สารที่มีฤทธิ์ทางชีวภาพจากเอื้องตาเหิน

จุหาลงกรณ์มหาวิทยาลัย

บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปีการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR) เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository (CUIR) are the thesis authors' files submitted through the University Graduate School.

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาเภสัชเวท ภาควิชาเภสัชเวทและเภสัชพฤกษศาสตร์ คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2560 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

BIOACTIVE COMPOUNDS FROM DENDROBIUM INFUNDIBULUM

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy Program in Pharmacognosy Department of Pharmacognosy and Pharmaceutical Botany Faculty of Pharmaceutical Sciences Chulalongkorn University Academic Year 2017 Copyright of Chulalongkorn University

Thesis Title	BIOACTIVE	COMPOUNDS	FROM	DENDROBIUM
	INFUNDIBUL	LUM		
Ву	Miss Saline	e Na Ranong		
Field of Study	Pharmacog	nosy		
Thesis Advisor	Associate P	rofessor Boonch	noo Sritu	ılarak, Ph.D.
Thesis Co-Advisor	Professor K	ittisak Likhitwita	yawuid,	Ph.D.

Accepted by the Faculty of Pharmaceutical Sciences, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree _______Dean of the Faculty of Pharmaceutical Sciences (Assistant Professor Rungpetch Sakulbumrungsil, Ph.D.) THESIS COMMITTEE _______Chairman (Associate Professor Rutt Suttisri, Ph.D.) ______Thesis Advisor (Associate Professor Boonchoo Sritularak, Ph.D.) ______Thesis Co-Advisor (Professor Kittisak Likhitwitayawuid, Ph.D.) _______Thesis Co-Advisor (Professor Kittisak Likhitwitayawuid, Ph.D.) ________Thesis Co-Advisor (Professor Taksina Chuanasa, Ph.D.) _______External Examiner

(Duangpen Pattamadilok, Ph.D.)

สาลินี ณ ระนอง : สารที่มีฤทธิ์ทางชีวภาพจากเอื้องตาเหิน (BIOACTIVE COMPOUNDS FROM *DENDROBIUM INFUNDIBULUM*) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: รศ. ภก. ดร. บุญ ชู ศรีตุลารักษ์, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ศ. ภก. ดร. กิตติศักดิ์ ลิขิตวิทยาวุฒิ, 206 หน้า.

การศึกษาทางพฤกษเคมีของสารสกัดเมทานอลของเอื้องตาเหิน (วงศ์ Orchidaceae) สามารถแยกสารบริสุทธิ์ได้ 9 ชนิด ได้แก่ สารใหม่ 2 ชนิด (dendroinfundin A และ และสารที่เคยมีรายงานมาก่อน 7 dendroinfundin B) ชนิด (ephemeranthol Α, 3,3'-dihydroxy-4,5-dimethoxybibenzyl, 3,4'moscatilin, aloifol batatasin III, Ι. dihydroxy-3',4,5-trimethoxybibenzyl และ dendrosinen B) พิสูจน์โครงสร้างสารโดยอาศัย ข้อมูลทางสเปกโทรสโกปี สารทั้งหมดถูกนำมาทดสอบฤทธิ์ในการยับยั้งเอนไซม์ไลเปสและเอนไซม์ แอลฟา-กลูโคซิเดส พบว่า สารที่มีฤทธิ์ยับยั้งเอนไซม์ไลเปสได้อย่างอ่อน คือ dendrosinen B (IC₅₀ = 295.0±37.9 µM) ซึ่งมีฤทธิ์ยังไม่ดีเมื่อเทียบกับ orlistat (IC₅₀ = 31.4±0.6 nM) และสารที่มีฤทธิ์ ยับยั้งเอนไซม์แอลฟากลูโคซิเดสได้ดี ได้แก่ batatasin III (IC₅₀ = 148.8±8.4 µM) และ dendrosinen B (IC₅₀ = 213.9±2.4 µM) ซึ่งมีฤทธิ์ที่แรงกว่า acarbose (IC₅₀ = 809.1±22.2 µM)

ภาควิชา	เภสัชเวทและเภสัชพฤกษศาสตร์	ลายมือชื่อนิสิต
สาขาวิชา	เภสัชเวท	ลายมือชื่อ อ.ที่ปรึกษาหลัก
ปีการศึกษา	2560	ลายมือชื่อ อ.ที่ปรึกษาร่วม

5976118233 : MAJOR PHARMACOGNOSY

KEYWORDS: DENDROBIUM INFUNDIBULUM / ALPHA-GLUCOSIDASE INHIBITORY ACTIVITY / LIPASE INHIBITORY ACTIVITY / ORCHIDACEAE / DIHYDROPHENANTHRENES / BIBENZYLS

SALINEE NA RANONG: BIOACTIVE COMPOUNDS FROM *DENDROBIUM INFUNDIBULUM*. ADVISOR: ASSOC. PROF. BOONCHOO SRITULARAK, Ph.D., CO-ADVISOR: PROF. KITTISAK LIKHITWITAYAWUID, Ph.D., 206 pp.

Phytochemical study of the methanol extract from *Dendrobium infundibulum* (Orchidaceae) led to isolation of nine pure compounds including two new compounds (dendroinfundin A and dendroinfundin B) and seven known compounds (ephemeranthol A, moscatilin, aloifol I, batatasin III, 3,3'-dihydroxy-4,5dimethoxybibenzyl, 3,4'-dihydroxy-3',4,5-trimethoxybibenzyl and dendrosinen B). Their structures were determined from their spectroscopic data. All compounds were then examined for their lipase and alpha-glucosidase inhibitory activities. Dendrosinen B (IC₅₀ = 295.0±37.9 μ M) showed moderate inhibitory activity against lipase when compared with orlistat (IC₅₀ = 31.4±0.6 nM). Strong anti alphaglucosidase agents were batatasin III (IC₅₀ = 148.8±8.4 μ M) and dendrosinen B (IC₅₀ = 213.9±2.4 μ M), which were more potent than acarbose (IC₅₀ = 809.1±22.2 μ M).

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Department:	Pharmacognosy and	Student's Signature
	Pharmaceutical Botany	Advisor's Signature
Field of Study:	Pharmacognosy	Co-Advisor's Signature
Academic Year:	2017	

ACKNOWLEDGEMENTS

The author would like to express her deepest appreciation to her advisor, Associate Professor Dr. Boonchoo Sritularuk of the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for his valuable advice, useful instruction, endless support, patience and encouragement throughout this Master's degree study.

The author wishes to express her sincere thanks to Professor Dr. Kittisak Likhitwitayawuid of Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, her thesis coadvisor, for his useful advice, persistent help and kindness.

The author is grateful for all assistance and beneficial advice from the members of her thesis committee.

The author would also like to thank all course instructors, staff members and all students in the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University for their help, beneficial advice, memorable friendship and kindness.

Finally, her special gratitude is expressed to her family for their love, understanding and encouragement.

CONTENTS

	Page
THAI ABSTRACT	iv
ENGLISH ABSTRACT	V
ACKNOWLEDGEMENTS	vi
CONTENTS	.∨ii
List of figures	10
List of tables	14
List of schemes	16
	17

CONTENTS	vii
List of figures	
List of tables	
List of schemes	
ABBREVIATIONS & SYMBOLS	
CHAPTER I INTRODUCTION	
CHAPTER II HISTORICAL	
1. Chemical constituents of <i>Dendrobium</i>	
1.1 Bibenzyls	
1.2 Phenanthrenes	
1.3 Flavonoids	67
1.4 Terpenes	72
1.5 Miscellaneous compounds	
2. Biological activities of <i>Dendrobium</i> species	
2.1 Cytotoxic activity	
2.2 Antioxidant activity	
2.3 Anti-platelet activity	
2.4 Anti-inflammatory activity	
2.5 Antifibrotic activity	
	List of figures List of tables ABBREVIATIONS & SYMBOLS CHAPTER I INTRODUCTION CHAPTER II HISTORICAL 1. Chemical constituents of <i>Dendrobium</i> 1.1 Bibenzyls 1.2 Phenanthrenes 1.3 Flavonoids 1.4 Terpenes 1.5 Miscellaneous compounds 2. Biological activities of <i>Dendrobium</i> species 2.1 Cytotoxic activity 2.2 Antioxidant activity 2.3 Anti-platelet activity 2.5 Antifibrotic activity

Page

2.6 Immunomodulatory activity	
2.7 Neuroprotective effect	
2.8 lipase and $lpha$ -glucosidase inhibitory activity	
CHAPTER III EXPERIMENTAL	
1. Materials	
1.1 Plant material	
1.2 Chemical materials	
2. Experimental techniques	
2.1 Analytical thin-layer chromatography (TLC)	
2.2 Column Chromatography	
2.3 Spectroscopy	
3. Extraction and isolation	
3.1 Extraction	
3.2 Separation and isolation	
4. Physical and spectral data of isolated compounds	113
4.1 Compound DI1 (Dendroinfundin A)	113
4.2 Compound DI2 (Ephemeranthol A)	113
4.3 Compound DI3 (Dendroinfundin B)	113
4.4 Compound DI4 (Moscatilin)	114
4.5 Compound DI5 (Aloifol I)	114
4.6 Compound DI6 (Batatasin III)	114
4.7 Compound DI7 (3,3 ⁴ -Dihydroxy-4,5-dimethoxybibenzyl)	114
4.8 Compound DI8 (3,4′-Dihydroxy-3′,4,5-trimethoxybibenzyl)	115

Page

ix

4.9 Compound DI9 (Dendrosinen B)	115
5. Assays for lipase and $lpha$ -glucosidase inhibitory activities	115
5.1 Lipase inhibitory activity assay	115
5.2 $lpha$ -Glucosidase enzyme inhibitory activity assay	117
CHAPTER IV RESULTS AND DISCUSSION	119
1. Structure determination of isolated compounds	119
1.1 Structure determination of compound DI1	119
1.2 Structure determination of compound DI2	
1.3 Structure determination of compound DI3	134
1.4 Structure determination of compound DI4	143
1.5 Structure determination of compound DI5	151
1.6 Structure determination of compound DI6	158
1.7 Structure determination of compound DI7	165
1.8 Structure determination of compound DI8	173
1.9 Structure determination of compound DI9	
2. Lipase and $lpha$ -glucosidase inhibitory activities	
CHAPTER V CONCLUSION	
REFERENCES	
VITA	206

List of figures

Figure 1 Dendrobium infundibulum Lindl.	29
Figure 2 Structures of bibenzyl derivatives from <i>Dendrobium</i> species	41
Figure 3 Structures of phenanthrene and derivatives from <i>Dendrobium</i> species	58
Figure 4 Structures of flavonoids and derivatives from <i>Dendrobium</i> species	70
Figure 5 Structures of terpene and derivatives from <i>Dendrobium</i> species	76
Figure 6 Miscellaneous compounds from <i>Dendrobium</i> species	91
Figure 7 Mass spectrum of compound DI1	122
Figure 8 IR spectrum of compound DI1	122
Figure 9 UV spectrum of compound DI1	122
Figure 10 ¹ H-NMR spectrum of compound DI1	123
Figure 11 ¹³ C-NMR spectrum of compound DI1	123
Figure 12 HSQC spectrum of compound DI1	124
Figure 13 HSQC spectrum of compound DI1 (enlarge1)	124
Figure 14 HSQC spectrum of compound DI1 (enlarge2)	125
Figure 15 HBMC spectrum of compound DI1	125
Figure 16 HBMC spectrum of compound DI1 (enlarge 1)	126
Figure 17 HBMC spectrum of compound DI1 (enlarge 2)	126
Figure 18 NOESY spectrum of compound DI1	127
Figure 19 Mass spectrum of compound DI2	131
Figure 20 ¹ H-NMR spectrum of compound DI2	131
Figure 21 ¹³ C-NMR spectrum of compound DI2	132
Figure 22 HSQC spectrum of compound DI2	132

Figure 23 HMBC spectrum of compound DI2	133
Figure 24 NOESY spectrum of compound DI2	133
Figure 25 Mass spectrum of compound DI3	137
Figure 26 IR spectrum of compound DI3	137
Figure 27 UV spectrum of compound DI3	137
Figure 28 ¹ H-NMR spectrum of compound DI3	138
Figure 29 ¹³ C-NMR spectrum of compound DI3	138
Figure 30 HSQC spectrum of compound DI3	139
Figure 31 HSQC spectrum of compound DI3 (enlarge)	139
Figure 32 HMBC spectrum of compound DI3	140
Figure 33 HMBC spectrum of compound DI3 (enlarge 1)	140
Figure 34 HMBC spectrum of compound DI3 (enlarge 2)	141
Figure 35 HMBC spectrum of compound DI3 (enlarge 3)	141
Figure 36 NOESY spectrum of compound DI3	142
Figure 37 NOESY spectrum of compound DI3 (enlarge)	142
Figure 38 Mass spectrum of compound DI4	147
Figure 39 ¹ H-NMR spectrum of compound DI4	147
Figure 40 ¹³ C-NMR spectrum of compound DI4	148
Figure 41 HSQC spectrum of compound DI4	148
Figure 42 HMBC spectrum of compound DI4	149
Figure 43 NOESY spectrum of compound DI4	149
Figure 44 NOESY spectrum of compound DI4 (enlarge)	150
Figure 45 Mass spectrum of compound DI5	154
Figure 46 ¹ H-NMR spectrum of compound DI5	154

Figure 47 ¹³ C-NMR spectrum of compound DI5	155
Figure 48 HSQC spectrum of compound DI5	155
Figure 49 HMBC spectrum of compound DI5	156
Figure 50 NOESY spectrum of compound DI5	156
Figure 51 NOESY spectrum of compound DI5 (enlarge)	157
Figure 52 Mass spectrum of compound DI6	161
Figure 53 ¹ H-NMR spectrum of compound DI6	
Figure 54 ¹³ C-NMR spectrum of compound DI6	
Figure 55 HSQC spectrum of compound DI6	
Figure 56 HMBC spectrum of compound DI6	163
Figure 57 HMBC spectrum of compound DI6 (enlarge 1)	163
Figure 58 HMBC spectrum of compound DI6 (enlarge 2)	164
Figure 59 NOESY spectrum of compound DI6	164
Figure 60 Mass spectrum of compound DI7	169
Figure 61 ¹ H-NMR spectrum of compound DI7	169
Figure 62 ¹³ C-NMR spectrum of compound DI7	170
Figure 63 HSQC spectrum of compound DI7	170
Figure 64 HMBC spetrum of compound DI7	171
Figure 65 HMBC spetrum of compound DI7 (enlarge)	171
Figure 66 NOESY spectrum of compound DI7	172
Figure 67 NOESY spectrum of compound DI7 (enlarge)	172
Figure 68 Mass spectrum of compound DI8	176
Figure 69 ¹ H-NMR spectrum of compound DI8	176
Figure 70 ¹³ C-NMR spectrum of compound DI8	177

Figure 71 HSQC spectrum of compound DI8	
Figure 72 HMBC spectrum of compound DI8	
Figure 73 HMBC spectrum of compound DI8 (enlarge)	
Figure 74 NOESY spectrum of compound DI8	179
Figure 75 NOESY spectrum of compound DI8 (enlarge)	
Figure 76 Mass spectrum of compound DI9	
Figure 77 ¹ H-NMR spectrum of compound DI9	
Figure 78 ¹³ C-NMR spectrum of compound DI9	
Figure 79 HSQC spectrum of compound DI9	
Figure 80 HSQC spectrum of compound DI9 (enlarge)	
Figure 81 HMBC spectrum of compound DI9	
Figure 82 NOESY spectrum of compound DI9	
Figure 83 NOESY spectrum of compound DI9 (enlarge)	
Figure 84 Pure compounds isolated from <i>Dendrobium infundibulum</i>	

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

List of tables

Table 1 Distribution of bibenzyl derivatives in Dendrobium species	31
Table 2 Distribution of phenanthrenes and derivatives in Dendrobium species	48
Table 3 Distribution of flavonoid derivatives in Dendrobium species	67
Table 4 Distribution of terpene derivatives in Dendrobium species	72
Table 5 Miscellaneous compounds found in Dendrobium species	82
Table 6 NMR spectral data of compound DI1 (500 MHz, in acetone- d_6)	121
Table 7 NMR spectral data of compound DI2 (300 MHz, in acetone- d_6) andephemeranthol A (400 MHz, in CDCl ₃)	130
Table 8 NMR spectral data of compound DI3 (500 MHz, in acetone- d_6)	136
Table 9 NMR spectral data of compound DI4 (300 MHz, in acetone- d_6) andMoscatilin (100 MHz, in CDCl3)	146
Table 10 NMR spectral data of compound DI5 (300 MHz, in acetone- d_6) andaloifol I (400 MHz, in CDCl3)	153
Table 11 NMR spectral data of compound DI6 (300 MHz, in acetone- d_6) andBatatasin III (500 MHz, in CDOD3)	160
Table 12 NMR spectral data of compound DI7 (300 MHz, in acetone- d_6) and 3,3 ['] - Dihydroxy-4,5-dimethoxybibenzyl (300 MHz, in CDOD ₃)	168
Table 13 NMR spectral data of compound DI8 (300 MHz, in acetone- d_6) and 3,4'-dihydroxy-3',4,5-trimethoxybibenzyl (500 MHz, in CDCl ₃)	175
Table 14 NMR spectral data of compound DI9 (300 MHz, in acetone- d_6) andDendrosinen B (500 MHz, in CDCl ₃)	182
Table 15 Screening test for lipase and α -glucosidase inhibitory activities of all extracts at concentration 100 µg/mL	188

Table 16 Lipase and α -glucosidase inhibitory activities of fractions obtained from	l
ethyl acetate extract (at concentration 100 µg/mL)	. 189
Table 17 IC_50 value for lipase and $lpha$ -glucosidase inhibitory activities of	
compounds isolated from <i>Dendrobium infundibulum</i>	. 190

List of schemes

Scheme 1 Extraction of Dendrobium Infundibulum	106
Scheme 2 Separation of the EtOAc extract of Dendrobium Infundibulum	107
Scheme 3 Separation of fraction E12 of Dendrobium Infundibulum	109
Scheme 4 Separation of fraction E13 of Dendrobium Infundibulum	110
Scheme 5 Separation of fraction F of Dendrobium Infundibulum	111
Scheme 6 Separation of fraction 4 of Dendrobium Infundibulum (DI9)	112

ABBREVIATIONS & SYMBOLS

Ac	=	Acetate
Ara	=	Arabinose
Acetone- d_6	=	Deuterated acetone
BHT	=	Butylated hydroxytoluene
br s	=	Broad singlet (for NMR spectra)
°C	=	Degree celsius
CaCl ₂	=	Calcium chloride
СС	=]	Column chromatography
CDCl ₃	= /	Deuterated chloroform
CH ₂ Cl ₂	=	Dichloromethane
cm	=	Centimeter
¹³ C-NMR	= 😪	Carbon-13 Nuclear Magnetic Resonance
d	=	Doublet (for NMR spectra)
dd	ลุฬา	Doublet of doublets (for NMR spectra)
δ	Chula	Chemical shift
EtOAc	=	Ethyl acetate
FCC	=	Flash Column Chromatography
FT-IR	=	Fourier-transformed infrared spectroscopy
g	=	Gram
Glc	=	Glucose
НМВС	=	¹ H-detected Heteronuclear Multiple Bond Correlation
¹ H-NMR	=	Proton Nuclear Magnetic Resonance

HR-ESI-MS	=	High Resolution Electrospray Ionization Mass
		Spectrometry
HSQC	=	¹ H-detected Heteronuclear Single Quantum Coherence
IC ₅₀	=	Concentration exhibiting 50% inhibition
IR	=	Infrared
J	=	Coupling constant
Kg	=	Kilogram
L	=	Liter
λ_{max}	=	Wavelength at maximal absorption
[M+Na] ⁺	= 2	Sodium-adduct pseudo molecular ion
m	= /	Multiplet (for NMR spectra)
Meo	=	Methoxy
MeOH	=	Methanol
MHz	- 84	Megahertz
mg	=	Milligram
μg	จุหา	Microgram
mL	GHULA =	Milliliter
μL	=	Microliter
μΜ	=	Micromolar
mm	=	Millimeter
mM	=	Millimolar
nM	=	Nanomolar
MS	=	Mass spectrum
4-MU	=	4-methylumbelliferone

4-MUO	=	4-methylumbelliferyl oleate
m/z	=	Mass to charge ratio
N/A	=	Not available
NaCl	=	Sodium chloride
Na ₂ CO ₃	=	Sodium carbonate
NMR	=	Nuclear Magnetic Resonance
NOESY	=	Nuclear Overhauser Effect Spectroscopy
ОН	=,	Hydroxy
pNPG	=	<i>p</i> -nitrophenyl- $lpha$ -D-glucopyranoside
рН	= /	Potential of Hydrogen ion
ppm	=	Part per million
Rha	=	Rhamnose
5	=	Singlet (for NMR spectra)
t	- 8	Triplet (for NMR spectra)
TLC	= (11)	Thin Layer Chromatography
Tris-HCl	จุฬาส ค	Tris Hydrochloride
U	UNULAI =	Unit
UV-VIS	=	Ultraviolet and Visible spectroscopy
VLC	=	Vacuum Liquid Column Chromatography

CHAPTER I

According to a World Health Organization report in 2016, the top ten leading causes of death were mostly from non-infectious diseases, especially in middle-income and high-income countries (World Health Organization, 2018). In Thailand, non-communicable diseases that are the major causes of mortality are cancer, ischemic heart disease, stroke and diabetes (Public Health Statistic, 2016).

Ischemic heart disease and stroke caused of abnormal adaptive immunity response triggered by certain disorders such as obesity (Sell et al., 2012). Many groups of drugs, for example, norepinephrine-releasing agents, pancreatic and gastric lipase inhibitors, serotonin 2C receptor agonists, GABA modulators, dopamine and norepinephrine reuptake inhibitors, opioid antagonists and glucagon-like peptide-1 agonists, have been used to treat obesity (Apovian et al., 2015). Obesity is the main cause of several non-communicable diseases, especially type-II diabetes, which has been treated by several types of drugs, including biguanides, sulfonylureas, meglitinides, thiazolidinediones, α -glucosidase inhibitors, dipeptidyl peptidase-4 inhibitors, bile acid sequestrants, dopamine-2 agonists, sodium glucose co-transporter type 2 inhibitors, glucagon-like peptide-1 receptor agonists and amylinomimetics (American Diabetes Association, 2018). Although there are a lot of drugs for the management of these diseases, problems still exist, due to diseases' complications and drugs' side effects. The issues might be resolved by developing new drugs with high potency and less side effects. The importance of drugs derived from plants have been recognized for years. Traditional use of Dendrobium plants in Chinese medicine as antidiabetic agents has stimulated the author's interest in doing research to find the active constituents.

Dendrobium is the largest genus in the family Orchidaceae with 800-1,400 species (Jin *et al.*, 2009). In Thailand, several species of *Dendrobium* have been identified as follows ("BGO Plant Database," 2011; Environment, 2014; Thongdonair *et al.*, 2013).

- D. aciculare Lindl.
- D. acinaciforme Roxb.
- D. aduncum Wall. ex. Lindl.
- D. albosanguineum Lindl.
- D. aloifolium (Blume) Rchb.f.
- D. alterum Seidenf.
- D. anceps Sw.
- D. angulatum Lindl.
- D. anosmum Lindl.
- D. aphyllum (Roxb.) C.E.C.Fisch.
- D. bellatulum Rolfe
- D. bensoniae Rchb.f.
- D. bicameratum Lindl.
- D. bifarium Lindl.
- D. bilobulatum Seidenf.
- D. blumei Lindl.
- D. brevimentum Seidenf.
- D. brymerianum Rchb.f.
- D. calicopis Ridl.
- D. capillipes Rchb.f.
- D. cariniferum Rchb.f.
- D. chittimae Seidenf.
- D. christyanum Rchb.f.

