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CHAPTER 1 
INTRODUCTION 

1.1 Problem Identification  

 
Human papillomaviruses (HPV) [1] are small double-stranded DNA viruses. The 

genetic sequence of the outer capsid protein L1 is used to differentiate the virus types. 
At present, there are more than 120 types of Human papillomaviruses that have been 
identified. Of those, approximately 40 HPV types infect the mucosal epithelium. Then, 
they are categorized according to their epidemiologic association with cervical cancer: 
non-oncogenic types (low risk) and oncogenic types (high risk). Infection with low risk 
HPV types, such as types 6 and 11, can cause benign or low-grade cervical cell 
abnormalities and genital warts. In contrast, high risk HPV types, such as 16, 18, 31, 33, 
35, 39, 45, 51, 52, 56, 58, 59, 68, 69, 73, and 82, act as carcinogens in the development 
of cervical cancer and other anogenital cancers.  

Cervical cancer is the second most common cancer significantly causing 
morbidity and mortality in women worldwide, as claimed in [2]. There is an evidence 
that high risk HPV types are detected in 99% of cervical cancers. Especially, Type 16 is 
the cause of approximately 50% of cervical cancers worldwide, and types 16 and 18 
together account for about 70% of cervical cancers. Then, HPV types 16 and 18 are 
responsible for the most HPV-caused cancers, and the infection with high risk HPV 
types is considered as a necessary factor for the development of cervical cancers. Each 
genotype of HPV has a different risk level in the cervical cancer. Furthermore, there is 
a wide variation in genotype distribution in different regions around the world. To 
better understand the relationship of HPV with carcinogenesis, many countries have 
investigated the HPV infection among women with cytological status by HPV 
genotyping methods, as revealed in Switzerland [3], in Italy [4], in Cambodia [5], and in 
Romania [6]. 

HPV genotyping is necessary for managing effective medical treatment 
strategies to patients with persistent HPV infection and for evaluating prevention 
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strategies to individual patients to be immunized with type-specific HPV vaccines, as 
elucidated in [7]. With the persistent infection, the risk of a precancerous lesion is in 
between 10% to 15% with HPV types 16 and 18 but below 3% for all other high risk 
types combined [8]. Additionally, the relevant diagnosis with cost effectiveness can be 
done based on epidemiological and prevalence studies from a wide variation in the 
genotype distribution in different regions around the world. The diversity of virus types 
and the incidence of multiple infections have made it necessary to develop reliable 
methods to identify the different genotypes for epidemiological studies and medical 
treatment. 

Currently, there are various kinds of HPV genotyping tests used for detecting 
the genotypes of Human Papillomavirus, in clinical laboratories. Each genotyping test 
has focused on a different set of Human Papillomavirus types, and the nucleic acid 
targets and sizes are also various in the tests. The DNA target of PapilloCheck by Greiner 
Bio One is E1 gene with 350 base pairs. The DNA target of Linear Array HPV Genotyping 
Test by Roche Molecular Systems is L1 gene with 450 base pairs. The DNA target of 
PCR HPV Typing Set by Takara Bio INC. is E6 and E7 genes with 300 base pairs, etc. 

Even though these HPV genotyping tests are beneficial and applicable for HPV 
diagnosis in patients nowadays, their some limitations should be considered. For 
instance, the HPV genotypes are hardly detected in some conditions, such as 
inadequate samples or low amplification signals of some genotypes. Furthermore, 
contamination with previously amplified material can lead to false positive results. In 
particular, mistaken classifications can be occurred through cross-reactivity among 
similar HPV types in the tests based on hybridization [9]. 

In summary, HPV genotyping can make a great contribution to the following 
aspects: HPV diagnosis in case of single and multiple infection, more information 
regarding risk stratification, a better understanding of the relationship of HPV with 
carcinogenesis, and prevention of the cancer though the development of type-specific 
vaccines. Consequently, HPV genotyping has become an important approach to fight 
with cervical cancer. For these reasons, this dissertation emphasized the development 
of new algorithms for predicting the HPV genotypes. Since the new algorithms were 
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proposed based on computational method, the problems that could be occurred by 
the genotyping tests in clinical laboratories can be limited. 

Thus, this dissertation has concentrated on the prediction of HPV genotypes 
from two significant forms of DNA sequences, which are whole genomes and partial 
coding sequences. 
 
1.2 Literature Review 

 
Initially, discriminating whether the patients have been infected with the high 

risk types of Human papillomavirus is the most important and urgent aspect for 
diagnosis and medical treatment. Multiple perspectives were thus proposed to focus 
on classifying the HPV into high or low risk types. For instance, Wang and Xiao [10] 
presented multitudinous physicochemical and statistical features from the protein 
sequences using Fuzzy K nearest neighbor classifier for the risk type prediction of 
Human papillomaviruses. At the same year, they also subsequently developed the 
better algorithm based on geometric moments of protein distance matrix images using 
a Fuzzy K nearest neighbor classifier [11]. In addition, classification of HPV risk types 
was also proposed through algorithms based on decision tree [12], text mining [13], 
genetic mining of DNA sequence structures [14], support vector machines [15], gap-
spectrum kernels [16], and ensemble support vector machines with protein secondary 
structures [17]. 
 While the classification of HPV risk types is the urgent aspect for a diagnosis of 
cervical cancer as claimed by many researchers, the study on how to predict specific 
genotypes of this virus has not been significantly focused. In fact, an identification of 
HPV genotypes in infected patients is more essential than a rough classification of HPV 
risk types, as previously mentioned.  

Chaos Game Representation (CGR) was proposed as a unique and scale-
independent representation for genomic sequences by Jeffrey [18]. It is an iterative 
mapping technique assigning each nucleotides in a DNA or amino acids in a protein to 
a unique coordinates in a 2-dimensional space. It can be viewed as a 2-dimensional 



 

 

4 

image of distributed dots and captured in a form of 0-1 square matrix, where 1 
represents a dot and 0 represents an empty coordinate. The distribution of positions 
has two properties of uniqueness and possibility to inverse a coordinate back to its 
corresponding nucleotide or amino acid [19]. Using graphic approaches to study 
biological systems can provide useful intuitive insights, as indicated by many previous 
studies on a series of important biological topics, such as DNA [20, 21], RNA [22], 
genome [23-27], protein [28-36], drug metabolism systems [37], protein-protein 
interactions [38], and analysis of protein sequence evolution [39].  

Singular value decomposition (SVD) is a matrix factorization technique with 
various applications. For instance, it can be used to solve underdetermined and 
overdetermined systems of linear equations, find inverse and the pseudo-inverse 
matrices, compute the matrix condition number and calculate the vector system 
orthogonality and orthogonal complement [40]. SVD is also applied to several areas in 
gene expression data and microarray data, such as analysis [41-44], search [45], image 
compression [46], and classification [47, 48], etc. 

Therefore, the new feature extraction techniques for the HPV genotype 
prediction were proposed by adapting Chaos game representation for utilizing its 
interesting properties of a unique and scale-independent representation of genomic 
sequences. Likewise, singular value decomposition (SVD) was deployed to reduce the 
size of CGR into a smaller number of feature matrices without losing any knowledge 
from the original data, for reducing the time complexity. 
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1.3 Problem Formulation 

 
Problem: How can the algorithm classify the specific types of Human 
papillomaviruses? 

Even though several researches in computational biology paid attention to 
classify the high and low risk types of Human papillomaviruses, those did not give 
precedence to further predict the specific types of the viruses. In contrast, in case of 
single or multiple type infection, recognizing the infected virus types in patients is 
essential for better medical diagnosis, treatment, and prevention. Thus, the main 
objective of this dissertation is to propose the algorithm for classifying the specific 
types of Human papillomaviruses. 

 

Problem: How can the algorithm classify under independent lengths of viral 
genomes? 

 Some techniques of feature extraction can be conducted under some 
limitation, such as an equal length of all sequences in the experiment. The limitation 
is a problem in a classification, since viral genomes have different lengths even in the 
same type due to its mutation. To handle the limitation, the feature extraction without 
consideration of viral length should be used in the proposed algorithm to deal with 
independent lengths of viral genomes. 

 

Problem: How can the optimum representative of the chaos representation be 
found out? 

 In the proposed algorithm, viral genome is transformed to coordinates by the 
statistical chaos representation, and the representation is further divided into several 
specified grids. Each grid has its own characteristics. Then, various kinds of aspects will 
be determined to represent the characteristics of all coordinates in each grid. 
Therefore, the appropriate representation will be investigated to find out the one that 
can optimize the prediction algorithm. 
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Problem: How can the optimum number of grids be identified? 

 In addition, the prediction performance in the preliminary results has shown 
that the accuracy values obtained from the proposed algorithm are different, when 
the number of dimensions in the input vectors has changed. Since the number of 
dimensions in the input vectors depends on the number of grids divided into the chaos 
representation, the optimum number of grids should be identified. 

 
1.4 Research Objectives 

 
The main objectives of this dissertation are as follows. 

1. To predict the specific types of human papillomaviruses. 

2. To reduce time complexity of the prediction algorithm. 

3. To improve the prediction algorithm to deal with independent lengths 
of viral genomes. 

 
1.5 Scopes of the Work 

 
The scopes of this dissertation are constrained on the following issues. 

1. The high risk types of Human papillomaviruses in this experiment are 
restricted according to hybrid capture 2, which is a nucleic acid 
hybridization assay for detection of human papillomavirus. Then, the 
data sets of high risk Human papillomaviruses of this experiment include 
13 types, which are 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, and 68. 

2. The data set of Human Papillomaviruses was collected from National 
Center for Biotechnology Information web site. 

3. Our Prediction algorithm was proposed without using any direct 
comparison methods such as an alignment technique. 
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CHAPTER 2 
THEORETICAL BACKGROUND 

2.1 Human Papillomavirus 

2.1.1 Physical Properties and Genome Organization 

Papillomaviruses are small non-enveloped icosahedral viruses of 
approximately 50–60 nm in diameter that contain a circular double stranded DNA 
genome of approximately 7000–8000 base pairs (bp). The HPV genome can be divided 
into three functional regions: the early (E) region that encodes proteins (E1–E7) required 
for viral gene expression, replication and survival; the late (L) region that encodes the 
viral structural proteins (L1–L2) required for virion assembly; and the long control 
region (LCR) that is a largely non-coding part required for regulating viral gene 
expression and replication. The designations E and L refer to the phase in the viral life 
cycle when these proteins are first expressed. The genome organization of Human 
Papillomavirus type 16 is demonstrated in Figure 2-1, as below. 
 
 

 
 
 

Figure 2-1 Genome Organization of Human Papillomavirus Type 16. 
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2.1.2 Functions of viral proteins 

 For Human Papillomavirus, the functions of the proteins are discussed and 
summarized in Table 2-1. 
 

Table 2-1 Functions of proteins in Human Papillomavirus 

 

Protein Function 
E1 - Adenosine triphosphatase (ATPase) and DNA helicase;  

- Recognizing and binding to the viral origin of DNA replication as a 
hexameric complex;  

- Necessity for viral DNA replication. 
E2 - Main regulator of viral gene transcription;  

- Binding the viral transcriptional promoter as a dimer;  
- Involvement in viral DNA replication;  
- Interacting with and recruits E1 to the origin. 

E4 - Acting late in the viral life cycle;  
- Interacting with the keratin cytoskeleton and intermediate 

filaments;  
- Localizing to nuclear domain 10; induces G2 arrest;  
- Being believed to facilitate virus assembly and release. 

E5 - Inducing unscheduled cell proliferation;  
- Interacting with 16k subunit c of vacuolar ATPase;  
- Activating growth factor receptors and other protein kinases;  
- Inhibiting apoptosis;  
- Inhibiting traffic of major histocompatibility complexes to the cell 

surface. 

E6 - Inducing DNA synthesis; induces telomerase;  
- Preventing cell differentiation; interacts with four classes of cellular 

proteins: transcriptional co-activators, proteins 
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- Involvement in cell polarity and motility, tumour suppressors and 
inducers of apoptosis, primarily p53, and DNA replication and repair 
factors. 

E7 - Inducing unscheduled cell proliferation;  
- Interacting with histone acetyl transferases; 
- Interacting with negative regulators of the cell cycle and tumour 

suppressors, primarily p105Rb. 

L1 - Major viral structural protein;  
- Assembling in capsomeres and capsids;  
- Interacting with L2;  
- Interacting with cell receptor(s);  
- Encoding neutralizing epitopes. 

