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ABSTRACT (THAI) 
 สุรีรัตน์ มากเมือง : การตรวจวัดน ้าตาลในเครื่องด่ืมท่ีไม่มีแอลกอฮอล์โดยใช้สเปกโทรสโกปี

อินฟราเรดย่านใกล้ร่วมกับเคโมเมทริกซ์. ( DETERMINATION OF SUGAR IN NON-
ALCOHOLIC BEVERAGES USING NEAR INFRARED SPECTROSCOPY COMBINED WITH
 CHEMOMETRICS) อ.ท่ีปรึกษาหลัก : ผศ. ดร.คเณศ วงษ์ระว,ี อ.ท่ีปรึกษาร่วม : ผศ. ดร.
พร้อมพงศ์ เพียรพินิจธรรม 

  

การตรวจวัดด้วยเทคนิคสเปกโทรสโกปีอินฟราเรดย่านใกล้ร่วมกับเคโมเมทริกซ์ถูก
น้ามาใช้อย่างแพร่หลายส้าหรับการควบคุมคุณภาพของผลิตภัณฑ์อาหาร  ในงานวิจัยนี น้าเสนอ
วิธีการสร้างแบบจ้าลองท่ีมีช่ือว่า “แบบจ้าลองสากล” โดยแบบจ้าลองดังกล่าวสร้างจากข้อมูลท่ีได้
โดยการวัดด้วยเทคนิคเปกโทรสโกปีอินฟราเรดย่านใกล้ของสภาวะแรก เพื่อใช้ท้านายค่าตอบสนอง
จากสภาวะอื่น ๆ (สภาวะท่ีสอง) ได้อย่างถูกต้อง งานวิจัยนี ใช้แบบจ้าลองสากลเพื่อท้านายปริมาณ
น ้าตาลกลูโคสในเครื่องด่ืมท่ีไม่มีแอลกอฮอล์ วิธีการสร้างแบบจ้าลองสากลมี 3 ขั นตอนหลัก คือ 
ปรับสเปกตรัม เลือกช่วงท่ีส้าคัญของข้อมูล และดึงข้อมูลท่ีเป็นส่วนประกอบหลัก ดังนั น เพื่อเป็น
การพิสูจน์แนวคิดของแบบจ้าลองสากลดังกล่าว ผู้วิจัยจึงได้จ้าลองเปกตรัมของอินฟราเรดย่านใกล้
ท่ีถูกรบกวนจากส่ิงอื่น ๆ ท่ีไม่เกี่ยวข้องกับระบบขึ น จากผลการทดลองพบว่าแบบจ้าลองสากล
สามารถท้านายความเข้มข้นของน ้าตาลกลูโคสได้ถูกต้องมากขึ น 30 เปอร์เซนต์เมื่อเปรียบเทียบกับ
แบบจ้าลองปกติ จากนั นแบบจ้าลองสากลดังกล่าวถูกน้าไปท้านายความเข้มข้นของน ้าตาลกลูโคส
ในน ้าชา โกโก้ และกาแฟ ผลการค้านวณพบว่าค่ารากท่ีสองของค่าเฉล่ียความคลาดเคล่ือนจากการ
ท้านายคือ 0.72 (r2 = 0.9977) 0.99 (r2 = 0.9965) และ 0.54 (r2= 0.9940) ตามล้าดับ ดังนั น
อาจกล่าวได้ว่าแบบจ้าลองสากลนี สามารถท้านายปริมาณน ้าตาลกลูโคสในเครื่องด่ืมท่ีไม่มีแอ
ลกอฮล์ได้โดยไม่ต้องสร้างแบบจ้าลองมาตรฐานใหม่ 
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ABSTRACT (ENGLISH) 
# # 5972085423 : MAJOR CHEMISTRY 
KEYWORD:  
 Sureerat Makmuang : DETERMINATION OF SUGAR IN NON-

ALCOHOLIC BEVERAGES USING NEAR INFRARED SPECTROSCOPY COMBINED 
WITH CHEMOMETRICS. Advisor: Asst. Prof. KANET WONGRAVEE, Ph.D.,Asst. 
Prof. Prompong Pienpinijtham, Ph.D. 

