Saraf et
		amnesia by significantly improving calmodulin	al., 2010
		and by partially attenuating protein kinase C and	
		pCREB.	
	B. monnieri	Antiamnesic effect B. monniera on L-NNA induced	Saraf <i>et</i>
		amnesia may be mediated by NO pathyway	al., 2010
		involving CaM, which is required for LTP	
		sustenance	
	B. monnieri	B. monnieri effects on cholinergic system may be	Saraf et
		helpful for developing alternative therapeutic	al., 2011
		approaches for the treatment of Alzheimer's	
		disease.	
	B. monnieri	B. monnieri reduces PHT-induced cognitive deficits	Vohora <i>et</i>
		without affecting its anticonvulsant efficacy	al., 2000

 Table 4 Summary of pharmacological activities in Bacopa plants

Pharmacological	Plant	Result	Reference
effects	species		
Memory booster	B. monnieri	Bacosides facilitate anterograde memory and	Kishore and
		attenuate anterograde experimental amnesia	Singh, 2005
		induced by scopolamine and sodium nitrite	
		possibly by improving acetylcholine level and	
		hypoxic conditions, respectively.	
	B. monnieri	Bacoside A protects the brain from oxidative	Sumathi <i>et</i>
		stress induced by morphine	al., 2011
	B. monnieri	Brahmi before PCP administration can restore	Piyabhan an
		the cognitive deficit by decreasing NMDAR1 in	Wetchateng
		brain areas. Brahmi could be a novel	2014
		neuroprotective agent for the prevention of	
		cognitive deficit in schizophrenia	
	B. monnieri 🖉	Brahmi could recover the cognitive deficit by	Piyabhan an
		increasing VGLUT1 in CA1 and CA2/3 to normal.	Wetchateng,
			2013
	B. monnieri	BM is a powerful antioxidant which prevents	Khan <i>et al.</i> ,
		cognitive impairment, oxidative damage, and	2015
		morphological changes in the ICV-STZ-infused	
		rats	
	B. monnieri	BESEB CDRI-08 (B. monnieri) possibly acts on	Rajan <i>et al.</i> ,
		serotonergic system, which in turn influences	2011
		the cholinergic system through 5-HT $_{ m 3}$ receptor	
		to improve the hippocampal-dependent task.	

 Table 4 Summary of pharmacological activities in Bacopa plants (continued)

Pharmacological	Plant	Result	Reference
effects	species		
Memory booster	B. monnieri	CDRI-08 enhances hippocampus-dependent	Preethi <i>et al.</i> ,
		contextual memory by differentially regulating	2014
		histone acetylation and protein phosphatases	
		in hippocampus.	
Anti-parkinson	B. monnieri	B. monnieri significantly improved the climbing	Jansen <i>et al.</i> ,
		ability in a <i>D. melanogaster</i> PD model based	2014
		on loss of function of PINK1.	
	B. monnieri	B. monnieri reduces alpha synuclein	Jadiya <i>et al.</i> ,
		aggregation, prevents dopaminergic	2011
		neurodegeneration and restores the lipid	
		content in nematodes, thereby proving its	
		potential as a possible anti-Parkinsonian agent.	
Antistroke	B. monnieri 🖉	The chlorophyll salt and aqueous extracts of	Rehni <i>et al.</i> ,
		B. monnieri prevent ischemia - reperfusion	2007
		induced cerebral injury with comparable	
		potency.	
	B. monnieri	B. monnieri attenuates the ischemia induced	Saraf et al.,
		memory and other neurological deficits	2010
		including infarct size by exerting antioxidant	
		effects	
	B. monnieri	Chronic oral <i>B. monnieri</i> extract increased	Kamkaew <i>et</i>
		cerebral blood flow independent of blood	al., 2013
		pressure, and this effect explains its nootropic	
		and possibly neuroprotective actions.	

 Table 4
 Summary of pharmacological activities in Bacopa plants (continued)

Pharmacological	Plant	Result	Reference
effects	species		
Anticonvulsant	B. monnieri	B. monnieri extract treatment potentates a	Reas <i>et al.</i> ,
		therapeutic effect by reversing the	2008
		alterations in glutamate receptor binding	
		and NMDA R1 gene expression that occur	
		during epilepsy, resulting in reduced	
		glutamate-mediated excitotoxity in the	
		overstimulated hippocampal neurons.	
	B. monnieri	B. monnieri treatment to epileptic rats	Paulose <i>et al.</i> ,
		significantly brought the reversal of the	2008
		down-regulated mgluR8 gene expression	
		toward control level	
	B. monnieri	The alcoholic extract of B. monnieri may	Kaushik <i>et al.,</i>
		function in a similar manner to BZD, given	2009
		its benzodiazepine-like action, although	
		the specific receptor interactions were not	
		evaluated	
	B. monnieri	B. monnieri extract treatment potentates a	Khan <i>et al.</i> ,
		therapeutic effect by reversing the	2008
		alterations in glutamate receptor binding	
		and NMDA R1 gene expression that occur	
		during epilepsy, resulting in reduced	
		glutamate-mediated excitotoxity in the	
		overstimulated hippocampal neurons	
	B. monnieri	The forced swim test confirmed the	Krishnakumar
		depressive behavior pattern during	<i>et al.</i> , 2009a
		epilepsy that was nearly completely	
		reversed by B. monnieri treatment	
	B. monnieri	B. monnieri extract treatment reverses the	Krishnakumar
		5-HT _{2C} receptor mediated motor	<i>et al.,</i> 2009b
		dysfunction in epilepsy	

 Table 4
 Summary of pharmacological activities in Bacopa plants (continued)

Pharmacological	Plant	Result	Reference
effects	species		
Anticonvulsant	B. monnieri	B. monnieri have the neuroprotective effect in	Krishnakumar
		epilepsy involves the interaction of $\mathrm{5\text{-}HT}_{\mathrm{2C}}$ and	et al., 2015
		NMDA receptors, with modulation of mGlu5	
		receptor and GLAST gene expression at the	
		mRNA level and IP_{3} activation at the second	
		messenger level.	
Antidepressant	B. monnieri	The methanol extract, EtOAc fraction and n-	Shen <i>et al.</i> ,
		BuOH fraction of <i>B. monnieri</i> produced a	2009
		significant decrease in immobility times both in	
		FST and TST, without modifying significantly the	
		spontaneous motor activity.	
	B. monnieri	The B. monnieri extract was found to have	Sairam <i>et al.,</i>
		significant antidepressant activity in forced swim	2002
		and learned helplessness models of depression	
		and was comparable to that of imipramine.	
	B. monnieri	B. monnieri normalizes stress mediated transient	Sheikh <i>et al.,</i>
		deregulation of plasma corticosterone and levels	2007
		of monoamines like NA, 5-HT and DA in cortex	
		and hippocampus regions of the brain, which are	
		more vulnerable to stressful conditions	
		analogous to the effects of PQ	
	B. monnieri	bacopaside I, bacopaside II, and bacopasaponsin	Zhou <i>et al.</i> ,
		C showed antidepressant activity when tested on	2007
		forced swimming and tail suspension in mice	
	B. monnieri	80-120 mg/kg doses of <i>B. monnieri</i> extract have	Banerjee <i>et</i>
		significantly higher antidepressant-like activity	al., 2014

 Table 4
 Summary of pharmacological activities in Bacopa plants (continued)

Pharmacological	Plant	Result	Reference
effects	species		
Antidepressant	B. monnieri	n-butanol extract of <i>B. monnieri</i> has an	Rauf et al.,
		antidopaminergic/serotonergic effect and may	2014
		have potential beneficial effects in the treatment	
		of morphine dependence	
Antianxiety	B. monnieri	B. monnieri has an anxiolytic action qualitatively	Bhattachary
		comparable to that of	a and
		the BDZ, LZP.	Ghosal,
			1998
Antioxidant	B. monnieri	B. monnieri extract supplementation helps to	Pandareesh
		overcome stress by improved ATP production,	and Anand,
		normalization of brain monoamines levels,	2014b
		enhance antioxidant response and by down-	
		regulating expression of heat shock proteins and	
		iNOS.	
	B. monnieri	B. monnieri can mitigate the lead induced-	Velaga <i>et</i>
		oxidative stress tissue specifically by	al., 2014
		pharmacologic interventions which encompass	
		both chelation as well as antioxidant functions	
	B. monnieri	B. monnieri extract protects PC12 cells against	Pandareesh
		SNP-induced toxicity via its free radical scavenging	and Anand,
		and neuroprotective	2014a
		mechanism.	
	B. monnieri	B. monnieri plays a neuroprotective role against	Verma <i>et</i>
		PBDE-209-induced alterations in oxidative status	<i>al.,</i> 2014
	B. monnieri	B. monnieri pretreatment possesses the potential	Hosamani e
		to modulate endogenous levels of oxidative	al., 2016
		markers and thus preventing the oxidative	
		impairments and neurotoxicity with acute PQ	
		administration	

 Table 4 Summary of pharmacological activities in Bacopa plants (continued)

Pharmacological	Plant	Result	Reference
effects	species		
Antioxidant	B. monnieri	B. monnieri extract attenuates the oxidative	Pandarees
		damage induced by $\mathrm{H_2O_2}$ by improving the	<i>et al.,</i> 201
		antioxidant status, mitochondrial membrane	
		integrity and by preventing DNA fragmentation	
		and lipid peroxidation.	
	B. monnieri	B. monnieri reduces stress by modulating the	Chowdhu
		expression of Hsp70 and the activity of P450s	al., 2002
		and SOD, the enzymes known to be involved in	
		the production and scavenging of reactive	
	4	oxygen species, in different regions of the brain.	
	B. monnieri	Bacoside A is effective to prevent DEN-induced	Janani <i>et d</i>
		hepatocellular carcinoma by quenching lipid	2010
		peroxidation and enhancing antioxidant status	
		through free radical scavenging mechanism and	
		having potential of protecting endogenous	
		enzymatic and non-enzymatic antioxidant	
		activity.	
	B. monnieri	B. monnieri extract promotes the anti oxidant	Rohini <i>et e</i>
		status, reduces the rate of lipid peroxidation and	2004
		the markers of tumor progression in the	
		fibrosarcoma bearing rats	
	B. monnieri	B. monnieri modulates antioxidant activity, and	Kapoor <i>et</i>
		enhances the defense against ROS generated	2009
		damage in diabetic rats.	
	B. monnieri	B. monnieri extract might have insulin like	Ghosh <i>et</i>
		activity and the antihyperglycemic effect of the	2010
		extract might be due to an increase in peripheral	
		glucose consumption as well as protection	
		against oxidative damage	
		in alloxanised diabetes	

 Table 4 Summary of pharmacological activities in Bacopa plants (continued)

Pharmacological	Plant	Result	Reference
effects	species		
Antioxidant	B. monnieri	<i>B. monnieri</i> treatment potentiates the antioxidant status and suppressed the tissue damage induced by aluminium – intoxication.	Nannepaga <i>et</i> al., 2014
		These findings suggest that <i>B. monnieri</i> whole- plant extracts can be considered as a possible remedy to counteract aluminium – associated neurological disorders	
	B. monnieri	<i>B. monnieri</i> exerted differential effects on cytokine production and antioxidant enzyme activities of the lymphocytes from the spleens of young, early middle-aged, and old male F344 rats by modulating ERK pathway with specific effects on CREB and Akt	Priyanka <i>et</i> al., 2013
Anti-diarrheal	B. monnieri	<i>B. monnieri</i> extract showed anti-diarrheal activity on castor oil induced diarrhea in mice by increased mean latent period and decreased the frequency of defecation.	Afjalus <i>et al.,</i> 2012
Anti-ulcer	B. monnieri	whole plant juice as a potential antiulcer drug, and the protection afforded was mostly due to the augmentation of mucosal defensive factors.	Rao <i>et al.,</i> 2000
	B. monnieri	<i>B. monnieri</i> extracts the gastric prophylactic and curative due to its activity on defensive mucosal factors with no discernible effect on cell proliferation. The antioxidant activity of <i>B. monnieri</i> extracts may be one of the important factors contributing towards its activity	Sairam <i>et al.,</i> 2001

 Table 4 Summary of pharmacological activities in Bacopa plants (continued)

Pharmacological	Plant	Result	Reference
effects	species		
Anti-ulcer	B. monnieri	<i>B. monnieri</i> extracts has in vitro anti - H.	Goel <i>et al.</i> ,
		pylori activity and causes an increase in the	2003
		accumulation of PGs by human mucosal colonic	
		incubates, which could account for its anti-	
		ulcerogenic activity.	
Hepatoprotective	B. monnieri	B. monnieri extracts exerted a protective effect	Sumathi <i>et</i>
		against morphine-induced liver and kidney	al., 2011
		toxicity.	
Anti-hypothyroid	B. monnieri	B. monnieri could increase T4 concentration by	Kar <i>et al.</i> ,
		41% without enhancing hepatic lipid	2002
		peroxidation (LPO) suggesting that it can be	
		used as a thyroid-stimulating drug.	
Fertility booster	B. monnieri 🗸	Brahmi treatment causes reversible suppression	Singh and
		of spermatogenesis and fertility, without	Singh, 2009
		producing apparent toxic effects.	
Antimicrobial	B. monnieri	B. monnieri ether extract showed antimicrobial	Azad et al.,
		activity against four bacteria and one fungus.	2012
	B. monnieri	Endophyte isolated from B. monnieri revealed	Katoch <i>et</i>
		their potential to yield potent bioactive	al., 2014
		compounds that can be used in development	
		of drugs against microbial infections and cancer	
	B. caroliniana	B. caroliniana extract has strong antimicrobial	Dulger and
		effects against the tested microorganisms	Hacioglu,
		especially the bacterium Staphylococcus	2009
		aureus and the yeast culture Candida albicans.	

 Table 4 Summary of pharmacological activities in Bacopa plants (continued)

Pharmacological	Plant	Result	Reference
effects	species		
Anti-	B. monnieri	The ethanol extract of <i>B. monniera</i> possesses	Channa et al.,
inflammatory		strong anti-inflammatory activity via	2006
		prostaglandin inhibition, thus justifying the	
		traditional uses of this plant in the therapy of	
		various inflammatory conditions.	
	B. monnieri	<i>B. monnieri</i> The methanol fraction and aqueous extract of	
		B. monnieri acts as potent anti-inflammatory	<i>al.</i> , 2010
		agent in rats in acute inflammation model.	
	B. monnieri	monnieri The triterpenoid and bacoside-enriched	
		fractions significantly inhibited inflammation	Helen, 2011
		through modulation of pro-inflammatory	
		mediator release LPS-activated TNF- α , IL-6 and	
		nitrite production in mononuclear cells.	
Spasmolytic	<i>B. monnieri B. monnieri</i> has spasmolytic activity on intestinal		Dar and
effect		and vascular tissues from rabbit or guinea-pig	Channa, 1997
		may occur mainly through interruption of	1999
		calcium influx via both voltage and receptor	
	จุหาะ	operated calcium channels	
	B. monnieri	B. monnieri has the relaxation effects induced	Dar and
		by possibly involves prostacyclin compounds	Channa, 1999
		and beta-adrenoceptors	
Bronchodilatory	B. monnieri	various fractions derived from B. monnieri	Channa <i>et al.</i>
vasodilatory		possess broncho-vasodilatory activity, which is	2003
		attributed mainly to inhibition of calcium ions.	
Mast cell	B. monnieri	The methanolic extract exhibited a potent	Samiulla et
stabilising		mast cell stabilization effect comparable to	al., 2001
		disodium cromoglycate. B. monnieri are useful	
		for leaves the allergic conditions	

 Table 4
 Summary of pharmacological activities in Bacopa plants (continued)

Subjects	Dosages	Results	References
35 adults	12 gm/day	Reduction anxiety, enhanced	Singh and Singh,
		memory span and concentration	1980
		No side effects observed	
20 primary school	350 mg x 3/day	Enhanced memory, learning,	Sharma et al.,
children		perception and reaction times. No	1987
		side effects observed.	
40 mentally	CDRI-08 (KeenMind)	Enhanced learning and controlled	Dave <i>et al.</i> , 1993
retarded children		abnormal behavior	
with or without			
epilepsy			
36 children with	50 mg x 2/day	Ameliorated various cognitive	Negi <i>et al.</i> , 2000
attention deficit		assessments.	
hyperactivity		No side effects observed.	
disorder (ADHD)			
38 healthy	300 mg/day	No improvement in memory	Nathan <i>et al.</i> ,
subjects		performance	2001
46 healthy	300 mg/day	Improved early information	Stough <i>et al.,</i>
people		processing and verbal learning	2001
		rate. Consolidated memory and	
		reduced anxiety. Side effects:	
		nausea, dry mouth and fatigue	
76 healthy	300 mg/day	Enhanced retention of new	Roodenrys <i>et al.</i> ,
subjects		information.	2002
85 healthy	Combination of	No significant effect on cognition	Nathan <i>et al.</i> ,
subjects	standardized CDRI-	and memory	2004
	08 (KeenMind) 300		
	mg/day and Ginko		
	biloba 120 mg/day		

 Table 5 Summary of clinical trial studies of B. monnieri.

Subjects	Dosages	Results	References
23 healthy	Bacomind™ capsule	Improved cognition.	Pravina et
subjects	300 mg/day and 450	Minor gastrointestinal adverse effects.	al., 2007
	mg		
54 healthy	Standardized CDRI-08	Enhanced cognitive performance in the	Calabrese <i>et</i>
subjects	(KeenMind) 300 mg/day	aging	al., 2008
98 healthy	Bacomind™ capsule	A significant improvement in memory	Morgan and
subjects	300 mg	acquistion and retention was observed.	Stevens,
		Gastrointestinal side effects reported.	2010
465 subjects	300 mg/day	Improvement in memory function	Stough <i>et</i>
			al., 2012
60 healthy	300 mg/day	Attention, cognitive processing, and	Peth-Nui <i>et</i>
subjects		working memory improved.	al., 2012
109 healthy	500 mg x 2/day	Improvements in memory performance	Sadhu et
subjects and		and reduction in the levels of	al., 2014
123 SDAT		inflammatory and oxidative stress	
patients		markers observed in Brahmi treated	
		SDAT patients	
104 elderly	1 Illumina [®] tablet/day	Cognitive function improved.	Zanotta <i>et</i>
subjects with		One non-serious adverse effect	<i>al.,</i> 2014
mild cognitive		reported	
impairment			
17 healthy	320 mg and 640 mg	Brahmi supplementation reduced stress	Benson <i>et</i>
subjects		and alleviated mood in these	<i>al.,</i> 2014
		participants.	

 Table 5 Summary of clinical trial studies of B. monnieri. (continued)

2.4 Medicinal plant authentication methods

Authentication methods become a critical process for medicinal plants manufacturer. The medicinal plants materials were substituted or contaminated by the counterfeit materials in in the sense of cost reducing were rapidly occurrence. In order that, the substitution of fake materials may be influence to the therapeutic effects of medicinal plants and have negative influence for consumer wellbeing.

In general, the authentication methods of medicinal plants are including four principle methods; morphological method (plant morphology), cytological method (microscopy), chemical methods (phytochemical analysis) and molecular method (DNA molecular biology) (Zhao *et al.*, 2006).

2.4.1 Morphological method

Morphological method is a simple method to authenticate medicinal plants. This method refers to the examining of morphological characters. Many pharmacopoeias from various countries are list this method for preliminary authentication of medicinal plants such as Japan Pharmacopoeia, Chinese Materia Medica, British Herbal Medicine Pharmacopoeia and American Herbal Pharmacopoeia (Zhao *et al.*, 2006). Although this method is a simple, fast and easy for authentication. However, the required experience of examiner and undistinguished of closely related species are the weak point of this method.

2.4.2 Cytological method

Cytological method refers to analysis of cell structure and internal features using microscope. This method is properly useful for identification of broken medicinal plant materials e.g. dried or powdered materials, and useful for discriminating the similarly morphological features of plant species. This method have been recorded in most pharmacopoeias such as British Herbal Pharmacopoeia, American Herbal Pharmacopoeia, Japanese Pharmacopoeia and Korea Herbal Pharmacopoeia (Zhao *et al.*, 2006). Even though this method can be accurate and effective for quality control. However, the medicinal plant extracts or processed material may not identified using this method.

2.4.3 Chemical analysis method

Chemical method refers to investigate the characteristic of chemical constituents of medicinal plants. For example, the chemical qualitative and quantitative analysis by spectroscopy and chromatography. This method is the commonly standard methods for authentication of herbs. Thin layer chromatography (TLC), the most commonly effective and simply technique for phytochemical analysis which recorded for standard authentication of medicinal plants in many pharmacopoeia (Zhao *et al.*, 2006). However, the chemical constituents could not be used to identify the closely related plants

species because of the similarly chemical constituents. Moreover, the environments conditions may be affected to the phytochemical constituents.

2.4.4 Molecular method

The progression of molecular biology techniques produces an effect to authentication technique for medicinal plants. Based on the identity of DNA in medicinal plants species can be used for medicinal plant identification. This method provides a specific, accurate, stable and convenient for authentication of medicinal plants and useful for the identification of broken, processed and extracted materials. Moreover, the little amount of sample is adequate for DNA analysis and this technique can be identifying the confound usage of closely related medicinal plants.

จุหาลงกรณ์มหาวิทยาลัย

The DNA-based marker has been developed for a long time to authenticate the medicinal plant. Many techniques was successfully developed for identification of plant base on the differentiation of DNA sequences such as Restriction fragment length polymorphism (RFLP), Random amplified of polymorphic DNA (RAPD), Amplified fragment length polymorphism (AFLP), Simple sequence repeats (SSR), Inter-simple sequences repeats (ISSR), and Sequences characterization of amplified regions (SCAR) (Hao *et al.*, 2010). However, the nucleotide sequences of powerful discriminative DNA regions was important for designed the DNA marker for applied to others rapid convenience and reliable methods.

In recently year, DNA barcoding, the sequence-based method has been developed for identification of medicinal plant. Many candidate DNA regions have been proposed for medicinal plant identifications. The Barcode of Life Plant Working Group recommends the genomic regions rbcL + matK for barcoding (CBOL Plant Working Group, 2009). Kress et al., 2005 have been propose other nuclear region of the internal transcribed spacer (ITS) and the chloroplast region of the trnH-psbA intergenic spacer as optional barcodes for identification of plants because of the high sequence variations and interspecific divergence, and are easily amplified across a broad range of its regions (Kress et al., 2005). In recent year, Dong et al. have been propose a new plastid DNA regions, ycf1, as a promising DNA barcode for identifications of land plants. The result show that *ycf1*b slightly better than the combination of *mat*K and rbcL and generally can be performed better than any of the matK, rbcL and trnH-psbA (Dong et al., 2015). In this study, we have establish the barcoding of anther DNA regions trnL-F. Since the previous study about HRM analysis for identification of medicinal plants. The result show the successful of trnL-F DNA regions can applied with HRM analysis for identification of plant species significantly (Buddhachat et al., 2015; Ganopoulos et al., 2012; Madesis et al.,

2012). *Trn*L-F have been use for a long time in phylogenetic analysis of plants. It was believed that *trn*L-F is not the most variable DNA regions of plastid. However, the conserved of secondary structure with alternation of variable regions are the unique advantages of this DNA regions. Because of the conserved regions can be facilitated to design the primers to amplify short variable site DNA regions between them (Vijayan and Tsou, 2010).

Moreover, the DNA barcoding can be applied for other rapid, convenient and reasonable cost for identification of medicinal plants species such as melting curve analysis and high-resolution melting analysis.