L2 - Minor viral structural protein; interacts with DNA;  
- Interacting with nuclear domain 10s;  
- Being believed to facilitate virion assembly;  
- Interacting with cell receptor(s); 
- Encoding linear virus neutralizing epitopes. 
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2.2 Chaos Game Representation 

  
Chaos Game Representation (CGR) was proposed as a unique and scale-

independent representation for genomic sequences by Jeffrey [18]. It is an iterative 
mapping technique that each nucleotide in a DNA or each amino acid in a protein is 
assigned to a unique coordinates in a 2-dimensional space. Therefore, the distribution 
of positions in this representation has two main properties: uniqueness and possibility 
to inverse a coordinate back to its corresponding nucleotide or amino acid. Besides, 
this representation also has other interesting properties, as discussed below. 
 
Properties of the CGR of a DNA Sequence 
 

1. The k-th point plotted on the CGR of a sequence corresponds to the first k-
long initial subsequence of the whole sequence. Thus, there is a one-to-one 
correspondence between the subsequences of a DNA and points of the CGR. 

 
2. Therefore, any visible pattern in the CGR corresponds to some pattern in the 

nucleotide sequence. 
 
3. Any portion of the picture may be magnified for revealing finer structure. Thus, 

if there is an area of interest in which suspected structure is obscured, it can 
be magnified to show the fine structure of the points. Therefore, it can reveal 
the structure of the sequences yielding the points.  

 
4. Adjacent nucleotides in the sequence are not plotted adjacent to each other, 

except when the first point is close to a corner and the next nucleotide is the 
same. Being close in the CGR does not mean being close in the sequence.  

 
5. In general, two close points may correspond to different sequences.  
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2.3 Singular Value Decomposition 

 
Singular value decomposition (SVD) is a matrix factorization technique which 

has a beneficial property in reducing the size of data into a smaller number of features 
without losing any knowledge from the original data. The SVD theorem states as 
follows. 

 
 

𝐴𝑚×𝑛 =  𝑈𝑚×𝑚 𝑆𝑚×𝑛 𝑉𝑛×𝑛
𝑇  Equation 2.1 

 
 
where 𝐴𝑚×𝑛 is a m-by-n matrix, 𝑈𝑚×𝑚 is an m-by-m unitary matrix, 𝑆𝑚×𝑛 is an m-by-n 
diagonal matrix with nonnegative real numbers on the diagonal and the diagonal 
elements si of 𝑆𝑚×𝑛 are the singular values of 𝐴𝑚×𝑛, and 𝑉𝑛×𝑛

𝑇  is a conjugate transpose 
of 𝑉𝑛×𝑛, the n-by-n unitary matrix 𝑉. 
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CHAPTER 3 
RESEARCH METHODOLOGY 

3.1 HPV Genotype Prediction from Genomes 

 
The genomes of Human papillomavirus were collected from genotypes and 

their features were extracted by the proposed feature extraction techniques, i.e. 
ChaosCentroid and ChaosFrequency, as inputs for classification. These features were 
divided into the training and testing sets by a 2-fold cross validation technique. 
Accordingly, four different classification models were deployed to train and test the 
experimental data sets. Then, the prediction performance from the obtained results 
were evaluated and compared with a related method. 

 
3.1.1 HPV Genome Data set 

In this experiment, the collected HPV genotypes are those important genotypes 
detectable by Linear Array® HPV Genotyping Test. This HPV genotyping is a widely 
used qualitative test developed by Roche Molecular Diagnostics for detecting HPV 
genotypes associated with cervical cancer. This test can detect 37 high and low risk 
HPV genotypes, including those considered as a significant risk factor for HSIL 
progression to cervical cancer. To challenge the prediction, only HPV genotypes having 
genome diversity were concentrated in this experiment. Some of 37 genotypes 
containing few genomes were excluded. For this reason, only HPV genotypes 6, 11, 16, 
18, 31, 33, 35, 45, 52, 53, 58 and 66 were involved. The genomes of these HPV 
genotypes were collected from the National Center for Biotechnology Information 
(http://www.ncbi.nlm.nih.gov/). The HPV genome data set contains Human 
Papillomavirus genomes of 12 genotypes, including high, possible high, and low risk 
types. Table 3.1 demonstrates the number of genomes, the minimum and maximum 
genome lengths for each genotype of Human papillomavirus. 
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Table 3-1 The number of genomes, minimum and maximum genome lengths of HPV genotypes 
in the HPV genome data set. 

 
HPV 

Genotypes 
No. of genomes 

Genome length (base pairs) 

Minimum Maximum 
6 58 7954 8051 

11 49 7931 10424 
16 103 7881 7976 
18 19 7824 7857 

31 23 7878 7945 
33 22 7830 7912 
35 28 7820 7908 
45 12 7841 7858 

52 22 7933 7974 
53 16 7856 7863 

58 37 7814 7836 
66 11 7816 7824 

 
 
3.1.2 The Proposed Feature Extraction 

 ChaosCentroid and ChaosFrequency, were proposed to extract the features 
from the chaos game representation of HPV genomes. Therefore, the relations among 
subsets of HPV genomes must be clarified in order to identify an individual genotype. 
These relations are actually the local features. Since the CGR captures the information 
of the whole genome data, extracting the global features from the CGR may not be 
efficient enough to distinguish the HPV genotypes. In contrast, the local features 
hidden in various sub-regions of CGR must be more contemplated. Consequently, this 
research concentrated on extracting the local features rather than global features. The 
difference between ChaosCentroid and ChaosFrequency are the feature 
representation.  

Prior to the discussion of ChaosCentroid and ChaosFrequency, the detail of 
how to construct the chaos game representation (CGR) is the following. Let xi and yi 
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be the coordinates of nucleotide ƞi at the ith position in the nucleotide sequence. 
Algorithm 3.1 illustrates how to construct a CGR for capturing a given nucleotide 
sequence. 

 

Algorithm 3.1 Constructing Chaos Game Representation 

1. 
 
2. 
3. 
4. 
5. 
6. 
7. 
8. 
9. 
10. 
11. 
12. 
13. 
14. 

Create a square with each corner representing Adenine (A), Cytosine (C), Guanine (G), 
and Thymine (T) at coordinates (-1,-1), (-1,1), (1,1), and (1,-1), respectively. 

Case ƞ1 is 
        A: Place a dot at x1 = 0.5 × (0 − 1);   y1 = 0.5 × (0 − 1). 
        C: Place a dot at x1 = 0.5 × (0 − 1);   y1 = 0.5 × (0 + 1). 
        G: Place a dot at x1 = 0.5 × (0 + 1);   y1 = 0.5 × (0 + 1). 
        T: Place a dot at x1 = 0.5 × (0 + 1);   y1 = 0.5 × (0 − 1). 
EndCase 

For each other nucleotide ƞi; i > 1 do 

        Case ƞi is 
              A: Place a dot at xi = 0.5 × (xi-1 − 1);   yi = 0.5 × (yi−1 − 1). 
              C: Place a dot at xi = 0.5 × (xi-1 − 1);   yi = 0.5 × (yi−1 + 1). 
              G: Place a dot at xi = 0.5 × (xi-1 + 1);   yi = 0.5 × (yi−1 + 1). 
              T: Place a dot at xi = 0.5 × (xi-1 + 1);   yi = 0.5 × (yi−1 − 1). 
        EndCase 

 

The chaos game representation (CGR) can be viewed as a square whose corners 
are at coordinates (-1, -1), (-1, 1), (1, 1), and (1, -1) representing A, C, G, and T 
nucleotides, respectively. Note that the size of CGR according to the coordinates of A, 
C, G, and T nucleotides is equal to 2 × 2 units. However, this unit size of original CGR 
is not appropriate for discussing the proposed algorithms. Therefore, the geometrical 
structure and the physical size of this CGR are re-defined as follows. The size of CGR 
square is set to n × n and n ∈ R+. Its center is also located at the coordinates (0, 0). 
Each corner of this square represents the same nucleotide as that of the original CGR. 
After Algorithm 3.1, CGR can be viewed as an image of distributed dots. Figure 3.1 
shows some examples of CGR of HPV genotypes 6, 16, 18, and 31.  
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Figure 3-1 Chaos game representation (CGR) of HPV genotypes 6, 16, 18, and 31. (a) Genotype 6. 

(b) Genotype 16. (c) Genotype 18. (d) Genotype 31. 

 
Obviously, the number of dots in a CGR is equal to the number of nucleotides 

in a given HPV sequence. Although this CGR image can be directly used in the 
prediction process, its computational time may be too high due to the large number 
of dots. Thus, it is necessary to extract only those relevant features from this set of 
dots to reduce the computational time complexity in the prediction process. In this 
dissertation, two different features as the representation of CGR image are proposed. 
The first feature is called ChaosCentroid and the second one is called ChaosFrequency. 
The detail of each feature is as follows. 
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3.1.2.1 ChaosCentroid 

According to [18], the k-th dot plotted on the CGR of a sequence corresponds 
to the first k-long initial subsequence of the sequence. Therefore, any visible pattern 
of the CGR corresponds to some pattern of the nucleotide sequence. CGR represents 
the global information of the nucleotide sequence. Thus, partitioning the CGR into 
several sub-regions is implemented for revealing local information of the interested 
areas. If two dots are within the same quadrant, they correspond to sequences with 
the same last mononucleotide. But if they are in the same sub-quadrant, the 
sequences have the same last dinucleotides; and so on. This can demonstrate the 
structure of the sequences yielding the dots. ChaosCentroid utilizes this biological 
significance by computing the centroid of the distributed dots of each sub-region. 
Therefore, the centroid, which can be converted to specific structure of the sequence, 
is represented as local information of the sub-region. 

For ChaosCentroid, the CGR is partitioned into  𝑛

𝑔
 ×  

𝑛

𝑔
 equal sub-regions, where 

𝑛

𝑔
  is an element of positive integers ranging from 1 to 11. This range is derived from all 

possible numbers that can applied to the CGR. For instance, the CGR is not partitioned 
when 𝑛

𝑔
= 1, the CGR is partitioned into 4 equal sub-regions when  𝑛

𝑔
= 2, and so on. 

Furthermore, if the value of 𝑛

𝑔
 is greater than 11, some sub-regions do not contain any 

dots. So, 11 is the maximum value of  𝑛

𝑔
 in this experiment. For each of  𝑛

𝑔
 partitioned 

into the CGR, the centroid of each sub-region is computed first. Then all pairs of 
distances between the centroids and the center of CGR are computed and captured 
in a form of a matrix. This set of distances can be considered as the relation of 
information embedded in all sub-regions. However, the number of ChaosCentroids 
may be too large. Therefore, this matrix is decomposed by applying singular value 
decomposition (SVD) method to reduce information complexity. Finally, the 𝑛

𝑔
 diagonal 

elements from the   𝑛

𝑔
 - by - 𝑛

𝑔
 diagonal matrix of SVD are represented as the features 

of CGR and are subsequently used as the input vectors for prediction process. As a 
result, ChaosCentroid produces 11 formats of input vectors according to the value of 
𝑛

𝑔
, i.e. the first format has 1 dimension, the second format has 2 dimensions, and so 



 

 

17 

on. Extracting ChaosCentroid consists of the following steps, as illustrated in Algorithm 
3.2.  
 

Algorithm 3.2 Extracting ChaosCentroid Feature 

1.    Represent the HPV genomes by chaos game representation (CGR) of size n × n. 
2.    Partition CGR into  𝑛

𝑔
 × 𝑛

𝑔
  equal sub-regions, each of size  𝑔 × 𝑔. 

3.    Let  𝑟𝑖,𝑗  be the CGR region at row  1 ≤  𝑖 ≤
𝑛

𝑔
   and column 1 ≤ 𝑗 ≤

𝑛

𝑔
 . 

4.    Let  |𝑟𝑖,𝑗|  be the number of dots in  𝑟𝑖,𝑗. 
5.    For each sub-region  𝑟𝑖,𝑗  do 

6.                 Compute the centroid  𝑐𝑖,𝑗 = (
∑ 𝑥𝑘

|𝑟𝑖,𝑗|

𝑘=1

|𝑟𝑖,𝑗|
,

∑ 𝑦𝑘

|𝑟𝑖,𝑗|

𝑘=1

|𝑟𝑖,𝑗|
). 

7.    EndFor 
8.   Compute a distance matrix  𝐃 =  [𝑑𝑖,𝑗]𝑛

𝑔
×

𝑛

𝑔

 ;  𝑑𝑖,𝑗 =  ‖𝑐𝑖,𝑗‖. 

