การทดสอบในห้องปฏิบัติการเกี่ยวกับคอนกรีตเสริมเส้นใยเหล็ก และ ตัวอย่างการนำมาประยุกต์ใช้ ในการศึกษาพฤติกรรมทางด้านโครงสร้างของดาดอุโมงค์

นางสาวทิพพะมาลา มณีวงค์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตร์มหาบัณฑิต สาขาวิศวกรรมโยธา ภาควิศวกรรมโยธา คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย

ปีการศึกษา 2555

ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย บทคัดย่อและแฟ้มข้อมูลฉบับเต็มของวิทยานิพนธ์ตั้งแต่ปการศึกษา 2554 ที่ให้บริการในคลังปัญญาจุฬาฯ (CUIR)

เป็นแฟ้มข้อมูลของนิสิตเจ้าของวิทยานิพนธ์ที่ส่งผ่านทางบัณฑิตวิทยาลัย

The abstract and full text of theses from the academic year 2011 in Chulalongkorn University Intellectual Repository(CUIR)

are the thesis authors' files submitted through the Graduate School.

LABORATORY TESTS ON STEEL FIBER REINFORCED CONCRETE AND THEIR APPLICATION EXAMPLE ON STRUCTURAL PERFORMANCE OF TUNNEL LINING

Miss Thipphamala Manivong

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of master of Engineering Program in Civil Engineering Department of Civil Engineering Faculty of Engineering Chulalongkorn University Academic Year 2012 Copyright of Chulalongkorn University

การทดสอบในห้องปฏิบัติการเกี่ยวกับคอนกรีตเสริมเส้นใย
เหล็ก และ ตัวอย่างการนำมาประยุกต์ใช้ในการศึกษา
พฤติกรรมทางด้านโครงสร้างของดาดอุโมงค์
นางสาวทิพพะมาลา มณีวงค์
วิศวกรรมโยธา
ผู้ช่วยศาสตราจารย์ ดร.ธเนศ ศรีศีริโรจนากร
ผู้ช่วยศาสตราจารย์ ดร.วิทิต ปานสุข

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้ เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญามหาบัณฑิต

.....คณบดีคณะวิศวกรรมศาสตร์

(รองศาสตราจารย์ ดร.บุญสม เลิศหิรัญวงศ์)

คณะกรรมการสอบวิทยานิพนธ์

.....ประธานกรรมการ

(รองศาสตราจารย์ ดร.สุพจน์ เตชวรสินสกุล)

.....อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก

(ผู้ช่วยศาสตราจารย์ ดร.ธเนศ ศรีศิริโรจนากร)

.....อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม

(ผู้ช่วยศาสตราจารย์ ดร.วิทิต ปานสุข)

..... กรรมการ

(ดร.สุพัฒน์ สุวรรณการ)

ทิพพะมาลา มณีวงค์ : การทดสอบในห้องปฏิบัติการเกี่ยวกับคอนกรีตเสริมเส้นใยเหล็ก และ ตัวอย่างการนำมาประยุกต์ใช้ในการศึกษาพฤติกรรมทางด้านโครงสร้างของดาด อุโมงค์

(LABORATORY TESTS ON STEEL FIBER REINFORCED CONCRETE AND THEIR APPLICATION EXAMPLE ON STRUCTURAL PERFORMANCE OF TUNNEL LINING) อ.ที่ปรึกษาวิทยานิพนธ์หลัก: ผศ.ดร.ธเนศ ศรีศิริโรจนากร, อ.ที่ปรึกษา วิทยานิพนธ์ร่วม: ผศ.ดร.วิทิต ปานสุข, 74 หน้า.

งานวิจัยนี้มีวัตถุประสงค์เพื่อศึกษาประสิทธิภาพของคอนกรีตเสริมใยเหล็ก (SFRC) ในงาน ก่อสร้างเช่นอาคาร, สะพาน, อุโมงค์ ฯลฯ ซึ่งจะแสดงถึงประสิทธิภาพของ SFRC ที่มีและไม่มีสาร ลดน้ำในคอนกรีตด้วยการทดสอบในห้องปฏิบัติการ ด้วยวิธีการทดสอบกำลังรับแรงอัด กำลังรับ แรงดัด และกำลังรับแรงดึง ในตัวอย่างคอนกรีตแบบลูกบาศก์ คาน และบริเคท์ ตามลำดับ คุณสมบัติของ SFRC จะถูกนำไปเปรียบเทียบกับคอนกรีตทั่วไป หลังจากนั้นคุณสมบัติทุกอย่าง ของ SFRC จากการทดลองจะถูกนำไปใช้กับการออกแบบดาดอุโมงค์ร่วมกับพารามิเตอร์พื้นฐาน ชองดินจากโครงการเชื่อนห้วยลำพันใหญ่ เพื่อใช้เป็นข้อมูลสำหรับการวิเคราะห์ด้วยวิธีไฟในต์อิลิ เมนท์หาพฤติกรรมของดาดอุโมงค์ แบบอุโมงค์ที่ใช้วิเคราะห์มีจำนวนเส้นผ่าศูนย์กลาง 4 ขนาด และมีความหนา 0.5 เมตร งานวิจัยนี้คำนึงถึงน้ำหนักกระทำที่มาจากดินเพียงอย่างเดียวและ ตรวจสอบความเครียดที่ด้านบน ด้านข้างและด้านล่างของอุโมงค์กับความเค้นดึงที่ได้มาจากการ ทดสอบในห้องปฏิบัติการ

ภาควิชาวิศวกรรมโยธา	ลายมือชื่อนิสิต
สาขาวิชาวิศวกรรมโยธา	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก
ปีการศึกษา	ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม

5370678721 : Civil Engineering Department KEYWORDS : STEEL FIBER / TUNNEL LINING / SUPER PLASTICIZER Thipphamala Manivong : LABORATORY TESTS ON STEEL FIBER REINFORCED CONCRETE AND THEIR APPLICATION EXAMPLE ON STRUCTURAL PERFORMANCE OF TUNNEL LINING. ADVISOR : ASST.PROF. TANATE SRISIRIROJANAKORN, Ph.D, CO-ADVISOR : ASST.PROF.DR.VITHIT PANSUK,Ph.D, 74 pp.

The purpose of this research is for studying the performance of Steel Fiber Reinforced Concrete (SFRC) in construction works such as building, bridge, tunnel, etc,. It will present the performance of SFRC with and without super plasticizer by laboratory test on compression, bending and tension test in cube, beam and briquette respectively. The characteristic of SFRC will be found and compared with plain concrete. Next, all of characteristic of SFRC from the test will be applied to the tunnel lining design. The tunnel project case study which is used for this research will be excavated into thick-bedded fine sandstone, locally interbedded with very thin stratified mudstone. In this paper will use the basic parameter of soil from tunnel's site at Huay Lam Phan Ngai Hydropower project (Laos), and apply the basic parameters of material from the laboratory test into Finite Element Method software to analyze and design the performance of lining. Four sizes of tunnel diameter had been applied to the analysis with 0.5 m thickness. This research concerns only the load from the soil, and checks the strain of tunnel lining at crown, invert and spring line of tunnel with the tensile strain from laboratory test.

Department	Student's Signature
Field of Study	Advisor's Signature
Academic Year	Co- Advisor's Signature

a 1 **a a**

Acknowledgement

First of all, I would like to say a big thank to AUN/Seed-Net that provide me the scholarship and give me the chance to study at Chulalongkorn University. I would like to thank you to my advisor, Asst. Pro. Dr. Tanate Srisirirojanakorn that supported me everything, suggest a new thing and help me to finish this research. I would like to say thank you to my co-advisor, Asst. Pro. Dr. Vithit Pansuk that gave very good comments and big help about new knowledge that is out of my field. I would like to say thank you to my committees that give the time and knowledge for this research. Last but not least, I would like to thank you all my friends, juniors, and senior that support me everything. At last, I would like to say thank you very much to my parents and family that always support and encourage me while I am study here.

Content

Abstract (Thai)	vi
Abstract (English)	v
Acknowledgement	vi
Contents	vii
List of tables	ix
List of figures	xi

Chapter

I. Introduction

1. Introduction	1
2. Purpose of the project	1
3. Limitation of the project	2
4. Output	2
II. Literature review	
1. Introduction to tunnel	3
2. Introduction to ANSYS	8
3. History of Concrete	9
4. How Steel Fiber Reinforced Concrete is applied to the tunnel	11
III. Laboratory test	
1. Preparing material	14
2. Design criteria	
3. Testing process	
4. Result	
IV. Tunnel lining analysis (case study)	
1. Introduction to the project.	40
2. Tunnel parameters	
3. Applying into ANSYS	
4. Analysis result	
5. Conclusion	60

V. Conclusion	
1. Laboratory test	7
2. Tunnel lining analysis (case study)	7
3. Future work	7
Reference)
Appendix6	2
Biography7	4

Page

Lists of table

ix

Table 2.1 Types of Steel Fiber	11
Table 2.2 The summary of previous papers about SFRC	11
Table 3.1 Types of steel fiber	15
Table 3.2 Total amount of specimen	18
Table 3.3 Volume fraction of steel fiber	. 19
Table 3.4 Concrete mix design	20
Table 3.5 Slump test result of each batch	24
Table 3.6 Bulk density of cube and beam	25
Table 3.7 Compressive strength of each batch	26
Table 3.8 Average tensile strength of each batch	27
Table 3.9 All specimen of batch 320-35-SP.	34
Table 3.10 Compression strength of batch 320-35-SP at 7 days and 28 days	34
Table 4.1 Young's modulus and Poisson's ratio of each type of specimen	41
Table 4.2 Basic parameters of soil	41
Table 4.3 Basic parameters of soil (continue)	41
Table 4.4. Summary soil's parameters used in Ansys	42
Table 4.5 Coordinate of each point in the structure	43
Table 4.6 Tunnel's dimension	43
Table 4.7 DP and EDP parameters of concrete for Ansys	48
Table 4.8 Basic parameters of concrete for Ansys	48
Table 4.9 Vertical and horizontal stress by empirical method	50
Table 4.10 Axial stress and tangential stress by empirical method	50
Table 4.11 Strain at crown, invert, and spring line of tunnel lining D_2.0_T_50 and Mat	X
strain	52

Table 4.12 Strain at crown, invert, and spring line of tunnel lining D_2.5_T_50 and Max	
strain	.54
Table 4.13 Strain at crown, invert, and spring line of tunnel lining D_3.0_T_50 and Max strain	.56
Table 4.14 Strain at crown, invert, and spring line of tunnel lining D_3.2_T_50 and Max	
strain	.58

Page

Х

Lists of figure

Page
Figure 2.1 Tunnel's element
Figure 2.2 Primary lining and secondary lining
Figure 2.3 The deformation of lining in case of unconfined ring under the uniform load
Figure 2.4 The deformation of lining in case of unconfined ring under the concentrated load4
Figure 2.5 The deformation of lining in case of partially confined ring under the concentrated load
Figure 2.6 The deformation of lining in case of fully confined ring under the concentrated load
Figure 2.7 The deformation of lining in case of fully confined ring which active pressure is not uniformed under the random load
Figure 2.8 Relationship between the thickness of flexibility ring and qu minimum
Figure 2.9 Relationship between moment in tunnel and deformation ratio
Figure 2.10 Relationship between axial force and the depth-size of tunnel
Figure 2.11 Methodology of the research
Figure 3.1 Materials (sand, gravel and cement)14
Figure 3.2 Steel fibers (Wirand)
Figure 3.3 Super Plasticizer (Polyheed 779 R, BASFa)15
Figure 3.4 Mixing machine
Figure 3.5 Slump test device
Figure 3.6 RMU Compression Testing machine (serial 85, 3000 kN capacity)16
Figure 3.7 Instron (Model no. DYNS, Serial no. H 2029, 1000-kN capacity)17
Figure 3.8 Data logger (Kyowa Electronic Instruments)

Figure 3.9 Kyowa Hollowed Load Cell (Model BL-10TB, Serial no. AU1170, 10-ton
$\Gamma^{*} = 2.10 \text{ K}$, $L_{10} \Gamma^{*} = 0.0000 \text{ m}^{-1} = 1020002 m$
rated capacity)
Figure 3.11 Cube specimens
Figure 3.12 Briquette specimen
Figure 3.13 Beam specimen
Figure 3.14 Curing room
Figure 3.15 Slump test procedure
Figure 3.16 Sieve devices
Figure 3.17 Sieve analyses for gravel
Figure 3.18 Sieve analyses for sand
Figure 3.19 Beam specimens before testing
Figure 3.20 Installing LVDT and load cell
Figure 3.21 Right side of specimen
Figure 3.22 Left side of specimen
Figure 3.23 Bottom side of specimen
Figure 3.24 Fracture plan of specimen
Figure 3.25 Installing briquettes and the briquette after tensile testing
Figure 3.26 Comparison between slumps of each batch25
Figure 3.27 Comparison between bulk densities of each batch
Figure 3.28 Comparison between compressive strength of each batch
Figure 3.29 Comparison between average tensile strength of each batch
Figure 3.30 Comparison of flexural test between each dosage of batch 240-NSP29
Figure 3.31 Comparison of flexural test between each dosage of batch 240-SP29
Figure 3.32 Comparison of flexural test between each dosage of batch 320-NSP
Figure 3.33 Comparison of flexural test between each dosage of batch320-SP

Figure 3.34 Comparison of toughness between each batch
Figure 3.35 Comparison normalizing the load (P) by peak load (Ppeak) in flexural test
between each dosage of batch 240-NSP
Figure 3.36 Comparison normalizing the load (P) by peak load (Ppeak) in flexural test
between each dosage of batch 240-SP
Figure 3.37 Comparison normalizing the load (P) by peak load (Ppeak) in flexural test
between each dosage of batch 320-NSP
Figure 3.38 Comparison normalizing the load (P) by peak load (Ppeak) in flexural test
between each dosage of batch 320-SP
Figure 3.39 The relationship between stress and strain of cube at 7 days
Figure 3.40 The relationship between stress and strain of cube at 28 days
Figure 3.41 Comparing the flexural performance test results of fiber reinforced concrete of
batch 320-35-SP at 7 days
Figure 3.42 Comparing the flexural performance test results of fiber reinforced concrete
of batch 320-35-SP at 28 days
Figure 3.43 The relationship between stress and strain of briquette at 7 days
Figure 3.44 Mesh refinements for back analysis method
Figure 3.45 Tensile softening curve from back analysis method
Figure 4.1 Model boundary of tunnel
Figure 4.2 Geometry of structure
Figure 4.3 PLANE183
Figure 4.4 Failure plane surface of Druker-Prager failure criteria45
Figure 4.5 Associate and Non-Associate flow rule diagram47
Figure 4.6 Boundary condition
Figure 4.7 Data explanation
Figure 4.8 Convergence check by boundary condition and amount of elements

Figure 4.10 Tunnel segment layer	.51
Figure 4.11 Strain at crown, invert, and spring line of tunnel lining D_2.0_T_50	53
Figure 4.12 Strain at crown, invert, and spring line of tunnel lining D_2.5_T_50	55
Figure 4.13 Strain at crown, invert, and spring line of tunnel lining D_3.0_T_50	57
Figure 4.14 Strain at crown, invert, and spring line of tunnel lining D_3.2_T_50	59

xiv

Chapter I

Introduction

1. Introduction

In the past, tunnel constructions have been applied to most of the developed countries in the world. It was used for underground transportation such as pathways for mining, developing shorter roads in the mountainous area and diverting or supplying water into the city. In recent years, advancements have been made in constructing tunnels especially, in the materials they use.