2.5 Authentication of Bacopa monnieri

The morphology of three *B. monnieri* and *B. floribunda* have been described by Yamazaki in the Flora of Thailand. As for *B. caroliniana* has been reported by in South Wetland Flora (The United States Department of Agriculture, 1999). This description of plant morphology in two references are very useful as a taxonomic key for identification of plant in closely related species. However, the plant material usually input to the manufacturer as a reduced form of material which unable to use morphology to identify the plant materials. Therefore, other methods should be developed to solve this problem the microscopic method for identification of *B. monnieri* and *B. floribunda* have been reported by Gubbannavar et al. for differentiation between *B. monnieri* and *B. floribunda* (Gubbannavar *et al.*, 2013). They found the specific feature characteristic in plant cell of each species. Moreover, the pharmacognostic, physicochemical and phytochemical investigation of *Bacopa monnieri* have been reported by Mishra et al. (Mishra *et al.*, 2015). This method can be advantages for identification of broken or powdered plant material. However, this method is very difficult to identification in the manufacturer because of the raw material often input as processed materials. Therefore, the chemical analysis of plants can be useful for identification of medicinal plant materials and solve the trouble on processed materials.

The chemical analysis has been widely studied in *B. monnieri*. This method is the standard method for identification of medicinal plant is the present. The previous study show the five compounds including Bacoside A₃ (1), Bacopaside II (2), jujubogenin isomer of Bacopasaponin C (3) bacopasaponin C (4) and Bacopaside I (5) are constituted more than 95% of total saponins in *B. monnieri*. Analytical monograph of *B. monnieri* was published in the United State Pharmacopoeia with required the measurement of five saponins. The Indian Pharmacopoeia and Ayuravedic Pharmacopoeia of India have a *B. monnieri* monograph based on the estimation the four saponins of Bacoside A while the British Pharmacopoeia required the estimation of total bacopa saponins content base on the calculated using Bacopaside II as a reference standard (Deepak and Amit, 2013). Interestingly, the chemical analysis of other species has not been study. Many articles were reported the chemical analysis of *B. monnieri* which can be useful for identification of medicinal plant materials as summary in the **Table 6**. However, the chemical method has a limitation of closely related plant species which may have a same chemical profile. Moreover, the environment might influence to the content of chemical constituents. Therefore, another method such as DNA may be fulfill limitation of this method.

Apparatus	Chemical constituents	Refernces
HPTLC	Bacoside A	Shrikumar <i>et al.,</i> 2004
HPLC	Bacoside A ₃ (1), Bacopaside II (2),	Deepak <i>et al.,</i> 2005
	bacopasaponin C isomer (3)	
	and bacopasaponin C (4)	
RP-HPTLC,	Bacoside A ₃ and Bacopaside II	Agrawal <i>et al.,</i> 2006
PC-SFC-DAD		
ELISA	Bacopaside I na service and the service and the	Phrompittayarat <i>et al.,</i> 2007a
RP-HPLC	Bacoside A3 (1), Bacopaside II (2),	Phrompittayarat <i>et al.,</i> 2007b
	Bacopasaponin C isomer (3),	
	Bacopasaponin C (4) and Bacopaside I (5)	
HPLC – ELSD	Bacoside A, Bacopaside I,	Bhandari <i>et al.</i> , 2009b
	Bacoside A3, Bacopaside II,	
	Bacopaside X, Bacopasaponin C	
	and Apigenin	
ELISA	Bacoside A ₃	Tothiam <i>et al.,</i> 2011
	Bacopaside X (jujubogenin)	
	and Bacopaside IV (jujubogenin)	
HPTLC	Bacoside A	Shinde <i>et al.,</i> 2011
HPLC	Bacopaside I and Bacoside A	Srivastava <i>et al.,</i> 2012
HPTLC	Bacoside A and Bacopaside I	Christopher <i>et al.,</i> 2017

Table 6 Summary of chemical analysis method of B. monnieri.

DNA-based method have been developed for identification of *B. monnieri* by various DNA marker. In 2012, Tripathi et al. have reported the molecular analysis for genetic variation of *B. monnieri* in central India using RAPD and ISSR marker (Tripathi et al., 2012). However, this study were use the DNA marker only for determination of genetic relationship among the B. monnieri form different accession of collection. Later, the RAPD-based SCAR marker have been developed for the authentication of B. monnieri by Yadav et al (Yadav et al., 2012). This method was developed from the RAPD pattern of *B. monnieri* and its adulterants that sold in the name of Brahmi. The specific PCR product from the RAPD marker of B. monnieri which absent in other adulterant were cloned and sequenced for analysis of DNA sequences. The specific primer were designed base on the specific DNA sequences for authentication of B. monnieri. These methods were developed base on only B. monnieri and its adulterants. However, the adulteration of plant materials incline on related species which have a similarly morphology or chemical constituents (Zhang et al., 2015). Therefore, the DNA analysis of closely related plant species should be analyzed.

Recently, DNA barcode, the short length of standard DNA region using for identification of plant species (Hebert *et al.*, 2003). This technique becomes an additional standard for the identification of medicinal plant materials. However, the DNA barcoding of plant in the genus *Bacopa* are not available for identification of *Bacopa* plant species. Moreover, the accurate, rapid, reliable and economical technique should be developed for raw material identification routines in developing country. Therefore, DNA barcodes of plant in the genus *Bacopa* should be established and the rapid identification technique using DNA marker should be developed.

2.6 Barcoding – high resolution melting (HRM) analysis

Barcoding-HRM is the coupling of DNA Barcoding and High-resolution melting analysis methods. Which the pair of primers us in this method designed based on knowing DNA sequences. HRM is the post-PCR method that was developed for the detection of genetic variation such as mutation and indels in the nucleotide sequences (Simko, 2016). HRM enables rapid, high-throughput identification of variants in the regions of targets DNA without sequencing. HRM is required the DNA intercalation fluorescence dye which intercalated to the double stranded DNA while the PCR still amplifying. (Figure 2) This method is detecting the diminishes of fluorescence which the fluorescence dye were release from the dissociation of double stranded DNA when the increment of temperature in the thermal cycler (Figure 3). This denaturation of double stranded DNA is based on the binding affinities of each nucleotide pairs which vary due to indels and mutations. These variations inferred to the fluorescence value which collected when the increment of temperature in the thermal cycler which are plotted as the melting curves. The melting curve's shape and peak are the characteristic of each PCR product from each samples (Osathanunkul et al., 2015). The characteristic of melting curve graph can useful for comparison and distinguish the species among samples.

Figure 2 The diagram of fluorescence dye activities while Pre-PCR, PCR (PCR amplification) and post-PCR (DNA denaturation) which inferred to the HRM analysis

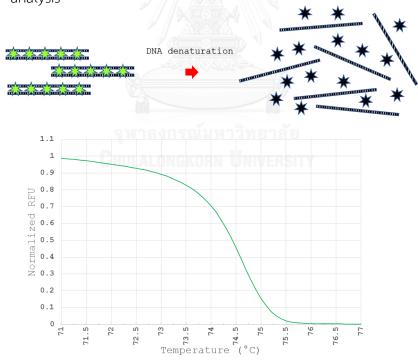
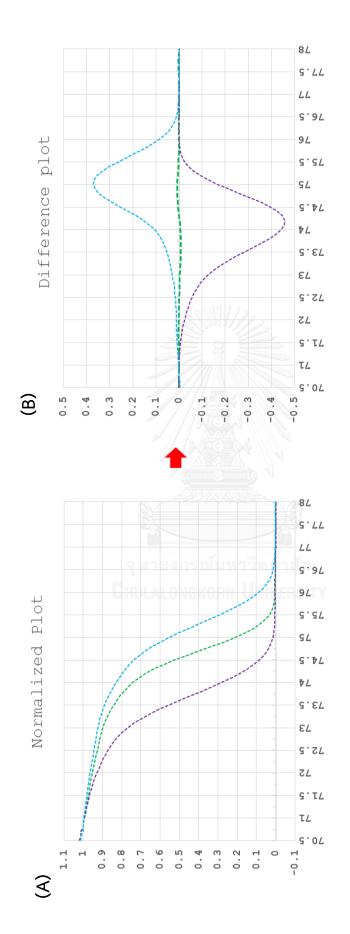



Figure 3 The diminishes of fluorescence intensity during the increment of temperature on DNA denaturation process which inferred the melting curve

in HRM analysis

(A) Normalized Pot (B) Difference Plot

CHAPTER III

MATERIALS AND METHODS

3.1 Plant materials

Total fourteen plant samples from the genus *Bacopa* were collected from the different locations in Thailand including Bangkok, Nakhon Prathom, Phitsanulok, Nakhon Nayok, Chiang Mai and Sakhon Nakhon. (**Table 1**). There were seven sample of *Bacopa monnieri* (Prom mi), five samples of *Bacopa caroliniana* (Lan Pailin) and two samples of *Bacopa floribunda* (Phak Sam Lun). All samples were identified by Associate Professor Thatree Phadungcharoen at the Faculty of Pharmacy, Rangsit University. Herbarium were prepared from each species as voucher specimens and then preserved in the Museum of Natural Medicine at the Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.

JHULALONGKORN UNIVERSITY

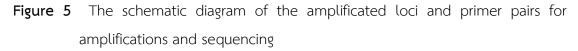
3.2 DNA extraction

Fresh leaf specimens from each species were homogenized into the find powder by mortar and pestle under liquid nitrogen treatment. The powdered samples were transferred to 1.5 ml micro-centrifuge tube and kept in liquid nitrogen prior to DNA extraction. Total genomic DNA were extracted from 100 mg at approximately of each grounded samples by using DNeasy Plant Mini Kit (QIAGEN) following the manufacturer's procedure. In brief, the grounded samples were re-suspended in lysis

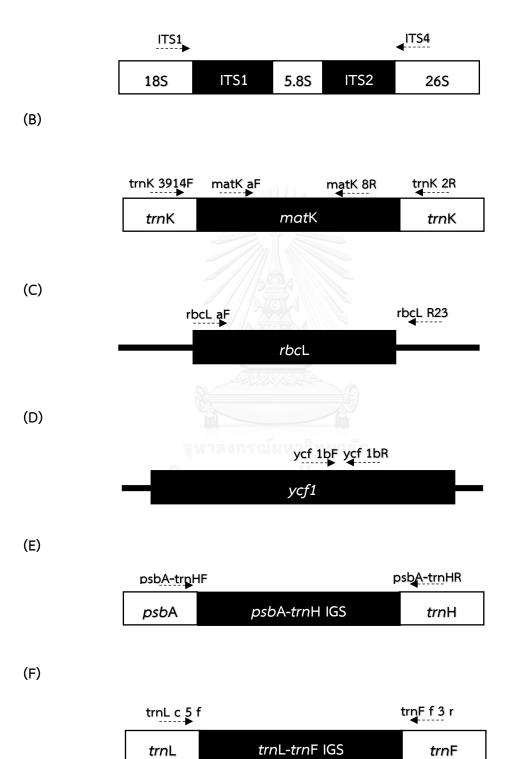
DNA barcodes.
for
number
rial and their accession number for
their
and
Material
Plant
7
Table

Consise	(² d	Construction Londing		Accession					
opecies	roue	code deorgraphic location voucher in		ITS	matK	rbcL	ycf1	psbA-trnH trnL-trnF	trnL-trnF
B. monnieri	BM01	Bangkok	CU-MN 20170126	LC214982	LC214984	LC214987	LC214988	LC214981	LC310979
	BM02	BM02 Bangkok	CU-MN 20170127	ı	I	I	I	I	ı
	BM03	BM03 Nakhon Pathom	CU-MN 20170128		ı	ı			
	BM04	Phitsanulok	CU-MN 20170129		ı	ı	ı	ı	·
	BM05	Bangkok	CU-MN 20170130	ı	I	I	I	I	ı
	BM06	BM06 Nakhon Nayok	CU-MN 20170131	ı	ı	I	ı	I	I
	BM07	Bangkok	CU-MN 20170132		ı	ı	ı	ı	
B. caroliniana	BC01	Bangkok	CU-MN 20170133	LC214983	LC214985	LC214986	LC214989	LC214980	LC310977
	BC02	Phitsanulok	CU-MN 20170134	,	ı	ı	ı	ı	ı
	BC03	BC03 Nakhon Nayok	CU-MN 20170135	ı	I	I	I	ı	ı
	BC04	Chiang Mai	CU-MN 20170136	ı	I	I	I	I	I
	BC05	Bangkok	CU-MN 20170137	·	ı	ı	ı	ı	ı
B. floribunda	BF01	Sakon Nakhon	CU-MN 20170138		LC214992	LC214993	LC214994	LC214990 LC214992 LC214993 LC214994 LC214991 LC310978	LC310978
	BF02	BF02 Phitsanulok	CU-MN 20170139		ı	ı	ı	ı	·

buffer before incubating the samples at 65 °C for 20 min. The lysates were then transferred to filtering columns and centrifuged at 14000 x g for 1 min to remove cell debris and other precipitates. The flow-through were then transferred to the DNA binding columns and then centrifuged at 14000 x g for 1 min. The flow - through were discarded and the columns were then washed out for the impurities. After drying columns by centrifugation, the genomic DNA were eluted from the columns by elution buffer. The total genomic DNA were determined for the quality by 1% agarose gel electrophoresis, stained with Ultrapower™ Nucleic Acid Staining (E Coli S.R.O.) and visualized under UV light and photographed in GeL-Doc System (Bio-Rad). The purified DNA samples were kept at -20 °C prior to the further analysis.


3.3 PCR amplification, sequencing and data analysis

The universal primer for six loci DNA regions including ITS, *mat*K, *rbc*L, *ycf*1, **CHULLIONGKONN UNIVERSITY** *psbA-trn*H and *trn*L-F were used in PCR reaction (**Table 8**) and the schematic diagram of the amplificated loci and primer pair for PCR and sequencing was shown in **Figure 5**. The PCR reactions were performed in 25 µl amplification volume consisting of 1X PCR buffer with 1 mM MgCl₂ (Promega), 0.4 mM dNTP mix (Promega), 1.0 unit of Go*Taq*[®] DNA Polymerase (Promega) and 20 ng of genomic DNA and carried out in T100TM Thermal Cycler (Bio-Rad) using the cycling condition at 95 °C for 5 min, followed by 30 cycles of 95 °C for 30s, 55 °C for 30s and 72 °C for 1 min for ITS, *ycf*1 and *psb*A- *trn*H or 72 °C for 1 min for *rbc*L and *mat*K, and final extension at 72 °C for 10 min. The amplified PCR products were examined by 1% agarose gel electrophoresis in 1% TAE buffer and visualized under UV light by using Ultrapower[™] Nucleic Acid Staining in GelDoc[™] XR (Bio-Rad) and then photographed.


For DNA sequencing, the amplified products were purified using QIAquick® PCR purification kit (QIAGEN) prior to sequence. According to the manufacture instruction, the amplified DNA were mixed together with binding buffer and transferred to the DNA binding columns. After centrifugation, the flow-through were discarded and the columns were then washed and dried. The PCR product were eluted from the column and prompted to be sequenced. The purified PCR product were bi-directionally sequenced using the pairs of universal primers of each region by ABI 3730XL DNA analyzer at BIONEER Co., ltd. The raw DNA sequences from six regions were aligned, edited, corrected, verified and compiled using MEGA version 7 to confirm the quality of sequences. The consensus sequences of obtained sequences were analyzed by MUSCLE algorithm (Edgar, 2004). All sequences were submitted to GenBank database and their accession number listed in **Table 1**.

Location	Primer names	Primers sequences $(5' \rightarrow 3')$	References
ITS	ITS1	TCC GTA GGT GAA CCT GCG G	White et al., 1990
	ITS4	TCC TCC GCT TAT TGA TAT GC	-
matK	<i>trn</i> K 3914F	TGG GTT GCT AAC TCA ATG G	Johnson et al., 1994
	<i>trn</i> K 2R	AAC TAG TCG GAT GGA GTA G	-
	<i>mat</i> K aF	CTA TAT CCA CTT ATC TTT CAG GAG	Kato et al., 1999
	matK 8R	AAA GTT CTA GCA CAA GAA AGT GCA	-
rbcL	<i>rbc</i> L aF	ATG TCA CCA CAA ACA GAG ACT AAA GC	Levin et al., 2003
	rbcL R23	TTT TAG TAA AAG ATT GGG CCG	Ohi-Toma et al., 2006
psbA-trnH	psbA-trnHF	GTT ATG CAT GAA CGT AAT GCT C	Sang et al., 1997
	psbA-trnHR	CGC GCA TGG TGG ATT CAC AAT C	-
ycf1	<i>ycf</i> 1bF	TCT CGA CGA AAA TCA GAT TGT TGT GAA T	Dong et al., 2015
	<i>ycf</i> 1bR	ATA CAT GTC AAA GTG ATG GAA AA	-
<i>trn</i> L-F	tmL c 5 f	CGA AAT CGG TAG ACG CTA CG	Taberlet et al., 1991
	<i>trn</i> Ff3r	ATT TGA ACT GGT GAC ACG AG	_

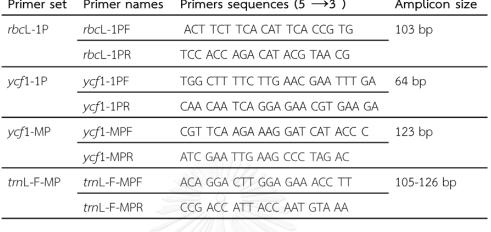
 Table 8 Primers used for amplification and sequencing

3.4 Phylogenetic analysis

For the phylogenetic analysis, the complete sequences of each six loci DNA region, ITS, *matK*, *rbcL*, *ycf*1, *psbA-tm*H and *tmL-F*, were aligned by ClustalW algorithm in MEGA program version 7 (Tamura *et al.*, 2016). All five plastid DNA region sequences, *matK*, *rbcL*, *ycf*1, *psbA-tm*H and *tmL-tmF*, were also combined and aligned. Then the aligned data was analyzed for reconstructing phylogenetic trees using MEGA. Some other sequences available in GenBank database were included to this analysis. *Scoparia dulcis* was included as an outgroup and all six loci DNA regions of the plant were sequenced. All phylogenetic trees were inferred using neighbor-joining (NJ) method with maximum composite likelihood model using Kimura-2-parameter nucleotide substitution model with 1,000 replicates of bootstrap supporting analysis. All positions containing gaps and missing data were eliminated by complete deletion.

จุหาลงกรณ์มหาวิทยาลัย

HULALONGKORN UNIVERSITY


3.5 Real-time PCR and HRM analysis

The conserved region of *rbcl*, *ycf*1 and *trn*L-F in chloroplast DNA were selected for HRM analysis. The primers sequence for real-time PCR were listed in **Table 9**. The amplification reaction was run for three different regions that indicating as *rbc*L-1P, *ycf*1-1P, *ycf*1-MP and *trn*L-F-MP the product size was 103 bp, 64 bp, 123 bp and 105-126 bp, respectively. The schematic diagram of the amplificated loci and primer pair for real-time PCR was showed in **Figure 6**.

To obtain the DNA melting character of each locus from each species. The realtime PCR and therefore melting step were applied in a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad) for discriminating species of plants in the genus Bacopa. The real-time PCR reaction were carried out in total volume of 20 μ l containing of 1X of Ssofast Evagreen Supermix[®] (Bio-Rad), 0.4 µM of forward primer and reverse primer and 10 ng of plant genomic DNA (Three Bacopa species) or the DNA extracted from commercial products. PCR reactions were performed in 96-well plate and the cycling condition consisted of the initial denaturing step at 98 °C for 2 min followed by 44 cycles of 98 °C for 5 s, 59 °C for 30s and 72 °C for 20 s. The fluorescent data for PCR amplification were collected during extension step as a green channel. In the final step of amplification, PCR products were denatured at 95 °C for 1 min, and then re-annealed at 60 °C for 1 min to reform random DNA duplexes. For the melting curve analysis, the PCR product was melted in the ramped steps from 60 °C to 90 °C in 0.2 °C increments and the fluorescence intensity were collected on every increasing point. The melting curves were analyzed using CFX Manager[™] Software Upgrade of version 3.1.


Primers sequences $(5' \rightarrow 3')$ Primer set Amplicon size Primer names rbcL-1P rbcL-1PF ACT TCT TCA CAT TCA CCG TG 103 bp TCC ACC AGA CAT ACG TAA CG rbcL-1PR ycf1-1P *ycf*1-1PF TGG CTT TTC TTG AAC GAA TTT GA 64 bp CAA CAA TCA GGA GAA CGT GAA GA *ycf*1-1PR ycf1-MP *ycf*1-MPF CGT TCA AGA AAG GAT CAT ACC C 123 bp *ycf*1-MPR ATC GAA TTG AAG CCC TAG AC tmL-F-MP tmL-F-MPF ACA GGA CTT GGA GAA ACC TT 105-126 bp trnL-F-MPR CCG ACC ATT ACC AAT GTA AA

HRM analysis.

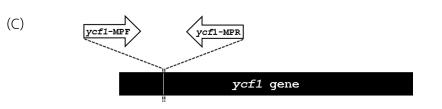


Figure 6 The schematic diagram of the amplificated loci and primer pair for real-time PCR coupling with HRM analysis

CHAPTER IV

RESULTS

4.1 DNA barcoding analysis of Bacopa species

The genomic DNA of seven samples of *B. monnieri* (Prom mi), five samples of *B. caroliniana* (Lan Pailin) and two samples of *B. floribunda* (Phak Sam Lun) collected from various locations of Thailand was successfully extracted for DNA barcoding. Six DNA loci were amplified from all genomic DNA samples and subsequently sequenced. The full sequences of five DNA loci from three taxa of *Bacopa* plants including ITS, *matK*, *rbcL*, *psbA-trnH*, *trnL*-F were obtained from the three *Bacopa* plants. The partial sequence of ycf1 region was also retrieved. The lengths of DNA sequences of ITS, *matK*, *rbcL*, *psbA-trnH*, *trnL*-F were various among the genus *Bacopa*. However, the lengths of *rbcL* gene were similar (**Table 10**). All selected DNA sequences were aligned and subsequently calculated the sequence distances for their relationship (**Table 11**).

Table 10 Sequence analysis of the selected DNA regions of plants in the genusBacopa

Species			DNA	region		
species	ITS	matK	rbcL	ycf1	psbA-trnH	<i>trn</i> L-F
Length (bp)	722-731	1521-1536	1434	805-826	405-527	770-955
Variation position (bp)	149	91	32	99	195	228
%Variation	20.5234	5.9438	2.2315	12.1175	42.2078	25.6757
Average %GC content	55.8328	32.7908	43.5379	28.8017	27.3312	35.6383

The complete sequences of ITS region from all *Bacopa* plants were amplified and subsequently bidirectional sequenced. The amplicons were examined by gel electrophoresis and the PCR product sizes were approximately 700 bp. The complete sequences of ITS element from *B. monnieri*, *B. caroliniana*, and *B. floribunda* were 731, 722, and 725 bp, respectively. The ITS sequences of three *Bacopa* taxa were aligned and the alignment showed the high number variable sites (149 of 731 sites or 20.52%) and high %GC content (55.83%). The ITS sequences of any samples obtained from the same species were identical. A pairwise distance between *B. monnier*i and *B. caroliniana* showed the highest nucleotide sequence divergence (19.6%). A pairwise between *B. caroliniana* and *B. floribunda* representing the lowest sequence divergence (10.2%) (**Table 11A**). The complete ITS sequences of three taxa were submitted to GenBank database and all sequences were shown in **Appendix**.