9.   Let  𝐒 =  [𝑠𝑖,𝑗]𝑛

𝑔
×

𝑛

𝑔

  be the diagonal matrix of 𝐃 computed by applying singular value 

decomposition. 

10.   Form vector  𝐅 =  [𝑠𝑖,𝑖]
1≤𝑖≤

𝑛

𝑔

𝑇   as the feature of CGR. 

 
 
A time complexity of ChaosCentroid algorithm is analyzed as follow. 
To simplify this analysis, all HPV genomes will be considered as the nucleotide 

sequences of equal length 𝐿. Let 𝑇(𝑁)  be the running time of ChaosCentroid on 
extracting features from 𝑁 genomes of length 𝐿. Initially, constructing the CGR of 𝑁 
genomes takes 𝑂(𝑁𝐿) time. Since the values of 𝑛

𝑔
 are set to constant number, 

partitioning the CGR into 𝑛

𝑔
 × 𝑛

𝑔
  equal sub-regions takes constant time. Hence, 

partitioning the CGRs of 𝑁 genomes takes 𝑂(𝑁) time. Computing centroids in sub-
regions takes 𝑂(𝑁𝐿) time, and computing Euclidean distances in two dimensional 
spaces takes 𝑂(𝑁) time. Although extracting the singular value decomposition of 
𝑛

𝑔
−by−

𝑛

𝑔
  matrices take 𝑂 ((

𝑛

𝑔
)

3
) time, the maximum value of 𝑛

𝑔
 is set to 11 in this 

experiment. So, the SVD of 𝑁 genomes takes 𝑂(113𝑁) time. Finally, forming the feature 
vectors also takes 𝑂(𝑁) time. Therefore, the total time complexity of ChaosCentroid 
feature extraction is as follow. 
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𝑇(𝑁)  = 𝐶𝐺𝑅 + 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 + 𝐶𝑒𝑛𝑡𝑟𝑜𝑖𝑑 + 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 + 𝑆𝑉𝐷 + 𝐹𝑜𝑟𝑚 𝑣𝑒𝑐𝑡𝑜𝑟 
 
                    = 𝑂(𝑁𝐿) + 𝑂(𝑁) + 𝑂(𝑁𝐿) + 𝑂(𝑁) + 𝑂(113𝑁) + 𝑂(𝑁) 

 
        = 𝑂(𝑁𝐿) 

 
Additionally, Figure 3.2 shows an example of distances between the centroid 

of each sub-region and the center of CGR for HPV genotype 16 after being partitioned 
into sub-regions of size 2 × 2. 

 

 
 
Figure 3-2 The distances between the centroids and the center of CGR for HPV genotype 16 after 

being partitioned into sub-regions of size 2 × 2. 
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3.1.2.2 ChaosFrequency 

As elucidated in [20], the bias of distribution of different mono-, di-, tri-, or 
higher order nucleotides along the DNA/RNA sequences can generate different patterns 
in the CGR. This can be used as diagnostic patterns for different HPV genotypes. The 
CGRs of the HPV genomes of different genotypes tend to exhibit distinct patterns 
visually, as displayed in Figure 3.1. Therefore, ChaosFrequency has concentrated on 
the frequencies of subsequences occurred in the HPV genomes. Particularly, when  𝑛

𝑔
  

is equal to 2k for any positive integer 𝑘 ≤ 3, it represents the k-mer frequency occurred 
in the HPV sequences. 

Accordingly, the ratio between the number of dots in the sub-region and the 
total number of dots in the CGR are computed and represented as the feature of each 
sub-region. This ratio can be interpreted as the probability of distribution. Suppose 
each sub-region is of size g × g. After extracting the ChaosFrequency of each sub-region, 
the whole CGR be viewed as a matrix of size 𝑛

𝑔
 × 𝑛

𝑔
. Likewise, this frequency matrix is 

decomposed by SVD to extract the 𝑛

𝑔
 diagonal elements used as the feature of CGR. 

Then this technique also produces 11 formats of input vectors, in accordance with 
those of ChaosCentroid. The detail of this proposed feature extraction technique is 
illustrated in Algorithm 3.3. Each sub-region is referred by its location according to the 
row and column after the partition of CGR. Let 𝑚𝑖,𝑗 be the number of dots in sub-
region at row i and column j. Suppose there are total 𝑀 dots in CGR. Then the 
probability of distribution can be computed as  𝑝𝑖,𝑗 =

𝑚𝑖,𝑗

𝑀
. 
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Algorithm 3.3 Extracting ChaosFrequency Feature 

1.   Represent the HPV genomes by chaos game representation (CGR) of size n × n. 
2.   Partition CGR into 𝑛

𝑔
 × 𝑛

𝑔
 equal sub-regions, each of size 𝑔 × 𝑔. 

3.   Let  𝑟𝑖,𝑗  be the CGR region at row  1 ≤  𝑖 ≤
𝑛

𝑔
   and  column 1 ≤ 𝑗 ≤

𝑛

𝑔
 . 

4.   For each sub-region 𝑟𝑖,𝑗  do 

5.                Compute the probability of distribution  𝑝𝑖,𝑗 =
𝑚𝑖,𝑗

𝑀
. 

6.   EndFor 
7.   Form matrix  𝐃 =  [𝑑𝑖,𝑗]𝑛

𝑔
×

𝑛

𝑔

 ;  𝑑𝑖,𝑗 =  𝑝𝑖,𝑗. 

8.   Let  𝐒 =  [𝑠𝑖,𝑗]𝑛

𝑔
×

𝑛

𝑔

  be the diagonal matrix of 𝐃 computed by applying singular value 

decomposition. 

9.   Form vector  𝐅 =  [𝑠𝑖,𝑖]
1≤𝑖≤

𝑛

𝑔

𝑇   as the feature of CGR. 

 
 Likewise, all HPV genomes will be considered as the nucleotide sequences of 
equal length 𝐿. Let 𝑇(𝑁)  be the running time of ChaosFrequency on extracting features 
from 𝑁 genomes of length 𝐿. Initially, constructing the CGR of 𝑁 genomes takes 𝑂(𝑁𝐿) 
time, and partitioning the CGRs of 𝑁 genomes takes 𝑂(𝑁) time. Then, computing 
probability of distribution in sub-regions takes 𝑂(𝑁𝐿) time. Forming matrices D takes 
𝑂(𝑁) time, extracting SVD takes  𝑂(113𝑁) time, and forming the feature vectors takes 
𝑂(𝑁) time. Therefore, the total time complexity of ChaosFrequency is as follows. 
 

𝑇(𝑁)  = 𝐶𝐺𝑅 + 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 + 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝐹𝑜𝑟𝑚 𝑚𝑎𝑡𝑟𝑖𝑥 + 𝑆𝑉𝐷 + 𝐹𝑜𝑟𝑚 𝑣𝑒𝑐𝑡𝑜𝑟 
 

                    = 𝑂(𝑁𝐿) + 𝑂(𝑁) + 𝑂(𝑁𝐿) + 𝑂(𝑁) + 𝑂(113𝑁) + 𝑂(𝑁) 

 
     = 𝑂(𝑁𝐿) 
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3.1.3 Predicting Systems 

For evaluating the performance of the proposed feature extraction techniques, 
the testing sets were fed to four different types of predicting systems. Each system has 
its own principle and criteria for predicting the corresponding HPV genotypes. The 
predicting systems are multi-layer perceptron neural network, radial basis function 
network, k-nearest neighbor technique, and fuzzy k-nearest neighbor technique. For 
each of 400 HPV genomes, one of 12 genotypes which are types 6, 11, 16, 18, 31, 33, 
35, 45, 52, 53, 58, and 66 was identified. The following is a detail of set-up for each 
predicting system in this experiment. 
 
3.1.3.1 Multi-layer Perceptron Neural Network  

 After extracting features by Algorithms 3.2 and 3.3, each feature vector F was 
used as an input vector for multi-layer perceptron neural network. Therefore, the 
numbers of input neurons correspond to the sizes of the feature vector F, which are 
in the range of 1 - 11 dimensions. The number of hidden neurons was empirically 
varied from 1 to 24 neurons to find the most suitable number. From the experiments, 
16 hidden neurons are the best number of neurons for producing the best prediction 
of HPV genotypes. Additionally, there are 12 output neurons, each of which 
corresponds to each HPV genotype. To make the testing efficient, the neuron 1 is for 
determining HPV genotype 6; neuron 2 for type 11; neuron 3 for type 16; neuron 4 for 
type 18; neuron 5 for type 31; neuron 6 for type 33; neuron 7 for type 35; neuron 8 
for type 45; neuron 9 for type 52; neuron 10 for type 53; neuron 11 for type 58; and 
neuron 12 for type 66. As a result, the network deployed in these experiments consists 
of an input layer with 𝑛

𝑔
 neurons, a hidden layer with 16 neurons, and an output layer 

with 12 neurons. Furthermore, a backpropagation learning rule was adopted to adjust 
the weights of the network during the training process. Mean squared normalized error 
function was used as a terminating criterion in the training process.  

In testing procedure, the predicted HPV genotype is determined by an Equation 
(3.1). Let oi be the output value of output neuron i. 
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HPV genotype =  argtype max
1 ≤ 𝑖 ≤12

(𝑜𝑖)                     (3.1) 

 
where argtype is the mapping from neuron index to its corresponding HPV genotype 
previously defined. 
 
3.1.3.2 Radial Basis Function Network 

For this predicting system, a spread distance was empirically varied from 0.1 to 
1 with an interval of 0.1, in order to find the optimal distance that can yield the 
maximum average accuracy of all input dimensions. For each feature extraction 
technique, the optimal spread distances were subsequently set to the prediction 
systems based on radial basis function (RBF), i.e., 0.4 for ChaosCentroid and 0.1 for 
ChaosFrequency. The same network structure of multi-layer perceptron was adopted 
for this RBF network. The determination in Equation 3-1 of HPV genotypes for multi-
layer perceptron was also used in this RBF predicting system. 
 

3.1.3.3 K-nearest Neighbor Technique 

 In this technique, the determination of HPV genotypes depends upon the value 
of k nearest neighbors measured by Euclidean distance. For any tested feature vector, 
the HPV genotype of its nearest neighbor is assigned as the HPV genotype of the tested 
feature vector. Empirically, it was found that k = 1 gave the best performance in this 
experiment. 
 
3.1.3.4 Fuzzy K-nearest Neighbor Technique 

Fuzzy k-nearest neighbor technique was proposed by James M. Keller, Michael 
R. Gray, and James A. Givens [49]. It is a special variation of the k-nearest neighbor 
technique family. The algorithm of fuzzy k-nearest neighbor assigns class membership 
to a sample vector rather than assigning the vector to a particular class. An advantage 
is that no arbitrary assignments are made by the algorithm. Additionally, membership 
values of the vector should provide a level of assurance to accompany the resultant 
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classification. For this technique, k was also set to 1, which is similar to the previous k-
nearest neighbor technique.  
 
3.1.4 Performance Evaluation 

Two-fold cross-validation technique was adopted in this experiment for 
evaluating the performance of HPV genotype prediction based on the proposed 
feature extraction techniques, i.e. ChaosCentroid and ChaosFrequency, with the 
different four predicting systems. Then, the reported prediction performance was 
obtained by the combination of both validating sets accordingly. 

In this experiment, Equation 11 of [50] is adopted to formulate the set of four 
metrics, including Sensitivity (Sen), Specificity (Spec), Accuracy (Acc), and Matthew’s 
Correlation Coefficient (MCC), for evaluating the prediction performance. The 
formulation of the four metrics is defined by the following equations. 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  1 − 
𝑁−

+

𝑁+
,     0 ≤ 𝑆𝑒𝑛 ≤ 1 (3.2) 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  1 −  
𝑁+

−

𝑁−
,     0 ≤ 𝑆𝑝𝑒𝑐 ≤ 1 (3.3) 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  1 − 
𝑁−

+ +  𝑁+
−

𝑁+ +  𝑁−
,    0 ≤ 𝐴𝑐𝑐 ≤ 1 (3.4) 

𝑀𝐶𝐶 =  
1 − (

𝑁−
+

𝑁+ +
𝑁+

−

𝑁−)

√(1 +
𝑁+ 

− − 𝑁−
+

𝑁+ ) (1 +
𝑁− 

+ −  𝑁+
−

𝑁− )

 , −1 ≤ 𝑀𝐶𝐶 ≤ 1 (3.5) 

 
where 𝑁+ is the total number of HPV genomes of the investigated genotype whereas 
𝑁−

+ is the number of HPV genomes of the investigated genotype that is incorrectly 
predicted as the other genotypes; 𝑁− is the total number of HPV genomes of the other 
genotypes that are not investigated whereas 𝑁+

− is the number of HPV genomes of the 
other genotypes that is incorrectly predicted as the investigated genotype. The 
investigated HPV genotype is 6, 11, 16, 18, 31, 33, 35, 45, 52, 53, 58, or 66. To illustrate 
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this point, if the investigated genotype is 6, 𝑁+ is the total number of HPV genomes of 
genotype 6, while 𝑁− is the total number of the genomes of the other genotypes, 
excluding genotype 6. 