- กล้วยไม้มีอนาง Kluai mai mue nang เอื้องใบเข็ม Ueang bai Khem เอื้องยอดสร้อย Ueang yot soi N/A เอื้องตางัว Ueang ta ngua เอื้องมณี Ueang mani เอื้องเข็ม Ueang khem หางปลา Hang pla เอื้องมะลิน้อย Ueang mali noi เอื้องสาย Ueang sai เอื้องงวงช้าง Ueang nguang chang เอื้องแซะภู Ueng sae phu เอื้องสายดอกขาว Ueang doe khao เอื้องเข็ม Ueang khem N/A **กล้วยไม้ก้างปลา** Kluai mai kang pla หวายนายบลูม Wai nai blume เอื้องสายสีดอกใต้ Ueang sai si dok tai เอื้องคำฝอย Ueang kham foi เอื้องสายทะเลบันม่วง Ueang sai ta lay bun muang เอื้องคำกิ่ว Ueang kham kio
- เอื้องกาจก Ueang kachok
- เอื้องจิตติมา Ueang chittima
- เอื้องแซะภูกระดึง Ueang sae phu kradueng

- D. chryseum Rolfe
- D. chrysocrepis Par. & Rchb.f.
- D. chrysotoxum Lindl.
- D. ciliatilabellum Seidenf.
- D. clavator Ridl.
- D. compactum Rolfe ex Hackett
- D. compressum Lindl.
- D. concinnum Miq.
- D. confinale Kerr
- D. cowenii O'Byrne & Vern.
- D. crepidatum Lindl. & Paxton
- D. cretaceum Lindl.
- D. crocatum Hook.f.
- D. cruentum Rchb.f.
- D. crumenatum Sw.
- D. crystallinum Rchb.f.
- D. cumulatum Lindl.
- D. curviflorum Rolfe
- D. cuspidatum Lindl.
- D. dantaniense Guillaumin
- D. delacourii Guillaumin
- D. deltatum Seidenf.
- D. denneanum Kerr

เอื้องสายมรกต Ueang sai morakot N/A N/A เอื้องคำ Ueang kham หวายเขาเขียว Wai khao khiao N/A เอื้องข้าวตอก Ueang khao tok หวายแบนตะนาวศรี Wai baen tanao si หางเปีย Hang pia N/A N/A เอื้องสายน้ำเขียว Ueang sai nam khiao เอื้องสายน้ำนม Ueang sai num nom เอื้องนางนวล Ueang nang nuan เอื้องนกแก้ว Ueang nok kaeo หวายตะมอย Wai tamoi เอื้องนางฟ่อน Ueang nang fon เอื้องสายสี่ดอก Ueang sai si dok N/A เอื้องข้าวตอกปากแหลม Ueang khao tok pak lam เอื้องเข็ม Ueang khem เอื้องดอกมะขาม Ueang dok ma kham

N/A

N/A

D. densiflorum Lindl.	เอื้องมอนไข่ Ueang mon khai
D. denudans D.Don	เอื้องสายจำปา Ueang sai champa
D. devonianum Paxton	เอื้องเมี่ยง Ueang miang
D. dickasonii Williams	เอื้องเคี้ยะ Ueang khia
D. dixanthum Rchb.f.	เอื้องเทียน Ueang thian
<i>D. dixonianum</i> Rolfe ex Downie	เอื้องข้าวตอกเหลือง Ueang khao tok Lueang
D. draconis Rchb.f.	เอื้องเงิน Ueang ngoen
D. elliottianum O'Byrne	หวายเจดีย์ Wai chedi
D. ellipsophyllum Tang & Wang	เอื้องทอง Ueang thong
D. eriiflorum Griff.	N/A
D. erostelle Seidenf.	N/A
D. erosum (Blume) Lindl.	N/A
D. eserre Seidenf.	N/A
D. exile Schltr.	เอื้องเสี้ยน Ueang sian
D. falconeri Hook.	เอื้องสายวิสูตร Ueang sai wisut
D. farmeri Paxton	เอื้องมัจฉาณุ Ueang matchanu
D. fimbriatum Hook.	เอื้องคำน้อย Ueang kham noi
<i>D. findlayanu</i> m Par. & Rchb.f.	พวงหยก Phuang yok
<i>D. flexile</i> Ridl.	N/A
D. formosum Roxb. ex Lindl.	เอื้องเงินหลวง Ueang ngoen luang
D. friedericksianum Rchb.f.	เอื้องเหลืองจันทบูร Ueang lueang chantabun
D. fuerstenbergianum Schltr.	เอื้องแซะภูกระดึง Ueang sae phukradueng
<i>D. fychianum</i> Bateman ex Rchb.f.	หวายพม่า Wai phama
D. garrettii Seidenf.	หวายการ์เร็ด Wai karet

<i>D. gibsonii</i> Paxton Lindl.	เอื้องคำสาย Ueang kham sai
D. grande Hook.f.	เอื้องแผงใบใหญ่ Ueang pheang bai yai
D. gratiotissimum Rchb.f.	เอื้องกิ่งดำ Ueang king dam
D. gregulus Seidenf.	เอื้องมะต่อม Ueang ma tom
D. griffithianum Lindl.	เอื้องมัจฉาณุ Ueang matchanu
D. harveyanum Rchb.f.	เอื้องคำฝอย Ueang kham foi
D. hendersonii Hawkes & Heller	หวายตะมอยน้อย Wai tamoi noi
D. henryi Schltr.	เอื้องสุริยัน Ueang suriyan
D. hercoglossum Rchb.f.	เอื้องดอกมะเขือ Ueang dok ma kuea
D. heterocarpum Lindl.	เอื้องสีตาล Ueang si tan
D. hymenanthum Rchb.f.	เอื้องน้อยกลีบบาง Ueang noi klip bang
D. hymenopterum Hook.f.	N/A
D. incurvum Lindl.	N/A
D. indivisum (Blume) Miq. var. indivisum	ตานเสี้ยนไม้ Tan sian mai
D. indivisum (Blume) Miq.	N/A
var. <i>lampangense</i> Rolfe	าวิทยาลัย
<i>D. indivisum</i> (Blume) Miq.	ก้างปลา _{Kang pla}
var. <i>pallidum</i> Seidenf.	
D. indragiriense Schltr.	เอื้องอินทิรา Ueang inthira
D. infundibulum Lindl.	เอื้องตาเหิน Ueang ta hoen
D. intricatum Gagnep.	เอื้องชมพู Ueang chomphu
D. jenkinsii Wall. ex Lindl.	เอื้องผึ้งน้อย Ueang phueng noi
D. kanburiense Seidenf.	หวายเมืองกาญจน์ Wai muang kan
D. keithii Ridl.	หางเปีย Hang pia

D. keithii Ridl.

24

D.	kentrophyllum	Hook.f.
----	---------------	---------

- D. kontumense Gagnep.
- D. kratense Kerr
- D. lagarum Seidenf.
- D. lamellatum (Blume) Lindl.
- D. lampongense Sm.
- D. lamyaiae Seidenf.
- D. leonis (Lindl.) Rchb.f.
- D. lindleyi Steud.
- D. linguella Rchb.f.
- D. lituiflorum Lindl.
- D. lueckelianum Fessel & Wolff
- D. mannii Ridl.
- D. metachilinum Rchb.f.
- D. monticola Hunt & Summerh.
- D. moschatum (Buch.-Ham.) Sw.
- D. mucronatum Seidenf.
- D. nanocompactum Seidenf.
- D. nathanielis Rchb.f.
- D. nobile Lindl.
- D. ochreatum Lindl.
- D. oligophyllum Gagnep.
- D. pachyglossum Par.& Rchb.f
- D. pachyphyllum (Kuntze) Bakh.f.

ก้างปลาใหญ่ Kang pla yai เอื้องเงินวิลาศ Ueang ngoen wilat เอื้องข้าวตอกปากจัก Ueang khaw tok pak chuk N/A หวายแบนชวา Wai ban chawa หวายลำปอง Wai lum pong เอื้องครั่งแสดน้อย Ueang krang sad noi เอื้องตะขาบใหญ่ Ueang ta khap yai เอื้องผึ้ง Ueang phueng เอื้องดอกมะเขือใต้ Ueang dok ma kuea tai เอื้องสายม่วง Ueang sai muang N/A เอื้องหางปลา Ueang hang pla เอื้องทองใต้ Ueang tong tai เอื้องข้าวตอกมรกต Ueang khaw tok morakot **เอื้องจำปา** Ueang champa N/A N/A เกล็ดนิ่ม Klet nim เอื้องเก้ากิ่ว Ueang kao kio เอื้องตะขาบ Ueang ta khap ข้าวตอกปราจีน Khao tok prachin เอื้องขนหมู Ueang khon mu

เอื้องน้อย Ueang noi

D. palpebrae Lindl.	เอื้องมัจฉา Ueang matcha
<i>D. pandaneti</i> Ridl.	เอื้องปักษาปากส้ม Ueang paksa pak som
D. panduriferum Hook.f.	หวายดินสอ Wai dinsor
D. parciflorum Rchb.f. ex Lindl.	เอื้องดอกขาวใบแบน Ueang dok khao bai baen
<i>D. parcum</i> Rchb.f.	เอื้องก้านกิ่ว Ueang kan kio
D. parishii Rchb.f.	เอื้องครั้ง Ueang khrang
D. parvum Seidenf.	N/A
D. peguanum Lindl.	หวายเปกู Wai peku
D. pendulum Roxb.	เอื้องไม้เท้าฤาษี Ueang mai thao ruesi
D. perpaulum Seidenf.	เอื้องข้าวตอกอินทนนท์ Ueang khao tok inthanon
D. planibulbe Lindl.	N/A
D. podagraria Hk. F.	N/A
D. polyanthum Wall. ex Lindl.	เอื้องสายประสาท Ueang sai prasat
D. porphyrochilum Lindl.	เอื้องเฉวียน Ueang chawian
D. porphyrophyllum Guillaumin	N/A
D. praecinctum Rchb.f.	หวายภูหลวง Wai phu luang
D. primulinum Lindl.	เอื้องสายน้ำผึ้ง Ueang sai num peung
D. proteranthum Seidenf.	หวายน้อยภูหลวง Wai noi phu luang
D. pulchellum Roxb. ex Lindl.	เอื้องคำตาควาย Ueang kham ta khwai
D. pychnostachyum Lindl.	เศวตสอดสี Sawet sot si
D. rhodopterygium Rchb.f.	N/A
D. rhodostele Ridl.	เอื้องแมงเงาแดง Ueang mang ngao dang
D. salaccense (Blume) Lindl.	เอื้องใบไผ่ Ueang bai phai
D. sanguinolentum Lindl.	เอื้องสายทะเลบัน Ueang sai ta lay bun

D. scabrilingue Lindl.	เอื้องแซะ Ueang sae
D. schilhaueri Ormerod & Pedersen	N/A
D. secundum (Blume) Lindl.	เอื้องแปรงสีฟัน Ueang preang si fan
D. seidenfadenii Seng. & Bockem.	N/A
D. senile Par. & Rchb.f.	เอื้องชะนี Ueang chani
<i>D. setifolium</i> Ridl.	เอื้องตุ้มหู Ueang tomhu
D. signatum Rchb.f.	เอื้องเค้ากิ่ว Ueang khao kio
D. singaporense Hawkes & Heller	NZA
D. sinuatum (Lindl.) Lindl. ex Rchb.f.	N/A
D. sociale Sm.	N/A
D. strongylanthum Rchb.f.	เอื้องเย้าลม Ueang yao lom
D. stuartii Bailey	N/A
D. stuposum Lindl.	เอื้องสาย Ueang sai
D. subulatum (Blume) Lindl.	N/A
D. sukhakulii Hort.	หวายสุขะกุล Wai sukhakun
<i>D. sulcatum</i> Lindl.	เอื้องจำปาน่าน Ueang champa nan
D. superbiens Rchb.f.	หวายคิง Wai khing
D. sutepense Rolfe ex Downie	เอื้องมะลิ Ueang mali
D. terminale Par. & Rchb.f.	เอื้องแผงโสภา Ueang phaeng sopha
D. tetrodon Rchb.f. ex Lindl.	เอื้องสายดอกเขียว Ueang sai dok kheaw
<i>D. thyrsiflorum</i> Rchb.f ex Andr'e	เอื้องมอนไข่ใบมน Ueang mon khai bai mon
<i>D. tortile</i> Lindl.	เอื้องไม้ตึง Ueang mai tueng
<i>D. trigonopus</i> Rchb.f.	เอื้องคำเหลี่ยม Ueang kham liam
<i>D. trinervium</i> Ridl.	เทียนลิง Thian ling

D. truncatum Lindl.	N/A
D. umbonatum Seidenf.	N/A
D. unicum Seidenf.	เอื้องครั่งแสด Ueang krang saet
D. uniflorum Griff.	เอื้องทอง Ueang thong
D. venustum Teijsm. & Binn	ข้าวเหนียวลิง Khao niao ling
D. villosulum Lindl.	กล้วยหญ้านา Kluai ya na
D. virgineum Rchb.f.	เอื้องนางซี Ueang nanag she
D. viridulum Ridl.	N/A
D. wardianum Warner	เอื้องมณีไตรรงค์ Ueang mani trairong
D. wattii (Hook.f.) Rchb.f.	เอื้องแซะ Ueang sae
D. williamsonii Day & Rchb.f.	N/A
D. wilmsianum Schltr.	N/A
D. xanthophlebium Lindl.	เอื้องแซะภูลังกา Ueang sae phu lungka
D. ypsilon Seidenf.	เอื้องแบนปากตัด Ueang baen pak tat

Dendrobium orchids have diverse morphology and produce wide variety of secondary metabolites. Several plants in this genus have been studied for their chemical constituents and biological activities, but some have not yet been investigated for bioactive compounds, including *Dendrobium infundibulum* Lindl.

D. infundibulum is known as "Ueang ta hoen (เอี้องตาเห็น)" in Thai. It is an epiphytic orchid with 25-50 cm tall. Its pseudobulbs are 1-1.5 cm in diameter. The pseudobulds covered by leaf sheaths and light black hairs. The oblong-elliptic leaves were 6-8 cm long, 2-2.5 cm wide, shed when flowering. Flower arised near apex. They are 6-7 cm across and fragant. There are 1-3 flowers in an inflorescence. The seplas and petals are white. Petals are broadly ovate. Lips are with yellow orange marking. This plant is distributed in India, Myanmar, Laos, and Thailand. Its flowering period is in January to April (north, northeast and west) ("BGO Plant Database," 2011).

The methanol extract of *D. infundibulum* was evaluated for inhibitory activity against lipase and α -glucosidase. Although it could not inhibit α -glucosidase, but it exhibited 68.45% inhibitory activity against lipase at the concentration of 100 µg/mL. The interesting activity leaded to selection of this plant for the study. The objective of this study is to investigate the phytochemical profile and the inhibitory activity against lipase and α -glucosidase of this plant. The result of this research may provide useful information for studying the chemotaxonomy of *Dendrobium* species or developing new drugs.

Figure 1 Dendrobium infundibulum Lindl.

- a. The flower of *Dendrobium infundibulum* Lindl.
- b. The whole plant of *Dendrobium infundibulum* Lindl.

CHAPTER II HISTORICAL

Several plants from different genera of the family Orchidaceae have been used in Traditional Chinese Medicine. Examples are Tianma (*Gastrodia elata*), Bai-Ji (*Bletilla striata*), Jin-Xian-Ma (*Anoectochilus* species), Shan-Ci-Gu (*Cremastra appendiculata*) and Shihu (*Dendrobium* species).

Shihu (Herba Dendrobii), which is composed of many *Dendrobium* species (five species which were listed in Chinese Pharmacopoeia were *D. chrysanthum*, *D. fimbriatum*, *D. loddigesii*, *D. nobile* and *D. officinale*), have been mainly used for treating the diseases related to thirst, fever, red tongue, atrophic gastritis and diabetes (Xu *et al.*, 2015; Zhang *et al.*, 2007c).

These medicinal uses of *Dendrobium* have attracted the interest of many reseachers in the area of natural product and phytomedicine. This chapter describes previously reported phytochemical studies on *Dendrobium* plants.

1. Chemical constituents of Dendrobium

The chemical constituents of *Dendrobium* can be categorized into five major classes: bibenzyls, phenathrenes, flavonoids, terpenes and miscellaneous compounds. The names of plants and their parts used for the isolation of pure compounds are listed in the following tables.

1.1 Bibenzyls

The bibenzyls are derivatives of stilbenes, which are derived from cinnamic acid (via the shikimate pathway) and three acetate units from malonyl coenzyme A (Gorham, 1989). Bibenzyls found in *Dendrobium* are summarized in **Table 1** and their structures are shown in **Figure 2**.

Compounds	Plants	Part	References
Aloifol I [1]	D. moniliforme	Whole plant	Zhao <i>et al.,</i> 2016
	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Amoenylin [2]	D. amoenum	Whole plant	Majumder <i>et al.,</i> 1999a
Aphyllal C [3]	D. aphyllum	Stem	Yang <i>et al.</i> , 2015
Aphyllal D [4]	D. aphyllum	Stem	Yang <i>et al.,</i> 2015
Aphyllal E [5]	D. aphyllum	Stem	Yang <i>et al.</i> , 2015
Aphyllone B [6]	D. aphyllum	Stem	Yang <i>et al.</i> , 2015
Batatasin [7]	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
	D. plicatile	Stem	Yamaki <i>et al.,</i> 1996
Batatasin III [8]	D. aphyllum	Stem	Yang <i>et al.</i> , 2015
	D. cariniferum	Whole plant	Chen <i>et al.,</i> 2008a; Liu
	8	3	<i>et al.,</i> 2009a
	D. draconis	Stem	Sritularak <i>et al.</i> , 2011a
(a)	D. fimbriatum	Steman	Xu <i>et al.</i> , 2014
Сн	D. formosum	Whole plant	Inthongkaew <i>et al.,</i>
			2017
	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
	D. hongdie	Whole plant	Chen <i>et al.,</i> 2015
	D. nobile	Stem	Zhou <i>et al.</i> , 2016
	D. rotundatum	Whole plant	Majumder <i>et al.,</i> 1992

 Table 1 Distribution of bibenzyl derivatives in Dendrobium species

Compounds	Plants	Part	References
Brittonin A [9]	D. secundum	Stem	Sritularak <i>et al.,</i> 2011b
		Whole plant	Phechrmeekha et al.,
			2012)
Chrysotobibenzyl	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
[10]	var. denneanum		
	D. capillipes	Whole plant	Phechrmeekha et al.,
	0		2012
	D. chrysototxum	Whole plant	Li <i>et al.,</i> 2011
	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
	D. pulchellum	Stem	Chanvorachote <i>et al.</i> ,
			2013
Chrysotoxin [11]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
	var. denneanum	6	
Chrysotoxine [12]	D. capillipes	Whole plant	Phechrmeekha <i>et al.,</i>
Cu			2012
	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
	D. pulchellum	Stem	Chanvorachote <i>et al.,</i>
			2013; Bhummaphan <i>et</i>
			al., 2018
Crepidatin [13]	D. aurantiacum	Whole plant	Liu <i>et al.</i> , 2009b
	var. denneanum		

 Table 1 Distribution of bibenzyl derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
Crepidatin [13]	D. capillipes	Whole plant	Phechrmeekha <i>et al.,</i>
			2012
	D. chrysanthum	Stem	Yang <i>et al.</i> , 2006a
	D. crepidatum	Whole plant	Majumder <i>et al.,</i> 1989
	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
	D. pulchellum	Stem	Chanvorachote <i>et al.,</i>
			2013
Crepidatuol A [14]	D. crepidatum	Stem	Li et al., 2013
Crepidatuol B [15]	D. crepidatum	Stem	Li et al., 2013
	D. loddigesii	Stem	Lu <i>et al.,</i> 2014
Cumulatin [16]	D. cumulatum	Whole plant	Majumder <i>et al.,</i> 1993
Dencryol A [17]	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
Dencryol B [18]	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
Dendrobin A [19]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Dendrocandin A [20]	D. candidum	StemERSITY	Li <i>et al.</i> , 2008
Dendrocandin B [21]	D. candidum	Stem	Li <i>et al.,</i> 2008
	D. signatum	Whole plant	Mittraphab <i>et al.,</i> 201
Dendrocandin C [22]	D. candidum	Stem	Li et al., 2009
Dendrocandin D [23]	D. candidum	Stem	Li <i>et al.</i> , 2009b
Dendrocandin E [24]	D. candidum	Stem	Li <i>et al.,</i> 2009b

 Table 1 Distribution of bibenzyl derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
Dendrocandin F or	D. candidum	Stem	Li <i>et al.</i> , 2009c
Dendrofalconerol A	D. falconeri	Arial part	Sritularak <i>et al.,</i> 2009
[25]	D. signatum	Whole plant	Mittraphab <i>et al.,</i> 2016
	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016
Dendrocandin G [26]	D. candidum	Stem	Li <i>et al.,</i> 2009c
Dendrocandin H [27]	D. candidum	Stem	Li <i>et al.,</i> 2009c
Dendrocandin I [28]	D. candidum	Stem	Li <i>et al.,</i> 2009c
	D. signatum	Whole plant	Mittraphab <i>et al.,</i> 2016
Dendrofalconerol B	D. falconeri	Arial part	Sritularak <i>et al</i> ., 2009
[29]			
Dendrophenol [30]	D. candidum	Stem	Li <i>et al.,</i> 2008
Dendrosinen A [31]	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Dendrosinen B [32]	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Dendrosinen C [33]	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Dendrosinen D [34]	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Dengraol A [35]	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
Dengraol B [36]	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
Densiflorol A [37]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
Dendrosignatol [38]	D. signatum	Whole plant	Mittraphab <i>et al.,</i> 2016
Dendrowillol A [39]	D. williamsonii	Whole plant	Yang <i>et al.,</i> 2018

 Table 1 Distribution of bibenzyl derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
3,3 ' -Dihydroxy-4,5- dimethoxybibenzyl	D. williamsonii	Whole plant	Rungwichaniwat <i>et al.,</i> 2014
(5,3 [′] -Dihydroxy-3,4-	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Dimethoxybibenzyl)			
[40]			
3,4'-Dihydroxy-5-	D. amoenum	Whole plant	Majumder <i>et al.</i> , 1999a
methoxybibenzyl			
[41]	2///		
	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
3,4'-Dihydroxy-5,5'-	D. nobile	Stem	Hwang <i>et al.,</i> 2010
dimethoxydihydrostil			
bene [42]			
3,4-Dihydroxy-5,4'-	D. candidum	Stem	Li <i>et al.,</i> 2008
dimethoxybibenzyl		10	
[43]	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
Сн	D. signatum	Whole plant	Mittraphab <i>et al.,</i> 2016
	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016
4,5-Dihydroxy-3,3'-	D. nobile	Stem	Ye <i>et al.</i> , 2002b
dimethoxybibenzyl			
[44]			
4,4 ⁴ -Dihydroxy-3,5-	D. candidum	Stem	Li <i>et al.,</i> 2008
dimethoxybibenzyl	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i>
			2014

 Table 1 Distribution of bibenzyl derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
Erianin [46]	D. chrysotoxum	Stem	Hu et al., 2012
Gigantol [47]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008a;
			Yang <i>et al.</i> , 2015
	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
	var. denneanum		
		Whole plant	Liu <i>et al.</i> , 2009b
	D. brymerianum	Whole plant	Klongkumnuankarn <i>et</i>
			al., 2015
	D. capillipes	Whole plant	Phechrmeekha <i>et al.,</i>
			2012
	D. cariniferum	Whole plant	Liu <i>et al.,</i> 2009a
	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012; Wu <i>et</i>
		3	<i>al.,</i> 2017a
	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
() ()	D. devonianum	Whole plant	Sun <i>et al.,</i> 2014
Gh	D. draconis	Stem	Sritularak <i>et al.,</i> 2011a
	D. formosum	Whole plant	Inthongkaew <i>et al.,</i>
			2017
	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
	D. officinale	Stem	Zhao <i>et al.,</i> 2018
	D. polyanthum	Stem	Hu <i>et al.</i> , 2009

 Table 1 Distribution of bibenzyl derivatives in Dendrobium species (Cont.)
Compounds	Plants	Part	References
Gigantol [47]	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
4-[2-(3-	D. longicornu	Stem	Hu <i>et al.</i> , 2008a
Hydroxyphenol)-1-			
methoxyethyl]-2,6-			
dimethoxyphenol			
[48]		1	
5-Hydroxy-	D. secundum	Stem	Phechrmeekha et al.,
3,4,3',4',5'-			2012
pentamethoxybiben			
zyl [49]			
4-Hydroxy-3,5,3 ' -	D. nobile	Stem	Ye <i>et al.,</i> 2002b
trimethoxybibenzyl			
[50]	A Lance Stand		
Isoamoenylin [51]	D. amoenum	Whole plant	Majumder <i>et al.,</i> 1999a
Longicornuol A [52]	D. longicornu	Stem	Hu <i>et al.</i> , 2008a
Сн Сн	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Loddigesiinol C [53]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
Loddigesiinol D [54]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
3-O-Methylgigantol	D. candidum	Stem	Li <i>et al.,</i> 2008
[55]	D. nobile	Stem	Hwang <i>et al.</i> , 2010
	D. plicatile	Stem	Yamaki <i>et al.,</i> 1996

 Table 1 Distribution of bibenzyl derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
Moscatilin [56]	D. amoenum	Whole plant	Majumder <i>et al.</i> , 1999a
	D. aphyllum	Stem	Yang <i>et al.</i> , 2015
	D. aurantiacum	Whole	Yang <i>et al.</i> , 2006b; Liu
	var. denneanum	plant, Stem	<i>et al.,</i> 2009b
	D. brymerianum	Whole plant	Klongkumnuankarn <i>et</i>
		122	al., 2015
	D. capillipes	Whole plant	Phechrmeekha <i>et al.,</i>
			2012
	D. candidum	Stem	Li <i>et al.,</i> 2008
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006a
	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i>
	8		2014
	D. formosum	Whole plant	Inthongkaew <i>et al.,</i>
C			2017
Un	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
	D. loddigesii	Whole plant	Chen <i>et al.,</i> 1994; Ito <i>et</i>
			al., 2010
	D. moscatum	Whole plant	Majumder <i>et al.</i> , 1987
	D. nobile	Stem	Miyazawa <i>et al.</i> , 1999;
			Zhang <i>et al.</i> , 2007b;
			Hwang <i>et al.</i> , 2010
	D. polyanthum	Stem	Hu <i>et al.,</i> 2009

 Table 1 Distribution of bibenzyl derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
Moscatilin [56]	D. pulchellum	Stem	Chanvorachote <i>et al.,</i>
			2013
	D. secundum	Stem	Sritularak <i>et al.,</i> 2011b
Moscatilin diacetate	D. loddigesii	Whole plant	Chen <i>et al.</i> , 1994
[57]			
Nobilin D [58]	D. nobile	Stem	Zhang <i>et al.,</i> 2007b
Nobilin E [59]	D. nobile	Stem	Zhang <i>et al.</i> , 2007b
Trigonopol A [60]	D. trigonopus	Stem	Hu <i>et al.</i> , 2008b
	D. sinense	Whole plant	Chen <i>et al.,</i> 2014
Trigonopol B [61]	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b
3,3 [′] ,4-Trihydroxy	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
bibenzyl [62]	A ALEXAN	E B	
3,3',5-Trihydroxy	D. cariniferum	Whole plant	Liu <i>et al.,</i> 2009a
bibenzyl [63]	หาลงกรณ์มหา	วิทยาลัย	
3,5,4'-Trihydroxy	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
bibenzyl [64]			
4,5,4 [′] -Trihydroxy-	D. secundum	Stem	Sritularak <i>et al.,</i> 2011b;
3,3'-dimethoxy			Phechrmeekha <i>et al.,</i>
bibenzyl [65]			2012
	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et al.,</i>
			2014; Hlosrichok et al.,
			2018

 Table 1 Distribution of bibenzyl derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
3,4,3'-Trimethoxy-	D. sinense	Whole plant	Chen <i>et al.</i> , 2014
5,4 ' -dihydroxy			
bibenzyl or 3,4'-			
Dihydroxy-3',4,5-			
trimethoxybibenzyl			
[66]		1	
Tristin [67]	D. aphyllum	Stem	Yang <i>et al.,</i> 2015
	D. brymerianum	Whole plant	Klongkumnuankarn <i>et</i>
			al., 2015
	D. chrysotoxum	Stem	Hu et al., 2012
	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. gratiosissimum	Stem	Zhang <i>et al.,</i> 2008a
	D. officinale	Stem	Zhao <i>et al.,</i> 2018
	D. trigonopus	Stem	Hu <i>et al.,</i> 2008b

 Table 1 Distribution of bibenzyl derivatives in Dendrobium species (Cont.)

จุหาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

		R ₆	R ₅			
R ₁		F	R ₄			
R ₂	2					
	R ₁	R_2	R_3	R_4	R_5	R_6
[1] Aloifol I	OMe	OH	ОМе	ОН	Н	Н
[2] Amoenylin	OMe	OH	OMe	Н	OMe	Н
[7] Batatasin	OMe) H	Н	ОН	Н	OH
[8] Batatasin III	ОН	H.	ОМе	Н	Н	ОН
[9] Brittonin A	OMe	ОМе	ОМе	ОМе	OMe	OMe
[10] Chrysotobibenzyl	OMe	OMe	ОМе	ОМе	OMe	Н
[11] Chrysotoxin	OMe	ОН	ОМе	ОМе	ОН	Н
[12] Chrysotoxine	OMe	ОМе	Н	ОМе	ОН	OMe
[13] Crepidatin	OMe	OMe	ОМе	ОМе	OH	Н
[16] Cumulatin	OMe	OMe	ОН	ОН	OMe	OMe
[19] Dendrobin A	OH	ОН	ОМе	Н	Н	OMe
[32] Dendrosinen B CHULALONG	OMe	ОН	ОН	Η	Н	ОН
[40] 3,3 ′ -Dihydroxy-4,5-	OMe	OMe	ОН	Η	Н	ОН
dimethoxybibenzyl						
[41] 3,4 [′] -Dihydroxy-5-	OH	Н	OMe	Η	OH	Н
methoxybibenzyl						
[42] 3,4'-Dihydroxy-5,5'-	OH	Н	ОМе	ОМе	OH	Н
dimethoxydihydrostilbene						

Figure 2 Structures of bibenzyl derivatives from *Dendrobium* species

R ₁	\sim	R ₆	R ₅			
R ₂ R ₃	3	I	x 4			
	R_1	R_2	R_3	R_4	R_5	R_6
[44] 4,5-Dihydroxy-3,3'-	OMe	ОН	ОН	Н	Н	OMe
dimethoxybibenzyl						
[46] Erianin	OMe	OMe	OMe	Н	OMe	OH
[47] Gigantol	OMe	OH	Н	ОМе	Н	OH
[49] 5-Hydroxy-3,4,3',4',5'-	OMe	OMe	ОН	OMe	OMe	OMe
pentamethoxybibenzyl						
[50] 4-Hydroxy-3,5,3'-	OMe	ОН	OMe	Н	Н	OMe
trimethoxybibenzyl		\$ }	1			
[51] Isoamoenylin	ОМе	OMe	OMe	Н	Н	OH
[56] Moscatilin	ОМе	OH	OMe	Η	OH	OMe
[57] Moscatilin diacetate	OMe	OAc	OMe	Η	OAc	OMe
[62] 3,3',4-Trihydroxybibenzyl	OH	OH	f	Η	Н	OH
[63] 3,3',5-Trihydroxybibenzyl	OH	UHIVE	OH	Η	Н	OH
[64] 3,5,4′-Trihydroxybibenzyl	OH	Н	OH	Η	OH	Н
[65] 4,5,4'-Trihydroxy-3,3'-	OMe	ОН	OH	Н	ОН	OMe
dimethoxybibenzyl						
[66] 3,4,3'-Trimethoxy-5,4'-	OMe	OMe	OH	Н	OH	OMe
dihydrobibenzyl						
[67] Tristin	OH	Н	OH	Н	ОН	OMe

Figure 2 Structures of bibenzyl derivatives from *Dendrobium* species (Cont.)

Figure 2 Structures of bibenzyl derivatives from Dendrobium species (Cont.)

Figure 2 Structures of bibenzyl derivatives from *Dendrobium* species (Cont.)

Figure 2 Structures of bibenzyl derivatives from *Dendrobium* species (Cont.)

Figure 2 Structures of bibenzyl derivatives from *Dendrobium* species (Cont.)

Figure 2 Structures of bibenzyl derivatives from *Dendrobium* species (Cont.)

1.2 Phenanthrenes

Phenanthrene derivatives are derived from the general phenylpropanoid pathway, which begins from the synthesis of *trans*-cinnamic acid or its derivative *p*-coumaric acid from the aromatic amino acids phenylalanine or tyrosine (Dubrovina *et al.*, 2017). Previously reported phenanthrenes are listed in **Table 2**.

Compounds	Plants	Part	References
Amoenumin [68]	D. amoenum	Whole plant	Veerraju <i>et al.,</i> 1989
Aphyllone A [69]	D. aphyllum	Stem	Yang <i>et al.,</i> 2015
Bulbophyllanthrin [70]	D. nobile	Stem	Yang <i>et al.,</i> 2007
Crystalltone [71]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
Chrysotoxol A [72]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
Chrysotoxol B [73]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
Coelonin [74]	D. amoenum	Whole plant	Veerraju <i>et al.,</i> 1989
8	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008a
	D. formosum	Whole plant	Inthongkaew <i>et al.,</i>
ា្ត ។	หาลงกรณ์มหาวิ	ิ ทยาลัย	2017
Сни	D. nobile	Stem	Yang <i>et al.</i> , 2007;
			Hwang <i>et al.,</i> 2010
Confusarin [75]	D. formosum	Whole plant	Inthongkaew et al.,
			2017
	D. officinale	Stem	Zhao <i>et al.</i> , 2018
	D. noblie	Stem	Zhang <i>et al.,</i> 2008c

Table 2 Distribution of phenanthrenes and derivatives in Dendrobium species

Compounds	Plants	Part	References
Cypripedin [76]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. densiflorum	Whole plant	Wattanathamsan <i>et</i>
			al., 2018
Dehydroorchinol [77]	D. nobile	Stem	Kim <i>et al.,</i> 2015
Denbinobin [78]	D. moniliforme	Stem	Lin <i>et al.,</i> 2001
	D. nobile	Stem	Yang <i>et al.,</i> 2007
Denbinobin B [79]	D. sinense	Whole plant	Chen <i>et al.,</i> 2013
Dendrocandin P1 [80]	D. officinale	Stem	Zhao <i>et al.,</i> 2018
Dendrocandin P2 [81]	D. officinale	Stem	Zhao <i>et al.,</i> 2018
Dendrochrysanene	D. chrysanthum	Stem	Yang <i>et al.</i> , 2006a
[82]	A MARCANA		
Dendronone [83]	D. cariniferum	Whole plant	Chen <i>et al.,</i> 2008b
Densiflorol B [84]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
କୁ	D. chrysotoxum	Whole plant	Li <i>et al.,</i> 2009d
Denthyrsinin [85]	D. thyrsiforum	Stem PSITY	Zhang <i>et al.,</i> 2005
Denthyrsinol [86]	D. thyrsiforum	Stem	Zhang <i>et al.,</i> 2005
Denthyrsinone [87]	D. thyrsiforum	Stem	Zhang <i>et al.,</i> 2005
9,10-Dihydromoscatin	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
[88]			
9,10-Dihydrophenan-	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
threne-2,4,7-triol [89]			

 Table 2 Distribution of phenanthrenes and derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
2,2 ¹ -Dihydroxy-	D. nobile	Stem	Yang <i>et al.</i> , 2007
3,3',4,4',7,7-hexa			
methoxy-9,9 ' ,10,10 ' -			
Tetrahydro-1,1'-			
biphenanthrene [90]			
4,5-Dihydroxy-2,3-	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et</i>
dimethoxy-9,10-		2	al., 2014
dihydrophenanthrene			
[91]	<i>7</i> //		
4,5-Dihydroxy-2,6-	D. chrysotoxum	Stem	Hu et al., 2012
dimethoxy-9,10-			
dihydrophenanthrene			
[92]			
4,5-Dihydroxy-3,7-	D. nobile	Stem	Ye <i>et al.,</i> 2002b
dimethoxy-9,10-			
dihydrophenanthrene	สาลงกรณ์มหาวิ	ิทยาล ัย	
^[93] Chu	lalongkorn U	NIVERSITY	
2,5-Dihydroxy-3,4	D. nobile	Stem	Yang <i>et al.,</i> 2007
dimethoxy			
phenanthrene [94]			
2,5-Dihydroxy-4,9-	D. nobile	Stem	Zhang <i>et al.,</i> 2008c
dimethoxy			
phenanthrene [95]			

 Table 2 Distribution of phenanthrenes and derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
3,7-Dihydroxy-2,4-	D. chrysotoxum	Whole plant	Li <i>et al.,</i> 2009d
dimethoxy	D. nobile	Stem	Zhang <i>et al.</i> , 2008c
phenanthrene [96]			
4,5-Dihydroxy-2-	D. nobile	Stem	Yang <i>et al.</i> , 2007;
methoxy-9,10-			Zhang <i>et al.,</i> 2007b
dihydrophenanthrene			
[97]			
1,5-dihydroxy-3,4,7-	D. moniliforme	Whole plant	Zhao <i>et al.,</i> 2016
trimethoxy-9,10-			
dihydrophenanthrene 🥔	///b84		
[98]			
2,2'-Dimethoxy-4,4',7,7'-	D. plicatile	Stem	Yamaki <i>et al.,</i> 1996
tetrahydroxy-9,9',10,10'-	A Transformer		
tetrahydro-1,1'-		6	
biphenanthrene [99]		-60	
2,8-Dihydroxy-3,4,7-	D. nobile	Stem	Fan <i>et al.,</i> 2001;
trimethoxy-9,10-	LONGKORN UN	IIVFRSITY	Yang <i>et al.</i> , 2007
dihydrophenanthrene			
[100]			
2,6-Dihydroxy-1,5,7-	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
trimethoxy			
phenanthrene [101]			
4,7-Dihydroxy-2,3,6-	D. rotundatum	Whole plant	Majumder <i>et al.,</i>
trimethoxy-9,10-			1992
dihydrophenanthrene			
[102]			

 Table 2 Distribution of phenanthrenes and derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
3,4-Dimethoxy-1-	D. hainanense	Aerial part	Zhang <i>et al.</i> , 2018
(methoxymethyl)-9,10-			
dihydrophenanthrene-			
2,7-diol [103]			
4,9-dimethoxy	D. chrysotoxum	Whole plant	Li <i>et al.,</i> 2009d
phenantrene-2,5-diol			
[104]		12-	
5,7-dimethoxy	D. nobile	Stem	Hwang <i>et al.</i> , 2010
phenantrene-2,6-diol			
[105]			
Ephemeranthol A [106]	D. nobile	Whole plant	Hwang <i>et al.,</i> 2010
	D. nobile	Stem	Yang <i>et al.,</i> 2007; Kim
			<i>et al.,</i> 2015; Zhou <i>et</i>
0			al., 2016
30	D. officinale	Stem	Zhao <i>et al.,</i> 2018
Ephemeranthol C [107]	D. nobile	Stem	Hwang <i>et al.,</i> 2010
Ephemeranthoquinone	D. plicatile	Stem	Yamaki <i>et al.</i> , 1996
[108]			
Epheranthol B [109]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
Erianthridin [110]	D. formosum	Whole plant	Inthongkaew et al.,
			2017
	D. nobile	Stem	Yang <i>et al.</i> , 2007;
			Hwang <i>et al.</i> , 2010
	D. plicatile	Stem	Yamaki <i>et al.,</i> 1996

 Table 2 Distribution of phenanthrenes and derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
2-Ethoxy-1-hydroxy-7-	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
methoxy-5H-			
naphtho[8,1,2-			
cde]chromen-5-one			
[111]			
Fimbriatone [112]	D. pulchellum	Stem	Chanvorachote et al.,
		12	2013
Fimbriol B [113]	D. nobile	Stem	Yang <i>et al.</i> , 2007;
	2/11		Hwang <i>et al.,</i> 2010
Flaccidin [114]	D. amoenum	Whole plant	Majumder <i>et al.,</i>
	AGA		1999a
Flavanthridin [115]	D. nobile	Stem	Hwang <i>et al.,</i> 2010
Flavanthrin [116]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008a
Flavanthrinin [117]	D. brymerianum	Whole plant	Klongkumnuankarn <i>et</i>
			al., 2015
କୁ ୀ	D. nobile	Stem Stem	Zhang <i>et al.,</i> 2008c
Сн	D. venustum	Whole plant	Sukphan <i>et al.,</i> 2014
Hircinol [118]	D. aphyllum	Stem	Yang <i>et al.,</i> 2015
	D. formosum	Whole plant	Inthongkaew et al.,
			2017
	D. moniliforme	Whole plant	Zhao <i>et al.,</i> 2016
	D. nobile	Stem	Hwang <i>et al.,</i> 2010
	D. thyrsiflorum	Stem	Zhang <i>et al.,</i> 2005

 Table 2 Distribution of phenanthrenes and derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
2-Hydroxy-4,7-	D. nobile	Stem	Yang <i>et al.,</i> 2007
dimethoxy-9,10-			
dihydrophenanthrene			
[119]			
5-Hydroxy-2,4-	D. loddigesii	Whole plant	Ito <i>et al.</i> , 2010
dimethoxy			
phenanthrene [120]		12	
3-Hydroxy-2,4,7-	D. nobile	Stem	Yang <i>et al.</i> , 2007
trimethoxy-9,10-	2///		
dihydrophenanthrene	-//b84		
[121]	- AGA		
3-Hydroxy-2,4,7-	D. nobile	Stem	Yang <i>et al.,</i> 2007
trimethoxy			
phenanthrene [122]	412000		
Loddigesiinol A [123]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
Loddigesiinol B [124]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
Loddigesiinol G [125]	D. loddigesii	Stem	Lu <i>et al.,</i> 2014
Loddigesiinol H [126]	D. loddigesii	Stem	Lu <i>et al.,</i> 2014
Loddigesiinol I [127]	D. loddigesii	Stem	Lu <i>et al.,</i> 2014
Loddigesiinol J [128]	D. loddigesii	Stem	Lu <i>et al.,</i> 2014
Lusianthridin [129]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008a
	D. brymerianum	Whole plant	Klongkumnuankarn <i>et</i>
			al., 2015
	D. formosum	Whole plant	Inthongkaew <i>et al.</i> ,
			2017

 Table 2 Distribution of phenanthrenes and derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
Lusianthridin [129]	D. nobile	Stem	Hwang <i>et al.</i> , 2010;
			Yang <i>et al.,</i> 2007
	D. plicatile	Stem	Yamaki <i>et al.</i> , 1996
	D. venustum	Whole plant	Sukphan <i>et al.,</i> 2014
7-Methoxy-9,10-	D. draconis	Stem	Sritularak <i>et al.,</i> 2011a
dihydrophenanthrene-		12	
2,4,5-triol [130]			
5-Methoxy-7-hydroxy-	D. draconis	Stem	Sritularak <i>et al.</i> , 2011a
9,10-dihydro-1,4-	D. formosum	Whole plant	Inthongkaew et al.,
phenanthrenequinone			2017
[131]			
Moniliformin [132]	D. moniliforme	Stem	Lin <i>et al.,</i> 2001
Moscatin [133]	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008a
	D. chrysanthum	Stem	Yang <i>et al.,</i> 2006a
ູຈຸາ	D. chrysotoxum	Whole plant	Li <i>et al.,</i> 2009d
GHU	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. loddigesii	Whole plant	Chen <i>et al.,</i> 1994
	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
	D. thyrsiflorum	Stem	Zhang <i>et al.,</i> 2005
Nudol [134]	D. formosum	Whole plant	Inthongkaew et al.,
			2017
	D. nobile	Stem	Yang <i>et al</i> ., 2007

 Table 2 Distribution of phenanthrenes and derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
Nudol [134]	D. rotundatum	Whole plant	Majumder <i>et al</i> ., 1992
Orchinol [135]	D. officinale	Stem	Zhao <i>et al.</i> , 2018
Plicatol A [136]	D. nobile	Stem	Yang <i>et al.,</i> 2007
	D. plicatile	Stem	Honda <i>et al.,</i> 2000
Plicatol B [137]	D. plicatile	Stem	Honda <i>et al.,</i> 2000
Plicatol C [138]	D. plicatile	Stem	Honda <i>et al.,</i> 2000
Phoyunnanin C [139]	D. venustum	Whole plant	Sukphan <i>et al.,</i> 2014
Phoyunnanin E [140]	D. venustum	Whole plant	Sukphan <i>et al.,</i> 2014
Rotundatin [141]	D. rotundatum	Whole plant	Majumder <i>et al.,</i> 1992
(S)-2,4,5,9-Tetrahydroxy-	D. fimbriatum	Stem	Xu <i>et al.,</i> 2014
9,10-dihydro	(receed another		
phenanthrene [142]	AN AND A		
2,4,5,9S-Tetrahydroxy-	D. primulinum	Whole plant	Ye <i>et al.</i> , 2016
9,10-dihydro			
phenanthrene-4- O - eta -D-	ลงกรณ์มหาวิ	ิทยาล ัย	
glucopyranoside [143]	longkorn U	NIVERSITY	
2,3,5-Trihydroxy-4,9-	D. nobile	Stem	Yang <i>et al.,</i> 2007
dimethoxyphenanthrene			
[144]			
2,4,7-Trihydroxy-9,10-	D. officinale	Stem	Zhao <i>et al.,</i> 2018
dimethoxyphenanthrene			
[145]			
3,4,8-Trimethoxy	D. nobile	Stem	Hwang <i>et al.,</i> 2010
phenanthrene-2,5-diol			
[146]			

 Table 2 Distribution of phenanthrenes and derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
2,5,7-Trimethoxy-4-	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
methoxy-9,10-dihydro	D. formosum	Whole plant	Inthongkaew <i>et al.</i> ,
phenanthrene [147]			2017
1,5,7-Trimethoxy	D. nobile	Stem	Kim <i>et al.,</i> 2015
phenanthren-2-ol [148]			

 Table 2 Distribution of phenanthrenes and derivatives in Dendrobium species (Cont.)

Chulalongkorn University

R ₅	$R_4 R_3$	R ₂				
R ₆						
	R_1	R_2	R_3	R_4	R_5	R_6
[74] Coelonin	OH	Н	OMe	Н	Н	OH
[88] 9,10-Dihydromoscatin	Н	Н	OH	OMe	Н	OH
[89] 9,10-Dihydrophenanthrene-2,4,7-	OH	Н	OH	Н	Н	OH
triol						
[91] 4,5-Dihydroxy-2,3-dimethoxy-	OMe	OMe	OH	OH	Н	Н
9,10-dihydrophenanthrene	11123					
[92] 4,5-Dihydroxy-2,6-dimethoxy-	OMe	Н	OH	OH	OMe	Н
9,10-dihydrophenanthrene						
[93] 4,5-Dihydroxy-3,7-dimethoxy-	Н	OMe	OH	OH	Н	OMe
9,10-dihydrophenanthrene		NO.				
[96] 3,7-Dihydroxy-2,4-	OMe	н	Н	Н	Н	OH
dimethoxyphenanthrene						
[97] 4,5-Dihydroxy-2-methoxy-9,10-	OMe	Н	OH	OH	Н	Н
dihydrophenanthrene	NEL CO					
[102] 4,7-Dihydroxy-2,3,6-trimethoxy-	OMe	OMe	OH	Н	OMe	OH
9,10-dihydrophenanthrene						
[106] Ephemeranthol A	ОН	H	Н	OH	OMe	OMe
[107] Ephemeranthol C	ОН	ОН	OMe	OH	Н	Н
[110] Erianthridin	OH	OMe	OMe	Н	Н	OH
[115] Flavanthridin	OH	Н	Н	OMe	OH	OMe
[118] Hircinol	OH	Н	OMe	OH	Н	Н
[121] 3-Hydroxy-2,4,7-trimethoxy-	OMe	OH	OMe	Н	Н	OMe
9,10-dihydrophenanthrene						

Figure 3 Structures of phenanthrene and derivatives from *Dendrobium* species

Figure 3 Structures of phenanthrene and derivatives from *Dendrobium* species (Cont.)

Figure 3 Structures of phenanthrene and derivatives from *Dendrobium* species (Cont.)

CHULALONGKORN UNIVERSITY

Figure 3 Structures of phenanthrene and derivatives from *Dendrobium* species (Cont.)

1.3 Flavonoids

Flavonoids are biosynthesized through the combination of the phenylpropanoid and polyketide pathways. The phenylpropanoid pathway produces *p*-coumaroyl-CoA. The polyketide pathway elongates C2 chain by utilizing malonyl-CoA. The aromatic amino acids phenylalanine and tyrosine are the initiation of the phenylpropanoid pathway (Saito *et al.*, 2013). **Table 3** shows the flavonoid compounds found in *Dendrobium*.

Compounds	Plant	Part	Reference
Apigenin [149]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
	D. williamsonii	Whole plant	Rungwichaniwat et al.,
			2014
6- <i>C</i> -(α -	D. huoshanense	Leaves and	Chang <i>et al.,</i> 2010
Arabinopyranosyl)-1-C-		Stem	
[(2- <i>O</i> - α -			
rhamnopyranosyl)- eta -			
galactopyranosyl]			
apigenin [150]	สาลงกรณ์มหาวิ	ัทยาล ัย	
Chrysoeriol [151] GHU	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et</i>
			al., 2014
(2 <i>S</i>)-Eriodictyol [152]	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et</i>
			al., 2014
	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016
6'''-Glucosyl-vitexin	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
[153]			

Table 3 Distribution of flavonoid derivatives in Dendrobium species

Compounds	Plant	Part	Reference
Homoeriodictyol [154]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
(25)-Homoeriodictyol	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et</i>
[155]			al., 2014
5-Hydroxy-3-methoxy-	D. devonianum	Whole plant	Sun <i>et al.,</i> 2014
flavone-7- O -[eta -D-			
apiosyl-(1→6)]-β-D-			
glucoside [156]	8		
Isoviolanthin [157]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
Luteolin [158]	D. aurantiacum	Whole plant	Liu <i>et al.</i> , 2009b
	var. denneanum		
	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et</i>
			al., 2014
Kaempferol [159]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
	var. denneanum		
Kaempferol-3-O- α -L-¶₩	D. secundum	Whole plant	Phechrmeekha <i>et</i>
rhamnopyranoside GHUI	alongkorn Un	IIVERSITY	al., 2012
[160]			
Kaempferol-3,7-O-di- $lpha$ -	D. secundum	Whole plant	Phechrmeekha <i>et</i>
L-rhamno			al., 2012
pyranoside [161]			
Kaempferol-3-0- $lpha$ -L-	D. capillipes	Whole plant	Phechrmeekha <i>et</i>
rhamnopyranosyl-			al., 2012
(1 → 2)-β-D-			
glucopyranoside [162]			

 Table 3 Distribution of flavonoid derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
Kaempferol-3- <i>Ο</i> - α -L-	D. capillipes	Whole plant	Phechrmeekha et al.,
rhamnopyranosyl-			2012
(1 → 2)-β-D-			
xylopyranoside			
(Lysimachiin) [163]			
Naringenin [164]	D. aurantiacum	Stem	Yang <i>et al.</i> , 2006b
	var. denneanum		
Quercetin-3-0- α -L-	D. secundum	Stem	Phechrmeekha et al.,
rhamnopyranoside			2012
[165]			
Quercetin-3- <i>Ο</i> - α -L-	D. capillipes	Whole plant	Phechrmeekha et al.,
rhamnopyranosyl-	A CONTRACTOR		2012
(1→2)-β-D-	-ALEXAND		
xylopyranoside [166]		5	
6-C-[(2-O- α -	D. huoshanense	Leaves and	Chang <i>et al.,</i> 2010
Rhamnopyranosyl)- eta -		Stem	
glucopyranosyl]-1-C-($lpha$ -	ALUNGKURN U	NIVERSIIY	
arabinopyranosyl)			
apigenin [167]			
6-C-(eta -Xylopyranosyl)-	D. huoshanense	Leaves and	Chang <i>et al.,</i> 2010
1-C-[(2-O- Q -		Stem	
rhamnopyranosyl)- eta -			
glucopyranosyl]			
apigenin [168]			

 Table 3 Distribution of flavonoid derivatives in Dendrobium species (Cont.)

R ₂					
R ₄ R ₄ R ₅ R ₁	ОН				
ОНО	R.	Ra	Ra	R.	R-
[149] Apigenin	H	H	H	OH	H
[150] 6-C-(α -Arabinopyranosyl)-1-C-[(2-O- α -	Н	Н	-Gal-	OH	-Ara
rhamnopyranosyl) - β -galactopyranosyl] apigenin			Rha		
[151] Chrysoeriol	Н	OMe	Н	ОН	Н
[153] 6 ^{'''} -Glucosyl-vitexin	Н	Н	-Glc	ОН	Н
[157] Isoviolanthin	≥ H	Н	-Glc	ОН	-Rha
[158] Luteolin	H	ОН	Н	ОН	Н
[159] Kaempferol	ОН	Н	Н	OH	Н
[160] Kaempferol-3- <i>O</i> - $lpha$ -L-rhamnopyranoside	O-Rha	Н	Н	ОН	Н
[161] Kaempferol-3,7- <i>O</i> -di- $lpha$ -L-rhamno	O-Rha	Н	Н	O-Rha	Н
pyranoside					
[162] Kaempferol-3- <i>O</i> - $lpha$ -L-rhamnopyranosyl-	O-Glc-	Н	Н	OH	Н
$(1\rightarrow 2)$ - β -D-glucopyranoside	Rha				
[163] Kaempferol-3- <i>O</i> - $lpha$ -L-rhamnopyranosyl-	O-Xyl-	Н	Н	OH	Н
$(1\rightarrow 2)$ - β -D-xylopyranoside	Rha				
[167] 6-C-[(2-O- $lpha$ -Rhamnopyranosyl)- eta -	Н	Н	-Ara	OH	-Glc-
glucopyranosyl]-1-C-($lpha$ -arabinopyranosyl)					Rha
apigenin					
[168] 6-C-(eta -Xylopyranosyl)-1-C-[(2-O- $lpha$ -	Н	Н	-Glc-	ОН	-Xyl
rhamnosepyranosyl)- eta -glucopyranosyl] apigenin					Rha

Figure 4 Structures of flavonoids and derivatives from *Dendrobium* species

R

[156] 5-Hydroxy-3-methoxy-flavone-7- \mathcal{O} -[β -D-apiosyl-(1 \rightarrow 6)]- β -D-glucoside

Figure 4 Structures of flavonoids and derivatives from *Dendrobium* species (Cont.)

OMe

1.4 Terpenes

Terpenoids could be biosynthesized via the mevalonate pathway and mevalonate-independent pathway through deoxyxylulose phosphate. They are derived from C₅ isoprene units. The basic structures are represented by $(C_5)_n$, which are hemiterpenes (C₅), monoterpenes (C₁₀), sesquiterpenes (C₁₅), diterpenes (C₂₀), sesterterpenes (C₂₅), triterpenes (C₃₀) and tetraterpenes (C₄₀). Terpenes which have been isolated from *Dendrobium* (sesquiterpines) are listed in **Table 4**.