The complete sequences of maturase K (*mat*K) gene were amplified and sequenced. The PCR products were examined by agarose gel electrophoresis and the PCR product sizes were ranged 1,500 bp. The complete sequences of *mat*K from *B. monnieri, B. caroliniana* and *B. floribunda* were 1536, 1521 and 1536 bp, respectively. To locate the variation sites, the *mat*K sequences of three *Bacopa* taxa were aligned and showed high number of variable sites (91 of 1536 sites or 5.94%). Moreover, %GC content of *mat*K was 32.79% which was lower than that of the ITS aligned. The *mat*K sequences were identical within species. The sequence distances among the three *Bacopa* taxa was analyzed (**Table 11B**). The pairwise distance of *B. monnier* compared

with *B. caroliniana* revealed the highest value of nucleotide sequence divergence (4.4%) while the sequence divergence between *B. caroliniana* and *B.floribunda* was the lowest (2.7%). All complete *mat*K sequences were submitted to GenBank and the alignment was shown in **Appendix.**

Nevertheless, the complete *mat*K sequences were compiled from the sequencing of two PCR product from four primers including a pair of *trn*K3914F and *mat*K 8R and a pair of *mat*K aF and *trn*K 2R. From the alignment of all *mat*K sequences, two indels were observed in *B. caroliniana* only. There are 6 bp indels from the position 347 to 352 and 9 bp indels from the position 1,525 to 1,533. According to the sequence alignment, the length of complete *mat*K of *B. caroliniana* were shorter (1,521 bp) than others (1,536 bp). The complete sequences of *mat*K gene were successfully amplified and sequenced. The 91 variable sites (5.94%) were observed in the alignment of complete sequences from all species.

III AI ONGYODA HAINEDOIT

The complete sequences of ribulose-1,5-bisphosphate carboxylase/oxygenase large chain gene (*rbcL*) from three *Bacopa* plants were amplified and subsequently bidirectional sequenced. The PCR product were examined by agarose gel electrophoresis and the expected size were approximately 1,500 bp. The complete *rbcL* length of three *Bacopa* taxa were 1,434 bp. All *rbcL* sequences of three *Bacopa* taxa were aligned using MEGA and thee alignment showed 32 positions (2.23%) of variable sites obtained from sequence alignment with 43.54% of GC content. The *rbcL* sequences obtained within same species were identical. The sequences distance

among three *Bacopa* taxa were analyzed (**Table 11C**). Pairwise distances between *B. monnieri* and *B. caroliniana* and between *B. caroliniana* and *B. floribunda* showed the highest value of nucleotide sequence divergences (1.8%). The divergence which pairwise between *B. caroliniana* and *B. floribunda* were the lowest (0.9%). All *rbcL* sequences were submitted to GenBank database. The sequences were shown in **Appendix**.

The partially sequences of hypothetical chloroplast open reading frame 1 gene (*ycf*1) were amplified and subsequently sequenced. The PCR products were examined by agarose gel electrophoresis and the expected sizes were about 800 bp. The length of partial *ycf*1 sequences of *B. monnieri*, *B. caroliniana* and *B. floribunda* were 805, 820 and 826 bp, respectively. Ninety-nine variable sites (12.12%) with 28.80% of GC content were found in the alignment. All *ycf*1 sequences from the same plant species were identical. The sequences distance among the three *Bacopa* taxa were analyzed (**Table 11D**). Pairwise distance of *B. monnieri* and *B. caroliniana* was 8.1%. The pairwise of *B. caroliniana* and *B. floribunda* were lower at value of 2.2%. All partial *ycf*1 sequences were submitted to GenBank database (**Table 7**). The sequences were shown in **Appendix**.

The complete sequences of photosystem II protein D1- tRNA-Histidine intergenic spacer (*psbA-trn*H intergenic spacer) were amplified and sequenced. The PCR products were examined by agarose gel electrophoresis with expected size approximately 500 bp. The length of complete sequences of *psbA-trn*H intergenic spacer from *B. monnieri*,

B. caroliniana and *B. floribunda* were 405, 454 and 527 bp, respectively. All *psbA-trn*H intergenic spacer sequences were aligned and the alignment showed 195 variation sites (42.21%). with 27.33% of GC content. All *psbA-trn*H intergenic spacer sequences within same species were identical. The sequences distance among the genus were analyzed (**Table 11E**). Pairwise distances of *B. monnieri* compare with *B. caroliniana* was 9.3% which greater than the pairwise of *B. caroliniana* and *B. floribunda* (2.5%). All sequences of *psbA-trn*H intergenic spacer were submitted to GenBank database (**Table 7**). The sequences were shown in **Appendix**.

The complete sequences of tRNA-Leucine – tRNA-Phenylalanine intergenic spacer (*trn*L-F intergenic spacer) were successfully amplified and sequenced. The amplicons were examined by agarose gel electrophoresis and the expected size were 800 bp. The length of complete sequences of *trn*L-F intergenic spacer from *B. monnieri*, *B. caroliniana* and *B. floribunda* were 955, 770 and 939 bp, respectively. All *trn*L-F intergenic spacer sequences were aligned and the alignment showed 228 variable sites (25.68%) among the genus with 35.64% of GC content. All samples with the same species revealed the resemblance of *trn*L-F intergenic spacer sequences. The sequences distance among three *Bacopa* taxa was analyzed (**Table 11F**). Pairwise distances value between *B. monnieri* and *B. caroliniana* were 2.4% which greater than the pairwise of *B. caroliniana* with *B. floribunda* 0.8%. All complete *trn*L-F intergenic spacer sequences of three taxa were submitted to GenBank database (**Table 7**). The sequences were shown in **Appendix**.

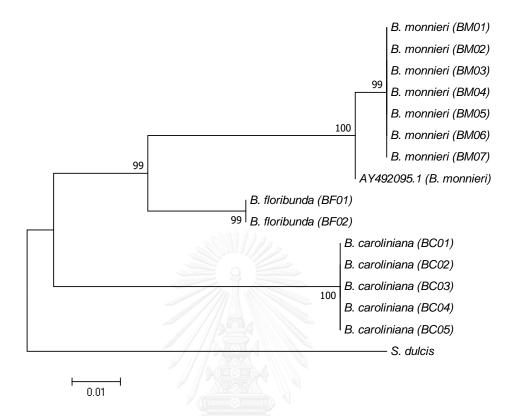
 Table 11 Interspecific distance analysis among three Bacopa plants

(A)	ITS	B. monnieri	B. caroliniana	B. floribunda
	B. monnieri			
	B. caroliniana	0.196		
	B. floribunda	0.102	0.165	

(B)	matK	B. monnieri	B. caroliniana	B. floribunda
	B. monnieri			
	B. caroliniana	0.044		
	B. floribunda	0.027	0.032	

(C)	rbcL	B. monnieri	B. caroliniana	B. floribunda
	B. monnieri			
	B. caroliniana	0.018		
	B. floribunda	0.009	0.018	

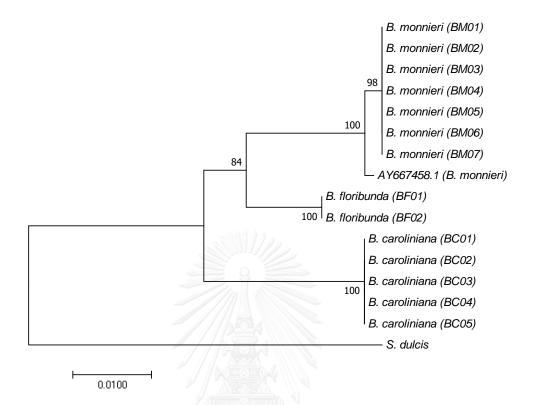
(D)	ycf1	B. monnieri	B. caroliniana	B. floribunda
	B. monnieri			
	B. caroliniana	0.081		
	B. floribunda	0.022	0.080	
		101 411 3 5 10 64 PT 1 3 1		

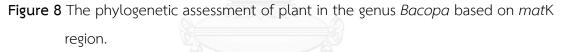

	C	ALONOKODU UN	UNEDOLEN	
(E)	psbA-trnH	B. monnieri	B. caroliniana	B. floribunda
	B. monnieri			
	B. caroliniana	0.093		
	B. floribunda	0.025	0.084	

(F)	<i>tm</i> L-F	B. monnieri	B. caroliniana	B. floribunda
	B. monnieri			
	B. caroliniana	0.024		
	B. floribunda	0.008	0.021	

4.2 Phylogenetic analysis of the three *Bacopa* taxa based on six loci DNA barcodes

Seven NJ trees of three *Bacopa* species collected in Thailand and *Scoparia dulcis* were generated from six DNA loci: ITS, *mat*K, *rbcL*, *ycf*1, *psbA-trn*H, and *trnL*-F DNA regions. The tendency of the phylogenetic results was to group *B. monnieri* and *B. floribunda* sisterly with bootstrap supports as 99 %, 84 %, 59 %, 94%, 90%, 96%, and 100% on ITS, *mat*K, *rbcL ycf*1, *psbA-trn*H, *trnL*-F, and the five-loci combined NJ trees, respectively (**Figure 7, 8, 9, 10, 11, 12, and 13**). *Bacopa monnieri* and *B. floribunda* are the old-world plants distributed in South Asia (india), East Asia (China), South-East Asia (Oriental) and Australia while *B. caroliniana* is the new-world plant which is native to North and South America. Notably, a high length-variation caused by numerous nucleotide insertions and deletions was found in the *psbA-trn*H intergenic spacer and would be a caution to use this region for genetic relationship analysis among plants in the genus *Bacopa* without using "complete deletion" option.


The phylogenetic analysis based on ITS region revealed that the ITS sequence of *B. monnieri* available in GenBank (AY492095.1) was classified in the same group as all seven ITS sequences from *B. monnieri* plant materials sampled in this study (with 100% bootstrap). The two samples of *B. floribunda* and five of *B. caroliniana* were put in their own groups with high 99% and 100% bootstrap values, respectively (**Figure 7**).



จหาลงกรณ์มหาวิทยาลัย

The phylogenetic analysis based on *mat*K region showed that the *mat*K sequence of *B. monnieri* from GenBank (AY667458.1) was grouped with all seven *mat*K sequences from plant materials in this study (100% bootstrap). Both samples of *B. floribunda* and five of *B. caroliniana* in this study were classified into their own group with high bootstrap supports of 100% and 100%, respectively (**Figure 8**).

จุฬาลงกรณ์มหาวิทยาลัย

The phylogenetic assessment of *rbcL* region also put the *rbcL* sequence of *B. monnieri* (KJ773301.1) available in GenBank into the same group of as all seven *B. monnieri mat*K sequences in this study (99 % bootstrap). Likewise, the sequence of *B. caroliniana* accession no. AF123670.1 was grouped with the other five *B. carolinina* with high bootstrap 100%. All seven samples of *B. monnieri*, two of *B. floribunda* and five of *B. caroliniana* were clustered into their own groups with high bootstrap supports of 99%, 99% and 99%, respectively (**Figure 9**).

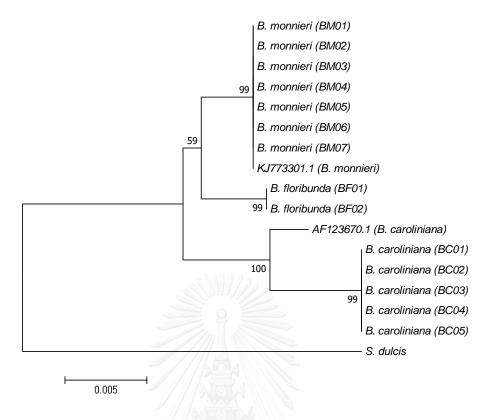
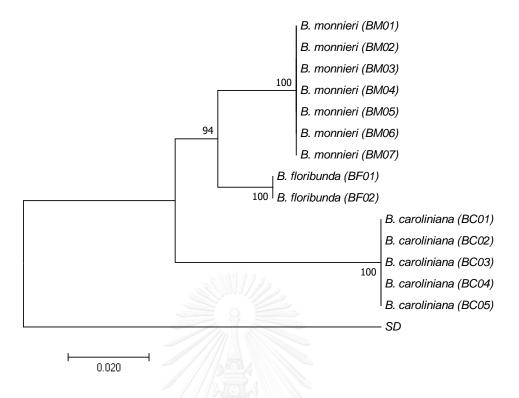
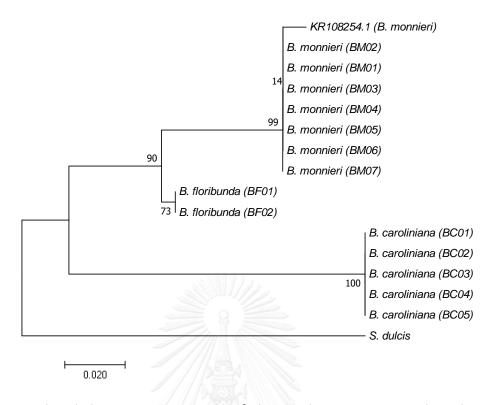
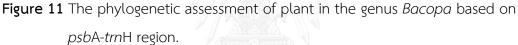
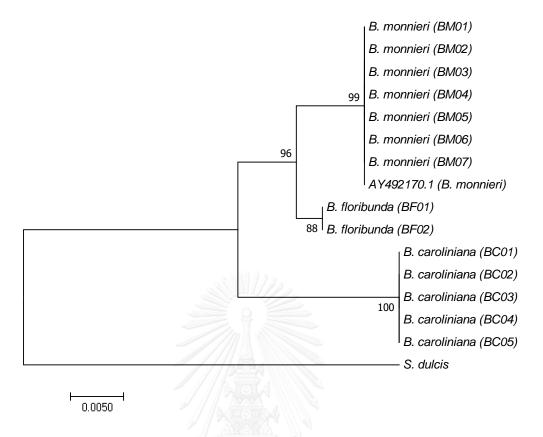
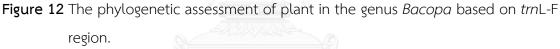


Figure 9 The phylogenetic assessment of plant in the genus *Bacopa* based on *rbcL* region.

Based on the *ycf*1 region, all of the plant samples of *B. monnieri, B. floribunda* and *B. caroliniana* were classified into their own groups with high bootstrap 100% support (**Figure 10**). No sequence of *ycf*1 regions of the genus *Bacopa* had been submitted to GenBank.


Figure 10 The phylogenetic assessment of plant in the genus *Bacopa* based on *ycf*1 region.


The phylogenetic analysis based on *psbA-trn*H region showed that the *psbA-trn*H sequence of *B. monnieri* from GenBank (KR108254.1) was grouped with all seven *psbA-trn*H sequences from plant materials in this study (99% bootstrap). Both samples of *B. floribunda* and five of *B. caroliniana* in this study were classified into their own group with high bootstrap supports of 73% and 100%, respectively (**Figure 11**).

The phylogenetic relationship of *Bacopa* plant specimens based on *trn*L-F gene revealed that the *trn*L-F sequence of *B. monnieri* from previous study (AY492170.1) was located within the same group as all seven plant materials collected in this study (99% bootstrap). The samples of *B. floribunda* and *B. caroliniana* were classified in their own groups with high bootstrap 88% and 100% supporting values, respectively (Figure 12).

The phylogenetic relationship of *Bacopa* plants based on combined-data of the five chloroplast DNA regions confirmed that all samples of *B. monnieri* was grouped with *B. floribunda* sisterly found the plant materials in same species which used in this study were classified in same group of each species with the high bootstrap 100%. Some morphological characteristics and chemical constituents were then mapped to the tree to suggest the relationship between the three *Bacopa* species. (**Figure 13**).

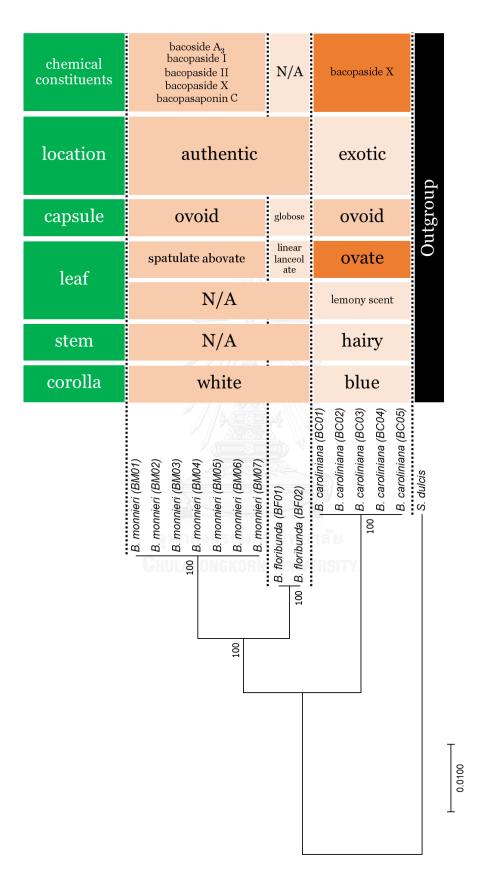


Figure 13 The phylogenetic assessment of plant in the genus Bacopa based on five loci plastid genome.

4.3 Barcoding – HRM analysis for identification of the three *Bacopa* plants.

Two primers sets, *rbc*L-1P (**Figure 14**) and *ycf*1-1P (**Figure 15**), were designed to cover the range of single nucleotide polymorphisms (SNPs) of *rbc*L and *ycf*1 of the three *Bacopa* taxa, respectively. The amplicons were produced using real-time PCR couple with HRM analysis. As a result, both of *rbc*L-1P and *ycf*-1P primers can discriminate *B. monnieri* from the others as the melting curve patterns were separated into two groups. The first group is the specific melting curve of *B. monnieri*, and the other group is the similar curve of *B. caroliniana* and *B. floribunda*.

The *rbc*L-1P PCR amplicons in of the three *Bacopa* samples were in the same size as 103 bp. However, one SNP were found at the position 927 of *rbc*L gene aligned in which *B. monnieri* sequence was different from the others. The result showed that the melting curve of *B. monnieri* was isolated from other *Bacopa* species. The melting temperatures (T_m) of *B. monnieri*, *B. caroliniana*, and *B. floribunda* amplicons were 77.8-78.2, 77.4 and 77.4 °C, respectively (**Figure 16**). This method therefore can distinguish *B. monnieri* from related species.

The *ycf*1-1P primer set was designed based on *ycf*1 sequences of three *Bacopa* species and their amplicons were in the same size as 64 bp. But one SNP of *B. monnieri* sequence was found different from the others. These designed primers were investigated on three *Bacopa* species samples to produce melting curves for species discrimination. The result showed that the melting curve of *B. monnieri* was separated

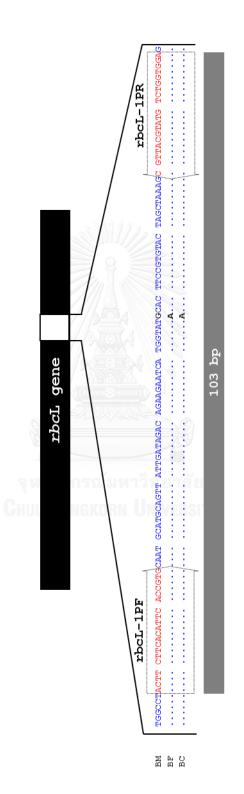


Figure 14 The schematic structure of the amplificated rbcL loci and the rbcL1-1P primer pairs for barcoding-HRM analysis

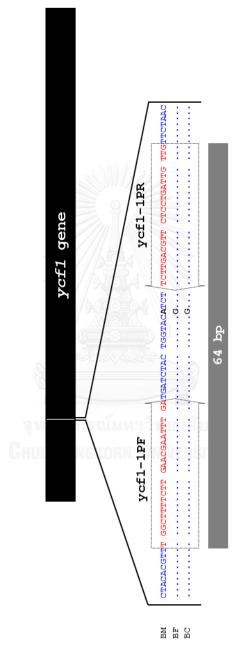
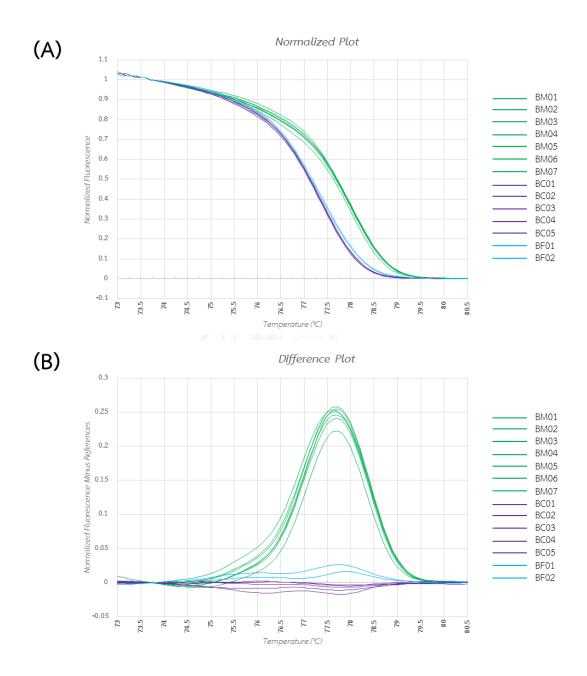
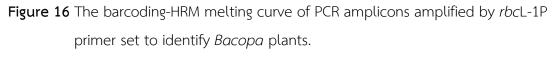




Figure 15 The schematic structure of the amplificated ycf1 loci and the ycf1-1P primer pairs of for barcoding HRM analysis

(A) Normalized Plot (B) Difference Plot

from the other two *Bacopa* species. The melting temperature (T_m) of each species were 73.8-74.0, 74.4-74.6 and 74.8 °C, respectively (**Figure 17**). This method can distinguish *B. monnieri* from the related species.

Other two sets of designed primer, *ycf*1-MP (Figure 18) and *trn*L-F-MP (Figure 19), were designed to cover the range of various SNP of *ycf*1 and *trn*L-F of three *Bacopa* taxa, respectively. The design primer set was evaluated on three Bacopa species using real-time PCR couple with HRM analysis. The primer set was evaluated on three Bacopa species melting curve pattern. The specific melting curves of each species were separate into three groups which each group is represent there each species. As a result, the ycf1-MP can be differentiated each three Bacopa species. The melting temperature (T_m) of each species were 74.6, 74.0 and 74.8-75, respectively (Figure 20). The trnL-F-MP primer set was designed to cover the range of indels and several SNP, the same concept as ycf1-MP primer set. These designed primers were investigated on the three *Bacopa* taxa to produce melting curves for species discrimination. The pairs of trnL-F-MP primers can be differentiated the species of plant based on the specific melting curve and melting temperature. The melting temperature (T_m) of each species were 74.6-74.8 , 73.8 and 75.4, respectively (Figure 21). The specific T_m of each plant obtained from the HRM analysis using ycf1-MP and trnL-F-MP primer can be used for authentication of Bacopa species.