The materials used for tunnel construction have been developed continuously such as steel, concrete and Steel Fiber Reinforce Concrete (SFRC). These materials are developed in such a way that it can be used for a long time and it is cost effective. SFRC is new technology in reinforced concrete. It contains steel fiber together with concrete in order to increase the strength of concrete. The technology of SFRC is widely used in the developed countries such as USA, European countries, Japan and Australia, to name a few. They use SFRC for tunnel lining and flooring. In South East Asian countries, there rarely apply this technology for the construction of structures, except Singapore. They use SFRC for the construction of tunnel lining segment. In Thailand, this technology is totally new for the civil engineers. This research provides the characteristics of steel fiber reinforced concrete with the use of the local material. Moreover, this research can provide information on the effectiveness of SFRC in tunnel lining when SFRC is applied. Furthermore, a comparison between SFRC and plain concrete was made. This is to determine the advantages of SFRC when applied in tunnel lining.

In order to determine the characteristics of SFRC, specimens such as cube, beam and briquette was prepared. These were prepared in 4 batches, 2 of which having different strength and the other 2 contains SFRC with and without plasticizer. Laboratory tests such as tension, compression, and bending moment was performed to obtain the compressive strength, bending strength and tensile strength respectively.

The project related on this research is located on Champasak province, Lao People's Democratic Republic (Lao PDR). Houay Lamphan Ngai Hydropower project is located on Bolaven plateau, southern part of Laos. It covers 2 provinces, the dam located on Xekong province, while the reservoir is on Champasak province. The installed capacity of the Project is 86.7 MW, and the average annual generation capacity is 480GWh. The tunnel is open-face excavation, Horse-shoe Shape under low pressure with the length of 2700 m and 5200 m. The thickness of tunnel lining was 0.5m.

2. Purpose of the research

- To know the characteristic of Steel Fiber Reinforced Concrete (SFRC) in terms of axial force (tension and compression) and bending moment, with and without plasticizer.

- To know how to apply the SFRC in to the tunnel construction design.

- To know the behavior of SFRC when the load from the soil is continuously being applied on the tunnel lining segment.

3. Limitation of the research

- This research only focuses on the determination of the behavior of SFRC when it was applied to the tunnel lining design of the Huay Lam Phan Ngai hydropower project at Champasak province, Lao PDR. The soil profile and tunnel's properties were based from this hydropower project.

- Studying the characteristic of SFRC by the laboratory test according to ASTM standard.

- Studying the tunnel lining design by numerical method and using structural software (ANSYS) to determine its behavior.

- Studying only on the behavior of lining segments under the load of soil.

4. Output

The outputs from this research are enumerated as follows:

- Techniques and methodology of designing and testing SFRC in the laboratory test.

- The characteristic of SFRC with and without super plasticizer and compare it with the plain concrete.

- The methodology of tunnel lining design by using numerical method (ANSYS).
- The behavior of soil and tunnel while using the SFRC.
- Advantages and disadvantages of SFRC when they were applied to tunnel lining.
- The behavior of tunnel lining segment under load of soil.

Chapter II

Literature review

1. Introduction to tunnel

1.1 Type of tunnel lining

There are 3 sections within the tunnel lining that are constantly affected with the load namely: crown, invert, and spring line. A tunnel lining has two parts, primary and secondary lining. Primary lining serves as the main structure and is designed to hold the load of the tunnel. In constructing the primary lining, the segment is installed immediately at the tale of the boring machine. If all the segments of the primary lining is properly installed and forms as a ring, underground water can be prevented to flow inside the tunnel. More so, all forces the tunnel carries will be properly carried by the primary lining. While the secondary lining is responsible on protecting the primary lining from corrosion, and adjusting of the alignment-deviation. It will be installed after the primary lining is finished.

Figure 2.1 Tunnel's element

Figure 2.2 Primary lining and secondary lining

1.2 Behavior of lining

Normally, the lining construction is designed as an elastic ring which can be deformed. The deformation of the tunnel can vary depending on the properties of lining and the loads effected to the tunnel.

- Unconfined ring

For the case of the uniform compression stress, the thickness of the tunnel can resist the deformation enough via the radius as shown in Figure 2.3. For the case of concentrated load occurring at crown and invert, the lining will deform as bloom out at spring line, which the deformation is more than the case of uniform compression stress, as shown in Figure 2.4.

Figure 2.3 The deformation of lining in case of unconfined ring under the uniform load

Figure 2.4 The deformation of lining in case of unconfined ring under the concentrated load

- Partially Confined Ring

The deformation as shown in Figure 2.5 is the case when the loads occur at the crown and invert are active pressure and passive pressure, respectively. For the deformation of the tunnel, the expansion normally occurs at the spring line. Partially Confined Ring is similar as unconfined ring, but the deformation is smaller.

Figure 2.5 The deformation of lining in case of partially confined ring under the concentrated load

- Fully confined ring

As shown in Figure 2.6, the active pressure occurs at crown and invert while the passive pressure spread along the lining. In this case, active pressure is a uniform load. If it's not, passive pressure will occur as shown in Figure 2.7 which the deformation of fully confined ring is less than the other case.

Figure 2.6 The deformation of lining in case of fully confined ring under the concentrated load

Figure 2.7 The deformation of lining in case of fully confined ring which active pressure is not uniformed under the random load

For the tunnel lining arrangement, in order for the ring to be considered as flexible it is assumed to be a monolithic ring and the moment of inertia is 60-80% of calculated pipe segment in each the same thickness. Normally, the ratio of reinforced concrete tunnel between thickness and radius is 6 to 12% as shown in Figure 2.8.

(d/R)	(d/R)2	q,(min) #/ft2=4.8(d/R)2*10
4	640000	307
6	2160000	1037
8	5120000	2456
10	10000000	4800
12	17280000	8256

from
$$i = \frac{1}{12}$$
 for unit tunnel length
 $q_{\star} > \frac{E}{60} \left(\frac{d}{R}\right)^3$
from $E = 2 \times 10^6 \# / in^2$ for monolithic concrete segments
 $q_{\star} > \frac{E}{30} \left(\frac{d}{R}\right)^3 \times 10^6 \# / in^2$
 $q_{\star} > 4.8E \left(\frac{d}{R}\right)^3 \times 10^6 \# / in^2$

Figure 2.8 Relationship between the thickness of flexibility ring and q_u minimum.

When there is an internal force present within the tunnel lining it will be considered as an elastic ring. The moment occurring in the lining will be related to the distortion ratio (Δ R/R). The axial force will then be related with the overburden pressure of soil which increases as the depth, the ratio between thickness and radius of tunnel increases as shown in Figure 2.9.

Figure 2.9 Relationship between moment in tunnel and deformation ratio.

Figure 2.10 Relationship between axial force and the depth-size of tunnel

2. Introduction to ANSYS

Finite element method is a numerical method which uses computer programming to help engineers analyze the deformation and design of the tunnel lining. The users need to know the basic concept of soil mechanic and calculation criteria. In geotechnical engineering, calculating and designing by finite element method is done by modeling the real behavior of structure by dividing soil and structure into small elements with node point as the area of analysis. In each element, there are stress and strain values that are limited by the boundary condition and the loads present. The user can determine the yield point and deformation value of each element. The appropriate amount and size of each element can be assigned to the structure.

ANSYS is the software that analyzes the behavior of the structure which uses finite element method. Its structural software is from ANSYS, Inc., Canonsburg, Pennsylvania, USA. ANSYS can verify geometric shape, material properties and boundary conditions through graph display before calculation. It can also display the simulation results by multiple ways such as color nephogram, contour and animation display. It can perfectly analyze the mechanical behavior of many complex configurations in engineering structures. More so, it can be able to describe crack formation and expansion of the structure. This program can simulate material and geometry nonlinear properties of large-scale complex structure. ANSYS 13.0 was used in this research to analyze the behavior of tunnel lining under large deformation.

3. History of Concrete

3.1 Plain concrete

In the past, when describing the characteristics of a plain concrete, it is both high compressive strength and low tensile strength. So, in 1849 the French engineer used steel bars (reinforced bars) or pre-stressed steel to help the plain concrete to carry the tensile strength. They called this type of concrete is reinforced concrete. It was used as the main material for construction works especially in constructing buildings. In addition, the failure strain of the plain concrete in tension is so low that the reinforcement has to hold the cracked sections together. A disadvantage of using steel bars is when the maximum bending moment and shear strength are reached then large cracks within the structures can be seen.

3.2 Concrete with special material

Since 1960, the innovation of fiber reinforced concrete (FRC) had been carried out by the engineers. Nowadays, FRC is mainly use in shotcrete, flooring and pavement, but it can be adapted to use in the other types of concrete construction such as beam and foundation. Concrete reinforced with fibers (which are usually steel, glass, or plastic fibers) is less expensive than hand-tied rebar and at the same time carries larger tensile strength. Moreover, it can resist corrosion effect without the cover length. The fibers used in FRC material are often divided into 2 categories: low modulus, high elongation; and high strength, high modulus fibers. The following are the different types of fibers generally used in the construction industries.

- Glass-fiber Reinforced Concrete (GFRC): Glass fiber is inexpensive and corrosion-proof, but not as ductile as steel. It can incorporate with continuous lengths or in discontinuous (chopped) lengths. In addition, it's very suitable for the thin concrete segment. Glass fiber reinforced concrete architectural panels have a general appearance of pre-cast concrete panels, but are different in several significant ways. For example, GFRC panels will, on the average, weigh substantially less than pre-cast concrete panels due to their reduced thickness. The low weight of GFRC panels decrease superimposed loads on the building's structural components. The building frame becomes more economical.

- Steel Fiber Reinforced Concrete (SFRC): Steel is the strongest commonlyavailable fiber, and comes in different lengths (30 to 80 mm in Europe) and shapes (endhooks). Steel fibers can only be used on surfaces that can tolerate or avoid corrosion and rust stains. In some cases, a steel-fiber surface is faced with other materials.

- Polypropylene Fiber Reinforced (PFR): cement mortar and concrete Polypropylene is one of the cheapest and abundantly available polymers. They are highly resistant to chemical effect. Its melting point is low, so it can tolerate heat from the fire. Polypropylene short fibers in small volume fractions between 0.5 and 15 commercially used in concrete.

- Asbestos Fibers: It is naturally available and it is an inexpensive mineral fiber. This material has been successfully combined with Portland cement paste to form a

widely used product called asbestos cement. Asbestos fibers are thermal mechanical and chemical resistant making them suitable for sheet product pipes, tiles and corrugated roofing elements. Asbestos cement board is approximately two or four times that of unreinforced matrix. However, due to relatively short length (10mm) the fiber have low impact strength.

- Carbon Fibers: Carbon fiber is probably the most impressive addition to the range of fiber available for commercial use. Carbon fiber has very high modulus of elasticity and flexural strength. Even though it is expensive, the strength and stiffness characteristics have been found to be superior even to those of steel. Thus, they are more vulnerable to damage than even glass fiber, and hence are generally treated with resign coating.

- Organic Fibers (Natural Fibers): Organic fiber such as polypropylene or natural fiber may be chemically more inert than either steel or glass fibers. They are also cheaper, especially if naturally obtained. A large volume of vegetable fiber may be used to obtain a multiple cracking composite. The problem of mixing and uniform dispersion may be solved by adding a super plasticizer.

3.3 Steel Fiber Reinforce Concrete (SFRC)

During recent years, SFRC has gradually advanced and has now attained acknowledgment in numerous engineering applications. Lately, it has become a more frequent substitute to steel reinforcement.

Concrete is a brittle material with a low tensile strength. Steel Fiber is added in concrete for increasing the tensile strength and its ductility. In addition, it reduces the intensity of the cracks. It provides the large contraction area between concrete and steel compared with the reinforced bar and it also increases shear resistance. Moreover, it helps to minimize the thickness of concrete segment as well as reduce the cost of construction.

The steel fiber has a high elasticity modulus (210.000 MPa), providing a very high tensile strength with a minimum deformation. A very high tensile strength helps the fiber to creep within the concrete without breaking and increasing the capacity of energy absorption. The steel fiber also has a hook which improves the bond between concrete and steel fiber. During construction, it can save time and money on placing the reinforcing fibers.

There are various researches about SFRC which proves that it's better than reinforced concrete such as the research of Yining Ding et al (2000). The researchers did the laboratory test to find the characteristic of SFRC in the early age. In their article, they studied about the effect of steel fibers in influencing the compressive strength, the duration for the peak load and the energy absorption under uniaxial compressive loading at the early age. The result of their research is at the early age, SFRC can increase the duration of the peak load compared to the plain concrete.

The uses of SFRC over the past thirty years have been so varied and so widespread, that it is difficult to categorize them. The most common applications are pavements, tunnel linings, pavements and slabs, shotcrete (now shotcrete also containing silica fume), airport pavements, bridge deck slab repairs, and so on. There also has been some recent experimental work on roller-compacted concrete (RCC) reinforced with steel fibers.