Compounds	Plants	Part	References
Aduncin [169]	D. aduncum	Whole plant	Gawell <i>et al.,</i> 1976
Amoenin [170]	D. amoenum	Whole plant	Dahmen <i>et al.,</i> 1978;
			Majumder <i>et al.,</i> 1999a
Amotin [171]	D. amoenum	Whole plant	Dahmen <i>et al.,</i> 1978;
			Majumder <i>et al.,</i> 1999a
([—])-(1 <i>R</i> ,2 <i>S</i> ,3 <i>R</i> ,4 <i>S</i> ,5 <i>R</i> ,	D. nobile	Stem	Meng <i>et al.,</i> 2017
6 <i>S</i> ,9 <i>S</i> ,11 <i>R</i>)-11-	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
Carboxymethyl			
dendrobine [172]	หาลงกรณ์มหา	วิทยาลัย	
Corchoionoside C	D. polyanthum	Stem	Hu <i>et al.</i> , 2009
[173]			
Crystallinin [174]	D. crystallinum	Stem	Wang <i>et al.</i> , 2009
Dendrobane A [175]	D. wardianum	Stem	Fan <i>et al.,</i> 2013b
Dendrobine [176]	D. nobile	Stem	Wang <i>et al.</i> , 1985; Ye <i>et</i>
			<i>al.,</i> 2002b
	D. nobile	Stem	Meng <i>et al.,</i> 2017
Dendromoniliside A	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
[177]			

Table 4 Distribution of terpene derivatives in Dendrobium species
Compounds	Plants	Part	References
Dendromoniliside B [178]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
Dendromoniliside C [179]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
Dendromoniliside D [180]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
Dendronobilin A [181]	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
Dendronobilin B [182]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
	D. nobile	Stem	Zhang <i>et al.</i> , 2007a ;
-			Meng <i>et al.,</i> 2017
Dendronobilin C [183]	D. nobile	Stem	Zhang <i>et al.</i> , 2007a
Dendronobilin D [184]	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
Dendronobilin E [185]	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
Dendronobilin F [186]	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
Dendronobilin G [187]	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
Dendronobilin H [188]	D. nobile	Stem	Zhang <i>et al.,</i> 2007a
Dendronobilin I [189]	D. nobile	Stem 8	Zhang <i>et al.,</i> 2007a
CHULA	D. wardianum	Stem	Fan <i>et al</i> ., 2013b
Dendronobilin K [190]	D. nobile	Stem	Zhang <i>et al.,</i> 2008b
Dendronobilin L [191]	D. nobile	Stem	Zhang <i>et al.,</i> 2008b
Dendronobilin M [192]	D. nobile	Stem	Zhang <i>et al.</i> , 2008b ;
			Meng <i>et al.,</i> 2017
Dendronobilin N [193]	D. nobile	Stem	Zhang <i>et al.,</i> 2008b
Dendronobiloside A [194]	D. nobile	Stem	Ye <i>et al.</i> , 2002b; Zhao
			et al., 2001

 Table 4 Distribution of terpene derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
Dendronobiloside B [195]	D. nobile	Stem	Ye <i>et al.,</i> 2002b; Zhao
			et al., 2001
Dendronobiloside C [196]	D. nobile	Stem	Ye <i>et al.,</i> 2002b
Dendronobiloside D [197]	D. nobile	Stem	Ye <i>et al.,</i> 2002b
Dendronobiloside E [198]	D. nobile	Stem	Ye <i>et al.,</i> 2002b
Dendrowardol A [199]	D. wardianum	Stem	Fan <i>et al.,</i> 2013a
Dendrowardol B [200]	D. wardianum	Stem	Fan <i>et al.,</i> 2013a
Dendrowardol C [201]	D. wardianum	Stem	Fan <i>et al.,</i> 2013b
Dendroside A [202]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
لا ا	D. nobile	Stem	Zhao <i>et al.,</i> 2001; Ye
			<i>et al.,</i> 2002b
Dendroside B [203]	D. nobile	Stem	Ye <i>et al.,</i> 2002a
Dendroside C [204]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
จุหา	D. nobile	Stem	Ye <i>et al.,</i> 2002a
Dendroside D [205]	D. nobile	Stem STY	Ye <i>et al.,</i> 2002a
Dendroside E [206]	D. nobile	Stem	Ye <i>et al.,</i> 2002a
Dendroside F [207]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
	D. nobile	Stem	Ye <i>et al.,</i> 2002a
Dendroside G [208]	D. nobile	Stem	Ye et al., 2002a
α-Dihydropicrotoxinin	D. aduncum	Whole plant	Gawell <i>et al.</i> , 1976
[209]			

 Table 4 Distribution of terpene derivatives in Dendrobium species (Cont.)

Compounds	Plants	Part	References
eta-Dihydropicrotoxinin	D. aduncum	Whole plant	Gawell <i>et al.,</i> 1976
[210]			
Findlayanin [211]	D. findlayanum	Whole plant	Qin <i>et al.,</i> 2011
	D. nobile	Stem	Meng <i>et al.,</i> 2017
3-Hydroxy-2-	D. nobile	Stem	Wang <i>et al.</i> , 1985
oxodendrobine [212]		12	
Oleanolic acid [213]	D. devonianum	Whole plant	Sun <i>et al.,</i> 2014
10 eta ,12,14-Trihydroxy	D. wardianum	Stem	Fan <i>et al.,</i> 2013a
alloaromadendrane	300		
[214]			
Vomifoliol [215]	D. devonianum	Whole plant	Sun <i>et al.</i> , 2014
S		3	
Wardianumine A [216]	D. wardianum	Whole plant	Zhang <i>et al.,</i> 2017

 Table 4 Distribution of terpene derivatives in Dendrobium species (Cont.)

จุหาลงกรณ์มหาวิทยาลัย

Chulalongkorn University

Figure 5 Structures of terpene and derivatives from Dendrobium species

Figure 5 Structures of terpene and derivatives from *Dendrobium* species (Cont.)

Figure 5 Structures of terpene and derivatives from Dendrobium species (Cont.)

Figure 5 Structures of terpene and derivatives from *Dendrobium* species (Cont.)

[**206**] Dendroside E

[**207**] Dendroside F: R = H

[208] Dendroside G: R = OH

Figure 5 Structures of terpene and derivatives from *Dendrobium* species (Cont.)

Figure 5 Structures of terpene and derivatives from *Dendrobium* species (Cont.)

1.5 Miscellaneous compounds

Miscellaneous compounds from *Dendrobium* include aliphatic compounds, benzoic acid derivatives, phenylpropanoids, fluorenones, coumarins, lignans and neolignans which are displayed in **Table 5**.

 Table 5 Miscellaneous compounds found in Dendrobium species

Compounds	Plants	Part	References
Aliphatic acid			
derivatives	S (11)	1	
Aliphalic acids [217]	D. clavatum var. aurantiacum	Stem	Chang <i>et al.,</i> 2001
Aliphatic alcohols [218]	D. clavatum var. aurantiacum	Stem	Chang <i>et al.,</i> 2001
Dimethyl malate [219]	D. huoshanense	Leaves and Stem	Chang <i>et al.,</i> 2010
Isopentyl butyrate [220]	D. huoshanense	Leaves and Stem	Chang <i>et al.,</i> 2010
3-Isopropyl-5- acetoxycyclohexene- 1-one [221]	D. moniliforme	Whole plant	Zhao <i>et al.,</i> 2016
Malic acid [222]	D. huoshanense	Leaves and Stem	Chang <i>et al.,</i> 2001
(-)-Shikimic acid [223]	D. fuscescens	Whole plant	Talapatra <i>et al</i> ., 1989
	D. huoshanense	Leaves and Stem	Chang <i>et al.,</i> 2010
	D. pulchellum	Stem	Chanvorachote <i>et al.,</i> 2013

Compounds	Plants	Part	References
Benzoic acid			
derivatives and			
phenolic compounds			
Alkyl 4'-hydroxy-trans-	D. clavatum var.	Stem	Chang <i>et al.,</i> 2001
cinnamates [224]	aurantiacum		
Alkyl <i>trans</i> -ferulates	D. clavatum var.	Stem	Chang <i>et al.,</i> 2001
[225]	aurantiacum		
Antiarol [226]	D. chrysotoxum	stem	Hu <i>et al.,</i> 2012
Defuscin [227]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
	var. denneanum		
	D. fuscescens	Whole plant	Talapatra <i>et al.,</i> 1989
Dibutyl phthalate	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008a
[228]	D. longicornu	Whole plant	Li <i>et al.</i> , 2009a
5,7-Dihydroxy-	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et</i>
chromen-4-one [229]	สาลงกรณ์มหาวิ	ิ ทยาลัย	al., 2014
Diisobutyl phthalate	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008a
[230]			
<i>cis</i> -docosanoylferulate	D. tortile	Whole plant	Limpanit <i>et al.,</i> 2016
[231]			
trans-	D. williamsonii	Whole plant	Rungwichaniwat et al.,
docosanoylferulate or			2014
n-Docosyl trans-	D. longicornu	Whole plant	Li <i>et al.,</i> 2009a
ferulate [232]			

 Table 5 Miscellaneous compounds found in Dendrobium species (Cont.)

Compounds	Plants	Part	References
Bis(2-Ethylhexyl)	D. longicornu	Whole plant	Li <i>et al.</i> , 2009a
phthalate [233]			
Ethylhaematommate	D. longicornu	Whole plant	Li <i>et al.,</i> 2009a
[234]			
Ferulaldehyde [235]	D. longicornu	Whole plant	Li <i>et al.</i> , 2009a
Ferulic acid [236]	D. secundum	Stem	Sritularak <i>et al.,</i> 2011b
Gallic acid [237]	D. longicornu	Whole plant	Li <i>et al.,</i> 2009a
	D. williamsonii	Whole plant	Rungwichaniwat et al.,
			2014
<i>p</i> -Hydroxy	D. aurantiacum	Whole plant	Liu <i>et al.</i> , 2009b
benzaldehyde [238]	var. denneanum		
	D. devonianum	Whole plant	Sun <i>et al.,</i> 2014
	D. moniliforme	Whole plant	Zhao <i>et al.,</i> 2016
Сн	D. tortile	Whole plant	Limpanit <i>et al.</i> , 2016
<i>p</i> -Hydroxybenzoic	D. devonianum	Whole plant	Sun <i>et al.,</i> 2014
acid [239]			
<i>p</i> -Hydroxyphenyl	D. moniliforme	Whole plant	Zhao <i>et al.,</i> 2016
propionic acid [240]			
<i>p</i> -Hydroxyphenyl	D. aphyllum	Whole plant	Chen <i>et al.,</i> 2008a
propionic methyl			
ester [241]			

 Table 5 Miscellaneous compounds found in Dendrobium species (Cont.)

Compounds	Plants	Part	References
3-Hydroxy-2-methoxy-	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
5,6-dimethylbenzoic acid			
[242]			
n-Octacosyl ferulate	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
[243]	var. denneanum		
N-Phenylacetamide [244]	D. huoshanense	Leaves and	Chang <i>et al.,</i> 2010
		Stem	
Phloretic acid [245]	D. ellipsophyllum	Whole plant	Tanagornmeatar <i>et</i>
	-		al., 2014
Protocatechuic acid [246]	D. moniliforme	Whole plant	Zhao <i>et al.</i> , 2016
Tetratriacontanyl-trans-p-	D. williamsonii	Whole plant	Rungwichaniwat <i>et</i>
coumarate [247]		Ú	al., 2014
trans-Tetracosyl	D. tortile	Whole plant	Limpanit <i>et al.,</i>
ferulate [248]		10	2016
Salicylic acid [249]	D. huoshanense	Leaves and	Chang <i>et al.,</i> 2010
CHULA	LONGKORN UN	Stem	
Salidrosol [250]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
Shashenoside I [251]	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
	var. denneanum		
Syringin [252]	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
	var. denneanum		
Syringic acid [253]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
Tetracosyl(Z)-p-	D. falconeri	Whole plant	Sritularak <i>et al.,</i>
coumarate [254]			2009

 Table 5 Miscellaneous compounds found in Dendrobium species (Cont.)

Compounds	Plants	Part	References
Vanillic acid [255]	D. devonianum	Whole plant	Sun <i>et al.,</i> 2014
	D. moniliforme	Whole plant	Zhao <i>et al.,</i> 2016
	D. williamsonii	Whole plant	Rungwichaniwat et al.,
			2014
Vanillin [256]	D. moniliforme	Whole plant	Zhao <i>et al.,</i> 2016
Vanilloside [257]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
Coumarins			
Ayapin [258]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
Coumarin [259]	D. aurantiacum	Whole plant	Liu <i>et al.</i> , 2009b
	var. denneanum		
	D. clavatum var.	Stem	Chang <i>et al.</i> , 2001;
0	aurantiacum	-0	Yang <i>et al.,</i> 2006b
Dendrocoumarin [260]	D. nobile	Whole plant	Zhou <i>et al.,</i> 2018
Denthyrsin [261]	D. thyrsiflorum	Stem Stem	Zhang <i>et al.,</i> 2005
Dihydroconiferyl CHU	D. formosum	Whole plant	Inthongkaew et al.,
dihydro- <i>p</i> -coumarate			2017
[262]	D. moniliforme	Whole plant	Zhao <i>et al.,</i> 2016
Itolide A [263]	D. nobile	Whole plant	Zhou <i>et al.,</i> 2018
Scoparone [264]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001
	D. thyrsiforum	Stem	Zhang <i>et al.,</i> 2005
Scopoletin [265]	D. densiflorum	Stem	Fan <i>et al.,</i> 2001

Compounds	Plants	Part	References
Lignans and neolignans			
Acanthoside B [266]	D. moniliforme	Stem	Zhao <i>et al.,</i> 2003
Dehydrodiconiferyl	D. chrysanthum	Stem	Ye <i>et al.,</i> 2004
alcohol-4- $\mathcal{O} ext{-}eta$ -D-			
glucoside [267]			
Episyringaresinol [268]	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
	D. longicornu	Stem	Hu <i>et al.,</i> 2008a
(-)-(8 <i>R</i> ,7 [′] <i>E</i>)-4-hydroxy-	D. auranticum	Stem	Li et al., 2014
3,3',5,5'-tetramethoxy-	var denneanum		
8,4'-oxyneolign-7'-ene-			
9,9 ' -diol 4,9-bis-O-β- _{D-}			
glucopyranoside [269]			
(-)-(8 <i>5</i> ,7 ' <i>E</i>)-4-hydroxy-	D. auranticum	Stem	Li et al., 2014
3,3',5,5'-tetramethoxy-	var denneanum		
8,4'-oxyneolign-7'-ene-	ลงกรณ์มหาวิเ	ุ่กยาลัย	
9,9 ' -diol 4,9-bis-Ο- β -D-	LONGKORN UN	IVERSITY	
glucopyranoside			
[270]			
(-)-(8 <i>R</i> ,7 [′] <i>E</i>)-4-hydroxy-	D. auranticum	Stem	Li <i>et al.,</i> 2014
3,3',5,5',9'-	var denneanum		
pentamethoxy-8,4'-			
oxyneolign-7 ' -ene-9-ol			
4,9-bis- <i>O</i> -β-D-			
glucopyranoside [271]			

 Table 5 Miscellaneous compounds found in Dendrobium species (Cont.)

Compounds	Plants	Part	References
(-)-(7 <i>S</i> ,8 <i>R</i> ,7 ′ <i>E</i>)-4-	D. aurantiacum	Stem	Xiong <i>et al.</i> , 2013
Hydroxy-3,3',5,5'-	var. denneanum		
tetramethoxy-8,4'-			
oxyneolign-7'-ene-			
7,9,9'-triol-7,9'-bis- <i>O</i> -β-			
D-glucopyranoside [272]	5111/12		
Liriodendrin [273]	D. pulchellum	Stem	Chanvorachote <i>et al.,</i>
			2013
Lyoniresinol [274]	D. chrysanthum	Stem	Ye et al., 2004
	D. nobile	Stem	Zhang <i>et al.,</i> 2008c
(-)-Medioresinol [275]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
	D. nobile	Stem	Zhang <i>et al.,</i> 2008c
(-)-Pinoresinol [276]	D. loddigesii	Whole plant	Ito <i>et al.</i> , 2010
	D. nobile	Stem	Zhang <i>et al.</i> , 2008c
(-)-Syringaresinol [277]	D. secundum	Stem	Sritularak <i>et al.</i> , 2011b
GHUL	D. devonianum	Whole plant	Sun <i>et al.,</i> 2014
(+)-Syringaresinol [278]	D. moniliforme	Whole plant	Zhao <i>et al.,</i> 2016
(-)-Syringaresinol-4,4'-	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
bis-O- B -D-	var. denneanum		
glucopyranoside [279]			

 Table 5 Miscellaneous compounds found in Dendrobium species (Cont.)

Table 5 Miscellaneous	compounds for	ound in <i>Dendrobi</i>	ium species (Cont.)
-----------------------	---------------	-------------------------	---------------------

Compounds	Plants	Part	References
Syringaresinol-4-O-D-	D. aurantiacum	Stem	Xiong <i>et al.,</i> 2013
monoglucopyranoside	var. denneanum		
[280]			
Fluorenones			
Denchrysan A [281]	D. chrysotoxum	Whole plant	Ye <i>et al.</i> , 2003
Denchrysan B [282]	D. brymerianum	Whole plant	Klongkumnuankarn <i>et</i>
			al., 2015
	D. chrysotoxum	Whole plant	Ye <i>et al.,</i> 2003
Dendroflorin [283]	D. aurantiacum	Stem	Yang <i>et al.</i> , 2006b
	var. denneanum		
	D. brymerianum	Whole plant	Klongkumnuankarn <i>et</i>
	([cccce@ononx]		al., 2015
9	D. chrysotoxum	Stem	Hu et al., 2012
Dengibsin [284]	D. aurantiacum	Stem	Yang <i>et al.,</i> 2006b
ຈຸນ	var. denneanum	ิทยาล ัย	
Сни	D. chrysanthum	Stem PSITY	Yang <i>et al.</i> , 2006a
Nobilone [285]	D. brymerianum	Whole plant	Klongkumnuankarn <i>et</i>
			al., 2015
	D. nobile	Stem	Zhang <i>et al.,</i> 2007b

Compounds	Plants	Part	References
Others			
Daucosterol [286]	D. moniliforme	Whole plant	Zhao <i>et al.,</i> 2016
Dehydrovomifoliol [287]	D. loddigesii	Whole plant	Ito <i>et al.,</i> 2010
N-trans-feruloyl tyramine	D. devonianum	Whole plant	Sun <i>et al.,</i> 2014
[288]			
Palmarumycin JC2 [289]	D. crystallinum	Stem	Wang <i>et al.,</i> 2009
4-(2-Hydroxypropyl)-2(5H)-	D. tortile	Whole plant	Limpanit <i>et al.,</i>
furanone [290]			2016
Paprazine [291]	D. devonianum	Whole plant	Sun <i>et al.,</i> 2014
	AQA		
β-Sitosterol [292]	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
	D. chrysotoxum	Stem	Hu <i>et al.,</i> 2012
3,6,9-Trihydroxy-3,4-di	D. polyanthum	Stem	Hu <i>et al.,</i> 2009
hydroanthracen-1-(2H)-one		10	
(Tetrahydroanthracene)	เงกรณ์มหาวิท	ยาลัย	
[293] Chulai	ongkorn Uni	VERSITY	

 Table 5 Miscellaneous compounds found in Dendrobium species (Cont.)

OH UNIVER

 R_1

CHO

COOH

COOH

CHO

(CH₂)₂COOCH₃ H

(CH₂)₂COOH

 R_2

Н

Н

OH

OMe

OMe

[238] p-Hydroxybenzaldehyde

[239] p-Hydroxybenzoic acid

[245] Phloretic acid

[255] Vanillic acid

[256] Vanillin

[240] p-Hydroxyphenylpropionic acid

dimethylbenzoic acid

[244] N-phenylacetamide

Figure 6 Miscellaneous compounds from Dendrobium species (Cont.)

OMe HC OH [262] Dihydroconiferyl dihydro-p-coumarate

GHULALONGKORN UNIVERSITY

[228] Dibutyl phthalate; R = CH₂CH₂CH₂CH₃
[230] Diisobutyl phthalate; R = CH₂CH(CH₃)₂
[233] Bis(2-ethylhexyl)phthalate; R=CH₂CH(C₂H₅)(CH₂)₃CH₃

Figure 6 Miscellaneous compounds from Dendrobium species (Cont.)

HO-

Figure 6 Miscellaneous compounds from Dendrobium species (Cont.)

Figure 6 Miscellaneous compounds from *Dendrobium* species (Cont.)

[269] (-)-(8*R*,7'*E*)-4-hydroxy-3,3',5,5'-tetramethoxy-8,4'-oxyneolign-7'-ene-9,9'-diol

4,9-bis-O- β -D-glucopyranoside: R = OH; 8R

[270] (-)-(8*S*,7*'E*)-4-hydroxy-3,3*'*,5,5*'*-tetramethoxy-8,4*'*-oxyneolign-7*'*-ene-9,9*'*-diol

4,9-bis-O- β -D-glucopyranoside: R = OH; 8S

[271] (-)-(8*R*,7'*E*)-4-hydroxy-3,3',5,5',9'-pentamethoxy-8,4'-oxyneolign-7'-ene-9-ol

4,9-bis-O- β -D-glucopyranoside: R = OMe; 8R

	R_1	R_2
[277] (-)-Syringaresinol	Н	Н
[279] (-)-Syringaresinol-4,4 $^\prime$ -bis- <i>O</i> - eta -D-glucopyranoside	Glc	Glo
[280] Syringaresinol-4-O-D-monoglucopyranoside	Glc	Н

Figure 6 Miscellaneous compounds from Dendrobium species (Cont.)

Figure 6 Miscellaneous compounds from *Dendrobium* species (Cont.)

[290] 4-(2-Hydroxypropyl)-2(5H)-furanone

[289] Palmarumycin JC2

QН HO ЮH

[**293**] 3,6,9-Trihydroxy-3,4dihydroanthracen-1-(2*H*)-one

Figure 6 Miscellaneous compounds from *Dendrobium* species (Cont.)

CHULALONGKORN UNIVERSITY

2. Biological activities of Dendrobium species

The secondary metabolites that were found in *Dendrobium* have been reported to posses many interesting biological activities, for example, cytotoxic activity, antioxidant activity, anti-platelet activity, anti-inflammatory activity, antifibrotic activity, immonomodulartory activity, neuroprotective activity, α -glucosidase inhibitory activity, antibacterial activity, antifungal activity, anti-viral, anti-malarial, anti-cataract activity and angiogenic activity (Teixeira da Silva *et al.*, 2017). Other activities which had also been reported were antimutagenic activity (Miyazawa *et al.*, 1999) and lipase inhibitory activity (Inthongkaew *et al.*, 2017).

2.1 Cytotoxic activity

Several types of cancer cell lines were used to examine the cytotoxic activity. Batatasin III which was isolated from *D. draconis* was reported to be cytotoxic agaist lung cancer cell (H460). It inhibited cell proliferation, migration and invasion by suppressing epithelial to mesenchymal transition and Focal Adhesion Kinase, Protein kinase B and Cell Division Cycle 42 pathway (Pinkhien *et al.*, 2017).

The compounds from *D. sinense* which showed activity against gastric cancer cells (SGC-7901) were aloifol I [1] (IC₅₀ = 12.8 \pm 0.6), 3,4,3'-trimethoxy-5,4'-dihydroxybibenzyl [66] (IC₅₀ = 16.7 \pm 0.4 µM) and 5,3'-dihydroxy-3,4-dimethoxybibenzyl [40] (IC₅₀ = 7.8 \pm 0.05 µM) (Chen *et al.*, 2014).

Two compounds from *D. sinense*, compound [40] and longicornuol A [52], inhibited K562 cells (leukemia cell line) with IC₅₀ value $15.7\pm0.2 \ \mu$ M and $10.3\pm0.1 \ \mu$ M, respectively. They also showed suppressing activity to hepatoma cell lines (BEL-7402) with IC₅₀ 11.7±0.5 μ M and 10.0±0.4 μ M, respectively (Chen *et al.*, 2014). The other potent anti-leukemia agent were dengraol A [35] (IC₅₀ = 2.1 μ M) and dengraol B [36] (IC₅₀ = 6.4 μ M) from *D. gratiosissimum* which were examined with HL-60 cells (Zhang *et al.*, 2008a) and shashenoside I [251] from *D. aurantiacum* var. *denneanum* which exhibited the activity against MV4-11 cell with IC₅₀ value 4.17 μ M (Xiong *et al.*, 2013).

Crepidatin [**13**] and moscatilin [**56**] from *D. capillipes* exhibited the inhibitory activity to skin cancer cell (KB) with IC₅₀ value 14.4 μ M and 2.2 μ M, repectively. They also showed the activity against lung cancer cell (NCI-H187) with IC₅₀ value 13.7 μ M and 10.5 μ M, repectively (Phechrmeekha *et al.*, 2012).

2.2 Antioxidant activity

Many compounds from *Dendrobium* plants showed antioxidant activity. The DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity was extensively used to evaluate the antioxilant activity. Dendrocandin E [24] which was isolated from *D. candidum*, exhibited more potent antioxidant activity than vitamin C (Li *et al.*, 2009b). Gigantol [47] and 7-methoxy-9,10-dihydrophenanthrene-2,4,5-triol [130] which were isolated from *D. draconis* also revealed the DPPH scavenging activity but lesser potent than quercetin and Trolox[®] (Sritularak *et al.*, 2011a). Confusarin [75] and (-)-syringaresinol [277] from *D. nobile* showed lesser IC₅₀ value than vitamin C and BHT (Zhang *et al.*, 2008c). Moscatilin [56], which isolated from *D. williamsonii* also exihibited more potent activity than vitamin C (Rungwichaniwat *et al.*, 2014).

2.3 Anti-platelet activity

Moscatilin [56] and moscatin [133] which isolated from *D. longicornu* showed the anti-platelet aggregation activity (Chen *et al.*, 1994). It complied with the activity against platelet aggregation of moscatilin [56] from *D. densiflorum*. *D. densiflorum* also give the other anti-platelet agent, e.g. gigantol [47], homoeriodictyol [154], scopoletin [265] and scoparone [264] (Fan *et al.*, 2001).

2.4 Anti-inflammatory activity

The inhibition of nitric oxide (NO) production was widely used to evaluate the anti-inflammatory activity. Two potent inhibitors against NO production from *D. chrysanthum* were loddigesiinol A [**123**] (IC₅₀ = 2.6 μ M), and loddigesiinol B [**124**] (IC₅₀ = 10.9 μ M) (Yang *et al.*, 2006a). Ephemeranthol A [**106**], coelonin [**74**], and lusianthridin [**129**], which were isolated from *D. nobile*, exhibited potent activity against NO production more potent than aminoguanidine with IC₅₀ value 12.0±0.3 μ M, 10.2±0.2 μ M and 9.6±0.3 μ M, respectively (Hwang *et al.*, 2010). Nobilin D [**58**],

nobilin E [**59**], and dendroflorin [**283**] from *D. nobile* were also shown to be antiinfalmmatory agents with IC₅₀ value 15.3, 19.2 and 13.4 μ M, respectively, which higher potency than resveratrol (Zhang *et al.*, 2007b).

2.5 Antifibrotic activity

The hepatoprotective effect of compounds from *D. nolie* was performed by monitoring the HSC-T6 cells proliferation. 2,3,5-Trihydroxy-4,9-dimethoxyphenanthrene [**144**], denbinobin [**78**], coelonin [**74**] and fimbriol B [**113**] show appropriate antifibrotic activity with IC₅₀ value at 9.0, 15.2, 13.4 and 11.0 μ M, respectively (Yang *et al.*, 2007).

2.6 Immunomodulatory activity

Four sesquiterpene glycosides (dendroside D-G) from *D. nobile* expressed the immunomodulatory activity. Dendroside D [205] and dendroside G [208] increased T cell proliferation in murine lymphocyte after inducing by concanavalin A, while dendroside E [206] and dendroside F [207] responsed to both T cell and B cell proliferation after induced by concanavalin A and lipopolysaccharide, repectively (Ye *et al.*, 2002a).

2.7 Neuroprotective effect

The lignan and neolignan from *D. aurantiacum* var. *denneanum*, (-)-syringaresinol-4,4'-bis-*O*- β -D-glucopyranoside [**279**] and (-)-(7*S*,8*R*,7'*E*)-4-Hydroxy-3,3',5,5'-tetramethoxy-8,4'-oxyneolign-7'-ene-7,9,9'-triol-7,9'-bis-*O*- β -D-

glucopyranoside [**272**], showed neuroprotective effect against glutamate-induced neurotoxicity in PC12 cells (Xiong *et al.*, 2013).