  
The measurement of Near infrared (NIR) spectroscopy, combined with 

chemometric techniques, has been widely employed for quality control in food 
products. This study presents a methodology to optimize the calibration models, 
called “universal model” of NIR spectra of primary condition (glucose solutions) 
and maintain the accurate prediction of secondary conditions. For instance, the 
models were designed for determination of glucose concentration in non-alcoholic 
drinks. Three stages of methodology including pre-processing, feature selection and 
main component extraction were applied to spectral data in order to obtain the 
universal calibration model. The simulated NIR spectra with different noise levels 
were used to ensure that the model from our methods is able to estimate amount 
of sugar in any conditions with high accuracy. From the analysis, the universal 
model improves the prediction for the test set (unseen data) for at least 30 
percent compared to the other predictions. Then, it was used to quantify amount 
of glucose in non-alcoholic beverages (tea, cocoa and coffee in the case). The 
promising value for root mean square error of prediction (RMSEP) were obtained to 
be 0.72 (r2 = 0.9972), 0.99 (r2 = 0.9965) and 0.54 (r2 = 0.9940) corresponding to tea, 
cocoa and coffee system, respectively. Therefore, it might be implied that our 
universal model approach can be used to estimate glucose concentrations in other 
non-alcoholic drinks without any requirement of a new calibration model. 
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1 
 

CHAPTER I  

INTRODUCTION 

 

1.1 Introduction 

In recent years, near infrared spectroscopy (NIR) has broad prospects for the 

quality measurement system in various fields such as agriculture, pharmaceuticals and 

food industry. It displays to be reliable one of the promising nondestructive 

techniques. The attraction of NIR lie in its advantages over other analytical techniques 

such as no requirement for sample pretreatment, very fast and easy to implement1. 

NIR spectroscopy is among the vibrational techniques that measure wavelengths from 

800 nm to 2500 nm2. The band regions of NIR are based on molecular overtones and 

combination vibrations of C-H, O-H and N-H which are the primary functional 

groups of organic molecules3. It enables qualitative and quantitative assessment via 

spectral information and multivariate calibration models especially for complex 

chemicals in food and drinks such as protein4, carbohydrate5 , sugar6 and lipids7. 

There are evident that NIR has simplified and helped to quantify a variety of element 

in food such as moisture, protein, wet gluten and fat8. With the advance of 

technology, the prices of commercial NIR instruments in the current market is 

relatively cheap as there are the development of micro-electromechanical system 

(MEM) technology. Therefore, it offers the NIR detection using such a small sensor 

chip. It is foreseeable that the current NIR spectrometer can produce a large amount 

of data. However, due to overtone and combination bands of NIR spectrum contain 

very complex and many overlapping signals. Consequently, the distinguished and 

characteristic peaks of an analyze are difficult to identify by conventional band 

assignment methods and spectral analysis method9. More sophisticated approaches 

with mathematical and statistical tools are required to extract analytical information 

from the corresponding NIR spectra.  

 Chemometrics is an application of mathematical and statistical methods to 

data that is underlying chemical in nature to obtain relevant information8. Multivariate 

data analysis on visualization, calibration and classification are among the most 

important and widely used in chemometrics methods. In this study, only multivariate 
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calibration is discussed. The multivariate calibration investigates the relationship 

between two set of variables which usually defines as “predictor” variables 

(dependent ‘X’ block) and “response” variables (independent ‘y’ block) which can be 

in form of vector or matrix. The predictor variable is an independent variable that is 

being manipulated in an experiment while the response variable is the effects from 

whose variation is being studied. Examples of the predictor variable including 

physical-chemical measurements are wavelengths in the case of NIR spectra. The 

responses are properties of interest such as concentrations in the case. Multivariate 

calibration always involves two major stages: (1) Modelling where a calibration 

model is constructed using samples with known properties as “training set” and (2) 

Prediction which involves the prediction of unknown samples as “test set” based on 

the built relationship information obtained from the first stage. Overall model was 

shown in Figure 1.1. From figure 1.1, the training set consists NIR spectra of N 

variable and M sample and a response variable vector (y). A coefficient vector (b) is 

calculated based on the maximum correlation coefficient between data matrix X and 

response vector y. Then, these coefficients were used to predict response of the 

external test set (ypredict). 

To build a good calibration curve from a single defined peak from NIR spectra 

might not sufficient. Chemometrics has most often been used to extract specific 

features to specific chemical components in the NIR spectra for effective 

interpretation. A main part of chemometics is multivariate data analysis, which is 

pivotal for quantitative and qualitative assay based on NIR spectra. Multivariate data 

analysis techniques such as principal component analysis (PCA)10 and partial least 

squares (PLS)11 are used to mathematically predict the pure component spectra and 

pure component concentration profiles from the set of NIR spectra. Mostly, PLS have 

been frequently used to build the calibration model from NIR spectra12. A calibration 

model is a mathematical relationship between the acquired spectra and factor of 

interest and generated calibration model can be used to predict the response of the 

unknown samples. By conventional way, each calibration model is required for each 

system. To obtain an appropriate quantification, a new calibration model must be 

constructed for any new system. It is inevitable, in case of many systems need to build 

a new calibration model 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

 