	Flooring and precast fibers			Shotcrete fibers			
Wirand Steel Fiber	FF1	FF2HS	FF3	FS9	FS3N	FS4N	FS7
Length (mm)	50	50	50	37	33	33	33
Diameter (mm)	1.00	0.90	0.75	0.75	0.75	0.60	0.55
Min. tensile strength (MPa)	1100	1450	1100	1100	1100	1200	1200
Aspect ratio L/D	50	56	67	49	44	55	60
Units/kg (approx)	3200	4000	5700	7700	8700	13600	16200

Table 2.1 Types of Steel Fiber. (Maccaferri, 2008)

As shown in Table 2.1, Maccaferri has 3 types of steel fiber for flooring and precast structure, and 4 types for shotcrete structure. Among these types, the main difference is the length and diameter of steel fiber.

4. How Steel Fiber Reinforced Concrete is applied to the tunnel.

SFRC is known to be highly resistant to tensile, shear and toughness strength. As well as the decreasing of labor and construction cost. SFRC was incorporated in the tunneling structures around the world such as district heating tunnel in Copenhagen (Thomas Kasper, 2007) and Gold Coast Desalination Tunnels (W Angerer, 2008). Moreover, there were several experiments conducted on using SFRC as a material for tunnel segment lining. For example, the experiments on ductile behavior, the wide cracks, the bridging effect of fiber and so on (see in Table 2.2). Some tunnel projects used SFRC with reinforced bars in order to increase deformation after cracking and the resistance of fire. Moreover, SFRC is used in shotcrete technology to stabilize the resistance of tunnel face and lining.

Thesis topic	Authors	Detail	Conclusion	Remarks
On the design	L.Sorelli, F.	Focus on application of	Adapting 'strut	SFRC + plain
of steel fiber	Toutlemon de	SFRC in tunnel lining	and tie' analysis	Numerical
reinforced	France, 2005	segment, full scale	to SFRC tunnel	strut-tie
concrete		specimen comparing to	design by	Compression
tunnel lining		RC, tensile test on	properly	Tension
segments		cylinder drilled out from	considering the	Experiment+
		the specimen. Using	tensile resistance.	numerical
		numerical method	SFRC can resist	
		comparing to experiment	the peak load	
			better than RC,	
			as well as fracture	
			energy	
Designing	B. Chiaia, A.P.	Finding suitable steel	Fiber reduces the	SFRC +
case-in-situ	Fantilli, P.	fiber and steel bar for	maximum crack	reinforced bar
FRC tunnel	Vallini,	ductile behavior.	width and crack	VS plain RC
linings	Italy,	Use Euro code,	distance,	Check: Euro
	2008	Soil properties by FEM	increasing the	code, ACI
		Define ULS & SLS	resistance on	
			corrosion of steel	
			rebar	

Table 2.2 The summary of previous papers about SFRC.

Thesis topic	Authors	Detail	Conclusion	Remarks
Lining design	Thimas Kasper,	3.9m long, inner	Combination	SFRC cannot
for the district	Carola	diameter 4.2 m, 2 steam	between steel	compete with
heating tunnel	Edvardson,	pipe, 30 cm thick, lining	fiber and	conventional
in	Gerd Wittneben,	ring 1.5 m wide	polypropylene	RC in terms
Copenhagen	Dieter Neumann,	Use EPB	fiber can provide	of bending
with steel	Germany,	SFRC only	fire resistance	and tensile
fiber	2007	100 years service life	without any extra	capacity,
reinforced		50°c temperature during	method and save	bursting
concrete		operation of pipeline	cost.	capacity under
segments		Point bending test for		concentrated
-		tensile strength.		large load
		Loading with and		full
		without heating of tunnel		experiment
Design of	W Angerer,	SFRC for intake and	SFRC have more	
steel fiber	M Chappell,	discharge tunnel	capacity of tensile	
reinforced	Australia,	2 km long, 2.8 inner	than plain	
segmental	2008	diameter,	reinforced	
lining for the		Trail testing of the	concrete in the	
Gold Coast		segment	first peak crack.	
Desalination		Brief introduction of	- -	
Tunnel		SFRC		
		Support rock load and		
		hydrostatic pressure		
A fracture	Pruettha	Estimated load carrying	The critical crack	
mechanic-	Nanakorn,	capacity of tunnel lining	length depend on	
based design	Hideyuki Horii,	with various thickness	amount of steel	
method for	Shigeru	and different kind and	fiber	
SFRC tunnel	Matsuoka,	volume fraction of fiber		
linings	Japan, 1996	Using FEM and		
		experiment		
Effect of fiber	Pornpen	JSCE-SF4 standard	More steel fiber,	No optimum
content on	Limpaninlachat,	Effective of SRFC	more energy	amount of
mechanical	Pitichoke	Effect of the	absorption, reduce	steel fiber
properties of	Thongtrakarn,	arrangement of steel	crack, more	
steel fiber	Withit Pansuk,	fiber	resistance of	
reinforced	Thailand, 2553		bending moment,	
concrete			reduce thickness	

According to the previous research, most of them research on the peak strength, crack opening and so on. They were figured out that no one study on the flow of SFRC, even the strength of SFRC with special plasticizer (SP). Thus, this research will do the laboratory test on SFRC and SFRC with SP compare with conventional concrete. Moreover, it will be provided to find the behavior of tunnel lining segments especially when it is under large deformation.

Figure 2.11 Methodology of the research

Chapter III

Laboratory test

1. Preparing material

In the design of concrete, the main materials are cement, sand and gravel (Figure 3.1). Type I cement was used for the main structure while sand and gravel are local materials. The sand is course sand and the size of gravel is not more than 1 inch (25mm). All of the sand and gravel have been washed for 2 times before mixing. Moreover, they have to be dried up in the oven under a temperature of 100 degree Celsius. In addition, steel fiber and plasticizer were also used in this test.

Steel fiber is under type FF3 which are of 50 cm. diameter, 0.75 cm. long and 5700 pieces per kilogram. The plasticizer (Figure 3.3), whose purpose was to reduce water in concrete to retain or increase the strength of concrete, was used with a proportion of 350 ml per 100 kg of cement. A mixing machine (Figure 3.4) with a 100-liter volume capacity has been utilized.

Figure 3.1 Materials (sand, gravel and cement)

Figure 3.2 Steel fibers (Wirand)

Table 3.1 Types of steel fiber

Wirand steel fiber	FF1	FF2HS	FF3
Length (mm)	50	50	50
Diameter (mm)	1.00	0.90	0.75
Min. tensile strength (MPa)	1100	1450	1100
Aspect ratio L/D	50	56	67
Units/kg (approx.)	3200	4000	5700

There are 2 types of steel fiber used; the first one is for flooring and precast, and the other one is for shotcrete concrete. In this research, the steel fiber for flooring and precast type (batch FF3) was mixed in the concrete whose size is given in Table 3.1

Figure 3.3 Super Plasticizer (Polyheed 779 R, BASFa)

Figure 3.4 Mixing machine

In this experiment, 6 cubes, 6 beams and 3 briquettes had been used for compressive and bending and tension test respectively. For the slump test, the falling depth of SFRC in slump test should not more than 15 cm and for plain concrete should not more than 10 cm.

Figure 3.5 Slump test device

Figure 3.6 RMU Compression Testing machine (serial 85, 3000 kN capacity)

For bending test, the main machine that was used is Instron (Figure 3.7). The ability of this machine is pulling or pushing the load according to the frequency that was set by the user. The initial frequency of this bending test is 0.12 mm/min and was later set to 0.24 mm/min after cracking (in accordance to ASTM C1609/1609M-06).

Due to the old and low version of computer that controls the Instron, the data cannot be transferred. In order to solve this problem, a load cell and LVDT was used to define the load-displacement while a data logger recorded all the data from the bending test. The Kyowa Hollowed Load Cell (Figure 3.9) has the maximum capacity of 10 tons. Two Kyowa LVDTs (Figure 3.10) with a 2 centimeter maximum length was used to measure the displacement of bending test. In addition, the data recording machine is a data logger (Figure 3.8) that accounts and keeps the data from the load cell and LVDT with a frequency 10 Hz.

Figure 3.7 Instron (Model no. DYNS, Serial no. H 2029, 1000-kN capacity)

Figure 3.8 Data logger (Kyowa Electronic Instruments)

Figure 3.9 Kyowa Hollowed Load Cell (Model BL-10TB, Serial no. AU1170, 10-ton capacity)

Figure 3.10 Kyowa LVDTs (Model DTH-A-20, Serial no. 1930002 and 1930003, 20mm rated capacity)

2. Design criteria

The ASTM C31/C31M was used in mixing and curing the concrete. 320 ksc and 240 ksc strengths of concrete have been designed for this research. A summary of cube and beam specimens is shown in Table 3.2.

Strength	Type of	Dlain		Stee	el fiber dosage, I	FF3 (kg/m ³ concre	te)	
ksc	specimen	Flaili	15	20	25	30	35	40
	Batch No.	240-0-NSP	240-15-NSP	240-20-NSP	240-25-NSP	240-30-NSP	240-35-NSP	240-40-NSP
240	Cube	8	8	8	8	8	8	8
240	Beam	6	6	6	6	6	6	6
	Briquette	3	3	3	3	3	3	3
	Batch No.	240-0-SP	240-15-SP	240-20-SP	240-25-SP	240-30-SP	240-35-SP	240-40-SP
240 - 50	Cube	8	8	8	8	8	8	8
240+SP	Beam	6	6	6	6	6	6	6
	Briquette	3	3	3	3	3	3	3
	Batch No.	320-0-NSP	320-15-NSP	320-20-NSP	320-25-NSP	320-30-NSP	320-35-NSP	320-40-NSP
320	Cube	8	8	8	8	8	8	8
520	Beam	6	6	6	6	6	6	6
	Briquette	3	3	3	3	3	3	3
	Batch No.	320-0-SP	320-15-SP	320-20-SP	320-25-SP	320-30-SP	320-35-SP	320-40-SP
220 GD	Cube	8	8	8	8	8	8	8
320 + 3P	Beam	6	6	6	6	6	6	6
	Briquette	3	3	3	3	3	3	3

Table 3.2 Total amount of specimen

*Remark: Batch No. explanation:

For XXX-YY-ZZZ:

- XXX : target strength, 240 and 320 ksc.

- YY : amount of steel fiber, eg: 0 is no steel fiber.

- ZZZ : with or without super plasticizer , eg: NSP: no super plasticizer.

Table 3.3 Volume fraction of steel fiber

Steel fiber dosage, FF3(kg/m ³ concrete)	0	15	20	25	30	35	40
Volume fraction (%)	0	0.188	0.253	0.316	0.380	0.437	0.507

In 1 m³ of concrete, there is 401.96 kg. cement, 663.92 kg. sand, 1072 kg. gravel, 205 liters water and 1.403 liters of plasticizer. For SFRC, the weight of steel fiber had used to replace the weight of grain materials (sand and gravel) in a haft-haft (table 3.4).

This research contains three types of specimen, cube, beam and briquette. The sizes of all specimens are as figure 3.11, 3.12, and 3.13 respectively.

Figure 3.11 Cube specimens

Figure 3.12 Briquette specimen

Figure 3.13 Beam specimen

Table 3.4 C	Plant	
Type of cement:	Type 1	TDI
Quantity of cement:	402 kg/m^3	IPI
Water/cement ratio:	0.509	
Aggregates		Lassi
Gravel:	1072 kg/m3	Local
Sand:	664 kg/m3	meteriai
Admixture		
Super plasticizer:	1.407 litres/ m^3	BASF
Steel fiber:	Dosages as listed in table 1	Maccaferri

a. Curing method

According to ASTM C192/C 192M-07, all specimens were cured in the tank filled with water.

Figure 3.14 Curing room

3. Testing process

a. Slump test

According to ASTM C143/C 143M-08, the slump depth should not be more than 15 cm for the concrete that contains steel fiber, while the slump depth for plain concrete should not be more than 10 cm.

Figure 3.15 Slump test procedure

b. Sieve analysis

Figure 3.16 Sieve devices

Figure 3.17 Sieve analysis for gravel

Figure 3.18 Sieve analyses for sand

In conclusion, the size of gravel and sand are 25.4 mm to 0.425 mm, and 4.75 mm to 0.75 mm respectively.

c. Compression test

The dimensions and weight of the concrete block was noted before the test. During the procedure, the load and displacement values were recorded. This was performed by reading the dial gauge, recording the data in the table and plotting the values in a graph.

d. Flexural test

The standard ASTM C 1690/C 1690M-06 is used for the "Flexural Performance of Fiber Reinforced Concrete". According to ASTM C 1690, the size and weight of specimen had to be recorded before and after the test. The beam specimen was installed into the Instron (Figure 3.18) where the LVDTs were installed on both sides of the specimen. The load cell was placed on the top of the specimen that measured the load from Instron. After testing, the sizes of the cracks and the length between the cracks and the supports in every side have to be recorded. Thus, photos in each side of the specimen: top, bottom, left, right, and cracking plan have to be taken (Figure 3.19 to 3.22). The specimens that contain voids and cracks outside L/3 were discarded. The documentation of this test is shown in Figure 3.28-3.31.

Testing procedure:

- Measure size and weight of beam specimen before testing.
- Measure the point of load, support, and LVDT.
- Set the glue (epoxy) to install the LVDT.

Figure 3.19 Beam specimens before testing

- Install the specimen into machine

Figure 3.20 Installing the LVDT and load cell

- Measure size and length of crack, and take photos all side after testing.

Figure 3.21 Right side of the specimen

Figure 3.22 Left side of the specimen

Figure 3.23 Bottom side of specimen

Figure 3.24 Fracture plan of specimen

e. Tension test

For tensile test, LVDTs had to be installed to measure the tensile deformation of briquette and the load was read from the machine until it cracks.

Figure 3.25 Installing briquettes and the briquette after tensile testing

4. Result

The test results are as the graphs below:

4.1 Fresh concrete

a. Slump test

Table 3.5 Slump test result of each batch

240-NSP	slump	240-SP	slump	320-NSP	slump	320-SP	slump
240-0-NSP	13.0	240-0-SP	13.0	320-0-NSP	10.5	315-0-SP	14.0
240-15-NSP	13.5	240-15-SP	15.0	320-15-NSP	10.5	320-15-SP	16.0
240-20-NSP	11.5	240-20-SP	15.5	320-20-NSP	10.5	320-20-SP	15.0
240-25-NSP	11.0	240-25-SP	15.0	320-25-NSP	11.0	320-25-SP	14.2
240-30-NSP	13.0	240-30-SP	14.5	320-30-NSP	11.0	320-30-SP	13.9
240-35-NSP	11.7	240-35-SP	16.5	320-35-NSP	12.0	320-35-SP	14.0
240-40-NSP	11.0	240-40-SP	15.0	320-40-NSP	10.5	320-40-SP	13.4

In Figure 3.26 comparison between stumps of each batch In Figure 3.26, it can be seen that the slump varied from 10 to 17 cm, where the maximum slump is the batch 240-35-SP. It can be deduced that the batches that contains SP have higher slump values than the batches without SP. In other words, the presence of SP makes the concrete flow more easily than the ones without SP.