2.8 lipase and α -glucosidase inhibitory activity

The phenanthrenes from *D. formosum*, 5-Methoxy-7-hydroxy-9,10-dihydro-1,4phenanthrenequinone [**131**] and confusarin [**75**], showed the activity against lipase with IC₅₀ 69.45 \pm 10.14 µM and 154.61 \pm 8.58 µM, respectively, which were more potent than acarbose (IC₅₀ = 745.9 \pm 88.4 µM). They also exhibited α -glucosidase inhibitory activity with IC₅₀ value 126.88 \pm 0.66 µM and 189.78 \pm 11.1 µM, respectively, which were much weaker than orlistat (IC₅₀ = 0.013 ± 0.004 µM) (Inthongkaew *et al.*, 2017).

The α -glucosidase inhibitors from *D. devonianum* were 5-hydroxy-3-methoxy-flavone-7-*O*-[β -D-apiosyl-(1 \rightarrow 6)]- β -D-glucoside [**156**] and gigantol [**47**] which exibited higher % inihibition than acarbose at the concentration of 437.5 μ M (Sun *et al.*, 2014).

The bibenzyl derivative, crepidatuol B [15] and phananthrene derivatives, Loddigesiinols G–J [125-128] from *D. loddigesii* showed potent α -glucosidase inhibitory activity with IC₅₀ value 18.9, 16.7, 10.9, 2.7 and 3.2 μ M, respectively (Lu *et al.*, 2014).

3,4-Dihydroxy-5,4'-dimethoxybibenzyl [43], 2(*S*)-eriodictyol [152] and dendrofalconerol A [25], phenolic compounds from *D. tortile*, showed the activity against α -glucosidase with IC₅₀ = 324.6±34.8 µM, 276.2±25.5 µM and 18.0±0.8 µM (Limpanit *et al.*, 2016).

CHAPTER III

EXPERIMENTAL

1. Materials

1.1 Plant material

The whole plants of *Dendrobium infundibulum* were purchased from Chatuchak market, Bangkok, in August 2015. Authentication was performed by Associate Professor Boonchoo Sritularak (Faculty of Pharmaceutical Sciences, Chulalongkorn University) by comparing with the Botanical Garden Organization Plant Database ("BGO Plant Database," 2011). A voucher specimen (BS-DI-082558) has been deposited at the Department of the Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

1.2 Chemical materials

Silica gel 60 F254 (E. Merck) precoated plate, silica gel 60 (No. 7734 for VLC) particle size 0.063-0.200 mm (E. Merck), silica gel 60 (No. 9385 for CC) particle size 0.040-0.063 mm (E. Merck) and Sephadex[®] LH-20 (GE Healthcare) were used as the stationary phase in chromatographic separation.

Organic solvents: acetone, dichloromethane, ethyl acetate, hexane and methanol were redistilled before use.

2. Experimental techniques

2.1 Analytical thin-layer chromatography (TLC)

Technique:	One dimension ascending
Absorbent:	Silica gel 60 F254 (E. Merck) precoated plate
Layer thickness:	0.2 mm
Distance:	5 cm
Temperature:	Ambient Temperature (24-39°C)
Detection:	Ultraviolet light at wavelengths of 254 and 365 nm.

2.2 Column Chromatography

2.2.1 Vacuum liquid chromatography (VLC)

Absorbent:	Silica gel 60 (No. 7734), particle size 0.063-0.200 mm (E. Merck)	
Temperature:	Ambient Temperature (24-39°C)	
Packing method:	Dry Packing	
Loading method:	1. Dissolved the sample in a small amount of organic solvent, mixed with a proper quantity of the absorbent and triturated	
	2. Let the mixture dry in vacuum desiccator	
	3. Gradually placed the mixture on top of the column	
Detection:	1. Examined every fraction by TLC with suitable mobile phase	
	2. Detected with ultraviolet light at wavelengths of 254 and 365 nm.	
2.2.2 Flash column chromatography (FCC)		
Absorbent:	Silica gel 60 (No. 9385), particle size 0.040-0.063 mm (E. Merck)	
Temperature:	Ambient Temperature (24-39°C)	
Packing method:	Appropriate organic solvent or solvent mixture was used as the	
	eluent. Silica gel was suspended in the eluent, then poured into the column and left to set tightly	
Loading method:	1. Dissolved the sample in a small amount of organic solvent, mixed with a suitable quantity of the absorbent and triturated	
	2 Let the mixture dry in vacuum desiccator	
	2. Cradually placed the mixture on the ten of the column	
	5. Graduatty placed the mixture on the top of the column	
Detection:	1. Examined every fractions by TLC with suitable mobile phase	
	2. Detected with ultraviolet light at wavelengths of 254 and	
	365 nm.	

2.2.3 Gel filtration chromatography

Gel filter:	Sephadex [®] LH-20 (GE Healthcare)
Temperature:	Ambient Temperature (24-39°C)
Packing method:	An appropriate organic solvent was used as the eluent. Gel filter was suspended in the eluent, poured into the column and left to set tightly overnight
Loading method:	 Dissolved the sample in a small amount of organic solvent gently pour the mixture on the top of the columm
Detection:	 Examined every fractions by TLC with proper mobile phase Detected with ultraviolet light at wavelengths of 254 and 365 nm

2.3 Spectroscopy

2.3.1 Ultraviolet-Visible (UV-Vis) spectroscopy

UV spectra (in methanol) were obtained on a Shimadzu UV-160A UV/VIS spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.3.2 Infrared (IR) spectroscopy

IR spectra were obtained on a Perkin-Elmer FT-IR 1760X spectrophotometer (Scientific and Technology Research Equipment Center, Chulalongkorn University).

2.3.3 Mass spectrometry

Mass spectra were recorded on a Bruker micro TOF mass spectrometer (ESI-MS) (Department of Chemistry, Faculty of Science, Mahidol University).

2.3.4 Nuclear magnetic resonance (NMR) spectroscopy

The ¹H and ¹³C NMR spectra were recorded on a Bruker Avance DPX-300 FT-NMR spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University) or a Bruker Avance III HD 500 NMR spectrometer (Scientific and Technological Research Equipment Center, Chulalongkorn University)

The solvent for NMR spectra was deuterated acetone (acetone- d_6). The chemical shifts were reported in ppm scale using the chemical shift of the solvent as the reference signal.

3. Extraction and isolation

3.1 Extraction

The dried whole plants of *D. infundibulum* (3.4 kg) were ground and then macerated with methanol (3X10L) for 72 hours, three times. The organic solvent was evaporated under reduced pressure to give 306.9 g of crude methanol extract. This material was suspended in water and partitioned with EtOAc and then *n*-butanol to give an EtOAc extract (77.8 g), and *n*-butanol extract (67.4 g), and aqueous extract (161.7 g) (Scheme 1).

Scheme 1 Extraction of Dendrobium Infundibulum

All three extracts were tested for lipase and α -glucosidase inhibitory activities. The EtOAc extract showed the highest activity with 83.30% and 66.28% inhibition of lipase and α -glucosidase, respectively, at a concentration of 100 µg/mL. Therefore this extract was selected for further studies.

3.2 Separation and isolation

The EtOAc extract (77.8 g) was initially fractionated by vacuum liquid chromatography (VLC) as shown in **Scheme 2**. Silica gel (No. 7734, 600 g) was used as the stationary phase and a step gradient of hexane-EtOAc (from 1:0 to 0:1) was used as the mobile phase. The eluents were collected about 300 mL per fraction and examined by TLC (silica gel, hexane-EtOAc = 7:3). Then, fractions with similar TLC patterns were combined to give 7 fractions (A-G): A (33.8 g), B (8.1 g), C (9.4 g), D (2.6 g), E (11.3 g), F (7.2 g), and G (45.5 g).

Scheme 2 Separation of the EtOAc extract of Dendrobium Infundibulum

3.2.1 Isolation of compound DI1 (Dendroinfundin A)

As shown in **Scheme 2**, fraction E (11.3 g) was further separated by flash column chromatography using silica gel (No. 9385) as the stationary phase with a gradient mixture of hexane-EtOAc (1:0 to 0:1) as the mobile phase to give 16 fractions (E1-E16). Then, fraction E4 (332.5 mg) was fractionated on a Sephadex LH-20 column eluated with acetone to afford 6 fractions (E4A-E4F). Fraction E4C (40 mg) was purified on a Sephadex LH-20 column eluated with acetone to give 3 fractions (E4C1-E4C3). Fraction E4C3, after drying gave compound **Dl1** (6.9 mg), a white amorphous solid ($R_f = 0.46$, silica gel, hexane: EtOAc = 1:1).

3.2.2 Isolation of compounds DI2 (Ephemeranthol A) and DI3 (Dendroinfundin B)

Fraction E12 (1.0 g) was separated on a Sephadex LH-20 column eluated with acetone to give 5 fractions (E12A-E12E) (**Scheme 3**). Fraction E12D (599.1 mg) was further separated on a silica gel column gradient mixture of CH_2Cl_2 -acetone (1:0 to 0:1) to obtain 4 fractions (E12D1-E12D4). Fraction E12D3 (329.4 mg) was separated by using CC (silica gel, gradient mixture of CH_2Cl_2 -acetone (1:0 to 0:1)) to give 5 fractions (E12D3A-E12D3E).

Fraction E12D3B (274.9 mg) was purified on a Sephadex LH-20 column eluated with acetone to give 3 fractions (E12D3B1-E12D3B3). Fraction E12D3B, after drying gave compound DI2 (217.6 mg) as a white amorphous solid ($R_f = 0.46$, silica gel, hexane: EtOAc, 7:3).

Fraction E12D3E (13.9 mg) was subjected to CC over silica gel, eluted with CH_2Cl_2 -acetone gradient (from 1:0 to 0:1) to give 5 fractions (E12D3E1-E12D3E5). Fraction E12D3E1, after drying, yeilded compound DI3 (4.8 mg) as a brown amorphous solid (R_f = 0.48, silica gel 60 F254, hexane: EtOAc = 1:1).

Scheme 3 Separation of fraction E12 of Dendrobium Infundibulum

จุหาลงกรณํมหาวิทยาลัย

3.2.4 Isolation of compounds DI4 (Moscatilin), DI5 (Aloifol I) and

DI6 (Batatasin III)

As shown in **Scheme 4**, fraction E13 (1.1 g) was separated on Sephadex LH-20 column eluted with acetone to give 6 fractions (E13A-E13F). Fraction E13E (449.3 mg) was further separated using a silica gel column (CH_2Cl_2 -acetone, gradient from 1:0 to 0:1) to give 6 fractions (E13E1-E13E6). Compounds DI4 (5.0 mg) and DI6 (135.9 mg) were obtained from fraction E13E2 and E12E5 ($R_f = 0.46$ and 0.34, respectively, silica gel 60 F254, CH_2Cl_2 -acetone = 1:1). Compounds DI4 was orangish-brown amorphous solid, while DI6 was brown amorphous solid.

Finally, fraction E13E4 (269.4 mg) was purified by CC using silica gel and a gradient mixture of CH_2Cl_2 -acetone (1:0 to 0:1) to afford 3 fractions (E13E4A-E13E4C). Fraction E13E4A, after drying, yeilded compound DI5 (238 mg) as a reddish-brown amorphous solid ($R_f = 0.40$, silica gel, hexane: EtOAc 1:1).

Scheme 4 Separation of fraction E13 of Dendrobium Infundibulum

3.2.6 Isolation of compound DI7 (3,3'-Dihydroxy-4,5-

dimethoxybibenzyl)

Fraction E14 (878.3 mg) was separated on a Sephadex LH-20 column eluted with acetone to give 6 fractions (E14A-E14F). After removal of the solvent, fraction E14D (425.9 mg) yeilded compound DI7 as a dark brown amorphous solid ($R_f = 0.24$, silica gel 60 F254, hexane: EtOAc = 7:3) (**Scheme 2**).

3.2.7 Isolation of compound DI8 (3,4'-Dihydroxy-3',4,5trimethoxybibenzyl)

Fraction F (7.2 g) was separated on Sephadex LH-20 column eluted with methanol to give 11 fractions (F1-F11). Fraction F2 (246.9 mg) was separated on a Sephadex LH-20 column eluted with methanol to afford 12 fractions (F2A-F2L). Fraction F2C (32.8 mg) was further purified by Sephadex LH-20 column eluted with methanol to give 10 fractions (F2C1-F2C10) (**Scheme 5**). Fraction F2C3, after drying, afford compound DI8 (10.1 mg) as a dark brown amorphous solid. Its R_f value (when applied on silica gel and developed with mixture of hexane-EtOAc ratio 1:1) was 0.50.

Scheme 5 Separation of fraction F of Dendrobium Infundibulum

3.2.8 Isolation of compound DI9 (Dendrosinen B)

As shown in **Scheme 6**, fraction F4 (830.2 mg) was separated on a Sephadex LH-20 column eluted with methanol to give 10 fractions (F4A-F4J). Fraction F4D (182.5 mg) was further separated by CC (silica gel, CH_2Cl_2 -acetone, gradient from 1:0 to 0:1) to give 10 fractions (F4D1-F4D10). Fraction F4D5 (28.2 mg) was purified by Sephadex LH-20 column eluted with methanol to give 8 fractions (F4D5A-F4D5H). Fraction F4D5E, upon drying, gave compound DI9 (9.5 mg) as a brown amorphous solid (R_f = 0.36, silica gel, hexane: EtOAc - 1:1).

Scheme 6 Separation of fraction 4 of Dendrobium Infundibulum (DI9)

4. Physical and spectral data of isolated compounds

4.1 Compound DI1 (Dendroinfundin A)

Compound DI1 was obtained as a white amorphous solid, soluble in acetone (6.9 mg, 0.00020% based on dried weight of whole plant).

UV:	$\lambda_{\scriptscriptstyle max}$ nm (log $arepsilon$),	in methanol	222 (4.36),	273 (4.07); Figure 9
-----	---	-------------	-------------	----------------------

FT-IR: V cm⁻¹ (KBr): 3358, 2922, 1658, 1468; **Figure 8**

HR-ESI-MS: $[M+Na]^+$ ion at m/z 309.1047 (C₁₇H₁₈O₄Na); Figure 7

- ¹H-NMR: δ ppm, 500 MHz, in acetone- d_6 ; Figure 10, Table 6
- ¹³C-NMR: δ ppm, 125 MHz, in acetone- d_6 ; Figure 11, Table 6

4.2 Compound DI2 (Ephemeranthol A)

Compound DI2 was obtained as a white amorphous solid, soluble in acetone (218 mg, 0.00641% based on dried weight of whole plant).

HR-ESI-MS: $[M+Na]^+$ ion at m/z 295.0965 ($C_{17}H_{18}O_4Na$); Figure 19

¹H-NMR: δ ppm, 300 MHz, in acetone- d_6 ; Figure 20, Table 7

¹³C-NMR: δ ppm, 75 MHz, in acetone- d_6 ; Figure 20, Table 7

4.3 Compound DI3 (Dendroinfundin B)

Compound DI3 was obtained as a dark brown amorphous solid, soluble in acetone (4.8 mg, 0.00014% based on dried weight of whole plant).

UV: λ_{\max} nm (log ϵ), in methanol 223 (4.56), 273 (4.15), 303 (3.84);

Figure 27

- **FT-IR :** $V \text{ cm}^{-1}$ (KBr): 3358, 2922, 1658, 1468; **Figure 26**
- **HR-ESI-MS:** $[M+Na]^+$ ion at m/z 325.1051 ($C_{17}H_{18}O_5Na$); Figure 25
- ¹H-NMR: δ ppm, 500 MHz, in acetone- d_6 ; Figure 28, Table 8
- ¹³C-NMR: δ ppm, 125 MHz, in acetone- d_6 ; Figure 29, Table 8

4.4 Compound DI4 (Moscatilin)

Compound DI4 was obtained as a orangish-brown amorphous solid, soluble in acetone (5 mg, 0.00015% based on dried weight of whole plant).

HR-ESI-MS: $[M+Na]^+$ ion at m/z 327.1219 ($C_{17}H_{20}O_5Na$); Figure 38

¹H-NMR: δ ppm, 300 MHz, in acetone- d_6 ; Figure 39, Table 9

¹³C-NMR: δ ppm, 75 MHz, in acetone- d_6 ; Figure 40, Table 9

4.5 Compound DI5 (Aloifol I)

Compound DI5 was obtained as a reddish-brown solid, soluble in acetone (238 mg, 0.00700% based on dried weight of whole plant).

HR-ESI-MS: $[M+Na]^+$ ion at m/z 297.1107 (C₁₆H₁₈O₄Na); Figure 45

¹H-NMR: δ ppm, 300 MHz, in acetone- d_6 ; Figure 46, Table 10

¹³C-NMR: δ ppm, 75 MHz, in acetone- d_6 ; Figure 47, Table 10

4.6 Compound DI6 (Batatasin III)

Compound DI6 was obtained as a brown amorphous solid, soluble in acetone (135.9 mg, 0.003997% based on dried weight of whole plant).

HR-ESI-MS: $[M+Na]^+$ ion at m/z 267.1051 ($C_{15}H_{16}O_3Na$); Figure 52

¹H-NMR: δ ppm, 300 MHz, in acetone- d_6 ; Figure 53, Table 11

¹³C-NMR: δ ppm, 75 MHz, in acetone- d_6 ; Figure 54, Table 11

4.7 Compound DI7 (3,3'-Dihydroxy-4,5-dimethoxybibenzyl)

Compound DI7 was obtained as a dark brown amorphous soilid, soluble in acetone (425.9 mg, 0.01253% based on dried weight of whole plant).

HR-ESI-MS: $[M+Na]^+$ ion at m/z 297.1107 ($C_{16}H_{18}O_4Na$); **Figure 60**

¹H-NMR: δ ppm, 300 MHz, in acetone- d_6 ; Figure 61, Table 12

¹³C-NMR: δ ppm, 75 MHz, in acetone- d_6 ; Figure 62, Table 12

4.8 Compound DI8 (3,4'-Dihydroxy-3',4,5-trimethoxybibenzyl)

Compound DI8 was obtained as a dark brown amorphous solid, soluble in acetone (10.1 mg, 0.000296% based on dried weight of whole plant).

HR-ESI-MS: $[M+Na]^+$ ion at m/z 327.1210 ($C_{17}H_{20}O_5Na$); Figure 68

¹H-NMR: δ ppm, 300 MHz, in acetone- d_6 ; Figure 69, Table 13

¹³C-NMR: δ ppm, 75 MHz, in acetone- d_6 ; Figure 70, Table 13

4.9 Compound DI9 (Dendrosinen B)

Compound DI9 was obtained as a brown amorphous solid, soluble in acetone (9.5 mg, 0.00028% based on dried weight of whole plant).

HR-ESI-MS: $[M+Na]^+$ ion at m/z 283.0911 (C₁₅H₁₆O₄Na); Figure 76

- ¹H-NMR: δ ppm, 300 MHz, in acetone- d_6 ; Figure 77, Table 14
- ¹³C-NMR: δ ppm, 75 MHz, in acetone- d_6 ; Figure 78, Table 14

5. Assays for lipase and lpha-glucosidase inhibitory activities

5.1 Lipase inhibitory activity assay

5.1.1 Materials and instruments

Pancreatic lipase enzyme (Sigma-Aldrich)
4-Methylumbelliferyl oleate (4-MUO) (Sigma-Aldrich)

- Orlistat (Sigma-Aldrich)
- Tris-HCl (Sigma-Aldrich)
- Sodium chloride (Merk)
- Calcium carbonate (Riedel-De Haen)
- Sodium citrate (Merck)
- Wallac 1420 Victor2 Microplate Reader (PerkinElmer)
- Transsonic 570/H Ultrasonic bath (Elma)

- Vortex Genie2 mixer (Scientific Industries)

5.1.2 Determination of lipase inhibitory activity

The lipase inhibitory activity was determined by measuring the amount of 4methylumbelliferone (4-MU) released from the reaction between lipase and 4methylumbelliferyl oleate (4-MUO). This enzyme assay method was adopted from two previous studies (Sergent *et al.*, 2012; Podsedek *et al.*, 2014). Tris-HCl buffer (pH 8.0) consisting of 13 mM Tris-HCl, 150 mM NaCl and 1.3 mM CaCl₂ was used to prepare the enzyme and substrate solutions. In 96-well plate, 25 µL of sample, 50 µL of 0.5 mM 4-MUO and 25 µL of 0.5 mg/mL pancreatic lipase were mixed and incubated at room temperature for 30 min. Then, 100 µL of 0.1 mM sodium citrate (pH 4.2) was added to terminate the reaction.

The sample was replaced by 20% DMSO as a negative control. The final concentration of DMSO in each well was controlled at 5%. Orlistat was used as a positive control and treated under the same condition as the sample.

Fluorescence of 4-MU was measured using a microplate reader with excitation and emission wavelengths of 355 and 460 nm, respectively. The percentage of lipase enzyme inhibition was calculated from the following formula:

% inhibition =
$$\frac{(F_{control} - F_{control blank}) - (F_{sample} - F_{sample blank})}{(F_{control} - F_{control blank})} X 100$$

Where $F_{control}$ and $F_{control blank}$ are the fluorescence value of the negative control with and without enzyme, respectively; F_{sample} and $F_{sample blank}$ are the fluorescence value of sample with and without enzyme, respectively.

After the screening test, the compounds could inhibit more than 50% of the enzyme activity at the concentration of 100 μ g/mL were examined to determine the IC₅₀ values. The experiment was performed in triplicate.

5.2 α -Glucosidase enzyme inhibitory activity assay

5.2.1 Materials and instruments

- α -Glucosidase enzyme (Sigma-Aldrich)
- *p*-Nitrophenyl- α -D-glucopyranoside (*p*NPG) (Sigma-Aldrich)
- Acarbose (Sigma-Aldrich)
- Monobasic potassium phosphate: KH₂PO₄ (Carlo Erba)
- Dibasic potassium phosphate: K₂HPO₄ (Carlo Erba)
- Sodium carbonate (Sigma-Aldrich)
- Wallac 1420 Victor2 Microplate Reader (PerkinElmer)
- Transsonic 570/H Ultrasonic bath (Elma)
- Vortex Genie2 mixer (Scientific Industries)

5.2.2 Determination of α -glucosidase inhibitory activity

The assay to determine of α -glucosidase inhibitory activity was adapted from prior research (Kang *et al.*, 2010) by monitoring the *p*-nitrophenol released from the interaction between α -glucosidase and *p*-nitrophenyl- α -D-glucopyranoside (*p*NPG). The enzyme and substrate were diluted in 0.1 M phosphate buffer (pH 6.8). In the assay, 40 µL of buffer, 10 µL of sample and 50 µL of 0.1 U/mL α -glucosidase were mixed in a 96-well plate and pre-incubated at 37 °C for 10 min. Then, 50 µL of 2 mM *p*NPG was added and the mixture was further incubated at 37 °C for 20 min. Finally, 100 µL of 0.1 mM Na₂CO₃ solution was added to stop the reaction.

The sample was replaced by 50% DMSO as a negative control and acarbose as a positive control. The final concentration of DMSO in each well was about 3.3%. The negative and positive controls were treated under the same condition as the sample. The absorbance was then measured at 405 nm using a microplate reader. The percentage of α -glucosidase inhibition was calculated by the following formula:

% inhibiton =
$$\frac{(A_{\text{control}} - A_{\text{control blank}}) - (A_{\text{sample}} - A_{\text{sample blank}})}{(A_{\text{control}} - A_{\text{control blank}})} \times 100$$

Where $A_{control}$ and $A_{control \ blank}$ are the absorbance of the negative control with and without enzyme, respectively; A_{sample} and $A_{sample \ blank}$ are the absorbance of sample with and without enzyme, respectively.

The compounds were further analyzed for IC_{50} value if they showed \geq 50% inhibition of the enzyme at the concentration of 100 µg/mL. The experiment to obtain the IC_{50} value experiment was performed in triplicate.

CHAPTER IV RESULTS AND DISCUSSION

The whole plants of *Dendrobium infundibulum* were extracted with methanol to give methanol extract, which suspended in water and partitioned with EtOAc and n-butanol. All extracts were then examined for inhibitory activity against the enzymes lipase and α -glucosidase. The EtOAc extract, which showed the most potent lipase and α -glucosidase inhibitory activities, was selected for further separation using several chromatographic techniques to give 9 compounds.

1. Structure determination of isolated compounds

1.1 Structure determination of compound DI1

Compound DI1 was obtained as a white amorphous solid. The HR-ESI mass spectrum (**Figure 7**) presented an $[M+Na]^+$ ion peak at m/z 309.1047 (calcd. for $C_{17}H_{18}O_4Na$, 309.1102), suggesting the molecular formula $C_{17}H_{18}O_4$.

Its IR spectrum showed absorption bands of hydroxy group at 3358 cm⁻¹, aromatic rings at 2292 and 1659 cm⁻¹ and methylene groups at 1468 cm⁻¹ (Figure 8). The UV spectrum (Figure 9) presented maximal absorptions at 222 nm and 273 nm, implying that it was a dihydrophenanthrene (Lin *et al.*, 2013).

The ¹H NMR spectrum (**Figure 10**) exhibited four aromatic proton signals at δ 6.48-8.31 and three methoxy signals at δ 3.79, 3.80 and 3.85. An ABM splitting system of protons on ring A consisted of a double doublets at δ 6.78 (1H, J = 9.5, 2.5 Hz, H-6) and two doublets at δ 6.77 (1H, J = 2.5 Hz, H-8), and 8.31 (1H, J = 9.5 Hz, H-5). The siglet proton signal at δ 6.48 represented a proton with no coupling on ring B.

The number of signals in the ¹³C-NMR spectrum (**Figure 11**) corresponded to the number of carbon atoms in the molecular formula. Nine proton signals were assigned to nine carbon atoms by the HSQC spectrum (**Figures 12-14**). It also revealed eight quaternary carbons.

The positions of aromatic protons and methoxy groups were assigned by the correlations in HMBC spectrum (**Figures 15-17**). On ring A, the H-5 was assigned based on the correlations of C-4a (δ 115.5), C-7 (δ 158.7) and C-8a (δ 139.7). The H-6 and H-8 were assigned by the correlations to C-4b (δ 126.9) and C-9 (δ 30.9), respectively. The H-1 of ring B was assigned by the correlation of C-10 (δ 31.0). The methoxy protons at δ 3.85, 3.80 and 3.79 showed correlations to C-2 (δ 151.6), C-3 (δ 135.7) and C-7 (δ 158.7), respectively.

The NOESY spectrum (**Figure 18**) was used to confirm the positions of aromatic protons and methoxy groups. The 2-OMe substitution was confirmed by its correlations to H-1. The 7-OMe substitution was confirmed by its correlations to H-6 and H-8. The 3-OMe substitution was confirmed by the HMBC correlations from C-3 to 3-OMe protons and H-1.