Figure 17 The barcoding-HRM melting curve of PCR amplicons amplified by *ycf*1-1P primer set to identify *Bacopa* plants.(A) Normalized Plot (B) Difference Plot

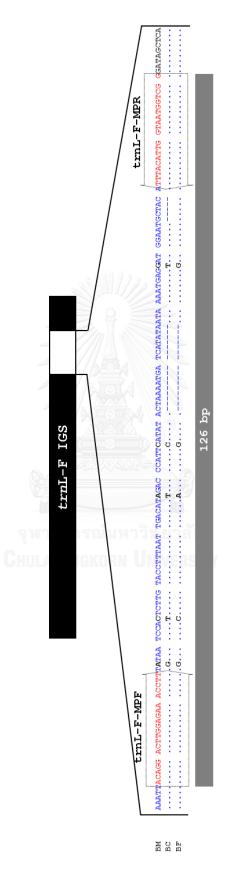
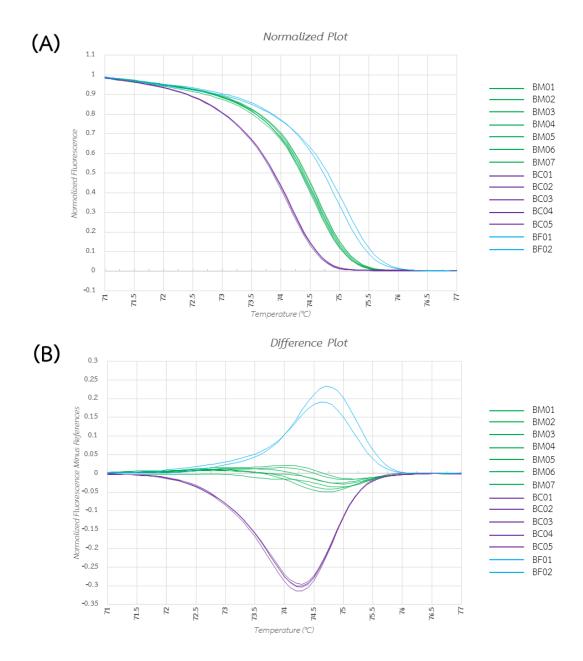
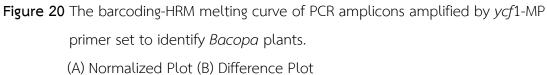
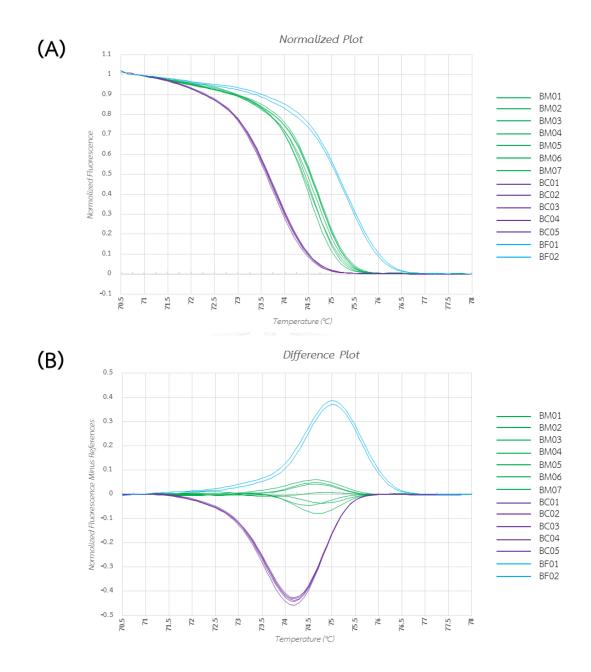
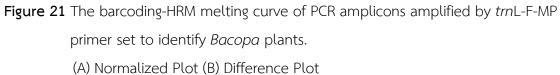






Figure 19 The schematic structure of the amplificated trnL-F intergenic spacer loci and the trnL-F-MP primer pair of for barcoding HRM analysis

CHAPTER V

DISCUSSIONS

5.1 DNA barcoding analysis for Bacopa species

Recently, the herbal authentication is an issue of concern since medicinal plants were often adulterated for the profitable gain with other low-priced plants or unintentional substitution by misidentification of raw materials. The authentication is important for quality control, product efficacy and safety. Various conventional authentication methods were utilized for medicinal plant identifications including, morphological and cytological analysis and chemical approaches (Zhao et al., 2006). However, the discrimination of counterfeit from the genuine plants by the conventional methods is difficult which the requirement of experts and advance equipment. Bacopa monnieri or Prommi was manufactured as commercial dietary supplements for cognitive improvement (Russo and Borrelli, 2005). The authentication of this plant by their phenotypic character is difficult since this plant represent a wide variety of structure especially leave size and trait. DNA barcoding is one of DNAbased markers and has application in plant identification. It can be used to identify unknown sample affiliating pre-existing characterization. There are three criteria for selecting the DNA region as an ideal barcode (I) easy to amplify and sequence, (II) the

PCR product not greater than 1 kb in size, (III) representing higher interspecific variation than intraspecific variation.

In this study, ITS, *matK*, *rbcL*, *ycf*1, *psbA-trn*H and *trn*L-F, were analyzed from three *Bacopa* existing in Thailand. Selected six loci were successfully performed using the universal primer for each DNA regions. The complete sequences of each DNA region were obtained with high quality of nucleotide chromatogram. After analyzed, the degree of sequence variations of *psbA-trn*H, *trn*L-*trn*F, ITS, *ycf*1, *matK*, *rbc*L among the *Bacopa* species were on the order from 42.21%, 35.64%, 20.52%, 12.12%, 5.94%, 2.23% respectively.

psbA-trnH is one of most used as DNA barcoding for plants. This study, the length of complete psbA-trnH sequence from *B. monnieri, B. caroliniana* and *B. floribunda* were 405 bp, 454 bp and 527 bp respectively. The size differences of psbA-trnH amplicons were easily analyzed by gel electrophoresis. Therefore, the different of psbA-trnH size were capable to use for the discrimination of *Bacopa* plants. This result was likewise to the study of Vongsak *et al.*, they found that the psbA-trnH size among the plant in genus *Stemona* were different which can analyze by using simple PCR and gel electrophoresis (Vongsak *et al.*, 2008). The psbA-trnH sequence of *Bacopa* monnieri plant (GenBank No. KR108254.1) was also investigated from the study of the extent of adulteration/substitution for highly traded medicinal plants in crude herbal market using DNA barcodes in South India (unpublished). Moreover, several studies revealed the potential use of *psbA-trn*H for the characterization of of Pteridophytes in Traditional Chinese Medicine (Ma *et al.,* 2010), plant in the family Myristicaceae (Newmaster *et al.,* 2008), Dendrobium species (Yao *et al.,* 2009) and also the identification of the botanical origins of Flos Lonicerae Japonicae and Flos Lonicerae (Sun *et al.,* 2011).

The sequences of trnL intron and the intergenic spacer between trnL and trnF has been consider as the additional barcodes for plant identification, characterization and phylogenetic analysis (Hollingsworth et al., 2011). In this study, the percentage of sequences variations in *trn*L-F region (35.64%) was lesser extent to *psbA-trn*H (42.21%). 228 polymorphic sites identified in trnL-F reveals to the high sequence variation of this region. The nucleotide polymorphism is beneficial for primer design in real-time PCR and melting curve analysis for plants discrimination (Madesis et al., 2012). As mentioned, the complete sequence of trnL-F was available in GenBank only a sequence from B. monnieri [AY492170.1]. The sequences of trnL-F were used with other regions including ITS, rps16 intron and matK-trnK intron in the phylogenetic analysis of plant in family Plantaginaceae which the plants from genus Bacopa were included (Albach et al., 2005). Moreover, trnL-F and its combinations with ITS were proposed as barcoding system for identification of *Taxus* lineages in Eurasia. This result shows the potential use of *trnL*-F region in plants characterization (Liu *et al.*, 2011).

ITS barcoding is a distinguishable choice for the discrimination of certain organisms. The previous study shown the potential of use of ITS for medicinal plant identification. The ITS2 region was proposed as DNA barcode for the identification of *Gentianopsis paludosa* (XUE and LI, 2011), *Boerhavia diffusa* (Selvaraj *et al.*, 2012), *Isatis indigotica* (Chen *et al.*, 2014), rhubarb sources plant (Zhou *et al.*, 2017) and medicinal plant in *Bupleurum* spp. (Chao *et al.*, 2014) and plants from family Euphorbiaceae (Pang *et al.*, 2010). As discussed, ITS sequences were observed only in *B. monnieri* from several studies (GenBank accession No. KP844738.1, KX365333.1, KR215626.1, KM887387.1 and AY492095.1).

Ycf1 is the novel coding gene for using as DNA barcodes for land plants. It has the satisfaction performance for the differentiation of medicinal plants. However, some plants are lacking of ycf1 which is the limitation for using this gene to identify plant (Dong *et al.*, 2015). From DNA sequencing, there were 99 polymorphic sites (12.11%) observed among the three *Bacopa*. Therefore, the sequencing shows the flanking conserved region with were beneficial for downstream applications including HRM analysis.

ULALONOKODN HUNGDOLT

The sequence analysis of six loci of *Bacopa* plants shows the potential of the individual DNA loci for identification of medicinal plant. However, the DNA marker should be developed based on an advantage of each DNA regions. Therefore, the DNA barcoding should be established in many medicinal plants for the proper DNA barcodes for individual plant genus.

5.2 Phylogenetic analysis of *Bacopa* plants found in Thailand.

All phylogenetic analyses of both nuclear and mitochondrial DNA regions showed similar results that they separated the two old-world *Bacopa* plants (*B. monnieri* and *B. floribunda*) from the new-world plant (*B. caroliniana*). Although *B. monnieri* and *B. floribunda* were different in morphological characteristics, their genetic relationship revealed that they are closely related taxa living in similar oriental areas. On the other way around, *B. caroliniana* which is morphologically resemble to *B. monnieri*, was found to be distantly related to *B. monnieri*. This could be seen as the result of convergent evolution in which both plants have been evolutionarily adapted to similar environmental constraints and therefore have had some similar characteristics of their morphology.

Although most of the DNA sequences used in this study were suitable for phylogenetic analysis of the three *Bacopa* plants, the *psbA-trn*H region was found not to be the best one as its nucleotide alignment had too many ambiguous sites and then could give a rather different result from the other regions if not using "complete deletion" option. However, this region had a large 73 – 122 basepair gap difference among the three *Bacopa* species caused by long indels (insertion/deletion) within the DNA sequences and then can be useful for developing a simple fragment-based molecular marker for *Bacopa* plant species identification.

The sisterly phylogenetic grouping of *B. monnieri* and *B. floribunda* was supported by their similar morphology such as leaves, corolla, stem and capsule. The color of corolla in these two species was whitish but that of *B. carolinina* was blue. The stem of *B. caroliniana* was composite with hairy but those of the other two were not. Moreover, the crushed leaf of *B. caroliniana* has a lemon scent but absent in *B. monnieri* and *B. floribunda*. Nevertheless, some morphological characteristics did not show correlation. For example, shapes of the leaves of three taxa were different among species. Moreover, the capsule shapes of *B. monnieri* and *B. caroliniana* were similar but *B. floribunda* capsule had different shape.

The locality distributions of the three *Bacopa* plants suggested the correlation with phylogenetic analysis. *B. monnieri* and *B. floribunda* are the authentic plants distributed in South Asia (India), East Asia (China), and South-East Asia but *B. caroliniana* is distributed in North America. However, the analysis of chemical constituents of three bacopa plants showed uncorrelation of their chemical constituents. *Bacopa monnieri* and *B. caroliniana* consisted of bioactive saponins but *B. floribunda* did not have any saponins.

5.3 HRM analysis for authentication of Bacopa plants materials.

Quality and safety are the crucial concerns of medicinal consumable products. The certified product by both assessments can increase products value and the economic gain of manufacturers in trading. The rapid and reliable authentication method has been developed for product accreditation. Barcoding HRM (Bar-HRM) is accurate, reliable and powerful molecular technique that can differentiate the species of related medicinal plants. The Bar-HRM was implemented in rapid analysis of genetic variation (SNP and indel) in commercial dietary and herb products.

HRM analysis was recently applied for the identification plant species in various dietaries products including *Lathyrus clymenum* (Ganopoulos *et al.*, 2012) and *Glycine max* (Madesis *et al.*, 2012), and herbs such as *Phyllanthus* spp. (Buddhachat *et al.*, 2015), *Croton* spp. (Osathanunkul *et al.*, 2015) and almond cultivar (Wu *et al.*, 2008). The specific primers for identification of plant in the genus *Bacopa* were designed based on the DNA sequences of *rbcL*, *ycf1* and *trnL*-F. The three loci were selected for HRM analysis for two reasons. First, the DNA region should have an appropriate polymorphism for the differentiation by T_m. Second, the DNA region should have a conserve sequences within genus for the specific primer design. Four sets of primer were designed for using in HRM analysis to discriminate of *B. monnieri* from others.

PCR primer sets of *rbc*L-1P and *ycf1*-1P were designed cover the single nucleotide polymorphism. The different nucleotide in same position of *B. monnieri*,

B. caroliniana and B. floribunda were G,A,A for rbcL and A,G,G for ycf1, respectively. A simple nucleotide differences were enough for differentiation by HRM analysis (Figure 14 and 15). The *rcbL* gene sequence has the great extent of conserve sequence and the amplification of this DNA region can be easily amplified from most land plants by using universal primers. The sequence conservation can make the falsification when analyzed (Buddhachat et al., 2015). Therefore, rbcL region is an improper region for discrimination of plant species using HRM analysis. In this study, the *rbc*L primers for HRM analysis were nonspecifically to Bacopa plants. These primers can also amplify the other *rbc*L sequences which analyzed by Primer BLAST. Interestingly, *ycf*1 region, the novel candidate DNA barcode for land plants with highly DNA polymorphism. The flanking conserved areas which cover variation region were used for the primer design. This primer pairs were successfully used in HRM for the discrimination of *B. monnieri* from the others by the differences of T_m and the melting curve pattern. The T_m of B. monnieri, B. caroliniana and B. floribunda and BF were 77.8-78.2, 77.4 °C and 74, 74.4.-74.8 °C, respectively. The normalize plot and difference plot were shown in Figure 16 and 17 The differences of melting plot from others plant were calculated and analyzed relative to the normalization of *B. monnieri*. Although, these two pair of primers can be used to identify *B. monnieri*. However, the specific primers which can separate three species from each other were developed.

To solve this concern, the further designed primers for identification of each three *Bacopa* plants were developed. *Ycf1*-MP and *trn*L-F-MP were designed covered the multi-variation position. (Figure 18 and 19) Bacopa plant were successfully discriminated from each other by two sets of primer. The percentage of GC content which calculated from from B. monnieri, B. caroliniana and B. floribunda were 31.71, 30.08 and 32.52 respectively. The melting temperature and melting curves show the correlation between percentage of GC content and the specific T_m from each *Bacopa* species. The T_m of amplified PCR product in each *Bacopa* species were on ordered by B. floribunda (74.6 °C) > B. monnieri (74.0 °C) > B. caroliniana (74.8-75.0 °C) (Figure 20). The melting curves were obtained from the normalized fluorescence intensity unit and plotted as the regression of fluorescence emission during the denaturation of PCR product when temperature increased. The melting curve was analyzed and differentiated to represent their specific character from each plant by using the data from B. monnieri as the baseline. The specific melting curve can be used for the genotyping of plant species for authentication purpose. In addition, the trnL-F sequence which was successfully used in HRM analysis for the discrimination of dietary plants in the previous study was used to design the set of specific primer for discrimination of Bacopa plants by using HRM analysis. TrnL-F was proposed as the suitable DNA region for plants identification (Taberlet et al., 1991). Although the polymorphism of *trn*L-F was not essential for plant identify, this region was extensively used for phylogenetic study of plant and plant identification in closely related species. Moreover, the previous study which using the DNA barcoding couple with the HRM analysis were successfully identify the edible plants (Buddhachat et al., 2015;

Ganopoulos *et al.*, 2012; Madesis *et al.*, 2012). The polymorphism of the selected DNA regions represent the differences in length of amplicon from each plant. From the HRM analysis reveal that, the T_m of PCR product from *B. monnieri, B. caroliniana,* and *B. flotibunda* were 74.6-74.8, 73.8 and 75.4 respectively (**Figure 21**). It was found that the T_m (*B. flotibunda* > *B. monnieri* > *B. caroliniana*) but the length of PCR amplicons (*B. monnieri* > *B. flotibunda* > *B. caroliniana*) were not correlated. From the result, the insertion or deletion of nucleotide sequence may have the inferior affected to the T_m than the proportional of G or C in the gene sequences. Nevertheless, the indels may had an effect to the T_m if the sequence containing the more numbers of G or C in the indel sequences.

From the HRM analysis, there was given the successful discrimination tool for three taxa in the genus *Bacopa* by using two set of designed primer, *ycf1*-MP and *trnL*-F-MP. The result shows the specific melting temperature of PCR amplicons from each plant. The character of melting curves was beneficial for the identification of *Bacopa* plants in final manufacturing products.

CHAPTER VI

CONCLUSIONS

As a human dietary supplement, the quality and safety of medicinal plant products have been focused on contaminants of metals, toxins, especially the nonauthentic plant materials which affected to the efficiency of treatment of their consumer wellbeing. Moreover *B. monnieri* has another quality issue as its characteristic phenotype resemble to other *Bacopa* spp., which makes it difficult to differentiate from the others. Therefore, a reliable and rapid method for authentication of *B. monnieri* should be developed to guarantee the quality with accuracy and precision.

In this work, we investigated the DNA sequences of six selected loci DNA barcodes proposed before for identification of plants. The DNA sequences were analyzed and applied with HRM analysis technique to identify *Bacopa* species. *Ycf1* and *trn*L-F turned out to be good DNA regions for HRM analysis because those regions had some inter-species variability from sequencing results. Real-time PCR coupled with HRM analysis of *ycf1*-MP and *trn*L-F-MP were successfully discriminated among *Bacopa* plants. This technique can be applied to identify the raw material in manufacturer and to guarantee the identity of medicinal plants.

REFERENCES

- Abhishek, M., Verma, S. K., Reena, P., Singh, S. K., Deepika, M., Prasad, G., and Dua, V.
 2010. Pharmacological investigation of *Bacopa monnieri* on the basis of antioxidant, antimicrobial and anti-inflammatory properties. *Journal of Chemical and Pharmaceutical Research*, 2(6): 191-198.
- Afjalus, S., Chakma, N., Rahman, M., Salahuddin, M., and Kumar, S. 2012. Assessment of analgesic, antidiarrhoeal and cytotoxic activity of ethanolic extract of the whole plant of *Bacopa monnieri* Linn. *International Research Journal of Pharmacy*, 3: 98-101.
- Agrawal, H., Kaul, N., Paradkar, A., and Mahadik, K. 2006. Separation of bacoside A~ 3 and bacopaside II, major triterpenoid saponins in *Bacopa monnieri*, by HPTLC and SFC. Application of SFC in implementation of uniform design for herbal drug standardization, with thermodynamic study. *Acta Chromatographica*, 17: 125.
- Albach, D., Meudt, H., and Oxelman, B. 2005. Piecing together the "new" Plantaginaceae. *American Journal of Botany*, 92(2): 297-315.
- Azad, A., Awang, M., and Rahman, M. 2012. Phytochemical and microbiological evaluation of a local medicinal plant *Bacopa monnieri* (l.) Penn.
 International Journal of Current Pharmaceutical Review and Research, 3(3): 66-78.
- Banerjee, R., Hazra, S., Ghosh, A. K., and Mondal, A. C. 2014. Chronic administration of Bacopa monnieri increases BDNF protein and mRNA expressions: a study in chronic unpredictable stress induced animal model of depression. Psychiatry investigation, 11(3): 297-306.
- Benson, S., Downey, L. A., Stough, C., Wetherell, M., Zangara, A., and Scholey, A. 2014. An acute, Double-blind, placebo-controlled cross-over study of 320 mg and 640 mg doses of *Bacopa monnieri* (CDRI 08) on multitasking stress reactivity and mood. *Phytotherapy research*, 28(4): 551-559.

- Bhandari, P., Kumar, N., Singh, B., and Kaur, I. 2009a. Dammarane triterpenoid saponins from *Bacopa monnieri*. *Canadian Journal of Chemistry*, 87(9): 1230-1234.
- Bhandari, P., Kumar, N., Singh, B., Singh, V., and Kaur, I. 2009b. Silica-based monolithic column with evaporative light scattering detector for HPLC analysis of bacosides and apigenin in *Bacopa monnieri*. *Journal of Separation Science*, 32(15 16): 2812-2818.
- Bhattacharya, S., and Ghosal, S. 1998. Anxiolytic activity of a standardized extract of *Bacopa monnieri*: an experimental study. *Phytomedicine*, 5(2): 77-82.
- Buddhachat, K., Osathanunkul, M., Madesis, P., Chomdej, S., and Ongchai, S. 2015. Authenticity analyses of *Phyllanthus amarus* using barcoding coupled with HRM analysis to control its quality for medicinal plant product. *Gene*, 573(1): 84-90.
- Calabrese, C., Gregory, W. L., Leo, M., Kraemer, D., Bone, K., and Oken, B. 2008. Effects of a standardized *Bacopa monnieri* extract on cognitive performance, anxiety, and depression in the elderly: a randomized, double-blind, placebocontrolled trial. *The Journal of Alternative and Complementary Medicine*, 14(6): 707-713.
- CBOL Plant Working Group. 2009. A DNA barcode for land plants. *Proceedings of the National Academy of Sciences*, 106(31): 12794-12797.
- Chakravarty, A. K., Garai, S., Masuda, K., Nakane, T., and Kawahara, N. 2003. Bacopasides III—V: Three new triterpenoid glycosides from *Bacopa monnieri*. *Chemical and Pharmaceutical Bulletin*, 51(2): 215-217.
- Chakravarty, A. K., Sarkar, T., Masuda, K., Shiojima, K., Nakane, T., and Kawahara, N. 2001. Bacopaside I and II: two pseudojujubogenin glycosides from *Bacopa monnieri*. *Phytochemistry*, 58(4): 553-556.
- Channa, S., Dar, A., Anjum, S., and Yaqoob, M. 2006. Anti-inflammatory activity of *Bacopa monnieri* in rodents. *Journal of Ethnopharmacology*, 104(1): 286-289.

- Channa, S., Dar, A., Yaqoob, M., Anjum, S., and Sultani, Z. 2003. Broncho-vasodilatory activity of fractions and pure constituents isolated from *Bacopa monnieri*. *Journal of Ethnopharmacology*, 86(1): 27-35.
- Chao, Z., Zeng, W., Liao, J., Liu, L., Liang, Z., and Li, X. 2014. DNA barcoding Chinese medicinal *Bupleurum*. *Phytomedicine*, 21(13): 1767-1773.
- Chen, S., Zhu, Z., Ma, H., Yang, J., and Guo, Q. 2014. DNA barcodes for discriminating the medicinal plant *Isatis indigotica* Fort.(Cruciferae) and its adulterants. *Biochemical Systematics and Ecology*, 57: 287-292.
- Chowdhuri, D. K., Parmar, D., Kakkar, P., Shukla, R., Seth, P., and Srimal, R. 2002. Antistress effects of bacosides of *Bacopa monnieri*: modulation of Hsp70 expression, superoxide dismutase and cytochrome P450 activity in rat brain. *Phytotherapy Research*, 16(7): 639-645.
- Christopher, C., Johnson, A. J., Mathew, P. J., and Baby, S. 2017. Elite genotypes of *Bacopa monnieri*, with high contents of Bacoside A and Bacopaside I, from southern Western Ghats in India. *Industrial Crops and Products*, 98: 76-81.
- Dar, A., and Channa, S. 1997. Relaxant effect of ethanol extract of *Bacopa monnieri* on trachea, pulmonary artery and aorta from rabbit and guinea-pig. *Phytotherapy Research*, 11(4): 323-325.
- Dar, A., and Channa, S. 1999. Calcium antagonistic activity of *Bacopa monnieri* on vascular and intestinal smooth muscles of rabbit and guinea-pig. *Journal of Ethnopharmacology*, 66(2): 167-174.
- Dave, U. P., Chauvan, V., and Dalvi, J. 1993. Evaluation of br-16 a (mentat) in cognitive and behavioural dysfunction of mentally retarded children—a placebocontrolled study. *Indian Journal of Pediatrics*, 60(3): 423-428.
- Deepak, M., and Amit, A. 2013. 'Bacoside B'—the need remains for establishing identity. *Fitoterapia*, 87: 7-10.
- Deepak, M., Sangli, G., Arun, P., and Amit, A. 2005. Quantitative determination of the major saponin mixture bacoside A in *Bacopa monnieri* by HPLC. *Phytochemical Analysis*, 16(1): 24-29.
- Department of National Park. 2014. *Thai plant names Tem Smitinand revised edition*. Bangkok: Buddha Press.