4.2 Hardening of concrete

Table 3.6 Bulk density of cube and beam

Datah Na	Bulk den	sity (kg/m ³)	Datah Na	Bulk dens	sity (kg/m ³)
Datch No.	Cube	Beam	Datch No.	Cube	Beam
240-0-NSP	2489	2432	320-0-NSP	2534	2451
240-15-NSP	2442	2473	320-15-NSP	2499	2447
240-20-NSP	2404	2437	320-20-NSP	2498	2454
240-25-NSP	2463	2437	320-25-NSP	2522	2431
240-30-NSP	2443	2497	320-30-NSP	2487	2453
240-35-NSP	2475	2410	320-35-NSP	2494	2410
240-40-NSP	2479	2470	320-40-NSP	2485	2417
240-0-SP	2468	2457	320-0-SP	2436	2384
240-15-SP	2489	2418	320-15-SP	2534	2463
240-20-SP	2478	2425	320-20-SP	2502	2491
240-25-SP	2499	2452	320-25-SP	2461	2460
240-30-SP	2508	2431	320-30-SP	2497	2422
240-35-SP	2519	2448	320-35-SP	2526	2423
240-40-SP	2446	2436	320-40-SP	2494	2435

Figure 3.27 Comparison between bulk densities of each batch According to Figure 3.27, the density of the cube and beam concrete varies from 2400 to 2500 kg/m^3 .

4.3 Compression test

Table 3.7 Compressive strength of each batch

Datah Na	compressive strength, fc'	Potob No	compressive strength, fc'
Datch No.	ksc	Datch No.	ksc
240-0-NSP	213	320-0-NSP	306
240-15-NSP	254	320-15-NSP	319
240-20-NSP	224	320-20-NSP	322
240-25-NSP	246	320-25-NSP	319
240-30-NSP	232	320-30-NSP	317
240-35-NSP	237	320-35-NSP	310
240-40-NSP	248	320-40-NSP	315
240-0-SP	240	320-0-SP	315
240-15-SP	241	320-15-SP	306
240-20-SP	235	320-20-SP	323
240-25-SP	240	320-25-SP	307
240-30-SP	241	320-30-SP	319
240-35-SP	251	320-35-SP	312
240-40-SP	223	320-40-SP	318

Figure 3.28 Comparison between compressive strength of each batch In this research, there are two types of concrete design strength, 240 ksc and 320 ksc. Figure 3.28 shows that the concrete compressive strength of each quantity is not far from their design strength.

4.4 Tensile test

Ratch No.	Strength (ksc)	ft/fo'	Ratch No.	Strength (ksc)	ft/fo'
Daten No.	ft	10 10	Baten No.	ft	10/10
240-0-NSP	N/A	N/A	320-0-NSP	31.02	0.10
240-15-NSP	N/A	N/A	320-15-NSP	31.51	0.10
240-20-NSP	N/A	N/A	320-20-NSP	36.22	0.11
240-25-NSP	N/A	N/A	320-25-NSP	32.35	0.10
240-30-NSP	N/A	N/A	320-30-NSP	37.41	0.12
240-35-NSP	N/A	N/A	320-35-NSP	31.89	0.10
240-40-NSP	34.15	0.14	320-40-NSP	28.57	0.09
240-0-SP	25.15	0.10	320-0-SP	N/A	N/A
240-15-SP	22.57	0.09	320-15-SP	34.80	0.11
240-20-SP	26.38	0.11	320-20-SP	39.65	0.12
240-25-SP	20.18	0.08	320-25-SP	32.74	0.11
240-30-SP	25.95	0.11	320-30-SP	33.17	0.10
240-35-SP	22.78	0.09	320-35-SP	32.15	0.10
240-40-SP	25.41	0.11	320-40-SP	23.26	0.07

Table 3.8 Average tensile strength of each batch

In Table 3.8, N/A is the batch where the specimen dimension does not match with the briquette catcher, making the values unreadable.

Figure 3.29 Comparison between average tensile strength of each batch During the tensile strength test, the strengths of certain dosages were not obtained due to difference in dimension of the specimen and the catcher, making the value impossible to acquire. In Figure 3.29, the average tensile strength of the remaining dosages is plotted. It is apparent that the tensile strength is about 8% to 10% of the compressive strength of each batch (Please refer to Table 3.8).

4.5 Flexural test

Figure 3.31 Comparison of flexural test between each dosage of batch 240-SP

Figure 3.33 Comparison of flexural test between each dosage of batch320-SP

In each dosage, there are 6 specimens. Figures 3.28 to 3.32 show the representatives of each dosage of batch 240-NSP, 240-SP, 320-NSP and 320-SP respectively. From these figures considering the first peak load, it can be observed that the steel fiber has negligible effect. In contrast, it affects the residual load in flexure. When the amount of the steel fiber increased, the residual load increased in every batch. Moreover, comparing figures 3.28 and 3.29, 3.30 and 3.31, it can be seen that the batch that contained SP generated larger peak load and residual load. It can be concluded that SP does not only improve the ability of flow in concrete but also increased the strength of concrete.

In Figure 3.34, it can be observed that the toughness increases as the amount of steel fiber increases with SP.

Figure 3.34 Comparison of toughness between each batch

4.6 Normalizing the strength

In this research, it is important to determine whether the design strength of concrete affects its residual strength in flexure. The load (P) at each displacement was divided by the peak load (P_{peak}) of each batch and plotted into the graph as shown in Figures 3.33 to 3.36 respectively. Among those graph, for batch without SP, it can be seen that the batch 320-SP has larger residual load than the batch, and the same with the batch with SP. This means that the strength of concrete also improves the resistance of concrete after cracking. For the batch 240-NSP, the range of residual P/P_{peak} is between 20% - 50%, while the batch 320-SP, the range of residual P/P_{peak} is between 50% - 80%. Similarly with the batches with SP, the results above show that the SP helps to increase the strength of concrete. Figures 3.34 and 3.36 also show that the design strength improve the batches with SP to increase the residual load of concrete: 40% - 70% residual strength was obtained for batch 240-SP and 40% - 90% for batch 320-SP.

flexural test between each dosage of batch 240-SP

Figure 3.37 Comparison normalizing the load (P) by peak load (Ppeak) in flexural test between each dosage of batch 320-NSP

Figure 3.38 Comparison normalizing the load (P) by peak load (Ppeak) in flexural test between each dosage of batch 320-SP

4.7 Specify the dosage for analysis part.

Based on the aim of this research and the result of the toughness in figure 3.32, the batch 320-35-SP is similar to the batch 320-40-SP. Therefore, is has been decided to choose the batch 320-35-SP for the structural analysis in Chapter IV.

All specimens in this batch were divided into 2 groups, 7 days (depending on strength), and 28 days. Details of this batch are listed in Table 3.9.

Specimen	All	For 7 days	For 28 days
Cube	8	4	4
Beam	6	3	3
Briquette	3	3	0

Table 3.9 All specimen of batch 320-35-SP

a). Compression test

Table 3.10 Compression strength of batch 320-35-SP at 7 days and 28 days

Specimen no.	Compressive strength (ksc) at 7 days	Specimen no.	Compressive strength (ksc) at 28 days
1	262	5	433
2	335	6	425
3	291	7	337
4	320	8	378

Figure 3.39 The relationship between stress and strain of cube at 7 days

Figure 3.40 The relationship between stress and strain of cube at 28 days

Figure 3.37 and 3.38 show the evolution of the strength of concrete from 7 days to 28 days. Although the design strength is 320 ksc, it can be seen that the compressive of strength of concrete in 28 days is around 380 ksc to 400 ksc with the strain 0.0035 to 0.005.

b). Flexural test

Figure 3.41 Comparing the flexural performance test results of fiber reinforced concrete of batch 320-35-SP at 7 days

Figure 3.42 Comparing the flexural performance test results of fiber reinforced concrete of batch 320-35-SP at 28 days

According to ASTM 1609C/1609M, the peak load of flexural test has two types: the first load and first peak load. In figure 3.41, for concrete in 7 days, shows that specimen number 1 and 3 has one peak load. While the specimen number 2 has both first peak load and peak load. In addition, the load-displacement curve in figure 3.40 shows that all specimens contain two peak loads.

c). Tensile test

For this test, 3 specimens were used but only the result of two specimens can be analyzed properly. This is due to the unequal size of the catcher and the specimen where the catcher is smaller compared to the specimen. As seen in Figure 3.41, the tensile stress of SFRC is around 20 ksc to 25 ksc. On the other hand the tensile strength is around 10% of the compressive strength. The tensile strain is between 0.032-0.034.

Figure 3.43 The relationship between stress and strain of briquette at 7 days

4.8 Back analysis

Due to lack of equipment in the lab, the process of finding the tensile softening curve from the laboratory was not success. A method from JCI called "**Method of Estimating Tension softening Curve of Concrete**" (JCI-S-001-2003) mentioned that the tensile softening curve can be back analyzed from the flexural test.

The process of this analysis is to divide the beam specimen into 2 sides (symmetrical in both sides), then refine the specimen into nodes and elements (see Figure 3.42. All nodes must have the coordinate of each node, and the elements should define the nodes that build the element. Then the loading node (NLOD), supporting node (NSUP), and LVDT's node (NDEF) should be defined. In addition, the thickness of element, the Young's modulus, Poisson's ratio, and the density of the specimen had been added into the program. Moreover, the load-displacement curve of that specimen from flexural test was also incorporated into the program to find the tensile softening curve of concrete.

According to Figure 3.40, the flexural test of SFRC in 28 days, specimen number 1 has higher residual load than the others. So, this specimen was chosen to be used in back analysis method and the tensile softening curve in Figure 3.43 exhibits the result. For this figure, the tensile strength of concrete is 15.1 N/mm² and displacement at peak is 0.00259 mm. This value will be used in chapter IV.

Figure 3.45 Tensile softening curve from back analysis method

4.9 Conclusion

According to the laboratory test result, it can be concluded that for:

- a) Fresh concrete
- The slump of concrete without SP is in the range between 10 to 13 cm, and the concrete with SP is 14 to 17 cm. The batch that contains SP has more slump than the batch without SP. It means that with SP, the concrete easily flows to the mould better than the one without SP.
- b) Hardening concrete
- The bulk density of any dosage is in the similar value which is in the range between 2400 and 2550 kg/m³.
- In the compression test, the steel fiber does not have any remarkable effect to the strength of concrete in any dosage, and not far from design strength.
- For the peak load in the flexural test, the strength of concrete is relatively close to one another. It can be said that the steel fiber does not have any significant effect to the peak load of concrete.
- For residual load at 0.75 mm and 3 mm net deflection, the strength of concrete is increasing with the increase in amount of steel fiber. For the concrete with SP, the strength of concrete is higher than the one without SP.
- The batch that contains SP has larger peak load and residual load. It means that SP does not only improve the ability of flow in concrete, it increases the strength of concrete as well.
- For tensile strength, the specimen capacity reaches around 8% to 10% of compressive strength of each batch.
- When the amount of steel fiber increased with the addition of SP, the toughness of each dosage increased respectively.
- c) Normalizing the strength
- Based on P/P_{peak}, the higher strength of concrete will result to better post-cracking resistance.

Chapter IV

Tunnel lining analysis (case study)

1. Introduction to the project.

The project related to this research is located on Champasak province, Lao PDR. Houay Lamphan Ngai Hydropower Project is situated on Bolaven plateau which is in the southern part of Laos. The project covers 2 provinces. The dam located on Xekong province, while the reservoir is on Champasak province. The installed capacity of the project is 88 MW and the average annual generation capacity is 480GWh. There are 4 different sizes of tunnel diameter as shown in Table 4.6. The considered tunnel installed in the project is positioned in between thick-bedded fine sandstone and locally interbedded very thin stratified mudstone. The soil layer that was applied to this research is shown in Tables 4.2 and 4.3, and was summarized in Table 4.4.

2. Tunnel parameters

2.1Basic parameter

Basic parameters of soil and tunnel lining that were used in Ansys are stated below. The tunnel lining was analyzed in static mode, linear isotropic property, and 2 dimensional analyses.

2.1.1 Tunnel lining parameter

According to the laboratory test in chapter III, the parameters that were used in the analysis are stated in Table 4.1. Young's modulus and Poisson's ratio calculation are shown in the appendix. The compression Young's modulus was calculated from the slope of compression stress-strain curve, and the Poisson's ratio was calculated from the elongation of the cube in x-axis and y-axis. The Bending Young's modulus was back calculated from equation (4.2).

$$\Rightarrow \mathbf{E} = \frac{23P_1 l^3}{1296\delta_1 l} \left[1 + \frac{216d^2(1+\mu)}{115L^2} \right] \dots (4.2)$$

Where: $\delta 1$ = the first peak deflection, mm

- P1 = the first-peak load, N
- L = the span length, mm
- E = the estimated modulus of elasticity of the concrete,

I = the cross-sectional moment of inertia, mm4

d = the average depth of specimen at the fracture, as oriented for testing, mm μ = Poisson's ratio

For a Poisson's ratio of 0.20 and a d to L ratio of 1/3, the value of the portion of the equation in brackets is 1.25.