 

Figure 1. 1 Summarize model generation by partial least square regression (PLS), with 

N obtains total number of variable (wavelength), Mtrian obtains total number of sample 

from training set, Mtest obtains total number of sample from test set 

 

all times rendering a multivariate calibration model invalid. Hence, the limitation of 

prediction capabilities in multivariate spectral calibration model was occurred because 

time consuming, costly, involving selection and preparation of a large numbers of 

calibration sample sets. In reality, it is not possible to obtain all calibrations due to the 

limitation of laboratory and the measurement conditions. Therefore, the process of 

searching for the chemometric approaches to interpret and improve the predictive 

ability on future samples in different system is called “Calibration maintenance”13. 

Model maintenance can be roughly defined as the ongoing upkeep of calibration 

model of primary condition to maintain their predictive abilities of secondary 

conditions. The goal of model maintenance is to preserve or to improve models over 

time and changing conditions with the least amount of effort, cost and it should be 

done automatically. In practical application, it is preferable to produce the universal 

calibration model that can be used to predict another system without any requirement 

of set up new calibration curve for quantitative as shown in Figure 1.2.  
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Figure 1.2 an overview of the step for universal calibration model to predict unknown 

sample in another system 

 

 

From Figure 1.2, it is a brief summary of our model maintenance idea. 

Initially, primary condition consists of 3 components including analyte (glucose), 

solvent (water) and noise (other chemical content). Subsequently, principal 

component analysis was performed on the data of primary condition to extract main 

components (analyte + solvent) that will later represent in form of new data matrix. 

After that, the calculation model was constructed from the matrix as a universal model 

by using PLS. The generated model involves only the relation of the extracted main 

components, in the case, the noise might not affect the model. Therefore, this model 

can be used to quantify amount of analyze in secondary conditions with high accuracy 

and precision. 

In the reality, there are many maintenance methods such as simple univariate 

slope and bias correction method14 that is one of the most widely methods for 

correcting predictive value to standardize the calibration models. Therefore, the 

calibration developed on primary condition has an ability to predict the response in 

secondary condition. Direct standardization (DS) is a common calibration 

maintenance that uses the correlation coefficients between matrices from primary and 

secondary condition to standardize the calibration model15-16. In the extended 

standardization called “Piecewise direct standardization (PDS)” were developed17. 

From the method, the data is segmented into small sub-windows and the correlation 

coefficients are determined using PLS rather than the simple multiple linear 
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regression (MLR) in DS18. However, the disadvantages of these methods are that 

utilizes all the variations in the data must be utilizes therefore the variation of primary 

condition must be standardized together with all other conditions. The prediction 

cannot be accurate when the model is used to predict a sample from an unknown 

condition. The approach does not produce “universal” model as demonstrated 

previously. 

 

Glucose in non-alcoholic drink  

Glucose is an aldolic monosaccharide that is essential in the processes of 

photosynthesis and respiration, serving as an energy storage and metabolic fuel in 

most organisms19. Moreover, glucose plays an important role in our daily life in form 

of food and beverage. Non-alcoholic beverages are the soft drinks heavily consumed 

mainly because of their nutritional values and companies promote and market them 

everywhere. Naturally, glucose is the major content in mostly soft drink. They 

provide energy for the body and also in the physiological processes within the human 

body. To receive of glucose may lead to excessive energy intake, increasing the risk 

of overweight and obesity20. For this reason, determination of glucose content in non-

alcoholic beverages are important. In last decade, various techniques for the 

determination of glucose have been published. Three standard techniques were used 

to determine amount of pure sugar and in mixing sugar solution including density 

measurement, refractive index measurement and enzymatic assay21. In 1999, Harms et 

al. reported a new method for determination of glucose in soft drinks base on the 

glucose oxidase-catalyzed oxidation, resulting the limit of detection (LOD) is 10 

μmol/l (1.8 ppm)22. Although this method is specific, rapid and reproducible, but they 

require single determination for each compound, which is time consuming and 

expensive. Meanwhile, several methods to quantify amount of glucose have been 

developed as well. High-performance liquid chromatography (HPLC) is a standard 

method used for analyzing glucose in non-alcoholic beverages. In 1992, Akiyama et 

al. developed column packing material and applied to the separation of many kinds of 

sugar to determine amount of sugar (glucose, sucrose) in soft drinks. This method can 

be used to predict amount of sugar of approximately 4.2 g per 100 mL in drink23. 