From Equation (3.2) to (3.5), the prediction performance can be evaluated in a 
meaningful explanation, as follows. The sensitivity is used for evaluating the 
performance of the predicting systems in identifying the investigated genotype. When 
𝑁−

+ = 0, none of HPV genomes of the investigated genotype was incorrectly predicted 
as the other genotypes, so the sensitivity is 1. In contrast, while 𝑁−

+ =  𝑁+, all HPV 
genomes of the investigated genotype were incorrectly predicted as the other 
genotypes, so the sensitivity is 0. The specificity is used for evaluating the performance 
of the systems in excluding the other genotypes. When 𝑁+

− = 0, none of HPV genomes 
of the other genotypes was incorrectly predicted as the investigated genotype, so the 
specificity is 1; while 𝑁+

− =  𝑁−, all HPV genomes of the other genotype were 
incorrectly predicted as the investigated genotype, so the specificity is 0. The accuracy 
is used for evaluating the performance of the systems in classifying the investigated 
genotype and the other genotypes. When 𝑁−

+ =  𝑁+
− = 0, none of HPV genomes of the 

investigated genotype and none of HPV genomes of the other genotypes were 
incorrectly predicted, so the accuracy is 1; while 𝑁−

+ =  𝑁+and 𝑁+
− =  𝑁− all HPV 

genomes of the investigated genotype and all HPV genomes of the other genotypes 
were incorrectly predicted, so the accuracy is 0. Typically, the Matthew’s Correlation 
Coefficient (MCC) is used for measuring the quality of binary classification. When 𝑁−

+ =

 𝑁+
− = 0, none of HPV genomes of the investigated genotypes and none of HPV 

genomes of the other genotypes were incorrectly predicted, so MCC is 1; when 𝑁−
+ =

 𝑁+/2  and  𝑁+
− =  𝑁−/2, MCC is 0 meaning no better than random prediction; when 

𝑁−
+ =  𝑁+ and 𝑁+

− =  𝑁−, MCC is -1 indicating total disagreement between prediction 
and observation. 
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3.2 HPV Genotype Prediction from Partial Coding Sequences 

 
The partial coding sequences of HPV genotypes were collected and their 

features were extracted by the proposed feature extraction technique, ChaosPoly, as 
inputs for classification. These features were divided into the training and testing sets 
by Leave-one-out cross validation technique. They were fed to the predicting system 
based on fuzzy k nearest neighbor technique for the corresponding HPV genotypes. 
Then, the prediction performance of ChaosPoly feature extraction technique was 
evaluated and compared with those of ChaosCentroid and ChaosFrequency feature 
extraction techniques. 
 
3.2.1 HPV Partial Coding sequence data set 

 For the HPV genotyping tests used in clinical laboratories, their nucleic acid 
targets and sizes are various according to companies that develops these medical 
diagnostic products. These nucleic acid targets can be some regions of genes in viral 
genomes. To challenge and develop the prediction algorithm, this dissertation 
attempts to predict the HPV genotype from the DNA fragments, which may be small 
sizes and incomplete. Therefore, this experiment has paid attention to the HPV 
genotype prediction from partial coding sequences, which can be considered as 
incomplete genes. Accordingly, the partial coding sequences of HPV genotypes were 
collected from the web site of National Center for Biotechnology Information, as the 
HPV partial coding sequence data set of this experiment. For this data set, the HPV 
genotypes and the number of sequences in each genotype were revealed in Table 3-
2. 
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Table 3-2 The HPV Partial Coding Sequence Data set. 

 
HPV Genotype The number of partial coding sequences 

6 282 

11 135 
16 1423 
18 135 
31 176 

33 57 
35 26 

39 41 
42 25 
45 21 

51 33 
52 90 

53 145 
56 66 

58 221 
59 34 

66 140 
68 32 
70 20 

71 23 
81 23 
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3.2.2 The Proposed Feature Extraction 

 
3.2.2.1 ChaosPoly 

 Partial coding sequences are incomplete genes having short nucleotide lengths, 
compared with the lengths of whole HPV genomes. The challenge of this experiment 
is how to find the optimum features for the prediction in case of less global 
information. So, extracting the local information from sub-regions of the Chaos game 
representation must be more contemplated in order to achieve the high performance 
of the prediction. Then, ChaosPoly feature extraction technique has been proposed 
for capturing more local information of the sub-regions in polynomial form. A 
procedure of ChaosPoly feature extraction technique is illustrated in Algorithm 3.4. 
 For ChaosPoly, the partial coding sequences are transformed into coordinates 
in the chaos game representation, and the CGRs are partitioned into 2𝑘 × 2𝑘 equal 
sub-regions. This experiment sets 𝑘 to 2, 3, and 4 in order to represent the sub-regions 
corresponding to 2-mer, 3-mer, and 4-mer, respectively. The k-mers refer to all the 
possible subsequences of length k obtained from DNA sequences. Each sub-region is 
referred by its location according to the row and column after the partition. Let 𝑚𝑖,𝑗 
be the number of dots in sub-region at row 𝑖 and column 𝑗. Suppose there are total 
𝑀 dots in CGR. Then, the probability of distribution in sub-region at row 𝑖 and column 

𝑗 can be computed as 𝑝𝑖,𝑗 =
𝑚𝑖,𝑗

𝑀
. All of them are formed matrix P, where P =

 [𝑝𝑖,𝑗]
2𝑘×2𝑘. The matrices P are subsequently partitioned into 2𝑘−𝑠 × 2𝑘−𝑠 sub-matrices, 

where  1 ≤ 𝑠 ≤ k − 1. Let  𝑃𝑧  be the 𝑧𝑡ℎ sub-matrix, where 𝑧 are positive integers 
arranging in ascending order from left to right and top to bottom, and  1 ≤ 𝑧 ≤ 2𝑘−𝑠 

× 2𝑘−𝑠. Each sub-matrix 𝑃𝑧 contains 2𝑠 × 2𝑠 elements. In this point of view, a procedure 
of the partition is depicted in Figure 3-3. 
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p1,1 p1,2 p1,3 p1,4 

p2,1 p2,2 p2,3 p2,4 

p3,1 p3,2 p3,3 p3,4 

p4,1 p4,2 p4,3 p4,4 

p1,1 p1,2 

p2,1 p2,2 
 

p1,3 p1,4 

p2,3 p2,4 

p3,1 p3,2 

p4,1 p4,2 
 

p3,3 p3,4 

p4,3 p4,4 

(a) CGR of size 22 x 22 (b) 22-by-22 Matrices (c) 2 x 2 submatrices 

 
Figure 3-3 A procedure of the partition in ChaosPoly algorithm after setting 𝑘 to 2, and 𝑠 to 1.  

(a) The CGR after being partitioned into sub-regions of size 22 x 22. (b) The 22-by-22 Matrix 𝑃, each 
containing 𝑝𝑖,𝑗 , the probability of distribution in sub-region at row 𝑖 and column 𝑗. (c) Partition 

Matrix 𝑃 into 4 sub-matrices 𝑃𝑧, where 𝑧 are positive integers ranging from 1 to 4. 

 
For sub-matrices, the probability of distribution are captured in a form of 

polynomial. Then, these values of polynomial are represented as the feature of CGR.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

P1 

P4 P3 
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Algorithm 3.4 Extracting ChaosPoly Feature 

1.   Represent the HPV genomes by chaos game representation (CGR) of size n × n. 

2.   Partition CGR into 2𝑘 × 2𝑘 equal sub-regions, where 2 ≤ 𝑘 ≤ 4 . 
3.   Let  𝑟𝑖,𝑗  be the CGR region at row  1 ≤  𝑖 ≤ 2𝑘   and  column 1 ≤ 𝑗 ≤ 2𝑘 . 
4.   Let 𝑚𝑖,𝑗 be the number of dots in sub-region at row 𝑖 and column 𝑗 and  
     there are total 𝑀 dots in CGR. 
5.   For each sub-region 𝑟𝑖,𝑗  do 

6.                Compute the probability of distribution  𝑝𝑖,𝑗 =
𝑚𝑖,𝑗

𝑀
. 

7.   EndFor 
8.   Partition matrix  P =  [𝑝𝑖,𝑗]

2𝑘×2𝑘 into 2𝑘−𝑠 × 2𝑘−𝑠 submatrices, where  1 ≤ 𝑠 ≤ k − 1. 
9.   Let  𝑃𝑧 = [𝑝𝑥,𝑦]

2𝑠×2𝑠 be the 𝑧𝑡ℎ submatrix, where 𝑧 are positive integers arranging in    

      ascending order from left to right and top to bottom, and  1 ≤ 𝑧 ≤ 2𝑘−𝑠 × 2𝑘−𝑠. 

10. Let  𝑝𝑥,𝑦 be the element of submatrix 𝑃𝑧 at row 1 ≤  𝑥 ≤ 2𝑠  and column 1 ≤  𝑦 ≤ 2𝑠. 
11. For each submatrix  𝑃𝑧  do 
12.               Compute the value of polynomial 

13. EndFor 
14. Form vector  𝐅 =  [𝑃𝑜𝑙𝑦𝑧]2𝑘−𝑠 × 2𝑘−𝑠 as the feature of CGR. 

𝑃𝑜𝑙𝑦𝑧 =  ∑ ∑ 𝑝𝑥,𝑦

2𝑠

𝑦=1

2𝑠

𝑥=1

 ×  222𝑠−[2𝑠 ×(𝑥−1)]−𝑦 
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3.2.3 Predicting system 

Since the predicting system based on fuzzy k nearest neighbor technique 
yielded the very high performance with stability in the HPV genotype prediction from 
whole genomes, this fuzzy technique was adopted for training and testing the HPV 
partial coding sequence data set. Likewise, k is set to 1 for this technique. 
 
3.2.4 Performance Evaluation 

 Among the independent statistical accuracy testing methods for predicted 
results such as sub-sampling (e.g., 2, 5 or 10-fold cross-validation technique) and Leave-
one-out cross validation technique, the Leave-one-out technique was deemed the 
most objective that can always yield a unique result for a given benchmark data set, 
as elucidated in [51] and demonstrated by Equations 28, 29 and 30 in [51]. Therefore, 
the Leave-one-out cross validation technique has been increasingly used and widely 
recognized by investigators to test the power of various prediction methods. 
Accordingly, this experiment adopted the Leave-one-out cross validation technique for 
dividing the training and testing sets of the HPV partial coding sequence data set.  
 Likewise, the set of four metrics, including Sensitivity (Sen), Specificity (Spec), 
Accuracy (Acc), and Matthew’s Correlation Coefficient (MCC), is also adopted for 
evaluating the prediction performance. The formulation of the four metrics is defined 
by the Equation (3.2) to (3.5), as previously mentioned. 
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CHAPTER 4 
EXPERIMENTAL RESULTS AND DISCUSSION 

4.1 HPV Genotype Prediction from Genomes 

The values of variable 𝑛

𝑔
 in Algorithms 3.2 and 3.3 were set from 1 to 11, thus 

the input vectors were in the range of 1-11 dimensions. For this HPV genome data set, 
the performance of HPV genotype prediction was separately summarized according to 
each predicting system and two proposed feature extracting schemes. The obtained 
experimental results are illustrated and discussed as follows. 
 
4.1.1 Multi-layer Perceptron Neural Network  

The experimental results of the HPV genotype prediction gained by 
ChaosCentroid and by ChaosFrequency feature extraction with the predicting system 
based on multi-layer perceptron neural network are summarized in Tables 4.1 and 4.2, 
respectively. These results were reported according to different values of 𝑛

𝑔
 , which 

were in the range of 1-11. 
When 𝑛

𝑔
 is equal to 1, the number of sub-regions of CGR is also equal to one. 