Spacimon	E, 1	Мра	Poisson's ratio		
specificit	7 days	28 days	7 days	28 days	
cube	9646	10592	0.28	0.23	
beam	233672	35490			
briquette	1361				
				•	

Table 4.1 Young's modulus and Poisson's ratio of each type of specimen

*See more in appendix

2.1.2 Soil parameter

The soil layer of this project contains 4 layers, when looking at the density and water content; they can be concluded in 2 main layers: Q_{edl} and N_2 .

soi	1 lovor	depth	ρ	σ	Wn	\mathbf{W}_1	Wp	Ip
501	li layei	m	g/cm3	kN/m3	%	%	%	
7	ZK01	3.2	1.62	51	35.5	74.9	37.7	37.2
	ZK01	8.4	1.68	137	36.2	72.6	39.9	32.7
8	ZK02	10.6	1.59	171	49.1	90.8	50.2	40.6
	ZK02	14.8	1.59	236	48.7	92.6	50.2	42.4
9	ZK03	21	1.61	334	37.4	79.1	37	42.1
	ZK03	29.2	1.6	463	41.1	100.7	45.7	55
10	K1	32.2	1.99	522	14.6	35.9	20.1	15.8
	K2	38.2	2.04	642	16.8	36.7	20.4	16.3
	K3	46.2	2.06	803	17.1	41.3	22	19.3
	K4	53.2	2.12	949	20.9	31.7	18.6	13.1
	K5	130	2.12	2546	23.5	30.1	18	12.1

Table 4.2 Basic parameters of soil

Table 4.3.Basic parameters of soil (continue)

						Friction	Undrained	Poisson's
		Depth	Density	Unit weight	Cohesion	angle	modulus	ratio
Soi	l layer	1	ρ	γ	Cu	φ	Е	V
		М	g/cm3	kN/m3	kN/m2	degree	kPa	assume
7	ZK01	3.2	1.62	15.9	58.52	12	11798	0.25
	ZK01	8.4	1.68	16.5	59.85	12	13727	0.25
8	ZK02	10.6	1.59	15.6	63.36	15.2	11704	0.2
	ZK02	14.8	1.59	15.6	63.36	15.2	11208	0.15
9	ZK03	21	1.61	15.8	52.36	27.9	9328	0.25
	ZK03	29.2	1.6	15.7	52.36	27.9	7140	0.25

			Density	Unit weight	Cohosian	Friction	Undrained	Poisson's
	11	Depth	Density	Unit weight	Collesion	aligie	modulus	Tatio
501	layer		ρ	γ	Cu	φ	Е	V
		М	g/cm3	kN/m3	kN/m2	degree	kPa	assume
10	K1	32.2	1.99	19.5	88.5	31.5	42009	0.26
	K2	38.2	2.04	20.0	80.5	34.6	37040	0.26
	K3	46.2	2.06	20.2	82.1	33.8	31904	0.26
	K4	53.2	2.12	20.8	28.1	32.7	16088	0.26
	K5	110	2.12	20.8	100.4	36.6	62231	0.26

Table 4.4 Summary soil's parameters used in Ansys

	Density	Unit Weight	cohesion	Friction angle	Young's modulus (undrained)	Poisson's ratio
soil	Р	Г	С	φ	Е	v
	kg/m3	kN/m3	N/m2	degree	N/m2	
Q _{edl}	1615	15.84	58302	18.37	21635074	0.23
N_2	2066	20.27	64580	33.84	65745678	0.26

3. Applying into ANSYS

Ansys is a flexible program which is suitable for solving engineering problems by using finite element method to obtain results. It includes a lot of failure criteria that the user can choose as much as possible whichever is suitable to the problem.

- Use Mechanical APDL (ANSYS)
- Design as plane strain, linear isotropic structure.
- Tunnel shape: circular.
- 3.1.1 Geometry

According to the Training Course on Computational Geotechnics, 2012, the width and the depth of the soil surrounding the tunnel structure is shown in Figure 4.1. The distance from ground surface to the center of tunnel is 110 m. The coordinates of each boundary point is given in Table 4.5, while the tunnel geometry is shown in Figure 4.2.

Figure 4.1 Model boundary of tunnel

Point	x (m)	y (m)
А	0	0
В	35	0
С	35	-130
D	0	-130
Е	0	-30
F	35	-30
G	0	-110

Table 4.5 Coordinate of each point in the structure

Table 4.6 Tunnel's dimension

Point	D (m)
G1	2
G2	2.5
G3	3
G4	3.2

Figure 4.2 Geometry of structure

3.1.2 Element type

Element PLANE 183 represented the real behavior of soil and concrete. PLANE 183 is a 2-D 8-node solid structure; 2 degrees of freedom in each node (see Figure 4.3). It can support the gravity load applied to each node of the element. The failure criterion that supports this element is the Extended Drucker-Prager that will be discussed in subchapter 3.1.3.

Figure 4.3 PLANE183

3.1.3 Material properties

Parameters for material properties were divided into 2 parts; linear elasticity and non linear elasticity. For linear elasticity, the parameters needed are density, Young's modulus and Poisson's ratio (shown in Table 4.4). For non linear elasticity, Ansys has various failure criteria that the user needed to understand. The user used the suitable failure criteria based on the material composition incorporated in the structure. In this research, the failure criterion of Extended Drucker-Prager (EDP) was chosen to represent the behavior of tunnel lining. Before getting the parameters of EDP, the parameter of Drucker-Prayger (DP) was calculated and then the parameters of EDP: Linear yield function and Linear Potential Flow function was found (Table 4.7).

- Failure criteria

The Drucker-Prager failure criterion is suitable for soil, rock, and concrete. It was developed from the Mohr-Coulomb law. As shown in Figure 4.4, the failure surface can be drawn on the principal stress in 3 axes because of the failure criteria of DP associated with the behavior of concrete when the load was applied.

Figure 4.4 Failure plane surface of Druker-Prager failure criteria

$$F = 3\beta\sigma_m + \left[\frac{1}{2}\{s\}^T[M]\{s\}\right]^{\frac{1}{2}} - \sigma_y = 0$$
(4.3)

Where F = yield function

 $[M] = \begin{bmatrix} I_{3\times3} & 0\\ 0 & 2I_{3\times3} \end{bmatrix}$ $\{s\} = \text{Deviatoric stress vector} = \{\sigma\} - \sigma_m \{1\ 1\ 1\ 0\ 0\ 0\}^T$ $\beta = \text{material constant}$ $\sigma_m = \text{Mean stress} = \frac{\sigma_1 + \sigma_2 + \sigma_3}{3}$ $\sigma_y = \text{yield parameter}$

The variable I_{3x3} that appear in [M] is an identity matrix with size 3x3 and average stress (F) occurred in equation 4.3 is calculated from 3 main principal stress axes. Furthermore, the material constant can also be applied in a form of DP failure criteria into two variables which are Cohesion (C) and internal friction angle (ϕ) that can be calculated from the equations below:

$$\sigma_{\mathcal{Y}} = \frac{6Ccos\emptyset}{\sqrt{3}(3-sin\emptyset)}....(4.5)$$

Cohesion and internal friction angle are not the only criteria that are associated with the DP failure. The Dilatancy angle is also a concern, which is the variable that controls the direction of the plastic strain and the associated flow rule as stated in the equation below.

Yield surface of DP is a circular cone when β and σ_y reach the outer cone of the Mohr-Coulomb surface. If σ_{σ} reaches σ_y , concrete becomes plastic and flow rule will affect the DP.

Where $\{d\varepsilon^{Pl}\}$ = transition of plastic strain vector

 $\left\{\frac{\partial Q}{\partial \sigma}\right\}$ = transition rate of yield function compare with stress state

 λ = plastic multiplier

The material related to the flow rule is the material with the transition of plastic strain vector perpendicular with failure plane. The DP is dependent on the association of the flow rule. If the DP is associated with the flow rule, the friction angle is equal to the Dilatancy angle and causes volume expansion. On the other hand, the non-associated flow rule causes less volumetric expansion if the Dilatancy angle is less than friction angle and no volumetric expansion if Dilatancy angle is zero. The transition rate of yield function and stress vector can be calculated as:

Where F = yield function

$$[M] = \begin{bmatrix} I_{3\times3} & 0\\ 0 & 2I_{3\times3} \end{bmatrix}$$

{s} = Deviatoric stress vector = $\{\sigma\} - \sigma_m \{1 \ 1 \ 1 \ 0 \ 0 \ 0\}^T$

 β = material constant

When the material constant that comes from the internal friction angle is not equal with the material constant that come from the Dilatancy angle $(\beta l_{\phi=\phi} \neq \beta l_{\phi=\phi f})$, the material is not associated with the flow rule. The volumetric expansion decreases as the Dilatancy angle decreases until the material doesn't have volumetric expansion where the Dilatancy is zero. Figure 4.5 show the associated and non-associated flow rule of the material.

a. Associated flow rule b. Non- Associated flow rule Figure 4.5 Associate and Non-Associate flow rule diagram

According to Prasertsri.T (2012), the flow rule of concrete is not associated with the failure criteria and the dilatancy angle is zero which means that there is no volumetric expansion. Mirmiran et al (2000) used the equations that define cohesion value and internal friction angle by unconfined strength of concrete. Rochette and Labossiere (1997) defined that:

$$C = \left(f_{\sigma\sigma}' - 5\sqrt{3}\right) \frac{3 - \sin\emptyset}{6\cos\emptyset}.$$

$$\emptyset = \sin^{-1} \left(\frac{3}{1 + \frac{2f_{\sigma\sigma}'}{\sqrt{5}}}\right) \qquad (4.8)$$

Where f_{co}^{\prime} = unconfined strength of concrete (MPa)

In this research, two materials are considered: soil and concrete. A 2-D finite element using PLANE183 to simulate the soil and concrete structure that can be applied with EDP was used. For the element PLANE183, another failure criterion called Extended Drucker-Prager, EDP (Mirmiran et al, 2000) is needed. The difference between DP and EDP are the parameters that will be added into the program. The parameters have two main parts; the yield function part and the plastic flow potential function. Each part has three types of function: linear, power law, and hyperbolic (Ansys element reference, 2009), wherein linear function has been used for this study.

Linear yield function:

$$C_1 = \sqrt{3}\beta = \frac{2\sin\phi}{3-\sin\phi} \tag{4.10}$$

 $C_2 = \sqrt{3}\sigma_y = \frac{6C(\cos\phi)}{3 - \sin\phi} \tag{4.11}$

Linear Plastic Flow Potential Function (Sheldon Imaoka, 2008):

$$Q = \frac{6 \sin \varphi_f}{3 - \sin \varphi_f} \tag{4.12}$$

Where Dilatancy angle: $\phi_f = \frac{\phi}{2}$

$$\emptyset_f = \emptyset \rightarrow \text{Associated Flow Rule}$$

Lining		compressive strength,	DP					EDP		
		fcu	С	φ	φf	β	σy	C1	C2	Q
		Mpa	MPa	degree	degree		MPa		MPa	
Plain	320-0-SP	31	10.49	21.64	10.82	0.16	12.84	0.28	22.24	0.40
SFRC	320-35-SP	40	14.99	16.88	8.44	0.12	18.33	0.21	31.76	0.31
IN SITU	C25	25	7.77	26.29	13.14	0.20	9.43	0.35	16.34	0.49

Table 4.7 DP and EDP parameters of concrete for Ansys

Table 4.8 Basic parameters of concrete for Ansys

AT 28	DENSITY, kg/m3		E, Mpa		POISSON'S RATIO			SOURCE		
DAYS	СОМ	BEND	TEN	COM	BEND	TEN	СОМ	BEND	TEN	SOURCE
PLAIN	2456	2434	-	-	32784	-	0.23		Í	LAB TEST
SFRC	2510	2365		10592	35490	1494	0.23			LAB TEST

3.1.4 Boundary condition

There are 2 types of boundary condition that will be chosen to be applied to this research. The B1 is fixed only x-axis at the side and fixed all axes at the bottom of the geometry, while B2 concerns only the bottom of geometry by fix all the axis at the middle and fix at y-axis at the corner of geometry.

Figure 4.6 Boundary condition

Both boundary conditions will be checked for convergence with the empirical method in 3.1.5. The stress will be plotted into the graph in Figure 4.8.

3.1.5 Empirical method

According to Obert and Duvall (1967), the stress of soil at any position of the tunnel can be calculated in the process as shown below. The data from the equations was used to calculate and obtain the results to be compared in Figure 4.8. The stress results are shown in Table 4.9 and 4.10.

- Vertical stress: $S_v = \gamma h$ (4.13)
- Horizontal stress: $S_h = mS_v$ (4.14)

$$m = \frac{\nu}{1 - \nu} \qquad (4.15)$$

Which γ = unit weight of soil, N/m³

h = depth of tunnel at point concerned, m

v = Poisson's ratio of soil

- Radial stress:

$$\sigma_{r} = \left(\frac{S_{h} + S_{v}}{2}\right) \left(1 - \frac{a^{2}}{r^{2}}\right) + \left(\frac{S_{h} - S_{v}}{2}\right) \left(1 - \frac{4a^{2}}{r^{2}} + \frac{3a^{4}}{r^{4}}\right) \cos 2\theta^{-...(4.16)}$$

- Tangential stress:

$$\sigma_{\theta} = \left(\frac{S_h + S_v}{2}\right) \left(1 + \frac{a^2}{r^2}\right) - \left(\frac{S_h - S_v}{2}\right) \left(1 + \frac{3a^4}{r^4}\right) \cos 2\theta \quad \dots \quad (4.17)$$

- Shear stress:

Where a = radius of tunnel, m.

r = the distance from center of tunnel to the point concerned, m.

 θ = the angle between x-axis and the point concerned, degree.

Diameter	radius	Thickness		Sv, N/m2			Sh, N/m2	
D, m	a, m	m	σc	Σί	σs	σc	σi	σs
2	1	0.5	2066290	2127092	2096691	725994	747357	736675
2.5	1.25	0.5	2061223	2132159	2096691	724214	749137	736675
3	1.5	0.5	2056156	2137226	2096691	722433	750917	736675
3.2	1.6	0.5	2054130	2139253	2096691	721721	751629	736675

Table 4.9 Vertical and horizontal stress by empirical method

Table 4.10 Axial stress and tangential stress by empirical method

Diamatar	0		radial stress			tangental stress			
Diameter	a	1		Σr			σθ		
D, m	m	m	Σc	σi	σs	σc	σί	σs	
2	1	1.5	651533	670705	912974	949377	977313	3129296	
2.5	1.25	1.75	508409	525906	870614	912732	944144	3350524	
3	1.5	2	407237	423294	824333	870914	905252	3539052	
3.2	1.6	6.6	375008	390548	805823	853920	889307	3606519	

*Remark: c = at crown of tunnel.

i = at invert of tunnel.

s = at spring line of tunnel.

4. Analysis result

- Understanding of data

Figure 4.7 Data explanation

4.1 Convergence check

The convergence was checked from the boundary condition which was appropriate to the analysis by plotting the tunnel analysis result from 2 types of boundary condition. The axial stress of tunnel analysis from Ansys was compared with the tangential stress from the empirical method. In addition, this convergence checked the appropriate amount of elements that was used in Ansys.