However, they require tedious sample preparation and a relatively long analysis time 
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for each analysis. In contrast, vibrational methods are non-destructive, easy to use, 

rapid, and do not require sample preparation. Near infrared spectrometry (NIR) are 

novel and useful alternative to the classical methods mentioned above. Rambra and 

Guardia reported the method for the direct determination of sugar in fruit juice 

samples12. This method base on the partial least square (PLS) calculation on the first 

derivative near infrared (NIR) spectra. The limit of detection values are in the range 

of 0.2 g/100 ml total sugar and 0.2 g/100 ml for glucose. In 2009, Xie et al. used near-

infrared (NIR) spectroscopy to detect and quantify glucose, fructose and sucrose in 

bayberry juice24. For the result, root square error of cross validation in range of 0.1-

0.5, it can be noticed that this method provided an accurate and precise way for 

determination of glucose, fructose and sucrose in real samples. However, from 

literature reviews, it can be seen that the determination of glucose using NIR 

spectroscopy reveals the accuracy of the evaluating models which were not very 

perfect compared to HPLC method. Nevertheless, NIR spectroscopy is preferable by 

reasons of their ability to dramatically reduce consuming time and cost of monitoring 

without any chemical treatment.  

 In this work, a new alternative method for calibration maintenance was 

proposed. The idea involves 2 major steps. Firstly, the major components were 

extracted from the calibration of primary condition (glucose solutions). The 

calibration model for prediction was built using only major components for prediction 

of glucose in secondary conditions. Secondly, the optimization of the calibration 

model including number of principal components, number of PLS components and 

effective wavelength regions were performed. This proposed method was totally 

automatic, therefore, it can be applied in other systems. In this study, the simulated 

datasets with different added noise levels were generated in order to prove our 

proposed concept. For practical system, quantification amount of glucose in non-

alcoholic beverages (tea, cocoa and coffee) were chosen to demonstrate this particular 

application of the idea because it is a simple system and it benefits in many aspects 

such as nutritional labeling, detection of adulteration, food quality and economics. 

This protocol can be used in any secondary condition contain water and glucose as 

major components without any requirement of set up new calibration curve.   
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Table 1.1 Literature reviews of determination of sugar in non-alcoholic drink using 

Near-Infrared spectroscopy combined with chemometrics 

 
Year Journal System Chemometrics Detection 

limit 

Accuracy Ref 

1981 Journal of 

food of 

science 

 glucose,fructose 

and sucrose 

 dried apple 

tissue 

MLR 20.03 

%w/w 

Predicted error 

= 4.6 

SD = 0.90 

25 

1984 Journal of 

food of 

science 

 glucose,fructose 

and sucrose 

 fruit juice 

sample 

PLSR 2.22-

14.90 

g/100ml 

 26 

1997 Analytica 

Chimica 

Acta 

 total sugar, 

sugars, glucose, 

sucrose,fructose 

 fruit juice 

sample 

PLSR 0.2 

g/mol 

RSD = 0.4-2.3% 12 

2006 Journal 

agriculture 

and food 

chemistry 

  glucose, 

fructose and 

sucrose  

 apple juice 

PLSR 0.059 

g/100g 

 

RMSEP = 0.201 

RMSEC = 0.275 

27 

2009 Food of 

chemistry 

 glucose,fructose 

and sucrose  

 bayberry juice 

PLSR 2.10 

g/100g 

 

RMSEP = 0.093 

RMSEC = 0.0826 

 

24 

2015 Journal of 

near 

infrared 

spectro 

scopy 

 glucose,fructose 

and sucrose 

 roasted green 

tea  

PLSR 8.00 

g/100g 

 

RMSEP = 0.408 

RMSEC = 0.313 

 

28 

 

Note:   MLR   : Multiple Linear Regression  

               PLSR  : Partial Least Squares Regression  

                        RMSEP : Root Mean Square Error of Prediction  

   RMSEC : Root Mean Square Error of Calibration  

   SD  : Standard Deviation  

   RSD  : Relative Standard Deviation  
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However, glucose in alcoholic beverages was neglected in this study. Since 

molecular structures of alcohol (C2H5OH) contains only ethyl group (C2H5-) and 

hydroxyl group (-OH) which are similar to the main functional groups of sugar, 

therefore, the overtone patterns of alcohol will be strongly affected to the overtones of 

sugar. Moreover, the ethyl alcohol is easily volatile that the contents cannot be 

controlled during the detection. Furthermore, most of alcoholic drinks contain less or 

without sugar which is not suitable for use in sugar detection. 