Thus there is only one centroid computed by ChaosCentroid and the probability of 
distribution of CGR computed by ChaosFrequency is equal to one. The overall 
performance of ChaosFrequency is much lower than those of ChaosCentroid. 
ChaosFrequency gain 0% of sensitivity and 100% of specificity in all genotypes, 
excepting genotype 16. It can be implied that the features of all genomes extracted 
by ChaosFrequency are totally predicted to genotype 16. In contrast, ChaosCentroid 
can obtain high performance metrics, including accuracy, sensitivity, specificity, and 
Matthew’s Correlation Coefficient in almost all genotypes. This is because a centroid 
is computed from the coordinates of every dots. It is obvious that different HPV 
genotypes must have different distribution of dots and centroids. So, predicting HPV 
genotypes with high performance from these centroids is possible. But in case of 
ChaosFrequency, the probability of distribution of every HPV genotype is equal. This 
makes the feature of each HPV genotype indistinguishable. 
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In contrast, when the value of 𝑛

𝑔
 is greater than one, the local information 

regarding the frequency of subsequence among nucleotides in each sub-region is 
brought out and the performance is increased in proportion to the value of 𝑛

𝑔
. In 

addition, it is noticeable that there is no significant difference between the overall 
performance obtained from ChaosCentroid and ChaosFrequency when 3 <

𝑛

𝑔
 ≤ 11. 

Therefore, it can be concluded that, to achieve high performance of prediction, the 
local information of each sub-region is more relevant than global information. 
 

Table 4-1 The results of the HPV genotype prediction based on the features extracted by 
ChaosCentroid with multi-layer perceptron neural network. 

HPV 
Genotype 

Input Dimension 

1 2 3 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 96.50 94.83 96.78 0.87 95.25 86.21 96.78 0.81 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 95.00 89.80 95.73 0.79 99.00 93.88 99.72 0.95 

16 94.25 100.00 92.26 0.87 93.50 89.32 94.95 0.83 99.50 100.00 99.33 0.99 

18 95.25 15.79 99.21 0.26 97.25 78.95 98.16 0.72 98.50 84.21 99.21 0.83 

31 99.50 95.65 99.73 0.95 96.50 73.91 97.88 0.69 100.00 100.00 100.00 1.00 

33 94.50 0.00 100.00 NaN 99.50 95.45 99.74 0.95 99.00 90.91 99.47 0.90 

35 99.25 92.86 99.73 0.94 98.00 82.14 99.19 0.84 99.75 96.43 100.00 0.98 

45 100.00 100.00 100.00 1.00 98.00 50.00 99.48 0.60 99.75 100.00 99.74 0.96 

52 100.00 100.00 100.00 1.00 98.00 77.27 99.21 0.80 100.00 100.00 100.00 1.00 

53 98.75 100.00 98.70 0.87 94.75 6.25 98.44 0.07 99.00 87.50 99.48 0.87 

58 100.00 100.00 100.00 1.00 97.50 83.78 98.90 0.85 99.50 97.30 99.72 0.97 

66 100.00 100.00 100.00 1.00 98.75 63.64 99.74 0.74 100.00 100.00 100.00 1.00 

 

HPV 
Genotype 

Input Dimension 

4 5 6 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 99.25 100.00 98.99 0.98 99.75 99.03 100.00 0.99 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 99.00 86.96 99.73 0.90 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 99.00 90.91 99.47 0.90 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 99.50 92.86 100.00 0.96 99.25 96.43 99.46 0.94 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 99.75 93.75 100.00 0.97 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 99.50 100.00 99.45 0.97 99.50 97.30 99.72 0.97 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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HPV 
Genotype 

Input Dimension 

7 8 9 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 99.75 97.96 100.00 0.99 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 99.50 100.00 99.48 0.95 

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 99.75 90.91 100.00 0.95 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

10 11 
Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 99.50 100.00 99.33 0.99 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 99.75 95.65 100.00 0.98 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 99.75 97.30 100.00 0.99 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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Table 4-2 The results of the HPV genotype prediction based on the features extracted by 
ChaosFrequency with multi-layer perceptron neural network. 

 
 

HPV 
Genotype 

Input Dimension 

1 2 3 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 85.50 0.00 100.00 NaN 100.00 100.00 100.00 1.00 98.25 93.10 99.12 0.93 

11 87.75 0.00 100.00 NaN 100.00 100.00 100.00 1.00 99.75 97.96 100.00 0.99 

16 25.75 100.00 0.00 NaN 97.75 97.09 97.98 0.94 100.00 100.00 100.00 1.00 

18 95.25 0.00 100.00 NaN 99.25 89.47 99.74 0.92 98.00 84.21 98.69 0.79 

31 94.25 0.00 100.00 NaN 99.75 95.65 100.00 0.98 100.00 100.00 100.00 1.00 

33 94.50 0.00 100.00 NaN 97.75 72.73 99.21 0.77 100.00 100.00 100.00 1.00 

35 93.00 0.00 100.00 NaN 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 97.00 0.00 100.00 NaN 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 94.50 0.00 100.00 NaN 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 96.00 0.00 100.00 NaN 99.25 93.75 99.48 0.91 100.00 100.00 100.00 1.00 

58 90.75 0.00 100.00 NaN 99.75 100.00 99.72 0.99 99.50 100.00 99.45 0.97 

66 97.25 0.00 100.00 NaN 100.00 100.00 100.00 1.00 99.50 81.82 100.00 0.90 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

4 5 6 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 99.75 97.96 100.00 0.99 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 99.25 100.00 98.99 0.98 99.75 100.00 99.66 0.99 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 99.00 86.96 99.73 0.90 99.75 100.00 99.73 0.98 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 99.75 96.43 100.00 0.98 99.50 92.86 100.00 0.96 

45 99.75 100.00 99.74 0.96 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 99.50 90.91 100.00 0.95 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 99.50 100.00 99.45 0.97 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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HPV 
Genotype 

Input Dimension 

7 8 9 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

10 11 
Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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4.1.2 Radial Basis Function Network 

The experimental results of the HPV genotype prediction gained by 
ChaosCentroid and by ChaosFrequency feature extraction with the predicting system 
based on radial basis function network are summarized in Tables 4-3 and 4-4, 
respectively. According to these experimental results, the performance values 
obtained by this predicting system are unstable among input dimensions. This is 
because this experiment set only one optimal spread distance, which gain the 
maximum average accuracy of all dimensions, for each predicting system obtaining 
features extracted by ChaosCentroid and by ChaosFrequency, respectively. In fact, it is 
possible that each input dimension has its own proper spread distance, and one value 
of spread distance cannot fit for all input dimensions. Additionally, it is noticeable that 
ChaosFrequency with RBF at 4-dimensional input can achieve the best performance 
with minimum input dimension. The overall performance trend obtained from this 
predicting system is similar to those of multi-layer perceptron neural network. But the 
performance of multi-layer perceptron neural network is significantly higher than the 
performance of radial basis function network. 
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Table 4-3 The results of the HPV genotype prediction based on the features extracted by 

ChaosCentroid with radial basis function network. 

 
 

HPV 
Genotype 

Input Dimension 

1 2 3 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 95.75 100.00 95.03 0.86 83.00 27.59 92.40 0.23 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 90.00 97.96 88.89 0.69 97.50 97.96 97.44 0.89 

16 94.00 100.00 91.92 0.86 87.75 94.17 85.52 0.73 98.00 100.00 97.31 0.95 

18 95.25 0.00 100.00 NaN 95.25 21.05 98.95 0.30 97.50 47.37 100.00 0.68 

31 96.00 30.43 100.00 0.54 96.75 73.91 98.14 0.71 100.00 100.00 100.00 1.00 

33 94.50 0.00 100.00 NaN 98.50 95.45 98.68 0.87 97.25 77.27 98.41 0.74 

35 96.00 92.86 96.24 0.76 93.00 0.00 100.00 NaN 99.50 96.43 99.73 0.96 

45 99.75 100.00 99.74 0.96 98.25 75.00 98.97 0.71 99.00 66.67 100.00 0.81 

52 98.00 100.00 97.88 0.85 94.75 4.55 100.00 0.21 100.00 100.00 100.00 1.00 

53 98.75 87.50 99.22 0.84 96.00 0.00 100.00 NaN 98.50 68.75 99.74 0.79 

58 98.75 100.00 98.62 0.93 92.75 75.68 94.49 0.63 99.25 97.30 99.45 0.96 

66 97.25 0.00 100.00 NaN 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

4 5 6 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 99.50 100.00 99.43 0.98 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 99.25 99.03 99.33 0.98 99.00 98.06 99.33 0.97 99.50 99.03 99.66 0.99 

18 99.50 94.74 99.74 0.94 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 98.75 86.96 99.47 0.88 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 98.75 90.91 99.21 0.88 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 99.75 100.00 99.73 0.98 99.00 92.86 99.46 0.92 99.50 96.43 99.73 0.96 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 99.75 95.45 100.00 0.98 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 99.50 87.50 100.00 0.93 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 99.75 97.30 100.00 0.99 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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HPV 
Genotype 

Input Dimension 

7 8 9 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 99.25 100.00 99.12 0.97 

11 100.00 100.00 100.00 1.00 99.75 97.96 100.00 0.99 99.75 97.96 100.00 0.99 

16 99.75 100.00 99.66 0.99 100.00 100.00 100.00 1.00 99.75 99.03 100.00 0.99 

18 99.75 94.74 100.00 0.97 100.00 100.00 100.00 1.00 99.25 94.74 99.48 0.92 

31 100.00 100.00 100.00 1.00 99.75 100.00 99.73 0.98 100.00 100.00 100.00 1.00 

33 99.50 100.00 99.47 0.95 99.50 95.45 99.74 0.95 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 99.50 96.43 99.73 0.96 99.75 96.43 100.00 0.98 

45 100.00 100.00 100.00 1.00 99.75 91.67 100.00 0.96 100.00 100.00 100.00 1.00 

52 99.50 100.00 99.47 0.95 100.00 100.00 100.00 1.00 99.75 95.45 100.00 0.98 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 99.75 97.30 100.00 0.99 99.75 100.00 99.72 0.99 99.75 100.00 99.72 0.99 

66 99.25 72.73 100.00 0.85 99.50 90.91 99.74 0.91 99.75 90.91 100.00 0.95 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

10 11 
Acc Sen Spec MCC Acc Sen Spec MCC 

6 99.50 100.00 99.42 0.98 100.00 100.00 100.00 1.00 

11 99.50 100.00 99.43 0.98 100.00 100.00 100.00 1.00 

16 99.75 100.00 99.66 0.99 99.50 100.00 99.33 0.99 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 99.50 91.30 100.00 0.95 99.50 95.65 99.73 0.95 

33 99.75 95.45 100.00 0.98 99.75 100.00 99.74 0.98 

35 99.75 96.43 100.00 0.98 99.75 100.00 99.73 0.98 

45 100.00 100.00 100.00 1.00 99.75 91.67 100.00 0.96 

52 100.00 100.00 100.00 1.00 99.75 100.00 99.74 0.98 

53 99.25 93.75 99.48 0.91 99.75 93.75 100.00 0.97 

58 99.25 94.59 99.72 0.95 98.50 89.19 99.45 0.91 

66 99.75 90.91 100.00 0.95 99.75 90.91 100.00 0.95 

 
 



 

 

39 

Table 4-4 The results of the HPV genotype prediction based on the features extracted by 

ChaosFrequency with radial basis function network. 