- Dong, W., Xu, C., Li, C., Sun, J., Zuo, Y., Shi, S., Cheng, T., Guo, J., and Zhou, S. 2015. ycf1, the most promising plastid DNA barcode of land plants. *Scientific Reports*, 5.
- Dulger, B., and Hacioglu, N. 2009. Antimicrobial Activity of *Bacopa caroliniana*. *Asian Journal of Chemistry*, 21(5): 4077-4080.
- Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. *Nucleic Acids Research*, 32(5): 1792-1797.
- Ganie, S. H., Upadhyay, P., Das, S., and Sharma, M. P. 2015. Authentication of medicinal plants by DNA markers. *Plant Gene*, 4: 83-99.
- Ganopoulos, I., Madesis, P., Darzentas, N., Argiriou, A., and Tsaftaris, A. 2012. Barcode High Resolution Melting (Bar-HRM) analysis for detection and quantification of PDO "Fava Santorinis"(*Lathyrus clymenum*) adulterants. *Food chemistry*, 133(2): 505-512.
- Garai, S., Mahato, S. B., Ohtani, K., and Yamasaki, K. 1996a. Bacopasaponin DA pseudojujubogenin glycoside from *Bacopa monnieri*. *Phytochemistry*, 43(2): 447-449.
- Garai, S., Mahato, S. B., Ohtani, K., and Yamasaki, K. 1996b. Dammarane-type triterpenoid saponins from *Bacopa monnieri*. *Phytochemistry*, 42(3): 815-820.
- Ghosh, T., Maity, T. K., Sengupta, P., Dash, D. K., and Bose, A. 2010. Antidiabetic and in vivo antioxidant activity of ethanolic extract of *Bacopa monnieri* Linn. aerial parts: a possible mechanism of action. *Iranian Journal of Pharmaceutical Research*: 61-68.
- Goel, R., Sairam, K., Babu, M. D., Tavares, I., and Raman, A. 2003. In vitro evaluation of *Bacopa monnieri* on anti-*Helicobacter pylori* activity and accumulation of prostaglandins. *Phytomedicine*, 10(6-7): 523-527.
- Gubbannavar, J. S., Chandola, H., Harisha, C., Khanpara, K., and Shukla, V. 2013. A comparative pharmacognostical and preliminary physico-chemical analysis of stem and leaf of *Bacopa monnieri* (L.) Pennel and *Bacopa floribunda* (R. BR.) Wettst. *International Quarterly Journal of Research in Ayurveda*, 34(1): 95.

- Hao, D., Chen, S., Xiao, P., and Peng, Y. 2010. Authentication of medicinal plants by DNA-based markers and genomics. *Chinese Herbal Medicines*, 2(4): 250-261.
- Hebert, P. D., Cywinska, A., and Ball, S. L. 2003. Biological identifications through DNA barcodes. *Proceedings of the Royal Society of London B: Biological Sciences*, 270(1512): 313-321.
- Hollingsworth, P. M., Graham, S. W., and Little, D. P. 2011. Choosing and using a plant DNA barcode. *PloS one*, 6(5): e19254.
- Hosamani, R., Krishna, G., and Muralidhara. 2016. Standardized *Bacopa monnieri* extract ameliorates acute paraquat-induced oxidative stress, and neurotoxicity in prepubertal mice brain. *Nutritional neuroscience*, 19(10): 434-446.
- Hou, C.-C., Lin, S.-J., Cheng, J.-T., and Hsu, F.-L. 2002. Bacopaside III, bacopasaponin G, and bacopasides A, B, and C from *Bacopa monnieri*. *Journal of Natural Products*, 65(12): 1759-1763.
- Jadiya, P., Khan, A., Sammi, S. R., Kaur, S., Mir, S. S., and Nazir, A. 2011. Anti-Parkinsonian effects of *Bacopa monnieri*: insights from transgenic and pharmacological *Caenorhabditis elegans* models of Parkinson's disease. *Biochemical and biophysical research communications*, 413(4): 605-610.
- Jain, P., and Kulshreshtha, D. K. 1993. Bacoside A1, a minor saponin from *Bacopa monnieri*. *Phytochemistry*, 33(2): 449-451.
- Janani, P., Sivakumari, K., Geetha, A., Ravisankar, B., and Parthasarathy, C. 2010. Chemopreventive effect of bacoside A on N-nitrosodiethylamine-induced hepatocarcinogenesis in rats. *Journal of Cancer Research and Clinical Oncology*, 136(5): 759-770.
- Jansen, R., Brogan, B., Whitworth, A., and Okello, E. 2014. Effects of five Ayurvedic herbs on locomotor behaviour in a *Drosophila melanogaster* Parkinson's disease model. *Phytotherapy Research*, 28(12): 1789-1795.
- Johnson, L. A., and Soltis, D. E. 1994. matK DNA sequences and phylogenetic reconstruction in Saxifragaceae s. str. *Systematic Botany*, 19: 143-156.
- Kamkaew, N., Scholfield, N. C., Ingkaninan, K., Taepavarapruk, N., and Chootip, K. 2013. Bacopa monnieri increases cerebral blood flow in rat independent of blood pressure. Phytotherapy Research, 27(1): 135-138.

- Kapoor, R., Srivastava, S., and Kakkar, P. 2009. *Bacopa monnieri* modulates antioxidant responses in brain and kidney of diabetic rats. *Environmental Toxicology and Pharmacology*, 27(1): 62-69.
- Kar, A., Panda, S., and Bharti, S. 2002. Relative efficacy of three medicinal plant extracts in the alteration of thyroid hormone concentrations in male mice. *Journal of Ethnopharmacology*, 81(2): 281-285.
- Kato, H., Oginuma, K., Gu, Z., Hammel, B., and Tobe, H. 1999. Phylogenetic relationships of Betulaceae based on matK sequences with particular reference to the position of Ostryopsis. *Acta Phytotaxonomica et Geobotanica*, 49(2): 89-97.
- Katoch, M., Singh, G., Sharma, S., Gupta, N., Sangwan, P. L., and Saxena, A. K. 2014.
 Cytotoxic and antimicrobial activities of endophytic fungi isolated from *Bacopa monnieri* (L.) Pennell (Scrophulariaceae). *BMC Complementary and Alternative Medicine*, 14(1): 52.
- Kaushik, D., Tripathi, A., Tripathi, R., Ganachari, M., and Khan, S. A. 2009. Anticonvulsant activity of *Bacopa monnieri* in rodents. *Brazilian Journal of Pharmaceutical Sciences*, 45(4): 643-649.
- Khan, M. B., Ahmad, M., Ahmad, S., Ishrat, T., Vaibhav, K., Khuwaja, G., and Islam, F. 2015. *Bacopa monnieri* ameliorates cognitive impairment and neurodegeneration induced by intracerebroventricular-streptozotocin in rat: behavioral, biochemical, immunohistochemical and histopathological evidences. *Metabolic Brain Disease*, 30(1): 115-127.
- Khan, R., Krishnakumar, A., and Paulose, C. 2008. Decreased glutamate receptor binding and NMDA R1 gene expression in hippocampus of pilocarpine-induced epileptic rats: neuroprotective role of BBacopa monnieri extract. Epilepsy & Behavior, 12(1): 54-60.
- Kishore, K., and Singh, M. 2005. Effect of bacosides, alcoholic extract of *Bacopa monnieri* Linn.(brahmi), on experimental amnesia in mice. 43: 640-645.
- Kress, W. J., Wurdack, K. J., Zimmer, E. A., Weigt, L. A., and Janzen, D. H. 2005. Use of DNA barcodes to identify flowering plants. *Proceedings of the National Academy of Sciences of the United States of America*, 102(23): 8369-8374.

- Krishnakumar, A., Abraham, P. M., Paul, J., and Paulose, C. 2009a. Down-regulation of cerebellar 5-HT_{2C} receptors in pilocarpine-induced epilepsy in rats:
 therapeutic role of *Bacopa monnieri* extract. *Journal of the Neurological Sciences*, 284(1): 124-128.
- Krishnakumar, A., Anju, T., Abraham, P. M., and Paulose, C. 2015. Alteration in 5-HT_{2C}, NMDA receptor and IP₃ in cerebral cortex of epileptic rats: restorative role of *Bacopa monnieri*. *Neurochemical Research*, 40(1): 216-225.
- Krishnakumar, A., Nandhu, M., and Paulose, C. 2009b. Upregulation of 5-HT_{2C} receptors in hippocampus of pilocarpine-induced epileptic rats: Antagonism by *Bacopa monnieri*. *Epilepsy & Behavior*, 16(2): 225-230.
- Levin, R. A., Wagner, W. L., Hoch, P. C., Nepokroeff, M., Pires, J. C., Zimmer, E. A., and Sytsma, K. J. 2003. Family-level relationships of Onagraceae based on chloroplast *rbcL* and *ndh*F data. *American Journal of Botany*, 90(1): 107-115.
- Li, M., Cao, H., BUT, P. P. H., and SHAW, P. C. 2011. Identification of herbal medicinal materials using DNA barcodes. *Journal of Systematics and Evolution*, 49(3): 271-283.
- Liu, J., Moeller, M., GAO, L. M., ZHANG, D. Q., and LI, D. Z. 2011. DNA barcoding for the discrimination of Eurasian yews (*Taxus* L., Taxaceae) and the discovery of cryptic species. *Molecular Ecology Resources*, 11(1): 89-100.
- Ma, X.-Y., Xie, C.-X., Liu, C., Song, J.-Y., Yao, H., Luo, K., Zhu, Y.-J., Gao, T., Pang, X.-H., and Qian, J. 2010. Species identification of medicinal pteridophytes by a DNA barcode marker, the chloroplast psbA-trnH intergenic region. *Biological and Pharmaceutical Bulletin*, 33(11): 1919-1924.
- Madesis, P., Ganopoulos, I., Anagnostis, A., and Tsaftaris, A. 2012. The application of Bar-HRM (Barcode DNA-High Resolution Melting) analysis for authenticity testing and quantitative detection of bean crops (Leguminosae) without prior DNA purification. *Food Control*, 25(2): 576-582.
- Mahato, S. B., Garai, S., and Chakravarty, A. K. 2000. Bacopasaponins E and F: two jujubogenin bisdesmosides from *Bacopa monnieri*. *Phytochemistry*, 53(6): 711-714.

- Mandal, S., and Mukhopadhyay, S. 2004. Bacopasaponin H: A pseudojujubogenin glycoside from *Bacopa monnieri*. *Indian Journal of Chemistry*, 43B: 1802-1804.
- Mishra, A., Mishra, A. K., PrakashTiwari, O., and Jha, S. 2015. Pharmacognostic, physicochemical and phytochemical investigation of *Bacopa monnieri* L. stem and its anticonvulsant potential in laboratory animals. *International Journal of Epilepsy*, 2(1): 19-27.
- Morgan, A., and Stevens, J. 2010. Does *Bacopa monnieri* improve memory performance in older persons? Results of a randomized, placebo-controlled, double-blind trial. *The Journal of Alternative and Complementary Medicine*, 16(7): 753-759.
- Nannepaga, J. S., Korivi, M., Tirumanyam, M., Bommavaram, M., and Kuo, C.-H. 2014. Neuroprotective effects of *Bacopa monnieri* whole-plant extract against aluminum-induced hippocampus damage in rats: evidence from electron microscopic images. *Chinese Journal of Physiology*, 57: 279-285.
- Nathan, P., Clarke, J., Lloyd, J., Hutchison, C., Downey, L., and Stough, C. 2001. The acute effects of an extract of *Bacopa monnieri* (Brahmi) on cognitive function in healthy normal subjects. *Human Psychopharmacology: Clinical and Experimental*, 16(4): 345-351.
- Nathan, P. J., Tanner, S., Lloyd, J., Harrison, B., Curran, L., Oliver, C., and Stough, C.
 2004. Effects of a combined extract of *Ginkgo biloba* and *Bacopa monnieri* on cognitive function in healthy humans. *Human Psychopharmacology: Clinical and Experimental*, 19(2): 91-96.
- Negi, K., Singh, Y., Kushwaha, K., Rastogi, C., Rathi, A., Srivastava, J., Asthana, O., Gupta,
 R., and Lucknow, G. 2000. Clinical evaluation of memory enhancing properties
 of Memory Plus in children with attention deficit hyperactivity disorder.
 Indian J Psychiatry, 42(2): 42-50.
- Newmaster, S., Fazekas, A., Steeves, R., and Janovec, J. 2008. Testing candidate plant barcode regions in the Myristicaceae. *Molecular Ecology Resources*, 8(3): 480-490.

- Ohi-Toma, T., Sugawara, T., Murata, H., Wanke, S., Neinhuis, C., and Murata, J. 2006. Molecular phylogeny of Aristolochia sensu lato (Aristolochiaceae) based on sequences of *rbcL*, *mat*K, and *phy*A genes, with special reference to differentiation of chromosome numbers. *Systematic Botany*, 31(3): 481-492.
- Osathanunkul, M., Suwannapoom, C., Ounjai, S., Rora, J. A., Madesis, P., and de Boer, H. 2015. Refining DNA barcoding coupled high resolution melting for discrimination of 12 closely related croton species. *PloS One*, 10(9): e0138888.
- Pandareesh, M., and Anand, T. 2014a. Attenuation of smoke induced neuronal and physiological changes by bacoside rich extract in Wistar rats via down regulation of HO-1 and iNOS. *Neurotoxicology*, 40: 33-42.
- Pandareesh, M., and Anand, T. 2014b. Neuroprotective and anti-apoptotic propensity of *Bacopa monnieri* extract against sodium nitroprusside induced activation of iNOS, heat shock proteins and apoptotic markers in PC12 cells. *Neurochemical Research*, 39(5): 800-814.
- Pandareesh, M., Anand, T., and Bhat, P. V. 2016. Cytoprotective propensity of *Bacopa monnieri* against hydrogen peroxide induced oxidative damage in neuronal and lung epithelial cells. *Cytotechnology*, 68(1): 157-172.
- Pang, X., Song, J., Zhu, Y., Xie, C., and Chen, S. 2010. Using DNA barcoding to identify species within Euphorbiaceae. *Planta Medica*, 76(15): 1784-1786.
- Paulose, C., Chathu, F., Khan, S. R., and Krishnakumar, A. 2008. Neuroprotective role of *Bacopa monnieri* extract in epilepsy and effect of glucose supplementation during hypoxia: glutamate receptor gene expression. *Neurochemical Research*, 33(9): 1663-1671.
- Peth-Nui, T., Wattanathorn, J., Muchimapura, S., Tong-Un, T., Piyavhatkul, N.,
 Rangseekajee, P., Ingkaninan, K., and Vittaya-areekul, S. 2012. Effects of 12 week *Bacopa monnieri* consumption on attention, cognitive processing,
 working memory, and functions of both cholinergic and monoaminergic
 systems in healthy elderly volunteers. *Evidence-Based Complementary and Alternative Medicine*, 2012.

- Phrompittayarat, W., Putalun, W., Tanaka, H., Jetiyanon, K., Wittaya-Areekul, S., and Ingkaninan, K. 2007a. Determination of pseudojujubogenin glycosides from Brahmi based on immunoassay using a monoclonal antibody against bacopaside I. *Phytochemical analysis*, 18(5): 411-418.
- Phrompittayarat, W., Wittaya-areekul, S., Jetiyanon, K., Putalun, W., Tanaka, H., and Ingkaninan, K. 2007b. Determination of saponin glycosides in *Bacopa monnieri* by reversed phase high performance liquid chromatography. *Thai Pharmaceutical and Health Science Journal*, 2(1): 26-32.
- Piyabhan, P., and Wetchateng, T. 2014. Neuroprotective effects of *Bacopa monnieri* (Brahmi) on novel object recognition and NMDAR1 immunodensity in the prefrontal cortex, striatum and hippocampus of sub-chronic phencyclidine rat model of schizophrenia. *Journal of the Medical Association of Thailand*, 97: S50-55.
- Prabhakar, S., Saraf, M. K., Pandhi, P., and Anand, A. 2008. *Bacopa monnieri* exerts antiamnesic effect on diazepam-induced anterograde amnesia in mice. *Psychopharmacology*, 200(1): 27-37.
- Pravina, K., Ravindra, K., Goudar, K., Vinod, D., Joshua, A., Wasim, P., Venkateshwarlu, K., Saxena, V., and Amit, A. 2007. Safety evaluation of BacoMind[™] in healthy volunteers: a phase I study. *Phytomedicine*, 14(5): 301-308.
- Preethi, J., Singh, H. K., Venkataraman, J. S., and Rajan, K. E. 2014. Standardised extract of *Bacopa monnieri* (CDRI-08) improves contextual fear memory by differentially regulating the activity of histone acetylation and protein phosphatases (PP1**α**, PP2A) in hippocampus. *Cellular and molecular neurobiology*, 34(4): 577-589.
- Priyanka, H. P., Singh, R. V., Mishra, M., and ThyagaRajan, S. 2013. Diverse age-related effects of *Bacopa monnieri* and donepezil in vitro on cytokine production, antioxidant enzyme activities, and intracellular targets in splenocytes of F344 male rats. *International Immunopharmacology*, 15(2): 260-274.
- Rajan, K. E., Singh, H. K., Parkavi, A., and Charles, P. D. 2011. Attenuation of 1-(mchlorophenyl)-biguanide induced hippocampus-dependent memory

impairment by a standardised extract of *Bacopa monnieri* (BESEB CDRI-08). *Neurochemical Research*, 36(11): 2136.

- Rao, C. V., Sairam, K., and Goel, R. 2000. Experimental evaluation of *Bocopa monnieri* on rat gastric ulceration and secretion. *Indian Journal of Physiology and Pharmacology*, 44(4): 435-441.
- Rastogi, S., and Kulshreshtha, D. K. 1999. Bacoside A2 a triterpenoid saponin from *Bacopa monnieri*. *Indian Journal of Chemistry*, 38B: 353–356.
- Rastogi, S., Pal, R., and Kulshreshtha, D. K. 1994. Bacoside A3 a triterpenoid saponin from *Bacopa monnieri*. *Phytochemistry*, 36(1): 133-137.
- Rauf, K., Subhan, F., Abbas, M., Ali, S. M., Ali, G., Ashfaq, M., and Abbas, G. 2014. Inhibitory effect of bacopasides on spontaneous morphine withdrawal induced depression in mice. *Phytotherapy Research*, 28(6): 937-939.
- Raus, T. 2003. *Bacopa* (Scrophulariaceae) in Greece and adjacent countries. *Bocconea*, 16(2): 745-749.
- Reas, S., Amee, K., and Paulose, C. 2008. Glutamate receptor gene expression and binding studies in pilocarpine induced epileptic rat: neuroprotective role of *Bacopa monnieri* extract. *Epilepsy & Behavior*, 12: 54-60.
- Rehni, A. K., Pantlya, H. S., Shri, R., and Singh, M. 2007. Effect of chlorophyll and aqueous extracts of *Bacopa monnieri* and *Valeriana wallichii* on ischaemia and reperfusion-induced cerebral injury in mice.
- Rohini, G., Sabitha, K., and Devi, C. 2004. *Bacopa monnieri* Linn. extract modulates antioxidant and marker enzyme status in fibrosarcoma bearing rats.
- Roodenrys, S., Booth, D., Bulzomi, S., Phipps, A., Micallef, C., and Smoker, J. 2002. Chronic effects of Brahmi (*Bacopa monnieri*) on human memory. *Neuropsychopharmacology*, 27(2): 279-281.
- Russo, A., and Borrelli, F. 2005. *Bacopa monnieri*, a reputed nootropic plant: an overview. *Phytomedicine*, 12(4): 305-317.
- Sadhu, A., Upadhyay, P., Agrawal, A., Ilango, K., Karmakar, D., Singh, G. P. I., and Dubey, G. P. 2014. Management of cognitive determinants in senile dementia of Alzheimer's type: therapeutic potential of a novel polyherbal drug product. *Clinical Drug Investigation*, 34(12): 857-869.

- Sairam, K., Dorababu, M., Goel, R., and Bhattacharya, S. 2002. Antidepressant activity of standardized extract of *Bacopa monnieri* in experimental models of depression in rats. *Phytomedicine*, 9(3): 207-211.
- Sairam, K., Rao, C. V., Babu, M. D., and Goel, R. 2001. Prophylactic and curative effects of *Bacopa monnieri* in gastric ulcer models. *Phytomedicine*, 8(6): 423-430.
- Samiulla, D., Prashanth, D., and Amit, A. 2001. Mast cell stabilising activity of *Bacopa monnieri*. *Fitoterapia*, 72(3): 284-285.
- Sang, T., Crawford, D., and Stuessy, T. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of *Paeonia* (Paeoniaceae). *American Journal of Botany*, 84(8): 1120-1120.
- Saraf, M., Prabhakar, S., and Anand, A. 2009. *Bacopa monnieri* alleviates n **ω**-nitro-larginine-induced but not mk-801-induced amnesia: a mouse morris water maze study. *Neuroscience*, 160(1): 149-155.
- Saraf, M., Prabhakar, S., Pandhi, P., and Anand, A. 2008. *Bacopa monnieri* ameliorates amnesic effects of diazepam qualifying behavioral–molecular partitioning. *Neuroscience*, 155(2): 476-484.
- Saraf, M. K., Anand, A., and Prabhakar, S. 2010. Scopolamine induced amnesia is reversed by *Bacopa monnieri* through participation of kinase-CREB pathway. *Neurochemical Research*, 35(2): 279-287.
- Saraf, M. K., Prabhakar, S., Khanduja, K. L., and Anand, A. 2011. *Bacopa monnieri* attenuates scopolamine-induced impairment of spatial memory in mice. *Evidence-Based Complementary and Alternative Medicine*, 2011.
- Selvaraj, D., Shanmughanandhan, D., Sarma, R. K., Joseph, J. C., Srinivasan, R. V., and Ramalingam, S. 2012. DNA barcode ITS effectively distinguishes the medicinal plant *Boerhavia diffusa* from its adulterants. *Genomics, Proteomics & Bioinformatics*, 10(6): 364-367.
- Sharma, R., Chaturvedi, C., and Tewari, P. 1987. Efficacy of *Bacopa monnieri* in revitalizing intellectual functions in children. *Journal of Research & education in Indian Medicine* 1: 12.
- Sheikh, N., Ahmad, A., Siripurapu, K. B., Kuchibhotla, V. K., Singh, S., and Palit, G. 2007. Effect of *Bacopa monnieri* on stress induced changes in plasma

corticosterone and brain monoamines in rats. Journal of

Ethnopharmacology, 111(3): 671-676.