Based on the above spectral evidence, DI1 was characterized as 4-hydroxy-2,3,7-trimethoxydihydrophenanthrene and has been named dendroinfundin A.

HMBC correlations $(H \rightarrow C)$

NOESY correlations (H \longleftrightarrow H)

	Compound DI1		
Position	$\delta_{\!\scriptscriptstyle H}$ in ppm	δ_{c} in ppm	
	(mult., J in Hz)		
1	6.48 (s)	104.3	
2	-	151.6	
3	-	135.7	
4		148.4	
4a		115.5	
4b		126.9	
5	8.31 (<i>d</i> , <i>J</i> = 9.5 Hz)	129.6	
6	6.78 (d, J = 9.5, 2.5 Hz)	112.0	
7		158.7	
8	6.77 (<i>d</i> , <i>J</i> = 2.5 Hz)	113.7	
8a		139.7	
9	2.69 (m)	30.9	
10	2.69 (m)	31.0	
10a	งกรณ์มหาวิทยาย	134.6	
2-OMe	ONGKO ^{3.85 (s)} NIVER	SIT 56.1	
3-OMe	3.80 (<i>s</i>)	60.9	
7-OMe	3.79 (<i>s</i>)	55.4	

Table 6 NMR spectral data of compound DI1 (500 MHz, in acetone- d_6)

Figure 7 Mass spectrum of compound DI1

Figure 8 IR spectrum of compound DI1

Figure 9 UV spectrum of compound DI1

Figure 11 ¹³C-NMR spectrum of compound DI1

Figure 13 HSQC spectrum of compound DI1 (enlarge1)

Figure 17 HBMC spectrum of compound DI1 (enlarge 2)

Figure 18 NOESY spectrum of compound DI1

1.2 Structure determination of compound DI2

Compound DI2 was obtained as a white amorphous solid. Its HR-ESI-MS (**Figure 19**) showed a sodium-adduct molecular ion $[M+Na]^+$ peak at m/z 295.0965 (calcd. for $C_{16}H_{16}O_4Na$; 295.0946), suggesting the molecular formula $C_{16}H_{16}O_4$. It had one carbon atom and two hydrogen atoms less than compound DI1 implying that a hydroxy group substituted instead of a methoxy group.

Its patterns of ¹H NMR (**Figure 20**) and ¹³C NMR (**Figure 21**) spectrum were similar to compound DI1, only a methoxy signal was disappeared in both ¹H NMR and ¹³C NMR spectrum. The HSQC spectrums were used to assign a linkage of proton to carbon (**Figure 22**).

The aromatic protons and methoxy groups were assigned by the correlations in HMBC spectrum (**Figure 23**). On ring A, the signal at δ 8.24 (1H, *d*, *J* = 9.3 Hz) was assigned as H-5 based on the correlations to C-7 (δ 156.2), C-4a (δ 115.7) and C-8a (δ 139.7). The H-6 (δ 6.72, *dd*, *J* = 9.3, 2.7 Hz) was assigned by the correlation peak to C-4b (δ 125.7). The H-8 (δ 6.70, *d*, *J* = 2.7 Hz) was assigned by the correlations of C-7 (δ 156.2) and C-9 (δ 30.7). The H-1 (δ 6.70, *s*) of ring B was assigned by the correlation of C-2 (δ 151.3), C-3 (δ 135.8), C-4a (δ 115.7) and C-10 (δ 31.0). The proton at δ 7.93 (*s*) showed correlations to C-3, C-4 (δ 148.2) and C-4a, indicated the position of 4-OH. The methoxy protons at δ 3.83 and 3.79 showed correlations to C-2 (δ 151.3) and C-3 (δ 135.8), respectively.

The NOESY spectrum (**Figure 24**) was used to confirm the positions of aromatic protons and methoxy groups. The 2-OMe substitution was confirmed by correlations of H-1 to H-10 (δ 2.66) and protons of 2-OMe. The position of H-5 was confirmed by the correlations to 4-OH and H-5. The cross peak of H-8 and H-9 indicated the close position between these two protons. The 3-OMe substitution was confirmed by no crosspeak to any proton.

From the data mentioned above and through comparison with previously reported NMR data (**Table 7**), compound DI2 was identified as ephemeranthol A

[111]. It has been isolated from *Ephemerantha lonchophylla* (Tezuka et al., 1991), *Dendrobium nobile* (Yang *et al.*, 2007; Hwang *et al.*, 2010; Kim *et al.*, 2015; Zhou *et al.*, 2016), *Flickingeria fimbriata* (Wu *et al.*, 2017b) and *Dendrobium officinale* (Zhao *et al.*, 2018). Its biological activities which were reported are anti-inflammatory activity (inhibited nitric oxide production with the IC₅₀ 12.0 \pm 0.3 µM) (Hwang *et al.*, 2010), by inhibition of NF-KB activation and phosphorylation of MAP kinases in the macrophages (Kim *et al.*, 2015), antifibrotic activity by inhibition of hepatic (HSC-T6) cell proliferation (IC₅₀ 79.2 µM) (Yang *et al.*, 2007) and cytotoxic activity against leukemia cells (HL-60; IC₅₀ 39.35 \pm 1.58 µM and THP-1; IC₅₀ 36.34 \pm 2.21 µM) (Zhao *et al.*, 2018).

	Compound I	Ephemeranthol A*	
Position	$\delta_{\scriptscriptstyle \! H}$ in ppm	S ::	$\delta_{\scriptscriptstyle \! H}$ in ppm
	(mult., <i>J</i> in Hz)	O _c in ppm	(mult., <i>J</i> in Hz)
1	6.45 (<i>s</i>)	104.3	6.39 (s)
2	-	151.3	-
3	-	135.8	-
4	· /////	148.2	-
4a		115.7	-
4b	-////	125.7	-
5	8.24 (<i>d</i> , <i>J</i> =9.3 Hz)	129.7	8.22 (<i>d</i> , <i>J</i> =8.5 Hz)
6	6.72 (<i>dd</i> , <i>J</i> =9.3, 2.7 Hz)	113.5	6.74 (<i>dd</i> , <i>J</i> =8.5, 3.0 Hz)
7		156.2	-
8	6.70 (<i>d</i> , <i>J</i> =2.7 Hz)	115.1	6.71 (<i>d</i> , <i>J</i> =3.0 Hz)
8a	Q CONTRACTOR	139.7	-
9	2.66 (m)	30.7	2.74 (m)
10	2.66 (m)	31.0	2.74 (m)
10a	CHULALONGKOB	134.4	ТҮ
2-OMe	3.83 (s)	56.0	3.89 (s)
3-OMe	3.79 (<i>s</i>)	60.8	3.93 (s)

Table 7 NMR spectral data of compound DI2 (300 MHz, in acetone- d_6) andephemeranthol A (400 MHz, in CDCl₃)

*Tezuka et al., 1991

Figure 20¹H-NMR spectrum of compound DI2

Figure 22 HSQC spectrum of compound DI2

Figure 23 HMBC spectrum of compound DI2

Figure 24 NOESY spectrum of compound DI2

1.3 Structure determination of compound DI3

Compound DI3 was isolated as a dark brown amorphous soilid. Its HR-ESI-MS (**Figure 25**) presented a sodium-adduct molecular ion $[M+Na]^+$ peak at m/z 325.1051, (calcd. for $C_{17}H_{18}O_4Na$; 325.1051), suggesting the molecular formula $C_{17}H_{18}O_5$. It had one oxygen atom more than compound DI1 implying that there was a hydroxy group substituted instead of an aromatic proton.

Its IR spectrum showed absorption bands of hydroxy group at 3358 cm⁻¹, aromatic rings at 2292 and 1659 cm⁻¹ and methylene groups at 1468 cm⁻¹ (**Figure 26**). The UV spectrum (**Figure 27**) presented maximal absorptions at 222 nm and 273 nm, implying that it was a dihydrophenanthrene (Lin *et al.*, 2013).

The ¹H NMR (**Figure 28**) spectrum showed the similar structure of ring B to that of DI1. It was confirmed by the HMBC correlations from H-1 (1H, s, δ 6.63) to C-10 (δ 31.2). The assignments of C-2 (δ 152.6) and C-3 (δ 136.6) were obtained from the HMBC correlations between 2-OMe protons and C-2, and between 3-OMe (3H, s, δ 3.81) protons and C-3, together with the NOESY interaction between 2-OMe protons (3H, s, δ 3.88) and H-1.

The number of signals in the ¹³C-NMR spectrum (**Figure 29**) corresponded to the number of carbon atoms in the molecular formula. Eight proton signals were assigned to nine carbon atoms by the HSQC spectrum (**Figures 30-31**). It also revealed nine quaternary carbons, which wxihibited five substitutions on the phenanthrene nucleus.

The positions of aromatic protons and substitutes were showed by the HMBC spectrum (Figures 32-35). On ring A, the signal at δ 6.84 was assigned as H-7 based on the correlations to C-8a (δ 128.8). The H-6 was assigned by the correlation peak to C-4b (δ 123.4). The H-1 of ring B was assigned by the correlation to C-2 (δ 152.6), C-4a (δ 115.4), C-10 (δ 31.2) and C-10a (δ 136.8). The methoxy protons at δ 3.88, 3.81 and 3.78 showed correlations to C-2 (δ 151.3), C-3 (δ 135.8) and C-8 (δ 56.7), respectively.

The NOESY spectrum (**Figures 36-37**) was used to confirm the position of aromatic protons and methoxy groups. The 2-OMe substitution was confirmed by correlations of H-1 to H-10 (δ 2.56) and protons of 2-OMe. The position of 7-OMe was confirmed by the correlations to H-7 and H-9. The 3-OMe substitution was confirmed by no crosspeak to any proton.

On the basis of the above spectroscopic studies, DI3 was thus characterized as 4,5-dihydroxy-2,3,8-trimethoxydihydrophenanthrene, and has been given the trivial name dendroinfundin B.

	Compound DI3			
Position	$\delta_{\scriptscriptstyle \! H}$ in ppm	δ_{c} in ppm		
	(mult., J in Hz)			
1	6.63 (s)	105.2		
2	-	152.6		
3	-	136.6		
4		147.3		
4a		115.4		
4b		123.4		
5		148.6		
6	6.81 (<i>d</i> , <i>J</i> = 9.0 Hz)	117.3		
7	6.84 (<i>d</i> , <i>J</i> = 9.0 HZ)	112.2		
8		150.5		
8a		128.8		
9	2.66 (m)	23.1		
10	2.56 (m)	31.2		
10a	งกรณ์มหาวิทยาเ	136.8		
2-OMe	0NGK0 3.88 (s)	STT 56.2		
3-OMe	3.81 (s)	60.8		
8-OMe	3.78 (<i>s</i>)	56.7		

Table 8 NMR spectral data of compound DI3 (500 MHz, in acetone- d_6)

Figure 25 Mass spectrum of compound DI3

Figure 26 IR spectrum of compound DI3

Figure 27 UV spectrum of compound DI3

Figure 29¹³C-NMR spectrum of compound DI3

Figure 31 HSQC spectrum of compound DI3 (enlarge)

Figure 33 HMBC spectrum of compound DI3 (enlarge 1)

Figure 34 HMBC spectrum of compound DI3 (enlarge 2)

Figure 35 HMBC spectrum of compound DI3 (enlarge 3)

Figure 37 NOESY spectrum of compound DI3 (enlarge)

1.4 Structure determination of compound DI4

Compound DI4 was isolated as a orangish-brown amorphous solid. Its HR-ESI-MS (**Figure 38**) presented a sodium-adduct molecular ion $[M+Na]^+$ peak at m/z 327.1219, (calcd. for $C_{17}H_{20}O_5Na$; 327.1208), suggesting the molecular formula $C_{17}H_{20}O_5$.

The ¹H-NMR (**Figure 39**) and ¹³C NMR spectrum (**Figure 40**) showed the aromatic, methoxy and methylene signals, suggested that compound DI4 was a bibenzyl.

The ¹H-NMR spectrum presented four aromatic signals at δ 6.38-6.86, three methoxy signals at δ 3.86 (9H, *s*) and a methylene signals at δ 2.84 (4H, *s*, H- α , H- α'). The symmetry of substitutes on ring A were showed by high intensity signal at δ 6.38 (2H, *s*, H-2, H-6) on ¹H NMR spectrum. This symmetry were also showed by high intensity signals at δ 146.9 (C-3 and C-5) and δ 105.23 (C-2 and C-6) on ¹³C NMR spectrum. The splitting pattern of protons on ring B consisted of a doublets at δ 6.86 (1H, *J* = 8.1 Hz, H-5'), a double doublets at δ 6.71 (1H, *J* = 8.1, 1.2 Hz, H-6') and a singlet at δ 6.64 (H-2'), indicated two different substitutes on ring B.

The HSQC spectrum (Figure 41) was used to find the correlations between protons and carbons with a single bond. It also revealed seven quaternary carbons, suggested five substitutions on bibenzyl nucleus.

The positions of aromatic protons and methoxy groups were assigned by the correlations in HMBC spectrum (**Figure 42**). Regarding a symmetry of ring A, two methoxy groups should be located on the meta-substitution position of each other. The H-2 and H-6 were assigned based on the correlations to C- α (δ 38.5), C-3 (δ 146.9) and C-5 (δ 146.9).

On ring B, The H-5' was assigned by the correlations to C-4' (δ 143.8) and C-3' (δ 146.3), respectively. The H-6' was assigned by the correlations to C-2' (δ 111.3), C-4' (δ 143.8) and C- α ' (δ 37.9). The H-2' was assigned by the correlations to C-4',

C-6' (δ 121.1) and C- α '. Three methoxy proton signals revealed the correlations to C-3, C-5 and C-3', respectively.

The NOESY spectrum (**Figures 43-44**) was used to confirm the positions of aromatic protons and methoxy groups. On ring A, the 3-OMe (5-OMe) substitution was confirmed by correlations of H-2 (H-6) and protons of 3-OMe (5-OMe). On ring B, the 3'-OMe substitution was confirmed by its correlations to H-2'.

From the above data, and through comparison of its ¹H-NMR and ¹³C-NMR spectra (**Table 9**) with the previously reported data (Majumder *et al.*, 1987), DI4 was identified as moscatilin [**59**]. This compound was first found in *Dendrobium moscatum* and then also found in many plants of *Dendrobium* species, for example, *D. capillipes* (Phechrmeekha *et al.*, 2012), *D. densiflorum* (Fan *et al.*, 2001), *D. loddigesii* (Chen *et al.*, 1994), and *D. secundum* (Sritularak *et al.*, 2011b). it showed many biological activities such as cytotoxic activity against cervical cancer cell (IC₅₀ = 2.2 μ M) (Phechrmeekha *et al.*, 2012), antiplatele aggregation (IC₅₀ = 61.8 μ M) (Chen *et al.*, 1994), anti-infalmmatory activity (IC₅₀ = 10.2±0.2 μ M) (Hwang *et al.*, 2010) and anioxidant activity (IC₅₀ = 15.87±1.48 μ M) (Sritularak *et al.*, 2011b).

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Moscatilin [56]

145

	Compound DI4		Moscatilin*	
Position	$\delta_{\scriptscriptstyle \! H}$ in ppm	& in nom	$\delta_{\scriptscriptstyle \! H}$ in ppm	S ·
	(mult., J in Hz)	O _c in ppin	(mult., J in Hz)	O _c in ppm
1	-	132. 9	-	132.8
2	6.38 (br s)	105.2	6.30 (<i>s</i>)	105.2
3	-	146.9	-	146.8
4	-	133.7		133.5
5	-	146.9	-	146.8
6	6.38 (br s)	105.2	6.30 (<i>s</i>)	105.2
α	2.84 (br s)	38.5	2.79 (s)	38.3
α′	2.84 (br s)	37.9	2.79 (s)	37.8
1'	_	132.9	<u> </u>	132.8
2′	6.64 (br s)	111.3	6.60 (<i>d</i> , <i>J</i> = 2.0 Hz)	111.2
3'	- 8	146.3		146.1
4 ′		143.8	-	143.7
5 '	6.86 (<i>d</i> , <i>J</i> = 8.1 Hz)	114.2	6.77 (<i>d</i> , <i>J</i> = 8.0 Hz)	114.1
6 '	6.71 (<i>dd</i> , <i>J</i> = 8.1, 1.2 Hz)	KOP121.1	6.74 (<i>dd</i> , <i>J</i> = 8.0, 2.0 Hz)	121.0
3-OMe	3.86 (s)	56.3	3.81 (s)	56.2
5-OMe	3.86 (s)	56.3	3.81(s)	56.2
3'-OMe	3.86 (s)	55.9	3.81(s)	55.8

Table 9 NMR spectral data of compound DI4 (300 MHz, in acetone- d_6) and Moscatilin(100 MHz, in CDCl₃)

*Majumder et al., 1987

Figure 38 Mass spectrum of compound DI4

Figure 39 ¹H-NMR spectrum of compound DI4

Figure 40¹³C-NMR spectrum of compound DI4

Figure 41 HSQC spectrum of compound DI4

Figure 42 HMBC spectrum of compound DI4

Figure 43 NOESY spectrum of compound DI4

จุฬาลงกรณมหาวทยาลย Chulalongkorn University

1.5 Structure determination of compound DI5

Compound DI5 was isolated as a reddish-brown amorphous solid. Its HR-ESI-MS (**Figure 45**) presented a sodium-adduct molecular ion $[M+Na]^+$ peak at m/z297.1107, (calcd. for C₁₆H₁₈O₄Na; 297.1103), suggesting the molecular formula C₁₆H₁₈O₄. It showed a carbon atom, two hydrogen atoms and an oxygen atom less than compound DI4 implied the disappearence of a methoxy group.

Its ¹H NMR (**Figure 46**) and ¹³C NMR (**Figure 47**) spectrum were similar to compound DI4. There were two different points between proton and carbon signals of compounds DI4 and DI5. The first one was the disappearance of a methoxy signal in both ¹H NMR and ¹³C NMR spectrum. The second one was the addition of a proton signal of ring B at δ 6.63 (H-4', *dd*, *J* = 8.1, 2.1 Hz).

The symmetry of substitutes on ring A were showed by high intensity signal at δ 6.48 (2H, *s*, H-2, H-6) on ¹H NMR spectrum. This symmetry were also showed by double peaks at δ 148.5 (C-3 and C-5) and δ 106.9 (C-2 and C-6) on ¹³C NMR spectrum. The splitting pattern of protons on ring B consisted of a triplets at δ 7.07 (1H, J = 8.1 Hz, H-5'), a double doublets at δ 6.63 (J = 8.1, 2.1 Hz, H-4') and two broad doublets at δ 6.68 (J = 2.1 Hz, H-2') and 6.66 (J = 8.1 Hz, H-6'), suggested a hydroxy substitution at C-3'

The HSQC spectrums were used to assign a linkage of proton to carbon (Figure 48). The positions of aromatic protons and methoxy groups were assigned by the correlations in HMBC spectrum (Figure 49). The equivalent protons on ring A, H-2 and H-6, were assigned based on the correlations to C- α (δ 38.6), C-3 (C-5) and C-4 (δ 135.1). On ring B, The H-5' was assigned by the correlations to C-1' (δ 144.4) and C-3' (δ 158.2). The H-4' was assigned by the correlations to C-2' (δ 120.5). Two methoxy proton signals (δ 3.76, *s*, 6H) revealed the correlations to C-3 and C-5.

The positions of aromatic protons and methoxy groups were comfirmed by NOESY spectrum (**Figures 50-51**). On ring A, the 3-OMe (5-OMe) substitution was confirmed by their correlations of H-2 (H-6).

From the above data, and through comparison of its ¹H-NMR and ¹³C-NMR spectra (**Table 10**) with the previously reported data (Juneja *et al.*, 1987) DI5 was identified as aloifol I [**1**], which were firstly found in *Cymbidium aloifolium*. This compound was also found in other plants in the family Orchidaceae e.g. *Liparis regnieri* (Ren *et al.*, 2016), *Bulbophyllum emarginatum* (Zhao *et al.*, 2015), *B. protractum* (Majumder *et al.*, 1997), *Dendrobium sinense* (Chen *et al.*, 2014), *D. moniliforme* (Ye *et al.*, 2016) and *D. williamsonii* (Yang *et al.*, 2018). It showed cytotoxic activity againt gastric cancer cells (SCG-7901) with an IC₅₀ of 12.8 \pm 0.6 µM (Chen *et al.*, 2014).

HMBC correlations (C \rightarrow H)

NOESY correlations $(H \leftrightarrow H)$

	Compound DI5		Aloifol I*		
Position	$\delta_{\scriptscriptstyle H}$ in ppm	$oldsymbol{\delta}_{c}$ in ppm	$\delta_{\scriptscriptstyle H}$ in ppm	$oldsymbol{\delta}_{c}$ in ppm	
	(mult., <i>J</i> in Hz)		(mult., <i>J</i> in Hz)		
1	-	133.1	-	132.8	
2	6.48 (<i>s</i>)	106.9	6.27 (s)	105.4	
3	-	148.5	-	146.8	
4	-	135.1	-	132.9	
5	-	148.5	-	146.8	
6	6.48 (s)	106.9	6.27 (s)	105.4	
α	2.79 (s)	38.6	2.75 (s)	36.7	
α′	2.79 (s)	38.8	2.75 (s)	37.7	
1′	-	144.4		143.3	
2′	6.68 (<i>br d</i> , <i>J</i> = 2.1 Hz)	120.5	6.62 (<i>dd</i> , <i>J</i> = 9.0, 2.5 Hz)	120.5	
3′	- 8	158.2	- 3	155.9	
4 ′	6.63 (<i>dd</i> , <i>J</i> = 8.1, 2.1 Hz)	113.5	6.62 (<i>dd</i> , <i>J</i> = 9.0, 2.5 Hz)	112.9	
5 '	7.07 (<i>t</i> , <i>J</i> = 8.1 Hz)	130.0	ยาลย _{7.03} (t)	129.2	
6'	6.66 (<i>br d, J</i> = 8.1 Hz)	116.3	6.62 (<i>dd</i> , <i>J</i> = 9.0, 2.5 Hz)	115.2	
3-OMe	3.76 (<i>s</i>)	56.6	3.72 (s)	56.2	
5-OMe	3.76 (<i>s</i>)	56.6	3.72 (<i>s</i>)	56.2	

Table 10 NMR spectral data of compound DI5 (300 MHz, in acetone- d_6) and aloifol I(400 MHz, in CDCl₃)

*Juneja *et al.*, 1987

Figure 46¹H-NMR spectrum of compound DI5

Figure 47¹³C-NMR spectrum of compound DI5

Figure 48 HSQC spectrum of compound DI5

Figure 50 NOESY spectrum of compound DI5

Figure 51 NOESY spectrum of compound DI5 (enlarge)

Chulalongkorn University

1.6 Structure determination of compound DI6

Compound DI6 was isolated as a brown amorphous solid. Its HR-ESI-MS (**Figure 52**) presented a sodium-adduct molecular ion $[M+Na]^+$ peak at m/z 267.1051, (calcd. for C₁₅H₁₆O₃Na; 267.0997), suggesting the molecular formula C₁₅H₁₆O₃.

The ¹H NMR spectrum (**Figure 53**) showed seven aromatic signals. The ¹H NMR of four aromatic signals of ring B were similar to compound DI5, which were aromatic protons of ring B. The splitting pattern of those protons consisted of a triplets at δ 7.08 (1H, J = 7.8 Hz, H-5'), a double doublets at δ 6.66 (J = 7.8, 1.8 Hz, H-4') and two broad doublets at δ 6.73 (J = 1.8 Hz, H-2') and 6.70 (J = 7.8 Hz, H-6'), implied a hydroxy substitution on ring B at C-3'. The other aromatic proton signals of on ring A were three meta-coupled protons resonated at δ 6.26 (t, J = 2.1 Hz, H-4), 6.31 (br s, H-2) and 6.35 (br s, H-6), indicated two different meta-substitution on this ring.

The number of signals in the ¹³C-NMR spectrum (**Figure 54**) corresponded to the number of carbon atoms in the molecular formula. The protons were assigned to the carbon atoms by the HSQC spectrum (**Figure 55**). It also revealed five quaternary carbons, affirmed number of substitutions.

The aromatic protons and methoxy groups were assigned the positions by the correlations in HMBC spectrum (Figures 56-58). On ring A, the H-6 was assigned based on the correlations to C-2 (δ 106.2), C-5 (δ 159.1) and C- α (δ 38.4). The H-2 was assigned based on the correlation to C-6 (δ 108.7) and C- α . The H-4 was assigned based on the correlations to C-2, C-3 (δ 161.7) and C- α . The H-4 was assigned based on the correlations to C-2, C-3 (δ 161.7) and C-3' (δ 158.0). The H-5' was assigned by the correlations to C-1' (δ 120.3), C-3' and C- α' (δ 38.1). The H-6' was assigned by the correlations to C-2', C-4' (δ 113.5) and C- α' . The H-4' was assigned by the correlations to C-2', C-4' (δ 113.5) and C- α' . The H-4' was assigned by the correlations to C-3'. Two methoxy proton signals (δ 3.69, *s*, 6H) revealed the correlations to C-3.

The positions of aromatic protons and methoxy groups were comfirmed by NOESY spectrum (**Figure 59**). On ring A, the 3-OMe substitution was confirmed by its correlations of H-2 and H-4.

All of the spectral data were identical with those (**Table 11**) of batatasin III [**8**], a compound previously reported in *Sunipia scariosa* (Yang *et al.*, 2014a). This compound was also found in many plants in Orchidaceae such as *Coelogyne ovalis* (Sachdev *et al.*, 1986), *Cirrhopetalum andersonii* (Majumder *et al.*, 1991), *Bulbophyllum reptans* (Majumder *et al.*, 1999b), and *Dendrobium gratiosissimum* (Zhang *et al.*, 2008a). Its interesting biological activities are broad-spectrum antifungal activitiy (Zhou *et al.*, 2016) and cytotoxic activity by inhibiting cell proliferation, migration and invasion though suppressing EMT and FAK/AKT/CDC42 pathway of lung cancer cell (H460) (Pinkhien *et al.*, 2017).