Figure 4.8 Convergence check by boundary condition and amount of elements

According to Figure 4.8, it can be seen that B1 has the result closer to the empirical method than B2. B1 is far from empirical method about 9%, while B2 is about 14%. With this figure, it showed that the suitable amount of element is 2000 elements, and this number of elements was used into the analysis in Ansys.

4.2 Analysis result

After solving the problem in Ansys, the stain at each node was plotted as a list and the strain was chosen according to the segment position (see Figure 4.9) of each tunnel diameter. The strain chosen from the list is the axial strain at x-axis and y-axis. The strain that contains a negative sign (-) is tensile strain, while the other (+) is compressive strain. The maximum strain is obtained from the discussion in chapter III. The tensile deformation at peak tensile softening curve (see Figure 3.43), 0.000259 mm, is divided by the crack opening (3 mm). The maximum strain is -8.63E-04. The axial strain from Ansys was compared with the maximum strain as shown in Table 4.11 to 4.14. Moreover, the strains of the tunnel segment at each position were plotted in Figure 4.11 to 4.14.

Figure 4.9 Tunnel's position

Table 4.11 Strain at crown, invert, and spring line of tunnel lining D_2.0_T_50 and Max strain

D 20 Т 50	NODE	STR	AIN	MAX STRAIN
D_2.0_1_50	NODL	Х	У	
	8	-5.03E-04	7.02E-05	
	2065	-3.66E-04	6.55E-05	
(1)	2067	-2.14E-04	5.34E-05	8 62E 04
Crown	2069	-3.73E-05	2.68E-05	-0.03E-04
	2071	1.84E-04	-2.79E-05	
	2052	4.74E-04	-1.34E-04	
	2301	4.74E-04	-1.34E-04	
	2314	1.83E-04	-2.78E-05	
(2)	2316	-3.91E-05	2.68E-05	
Invert	2318	-2.16E-04	5.32E-05	
	2320	-3.70E-04	6.51E-05	8 62E 04
	10	-5.07E-04	6.97E-05	-0.03E-04
	2051	2.69E-04	-9.15E-04	
	2074	1.14E-04	-5.75E-04	
(3)	2076	2.12E-05	-3.15E-04	
Spring line	2078	-3.47E-05	-1.09E-04	
	2080	-7.02E-05	6.77E-05	
	7	-9.31E-05	2.23E-04	

Figure 4.11 Strain at crown, invert, and spring line of tunnel lining D_2.0_T_50

D 25 T 50	NODE	STR	AIN	MAX
D_2.3_1_30	NODE	Х	у	STRAIN
	8	-2.91E-05	5.42E-06	
	2025	-2.07E-05	4.74E-06	
(1)	2027	-1.13E-05	3.49E-06	
Crown	2029	-5.19E-07	1.37E-06	
	2031	1.24E-05	-2.22E-06	
	2012	2.77E-05	-7.92E-06	
	2261	2.78E-05	-7.93E-06	
	2274	1.23E-05	-2.21E-06	
(2)	2276	-6.10E-07	1.38E-06	9.62E.04
Invert	2278	-1.14E-05	3.50E-06	-8.03E-04
	2280	-2.09E-05	4.74E-06	
	10	-2.93E-05	5.41E-06	
	2011	1.21E-05	-4.32E-05	
	2034	7.14E-06	-3.15E-05	
(3)	2036	1.34E-06	-1.54E-05	
Spring line	2038	-1.94E-06	-3.47E-06	
	2040	-4.15E-06	6.95E-06	
	7	-5.59E-06	1.61E-05	

Table 4.12 Strain at crown, invert, and spring line of tunnel lining D_2.5_T_50 and Max strain

Figure 4.12 Strain at crown, invert, and spring line of tunnel lining D_2.5_T_50

D 3 T 50	NODE	STR	STRAIN		
D_{3_1}	NODE	Х	у	STRAIN	
	8	-4.03E-05	8.51E-06		
	1969	-2.82E-05	7.20E-06		
(1)	1971	-1.45E-05	4.96E-06		
Crown	1973	7.78E-07	1.56E-06		
	1975	1.86E-05	-3.69E-06		
	1956	3.85E-05	-1.10E-05	8 63E 04	
	2025	2.01E-06	-9.83E-06	-0.0312-04	
	2218	1.86E-05	-3.69E-06		
(2)	2220	6.68E-07	1.58E-06		
Invert	2222	-1.47E-05	4.98E-06		
	2224	-2.85E-05	7.22E-06		
	10	-4.07E-05	8.53E-06		
	1955	1.40E-05	-4.39E-05		
	1978	1.05E-05	-4.29E-05		
(3)	1980	2.45E-06	-2.12E-05	8 62E 04	
Spring line	1982	-2.59E-06	-3.35E-06	-0.03E-04	
	1984	-6.04E-06	1.23E-05		
	7	-8.32E-06	2.61E-05		

Table 4.13 Strain at crown, invert, and spring line of tunnel lining D_3.0_T_50 and Max strain

Figure 4.13 Strain at crown, invert, and spring line of tunnel lining D_3.0_T_50

D 3 2 T 50	NODE	STR	STRAIN			
D_3.2_1_30	NODE	Х	У	STRAIN		
	8	-4.61E-05	1.01E-05			
	1957	-3.19E-05	8.44E-06			
(1)	1959	-1.58E-05	5.66E-06			
Crown	1961	2.16E-06	1.50E-06			
	1963	2.55E-05	-5.93E-06			
	1944	3.51E-05	-1.01E-05			
	2193	3.51E-05	-1.01E-05			
	2206	2.55E-05	-5.94E-06			
(2)	2208	2.06E-06	1.52E-06	-8.63E-04		
Invert	2210	-1.60E-05	5.70E-06			
	2212	-3.22E-05	8.48E-06			
	10	-4.65E-05	1.01E-05			
	1943	1.46E-05	-4.39E-05			
	1966	1.20E-05	-4.58E-05			
(3)	1968	3.40E-06	-2.53E-05			
Spring line	1970	-2.81E-06	-3.85E-06			
	1972	-7.02E-06	1.50E-05			
	7	-9.81E-06	3.15E-05			

Table 4.14 Strain at crown, invert, and spring line of tunnel lining D_3.2_T_50 and Max strain

Figure 4.14 Strain at crown, invert, and spring line of tunnel lining D_3.2_T_50

5. Conclusion

When looking at the strain of crown, invert, and spring line of the tunnel lining, almost all strains occurred is smaller than the maximum strain from the laboratory experiment. This means that from the load applied to the tunnel lining, only the concrete resist all the load. The steel fiber does not yet support the concrete to counteract with the load. In contrast, only the load at node 2051, internal spring line of $D_2.0_T_50$ has the tensile strain more than the maximum strain. This means that it exceeded the serviceability criteria of the concrete, but it didn't exceed the ultimate tensile strain of the SFRC yet. The diameter of tunnel lining also affects the strain values, wherein the smaller diameter results into larger strain compared to the tunnel lining with bigger diameter which resulted into smaller strain.

Chapter V

Conclusion

The purpose of this research is to study the characteristic of steel fiber reinforce concrete and it will be applied to the case study of tunnel structure in order to study the behavior of tunnel lining. The laboratory test, 3 types of specimen that contain cube, beam and briquette had been test to figure out the characteristic of SFRC under compression, tension, and bending. The design strength of concrete was divided by 2 strengths, 240 ksc and 320 ksc. The amount of steel fiber had been varied into 6 dosages: 0 (no steel fiber), 15, 20, 25, 30, 35, and 40 kg/m³ concrete respectively. Then they were mixed in 2 batches, with SP and without SP.

For the case study of tunnel lining analysis, the diameter of the tunnel divided in 4 sizes, 2 m, 2.5 m, 3.0 m, and 3.2 m with 0.5 m thickness. The depth of tunnel is 110 m from the ground surface. Only the load from the soil applied to tunnel lining segment. Ansys is the finite element analysis program was used to analyze the behavior of tunnel lining under the load of soil. The entire plane in the project was divided by 2000 elements which is appropriate for the analysis.

1. Laboratory test

Nowadays, the steel fiber is a new material to add into the concrete in order to increase the strength of concrete after crack either decreases the covering of concrete segment. This research tell that when the amount of steel fiber in concrete increase, the residual strength of concrete also increase. In addition, the super plasticizer (SP) that usually added into SFRC not only helps the better flow ability, but also helps to increase the strength of concrete. Moreover, the design strength of concrete also effect to the residual strength of SFRC.

2. Tunnel lining analysis (case study)

When applying the load to the tunnel lining, only the concrete resist the entire load. The steel fiber not yet helps concrete to tolerant with the load. In contrast, only the load at node 2051, internal spring line of D_2.0_T_50 has the tensile strain more than the maximum strain about 6%. The strain exceeded the serviceability criteria of the concrete, but it didn't exceed the ultimate tensile strain of the SFRC yet. The diameter of tunnel lining also have effect with the strain, the smaller diameter has larger strain than the bigger diameter.

3. Future work

Even this research study only the characteristic of SFRC and behavior of tunnel lining under serviceability criteria, there are lot of advantage of SFRC (especially the behavior of tunnel lining under ultimate criteria). First of all, steel fiber is easier for transferring from

the warehouse to the construction filed compared to the reinforced bar. Next, when it's applied to the tunnel lining segment, it reduces the crack happening during the transportation. In addition, it helps to reduce the covering depth compare to conventional reinforced concrete. Moreover, steel fiber can save the cost of labor to tied the reinforced bar. And so on. If you want to do further work from this research, the characteristic of SFRC under the ultimate strength should be figure out.

References

<u>Thai</u>

ทศพร ประเสริฐศรี, 2555, การวิเคราะห์กาลังและความเหนียวของทรงกระบอกคอนกรีตที่ถูกโอบ รัดบางส่วนด้วยพอลิเมอร์เสริมเส้นใย, ปริญญาวิศวกรรมศาสตรมหาบัณฑิต, สาขาวิชา วิศวกรรมโยธา ภาควิชาวิศวกรรมโยธา, คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย พรเพ็ญ ลิมปนิลชาติ, ปิติโชค ทองตระการ, วิทิต ปานสุข, 2553, อิทธิพลของปริมาณเส้นใยที่มีต่อคุณสมบัติ เชิงกลของคอนกรีตเสรีมเส้นใยเหล็ก, การประชุมวิชาการวิศวกรรมโยธาแหงชาติครั้งที่ 15.

<u>English</u>

- B. Chiaia, A.P. Fantilli, P. Vallini, 2008, designing cast-in-situ FRC tunnel lining, Tailor made concrete structures.
- Bernardino Chiaia, Alessandro P. Fantilli, Paolo Vallini, 2009, combining fiber-reinforced concrete with traditional reinforcement in tunnel linings, Engineering Structures 31, 1600-1606.
- Japan society of civil engineers, 1996, Japanese standard for shield tunnel (the third edition).
- John Poh, Kiang Hwee Tan, Graeme Laurence Peterson, Dazhi Wen, structural testing of steel fiber reinforced concrete (SFRC) tunnel lining segments in Singapore.
- L. Sorelli, F. Toutlemonde, 2005, on the design of steel fiber reinforced concrete tunnel lining segment, 11th international conference on fracture, Italy.
- M. Colombo, M. di Prisco, L. Mazzaleni, 2009, sprayed tunnel linings: a comparison between several reinforcement solutions, Materials and structures 42, 1295-1311.
- Mirmiran, Amir, Kenneth Zagers, and Wenqing Yuan. "Nonlinear finite element modeling of concrete confined by fiber composites." Finite Elements in Analysis and Design 35.1 (2000): 79-96.
- Pornpen Limpaninlachat, Pitichoke Thongtrakarn, Withit Pansuk, 2010, EFFECT OF FIBER CONTENT ON MECHANICAL PROPERTIES OF STEEL FIBER REINFORCED CONCRETE, 15th national conference, Ubonrachathanee.
- Pruettha Nanakorn, Hideyuki Horii, Shigeru Matsuoka, 1996, a fracture mechanics-based design method for SFRC tunnel linings, J.Materials Conc. Struct., Pavements No.532/V-30, 221-223.
- RELEASE, ANSYS. 11.0 Users Manual, Swanson Inc. Canongsburg, PA, 2008.
- Sadeghian, Pedram, Ali R. Rahai, and Mohammad R. Ehsani. "Numerical modeling of concrete cylinders confined with CFRP composites." Journal of Reinforced Plastics and Composites 27.12 (2008): 1309-1321.
- Sheldon Imaoka, 2008, Sheldon's ANSYS.NET Trips and Tricks: Drucker-Prayger Model
- Thomas Kasper et al, 2007, lining design for the district heating tunnel in Copenhagen with steel fiber reinforced concrete segment, tunnel lining and underground space technology, Germany.

- Victor C.Li, Mohamed Maalej, 1996, toughening in cement based composites. Part II: Fiber Reinforced Concrete Cementitious Composites, cement and concrete composites 18, 239-249.
- W. Angerer, M. Chappell, 2008, Design of steel fiber reinforced segmental lining for the gold coast destinations tunnels, 13th Australian Tunneling Conference, Melbourne, p.463-470.
- Yining Ding, Wolfgang Kusterle, 2000, Compressive stress-strain relationship of steel fibrereinforced concrete at early age. Cement & concrete research 30, 1573-1579.