- Shen, Y.-H., Zhou, Y., Zhang, C., Liu, R.-H., Su, J., Liu, X.-H., and Zhang, W.-D. 2009. Antidepressant effects of methanol extract and fractions of *Bacopa monnieri*. *Pharmaceutical Biology*, 47(4): 340-343.
- Shinde, P., Aragade, P., Agrawal, M., Deokate, U., and Khadabadi, S. 2011. Simultaneous determination of withanolide A and bacoside A in spansules by high-performance thin-layer chromatography. *Indian Journal of Pharmaceutical Sciences*, 73(2): 240.
- Shrikumar, S., Ravi, T., and Umamaheshwari, M. 2004. A HPTLC determination and fingerprinting of bacoside A in *Bacopa monnieri* and its formulation. *Indian Journal of Pharmaceutical Sciences*, 66(1): 132.
- Simko, I. 2016. High-resolution DNA melting analysis in plant research. *Trends in Plant Science*, 21(6): 528-537.
- Singh, A., and Singh, S. K. 2009. Evaluation of antifertility potential of Brahmi in male mouse. *Contraception*, 79(1): 71-79.
- Singh, R., and Singh, L. 1980. Studies on the anti-anxiety effect of the medhya rasayana drug brahmi (*Bacopa monnieri* (Wettst), -part1. *Journal of Research in Ayurveda and Siddha*, 1: 133-148.
- Srivastava, P., Raut, H. N., Puntambekar, H. M., and Desai, A. C. 2012. Stability studies of crude plant material of *Bacopa monnieri* and quantitative determination of bacopaside I and bacoside A by HPLC. *Phytochemical Analysis*, 23(5): 502-507.
- Stough, C., Lloyd, J., Clarke, J., Downey, L., Hutchison, C., Rodgers, T., and Nathan, P.
 2001. The chronic effects of an extract of *Bacopa monnieri* (Brahmi) on cognitive function in healthy human subjects. *Psychopharmacology*, 156(4): 481-484.
- Stough, C. K., Pase, M. P., Cropley, V., Myers, S., Nolidin, K., King, R., Camfield, D., Wesnes, K., Pipingas, A., and Croft, K. 2012. A randomized controlled trial investigating the effect of Pycnogenol and Bacopa CDRI08 herbal medicines on cognitive, cardiovascular, and biochemical functioning in cognitively

healthy elderly people: the Australian Research Council Longevity Intervention (ARCLI) study protocol (ANZCTR12611000487910). *Nutrition Journal*, 11(1): 11.

- Sumathi, T., Nathiya, V., and Sakthikumar, M. 2011. Protective effect of bacoside-A against morphine-induced oxidative stress in rats. *Indian Journal of Pharmaceutical Sciences*, 73(4): 409.
- Sun, Z., Gao, T., Yao, H., Shi, L., Zhu, Y., and Chen, S. 2011. Identification of *Lonicera japonica* and its related species using the DNA barcoding method. *Planta Medica*, 77(03): 301-306.
- Taberlet, P., Gielly, L., Pautou, G., and Bouvet, J. 1991. Universal primers for amplification of three non-coding regions of chloroplast DNA. *Plant Molecular Biology*, 17(5): 1105-1109.
- Tamura, K., Stecher, G., and Kumar, S. 2016. MEGA7: Molecular Evolutionary Genetics
 Analysis version 7.0 for bigger datasets. *Molecular Biology and Evolution*, 33(7): 1870-1874.
- The United States Department of Agriculture. 1999. Southern Wetland Flora : Field office guide to plant species.
- Tothiam, C., Phrompittayarat, W., Putalun, W., Tanaka, H., Sakamoto, S., Khan, I. A., and Ingkaninan, K. 2011. An Enzyme-linked immunosorbant assay using monoclonal antibody against bacoside A3 for determination of jujubogenin glycosides in *Bacopa monnieri* (L.) Wettst. *Phytochemical Analysis*, 22(5): 385-391.
- Tripathi, N., Chouhan, D. S., Saini, N., and Tiwari, S. 2012. Assessment of genetic variations among highly endangered medicinal plant *Bacopa monnieri* (L.) from Central India using RAPD and ISSR analysis. *3Biotech*, 2(4): 327-336.
- Velaga, M. K., Basuri, C. K., Robinson Taylor, K. S., Yallapragada, P. R., Rajanna, S., and Rajanna, B. 2014. Ameliorative effects of *Bacopa monnieri* on lead-induced oxidative stress in different regions of rat brain. *Drug and Chemical Toxicology*, 37(3): 357-364.
- Verma, P., Singh, P., and Gandhi, B. S. 2014. Neuromodulatory role of *Bacopa monnieri* on oxidative stress induced by postnatal exposure to

decabromodiphenyl ether (PBDE-209) in neonate and young female mice. *Iranian Journal of Basic Medical Sciences*, 17(4): 307.

- Vijayan, K., and Tsou, C. 2010. DNA barcoding in plants: taxonomy in a new perspective. *Current Science*: 1530-1541.
- Viji, V., and Helen, A. 2011. Inhibition of pro-inflammatory mediators: role of *Bacopa monnieri* (L.) Wettst. *Inflammopharmacology*, 19(5): 283-291.
- Vohora, D., Pal, S., and Pillai, K. 2000. Protection from phenytoin-induced cognitive deficit by *Bacopa monnieri*, a reputed Indian nootropic plant. *Journal of ethnopharmacology*, 71(3): 383-390.
- Vongsak, B., Kengtong, S., Vajrodaya, S., and Sukrong, S. 2008. Sequencing analysis of the medicinal plant *Stemona tuberosa* and five related species existing in Thailand based on trnH-psbA chloroplast DNA. *Planta Medica*, 74(14): 1764-1766.
- White, T. J., Bruns, T., Lee, S., and Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. Innis, D. Gelfand, J. Sninsky, and T. White (Eds.), *PCR protocols a guide to methods and applications*: 315-322. San Diego: Academic Press.
- Wu, S.-B., Wirthensohn, M. G., Hunt, P., Gibson, J. P., and Sedgley, M. 2008. High resolution melting analysis of almond SNPs derived from ESTs. *Theoretical* and Applied Genetics, 118(1): 1-14.
- XUE, C. Y., and LI, D. Z. 2011. Use of DNA barcode sensu lato to identify traditional Tibetan medicinal plant *Gentianopsis paludosa* (Gentianaceae). *Journal of Systematics and Evolution*, 49(3): 267-270.
- Yadav, A., Ahmad, J., Chaudhary, A. A., and Ahmad, A. 2012. Development of Sequence Characterized Amplified Region (SCAR) marker for the authentication of *Bacopa monnieri* (L.) Wettst. *European Journal of Medicinal Plants*, 2(3): 186.
- Yamazaki, T. 1990. Scrophulariaceae. In T. Smitinand, and K. Larsen (Eds.), *Flora of Thailand*, Vol. 5. Bangkok: Chutima Press.
- Yao, H., Song, J.-Y., Ma, X.-Y., Liu, C., Li, Y., Xu, H.-X., Han, J.-P., Duan, L.-S., and Chen, S.-L. 2009. Identification of *Dendrobium* species by a candidate DNA barcode

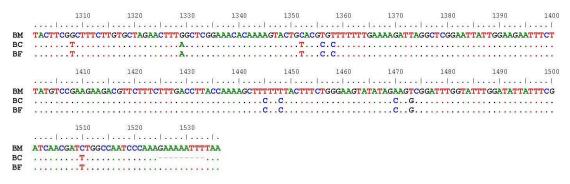
sequence: the chloroplast psbA-trnH intergenic region. *Planta Medica*, 75(06): 667-669.

- Zanotta, D., Puricelli, S., and Bonoldi, G. 2014. Cognitive effects of a dietary supplement made from extract of *Bacopa monnieri*, astaxanthin, phosphatidylserine, and vitamin E in subjects with mild cognitive impairment: a noncomparative, exploratory clinical study. *Neuropsychiatric Disease and Treatment*, 10: 225.
- Zhang, W., Yuan, Y., Yang, S., Huang, J., and Huang, L. 2015. ITS2 secondary structure improves discrimination between medicinal "Mu Tong" species when using DNA barcoding. *PloS One*, 10(7): e0131185.
- Zhao, Z., Hu, Y., Liang, Z., Yuen, J. P.-S., Jiang, Z., and Leung, K. S.-Y. 2006. Authentication is fundamental for standardization of Chinese medicines. *Planta Medica*, 72(10): 865-874.
- Zhou, Y., Du, X.-L., Zheng, X., Huang, M., Li, Y., and Wang, X.-M. 2017. ITS2 barcode for identifying the officinal rhubarb source plants from its adulterants.
 Biochemical Systematics and Ecology, 70: 177-185.
- Zhou, Y., Kong, D. Y., Peng, L., and Zhang, W. D. 2009. A new triterpenoid saponin from *Bacopa monnieri*. *Chinese Chemical Letters*, 20(5): 569-571.
- Zhou, Y., Shen, Y.-H., Zhang, C., Su, J., Liu, R.-H., and Zhang, W.-D. 2007. Triterpene saponins from *Bacopa monnieri* and their antidepressant effects in two mice models. *Journal of Natural Products*, 70(4): 652-655.

MULTIPLE SEQUENCE ALIGNMENTS OF THREE BACOPA PLANTS

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	10	20	30	40	50	60	70	80	90	100
	encore for encoding and the	eser i fa com f		free bered	eres a fin cons	lass and see a	fares fasted	and a fix and 1	in and an al	i [
BM	TCCGTAGGTGAACCT	GCGGAAGGAT	CATTGTCGA	AACCTTTAAAG	CAGACCCGC	GAACATGTTT	TCATTAATCGO	GGCGAGGCT	TTCAGCTCAG	CCCCC
BC				C	A		AT . AC CG .	AAT.C.	.A.G.G.TC	Т
BF				<mark>. C</mark>	A	TC	ACC.AT.	A	TGT T	
	110	120	130	140	150	160	170	180	190	200
	ere classes for call		and a second a second of			server contraction of the		terrest in the converse a		
BM	TTTCCTGCCCGACGA		Contraction of the second second		and the second					
BC										
BF	T	G T	.T.CCT	T				G		
	210	220	230	240	250	260	270	280	290	300
	· · · · l· · · · l· · · · l									
BM	CGGGCAAAGCCCCGT									
BC BF										
BE	A	rc	TC.6	A. A		•••••				
	310	320	330	340	350	360	370	380	390	400
						Les est est e	المتعالم ومعال			
BM	TGAAGAACGTAGCGA									
BC										
BF										
	410	420	430	440	450	460	470	480	490	500
	· · · · · [· · · · [· · · ·] .	[[[]	[L I	[]	[]		ĩ l
	state a the state brack state	suale si tie suale ti		1000 RUSIGE MURICE RURICE		AUSIOE AUSION AUSIOE A	the make worke south	20206 21 008 20206 4		018 - 1973-025 - 14
BM	GCACGTCTGCCTGGG	anyone as the anyone of		2002 MUSERS COSTOR MUSERAL	CCTTGGAAA		2000 MURDER PERSON MURDE	MANARON NA CON NAVANAN N	GACCTCCCG	Diger Managora int
BM BC	GCACGTCTGCCTGGG	CGTCACGCAT	CGCGTCGCCC	CCCAACCCAAC		AAGGGCTTTG	AGGTGTTTGGG	GGCCGGAGTCT	.G	GAGCG
		CGTCACGCAT	CGCGTCGCCC	CCCAACCCAAC		AAGGGCTTTG	AGGTGTTTGGG	GGCCGGAGTCT	.G	GAGCG
BC	GCACGTCTGCCTGGG	CGTCACGCAT	CGCGTCGCCC	CCCAACCCAAC CT	c.c-cc.	AAGGGCTTTG	AGGTGTTTGGC CTAC FCAG	GGGCGGAGTCT	.G	GAGCG
BC	GCACGTCTGCCTGGGG	520	CGCGTCGCCC	CCCAACCCAAC		AAGGGCTTTGA A.CC AT 560	AGGTGTTTGGC CTAC FCAG 570	GGGCGGAGTCT	.G	TGAGCG
BC BF	GCACGTCTGCCTGGGG	520	530	CCCAACCCAAC	550	AAGGGCTTTG A.CC 	AGGTGTTTGGG CTAC FCAG 570 111	580	.G	CGAGCG .T.A T 600 1
BC BF BM	510 TT-TAGCATGTGGTTG	520 520 5 GTT GAAATT	530	CCCAACCCAAC 	550 550 550	AAGGGCTTTG/ A.C AT 560 II GTGGTGGTTG/	AGGTGTTTGGC CTAC FCAG 570 III AAAATTCAACC	GGGCGGAGTCT AAA AT 	.G .G 590 	CGAGCG .T.A T 600 I
BC BF BM BC	510 	520 520 GGTT GAAATT	530 CGCGTCGCCC 530 CGATCCCCGCC C.T.	CCCAACCCAAC 	550 	AAGGGCTTTGJ A.C(AT 560 II. GTGGTGGTTGJ	AGGTGTTTGGC CTAC 570 III AAAATTCAACO .GC	GGGCGGAGTCT AAA AT 580 GCGCATCCTGT G.G.	.G .G	CGAGCG
BC BF BM	510 TT-TAGCATGTGGTTG	520 520 GGTT GAAATT	530 CGCGTCGCCC 530 CGATCCCCGCC C.T.	CCCAACCCAAC 	550 	AAGGGCTTTGJ A.C(AT 560 II. GTGGTGGTTGJ	AGGTGTTTGGC CTAC 570 III AAAATTCAACO .GC	GGGCGGAGTCT AAA AT 580 GCGCATCCTGT G.G.	.G .G	CGAGCG
BC BF BM BC	510 	520 520 GGTT GAAATT	530 CGCGTCGCCC 530 CGATCCCCGCC C.T.	CCCAACCCAAC 	550 	AAGGGCTTTGJ A.C(AT 560 II. GTGGTGGTTGJ	AGGTGTTTGGC CTAC 570 III AAAATTCAACO .GC	GGGCGGAGTCT AAA AT 580 GCGCATCCTGT G.G.	.G .G	CGAGCG
BC BF BM BC	510 510 510 510 510 510 510 510 510 510	520 520 GGTT GAAATT . CCC CA . CC	530 530 AGATCCCGC C.T. 530	CCCAACCCAAC	C.C.C-CC. 550 TCACAACTA G 650	AAGGGCTTTG A.C 560 GTGGTGGTTG 660	AGGTGTTTGGG CTAC 570 III AAAATTCAACO .GCT. 670	GCGCGCAGTCT AAA .AT 580 GCGCATCCTGT G.G. G.G. 680	. G	CGAGCG .T.A T 600 MTTTCG C.
BC BF BM BC	510 510 	520 	530 AGATCCCGC C.T. 530	CCCAACCCAAC		AAGGGCTTTGJ A.C 560 GTGGTGGTTGJ 660	AGGTGTTTGGC CTAC. F.CAG. 570 AAAATTCAACO G.C. CT. 670	SGCCGGAGTCT AAA 580 50CGCATCCTGT GCGCATCCTGT G.G. G.G. 680	. G	CGAGCG .T.A 1 1 MTTCG C. 1 700 1
BC BF BM BC BF	GCACGTCTGCCTGGGG 510	520 520 520 520 520 520 520 520 620 520 520 520 520 520 520 520 520 520 5	530 	CCCAACCCAAC	CC.C-CC. 550 C.C.CC. 550 C.C.C.C. 550 C.C.C.C.C. 550 650 C.C.C.C.C.C.C. 650 C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.C.	AAGGGCTTTG A.C(A.C(AGGTGTTTGGC C TAC FCAG 570 AAAATTCAACO 	SGCCGAGTC1 AA. 	. G	CGAGCG .T.A 600 MTTTCG C. 700 SACTAC
BC BF BM BC BF	510 	520 520 GTT GAAATT .CCCCA .CCCA 620 ATCATCGTAC .ATCATCGTAC	530 530 AGATCCCCCC C. T 630 GGAATAAGA(CCCAACCCAAC	C.C.C.C.C. 	AAGGCCTTTG/ A.C. (AT 560 11. GTGGTGGTTG/ 660 11. AAAATGGGGA' GA	AGGTGTTTGGC CTAC F. CAG 570 I AAAATTCAACC .G. C 670 IGCCTTCGACC	SGCCGAGTCT AAA 500 	.G	TGAGCG .T.A T 600 ATTTCG 700 GACTAC
BC BF BC BF BM BC	510 TT TAGCATGTGCTU	520 520 GTT GAAATT .CCCCA .CCCA 620 ATCATCGTAC .ATCATCGTAC	530 530 AGATCCCCCC C. T 630 GGAATAAGA(CCCAACCCAAC	C.C.C.C.C. 	AAGGCCTTTG/ A.C. (AT 560 11. GTGGTGGTTG/ 660 11. AAAATGGGGA' GA	AGGTGTTTGGC CTAC F. CAG 570 I AAAATTCAACC .G. C 670 IGCCTTCGACC	SGCCGAGTCT AAA 500 	.G	TGAGCG .T.A T 600 ATTTCG C. 700 GACTAC
BC BF BC BF BM BC	SCACGTCTGCCTGGGG 510 TT TAGCATGTGCTT .C.A.C.CC .C.A.C.CC .Gl0	520 520 GGTT GAAATT CCCA CCCA MTCATCGTAC .ATCATCGTAC .TCATC, TA.T 720	530 530 AGATCCCCCC C. T 630 GGAATAAGA CG 730	CCCAACCCAAC	C.C.C.C.C. 	AAGGCCTTTG/ A.C. (AT 560 11. GTGGTGGTTG/ 660 11. AAAATGGGGA' GA	AGGTGTTTGGC CTAC F. CAG 570 I AAAATTCAACC .G. C 670 IGCCTTCGACC	SGCCGAGTCT AAA 500 	.G	TGAGCG .T.A T 600 ATTTCG C. 700 GACTAC
BC BF BC BF BM BC	510 510 TT-TAGCATGTGGTTC .C.A.C.CC .CC.C. 610 ATCCAGTGTTCGGGCC CCGA.TC.C.T.A C.C.T.	520 520 GGTT GAAATT CCCA CCCA MTCATCGTAC .ATCATCGTAC .TCATC, TA.T 720	530 530 AGATCCCCCC C. T 630 GGAATAAGA CG 730	CCCAACCCAAC	C.C.C.C.C. 	AAGGCCTTTG/ A.C. (AT 560 11. GTGGTGGTTG/ 660 11. AAAATGGGGA' GA	AGGTGTTTGGC CTAC F. CAG 570 I AAAATTCAACC .G. C 670 IGCCTTCGACC	SGCCGAGTCT AAA 500 	.G	TGAGCG .T.A T 600 ATTTCG C. 700 GACTAC
BC BF BC BF BC BF BF	SCACGTCTGCCTGGGG 510 TT TAGCATGTGCTT .C.A.C.CC .C.A.C.CC .Gl0	520 520 GGTTGAAATT CCCA CCCA 	530 530 AGATCCCCCC C.T 630 GGAATAAGA 730	CCCAACCCAAC	C.C.C.C.C. 	AAGGCCTTTG/ A.C. (AT 560 11. GTGGTGGTTG/ 660 11. AAAATGGGGA' GA	AGGTGTTTGGC CTAC F. CAG 570 I AAAATTCAACC .G. C 670 IGCCTTCGACC	SGCCGAGTCT AAA 500 	.G	TGAGCG .T.A T 600 ATTTCG C. 700 GACTAC
BC BF BC BF BC BF BC BF	GCACGTCTGCCTGCGGG 510 TT-TAGCATGTGGTT .C.A.C.CC .C.A.C.CC .Gl0	520 520 GGTTGAAATT CCCA CCCA 	530 530 AGATCCCCCC C.T 630 GGAATAAGA 730	CCCAACCCAAC	C.C.C.C.C. 	AAGGCCTTTG/ A.C. (AT 560 11. GTGGTGGTTG/ 660 11. AAAATGGGGA' GA	AGGTGTTTGGC CTAC F. CAG 570 I AAAATTCAACC .G. C 670 IGCCTTCGACC	SGCCGAGTCT AAA 500 	.G	TGAGCG .T.A T 600 ATTTCG C. 700 GACTAC
BC BF BC BF BC BF BF	GCACGTCTGCCTGCGGG 510 TT-TAGCATGTGGTT .C.A.C.CC .C.A.C.CC .Gl0	520 520 GGTTGAAATT CCCA CCCA 	530 530 AGATCCCCCC C.T 630 GGAATAAGA 730	CCCAACCCAAC	C.C.C.C.C. 	AAGGCCTTTG/ A.C. (AT 560 11. GTGGTGGTTG/ 660 11. AAAATGGGGA' GA	AGGTGTTTGGC CTAC F. CAG 570 I AAAATTCAACC .G. C 670 IGCCTTCGACC	SGCCGAGTCT AAA 500 	.G	TGAGCG .T.A T 600 ATTTCG C. 700 GACTAC
BC BF BC BF BC BF BC BF	GCACGTCTGCCTGCGGG 510 TT-TAGCATGTGGTT .C.A.C.CC .C.A.C.CC .Gl0	520 520 GGTTGAAATT CCCA CCCA 	530 530 AGATCCCCCC C.T 630 GGAATAAGA 730	CCCAACCCAAC	C.C.C.C.C. 	AAGGCCTTTG/ A.C. (AT 560 11. GTGGTGGTTG/ 660 11. AAAATGGGGA' GA	AGGTGTTTGGC CTAC F. CAG 570 I AAAATTCAACC .G. C 670 IGCCTTCGACC	SGCCGAGTCT AAA 500 	.G	TGAGCG .T.A T 600 ATTTCG C. 700 GACTAC


Figure 22 Multiple sequence alignment of ITS of the three Bacopa plants

The numbers above the alignment represents the base numbers of sequence alignments. "." Represents nucleotide base that is identical to the nucleotide in the first-row. "-" represents the gap.