 
 

HPV 
Genotype 

Input Dimension 

1 2 3 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 85.50 0.00 100.00 NaN 100.00 100.00 100.00 1.00 98.50 98.28 98.54 0.94 

11 87.75 0.00 100.00 NaN 100.00 100.00 100.00 1.00 99.75 97.96 100.00 0.99 

16 25.75 100.00 0.00 NaN 97.25 99.03 96.63 0.93 100.00 100.00 100.00 1.00 

18 95.25 0.00 100.00 NaN 97.75 84.21 98.43 0.77 98.25 73.68 99.48 0.79 

31 94.25 0.00 100.00 NaN 99.75 95.65 100.00 0.98 99.50 100.00 99.47 0.96 

33 94.50 0.00 100.00 NaN 97.25 54.55 99.74 0.70 99.50 90.91 100.00 0.95 

35 93.00 0.00 100.00 NaN 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 97.00 0.00 100.00 NaN 98.50 91.67 98.71 0.79 100.00 100.00 100.00 1.00 

52 94.50 0.00 100.00 NaN 99.50 100.00 99.47 0.95 99.50 100.00 99.47 0.95 

53 96.00 0.00 100.00 NaN 96.75 37.50 99.22 0.49 100.00 100.00 100.00 1.00 

58 90.75 0.00 100.00 NaN 99.25 94.59 99.72 0.95 99.75 100.00 99.72 0.99 

66 97.25 0.00 100.00 NaN 100.00 100.00 100.00 1.00 99.25 72.73 100.00 0.85 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

4 5 6 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 99.75 100.00 99.66 0.99 99.75 100.00 99.66 0.99 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 99.50 95.65 99.73 0.95 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 99.75 95.45 100.00 0.98 99.75 95.45 100.00 0.98 

35 100.00 100.00 100.00 1.00 99.75 96.43 100.00 0.98 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 99.75 95.45 100.00 0.98 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 99.75 100.00 99.72 0.99 99.75 100.00 99.72 0.99 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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HPV 
Genotype 

Input Dimension 

7 8 9 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 99.75 100.00 99.74 0.97 99.75 94.74 100.00 0.97 

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 99.75 100.00 99.74 0.96 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 99.75 90.91 100.00 0.95 100.00 100.00 100.00 1.00 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

10 11 
Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 99.75 97.96 100.00 0.99 99.75 97.96 100.00 0.99 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

18 99.50 94.74 99.74 0.94 100.00 100.00 100.00 1.00 

31 99.75 100.00 99.73 0.98 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 99.50 100.00 99.46 0.96 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 99.75 95.45 100.00 0.98 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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4.1.3 K-nearest Neighbor Technique 

The experimental results of the HPV genotype prediction gained by 
ChaosCentroid and by ChaosFrequency feature extraction with the predicting system 
based on k-nearest neighbor technique are summarized in Tables 4-5 and 4-6, 
respectively. The results obtained by this predicting system have shown the high 
performance of prediction. Thus, it can imply that, in each sub-region, the structure of 
sequence in a form of centroid by ChaosCentroid and the statistical distribution of 
mono-, di-, or higher order nucleotides in a form of frequency by ChaosFrequency, are 
closed to each other in the same genotype. The overall performance trend obtained 
by this predicting system is similar to those of multi-layer perceptron neural network. 
But the performance of this predicting system is slightly higher than the performance 
of multi-layer perceptron neural network. 
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Table 4-5 The results of the HPV genotype prediction based on the features extracted by 
ChaosCentroid with k-nearest neighbor technique. 

 
 

HPV 
Genotype 

Input Dimension 

1 2 3 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 96.50 91.38 97.37 0.86 96.25 87.93 97.66 0.85 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 95.50 81.63 97.44 0.79 99.50 97.96 99.72 0.98 

16 90.00 76.70 94.61 0.73 94.75 90.29 96.30 0.86 98.75 99.03 98.65 0.97 

18 94.75 31.58 97.90 0.34 97.00 63.16 98.69 0.65 98.75 78.95 99.74 0.85 

31 99.25 91.30 99.73 0.93 97.75 91.30 98.14 0.82 100.00 100.00 100.00 1.00 

33 89.75 22.73 93.65 0.14 99.75 100.00 99.74 0.98 99.25 95.45 99.47 0.93 

35 98.50 92.86 98.92 0.89 97.50 82.14 98.66 0.81 99.75 96.43 100.00 0.98 

45 100.00 100.00 100.00 1.00 98.00 75.00 98.71 0.68 99.50 91.67 99.74 0.91 

52 100.00 100.00 100.00 1.00 98.25 81.82 99.21 0.83 100.00 100.00 100.00 1.00 

53 98.25 81.25 98.96 0.78 95.75 31.25 98.44 0.36 99.25 87.50 99.74 0.90 

58 100.00 100.00 100.00 1.00 98.50 89.19 99.45 0.91 99.25 97.30 99.45 0.96 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

4 5 6 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 99.50 97.96 99.72 0.98 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 99.75 100.00 99.66 0.99 99.50 98.06 100.00 0.99 100.00 100.00 100.00 1.00 

18 99.75 94.74 100.00 0.97 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 99.50 91.30 100.00 0.95 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 99.75 100.00 99.74 0.98 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 99.75 96.43 100.00 0.98 99.25 96.43 99.46 0.94 100.00 100.00 100.00 1.00 

45 99.75 100.00 99.74 0.96 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 99.50 93.75 99.74 0.93 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 99.75 100.00 99.72 0.99 99.75 100.00 99.72 0.99 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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HPV 
Genotype 

Input Dimension 

7 8 9 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

10 11 
Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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Table 4-6 The results of the HPV genotype prediction based on the features extracted by 
ChaosFrequency with k-nearest neighbor technique. 

 
 

HPV 
Genotype 

Input Dimension 

1 2 3 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 14.50 100.00 0.00 NaN 100.00 100.00 100.00 1.00 98.75 98.28 98.83 0.95 

11 87.75 0.00 100.00 NaN 100.00 100.00 100.00 1.00 99.75 97.96 100.00 0.99 

16 74.25 0.00 100.00 NaN 98.00 97.09 98.32 0.95 100.00 100.00 100.00 1.00 

18 95.25 0.00 100.00 NaN 99.25 89.47 99.74 0.92 99.00 84.21 99.74 0.89 

31 94.25 0.00 100.00 NaN 100.00 100.00 100.00 1.00 99.75 100.00 99.73 0.98 

33 94.50 0.00 100.00 NaN 98.00 77.27 99.21 0.80 99.75 95.45 100.00 0.98 

35 93.00 0.00 100.00 NaN 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 97.00 0.00 100.00 NaN 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 94.50 0.00 100.00 NaN 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 96.00 0.00 100.00 NaN 99.25 93.75 99.48 0.91 100.00 100.00 100.00 1.00 

58 90.75 0.00 100.00 NaN 100.00 100.00 100.00 1.00 99.75 100.00 99.72 0.99 

66 97.25 0.00 100.00 NaN 100.00 100.00 100.00 1.00 99.75 90.91 100.00 0.95 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

4 5 6 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 99.75 97.96 100.00 0.99 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 99.75 99.03 100.00 0.99 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 99.50 95.65 99.73 0.95 99.75 100.00 99.73 0.98 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 99.50 96.43 99.73 0.96 99.50 96.43 99.73 0.96 

45 99.75 100.00 99.74 0.96 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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HPV 
Genotype 

Input Dimension 

7 8 9 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

10 11 
Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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4.1.4 Fuzzy K-nearest Neighbor Technique 

The experimental results of the HPV genotype prediction gained by 
ChaosCentroid and by ChaosFrequency feature extraction with the predicting system 
based on fuzzy k-nearest neighbor technique are summarized in Tables 4-7 and 4-8, 
respectively. Likewise, the overall performance trend obtained from this predicting 
system is similar to those of multi-layer perceptron neural network. But the overall 
performance of this predicting system is slightly higher than the performance of multi-
layer perceptron neural network. Additionally, it is noticeable that the performance of 
this predicting system is statistically equal to the performance of k-nearest neighbor 
technique due to setting the same value of k. 
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Table 4-7 The results of the HPV genotype prediction based on the features extracted by 
ChaosCentroid with fuzzy k-nearest neighbor technique. 

 
 

HPV 
Genotype 

Input Dimension 

1 2 3 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 96.50 91.38 97.37 0.86 96.25 87.93 97.66 0.85 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 95.50 81.63 97.44 0.79 99.50 97.96 99.72 0.98 

16 90.00 76.70 94.61 0.73 94.75 90.29 96.30 0.86 98.75 99.03 98.65 0.97 

18 94.75 31.58 97.90 0.34 97.00 63.16 98.69 0.65 98.75 78.95 99.74 0.85 

31 99.25 91.30 99.73 0.93 97.75 91.30 98.14 0.82 100.00 100.00 100.00 1.00 

33 89.75 22.73 93.65 0.14 99.75 100.00 99.74 0.98 99.25 95.45 99.47 0.93 

35 98.50 92.86 98.92 0.89 97.50 82.14 98.66 0.81 99.75 96.43 100.00 0.98 

45 100.00 100.00 100.00 1.00 98.00 75.00 98.71 0.68 99.50 91.67 99.74 0.91 

52 100.00 100.00 100.00 1.00 98.25 81.82 99.21 0.83 100.00 100.00 100.00 1.00 

53 98.25 81.25 98.96 0.78 95.75 31.25 98.44 0.36 99.25 87.50 99.74 0.90 

58 100.00 100.00 100.00 1.00 98.50 89.19 99.45 0.91 99.25 97.30 99.45 0.96 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

4 5 6 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 99.50 97.96 99.72 0.98 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 99.75 100.00 99.66 0.99 99.50 98.06 100.00 0.99 100.00 100.00 100.00 1.00 

18 99.75 94.74 100.00 0.97 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 99.50 91.30 100.00 0.95 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 99.75 100.00 99.74 0.98 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 99.75 96.43 100.00 0.98 99.25 96.43 99.46 0.94 100.00 100.00 100.00 1.00 

45 99.75 100.00 99.74 0.96 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 99.50 93.75 99.74 0.93 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 99.75 100.00 99.72 0.99 99.75 100.00 99.72 0.99 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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HPV 
Genotype 

Input Dimension 

7 8 9 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

10 11 
Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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Table 4-8 The results of the HPV genotype prediction based on the features extracted by 
ChaosFrequency with fuzzy k-nearest neighbor technique. 

 
 

HPV 
Genotype 

Input Dimension 

1 2 3 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 14.50 100.00 0.00 NaN 100.00 100.00 100.00 1.00 98.75 98.28 98.83 0.95 

11 87.75 0.00 100.00 NaN 100.00 100.00 100.00 1.00 99.75 97.96 100.00 0.99 

16 74.25 0.00 100.00 NaN 98.00 97.09 98.32 0.95 100.00 100.00 100.00 1.00 

18 95.25 0.00 100.00 NaN 99.25 89.47 99.74 0.92 99.00 84.21 99.74 0.89 

31 94.25 0.00 100.00 NaN 100.00 100.00 100.00 1.00 99.75 100.00 99.73 0.98 

33 94.50 0.00 100.00 NaN 98.00 77.27 99.21 0.80 99.75 95.45 100.00 0.98 

35 93.00 0.00 100.00 NaN 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 97.00 0.00 100.00 NaN 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 94.50 0.00 100.00 NaN 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 96.00 0.00 100.00 NaN 99.25 93.75 99.48 0.91 100.00 100.00 100.00 1.00 

58 90.75 0.00 100.00 NaN 100.00 100.00 100.00 1.00 99.75 100.00 99.72 0.99 

66 97.25 0.00 100.00 NaN 100.00 100.00 100.00 1.00 99.75 90.91 100.00 0.95 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

4 5 6 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 99.75 97.96 100.00 0.99 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 99.75 99.03 100.00 0.99 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 99.50 95.65 99.73 0.95 99.75 100.00 99.73 0.98 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 99.50 96.43 99.73 0.96 99.50 96.43 99.73 0.96 

45 99.75 100.00 99.74 0.96 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

 
 



 

 

50 

 
 
 
 

HPV 
Genotype 

Input Dimension 

7 8 9 

Acc Sen Spec MCC Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

 
 
 
 
 

HPV 
Genotype 

Input Dimension 

10 11 
Acc Sen Spec MCC Acc Sen Spec MCC 

6 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 100.00 100.00 100.00 1.00 
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4.1.5 NCBI Viral Genotyping Tool 

NCBI viral genotyping tool [52] is a web-based tool for identifying the genotype 
of a viral sequence. The algorithm of this tool is described as follows. Firstly, it works 
by sliding a window along the query sequence and processing each window (sequence 
segment) separately. Secondly, each segment is compared to a set of reference 
sequences using Basic Local Alignment Search Tool (BLAST), which returns the similarity 
scores for the local alignments. Then, the reference sequence genotype that matches 
the query with the highest similarity score is assigned to the query segment. The 
process is repeated for the next window until the whole length of the query sequence 
has been covered. Lastly, the results from all windows are combined. If the same 
genotype is assigned to most segments, then the query sequence is considered as the 
genotype. This tool is a web-based resource providing a reliable genotyping method 
based on alignment. Therefore, this experiment adopted this tool for identifying 
genotypes of the viral genomes in the HPV genome data set, and the experimental 
results of this tool was illustrated in Table 4-9.  