Appendix

	Slump	C	ube specimens		Be	am specimens		Age	Average Cube
Batch No.	(cm)	Bulk density (kg/m3)	Number of specimen	COV (%)	Bulk density (kg/m3)	Number of specimen	COV (%)	(day)	Compressive strength (ksc)
240-0-NSP	13.0	2489	8	1.06	2432	6	1.40	7	213
240-15-NSP	13.5	2442	8	1.69	2473	6	1.07	7	254
240-20-NSP	11.5	2404	6	0.64	2437	6	1.44	7	224
240-25-NSP	11.0	2463	6	0.98	2437	6	1.83	7	246
240-30-NSP	13.0	2443	8	1.64	2497	6	1.93	7	232
240-35-NSP	11.7	2475	8	1.37	2410	6	1.24	7	237
240-40-NSP	11.0	2479	4	3.73	2470	6	1.42	8	248
240-0-SP	13.0	2468	4	2.38	2457	6	1.10	6	240
240-15-SP	15.0	2489	4	0.76	2418	6	0.78	5	241
240-20-SP	15.5	2478	4	1.79	2425	6	0.59	5	235
240-25-SP	15.0	2499	4	0.88	2452	6	0.52	6	240
240-30-SP	14.5	2508	4	1.20	2431	6	1.04	6	241
240-35-SP	16.5	2519	4	1.66	2448	6	2.05	5	251
240-40-SP	15.0	2446	4	2.66	2436	6	1.51	5	223
320-0-NSP	10.5	2534	4	2.19	2451	6	0.72	10	306
320-15-NSP	10.5	2499	4	2.26	2447	6	0.66	10	319
320-20-NSP	10.5	2498	4	1.40	2454	6	0.42	10	322
320-25-NSP	11.0	2522	4	1.05	2431	6	0.53	11	319
320-30-NSP	11.0	2487	4	1.92	2453	6	1.09	10	317
320-35-NSP	12.0	2494	4	1.87	2410	6	0.89	10	310

1 . Compressive test:

	Slump	Ci	ube specimens		Be	am specimens		Age	Average Cube
Batch No.	(cm)	Bulk density (kg/m3)	Number of specimen	COV (%)	Bulk density (kg/m3)	Number of specimen	COV (%)	(day)	Compressive strength (ksc)
320-40-NSP	10.5	2485	4	2.30	2417	6	0.82	10	315
320-0-SP	14.0	2436	7	1.46	2384	6	2.20	7	315
320-15-SP	16.0	2534	4	2.19	2463	6	1.30	8	306
320-20-SP	15.0	2502	4	1.10	2491	6	1.46	7	323
320-25-SP	14.2	2461	4	2.32	2460	6	1.57	7	307
320-30-SP	13.9	2497	4	1.62	2422	6	2.07	7	319
320-35-SP	14.0	2526	4	1.57	2423	6	2.35	7	312
320-40-SP	13.4	2494	4	1.64	2435	6	1.75	7	318

2. Flexural t	est:
---------------	------

Specimen	First- Peak load	Peak load	Net deflection at first peak load	Net deflection at peak load	First- Peak strength	Peak strength	Residual load at L/600	Residual strength at L/600	Residual load at L/450	Residual strength at L/450	Residual load at L/150	Residual strength at L/150	Modulus of elasticity under bending	Toughness	Equivalent Flexural Strength Ratio	Fracture offset	remark
no	\mathbf{P}_1	Рр	δ_1	δ_{P}	\mathbf{f}_1	fp	P^{D}_{600}	f^{D}_{600}	$P^{\rm D}_{}$	$f^{\rm D}_{\rm 450}$	P ^D ₁₅₀	f^{D}_{150}	E	T^{D}_{150}	R ^D _{T,150}		
	kN	kN	mm	mm	Мра	Mpa	kN	Mpa	kN	Mpa	kN	Мра	Mpa	Joule	%	mm	
1-240-0-NSP	39	39	0.06	0.06	5.00	5.00	0	0.00	0	0.00	0	0.00	89820	1	1.0	not available	
2-240-0-NSP	32	32	0.05	0.05	4.10	4.10	0	0.00	0	0.00	0	0.00	89171	1	1.0	not available	
3-240-0-NSP	37	37	0.05	0.05	4.80	4.80	0	0.00	0	0.00	0	0.00	109021	1	1.0	not available	
4-240-0-NSP	32	32	0.06	0.06	4.15	4.15	0	0.00	0	0.00	0	0.00	83358	1	1.5	not available	
5-240-0-NSP	34	34	0.05	0.05	4.45	4.45	0	0.00	0	0.00	0	0.00	96646	1	1.5	not available	
6-240-0-NSP	31	31	0.04	0.04	3.90	3.90	0	0.00	0	0.00	0	0.00	112118	1	1.0	not available	
1-240-15-NSP	30	30	0.03	0.03	3.60	3.60	7	0.85	7	0.85	4	0.45	120016	21	24.0	not available	
2-240-15-NSP	35	35	0.04	0.04	4.50	4.50	17	2.25	14	1.85	13	1.70	134572	47	45.5	not available	
3-240-15-NSP	35	35	0.07	0.07	4.45	4.45	9	1.15	8	1.05	5	0.65	77159	29	28.0	not available	
4-240-15-NSP	34	34	0.03	0.03	4.15	4.15	13	1.55	13	1.55	11	1.30	147320	40	39.0	not available	
5-240-15-NSP	27	27	0.03	0.03	3.30	3.30	6	0.70	6	0.70	6	0.75	130564	27	32.5	not available	
6-240-15-NSP	35	35	0.03	0.03	4.25	4.25	12	1.40	11	1.35	10	1.25	142834	38	36.5	not available	
1-240-20-NSP	34	34	0.05	0.05	4.50	4.50	7	1.00	7	1.00	7	0.90	109132	30	28.5	not available	
2-240-20-NSP	42	42	0.10	0.10	5.50	5.50	9	1.15	9	1.20	6	0.75	56000	37	28.0	not available	
3-240-20-NSP	33	33	0.08	0.08	4.25	4.25	17	2.25	18	2.40	18	2.35	65483	56	55.5	not available	

Specimen	First- Peak load	Peak load	Net deflection at first peak load	Net deflection at peak load	First- Peak strength	Peak strength	Residual load at L/600	Residual strength at L/600	Residual load at L/450	Residual strength at L/450	Residual load at L/150	Residual strength at L/150	Modulus of elasticity under bending	Toughness	Equivalent Flexural Strength Ratio	Fracture offset	remark
no	\mathbf{P}_1	Рр	δ_1	δ_{P}	\mathbf{f}_1	fp	P^{D}_{600}	f^{D}_{600}	P^{D}_{450}	f^{D}_{450}	P ^D 150	f^{D}_{150}	Е	T ^D ₁₅₀	R ^D _{T,150}		
	kN	kN	mm	mm	Мра	Мра	kN	Мра	kN	Мра	kN	Мра	Mpa	Joule	%	mm	
1-240-35-SP	34	34	0.01	0.01	4.45	4.45	18	2.30	not available	not available	not available	not available	542114	20	not available	not available	Test discarded due to the error of machine
2-240-35-SP	39	39	0.02	0.02	4.85	4.85	25	3.10	25	3.10	21	2.65	248989	73	63.5	not available	
3-240-35-SP	37	37	0.06	0.06	4.75	4.75	24	3.10	24	3.05	22	2.75	89909	72	61.0	not available	
4-240-35-SP	33	33	0.07	0.07	4.15	4.15	20	2.60	21	2.60	17	2.20	70466	60	58.0	not available	
5-240-35-SP	33	33	0.04	0.04	4.25	4.25	22	2.80	21	2.65	20	2.60	135972	64	64.0	not available	
6-240-35-SP	23	23	0.11	0.11	3.00	3.00	19	2.45	20	2.55	22	2.85	32371	62	83.5	not available	
1-240-40-SP	37	37	0.09	0.09	4.60	4.60	34	4.25	35	4.35	32	4.00	61212	100	91.0	205.0	Test discarded due to poor distribution of fiber
2-240-40-SP	26	26	0.03	0.03	3.40	3.40	12	1.60	14	1.85	17	2.25	149506	46	59.0	151.0	
3-240-40-SP	31	31	0.06	0.06	3.95	3.95	17	2.20	19	2.40	20	2.60	71758	61	66.0	180.0	
4-240-40-SP	35	35	0.06	0.06	4.45	4.45	21	2.70	22	2.80	23	3.00	91180	69	66.0	220.0	
5-240-40-SP	25	25	0.04	0.04	3.10	3.10	13	1.65	11	1.30	16	1.90	76959	42	54.5	159.0	
6-240-40-SP	34	34	0.07	0.07	4.25	4.25	21	2.60	22	2.75	23	2.90	70834	70	67.5	191.0	
1-320-0-NSP	35	35	0.05	0.05	4.55	4.55	0	0.00	0	0.00	0	0.00	113567	1	1.0	160.5	
2-320-0-NSP	37	37	0.03	0.03	4.65	4.65	0	0.00	0	0.00	0	0.00	134427	0	0.0	156.0	
3-320-0-NSP	29	29	0.04	0.04	3.75	3.75	0	0.00	0	0.00	0	0.00	119612	1	0.5	160.0	

Specimen	First- Peak load	Peak load	Net deflection at first peak load	Net deflection at peak load	First- Peak strength	Peak strength	Residual load at L/600	Residual strength at L/600	Residual load at L/450	Residual strength at L/450	Residual load at L/150	Residual strength at L/150	Modulus of elasticity under bending	Toughness	Equivalent Flexural Strength Ratio	Fracture offset	remark
no	P_1	Рр	δ_1	δ_{P}	\mathbf{f}_1	fp	P^{D}_{600}	f^{D}_{600}	P^{D}_{450}	f^{D}_{450}	P^{D}_{150}	f ^D ₁₅₀	Е	T ^D ₁₅₀	$R^{D}_{T,150}$		
	kN	kN	mm	mm	Мра	Mpa	kN	Mpa	kN	Мра	kN	Мра	Мра	Joule	%	mm	
4-320-0-NSP	34	34	0.04	0.04	4.40	4.40	0	0.00	0	0.00	0	0.00	121569	1	1.0	163.0	
5-320-0-NSP	28	28	0.01	0.01	3.50	3.50	0	0.00	0	0.00	0	0.00	471576	0	0.0	186.0	
6-320-0-NSP	25	25	0.03	0.03	3.10	3.10	0	0.00	0	0.00	0	0.00	114015	0	0.5	205.0	
1-320-15-NSP	34	34	0.04	0.04	4.20	4.20	16	2.00	16	2.05	15	1.95	137667	51	51.0	191.0	
2-320-15-NSP	37	37	0.03	0.03	4.65	4.65	15	1.85	15	1.85	17	2.10	156421	51	46.0	173.0	
3-320-15-NSP	33	33	0.01	0.01	4.05	4.05	7	0.85	7	0.85	7	0.90	340505	29	29.5	190.0	
4-320-15-NSP	34	34	0.04	0.04	4.20	4.20	16	2.05	16	2.00	17	2.10	122999	55	54.5	178.0	
5-320-15-NSP	37	37	0.02	0.02	4.45	4.45	13	1.60	14	1.65	16	1.90	199495	53	47.5	187.0	
6-320-15-NSP	33	33	0.09	0.09	4.10	4.10	17	2.10	17	2.15	17	2.10	53269	51	51.5	180.0	
1-320-20-NSP	40	40	0.04	0.04	5.10	5.10	20	2.65	20	2.55	18	2.35	133401	62	52.0	215.0	
2-320-20-NSP	38	38	0.04	0.04	4.65	4.65	17	2.05	18	2.25	17	2.05	120386	56	49.5	167.0	
3-320-20-NSP	39	39	0.07	0.07	4.85	4.85	20	2.50	22	2.75	21	2.65	78261	68	58.5	185.0	
4-320-20-NSP	31	31	0.07	0.07	3.75	3.75	13	1.55	12	1.50	12	1.45	63493	40	43.0	165.0	
5-320-20-NSP	36	36	0.02	0.02	4.40	4.40	15	1.85	16	1.90	18	2.15	248193	58	53.0	175.0	
6-320-20-NSP	38	38	0.08	0.08	4.65	4.65	20	2.50	22	2.75	22	2.65	63753	69	62.0	180.0	
1-320-25-NSP	33	33	0.07	0.07	4.15	4.15	15	1.85	15	1.90	18	2.25	66922	52	51.5	155.0	
2-320-25-NSP	34	34	0.04	0.04	4.05	4.05	19	2.30	20	2.40	19	2.30	111418	61	61.0	205.0	
3-320-25-NSP	32	32	0.08	0.08	3.85	3.85	15	1.85	16	1.95	18	2.15	53054	52	54.5	180.0	
4-320-25-NSP	28	28	0.04	0.04	3.30	3.30	15	1.75	15	1.75	17	2.00	82249	49	59.0	140.0	Test discarded due to fracture outside L/3

Specimen	First- Peak load	Peak load	Net deflectio n at first peak load	Net deflection at peak load	First- Peak strength	Peak strength	Residua l load at L/600	Residua 1 strength at L/600	Residual load at L/450	Residual strength at L/450	Residual load at L/150	Residual strength at L/150	Modulus of elasticity under bending	Toughness	Equivalent Flexural Strength Ratio	Fracture offset	remark
no	P_1	Рр	δ_1	δ_{P}	\mathbf{f}_1	fp	P ^D ₆₀₀	f^{D}_{600}	P^{D}_{450}	f^{D}_{450}	P^{D}_{150}	f^{D}_{150}	Е	T^{D}_{150}	$R^{D}_{T,150}$		
	kN	kN	mm	mm	Мра	Мра	kN	Мра	kN	Мра	kN	Мра	Мра	Joule	%	mm	
5-320-25-NSP	33	33	0.02	0.02	4.00	4.00	15	1.80	15	1.75	17	2.00	180358	52	52.5	151.0	
6-320-25-NSP	33	33	0.09	0.09	4.10	4.10	20	2.50	20	2.45	19	2.35	52371	61	61.5	160.0	
1-320-30-NSP	32	32	0.07	0.07	3.90	3.90	24	2.95	25	3.00	23	2.85	60539	73	76.0	187.0	
2-320-30-NSP	34	34	0.06	0.06	4.25	4.25	27	3.30	26	3.25	23	2.80	79851	77	74.5	190.0	
3-320-30-NSP	37	37	0.09	0.09	4.35	4.35	19	2.30	19	2.20	19	2.30	53150	60	54.5	170.0	
4-320-30-NSP	32	32	0.08	0.08	4.05	4.05	26	3.25	26	3.25	22	2.70	57249	72	74.5	180.0	
5-320-30-NSP	36	36	0.08	0.08	4.35	4.35	25	3.05	25	3.05	25	3.00	58773	78	72.0	185.0	
6-320-30-NSP	34	34	0.07	0.07	4.20	4.20	19	2.35	18	2.30	19	2.40	70002	57	56.0	168.0	
1-320-35-NSP	38	38	0.06	0.06	4.65	4.65	27	3.35	28	3.50	28	3.45	87379	85	75.5	195.0	
2-320-35-NSP	30	30	0.08	0.08	3.75	3.75	22	2.70	23	2.85	24	2.95	52749	69	77.5	225.0	
3-320-35-NSP	48	48	0.08	0.08	5.80	5.80	32	3.90	32	3.80	30	3.55	83108	90	62.5	157.0	
4-320-35-NSP	34	34	0.05	0.05	4.35	4.35	20	2.55	22	2.75	21	2.60	108454	66	64.0	175.0	
5-320-35-NSP	37	37	0.06	0.06	4.55	4.55	27	3.25	27	3.35	28	3.45	81640	85	76.0	167.0	
6-320-35-NSP	47	47	0.06	0.06	5.75	5.75	29	3.60	29	3.60	27	3.35	114827	92	66.0	185.0	
1-320-40-NSP	24	24	0.01	0.01	3.00	3.00	18	2.25	18	2.25	19	2.45	307730	55	77.0	170.0	
2-320-40-NSP	30	30	0.07	1.21	3.80	3.90	29	3.70	29	3.70	29	3.65	62294	85	95.0	205.0	
3-320-40-NSP	34	34	0.06	0.06	4.50	4.50	25	3.30	27	3.65	26	3.55	82492	82	80.5	180.0	
4-320-40-NSP	39	39	0.04	0.04	4.90	4.90	28	3.50	29	3.65	30	3.75	128574	88	75.0	167.0	
5-320-40-NSP	22	22	0.05	0.05	2.70	2.70	19	2.35	18	2.20	18	2.20	64375	54	81.5	165.0	