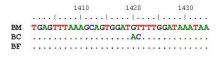
97

	10	20	30	40	50	60	70	80	90	e.
	ATGGAGGAAATCCAA									
	AIGGAGGAAAICCAA									
	110	120	130	140	150	160	170	180	190	c.
	ATCGTGGTTGCAATA									
	AICGIGGIIGCAAIA									
	210	220	230	240	250	260	270	280	290	
	GAATCATTTTATTAT									
	GAALCALTIATIAT									
	C									
	310	320	330	340	350	360	370	380	390	
	nas e la sue las suel									
	ATTGTGGAAATTCCG									
	410	420	430	440	450	460	470	480	490	
	· · · · [· · · ·] · · · ·]									
	TTCCCTTTTTAGAGG									
					G			• • • • • • • • • • •		• • •
	510	520	530	540	550	560	570	580	590	
			[]	[]]		[]		1		1
	TTGGGTAAAAGATGC									
	••••••		• • • • • • • • • • •	C		• • • • • • • • • • •	• • • • • • • • • •	• • • • • • • • • • •	******	•••
	•••••					• • • • • • • • • • • •				
	610	620	630	640	650	660	670	680	690	
	···· · [· · ···] ··· ···] .									(in as
1	TTTTCAAAAAAAAA	CCAAGATTCT	TTCTTATTCT	TATAATAAT	CATGTATGT	GAATACGAAT	CATTTTCGT	CTTTCTACGT	GCACAATCTT.	ATC
	TTTTCAAAAAAAAA									
		A.		т.	AC		A		G	
		A.	т.	т.	AC		A		G	
	710	A . 720	T .	Т . 740	AC. 750	760	AA	780	G G 790	
	710	720	730	740	750	760 []	A A	780 1 I	G 	 (
	710	720 CTCGACTTCT	730	740 AATCTATTTCT	750 	760 FAGAGCGTCT	A A 770 	780 TTTATTAAGO	G 	TCA0
	710 TACGATCAATATCTT	720 CTCGACTTCI T	730 TCTTGAACG 2	740 [] AATCTATTTCT	750 1	760 TAGAGCGTCTT 	A A	780 TTTATTAAGO G	G. 	I
	710 TACGATCAATATCTT G	720 	730	740	750 	760 II TAGAGCGTCT A.A	A	780 . TTTATTAAGO G. GG.	G. 	TCA0
	710 	720 720 CTCGACTTCI T	730 	740 AATCTATTTCT 	750 	760 	A	780 TTTATTAAGO G GG 880	G G	
ACTIVE ACTIVE ACTIVE	710 TACGATCAATATCTT G 810 	720 	730 	740 (RATCTATTTCT 840 [750 TATGCCAAAA . A 	760 TAGAGCGTCT A.A. 860	A 770 GTTAACCTT G. TG. 	780 . TTTATTAAGO G. GG. 	G 	 I TCA(
	710 	720 	730 	740 740 AATCTATTTCT 840 11	750 	760 PAGAGCGTCTT A.A. 860 	A 770 GTTAACCTT G TG 870 CTTCAAAAG	780 . TTTATTAAGC G GG 880 . GGACGTCTTT		
070	710 	720 CTCGACTTCT T B20 CAAGGAGCCT A	730 TTCTTGAACG2 830 TTGCATGCTT	740 740 AATCTATTTGT 840 FATGTTAGGTP	750 	760 	A 770 	780 . TTTATTAAGO GG 880 . GGACGTCTTT T	G	(TCA(
	710 	720 CTCGACTTCT T B20 CAAGGAGCCT A	730 TTCTTGAACG2 830 TTGCATGCTT	740 740 AATCTATTTGT 840 FATGTTAGGTP	750 	760 	A 770 	780 . TTTATTAAGO GG 880 . GGACGTCTTT T	G	(TCA(
	710 	720 CTCGACTTCT T B20 CAAGGAGCCT A	730 TTCTTGAACG2 830 TTGCATGCTT	740 740 AATCTATTTGT 840 FATGTTAGGTP	750 	760 	A 770 	780 . TTTATTAAGO GG 880 . GGACGTCTTT T	G	(TCA(
	710 	720 	730 77CTTGAACG2 830 7TGCATGCTT7 930	740 740 AATCT ATTTG 840 I		760 TAGAGCGTCTT A.A. 860 ATTGATTCTGC .C. A C	A 770 	780 . TTTATTAAGO .G GG GGACGTCTTT 990 .		Г
	710 	720 	730 770 770 770 770 770 780 830 770 770 770 770 770 770 770 7	740 740 AATCTATTTC 840 I I 940 I ITTTAATGTGC	750 	760 TAGAGCGTCTT A.A. 860 ATTGATTCTG C.A. 960 AAAAGGATTTC	A 770 	780 . TTTATTAAGO G. GG. GGACGTCTTT T. 		
	710 	720 	730 770 770 830 776CATGCTT 930 2AAT CGCACTT 	740 740 840 840 • • • • • • • • • • • • • • • • • • •		760 TAGAGCGTCTT A. A. 860 ATTGATTCTG C. 960 ATAAGGATTT	A 770 CGTTAACCTT 	780 TTTATTAAGO .GGG 880 GGCTCTTT GGACGTCTTT 980 980 	G	(
	710 	720 	730 770 770 830 776CATGCTT 930 2AAT CGCACTT 	740 740 840 840 • • • • • • • • • • • • • • • • • • •		760 TAGAGCGTCTT A. A. 860 ATTGATTCTG C. 960 ATAAGGATTT	A 770 CGTTAACCTT 	780 TTTATTAAGO .GGG 880 GGCTCTTT GGACGTCTTT 980 980 	G	(
	710 	720 	730 77CTTGAACG2 830 7TCTTGAACG2 830 7TGCATGCTTT 930 CAATCGCACTT GC.	740 740 AATCTATTTCT 840 		760 TAGAGCGTCTT A.A. 860 ATTGATTCTG CA. 960 AAAAGGATTTC	A 770 	780 . TTTATTAAGO .G GG GGACGTCTTT 980 . ATTATCCAAC 3		 TCA0 I AAAA'
	710 	720 	730 770 770 770 770 830 770 770 770 770 770 770 770 770 770 7	740 740 840 840 940 940 940 		760 TAGAGCGTCTT A.A. 860 ATGATTCTGG C.A. 960 AAAAGGATTT	A 770 	780 TTTATTAAGO G 880 GGACGTCTTT 980 ATTATCCAAC 	G	 TCA AAAA
	710 	720 	730 77CTTGAACG2 830 7TGCATGCTT7 930 	740 740 840 840 747777777777777777777777		760 TAGAGCGTCTT A.A. 860 ATTGATTCTGG CA 960 AAAAGGATTT 1060	A 770 	780 . TTTATTAAGO G 880 . GGACGTCTTT 980 T. ATTATCCAAC 1080 		(TCA/ AAAA (AAAT
	710 	720 	730 730 77CTTGAACG2 830 77GCATGCTT 930 CAATCGCACTT 1030 FGAACCCTTC2 	740 740 840 840 940 940 		760 TAGAGCGTCT A A 860 AT GAT CT GG C A C 960 AAAAGGATTT 1060 TAGAAAATT	A 770 	780 1	G	(
	710 	720 	730 730 77CTTGAACG2 830 77GCATGCTT 930 CAATCGCACTT 1030 FGAACCCTTC2 	740 740 840 840 940 940 		760 TAGAGCGTCT A A 860 AT GAT CT GG C A C 960 AAAAGGATTT 1060 TAGAAAATT	A 770 	780 1	G	 TCA AAAA I CGAY
	710 	720 	730 77CTTGAACG2 830 7TGCATGCTTT 930 2AATCGCACTT .GC. 1030 TGAACCCTTC2 .T	740 	A. C. 750 	760 TAGAGCGTCTT A.A. 860 ATTGATTCTG A. 960 AAAAGGATTTC 1060 TAGAAAATTC2	A 770 	780 		 TCA AAAA I CGAY
	710 	720 	730 730 770 830 776CATGCTT 930 2AATCGCACTT 1030 76AACCCTTC2 T 1130	740 740 840 940 940 940 		760 TAGAGCGTCTT A. A. 860 ATTGATTCTG C. 960 ATGATTTG 1060 1060 1060 1160	A 770 	780 1	G. G. G. 	 TCA(AAA* I CGA*
	710 	720 	730 770 770 770 770 830 770 770 770 770 770 770 770 700 700 7	740 740 840 840 74757746577 940 7777447576 66 66 66 66 76 76 76 76 76 76 76 76 7		760 TAGAGCGTCTT A.A. 860 ATTGATTCTGC CA 960 AAAAGGATTTC 1060 1 1160 1160	A	780 		[TCA4 AAAA AAAT CGA4
	710 	720 	730 730 TTCTTGAACG2 830 7TGCATGCTTT 930 930 1030 TGAACCCTTC2 1130 	740 740 840 840 747 TATTTCT 940 740 740 740 740 740 740 740 740 740 7		760 TAGAGCGTCTT A.A. 860 A. 760 A. 960 A. 960 A. 1060 A. 1160 A. C. 1160	A 770 	780 		[TCA AAA AAAT CGA
	710 	720 CTCGACTTCI 	730 770 770 830 776CATGCTT 930 930 CAATCGCACT 1030 TGAACCCTC2 1130 TGCGTCATTAC	740 740 840 840 940 940 		760 TAGAGCGTCTT A.A. 860 ATTGATCTGC CA. 960 AAAAGGATTTC 1060 1160 CCTATTGGGGC G.G.	A A 770 	780 1	G. G. G. 	(
	710 	720 CTCGACTTCI 	730 770 770 830 776CATGCTT 930 930 CAATCGCACT 1030 TGAACCCTC2 1130 TGCGTCATTAC	740 740 840 840 940 940 		760 TAGAGCGTCTT A.A. 860 ATTGATCTGC CA. 960 AAAAGGATTTC 1060 1160 CCTATTGGGGC G.G.	A A 770 	780 1	G. G. G. 	[TCAA
	710 	720 	730 730 770 830 830 776CATGCTT 930 2AATCGCACTT 1030 76AACCCTTC2 	740 740 840 840 940 940 		760 TAGAGCGTCTT A A 860 ATGATCTG C C ATGATCTG C ATGATCTG ATGATCTG 1060 ATGATATGGGG 1160 CCTATTGGGGG	A 770 	780 1		I
	710 	720 	730 730 77CTTGAACG2 830 7TGCATGCTT 930 CAATCGCACTT 930 CAATCGCACTT GCC 1030 7GAACCCTTC2 1130 1130	740 740 840 840 PATCTATTTCT 940 CG CG 1040 AGTAGTACGGA 1140 1140 1140 1140	A. C. 750 	760 TAGAGCGTCTT A A B B C C A C C A A C C A A C C A A C C C C C C C C	A 770 	780 		
	710 	720 	730 77CTTGAACG2 830 7TGCATGCTT7 930 	740 740 840 840 747 747 747 747 940 747 747 747 747 747 740 740 740 740 7		760 TAGAGCATCTT 860 	A 770 	780 		I

Figure 23 Multiple sequence alignment of *mat*K gene of the three *Bacopa* plants The numbers above the alignment represents the base numbers of sequence alignments. "." Represents nucleotide base that is identical to the nucleotide in the first-row. "-" represents the gap.

Figure 23 Multiple sequence alignment of *mat*K gene of the three *Bacopa* plants (continued)

The numbers above the alignment represents the base numbers of sequence alignments. "." Represents nucleotide base that is identical to the nucleotide in the first-row. "-" represents the gap.



Chulalongkorn University

	10	20	30	40	50	60	70	80	90	
	ATGTCACCCACAACAG									
	C									
	110	120	130	140	150	160	170	180	100	
									190	(h
	TGATATCTTGGCAGC									
	****									••••
	210	220	230	240	250	260	270	280	290	
	and the second s									
	ACTGTGTGGACCGAT									
	310	320	330	340	350	360	370	380	390	
	TAGCTTACCCTTTAG									
									T	
	410	420	430	440	450	460	470	480	490	
	TCTGGAAGATCTGCG									
Î										
	510	520	530	540	550	560	570	580	590	10
	CCCCTGCTGGGATGT									
	610	620	630	640	650	660	670	680	690	
										(<u>.</u>
	AAGATGATGAGAACG									
								A		• • • •
	710	720	730	740	750	760	770	780	790	
		CTTGAATGC	TACTGCGGGG	TACATGTGAAG	AAATGATCA	AAGAGCTGT	ATTTGCTAGA	GAATTGGGGAG	TTCCTATCAT.	AATC
P.					C					
						A.		· · · · · · · · · · ·	C	
		2122123				A.			C	
	810	820	830	840	850	860 860	870	880	C	
	810	820 	830	840	850 	860	870 I	880 	C	:::: r
	810	820 	830 GCAAATACTA	840	850 	860 	870	880	890 1	GCAG
T	810	820 	830 GCAAATACTA	840 AGCTTGGCTCA .C	850 TTATGCCCG2 T	860 AGATAATGGC	870	880	C 890 . TGCAAT GCAT	GCAC
T	810 	820 	830 GCAAATACTA	840 AGCTTGGCTCA .C	850 TTATGCCCGJ	860 I AGATAATGGC	870 . CTACTTCTTC.	880	C 890 . TGCAAT GCAT	GCAC
T	810 	820 	830 	840 AGCTT GGCTCA .C	850 	860 A GATAATGGC 960	870 CTACTTCTTC, 970	880 ACATTCACCC 980	890 TGCAATGCAT 990	GCAC
	810 	820 	830 GCAAATACTA 930 TGCACTTCCC	840 AGCTTGGCTCA . C	850 TTATGCCCG2 T 950 AAAGCGTTA(860 	870 CTACTTCTTC 970 . GTGGAGATCA	880 ACATTCACCG 980 . TATTCACGCT	890 TGCAAT GCAT 990 'GGTACT GTAG	GCAC
	810 GACTACTTAACAGGA 910 	820 	930 GCAAATACTZ 930 TGCACTTCCC A	840 C 940 STGTACTAGCT	850 	860 	870 [] GTACTTCTTC, 970 [] GTGGAGATCA'	880 . ACATTCACCC 980 . FATTCACGCT	890 . TGCAATGCAT 990 . GGTACTGTAG	GCAG
	810 	820 	930 GCAAATACTZ 930 TGCACTTCCC A	840 C 940 STGTACTAGCT	850 	860 	870 [] GTACTTCTTC, 970 [] GTGGAGATCA'	880 . ACATTCACCC 980 . FATTCACGCT	890 . TGCAATGCAT 990 . GGTACTGTAG	GCAC
	810 GACTACTTAACAGGA 910 	820 	830 GCAAATACT 930 	840 	850 	860 	870 970 . CTGGAGATCA' 1070	880 . 980 . TATTCACGCT T. 1080	890 TGCAATGCAT 990 GGTACTGTAG	
	810 GACTACTTAACAGGA 910 	820 	830 GCAAATACT/ 930 	940 	850 	860 	870 . 970 . GTGGAGAT CA 1070 	880 ACATTCACCC 980 II. FATTCACCCT TT. 1080	890 TGCAAT GCAT 990 GGTACT GTAG 1090 	GCAC
	810 GACTACTTAACAGGA 910 	820 	830 GCAAATACT/ 930 TGCACTTCCC A A 1030 TTTGGGCTTT	840 GCTT GGCTCA C940 	850 TTATGCCCG2 T 950 	860 	870 	880 ACATTCACCC 980 II. FATTCACGCT TT. 1080 II. AGTCGCGGTA	C	GCAC
	810 GACTACTTAACAGGA 910 	820 	830 GCAAATACTZ 930 TGCACTTCCC .A .A .1030 	840 	850 TTATGCCCG2 T.T. 950 AAAGCGTTA(1050 TGCGTGATG2	860 	870 	880 ACATTCACCC 980 FATTCACCC TATTCACCC ACCCCCCCCC	890 TGCAATGCAT 990 GGTACTGTAG 1090 TTTATTTCAC	GCAC
	810 	820 	830 GCAAATACT/ 930 TGCACTTCCC A	840 GCTT GGCTCA C940 	850 	860 	870 	880 ACATTCACCC 980 II. TATTCACGCT TT. 1080 II. AGTCGCGGTA	890 	GCAC
	810 GACTACTTAACAGGA 910 	820 	830 GCAAATACTZ 930 	840 	850 	860 	870 	880 . ACATTCACCC 980 . TATTCACGCT T. 1080 . AGTCGCGGTA 1180	C	GCAC
	810 GACTACTTAACAGGA 910 	820 	830 GCAAATACT/ 930 	840 GCTTGGCTCA C940 	850 	860 	870 	880 ACATTCACCC 980 II. FATTCACGCT II. 1080 II. AGTCGCGGTA 1180 II. AGATCTTTGG	C	GCAC
	810 CACTACTTAACAGGA 910 	820 	830 GCAAATACTZ 930 TGCACTTCCC A 1030 TTT GGCCTTT 1130 CCTCTTGCCT	840 GCTTGGCTCA C940 TGTACTAGCT 1040 IGTTGATTTAC 1140 ILLAGGTGGGTAT	850 TTATGCCCG2 T 950 	860 	870 	880 980 980 1	890 	GCAC TAGC
	810 GACTACTTAACAGGA 910 	820 	830 GCAAATACTZ 930 TGCACTTCCC A 1030 TTT GGCCTTT 1130 CCTCTTGCCT	840 GCTTGGCTCA C940 TGTACTAGCT 1040 IGTTGATTTAC 1140 ILLAGGTGGGTAT	850 	860 	870 	880 980 980 1	890 	GCAC TAGC
	810 CACTACTTAACAGGA 910 	820 	830 GCAAATACTZ 930 TGCACTTCCC A 1030 TTT GGCCTTT 1130 CCTCTTGCCT	840 GCTTGGCTCA C940 TGTACTAGCT 1040 IGTTGATTTAC 1140 ILLAGGTGGGTAT	850 	860 	870 	880 980 980 1	890 	GCAC TAGC
	810 	820 	830 	840 AGCTT GGCTCA C	850 	860 	870 	880 . 980 . TATTCACGCT 1080 . AGTCGCGGTA 1180 . AGTCTTTTGG	C	GCAC
· · · · · · · · · · · · · · · · · · ·	810 GACTACTTAACAGGA 910 	820 	830 GCAAATACTA 930 	840 GCTTGGCTCA C940 	850 	860 960 960 	870 	880 ACATTCACCC 980 TATTCACGCT 1080 AGTCGCGGTA 	C	GCAC
	810 	820 	830 930 TGCAAATACTI 930 TGCACTTCCC A 1030 1130 1130 CTGTGCGCT CTGTGCT CCGC 1230 ACCCTTGGGC	840 GCTT GGCTCA C. 940 TGTACTAGCT 1040 FGTTGATTTAC 1140 TCAGGTGGTAT 1240 TTAAT GCGCCA	850 TTATGCCCG2 T T 950 AAAGCGTTA(1050 TGCGTGATG2 1150 TCACGTTTG(1250 1250 	860 	870 	880 980 980 FATTCACCC TATTCACCCC 1080 AGTCGCCGGTA 1180 AGTCGTTTGG 1280 AGATCTTTGG	890 	GCAC
	810 GACTACTTAACAGGA 910 	820 	830 	840 GCTTGGCTCA C 940 TGTACTAGCT TGTACTAGCT 1040 II140 TGTTGATTTAC 1140 TCAGGTGGTAT 1240 STAATGCGCCA	850 	860 	870 	880 ACATTCACCG 980 II. TATTCACGCT IT. 1080 II. AGTCGCGGTA AGTCTTGG 1280 II. 1280 II. AGCATGTGTA	C	GCAC
	810 	820 	830 930 930 	840 	850 	860 	870 	880 980 980 1	C	GCAG
	810 	820 	830 930 930 	840 AGCTT GGCTCA C	850 	860 	870 	880 . ACATTCACCC 980 T TATTCACGCT T. 1080 AGTCGCGGTA 1180 AGTCTTTGG 1280 1280 1380 	C	GCAG
· · · · · · · · · · · · · · · · · · ·	810 	820 	830 	840 AGCTTGGCTCA C	850 	860 960 960 CGTATGTCTG 1060 1160 CCTATGCCT 3CACATGCCT 1260 SCTAACCGAG 1360 	870 	880 ACATTCACCC 980 1 TATTCACCCT 1080 1 AGTCGCGGTA 1180 1 AGTCTTTGC 1280 1 AGCATGTGTA 1380 1 TGTGAGGTAT	C	GCAC

Figure 24 Multiple sequence alignment of *rbc*L gene of the three *Bacopa* plants

The numbers above the alignment represents the base numbers of sequence alignments. "." Represents nucleotide base that is identical to the nucleotide in the first-row. "-" represents the gap.

Figure 24 Multiple sequence alignment of rbcL gene of the three *Bacopa* plants (continued)

The numbers above the alignment represents the base numbers of sequence alignments. "." Represents nucleotide base that is identical to the nucleotide in the first-row. "-" represents the gap.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