HMBC correlations (C \rightarrow H)

	Compound DI6		Batatasin III*	
Position	$oldsymbol{\delta}_{ extsf{H}}$ in ppm (mult., J in Hz)	$\delta_{ m c}$ in ppm	$oldsymbol{\delta}_{ extsf{H}}$ in ppm (mult., J in Hz)	$\delta_{ m c}$ in ppm
1	-	145.0	-	144.1
2	6.31 (br s)	106.2	6.24 (<i>dd</i> , <i>J</i> = 2.0, 2.2 Hz)	107.6
3	-	- 161.7		158.0
4	6.26 (<i>t</i> , <i>J</i> = 2.1 Hz)	99.7	6.20 (<i>dd</i> , J = 2.0, 2.2 Hz)	98.5
5	-	159.1		160.8
6	6.35 (br s)	108.7	6.24 (<i>dd</i> , <i>J</i> = 2.0, 2.2 Hz)	105.6
α	2.79 (m)	38.4	2.79 (m)	37.5
α	2.79 (m)	38.1	2.79 (m)	37.8
1'	_	144.2		143.3
2′	6.73 (br d, J = 1.8 Hz)	116.1	116.1 6.63 (m)	
3'	- 8	158.0		156.9
4 ′	6.66 (<i>dd</i> , <i>J</i> = 7.8, 1.8 Hz)	113.5	6.63 (m)	112.4
5'	7.08 (<i>t</i> , <i>J</i> = 7.8 Hz)	130.0 130.0	7.08 (<i>dd</i> , <i>J</i> = 7.5, 8.0 Hz)	128.9
6'	6.70 (<i>br d, J</i> = 7.8 Hz)	120.3 (m)		119.5
3-OMe	3.69 (<i>s</i>)	55.2	3.70 <i>(s</i>)	54.1

Table 11 NMR spectral data of compound DI6 (300 MHz, in acetone- d_6) and BatatasinIII (500 MHz, in CDOD₃)

*Yang *et al.*, 2014b

Figure 52 Mass spectrum of compound DI6

Figure 53 ¹H-NMR spectrum of compound DI6

Figure 55 HSQC spectrum of compound DI6

Figure 57 HMBC spectrum of compound DI6 (enlarge 1)

Figure 59 NOESY spectrum of compound DI6

1.7 Structure determination of compound DI7

Compound DI7 was isolated as a dark brown amorphous solid. Its HR-ESI-MS (**Figure 60**) presented a sodium-adduct molecular ion $[M+Na]^+$ peak at m/z 297.1107, (calcd. for C₁₆H₁₈O₄Na; 297.1103), suggesting the molecular formula C₁₆H₁₈O₄. The number carbons corresponded to the number of signals in ¹³C NMR spectrum (**Figure 62**). The degree of unsaturation, which was calculated by the molecular formula, implied that there were two aromatic rings in the skeleton.

Compound DI7 showed the same molecular formula as compound DI5. The ¹H-NMR spectrum (**Figure 61**) also exhibited six aromatic protons at δ 6.39-7.10, two singlet signals of methoxy groups at δ 3.75 (3H, 4-OMe) and 3.78 (3H, 5-OMe) and multiplet signals of methylene groups at δ 2.80 (4H, H- α , H- α'). Two methine protons of ring A appeared as broad singlets at δ 6.39 (1H, *s*, H-6) and 6.45 (1H, *s*, H-2).

The 3-OH substitution of ring B was showed by the splitting pattern of protons which consisted of a triplets at δ 7.10 (1H, J = 7.8 Hz, H-5'), a double doublets at δ 6.68 (J = 7.8, 1.5 Hz, H-4') and a broad doublets at δ 6.72 (J = 7.8 Hz, H-6') and a broad singlet at δ 6.76 (H-2').

The HSQC spectrums were used to assign a single bond between proton and carbon (Figure 63). They also revealed six quaternary carbons which indicated four substitutions, consisted of two methoxy groups and two hydroxy groups. The positions of aromatic protons and methoxy groups were assigned by the correlations in HMBC spectrum (Figure 64). The H-2, protons of ring A was assigned based on correlations to C-3 (δ 150.1), C-6 (δ 104.1) C-4 (δ 134.5) and C- α (δ 37.6). The H-6 was assigned by the correlations to C-2 (δ 108.7), C-4, C-5 (δ 153) and C- α (δ 37.6). On ring B, The H-5' was assigned by the correlations to C-3' (δ 112.8) and C- α ' (δ 37.6).

The H-4' was assigned by the correlations to C-6' (δ 119.7). Two methoxy proton signals (δ 3.75 and 3.78, *s*, 6H) revealed the correlations to C-4 and C-5.

The positions of aromatic protons and methoxy groups were comfirmed by NOESY spectrum (Figures 66-67). On ring A, the 5-OMe substitution was confirmed by correlations of H-6 to protons of 5-OMe. The 4-OMe substitution was confirmed by no correlation to any proton. The position of H-2' was ensured by correlation of H2' to H- α' .

On the basis of the above spectroscopic data and comparison of the NMR data (**Table 12**), DI7 was characterized as 3,3'-dihydroxy-4,5-dimethoxybibenzyl, which was first isolated from the leaves of *Empertrum nigrum* (Arriaga-Giner *et al.*, 1993). The assignments of C-1, C-4 and C-1' in this structure were revised by the 2D NMR data. It was also found in the whole plant of *Dendrobium williamsonii* (Rungwichaniwat *et al.*, 2014), and *D. sinense* (Chen *et al.*, 2014). It showed cytotoxic activity against gastic cancer (SCG-7901), hepatocelluar carcinoma (BEL-7402) and leukemia cells (K562) (Chen *et al.*, 2014).

3,3'-Dihydroxy-4,5-dimethoxybibenzyl [42]

	Compound DI7		3,3′-Dihydroxy-4,5-dimethoxybibenzyl*	
Position	$oldsymbol{\delta}_{ extsf{H}}$ in ppm (mult., J in Hz)	$\delta_{\scriptscriptstyle C}$ in ppm	$oldsymbol{\delta}_{ extsf{H}}$ in ppm (mult., J in Hz)	$oldsymbol{\delta}_{ extsf{c}}$ in ppm
1	-	137.8	-	143.3
2	6.45 (br s)	108.7	6.47 (<i>d</i> , <i>J</i> = 1.9 Hz)	108.0
3	-	150.1	-	148.6
4	-	134.5	_	138.0
5	-	153.0		152.0
6	6.39 (br s)	104.1	6.25 (<i>d</i> , <i>J</i> = 1.9 Hz)	104.3
α	2.80 (m)	37.6	2.81 (m)	37.5
α′	2.80 (m)	37.6	2.81 (m)	37.4
1′	-	143.5		133.5
2′	6.76 (br s)	115.4	6.67 (m)	115.3
3'	-	157.3		155.8
4 ′	6.68 (<i>dd</i> , <i>J</i> = 7.8, 1.5 Hz)	112.8	6.67 (m)	112.8
5′	7.10 (<i>t</i> , <i>J</i> = 7.8 Hz)	129.3	U16 E 7.15 (<i>dd</i> , <i>J</i> = 8.7, 7.5 Hz)	129.2
6 '	6.72 (br d, J = 7.8 Hz)	119.7	6.76 (<i>dt</i> , 7.5, 1.1)	120.3
4-OMe	3.75 (<i>s</i>)	59.9	3.87 (<i>s</i>)	60.8
5-OMe	3.78 (s)	55.3	3.81 (s)	55.6

Table 12 NMR spectral data of compound DI7 (300 MHz, in acetone- d_6) and 3,3'-Dihydroxy-4,5-dimethoxybibenzyl (300 MHz, in CDOD₃)

*Arriaga-Giner et al., 1993

Figure 60 Mass spectrum of compound DI7

Figure 61 ¹H-NMR spectrum of compound DI7

Figure 63 HSQC spectrum of compound DI7

F2 [ppm]

Figure 65 HMBC spetrum of compound DI7 (enlarge)

Figure 66 NOESY spectrum of compound DI7

Figure 67 NOESY spectrum of compound DI7 (enlarge)

1.8 Structure determination of compound DI8

Compound DI8 was isolated as a dark brown amorphous solid. Its HR-ESI-MS (**Figure 68**) showed a sodium-adduct molecular ion $[M+Na]^+$ peak at m/z 327.1210, (calcd. for $C_{17}H_{20}O_5Na$; 327.1208), suggesting the molecular formula $C_{17}H_{20}O_5$. This formula was supported by twelve signals of aromatic carbons, three signals of methoxy carbons and two signals of methylene carbons in the ¹³C-NMR spectrum (**Figure 70**). It implied the bibenzyl skeleton of this compound.

The ¹H-NMR spectrum (**Figure 69**) also exhibited five aromatic protons at δ 6.39-81, two singlet signals of methoxy groups at δ 3.74 (3H, 4-OMe), 3.79 (3H, 5-OMe) and δ 3.81 (3H, 3'-OMe) and singlet signals of methylene groups at δ 2.80 (2H, H- α ') and δ 2.81 (2H, H- α). Two methine protons of ring A appeared as broad singlets (same as compound **DI7**) at δ 6.41 (1H, *s*, H-2) and 6.39 (1H, *s*, H-6). The splitting pattern of protons on ring B, similar to DI5, consisted of two doublets at δ 6.81 (1H, *J* = 1.5 Hz, H-2') and δ 6.74 (1H, *J* = 7.8 Hz, H-5') and a double doublets at δ 6.68 (1H, *J* = 7.8, 1.5 Hz, H-6'), indicated two different substitutions on ring B.

The HSQC spectrums were used to assign a linkage of proton to carbon (Figure 71). The numbers of quaternary carbons suggested five substitutes (3xOMe and 2xOH). The positions of aromatic protons and methoxy groups were assigned by the correlations in HMBC spectrum (Figures 72-73). The H-2 protons of ring A was assigned based on correlations C-6 (δ 105.0), C-4 (δ 135.4) and C- α (δ 38.2). The H-6 was assigned by the correlations to C-2 (δ 109.6), C-4, C-5 (δ 151.0) and C- α . On ring B, The H-2' was assigned by the correlations to C-2 (δ 109.6), C-4, C-5 (δ 148.0), C-4' (δ 145.6), C-6' (δ 121.6) and C- α' (δ 39.0). The H-5' was assigned by the correlations to C-1' (δ 134.1) and C-3' (δ 148.0). The H-6' was assigned by the correlations to C-2' (δ 112.9), C-4' and C- α' . Three methoxy proton signals revealed the correlations to C-4, C-5 and C-3'.

The positions of aromatic protons and methoxy groups were comfirmed by NOESY spectrum (**Figures 74-75**). On ring A, the location of 5-OMe was confirmed by

correlations of H-6 and protons of 5-OMe. The crosspeak between H-6' and H- α' was used to affirm the close position of these protons. The 3'-OMe substitution was confirmed by correlations of H-2' to H- α' and protons of 3'-OMe.

From the above data, and through comparison (**Table 13**) with previously reported data (Deciga-Campos *et al.*, 2007), DI8 was identified as 3,4[']-dihydroxy-3['],4,5-trimethoxybibenzyl (DTB), which was previously found in *Scaphyglottis livida*. It was also found in *D. sinense* and shown to be cytotoxic against gastric cancer cell (SGC-7901).

	Compound I	3,4,3'-Trimethoxy-5,4'- dihydroxybibenzyl	
Position	$\delta_{_{\!$	S ·	$oldsymbol{\delta}_{_{\!$
	(mult., <i>J</i> in Hz)	O_C in ppm	(mult., J in Hz)
1	-	138.7	-
2	6.41 (br s)	109.6	6.46 (<i>d</i> , <i>J</i> = 1.8 Hz)
3	-	151.0	-
4		135.4	-
5		153.8	-
6	6.39 (<i>d</i> , <i>J</i> = 2.1 Hz)	105.0	6.23 (<i>d</i> , <i>J</i> = 1.5 Hz)
α	2.81 (s)	38.2	2.80 (s)
α′	2.80 (s)	39.0	2.80 (s)
1′		134.1	-
2′	6.81 (<i>d</i> , <i>J</i> = 1.5 Hz)	112.9	6.63 (<i>d</i> , <i>J</i> = 2.1 Hz)
3'		148.0	-
4 ′	จุ หา ลงกรณ์ม	145.6	e -
5′	6.74 (<i>d</i> , <i>J</i> = 7.8 Hz)	115.5 ERS	ITY 6.83 (<i>d</i> , <i>J</i> = 7.8 Hz)
6'	6.68 (<i>dd</i> , <i>J</i> = 7.8, 1.5 Hz)	121.6	-
3-OH	-	-	5.75 (br s)
4-OH	-	-	5.51 (br s)
4-OMe	3.74 (<i>s</i>)	60.6	3.81 (s)
5-OMe	3.79 (<i>s</i>)	56.1	3.85 (s)
3 ' -OMe	3.81 (s)	56.1	3.87 (s)

Table 13 NMR spectral data of compound DI8 (300 MHz, in acetone- d_6) and 3,4'-dihydroxy-3',4,5-trimethoxybibenzyl (500 MHz, in CDCl₃)

*Deciga-Campos et al., 2007

Figure 68 Mass spectrum of compound DI8

Figure 69 ¹H-NMR spectrum of compound DI8

Figure 70¹³C-NMR spectrum of compound DI8

Figure 71 HSQC spectrum of compound DI8

Figure 73 HMBC spectrum of compound DI8 (enlarge)

Figure 75 NOESY spectrum of compound DI8 (enlarge)

6.6

6.4

6.8

7.0

4.0

F2 [ppm]

1.9 Structure determination of compound DI9

Compound DI9 was isolated as a brown amorphous solid. Its HR-ESI-MS (**Figure 76**) presented a sodium-adduct molecular ion $[M+Na]^+$ peak at m/z 283.0911, (calcd. for C₁₅H₁₆O₄Na; 283.0946), suggesting the molecular formula C₁₅H₁₆O₄.

The ¹H-NMR (**Figure 77**) and ¹³C NMR spectrum (**Figure 78**) showed the aromatic, methoxy and methylene signals, suggested that compound DI9 was a bibenzyl. From the molecular formula, It had one carbon atom and two hydrogen atoms less than compound DI4 implying a substitution of a hydroxy group instead of a methoxy group.

The ¹H-NMR spectrum presented six aromatic signals at δ 6.35-7.06, a methoxy signals at δ 3.75 (3H, *s*) and two methylene signals at δ 2.76 (2H, *s*, H- α) and δ 2.77 (2H, *s*, H- α'). Two methine protons of ring A appeared as doublets at δ 6.35 (1H, J = 1.5 Hz, H-2) and 6.37 (1H, J = 1.5 Hz, H-6), suggested that there was no symmetrical substitution. The numbers of carbon signals in ¹³C spectrum also comply with the molecular formula.

The splitting pattern of protons on ring B consisted of a triplet at δ 7.06 (1H, J = 7.8 Hz, H-5'), two doublets at δ 6.69 (1H, J = 1.5 Hz, H-2') and 6.66 (1H, J = 7.8 Hz, H-6') and a double doublet at δ 6.63 (1H, J = 7.8, 1.5 Hz, H-4'), indicated a substitution on this ring.

The HSQC spectrum (**Figures 79-80**) was used to find the correlations between protons and carbons with a single bond. It also revealed six quaternary carbons, suggested four substutites, a methoxy group and three hydroxy groups.

The positions of aromatic protons and methoxy groups were assigned by the correlations in HMBC spectrum (**Figure 81**). On ring A, the H-2 was assigned based on correlations to C-4 (δ 132.7), C-6 (δ 109.6) and C- α (δ 38.4). The H-6 was assigned by the correlations to C-2 (δ 104.5), C-5 (δ 146.1) and C- α (δ 38.4). On ring B, The H-5' was assigned by the correlations to C-1' (δ 144.5) and C-3' (δ 158.2). The H-2' was assigned by the correlations to C-6' (δ 120.4). The H-6' was assigned by the
correlations to C-4' (δ 113.5). The H-4' was assigned by the correlations to C-6'. The methoxy proton signal (δ 3.75, *s*, 3H) revealed the correlations to C-3 (δ 148.7).

The NOESY spectrum (**Figures 82-83**) was used to confirm the positions of aromatic protons and methoxy groups. On ring A, the correlation of H-6 to H- α and correlations of H-2 to H- α and 3-OMe protons, were used to confirm the position of 3-OMe. The crosspeak between H-2' and H- α ' affirmed the close position of these protons.

From the above data, and through comparison of its ¹H-NMR and ¹³C-NMR spectra with the previously reported data (Chen *et al.*, 2014) (**Table 14**), DI9 was identified as dendrosinen B, which was first found in *Dendrobium sinense*.

	Compound DI9		Dendrosinen B*	
Position	$oldsymbol{\delta}_{ extsf{H}}$ in ppm (mult., J in Hz)	$\delta_{ m c}$ in ppm	$oldsymbol{\delta}_{ extsf{H}}$ in ppm (mult., J in Hz)	$\delta_{\scriptscriptstyle C}$ in ppm
1	_	133.6	_	134.0
2	6.35 (<i>d</i> , <i>J</i> = 1.5 Hz)	104.5	6.24 (<i>d</i> , <i>J</i> = 1.8 Hz)	105.0
3	-	148.7	-	149.4
4	-	132.7		133.1
5	-	146.1	-	146.2
6	6.37 (<i>d</i> , <i>J</i> = 1.5 Hz)	109.6	6.30 (<i>d</i> , <i>J</i> = 1.9 Hz)	109.9
α	2.76 (m)	38.4	2.72 (m)	38.8
α	2.77 (m)	38.8	2.76 (m)	39.2
1'	_	144.5		144.8
2′	6.69 (<i>d</i> , <i>J</i> = 1.5 Hz)	116.2	6.59 (<i>t</i> , <i>J</i> = 1.6 Hz)	116.4
3'	- 8	158.2	- 33	158.2
4 ′	6.63 (<i>dd</i> , <i>J</i> = 7.8, 1.5 Hz)	113.5	6.57 (<i>dd</i> , <i>J</i> = 7.8, 1.6 Hz)	113.6
5 '	7.06 (<i>t</i> , <i>J</i> = 7.8 Hz)	130.0	7.06 (<i>t</i> , <i>J</i> = 7.6 Hz)	130.2
6'	6.66 (<i>br d, J</i> = 7.8 Hz)	120.4	6.63 (<i>d</i> , <i>J</i> = 7.4 Hz)	120.9
3-OMe	3.75 (s)	56.3	3.76 (<i>s</i>)	56.5

Table 14 NMR spectral data of compound DI9 (300 MHz, in acetone- d_6) andDendrosinen B (500 MHz, in CDCl₃)

*Chen *et al.*, 2014

Figure 76 Mass spectrum of compound DI9

Figure 77¹H-NMR spectrum of compound DI9

Figure 78¹³C-NMR spectrum of compound DI9

Figure 79 HSQC spectrum of compound DI9

Figure 81 HMBC spectrum of compound DI9

Figure 83 NOESY spectrum of compound DI9 (enlarge)

Figure 84 Pure compounds isolated from Dendrobium infundibulum

2. Lipase and lpha-glucosidase inhibitory activities

The MeOH extract was initially examined for the lipase and α -glucosidase inhibitory activities. It showed 68.45% inhibition of lipase at 100 µg/mL but no inhibitory activity against α -glucosidase. Then it was partitioned to afford an EtOAc extract, a BuOH extract and a aqueous extract. All extracts were examined for those two activities. Potent lipase inhibitory activity was found for the EtOAc extract and the BuOH extract. The EtOAc extract was also active against α -glucosidase and was selected for further studies (**Table 15**).

Table 15 Screening test for lipase and α -glucosidase inhibitory activities of all extracts at concentration 100 µg/mL

Extracts	% Lipase inhibition	% α -glucosidase inhibition
Methanol	68.45	No activity
Ethyl acetate	83.30	66.28
Butanol	72.30	No activity
Aqueous	No activity	No activity
Positive control	95.06 (Orlistat)	85.75 (Acarbose)

GHULALONGKORN UNIVERSITY

The EtOAc extract was further separated by quick column chromatography to give 7 fractions (A-G). All fractions were tested for lipase and α -glucosidase inhibitory activities. They all showed lipase inhibitory effect and nearly all of them (except fractions A and G) were also able to inhibit α -glucosidase enzyme.

Fractions	% Lipase inhibitory activitiy	% α -glucosidase inhibitory activity
A	50.68	No activity
В	79.37	101.70
С	85.75	99.43
D	88.58	117.89
E	92.86	83.85
F	86.23	96.88
G	78.03	No activity
Positive control	96.73 (Orlistat)	85.75 (Acarbose)

Table 16 Lipase and α -glucosidase inhibitory activities of fractions obtained from ethyl acetate extract (at concentration 100 µg/mL)

Fractions E and F were further studied because of their potent inhibitory activity on both enzymes. Seven compounds i.e. dendroinfundin A, ephemeranthol A, dendroinfundin B, aloifol I, moscatilin, batatasin III and 3,3'-dihydroxy-4,5-dimethoxybibenzyl were obtained from fraction E, and two compounds i.e. 3,4,3'-trimethoxy-5,4'-dihydroxybibenzyl (DTB) and dendrosinen B were obtained from fraction F. The IC₅₀ values of these compounds are shown in **Table 17**.

Lipase inhibitory α -glucosidase Sample activity (IC₅₀) inhibitory activity (IC₅₀) Dendroinfundin A [DI1, 305] No activity No activity Ephemeranthol A [DI2, 111] No activity No activity Dendroinfundin B [DI3, 306] No activity No activity Moscatilin [DI4, 59] No activity No activity Aloifol I [DI5, 1] No activity No activity Batatasin III [DI6, 8] No activity 148.8±8.4 µM 3,3'-Dihydroxy-4,5-No activity No activity dimethoxybibenzyl [DI7, 42] 3,4,3'-Trimethoxy-5,4'-No activity No activity dihydroxybibenzyl [DI8, 69] Dendrosinen B [DI9, 34] 295.0±37.9 µM 213.9±2.4 µM 809.1±22.2 μM 31.4±0.6 nM (Orlistat) Positive control (Acarbose) Chulalongkorn Universit

Table 17 IC₅₀ value for lipase and α -glucosidase inhibitory activities of compounds isolated from *Dendrobium infundibulum*

Batatasin III (IC₅₀ = 148.8±8.4 μ M) and dendrosinen B (IC₅₀ = 213.9±2.4 μ M exhibited more potent inhibitory against α -glucosidase than acarbose. Dendrosinen B (IC₅₀ = 295.0±37.9 μ M) also showed weak lipase inhibitory activity compared to orlistat.

CHAPTER V CONCLUSION

The MeOH extract prepared from the whole plant of *Dendrobium infundibulum* was partitioned to afford EtOAc, BuOH and aqueous extracts after removal of the solvent. Then extracts were examined for lipase and α -glucosidase inhibitory activities. The EtOAc extract was selected for further separation using several chromotographic techniques to give nine pure compounds: dendroinfundin A, ephemeranthol A, dendroinfundin B, aloifol I, moscatilin, batatasin III and 3,3'-dihydroxy-4,5-dimethoxybibenzyl, 3,4'-Dihydroxy-3',4,5-trimethoxybibenzyl (DTB) and dendrosinen B. The results of bioactivitiy evaluation indicated that batatasin III and dendrosinen B also had weak lipase inhibitory activity. Batatasin III and dendrosinen B might provide lead structures for the development of new drugs that are useful as anti α -glucosidase agents.

REFERENCES

- Apovian, C. M., Aronne, L. J., Bessesen, D. H., McDonnell, M. E., Murad, M. H., Pagotto, U., et al. (2015). Pharmacological management of obesity: an endocrine Society clinical practice guideline. *The Journal of Clinical Endocrinology & Metabolism*, 100, 342-362.
- Arriaga-Giner, F. J., Wollenweber, E., and Dorr, M. (1993). Bibenzyls from crowberry leaves. *Phytochemistry*, 33, 725-726.
- Bhummaphan, N., Pongrakhananon, V., Sritularak, B., and Chanvorachote, P. (2018). cancer stem cell-suppressing activity of chrysotoxine, a bibenzyl from *Dendrobium pulchellum. Journal of Pharmacology and Experimental Therapeutics*, 364, 332-346.
- Chang, C. C., Ku, A. F., Tseng, Y. Y., Yang, W. B., Fang, J. M., and Wong, C. H. (2010). 6,8-Di-C-glycosyl flavonoids from *Dendrobium huoshanense*. *Journal of Natural Product, 73*, 229-232.
- Chang, S. J., Lin, T. H., and Chen, C. C. (2001). Constituents from the stems of Dendrobium clavatum var. aurantiacum. Journal of Chinese Medicine, 12, 211-218.
- Chanvorachote, P., Kowitdamrong, A., Ruanghirun, T., Sritularak, B., Mungmee, C., and Likhitwitayawuid, K. (2013). Anti-metastatic activities of bibenzyls from Dendrobium pulchellum. Natural Product Communications, 8, 115-118.
- Chen, C. C., Wu, L. G., Ko, F. N., and Teng, C. M. (1994). Antiplatelet aggregation principles of *Dendrobium loddigesii*. *Journal of Natural Product*, 57, 1271-1274.
- Chen, X. J., Mei, W. L., Cai, C. H., Guo, Z. K., Song, X. Q., and Dai, H. F. (2014). Four new bibenzyl derivatives from *Dendrobium sinense*. *Phytochemistry Letters*, 9, 107-112.
- Chen, X. J., Mei, W. L., Zuo, W. J., Zeng, Y. B., Guo, Z. K., Song, X. Q., et al. (2013). A new antibacterial phenanthrenequinone from *Dendrobium sinense*. Journal of Asian Natural Products Research, 15, 67-70.

- Chen, Y., Li, J., Wang, L., and Liu, Y. (2008a). Aromatic compounds from *Dendrobium aphyllum*. *Biochemical Systematics and Ecology*, 36, 458-460.
- Chen, Y., Liu, Y., Jiang, J., Zhang, Y., and Yin, B. (2008b). Dendronone, a new phenanthrenequinone from *Dendrobium cariniferum*. *Food Chemistry*, 111, 11-12.
- Chen, Y. G., Yu, H., and Lian, X. (2015). Isolation of stilbenoids and lignans from *Dendrobium hongdie. Tropical Journal of Pharmaceutical Research,* 14, 2055-2059.
- Dahmen, J., and Leander, K. (1978). Amotin and amoenin, two sesquiterpenes of the picrotoxane group from *Dendrobium amoenum*. *Phytochemistry*, 17, 1947-1952.
- Deciga-Campos, M., Palacios-Espinosa, J. F., Reyes-Ramirez, A., and Mata, R. (2007). Antinociceptive and anti-inflammatory effects of compounds isolated from *Scaphyglottis livida* and *Maxillaria densa. Journal of Ethnopharmacology*, 114, 161-168.
- Dubrovina, A. S., and Kiselev, K. V. (2017). Regulation of stilbene biosynthesis in plants. *Planta*, 246, 597-623.
- Fan, C. Q., Wang, W., Wang, Y. P., Qin, G. W., and Zhao, W. M. (2001). Chemical constituents from *Dendrobium densiflorum*. *Phytochemistry*, 57, 1255-1258.
- Fan, W. W., Xu, F. Q., Dong, F. W., Li, X.-N., Wei, X. Y., Zhou, J., et al. (2013a). Dendrowardols A and B, two new sesquiterpenoids from *Dendrobium* wardianum Warner. *Tetrahedron Letters*, 54, 1928-1930.
- Fan, W. W., Xu, F. Q., Dong, F. W., Li, X. N., Li, Y., Liu, Y. Q., et al. (2013b). Dendrowardol C, a novel sesquiterpenoid from *Dendrobium wardianum* Warner. *Natural Products and Bioprospecting*, 3, 89-92.
- Gawell, L., and Leandaer, K. (1976). The constitution of aduncin, a sesquiterpene related to picrotoxinin, found in *Dendrobium aduncum*. *Phytochemistry*, 15, 1991-1992.
- Gorham, J. (1989). Stilbenes and Phenanthrenes. In J. B. Harborne (Ed.), *Methods in Plant Biochemistry* (Vol. 1, pp. 159-196): Academic Press.