Specimen	First- Peak load	Peak load	Net deflection at first peak load	Net deflection at peak load	First- Peak strength	Peak strength	Residual load at L/600	Residual strength at L/600	Residual load at L/450	Residual strength at L/450	Residual load at L/150	Residual strength at L/150	Modulus of elasticity under bending	Toughness	Equivalent Flexural Strength Ratio	Fracture offset	remark
no	\mathbf{P}_1	Рр	δ_1	δ_{P}	\mathbf{f}_1	fp	$\mathbf{P}^{\mathrm{D}}_{600}$	f^{D}_{600}	P^{D}_{450}	f^{D}_{450}	P^{D}_{150}	f^{D}_{150}	Е	T^{D}_{150}	$R^{D}_{T,150}$		
	kN	kN	mm	mm	Mpa	Мра	kN	Mpa	kN	Mpa	kN	Mpa	Mpa	Joule	%	mm	
6-320-40- NSP	33	33	0.05	0.05	4.05	4.05	24	3.00	26	3.25	28	3.45	64375	80	81.0	163.0	
1-320-0-SP	38	38	0.06	0.06	4.90	4.90	0	0.00	0	0.00	0	0.00	91837	1	1.0	not available	
2-320-0-SP	29	29	0.09	0.09	3.80	3.80	0	0.00	0	0.00	0	0.00	49662	2	2.0	not available	
3-320-0-SP	34	34	0.03	0.03	4.50	4.50	0	0.00	0	0.00	0	0.00	154561	0	0.5	not available	
4-320-0-SP	37	37	0.05	0.05	4.95	4.95	0	0.00	0	0.00	0	0.00	117464	1	1.0	not available	
5-320-0-SP	30	30	0.05	0.05	3.90	3.90	0	0.00	0	0.00	0	0.00	88487	1	1.0	not available	
6-320-0-SP	31	31	0.04	0.04	4.05	4.05	0	0.00	0	0.00	0	0.00	127451	0	0.5	not available	
1-320-15-SP	29	29	0.01	0.01	3.65	3.65	10	1.35	11	1.35	12	1.60	369975	38	44.0	182.0	
2-320-15-SP	29	29	0.03	0.03	3.70	3.70	10	1.30	11	1.35	12	1.50	165161	38	42.5	178.0	
3-320-15-SP	29	29	0.06	0.06	3.70	3.70	11	1.35	12	1.55	12	1.50	69863	42	48.0	167.0	
4-320-15-SP	27	27	0.02	0.02	3.40	3.40	11	1.35	11	1.35	12	1.45	181709	38	45.5	180.0	
5-320-15-SP	29	29	0.05	0.05	3.55	3.55	10	1.25	11	1.40	11	1.40	76256	36	41.5	171.0	
6-320-15-SP	29	29	0.03	0.03	3.60	3.60	16	1.95	16	2.05	14	1.75	143545	47	54.0	163.0	
1-320-20-SP	41	41	0.06	0.06	5.20	5.20	14	1.85	15	1.85	14	1.70	100954	49	39.5	207.0	
2-320-20-SP	38	38	0.03	0.03	4.85	4.85	18	2.30	19	2.45	21	2.70	180796	62	54.5	180.0	
3-320-20-SP	29	29	0.04	0.04	3.80	3.80	4	0.50	4	0.50	4	0.50	101492	18	20.0	155.0	Test discarded due to void in beam specimen

Specimen	First- Peak load	Peak load	Net deflection at first peak load	Net deflection at peak load	First- Peak strength	Peak strength	Residual load at L/600	Residual strength at L/600	Residual load at L/450	Residual strength at L/450	Residual load at L/150	Residual strength at L/150	Modulus of elasticity under bending	Toughness	Equivalent Flexural Strength Ratio	Fracture offset	remark
no	\mathbf{P}_1	Рр	δ_1	δ_{P}	\mathbf{f}_1	fp	P^{D}_{600}	$f^{\rm D}_{}$	P^{D}_{450}	f^{D}_{450}	P^{D}_{150}	f^{D}_{150}	Е	T^{D}_{150}	$R^{D}_{T,150}$		
	kN	kN	mm	mm	Мра	Mpa	kN	Мра	kN	Мра	kN	Мра	Мра	Joule	%	mm	
4-320-20-SP	42	42	0.03	0.03	5.50	5.50	27	3.50	26	3.35	22	2.85	234152	76	60.0	180.0	
5-320-20-SP	37	37	0.06	0.06	4.55	4.55	18	2.25	19	2.30	17	2.10	77759	60	53.0	225.0	
6-320-20-SP	41	41	0.06	0.06	5.10	5.10	27	3.40	27	3.35	23	2.80	93612	77	63.0	220.0	
1-320-25-SP	37	37	0.01	0.01	4.50	4.50	27	3.25	30	3.60	25	2.95	455107	88	78.0	155.0	
2-320-25-SP	37	37	0.02	0.02	4.50	4.50	26	3.10	27	3.25	26	3.15	244790	82	73.5	193.0	
3-320-25-SP	41	41	0.04	0.04	4.95	4.95	22	2.65	23	2.70	22	2.65	149763	71	58.0	200.0	
4-320-25-SP	37	37	0.07	0.07	4.55	4.55	27	3.25	30	3.70	28	3.45	69323	86	77.0	195.0	
5-320-25-SP	36	36	0.05	0.05	4.40	4.40	27	3.25	28	3.45	30	3.65	99481	85	78.5	175.0	
6-320-25-SP	39	39	0.05	0.05	4.85	4.85	21	2.65	23	2.85	21	2.60	106603	69	58.5	177.0	
1-320-30-SP	32	32	0.07	0.07	3.90	3.90	24	2.95	25	3.00	23	2.85	59738	73	76.0	225.0	
2-320-30-SP	34	34	0.06	0.06	4.30	4.30	27	3.35	26	3.30	23	2.85	82509	77	75.0	180.0	
3-320-30-SP	37	37	0.09	0.09	4.50	4.50	19	2.40	19	2.30	19	2.35	55954	60	54.5	215.0	
4-320-30-SP	32	32	0.05	0.05	4.15	4.15	25	3.20	25	3.25	24	3.10	87115	72	75.0	185.0	
5-320-30-SP	34	34	0.07	0.07	4.15	4.15	27	3.25	26	3.20	27	3.25	69427	75	73.0	200.0	
6-320-30-SP	32	32	0.06	0.06	3.95	3.95	24	3.00	24	3.00	23	2.90	74473	73	77.0	205.0	
1-320-35-SP	35	35	0.09	0.09	4.30	4.30	21	2.55	21	2.65	22	2.75	53330	67	63.5	165.0	
2-320-35-SP	36	36	0.08	0.08	4.60	4.60	30	3.85	31	3.95	32	4.10	66904	100	90.5	215.0	
3-320-35-SP	40	40	0.07	0.07	5.00	5.00	34	4.15	35	4.35	32	3.95	84096	102	84.0	158.0	
4-320-35-SP	33	36	0.08	1.16	4.15	4.55	33	4.15	35	4.40	23	2.90	57162	90	90.5	155.0	

Specimen	First- Peak load	Peak load	Net deflection at first peak load	Net deflection at peak load	First- Peak strength	Peak strength	Residual load at L/600	Residual strength at L/600	Residual load at L/450	Residual strength at L/450	Residual load at L/150	Residual strength at L/150	Modulus of elasticity under bending	Toughness	Equivalent Flexural Strength Ratio	Fracture offset	remark
no	\mathbf{P}_1	Рр	δ_1	δ_{P}	\mathbf{f}_1	fp	P^{D}_{600}	f^{D}_{600}	P^{D}_{450}	f^{D}_{450}	P^{D}_{150}	f ^D 150	Е	T ^D ₁₅₀	$R^{D}_{T,150}$		
	kN	kN	mm	mm	Mpa	Mpa	kN	Мра	kN	Мра	kN	Мра	Мра	Joule	%	mm	
5-320-35-SP	40	40	0.08	0.08	4.90	4.90	24	2.90	24	2.90	19	2.30	71022	72	59.5	149.0	Test discarded due to fracture outside L/3
6-320-35-SP	35	35	0.07	0.07	4.55	4.55	22	2.80	22	2.90	22	2.80	73848	67	63.5	167.0	
1-320-40-SP	29	29	0.01	0.01	3.50	3.50	24	2.85	24	2.85	15	1.80	348195	62	71.5	200.0	
2-320-40-SP	40	40	0.01	0.01	4.85	4.85	36	4.35	37	4.50	31	3.70	456981	105	87.0	195.0	
3-320-40-SP	44	44	0.03	0.03	5.40	5.40	41	4.95	41	4.95	34	4.15	200114	117	87.5	175.0	
4-320-40-SP	45	45	0.07	0.07	5.55	5.55	37	4.50	38	4.60	28	3.40	86781	102	75.0	180.0	
5-320-40-SP	29	29	0.04	0.04	3.55	3.55	23	2.80	24	2.90	17	2.15	114116	65	74.5	187.0	
6-320-40-SP	44	44	0.05	0.05	5.45	5.45	35	4.30	36	4.40	28	3.45	120071	101	76.0	193.0	

*Remarks: the tables below are the results of flexural test on beam specimens.

3 . Tensile test:

Datah Na	Age		Strength	(ksc)	
Daten No.	(day)	Specimen1	Specimen2	Specimen3	Average
240-0-NSP	10	-	-	-	-
240-15-NSP	10	-	-	-	-
240-20-NSP	10	-	-	-	-
240-25-NSP	10	-	-	-	-
240-30-NSP	10	-	-	-	-
240-35-NSP	10	-	-	-	-
240-40-NSP	23	28.6	37.0	36.7	34.1
240-0-SP	22	6.0	25.2	-	25.2
240-15-SP	21	23.1	22.0	12.6	22.6
240-20-SP	7	26.2	28.2	24.8	26.4
240-25-SP	6	20.1	20.2	10.4	20.2
240-30-SP	7	27.5	24.6	25.7	25.9
240-35-SP	7	21.8	20.8	25.7	22.8
240-40-SP	5	25.1	25.7	14.5	25.4
320-0-NSP	10	32.0	32.2	28.8	31.0
320-15-NSP	10	28.0	34.4	32.1	31.5
320-20-NSP	26	31.6	37.3	39.7	36.2
320-25-NSP	25	31.8	33.6	31.6	32.3
320-30-NSP	30	36.7	37.7	37.8	37.4
320-35-NSP	29	27.6	33.1	35.0	31.9
320-40-NSP	28	29.2	27.3	29.2	28.6
320-0-SP	7	-	-	-	-
320-15-SP	8	37.5	33.9	33.1	34.8
320-20-SP	20	47.5	31.7	1.2	39.7
320-25-SP	19	41.0	46.6	10.4	32.7
320-30-SP	18	35.3	34.2	30.2	33.2
320-35-SP	15	38.3	34.2	24.1	32.1
320-40-SP	14	15.8	32.1	21.8	23.3

4. Young's modulus and Poisson's ratio

Cube at 7 days				
Specimen No.	peak	stress at 40%	strain at 40% stress	E, Mpa
1	262.04	104.81	0.00204	5140
2	290.61	116.24	0.00088	13186
3	319.77	127.91	0.00121	10613
		average		9646

Cube at 28 days

Specimen No.	peak	stress at 40%	strain at 40% stress	E, Mpa			
5	433.0978	173.2391	0.001334213	12984.37			
6	424.6799	169.872	0.002071861	8199.005			
8	377.5108	151.0043	0.002052632	7356.621			
average							

Cube at 7 days

Specimen	before, mm			after, mm		ΔD	Δa	C.v.	Cu	N.
No.	a	a	D	a	a	mm	mm	EX	⊂у	v
1	151	152	153	151.1	151	0.31	0.1	0.000662	0.002026	0.326853
2	153	151	154	152	150	N/A	N/A	N/A	N/A	N/A
3	150	152	152	150.3	151	0.82	0.3	0.002	0.005395	0.370732
4	151	152	152	151.2	151	1.3	0.2	0.001325	0.008553	0.154865
average										0.28415

Cube at 28 days

Specimen	before, mm			after, mm		ΔD	Δa	Сv	Cu	37
No.	a	a	D	a	a	mm	mm	EX	∈у	v
1	151.9	150.3	152	152	152.58	0.58	0.1	0.000658	0.003816	0.172527
2	151.4	152.2	152	151.5	152.85	0.85	0.1	0.000661	0.005592	0.118113
3	149.1	154.2	153.1	150	153.1	N/A	N/A	N/A	N/A	N/A
4	151	152	152	151.3	152.75	0.75	0.3	0.001987	0.004934	0.402649
average										0.231097

BIOGRAPHY

Miss. Thipphamala Manivong was born in Sisattanak districk, Vientiane Capital, Lao PDR on 27th November 1988. She received his Bachelor of Engineering in Civil Engineering from National University of Lao in 2010.

In 2010, she applied for AUN/SEED-Net (JICA) scholarship to study Master degree in Geotechnical Engineering at the Department of Civil Engineering of Chulalongkorn University, Thailand. Her advisor was Assistant Professor Dr. Tanate Srisirirojanakorn (Chulalongkorn University).

She has written 1 proceeding. The name of the proceeding is 17th National Conference on Civil Engineering.

Her main research theme was to evaluate the behavior of tunnel lining by using steel fiber reinforced concrete. Her dissertation is completed on 2nd semester of academic year 2555.