 
Table 4-9 The results of the HPV genotype prediction obtained by NCBI viral genotyping tool 

 
HPV 

Genotype 
Accuracy Sensitivity Specificity MCC 

6 100.00 100.00 100.00 1.00 

11 100.00 100.00 100.00 1.00 

16 100.00 100.00 100.00 1.00 

18 100.00 100.00 100.00 1.00 

31 100.00 100.00 100.00 1.00 

33 100.00 100.00 100.00 1.00 

35 100.00 100.00 100.00 1.00 

45 100.00 100.00 100.00 1.00 

52 100.00 100.00 100.00 1.00 

53 100.00 100.00 100.00 1.00 

58 100.00 100.00 100.00 1.00 

66 100.00 100.00 100.00 1.00 

 
 
 



 

 

52 

To evaluate the prediction performance, the result of this genotyping tool were 
compared with the best results of the proposed ChaosCentroid and ChaosFrequency 
feature extraction techniques with all predicting systems. The results have shown that 
all methods, excepting ChaosCentroid with radial basis function network, can achieve 
the best performance of the four metrics, including accuracy, sensitivity, specificity, 
and Matthew’s Correlation Coefficient, in predicting the HPV genotypes from the HPV 
genome data set. It demonstrated that both of proposed techniques, i.e. 
ChaosCentroid and ChaosFrequency, with the predicting systems, and the NCBI 
genotyping tool can be used as methods for predicting the genotypes of HPV genomes. 

Even though there is no significance between the proposed techniques and the 
NCBI genotyping tool, some issues should be considered. 

Suppose there are 𝑁 + 1 genomes of length 𝐿. 𝑁 genomes are for training and 
1 genome is for testing. 

In the prediction algorithms, ChaosCentroid and ChaosFrequency extract the 
features from HPV whole genomes, and identify the corresponding HPV genotypes by 
the predicting systems. Thus, the HPV genomes are firstly extracted features to be used 
as input vectors. Both feature extraction techniques take 𝑂(𝑁𝐿) time, where 𝑁 is the 
number of genomes of length 𝐿. The time complexity of HPV genotype prediction 
based on multi-layer perceptron neural network is discussed as below. 

For training process, the time complexity of backpropagation is 𝑂(𝑁 ∙ 𝑚 ∙ ℎ𝑘 ∙ 𝑜 ∙

𝑖), where 𝑁 is the number of training samples, 𝑚 is the number of input dimensions, 
𝑘 is the number of hidden layers containing ℎ neurons, 𝑜 is output neurons, and 𝑖 is 
the number of iterations. After substituting by parameters used in this experiment, the 
time complexity of backpropagation is approximately 𝑂(𝑁 ∙ 11 ∙ 161 ∙ 12 ∙ 1000). 

For testing process, the MLP computes the output of neuron b as  
𝑦𝑏(𝑖) =  𝜑(𝑣𝑏(𝑖)) 

 
where 𝑣𝑏(𝑖) is the induced local field of neuron b, defined by 

𝑣𝑏(𝑖) =  ∑ 𝑤𝑏𝑎(𝑖)𝑦𝑎(𝑖)

𝑚

𝑖=0
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where 𝑚 is the total number of inputs applied to neuron b. 𝑤𝑏𝑎(𝑖) is the synaptic 
weight connecting neuron a to neuron b. 𝑦𝑎(𝑖) is the input signal of neuron b or the 
function signal appearing at the output of neuron a.  

Even though computing the output in testing process takes 𝑂(𝑚𝑖) time, this 
experiment sets the maximum value of 𝑚 to 11 and the number of iterations 𝑖 to 
1000. Then, the time complexity of testing one input vector takes constant time, which 
corresponds to 𝑂(1).   

Without artificial intelligence, NCBI viral genotyping tool provides a reliable 
genotyping method based on sequence homology searching with alignment 
procedure. This tool does not required for feature extraction and training process, then, 
the time complexity of this tool is only concerned with testing process. Although time 
complexity of this genotyping tool are not clearly revealed, a concept is based on 
Basic Local Alignment Search Tool (BLAST). So, it can analyze the time complexity 
according to BLAST algorithm. According to [53], the expected time complexity of 
nucleotide BLAST is approximately 𝑐1𝑊 + 𝑐2𝑁 + 𝑐3𝑁𝑊/4𝑤, where W is the number 
of words generated, w is the length of words, N is the number of residues in the 
database, and c1, c2 and c3 are constants. The W term accounts for compiling the word 
list, the N term covers the database scan, and the NW term is for extending the hits. 
In addition, this NCBI genotyping tool works by sliding a window along the query 
sequence and processing each window separately. This produces 𝐿

300
 windows to 

proceed, where the window size is set to 300 in this experiment. Then, the time 
complexity of this tool should precisely be  𝐿

300
(𝑐1𝑊 +  𝑐2𝑁 +  𝑐3𝑁𝑊/4𝑤). 

 Therefore, the proposed prediction algorithm takes 𝑂(𝑁𝑛) times for extracting 
features and training process. It depends on the number of genomes and their lengths 
in training sample. The network learns the training samples only once, and it is ready 
for the prediction. It takes only constant time for every incoming input vector in testing 
process. In contrast, NCBI viral genotyping tool does not have training process so the 
running time spends for only the testing process. For every incoming tested genome, 
this tool takes  𝐿

300
(𝑐1𝑊 + 𝑐2𝑁 + 𝑐3𝑁𝑊/4𝑤), which depends on the length of query 

sequence, the number of generated words of length w, and the number of HPV 
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genomes in database. Then, the time consuming of this tool is considerably greater 
than the proposed prediction algorithms. 

Interestingly, it was found that, in the proposed techniques, the large number 
of tested vectors can be altogether fed to the predicting systems in the same testing, 
while only one query sequence at a time can be processed by this tool. So, this tool 
is not appropriate for large scaled tasks. 

In contrast, the proposed techniques, i.e. ChaosCentroid and ChaosFrequency, 
are based on Chaos game representation, which provides a unique and scale-
independent representation of DNA sequences through the statistical distribution of 
mono-, di-, tri-, or higher order nucleotides along DNA sequences. The Advantage of 
CGR over alignment is that it neither requires prior knowledge of consensus sequences 
nor it involves exhaustive searches for sequences in databases. 

However, the chaos game representation (CGR) also has some limitations. For 
instance, it spends some computational time to generate the representations from 
DNA sequences. In order to relieve this limitation, this experiment utilized the singular 
value decomposition to reduce the size of CGR into a smaller number of feature 
matrices so the computational time in the prediction process can also be reduced. 
From the experimental results, the proposed ChaosCentroid and ChaosFrequency can 
successfully extract the characteristic parameters of HPV genotypes for the prediction. 
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4.2 HPV Genotype Prediction from Partial Coding Sequences 

For the HPV partial coding sequence data set, the features obtained by three 
proposed extraction techniques were fed to the predicting system based on the fuzzy 
k nearest neighbor technique for predicting the corresponding HPV genotypes. 
Accordingly, the performance of HPV genotype prediction was separately summarized 
according to each feature extraction technique and the size of sub-regions in the Chaos 
game representation after being partitioned. The explanation and discussion of these 
experimental results were as follows. 
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4.2.1 ChaosCentroid 

The experimental results of the HPV genotype prediction gained by 
ChaosCentroid feature extraction with the predicting system based on fuzzy k-nearest 
neighbor technique are summarized in Tables 4-10. For the partial coding sequence 
data set, the lengths of nucleotide sequences are short and various, so some sub-
regions may contain a very few dots or none of dots. Thus, the partition of the Chaos 
game representation is limited because it cannot compute centroids for the empty 
sub-regions. For this experiment, the maximum value of  𝑛

𝑔
  that can be used to 

partition the CGR is 2, and the results show the low performance of the HPV genotype 
prediction due to an insufficiency of the partition. 

Table 4-10 The results of the HPV genotype prediction based on the features extracted by 
ChaosCentroid after partitioning the CGR into sub-regions of size 2 × 2. 

HPV 
Genotype 

Input Dimension 

2 

Acc Sen Spec MCC 

6 95.04 72.70 97.24 0.70 

11 96.70 64.44 98.14 0.61 

16 80.40 78.22 82.20 0.60 

18 96.19 57.78 97.91 0.55 

31 97.08 73.30 98.49 0.72 

33 97.68 35.09 98.84 0.34 

35 99.05 42.31 99.52 0.42 

39 98.48 39.02 99.26 0.39 

42 98.98 32.00 99.52 0.33 

45 99.05 19.05 99.58 0.21 

51 99.27 63.64 99.65 0.64 

52 97.55 52.22 98.89 0.54 

53 97.01 66.21 98.50 0.66 

56 98.00 50.00 99.03 0.50 

58 94.98 64.71 97.27 0.62 

59 98.32 23.53 99.13 0.22 

66 96.38 60.71 98.04 0.58 

68 98.06 6.25 99.01 0.05 

70 99.11 40.00 99.49 0.36 

71 99.17 47.83 99.55 0.45 

81 98.89 26.09 99.42 0.25 
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4.2.2 ChaosFrequency 

The experimental results of the HPV genotype prediction gained by 
ChaosFrequency feature extraction with the predicting system based on fuzzy k-
nearest neighbor technique are summarized in Tables 4-11 to 4-14. ChaosFrequency is 
more flexible than ChaosCentroid in a case that the frequencies would be zeros if the 
sub-regions contain none of dots. When  𝑛

𝑔
  is 2, the results of ChaosFrequency yielded 

the higher performance than those of ChaosCentroid. When 𝑛

𝑔
 is increased, the 

performances of ChaosFrequency are also moderately increased. 
 

Table 4-11 The results of the HPV genotype prediction based on the features extracted by 
ChaosFrequency after partitioning the CGR into sub-regions of size 2 × 2. 

 

HPV 
Genotype 

Input Dimension 

2 

Acc Sen Spec MCC 

6 96.16 77.66 97.98 0.76 

11 97.20 68.15 98.51 0.66 

16 85.55 84.12 86.72 0.71 

18 96.98 66.67 98.34 0.64 

31 96.06 63.64 97.98 0.62 

33 98.32 49.12 99.22 0.51 

35 99.68 76.92 99.87 0.80 

39 98.86 60.98 99.36 0.58 

42 99.40 64.00 99.68 0.62 

45 98.89 23.81 99.39 0.22 

51 99.11 66.67 99.45 0.61 

52 97.74 58.89 98.89 0.59 

53 97.62 73.79 98.77 0.73 

56 98.25 57.58 99.12 0.57 

58 95.87 72.40 97.64 0.69 

59 99.24 61.76 99.65 0.63 

66 97.55 70.71 98.80 0.71 

68 98.73 31.25 99.42 0.33 

70 99.11 35.00 99.52 0.33 

71 99.97 95.65 100.00 0.98 

81 99.59 69.57 99.81 0.71 
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Table 4-12 The results of the HPV genotype prediction based on the features extracted by 
ChaosFrequency after partitioning the CGR into sub-regions of size 4 × 4. 

 

HPV 
Genotype 

Input Dimension 

4 

Acc Sen Spec MCC 

6 99.08 95.39 99.44 0.94 

11 99.21 91.11 99.57 0.90 

16 93.36 93.32 93.39 0.87 

18 98.28 79.26 99.14 0.79 

31 97.90 78.41 99.06 0.80 

33 98.95 64.91 99.58 0.69 

35 99.62 80.77 99.78 0.78 

39 99.43 80.49 99.68 0.78 

42 99.65 80.00 99.81 0.78 

45 99.33 52.38 99.65 0.51 

51 99.36 78.79 99.58 0.72 

52 98.63 76.67 99.28 0.76 

53 98.41 83.45 99.13 0.82 

56 98.86 62.12 99.64 0.69 

58 97.94 84.62 98.94 0.84 

59 99.36 73.53 99.65 0.71 

66 98.32 79.29 99.20 0.80 

68 99.30 62.50 99.68 0.64 

70 99.59 75.00 99.74 0.70 

71 99.94 100.00 99.94 0.96 

81 99.68 73.91 99.87 0.77 
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Table 4-13 The results of the HPV genotype prediction based on the features extracted by 
ChaosFrequency after partitioning the CGR into sub-regions of size 8 × 8. 

 

HPV 
Genotype 

Input Dimension 

8 

Acc Sen Spec MCC 

6 98.98 93.26 99.55 0.94 

11 99.40 94.07 99.63 0.93 

16 95.30 95.29 95.30 0.91 

18 98.89 88.89 99.34 0.87 

31 98.25 83.52 99.13 0.83 

33 99.02 73.68 99.48 0.73 

35 99.78 84.62 99.90 0.86 

39 99.68 85.37 99.87 0.87 

42 99.71 72.00 99.94 0.80 

45 99.75 85.71 99.84 0.82 

51 99.81 87.88 99.94 0.91 

52 99.05 82.22 99.54 0.83 

53 98.79 86.90 99.37 0.86 

56 99.21 77.27 99.68 0.80 

58 98.38 90.95 98.94 0.88 

59 99.56 82.35 99.74 0.80 

66 99.08 86.43 99.67 0.89 

68 99.08 50.00 99.58 0.52 

70 99.78 80.00 99.90 0.82 

71 99.84 95.65 99.87 0.90 

81 99.81 82.61 99.94 0.86 
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Table 4-14 The results of the HPV genotype prediction based on the features extracted by 
ChaosFrequency after partitioning the CGR into sub-regions of size 16 × 16. 