- Hlosrichok, A., Sumkhemthong, S., Sritularak, B., Chanvorachote, P., and Chaotham, C. (2018). A bibenzyl from *Dendrobium ellipsophyllum* induces apoptosis in human lung cancer cells. *Journal of Natural Medicines*, 72, 615-625.
- Honda, C., and Yamaki, M. (2000). Phenanthrenes from *Dendrobium plicatile*. *Phytochemistry*, 53, 987-990.
- Hu, J., Fan, W., Dong, F., Miao, Z., and Zhou, J. (2012). Chemical components of Dendrobium chrysotoxum. Chinese Journal of Chemistry, 30, 1327-1330.
- Hu, J. M., Chen, J. J., Yu, H., Zhao, Y. X., and Zhou, J. (2008a). Five new compounds from *Dendrobium longicornu*. *Planta Medica*, 74, 535-539.
- Hu, J. M., Chen, J. J., Yu, H., Zhao, Y. X., and Zhou, J. (2008b). Two novel bibenzyls from *Dendrobium trigonopus*. *Journal of Asian Natural Products Research*, 10, 653-657.
- Hu, J. M., Chen, J. J., Yu, H., Zhao, Y. X., and Zhou, J. (2008b). Two novel bibenzyls from *Dendrobium trigonopus*. *Journal of Asian Natural Products Research*, 10, 653-657.
- Hu, J. M., Zhao, Y. X., Miao, Z. H., and Zhou, J. (2009). Chemical components of Dendrobium polyanthum. Bulletin of the Korean Chemical Society, 30, 2091-2100.
- Hwang, J. S., Lee, S. A., Hong, S. S., Han, X. H., Lee, C., Kang, S. J., et al. (2010). Phenanthrenes from *Dendrobium nobile* and their inhibition of the LPSinduced production of nitric oxide in macrophage RAW 264.7 cells. *Bioorganic* & *Medicinal Chemistry Letters*, 20, 3785-3787.
- Inthongkaew, P., Chatsumpun, N., Supasuteekul, C., Kitisripanya, T., Putalun, W., Likhitwitayawuid, K., *et al.* (2017). **α**-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic compounds from *Dendrobium formosum*. *Revista Brasileira de Farmacognosia*, 27, 480-487.
- Ito, M., Matsuzaki, K., Wang, J., Daikonya, A., Wang, N. L., Yao, X. S., *et al.* (2010). New phenanthrenes and stilbenes from *Dendrobium loddigesii*. *Chemical and Pharmaceutical Bulletin,* 58, 628-633.

- Jin, X. H., Chen, S. C., and Luo, Y. B. (2009). Taxonomic revision of *Dendrobium moniliforme* complex (Orchidaceae). *Scientia Horticulturae*, 120, 143-145.
- Juneja, R., Sharma, S., and Tandon, J. (1987). Two substituted bibenzyls and a dihydrophenanthrene from *Cymbidium aloifolium*. *Phytochemistry*, 26, 1123-1125.
- Kang, W.-Y., Song, Y.-L., and Zhang, L. (2010). **Q**-Glucosidase inhibitory and antioxidant properties and antidiabetic activity of *Hypericum ascyron* L. *Medicinal Chemistry Research*, 20, 809-816.
- Kim, J. H., Oh, S. Y., Han, S. B., Uddin, G. M., Kim, C. Y., and Lee, J. K. (2015). Antiinflammatory effects of *Dendrobium nobile* derived phenanthrenes in LPSstimulated murine macrophages. *Archives of Pharmacal Research*, 38, 1117-1126.
- Klongkumnuankarn, P., Busaranon, K., Chanvorachote, P., Sritularak, B., Jongbunprasert, V., and Likhitwitayawuid, K. (2015). Cytotoxic and antimigratory activities of phenolic compounds from *Dendrobium brymerianum*. *Evidence-Based Complementary and Alternative Medicine*, 2015, 1-9.
- Li, C.-B., Wang, C., Fan, W.-W., Dong, F.-W., Xu, F.-Q., Wan, Q.-L., *et al.* (2013). Chemical components of *Dendrobium crepidatum* and their neurite outgrowth enhancing activities. *Natural Products and Bioprospecting*, 3, 70-73.
- Li, J. T., Yin, B. L., Liu, Y., Wang, L. Q., and Chen, Y. G. (2009a). Mono-aromatic constituents of *Dendrobium longicornu*. *Chemistry of Natural Compounds*, 45, 234-236.
- Li, S., He, S., Zhong, S., Duan, X., Ye, H., Shi, J., *et al.* (2011). Elution-extrusion countercurrent chromatography separation of five bioactive compounds from *Dendrobium chrysotoxum* Lindl. *Journal of Chromatography A*, 1218, 3124-3128.
- Li, X. H., Guo, L., Yang, L., Peng, C., He, C. J., Zhou, Q. M., *et al.* (2014). Three new neolignan glucosides from the stems of *Dendrobium aurantiacum* var. *denneanum*. *Phytochemistry Letters*, 9, 37-40.

- Li, Y., Wang, C. L., Guo, S. X., Yang, J. S., and Xiao, P. G. (2008). Two new compounds from *Dendrobium candidum*. *Chemical and Pharmaceutical Bulletin*, 56, 1477-1479.
- Li, Y., Wang, C. L., Wang, Y. J., Guo, S. X., Yang, J. S., Chen, X. M., *et al.* (2009b). Three new bibenzyl derivatives from *Dendrobium candidum*. *Chemical and Pharmaceutical Bulletin*, 57, 218-219.
- Li, Y., Wang, C. L., Wang, Y. J., Wang, F. F., Guo, S. X., Yang, J. S., et al. (2009c). Four new bibenzyl derivatives from *Dendrobium candidum*. *Chemical and Pharmaceutical Bulletin*, 57, 997-999.
- Li, Y. P., Qing, C., Fang, T. T., Liu, Y., and Chen, Y. G. (2009d). Chemical constituents of Dendrobium chrysotoxum. Chemistry of Natural Compounds, 45, 414-416.
- Limpanit, R., Chuanasa, T., Likhitwitayawuid, K., Jongbunprasert, V., and Sritularak, B. (2016). Alpha-glucosidase inhibitors from *Dendrobium tortile*. *Records of Natural Products,* 15, 609-616.
- Lin, T. H., Chang, S. J., Chen, C. C., Wang, J. P., and Tsao, L. T. (2001). Two phenanthraquinones from *Dendrobium moniliforme*. *Journal of Natural Product,* 84, 1084-1086.
- Lin, Y., Wang, F., Yang, L. J., Chun, Z., Bao, J. K., and Zhang, G. L. (2013). Antiinflammatory phenanthrene derivatives from stems of *Dendrobium denneanum*. *Phytochemistry*, 95, 242-251.
- Liu, Y., Jiang, J. H., Yin, B. L., and Chen, Y. G. (2009a). Chemical constituents of Dendrobium cariniferum. Chemistry of Natural Compounds, 45, 237-238.
- Liu, Y., Jiang, J. H., Zhang, Y., and Chen, Y. G. (2009b). Chemical constituents of Dendrobium aurantiacum var. denneanum. Chemistry of Natural Compounds, 45, 525-527.
- Lu, Y., Kuang, M., Hu, G. P., Wu, R. B., Wang, J., Liu, L., *et al.* (2014). Loddigesiinols G-J: alpha-glucosidase inhibitors from *Dendrobium loddigesii*. *Molecules*, 19, 8544-8555.
- Majumder, P. L., and Basak, M. (1991). Two bibenzyl derivatives from the orchid *Cirrhopetalum andersonii. Phytochemistry*, 30, 321-324.

- Majumder, P. L., and Chatterjee, S. (1989). Crepidatin, a bibenzyl derivative from the orchid *Dendrobium crepidatum*. *Phytochemistry*, 28, 1986-1988.
- Majumder, P. L., Guha, S., and Sen, S. (1999a). Bibenzyl derivatives from the orchid Dendrobium amoenum. Phytochemistry, 52, 1365-1369.
- Majumder, P. L., and Pal, S. (1992). Rotundatin, a new 9,10-dihydrophenanthrene derivative from *Dendrobium rotundatum*. *Phytochemistry*, 31, 3225-3228.
- Majumder, P. L., and Pal, S. (1993). Cumulatin and tristin, two bibenzyl derivatives from the orchids *Dendrobium cumulatum* and *Bulbophyllum triste*. *Phytochemistry*, 32, 1561-1565.
- Majumder, P. L., Pal, S., and Majumder, S. (1999b). Dimeric phenanthrenes from the orchid *Bulbophyllum reptans*. *Phytochemistry*, 50, 891-897.
- Majumder, P. L., Roychowdhury, M., and Chakraborty, S. (1997). Bibenzyl derivatives from the orchid *Bulbophyllum protractum*. *Phytochemistry*, 44, 167-172.
- Majumder, P. L., and Sen, R. C. (1987). Moscatilin, a bibenzyl derivative from the orchid *Dendrobium moscatum*. *Phytochemistry*, 26, 2121-2124.
- Meng, C. W., He, Y. L., Peng, C., Ding, X. J., Guo, L., and Xiong, L. (2017). Picrotoxane sesquiterpenoids from the stems of *Dendrobium nobile* and their absolute configurations and angiogenesis effect. *Fitoterapia*, 121, 206-211.
- Mittraphab, A., Muangnoi, C., Likhitwitayawuid, K., Rojsitthisak, P., and Sritularak, B. (2016). A new bibenzyl-phenanthrene derivative from *Dendrobium signatum*. *Natural Product Communications*, 11, 657-659.
- Miyazawa, M., Shimamura, H., Nakamura, S., Sugiura, W., Kosaka, H., and Kameoka, H. (1999). Moscatilin from *Dendrobium nobile*, a naturally occurring bibenzyl compound with potential antimutagenic activity. *Journal of Agricultural and Food Chemistry*, 47, 2163-2167.
- Phechrmeekha, T., Sritularak, B., and Likhitwitayawuid, K. (2012). New phenolic compounds from *Dendrobium capillipes* and *Dendrobium secundum*. *Journal of Asian Natural Products Research*, 14, 748-754.
- Pinkhien, T., Petpiroon, N., Sritularak, B., and Chanvorachote, P. (2017). Batatasin III inhibits migration of human lung cancer cells by Suppressing Epithelial to

Mesenchymal Transition and FAK-AKT Signals. *Anticancer Research,* 37, 6281-6289.

- Podsedek, A., Majewska, I., Redzynia, M., Sosnowska, D., and Koziolkiewicz, M. (2014). *In vitro* inhibitory effect on digestive enzymes and antioxidant potential of commonly consumed fruits. *Journal of Agricultural and Food Chemistry*, 62, 4610-4617.
- Pooma, R., & Suddee, S. (eds.). (2014). *Thai plant names Tem Smitinand revised edition 2014*. Bangkok: Office of the Forest Herbarium, Department of National Park, Wildlife and Plant Conservation.
- Qin, X. D., Qu, Y., Ning, L., Liu, J. K., and Fan, S. K. (2011). A new picrotoxane-type sesquiterpene from *Dendrobium findlayanum*. *Journal of Asian Natural Products Research*, 13, 1047-1050.
- Ren, J., Qian, X.-P., Guo, Y.-G., Li, T., Yan, S.-K., Jin, H.-Z., *et al.* (2016). Two new phenanthrene glycosides from *Liparis regnieri* Finet and their antibacterial activities. *Phytochemistry Letters*, 18, 64-67.
- Riddle, M. C., Bakris, G., Blonde, L., Boulton, A. J., D'Alessio, D., Groot, M. D., et al. (2018). Diabetes Care The Journal of Clinical and Applied Research and Education (Supplement 1 ed. Vol. 41). United State of America: American Diabetes Association.
- Rungwichaniwat, P., Sritularak, B., and Likhitwitayawuid, K. (2014). Chemical constituents of *Dendrobium williamsonii*. *Pharmacognosy Journal*, 6, 36-41.
- Sachdev, K., and Kulshreshtha, K. K. (1986). Phenolic constituents of *Coelogyne ovalis*. *Phytochemistry*, 25, 499-502.
- Saito, K., Yonekura-Sakakibara, K., Nakabayashi, R., Higashi, Y., Yamazaki, M., Tohge, T., *et al.* (2013). The flavonoid biosynthetic pathway in *Arabidopsis*: structural and genetic diversity. *Plant Physiology and Biochemistry*, 72, 21-34.
- Sell, H., Habich, C., and Eckel, J. (2012). Adaptive immunity in obesity and insulin resistance. *Nature Reviews Endocrinology*, 8, 709-716.
- Sergent, T., Vanderstraeten, J., Winand, J., Beguin, P., and Schneider, Y.-J. (2012). Phenolic compounds and plant extracts as potential natural anti-obesity substances. *Food Chemistry*, 135, 68-73.

- Sritularak, B., Anuwat, M., and Likhitwitayawuid, K. (2011a). A new phenanthrenequinone from *Dendrobium draconis*. *Journal of Asian Natural Products Research*, 13, 251-255.
- Sritularak, B., Duangrak, N., and Likhitwitayawuid, K. (2011b). A new bibenzyl from Dendrobium secundum. Zeitschrift für Naturforschung C, 66C, 205-208.
- Sritularak, B., and Likhitwitayawuid, K. (2009). New bisbibenzyls from *Dendrobium* falconeri. Helvetica Chimica Acta, 92, 740-744.
- Strategy and Planning Division, Ministry of Public Health. Public Health Statistics [online] 2016. Available from: http://bps.moph.go.th/new_bps/sites/default/files/health_strategy2559.pdf. [2018, Feb 8].
- Sukphan, P., Sritularak, B., Mekboonsonglarp, W., Lipipun, V., and Likhitwitayawuid, K. (2014). Chemical constituents of *Dendrobium venustum* and their antimalarial and anti-herpetic properties. *Natural Product Communications*, 9, 825-827.
- Sun, J., Zhang, F., Yang, M., Zhang, J., Chen, L., Zhan, R., *et al.* (2014). Isolation of alpha-glucosidase inhibitors including a new flavonol glycoside from *Dendrobium devonianum. Natural Product Research*, 28, 1900-1905.
- Talapatra, B., Das, A. K., and Talapatra, S. K. (1989). Defuscin, a new phenolic ester from *Dendrobium fuscescens*: Conformation of shikimic acid. *Phytochemistry*, 28, 290-292.
- Tanagornmeatar, K., Chaotham, C., Sritularak, B., Likhitwitayawuid, K., and Chanvorachote, P. (2014). Cytotoxic and anti-metastatic activities of phenolic compounds from *Dendrobium ellipsophyllum*. *Anticancer Research*, 34, 6573-6580.
- Teixeira da Silva, J. A., and Ng, T. B. (2017). The medicinal and pharmaceutical importance of *Dendrobium* species. *Applied Microbiology and Biotechnology*, 101, 2227-2239.
- Tezuka, Y., Hirano, H., Kikuchi, T., and Xu, G. J. (1991). Constituents of *Ehemerantha lonchophylla*. *Chemical and Pharmaceutical Bulletin,* 39, 593-598.
- The Botanical Garden Organization. BGO Plant Database. Dendrobium infundibulum[online].2011.Availablefrom:

http://www.qsbg.org/database/botanic_book%20full%20option/search_detail. asp?botanic id=1304 [2018, March 9].

- Thongdonair, S., Sriphota, D., and Niyakas, V. (2013). *Dendrobium Orchids without Blooms Identification Manual of the Competent Authority under the Plant Act B.E. 2518*. Bangkok: Chotiga Business Print.
- Veerraju, P., Rao, N. P., Rao, L. J., Rao, K. J., and Rao, P. M. (1989). Amoenumin, a 9,10dihydro-5H-phenanthro-(4,5-*b*,*c*,*d*)-pyran from *Dendrobium amoenum*. *Phytochemistry*, 28, 950-951.
- Wang, H., and Zhao, T. (1985). Dendrobine and 3-hydroxy-2-oxodendrobine from *Dendrobium nobile. Journal of Natural Product,* 48, 796-801.
- Wang, L., Zhang, C. F., Wang, Z. T., Zhang, M., and Xu, L. S. (2009). Five new compounds from *Dendrobium crystallinum*. *Journal of Asian Natural Products Research*, 11, 903-911.
- Wattanathamsan, O., Treesuwan, S., Sritularak, B., and Pongrakhananon, V. (2018). Cypripedin, a phenanthrenequinone from *Dendrobium densiflorum*, sensitizes non-small cell lung cancer H460 cells to cisplatin-mediated apoptosis. *Journal of Natural Medicines*, 72, 503-513.
- World Health Organization (WHO). The top 10 causes of death in 2016. [online]. 2017. Available from: <u>http://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death</u> [2018, May 30].
- Wu, J., Li, X., Wan, W., Yang, Q., Ma, W., Chen, D., et al. (2017a). Gigantol from Dendrobium chrysotoxum Lindl. binds and inhibits aldose reductase gene to exert its anti-cataract activity: An in vitro mechanistic study. Journal of Ethnopharmacology, 198, 255-261.
- Wu, Y. P., Liu, W. J., Zhong, W. J., Chen, Y. J., Chen, D. N., He, F., et al. (2017b).
 Phenolic compounds from the stems of *Flickingeria fimbriata*. Natural Product Research, 31, 1518-1522.
- Xiong, L., Cao, Z. X., Peng, C., Li, X. H., Xie, X. F., Zhang, T. M., *et al.* (2013). Phenolic glucosides from *Dendrobium aurantiacum* var. *denneanum* and their bioactivities. *Molecules*, 18, 6153-6160.

- Xu, F. Q., Xu, F. C., Hou, B., Fan, W. W., Zi, C. T., Li, Y., *et al.* (2014). Cytotoxic bibenzyl dimers from the stems of *Dendrobium fimbriatum* Hook. *Bioorganic & Medicinal Chemistry Letters,* 24, 5268-5273.
- Xu, H., and Wang, Z. (2015). *Dietary Chinese Herbs*: Springer-Verlag Wien.
- Yamaki, M., and Honda., C. (1996). The stilbenoids from *Dendrobium plicatile*. *Phytochemistry*, 43, 207-208.
- Yang, D., Liu, L. Y., Cheng, Z. Q., Xu, F. Q., Fan, W. W., Zi, C. T., *et al.* (2015). Five new phenolic compounds from *Dendrobium aphyllum*. *Fitoterapia*, 100, 11-18.
- Yang, H., Sung, S. H., and Kim, Y. C. (2007). Antifibrotic phenanthrenes of *Dendrobium nobile* stems. *Journal of Natural Product,* 70, 1925-1929.
- Yang, J., Jiang, J., Huang, G., Liu, B., Liu, Y., Zhan, R., et al. (2014a). Two new flavanone glycosides from *Sunipia scariosa*. *Biochemical Systematics and Ecology*, 57, 317-321.
- Yang, J. Z., Jiang, H., Wang, W. J., Zhang, Y. M., Liu, Y., and Chen, Y. G. (2014b). Isolation and characterization of batatasin III and 3,4'-dihydroxy-5methoxybibenzyl: a pair of positional isomers from *Sunipia scariosa*. *Tropical Journal of Pharmaceutical Research*, 13, 533.
- Yang, L., Qin, L. H., Bligh, S. W., Bashall, A., Zhang, C. F., Zhang, M., et al. (2006a). A new phenanthrene with a spirolactone from *Dendrobium chrysanthum* and its anti-inflammatory activities. *Bioorganic & Medicinal Chemistry*, 14, 3496-3501.
- Yang, L., Wang, Z. T., and Xu, L. S. (2006b). Phenols and a triterpene from *Dendrobium aurantiacum* var. *denneanum* (Orchidaceae). *Biochemical Systematics and Ecology*, 34, 658-660.
- Yang, M., Zhang, Y., Chen, L., and Chen, Y. (2018). A new (propylphenyl)bibenzyl derivative from *Dendrobium williamsonii*. *Natural Product Research*, 32, 1699-1705.
- Ye, Q.-H., Zhao, W.-M., and Qin, G.-W. (2003). New fluorenone and phenanthrene derivatives from *Dendrobium Chrysanthum*. *Natural Product Research*, 17, 201-205.

- Ye, Q., Mei, Y., Yang, P., Cheng, L., and Kong, D. (2016). A new 9,10dihydrophenanthrene glycoside from *Dendrobium primulinum*. *Chemistry of Natural Compounds*, 52, 381-383.
- Ye, Q. H., Qin, G. W., and Zhao, W. M. (2002a). Immunomodulatory sesquiterpene glycosides from *Dendrobium nobile*. *Phytochemistry*, 61, 885-890.
- Ye, Q. H., and Zhao, W. M. (2002b). New alloaromadendrane, cadinene and cyclocopacamphane type sesquiterpene derivatives and bibenzyls from *Dendrobium nobile. Planta Medica*, 68, 723-729.
- Ye, Q. H., Zhao, W. M., and Qin, G. W. (2004). Lignans from *Dendrobium chrysanthum*. Journal of Asian Natural Products Research, 6, 39-43.
- Zhang, C., Liu, S. J., Yang, L., Yuan, M. Y., Li, J. Y., Hou, B., *et al.* (2017). Sesquiterpene amino ether and cytotoxic phenols from *Dendrobium wardianum* Warner. *Fitoterapia*, 122, 76-79.
- Zhang, C. F., Wang, M., Wang, L., Iinuma, M., Zhang, M., Xu, L. S., *et al.* (2008a). Chemical constituents of *Dendrobium gratiosissimum* and their cytotoxic activities. *Indian Journal of Chemistry*, 47B, 952-956.
- Zhang, G. N., Zhong, L. Y., Bligh, S. W., Guo, Y. L., Zhang, C. F., Zhang, M., et al. (2005).
 Bi-bicyclic and bi-tricyclic compounds from *Dendrobium thyrsiflorum*. *Phytochemistry*, 66, 1113-1120.
- Zhang, X., Gao, H., Han, H. Y., Liu, H. W., Wang, N. L., Yao, X. S., et al. (2007b). Sesquiterpenes from *Dendrobium nobile*. *Chinese Traditional and Herbal Drugs*, 38, 1771-1774.
- Zhang, X., Liu, H. W., Gao, H., Han, H. Y., Wang, N. L., Wu, H. M., et al. (2007a). Sesquiterpenes from *Dendrobium nobile*. *Helvetica Chimica Acta*, 90, 2386-2394.
- Zhang, X., Tu, F. J., Yu, H. Y., Wang, N. L., Wang, Z., and Yao, X. S. (2008b). Copacamphane, picrotoxane and cyclocopacamphane sesquiterpenes from *Dendrobium nobile. Chemical and Pharmaceutical Bulletin*, 56, 854-857.
- Zhang, X., Xu, J. K., Wang, J., Wang, N. L., Kurihara, H., Kitanaka, S., *et al.* (2007b). Bioactive bibenzyl derivatives and fluorenones from *Dendrobium nobile*. *Journal of Natural Product,* 70, 24-28.

- Zhang, X., Xu, J. K., Wang, N. L., Kurihara, H., and Yao, X. S. (2008c). Antioxidant phenanthrenes and lignans from *Dendrobium nobile*. *Journal of Chinese Pharmaceutical Sciences*, 17, 314-318.
- Zhang, Y.-B., But, P. P.-H., Wang, Z.-T., and Shaw, P.-C. (2007c). Current approaches for the authentication of medicinal Dendrobium species and its products. *Plant Genetic Resources: Characterization and Utilization*, 3, 144-148.
- Zhang, Y. Y., Wang, P., Song, X. Q., Zuo, W. J., Wang, H., Chen, L. L., et al. (2018). Chemical constituents from *Dendrobium hainanense*. *Journal of Asian Natural Products Research*, 1-8.
- Zhao, C. S., Liu, Q. F., Halaweish, F., Shao, B. P., Ye, Y. Q., and Zhao, W. M. (2003). Copacamphane, picrotoxane, and alloaromadendrane sesquiterphene glycosides and phenolic glycosides from *Dendrobium moniliforme*. *Journal of Natural Product*, 66, 1140-1143.
- Zhao, G. Y., Deng, B. W., Zhang, C. Y., Cui, Y. D., Bi, J. Y., and Zhang, G. G. (2018). New phenanthrene and 9, 10-dihydrophenanthrene derivatives from the stems of *Dendrobium officinale* with their cytotoxic activities. *Journal of Natural Medicines*, 72, 246-251.
- Zhao, N.-D., Yang, G.-Y., Zhang, Y., Chen, L.-J., and Chen, Y.-G. (2015). Stilbenoids from Bulbophyllum emarginatum (Orchidaceae). Biochemical Systematics and Ecology, 58, 285-287.
- Zhao, N., Yang, G., Zhang, Y., Chen, L., and Chen, Y. (2016). A new 9,10dihydrophenanthrene from *Dendrobium moniliforme*. *Natural Product Research*, 30, 174-179.
- Zhao, W. M., Ye, Q. H., Tan, X. J., Jiang, H. L., Li, X. Y., Chen, K. X., *et al.* (2001). Three new sesquiterpene glycosides from *Dendrobium nobile* with immunomodulatory activity. *Journal of Natural Product,* 64, 1196-1200.
- Zhou, X. M., Zhang, B., Chen, G. Y., Han, C. R., Jiang, K. C., Luo, M. Y., *et al.* (2018). Dendrocoumarin: a new benzocoumarin derivative from the stem of *Dendrobium nobile. Natural Product Research*, 1-4.

Zhou, X. M., Zheng, C. J., Gan, L. S., Chen, G. Y., Zhang, X. P., Song, X. P., et al. (2016).Bioactive phenanthrene and bibenzyl derivatives from the stems of Dendrobium nobile. Journal of Natural Product, 79, 1791-1797.

Chulalongkorn University

VITA

Miss Salinee Na Ranong received her bachelor's degree from the Faculty of Pharmaceutical Sciences, Ubon Ratchathani University. After graduation in March 2012, she has been working at the Bureau of Drugs and Narcotics, Department of Medical Sciences, Ministry of Public Health.

Poster presentation

Salinee Na Ranong, Kittisak Likhitwitayawuid and Boonchoo Sritularak. alpha-glucosidase inhibitors from Dendrobium infundibulum. Proceedings of the 10th Annual Northeast Pharmacy Research Conference of 2018 "Research and Development towards Wealth, Security and Sustainability" at Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand on 17-18 March 2018. (PSP-P-P002)

Publications

Warisada Sila-on, Salinee Na-Ranong, Sirilak Rakrod, Sarote Ornlaor and Zongporn Joungmunkong. (2016). Development and validation of RP-HPLC method for determination of acetazolamide, furosemide and phenytoin extemporaneous suspensions. Asian Journal of Pharmaceutical Sciences 11 : 138– 139.

Salinee Na Ranong, Kittisak Likhitwitayawuid, Wanwimon Mekboonsonglarp and Boonchoo Sritularak. (2018) New dihydrophenanthrenes from Dendrobium infundibulum. Natural Product Ressearch. Online at https://doi.org/10.1080/14786419.2018.1455050.