	10	20	30	40	50	60	70	80	90	100
	were farmer bereef		[]				[1	[]	
4	CGGTCGTATTCGTAT									
2	G									
	.C									
	110	120	130	140	150	160	170	180	190	200
		eres e lls eres l	less and sees all	h ees los eel	eres a fis area l		h ees los ee	Less a Denser	[]	fis sees f
	ATCTACTGGTACATC	TTCTTGACG	FTCTCCTGATT	GTTGTTCTAA	CTCAGTGAT	AATTTGTAT	ACCATCGAG	GGACCTTTTT	ACTTATTTCT	TTTATT
				G	G				A	C
					T				G	
	210	220	230	240	250	260	270	280	290	30
	eessels ees hes eel									
	ATAGAAGATTGTCTG									
				.G		Т		.T	• • • • • • • • • • •	
	310	320	330	340	350	360	370	380	390	401
	nan e la nan han nad									
	CTTCTGAAAATATGG									
		CT	TTCGATTTAGA	ATTAGATCC		********	G		C.	
	44.0	10.0	10.0	1.4.0	140.0					
	410 III TGGTTTTTTAGCAAA	TCTATTTCT	GTTATGTTCC/	ATTCTTGATA	ATCAGTATC	GAAACAAAG	TAGCATGAA	TTCTATTTAT	TCCAAATTTT	TCTATG
	····l····l	TCTATTTCTC	GTTATGTTCCZ	ATTCTTGATA	ATCAGTATC	GAAACAAAGA	TAGCATGAA	 TTCTATTTAT' G	II TCCAAATTTT C	TCTATG
	TGGTTTTTTAGCAAA	TCTATTTCTC	GTTATGTTCCZ	ATTCTTGATA	ATCAGTATC	GAAACAAAGA	TAGCATGAA	 TTCTATTTAT' G	II TCCAAATTTT C	TCTATG
	TGGTTTTTTAGCAAA	TCTATTTCTC CA. G.A.	GTTATGTTCC2 TG. TG.	AATTCTTGATA	ATCAGTATCO	С GAAACAAAG / .G 560	ATAGCATGAA	1 TTCTATTTAT' G	 TCCAAATTTT C	11 TCTATG
	 TGGTTTTTTAGCAAA .C	TCTATTTCTC CA. G.A. 520	GTTATGTTCCZ TG. TG. 530	AATTCTTGATA 540	ATCAGTATCO	GAAACAAAG2 .G	570	1	 TCCAAATTTT C	11 TCTATG
	TGGTTTTTTAGCAAA .C	TCTATTTCTC CA. G.A. 520 	GTTATGTTCCZ TG. TG. 530	540	S50	560	570	TTCTATTTAT G 580 TCCGTTCAAG	II TCCAAATTTT C 590 II AAAGGATCAT	11 TCTATG
	C	TCTATTTCTC .C.A. G.A. 520 	GTTATGTTCC2 TG. TG. 530 	540 540 540	S50	560 5AAATTGTTT	570 CCCGATATGA	580 TCCGTTCAAG	11	11 TCTATG 600 11 'ACCCTT
		TCTATTTCTC .C.A. G.A. 520 	GTTATGTTCC2 TG. TG. 530 	540 540 540	S50	560 5AAATTGTTT	570 CCCGATATGA	580 TCCGTTCAAG	11	11 TCTATG 600 11 'ACCCTT
		TCTATTTCTC .C.A. G.A. 520 	GTTATGTTCC2 TG. TG. 530 	540 540 540	S50	560 5AAATTGTTT	570 CCCGATATGA	580 TCCGTTCAAG	11	11 TCTATG 600 11 XACCCTT
	TGGTTTTTAGCAAA .C	C A. 520 	GTTATGTTCCZ	540 540 ••••••••••••••••••••••••••••••••	550 AGATTTTTA 650	560 560 560 560	570 570 CCCGATATGA T	580 TCCGTTCAAG	 TCCAAATTTT C. 590 AAAGGATCAT	11 TCTATG 600 11 ACCCTT C. 700
		C. A. 520 ATCGAAGTT 620	630	540 540 TGAAGGTGAA 640	550 AGATTTTTA 650	GAAACAAAG2 . G. 560 SAAATT GTTT 660	570 570 CCCGATATGA CCCGATATGA TG. TG. T	580 TCCGTTCAAG. 680	1	60 11 ACCCTT C. 70
		C. A. 520 ATCGAAGTT 620 TTGTCGCATC	STATGTTCC2 T.G. T.G. FTTTTTATGAT 630 CATCATTACAC	540 TGAAGGTGAA 640	550 AGATTTTA 650 	GAAACAAAG 560 SAAATTGTTT 660 TATATTCAA	570 570 	580 580 TCCGTTCAAG 680	CCAAATTTT C	 TCTATG 60 'ACCCTT C. 70 TCGATT
		C.A.TTCTATTTCTC .C.A. .G.A. 520 ATCGAAGTT 620 TTGTCGCATC A.	GTTATGTTCC2 	540 540 TGAAGGTGAA 640 SAACGAATTT 	550 550 AGATTTTTA 650 TTGTTCAA G	GAAACAAAG 560 SAAATTGTTTT 660 TATATTCAA7 T	570 570 	580 580 CCGTTCAAG, 680 TTATTGTCTA, T	1	() TCTATG 60 [] ACCCTT C. 70 [] TCGATT
		C.A.TTCTATTTCTC .C.A. .G.A. 520 ATCGAAGTT 620 TTGTCGCATC A.	GTTATGTTCC2 	540 540 TGAAGGTGAA 640 SAACGAATTT 	550 550 AGATTTTTA 650 TTGTTCAA G	GAAACAAAG 560 SAAATTGTTTT 660 TATATTCAA7 T	570 570 	580 580 CCGTTCAAG, 680 TTATTGTCTA, T	1	[] TCTATG 600 [] 'ACCCTT 'ACCCTT C. 700 []
		C. A. G.A. 520 ATCGAAGTT. 620 TTGTCGCATC ATCGCAAGTT. 720	GTTATGTTCC2 	540 540 CTGAAGGTGAA 640 CAACGAATTT CAACGAATTT CAACGAATTT	550 550 650 7TGTTTCAA 650 G. 750	CAAACAAAG2 560 560 50 50 50 50 50 50 50 50 50 70 70	570 570 	580 	1	1
		CTATTTCT .C. A. .G. A. 520 	3TTATGTTC2 .	540 540 TGAAGGTGAA 640 JAACCGAATTT 	550 	GAAACAAAG 560 SAAATT GTTT 660 TATATTCAA2 T 760	570 570 	580 580 TCCGTTCAAG. 680 TTTTTGTCTAG. TTTTTGTCTAG. T. T. T. T.	1	60 60 60 60 60 60 70 70 70 70 70 70 70 70 70 70 70 70 70
		CTATTTCTC .C. A. .G. A. 520 ATCGAAGTT. 620 TTGTCGCATC 720 GAAATTTTTC	530 530 FTTTTTATGAT 630 CATCATTACAC 730 TCTTTTTGAT	540 540 TGAAGGTGAA 640 CAACCGAATTT C. 740 TGTTGATAGA	550 AGATTTTTA 650 TTGTTCAA AG 750 AACCCAATG	GAAACAAAG 560 SAAATTGTTTT 660 TATATTCAA T 760	570 570 	580 	590 S90 AAAGGATCAT 690 GGGCTTCAAT 790	1
		CTATTTCTC .C. A. .G. A. 520 ATCGAAGTT. 620 TTGTCGCATC 720 GAAATTTTTC	530 530 FTTTTTATGAT 630 CATCATTACAC 730 TCTTTTTGAT	540 540 TGAAGGTGAA 640 CAACCGAATTT C. 740 TGTTGATAGA	550 AGATTTTTA 650 TTGTTCAA AG 750 AACCCAATG	GAAACAAAG 560 SAAATTGTTTT 660 TATATTCAA T 760	570 570 	580 	590 S90 AAAGGATCAT 690 GGGCTTCAAT 790	1
		CTATTTCTC C.A. G.A. 520 ATCGAAGTT 620 TTCTCGCATC T.A. 720 GAAATTTTTC	GITATGTTCC T.G. T.G. FITTTTATGAT G30 G30 G30 G30 G30 G30 G30 G30 G30 G30	540 540 640 640 640 640 640 740 740 740	550 550 650 650 7TGTTTCAA 	560 560 5AAATT GTTTT 660 5TATATT CAA 760 4TT GTAGAGTT T	570 570 T. G. T. GAGATATGA GAGATATAT A.A. C. 770 CATTAGATG	580 580 TCCGTTCAAG, 680 	590 590 AAAGGATCAT 690 GGGCTTCAAT 790 CAATGTGAAC T. G. C	60
		CTATTTCTC C.A. GA 520 ATCGAAGTT 620 C.C. TTCTCGCATC T.A. 720 C.C. TTCTCGCATC C.T.A. 720	GTTATGTTCC2 T	540 540 640 640 640 640 640 740 740 740	550 550 650 650 7TGTTTCAA 	560 560 5AAATT GTTTT 660 5TATATT CAA 760 4TT GTAGAGTT T	570 570 T. G. T. GAGATATGA GAGATATAT A.A. C. 770 CATTAGATG	580 580 TCCGTTCAAG, 680 	590 590 AAAGGATCAT 690 GGGCTTCAAT 790 CAATGTGAAC T. G. C	CAATAT
		CTATTTCT. .C. A. .G. A. 520 	TTATGTTCC2 T.TG. T.T530 FTTTTTATGAT 630 CATCATTACAC 730 CATCATTACAC T.G.G.T.	540 540 640 640 640 640 640 740 740 740	550 550 650 650 7TGTTTCAA 	560 560 5AAATT GTTTT 660 5TATATT CAA 760 4TT GTAGAGTT T	570 570 T. G. T. GAGATATGA GAGATATAT A.A. C. 770 CATTAGATG	580 580 TCCGTTCAAG, 680 	590 590 AAAGGATCAT 690 GGGCTTCAAT 790 CAATGTGAAC T. G. C	CAATAT
		I TCTATTTCT .C.A. .GA 520 I ATCGAAGTT 620 I TTGTCGCATC 720 I 720 I GAAATTTTT B20 I ATTTCCAAAA	530 530 530 FTTTTTATGAT 630 CATCATTACAC CATCATTACAC CATCATTACAC CATCATTACAC	540 540 640 640 640 640 640 740 740 740	550 550 650 650 TTGTTTCAA 	560 560 5AAATT GTTTT 660 5TATATT CAA 760 4TT GTAGAGTT T	570 570 T. G. T. GAGATATGA GAGATATAT A.A. C. 770 CATTAGATG	580 580 TCCGTTCAAG, 680 	590 590 AAAGGATCAT 690 GGGCTTCAAT 790 CAATGTGAAC T. G. C	CAATAT
		CTATTTCGATTTCG .C. A. .G. A. 520 ATCGAAGTT. CCACCAAGTT. 	530 530 FTTTTTATGAT 630 CATCATTACAC CATCATTACAC CATCATTACAC CATCATTACAC	540 540 640 640 640 640 640 740 740 740	550 550 650 650 TTGTTTCAA 	560 560 5AAATT GTTTT 660 5TATATT CAA 760 4TT GTAGAGTT T	570 570 T. G. T. GAGATATGA GAGATATAT A.A. C. 770 CATTAGATG	580 580 TCCGTTCAAG, 680 	590 590 AAAGGATCAT 690 GGGCTTCAAT 790 CAATGTGAAC T. G. C	1

Figure 25 Multiple sequence alignment of *ycf*1 gene of the three *Bacopa* plants The numbers above the alignment represents the base numbers of sequence alignments. "." Represents nucleotide base that is identical to the nucleotide in the first-row. "-" represents the gap.

	10	20	30	40	50	60	70	80	90	100
	ment from her cel	encore fin encort	second cases a	faces free sed	and a firmer	[second areas	Forward Incorrect	and a firmer (face and second f	is seen 1
BM	GTTATGCATGAACGT	AATGCTCAC	ACTTCCCTC	TAGATCTAGC	GCTATCGAA	GCTCCAACAA	ATGGATAAGAG	TTGGTCTTA	TATATAGGAG	TTTTT
BC			G.							
BF					т					
	110	120	130		150			180		200
	en cherchered									
BM	GAAAATAGATATGTA									
BC										
BF	• • • • • • • • • • • • • • • • • •	· · · · · · · · · · · ·	*****	•••••	• • • • • • • • • •		.A	. T		G
	210	220	230	240	250	260	270	280	290	300
	see a la see lass col	eres a lla seco l		lis and has real		bered erre	[]			1
BM	AGTA	TTG					test mes and test mes met test mes met test i		AGT	TATTAT
BC	.TTTTTTTTCTTA	TACTTAT	ATAGACTTT	TCATTACAGA	A				T .G	
BF	TTTTTTTATTT									
	310	320	330	340	350	360	370	380	390	400
				l			Le con loss and			1
BM	TCTTTTATTTTCTAT	ΔΑͲͲͲͲΑͲͲͲ	GGATTTTAA	TTTAATCT	GTTTGATTT	CTTTAATTTC	TTATCAAATC			
BC	.AA.TAATA									
BF										
DL										
	410	420	430	440	450	460	470	480	490	500
				[]		[]	[]			
BM		AAAAAGT	AGAAAAAAA	AGAAAAAATA	TAGATAACT	ACTATAAGTT	ATAAGATAAG	GCGGATGTA	CCAAGTGGAT	CAAGG
BC	ATAAAAT	AAA	TG	A. G						
BF	TATTTTTTAGAAGTA									
DE	Ini III Indiada									
	510	520								
BM	CAGTGGATTGTGAAT	CCACCATGCO	GCG							
BC										
DC										

Figure 26 Multiple sequence alignment of *psbA-trnH* intergenic spacer of the three

Bacopa plants

The numbers above the alignment represents the base numbers of sequence alignments. "." Represents nucleotide base that is identical to the nucleotide in the first-row. "-" represents the gap.

	10	20	30	40	50	60	70	80	90	100
	conclusion for each	encore fin encore l	ber end and a				is seen free seed	Lener e fin ener	face and served	
BC	ACGGACTTAATTGGA	TTGAGCCTTG	GTATGGAAA	CCTACTAAGT	ATAACTTTC	AAATTCAGAGA	AACCCCGGA	ATTAATAAAA.	ATGGGCAATCO	TGAGC
BF										
BM				••••••					• • • • • • • • • • • •	• • • • •
	110	120	130	140	150	160	170	180	190	200
BC	CAAATCCTGTTTTCT	CAAAACAAAG	GTTCCGAAA	TGAAAAAA	AGGATAGGT	GCAGAGACTCA	ATGGAAGCT	GTTCTAACAA.	ATGGAGTTGAC	TGCGT
BF										
BM	************									
	210	220	230	240	250	260	270	280	290	300
									10 × 10	200
BC	TGGCAGAGGAATCTT									
BF	T			A			G	T		
BM	T G			.A			A	T	T	
	310	320	330	340	350		370	380	390	400
BC	TCTATGCAAAACAGA									
BF	AC									
BM					T		c			
	410	420	430	440	450	460	470	480	490	500
BC	TTTAAGAACTTATAA									
BF	A									
BM										
	510	520	530	540	550	560	570	580	590	600
BC	GTCGACTTTAAAAAT									
BF	GIOGACITIAAAAA								CCTTTTTCGT	ATCGG
BM					AGGACCT	ATTTGACTCCC	AAAATATTT	ATCCCATCCC	CCTTTT - CGTT	ATCGG
				640	650	660	670	680	690	700
	610	620	630		200000	C (20)	1		i	
BC	610 			[]]		[]				[
BC		· · · · [· · · ·]		[]]		[]				
BC BF BM		TTTTTTCAG	TTTTCAA	TGTATTTTG	GCATAAATG	ATTTCTCTTZ	GCACATAAG	ATTGTGATAT.	AGAATACACAT	CCAAG
BF	TTCCAAATTCTTTTA	TTTTTTTCAG	TTTTCAA TCTTTTCAA	ATGTATTTTGC	CGCATAAATG CGCATAAATG	ATTTTCTCTTZ	GCACATAAG TCACATAAG	ATTGTGATAT. ATTGTGATAT.	AGAATACACAT AGAATACATAT	CCAAG
BF	TTCCAAATTCTTTTA TTCCAAATTCTTTTA TTCCAAATTCTTTTA	TTTTTTCAG	T – TTTCAA TCTTTTCAA 730	ATGTATTTTGC ATGTATTTTGC 740	CGCATAAATG CGCATAAATG 750	ATTTTCTCTT ATTTTCTCTTF ATTTTCTCTTF 760	GCACATAAG TCACATAAG 770	ATTGTGATAT. ATTGTGATAT. 780	AGAATACACAT AGAATACATAT 790	CCAAG CCAAG 800
BF BM	TTCCAAATTCTTTTA TTCCAAATTCTTTTA TTCCAAATTCTTTTA 710	TTTTTTCAG TTTTTTCAG TTTTTCCAG 720	TCTTTCAAJ TCTTTTCAAJ 730	ATGTATTTTGC ATGTATTTTGC 740	CGCATAAATG CGCATAAATG 750	I ATTTTCTCTT# ATTTTCTCTT# 760 I I	AGCACATAAG TCACATAAG 770	ATTGTGATAT. ATTGTGATAT. 780	AGAATACACAT AGAATACATAT 790	CCAAG CCAAG 800
BF BM BC	TTCCAAATTCTTTTA TTCCAAATTCTTTTA TTCCAAATTCTTTTA 710 	TTTTTTCAG TTTTTTCTCAG 720 AT	T - TTTCAAJ TCTTTTCAAJ 730 	ATGTATTTTGC ATGTATTTTGC 740 	CGCATAAATG CGCATAAATG 750 	ATTTTCTCTTA ATTTTCTCTTA 760 III GCAACTTAAAC	GCACATAAG TCACATAAG 770 	ATTGTGATAT. ATTGTGATAT. 780 II CGTCTTTTTG	AGAATACACAT AGAATACATAT 790 III TTTTTGAGGAT	CCAAG CCAAG 800 1
BF BM	TTCCAAATTCTTTTA TTCCAAATTCTTTTA 710 	TTTTTTTCAG TTTTTTCCAG 720 	T TTTCAAA TCTTTTTCAAA 730 	AT GTATTTTGC AT GTATTTTGC 740 	GCATAAATG	ATTTTCTCTTA ATTTTCTCTTA 760 III GCAACTTAAAC	GCACATAAG TCACATAAG 770 	ATTGTGATAT. ATTGTGATAT. 780 II. CGTCTTTTTG .C.	AGAATACACAT AGAATACATAT 790 III TTTTTGAGGAT	CCAAG 800 I
BF BM BC BF	TTCCAAATTCTTTTA TTCCAAATTCTTTTA TTCCAAATTCTTTTA 710 	TTTTTTTCAG TTTTTTCCAG 720 	T TTTCAAA TCTTTTTCAAA 730 	AT GTATTTTGC AT GTATTTTGC 740 	GCATAAATG	ATTTTCTCTTA ATTTTCTCTTA 760 III GCAACTTAAAC	GCACATAAG TCACATAAG 770 	ATTGTGATAT. ATTGTGATAT. 780 II. CGTCTTTTTG .C.	AGAATACACAT AGAATACATAT 790 III TTTTTGAGGAT	CCAAG 800 I
BF BM BC BF	TTCCAAATTCTTTTA TTCCAAATTCTTTTA 710 	TTTTTTTCAG TTTTTTCTCAG 720 	T - TTT CAAA TCTTTT CAAA 730 'GATTCACAAT	AT GTATTTTG(AT GTATTTTG(740 	CGCATAAATG CGCATAAATG 750 I TACTCCTACT	I I I ATTTTCTCTTZ ATTTTCTCTTZ 760 GCAACTTAAAC 	AGCACATAAG TCACATAAG 770 	ATTGTGATAT. ATTGTGATAT. 780 CGTCTTTTTG .C	AGAATACACAT AGAATACATAT 790 III TTTTTGAGGAT	CCAAG CCAAG 800 1 CCCAAG 900
BF BM BC BF BM	TTCCAAATTCTTTA TTCCAAATTCTTTA 710	TTTTTTCAG TTTTTCCAG 720 AT CTATTGA CTATTTGA 820 	T - TTTCAA2 TCTTTTCAA2 730 'GATTCACAA7 830	AT GTATTTTGC AT GTATTTTGC 740 	CGCATAAATG CGCATAAATG 750 	I Image: Constraint of the second secon	AGCACATAAG TCACATAAG 770 	ATTGTGATAT. 780 	AGAATACACAT 790 III TTTTTGAGGAT	800 CCAAG CCCAAG 900
BF BM BC BF BM BC	TTCCAAATTCTTTA TTCCAAATTCTTTA 710 	TTTTTTTCAG TTTTTCTCAG 720 	T - TTTCAA TCTTTTCAA 730 GATTCACAA 830	AT GTATTTTGC TGTATTTTGC 740 	CGCATAAATG CGCATAAATG 750 	ATTTTCTCTTA ATTTTCTCTTA 760 GCAACTTAAAC 860	GCACATAAG TCACATAAG 770 	ATTGTGATAT. 780 	AGAATACACAT AGAATACATAT 790 III TTTTTGAGGAT 890 IATAAAATG	800 CCAAG CCCAAG 900 EAGTAT
BF BM BC BF BM BC BF	TTCCAAATTCTTTA TTCCAAATTCTTTA 710 	TTTTTTTCAG TTTTTCCAG 720 AT CTATTTGA. CTATTTGA. 820 	GATTCAAI 30 30 30 30 30 30 30 30 30 30 30 30 30	ATGTATTTTGC TGTATTTTGC 740 	CGCATAAATG CGCATAAATG 750 I RACTCCTACT 850 I TTAATTGAC	ATTTTCTCTTA ATTTTCTCTTA 760 	GCACATAAG TCACATAAG 770 	ATTGTGATAT. ATTGTGATAT. 780 	AGAATACACAT AGAATACATAT 790 III TTTTTGAGGAT 890 IATAAAATC	800 TCCAAG TCCAAG 900 BAGTAT G.
BF BM BC BF BM BC	TTCCAAATTCTTTA TTCCAAATTCTTTA 710 	TTTTTTTCAG TTTTTCCAG 720 AT CTATTTGA. CTATTTGA. 820 	GATTCAAI 30 30 30 30 30 30 30 30 30 30 30 30 30	ATGTATTTTGC TGTATTTTGC 740 	CGCATAAATG CGCATAAATG 750 I RACTCCTACT 850 I TTAATTGAC	ATTTTCTCTTA ATTTTCTCTTA 760 	GCACATAAG TCACATAAG 770 	ATTGTGATAT. ATTGTGATAT. 780 	AGAATACACAT AGAATACATAT 790 III TTTTTGAGGAT 890 IATAAAATC	800 TCCAAG TCCAAG 900 BAGTAT G.
BF BM BC BF BM BC BF	Image: 100 million TTCCAAATTCTTTTA TTCCAAATTCTTTTA 710 Image: 100 million ATAAGCAAGGAATCT ATAAGCAAGGAATCT 810 Image: 100 million AAATTACAGGACTTG 910	TTTTTTTCAG TTTTTCCAG 720 	37 TTT CAAI TCTTTT CAAI 330 'GATTCACAAI 830 'TGTAAT CCAT (A	AT GTATTTTGC TGTATTTTGC 740 	CGCATAAATG CGCATAAATG 750 I RACTCCTACT 850 I TTAATTGAC 950	I ATTTTCTCTTA ATTTTCTCTTA 760 760	GCACATAAG TCACATAAG 770 	ATTGTGATAT. ATTGTGATAT. 780 	AGAATACACAT AGAATACATAT 790 III TTTTTGAGGAT 890 IATAAAATC	800 TCCAAG 900 BAGTAT G
BF BM BF BM BC BF BM	TTCCAAATTCTTTTA TTCCAAATTCTTTTA 710	TTTTTTTCAG TTTTTCCAG 720 	T - TTTCAA TCTTTTCAA 330 	AT GTATTTTGC TGTATTTTGC 740 	CCATAAATG CCATAAATG 750 I FACT CCTACT 850 I TTTAATTGAC 950	ATTTTCCTTA ATTTTCCTTA 760 	GCACATAAG 770 CTACAAAGT 870 	ATTGTGATAT. ATTGTGATAT. 780 	AGAATACACAT AGAATACATAT 790 III TTTTTGAGGAT 890 IATAAAATC	800 TCCAAG 900 BAGTAT G
BF BM BF BM BC BF BM BC	TTCCAAATTCTTTA TTCCAAATTCTTTA TTCCAAATTCTTTA 710	TTTTTTTCAG TTTTTCCAG 720 	T - TTT CAM TCTTTT CAA 730 	AT GTATTTTGC T40 740 	CGCATAAATG CGCATAAATG 750 	ATTTTCTCTTA ATTTTCTCTTA 760 GCAACTTAAAC 860 ATTGACCATT .A. 960 GGACTGAAAAT	GCACATAAG TCACATAAG 770 CTACAAAGT 870 GCTAI	ATTGTGATAT. ATTGTGATAT. 780 	AGAATACACAT AGAATACATAT 790 III TTTTTGAGGAT 890 IATAAAATC	800 TCCAAG 900 BAGTAT G
BF BM BC BF BM BC BF	TTCCAAATTCTTTA TTCCAAATTCTTTA TTCCAAATTCTTTA 710 ATAAGCAAGGAATCT ATAAGCAAGGAATCT ATAAGCAAGGAATCT ATAAGCAAGGAATCT ATAAGCAAGGAATCT B10	TTTTTTTCAG TTTTTCCAG 720 	GGTCGGGAT	AT GTATTTTGC TGTATTTTGC 740 	CCATAAATG CCATAAATG 750 I RACTCCTACT 850 I TTAATTGAC 950 I TAGAGCAGA	ATTTTCTCTTA ATTTTCTCTTA 760 GCAACTTAAAC 860 ATTGACCCAT .A. .960 GGACTGAAAAT	GCACATAAG TCACATAAG 770 	ATTGTGATAT. ATTGTGATAT. 780 	AGAATACACAT AGAATACATAT 790 III TTTTTGAGGAT 890 IATAAAATC	800 TCCAAG 900 BAGTAT G
BF BM BC BF BM BC BF	TTCCAAATTCTTTA TTCCAAATTCTTTA TTCCAAATTCTTTA 710	TTTTTTTCAG TTTTTCCAG 720 		AT GTATTTTGC TGTATTTTGC 740 	CCATAAATG CCATAAATG 750 I RACTCCTACT 850 I TTAATTGAC 950 I TAGAGCAGA	ATTTTCTCTTA ATTTTCTCTTA 760 GCAACTTAAAC 860 ATTGACCCAT .A. .960 GGACTGAAAAT	GCACATAAG TCACATAAG 770 	ATTGTGATAT. ATTGTGATAT. 780 	AGAATACACAT AGAATACATAT 790 III TTTTTGAGGAT 890 IATAAAATC	800 TCCAAG TCCAAG 900 BAGTAT G.

Figure 27 Multiple sequence alignment of *trn*L-F intergenic spacer of the three

Bacopa plants

The numbers above the alignment represents the base numbers of sequence alignments. "." Represents nucleotide base that is identical to the nucleotide in the first-row. "-" represents the gap.

VITA

Mr.Chayapol Tungphatthong was born on February 23, 1992, in Ratchaburi, Thailand. He got his Bachelor of Sciences in Pharmacy (Pharmaceutical Sciences) in 2016 from the Faculty of Pharmaceutical Sciences, Chulalongkorn University, Thailand.

Poster presentation

Tungphatthong C., Somnuek J., Ingkaninan K., Sukrong S. 2017. Molecular analysis of Bacopa plants based on matK chloroplast genome. JSPS-NRCT Follow-Up Seminar 2017 and 33rd International Annual Meeting in Pharmaceutical Sciences, March, 2 – 3, 2017, Bangkok, Thailand

จุฬาลงกรณมหาวิทยาลีย Chulalongkorn University