 

HPV 
Genotype 

Input Dimension 

16 

Acc Sen Spec MCC 

6 99.21 95.39 99.58 0.95 

11 99.56 97.04 99.67 0.95 

16 95.58 95.50 95.65 0.91 

18 99.02 90.37 99.40 0.88 

31 98.44 83.52 99.33 0.85 

33 99.08 77.19 99.48 0.75 

35 99.87 88.46 99.97 0.92 

39 99.56 75.61 99.87 0.82 

42 99.71 80.00 99.87 0.82 

45 99.68 76.19 99.84 0.76 

51 99.71 93.94 99.78 0.87 

52 99.21 84.44 99.64 0.85 

53 99.11 86.90 99.70 0.90 

56 99.33 83.33 99.68 0.84 

58 98.60 90.95 99.18 0.89 

59 99.56 76.47 99.81 0.79 

66 99.02 90.71 99.40 0.89 

68 99.40 62.50 99.78 0.68 

70 99.75 80.00 99.87 0.80 

71 99.97 95.65 100.00 0.98 

81 99.62 78.26 99.78 0.75 
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4.2.3 ChaosPoly 

 The experimental results of the HPV genotype prediction gained by ChaosPoly 
feature extraction with the predicting system based on fuzzy k-nearest neighbor 
technique are summarized in Tables 4-15 to 4-17. According to the results, the 
performances obtained by ChaosPoly and by ChaosFrequency feature extraction 
techniques are in the same trend. That is, their performances are increased, in 
proportion to the number of sub-regions partitioning to the CGR. Additionally, the 
results also showed that almost all the performances of ChaosPoly are significantly 
higher than those of ChaosFrequency. Since both of ChaosFrequency and ChaosPoly 
were proposed based on computing the probability of distribution of different mono-
, di-, tri-, or higher order nucleotides along the nucleotide sequences, it can be implied 
that, in the case of having less information that can be found in nucleotide sequences 
with short lengths, such as partial coding sequences, computing the distribution in 
polynomial form has an ability to capture competently with the characteristic of HPV 
genotypes, rather than applying the singular value decomposition. Besides, the relation 
between the number of sub-regions and the size of units in computing the polynomial 
form can influence on the achievement of the prediction. To illustrate this point, the 
performances gained by the more number of units have a tendency to gain the higher 
performance, even though the CGR is partitioned by the same numbers of sub-regions. 
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Table 4-15 The results of the HPV genotype prediction based on the features extracted by 
ChaosPoly after partitioning the CGR into sub-regions of size 4 × 4. 

 

HPV 
Genotype 

Input Dimension 

4 

Acc Sen Spec MCC 

6 98.63 93.26 99.16 0.92 

11 99.56 94.81 99.77 0.95 

16 95.84 95.92 95.77 0.92 

18 99.17 91.85 99.50 0.90 

31 98.38 83.52 99.26 0.84 

33 99.27 80.70 99.61 0.80 

35 99.59 69.23 99.84 0.73 

39 99.46 80.49 99.71 0.79 

42 99.68 76.00 99.87 0.79 

45 99.75 80.95 99.87 0.81 

51 99.75 87.88 99.87 0.88 

52 98.92 76.67 99.57 0.80 

53 99.27 93.10 99.57 0.92 

56 98.76 66.67 99.45 0.69 

58 98.76 90.95 99.35 0.90 

59 99.65 82.35 99.84 0.83 

66 98.98 88.57 99.47 0.88 

68 99.05 50.00 99.55 0.51 

70 99.75 80.00 99.87 0.80 

71 99.84 100.00 99.84 0.91 

81 99.65 65.22 99.90 0.74 
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Table 4-16 The results of the HPV genotype prediction based on the features extracted by 
ChaosPoly after partitioning the CGR into sub-regions of size 8 × 8. 

 

HPV 
Genotype 

Input Dimension 

4 16 

Acc Sen Spec MCC Acc Sen Spec MCC 

6 99.21 95.39 99.58 0.95 99.71 98.58 99.83 0.98 

11 98.79 86.67 99.34 0.85 99.87 98.52 99.93 0.98 

16 94.92 95.50 94.43 0.90 99.02 99.30 98.78 0.98 

18 99.17 92.59 99.47 0.90 99.75 98.52 99.80 0.97 

31 98.38 85.23 99.16 0.85 99.46 96.02 99.66 0.95 

33 99.08 75.44 99.51 0.74 99.52 82.46 99.84 0.86 

35 99.71 76.92 99.90 0.82 99.90 88.46 100.00 0.94 

39 99.65 85.37 99.84 0.86 99.81 92.68 99.90 0.93 

42 99.56 64.00 99.84 0.70 99.94 92.00 100.00 0.96 

45 99.65 66.67 99.87 0.72 99.87 85.71 99.97 0.90 

51 99.90 93.94 99.97 0.95 99.97 100.00 99.97 0.99 

52 99.17 78.89 99.77 0.84 99.62 91.11 99.87 0.93 

53 99.11 88.28 99.63 0.90 99.78 95.86 99.97 0.97 

56 98.92 69.70 99.55 0.73 99.78 93.94 99.90 0.95 

58 98.86 92.76 99.32 0.91 99.78 99.10 99.83 0.98 

59 99.52 76.47 99.78 0.77 99.97 100.00 99.97 0.99 

66 99.11 90.00 99.53 0.90 99.87 98.57 99.93 0.99 

68 99.02 43.75 99.58 0.47 99.84 87.50 99.97 0.92 

70 99.78 70.00 99.97 0.81 99.94 95.00 99.97 0.95 

71 99.90 100.00 99.90 0.94 100.00 100.00 100.00 1.00 

81 99.71 82.61 99.84 0.81 99.90 95.65 99.94 0.94 
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Table 4-17 The results of the HPV genotype prediction based on the features extracted by 
ChaosPoly after partitioning the CGR into sub-regions of size 16 × 16. 

 

HPV 
Genotype 

Input Dimension 

4 16 

Acc Sen Spec MCC Acc Sen Spec MCC 

6 99.46 95.74 99.83 0.97 99.78 97.87 99.97 0.99 

11 99.27 92.59 99.57 0.91 99.75 96.30 99.90 0.97 

16 95.49 95.64 95.36 0.91 98.60 99.02 98.26 0.97 

18 99.43 93.33 99.70 0.93 99.65 96.30 99.80 0.96 

31 98.38 82.95 99.29 0.84 99.24 92.05 99.66 0.93 

33 99.14 70.18 99.68 0.74 99.43 82.46 99.74 0.84 

35 99.68 84.62 99.81 0.81 99.94 92.31 100.00 0.96 

39 99.62 82.93 99.84 0.85 99.81 92.68 99.90 0.93 

42 99.52 68.00 99.78 0.69 99.90 96.00 99.94 0.94 

45 99.62 66.67 99.84 0.70 99.94 90.48 100.00 0.95 

51 99.84 93.94 99.90 0.92 99.90 96.97 99.94 0.95 

52 99.24 86.67 99.61 0.86 99.62 92.22 99.84 0.93 

53 98.98 88.28 99.50 0.88 99.71 95.86 99.90 0.97 

56 99.30 84.85 99.61 0.83 99.81 93.94 99.94 0.95 

58 99.17 95.02 99.49 0.94 99.68 99.10 99.73 0.98 

59 99.49 79.41 99.71 0.77 99.94 100.00 99.94 0.97 

66 99.14 92.14 99.47 0.90 99.94 98.57 100.00 0.99 

68 99.36 62.50 99.74 0.66 99.75 84.38 99.90 0.87 

70 99.84 85.00 99.94 0.87 99.94 95.00 99.97 0.95 

71 99.90 86.96 100.00 0.93 99.97 100.00 99.97 0.98 

81 99.78 86.96 99.87 0.85 99.94 95.65 99.97 0.96 
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HPV 
Genotype 

Input Dimension 

64 

Acc Sen Spec MCC 

6 99.81 98.58 99.93 0.99 

11 99.78 98.52 99.83 0.97 

16 99.36 99.44 99.30 0.99 

18 99.81 98.52 99.87 0.98 

31 99.81 98.30 99.90 0.98 

33 99.65 91.23 99.81 0.90 

35 99.90 92.31 99.97 0.94 

39 99.84 95.12 99.90 0.94 

42 99.97 96.00 100.00 0.98 

45 99.94 90.48 100.00 0.95 

51 99.97 100.00 99.97 0.99 

52 99.78 95.56 99.90 0.96 

53 99.78 95.86 99.97 0.97 

56 99.90 96.97 99.97 0.98 

58 99.84 99.10 99.90 0.99 

59 99.97 100.00 99.97 0.99 

66 99.90 99.29 99.93 0.99 

68 99.84 90.63 99.94 0.92 

70 99.97 95.00 100.00 0.97 

71 100.00 100.00 100.00 1.00 

81 100.00 100.00 100.00 1.00 
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CHAPTER 5 
CONCLUSION 

Cervical cancer is the second most common cancer significantly causing 
morbidity and mortality in women worldwide, and a persistent Infection with high risk 
types of Human Papillomavirus is considered as a necessary cause of the cancer. HPV 
genotyping is essential to provide relevant information regarding risk stratification for 
diagnosis and medical treatment, in addition to reveal the better understanding of the 
relationship of HPV with carcinogenesis. Therefore, the objective of this dissertation is 
to develop the new algorithm for predicting the HPV genotypes. This experiment 
concentrates on predicting HPV genotypes from two significant forms of nucleotide 
sequences, namely, whole genomes and partial coding sequences.  

For the prediction from whole genomes, two new feature extraction 
techniques, i.e. ChaosCentroid and ChaosFrequency, were proposed. In this 
techniques, a partitioned Chaos Game Representation (CGR) was deployed to represent 
HPV genomes. ChaosCentroid captures the structure of sequences in terms of centroid 
of each sub-region with Euclidean distances among the centroids and the center of 
CGR as the relations of all sub-regions. ChaosFrequency extracts the statistical 
distribution of mono-, di-, or higher order nucleotides along HPV genomes and forms 
a matrix of frequency of dots in each sub-region. For performance evaluation, four 
different types of classifiers, i.e. Multi-layer Perceptron, Radial Basis Function, K-Nearest 
Neighbor, and Fuzzy K-Nearest Neighbor Techniques were deployed, and the best 
results from each classifier were compared with the NCBI genotyping tool. The 
experimental results obtained by four different classifiers are in the same trend. 
ChaosCentroid gives considerably higher performance than ChaosFrequency when the 
input length is one but it is moderately lower than ChaosFrequency when the input 
length is two. Both techniques yielded almost and exactly the best performance when 
the input length is greater than three. In addition, when comparing these proposed 
techniques with the NCBI Viral genotyping tool, it reveals that there is no significance 
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in prediction performance. But the time complexity of the proposed techniques is 
considerably less than that of the genotyping tool for every incoming tested genomes. 

For the prediction from partial coding sequences, ChaosPoly feature extraction 
technique was proposed. Since this data set contains the nucleotide sequences with 
short and various length, ChaosPoly gave more contemplation of extracting the local 
information hidden in sub-regions. In this technique, a partitioned Chaos Game 
Representation (CGR) was deployed to represent HPV genomes, and it extracted the 
statistical distribution of mono-, di-, or higher order nucleotides along HPV genomes 
and formed a matrix of frequency of dots in each sub-region, as ChaosFrequency. But 
this technique captured the relationship among sub-regions of the CGR in polynomial 
form. From the experimental results, ChaosCentroid was not appropriate for extracting 
the nucleotide sequences with short lengths because containing none of dots in some 
sub-regions can limit the numbers of sub-regions partitioning to the CGR. In addition, 
almost all the performances of ChaosPoly were significantly higher than those of 
ChaosFrequency. This implies that ChaosPoly has the ability to capture competently 
with the characteristic of HPV genotypes more than ChaosFrequency. Therefore, 
ChaosPoly is proper for the HPV genotype prediction in the case of having less 
information, which can be found in nucleotide sequences with short lengths, such as 
partial coding sequences. 
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