 

1.2 Objective of this work 

To develop a calculation procedure based on chemometrics for determination 

of glucose concentration in non-alcoholic beverages using Near Infrared Spectroscopy 

 

1.3 Scope of this work 

This study involves the development of procedure based on chemometrics to 

perform the universal calibration model. The model was built from primary conditions 

(glucose in water solution). The developed procedure was performed in order to use 

the model (from primary condition) to determine glucose concentration in secondary 

conditions (tea, cocoa and coffee in the case). The limitation and performance of 

developed procedure was evaluated by using the simulated dataset (NIR spectra) with 

different added noise level. 
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CHAPTER II 

THEORETICAL BACKGROUND 

 

2.1 Near infrared spectroscopy 

Over the past 30 years, on/in-line near infrared NIR spectroscopy has been 

developed to be one of the most efficient and advanced technique for controlling and 

estimation of quality assessment not only in the food processing but also gain wide 

acceptance in pharmaceutical industry, biotechnology, plastics and textiles29. NIR 

spectroscopy is a vibrational spectroscopic technique among the infrared light 

spectrum with close to visible region that can be expressed in range of 750 nm and 

2500 nm as shown in Figure 2.1  

 

 

 

Figure 2. 1 the range of electromagnetic radiation in UV (10 nm to 400 nm), visible (400 

to 700 nm), infrared (700 nm to 1 mm) and NIR (700 -2500 nm) 

 

NIR spectroscopic method is based on molecular overtone and combination 

vibrations of C-H, O-H and N-H. Combination bands originate by concurrently 

interaction between two or more vibrations30-31. Generally, even a normal mode of 

vibrational following to internal atomic motions in which all atoms move in phase 

with same frequently but different amplitude. Moreover, these normal vibration 

transition was called overtone. According to the selection rules of quantum mechanics 
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mention normal transition are prohibited cause molar absorptivity in the NIR region is 

very small30. One of the rules that govern the basics idea of vibrational spectroscopy 

is Hooke’s law. Hooke’s law states that, for two body harmonic oscillators, the 

frequency of vibration is 

 

𝜈 ̃ (in cm-1)   =   
1

2𝜋ś
 √

𝜀(𝑢1 + 𝑢2)

𝑢1𝑢2
 

 

Where, ś = speed of light, ε = force constant (5 x 105 dynes/cm) 

u1 and u2 is mass of molecule 1 and molecule 2, respectively. 

 

Normally, fundamental vibration for diatomic molecules can be calculated by 

Hooke’s law. To make it easy to understand, the simple example was shown in Figure 

2.2.  

 

 

 

Figure 2. 2 vibration transition of diatomic molecule 

 

Transition from ground (v = 0) to the first excited state, namely fundamental 

bands which absorbs strongly light in IR render to high intense band. Transition from 

the ground state to the second exited state with absorption of NIR that perform weak 

bands was called 1st overtone in NIR. Transition from ground state to the third exited 

state with the absorbance of NIR cause to weak band, namely 2nd overtone. In a 

similar way, transition from the ground state to fourth and fifth exited state with 
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absorbance of NIR will be provided 3rd and 4th overtone, respectively. Additionally, 

the near infrared absorption region that correspond to vibrational transition 

(mentioned above) was shown in Figure 2.3 

 

 

Figure 2. 3 Near infrared overtone absorptions 

 

Obviously, weakly absorbed bands occur in the NIR regions due to the 

overtone and combination bands. As a result, it difficult for use of NIR spectral 

information for analytical purpose. Therefore, mathematical and statistical method is 

usually combined with NIR spectra for extracting as much relevant information as 

possible from analytical data1. Chemometric is one of the methods in order to extract 

the necessary information for further analysis.  

 

2.2 Chemometrics 

Chemometrics is an application of mathematical and statistical methods to 

extract only the essential component from NIR spectra comprising complicated 

overlapping absorption bands. Multivariate data analysis on visualization, calibration 

and classification are among the most important and widely used in chemometrics 

methods. 

2.2.1 Principal component analysis (PCA) 

Principal component analysis (PCA) is one of tool from multivariate statistics 

that help to drastically reduce dimensionality in a large dataset, while that most of the 
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essential information is preserved32. Basically, PCA was used to extract the main 

component from data matrix base on two principal idea, including the number of 

significant PCs which ideally equal to the number of significant component (such 

there are three components in the mixture, then only three PCs was expected), the 

other one is characterization of each PC by loadings and scores.  

 NIPALS (Nonlinear Iterative Partial Least Squares) is a common, iterative 

algorithm often used for PCA33. Briefly, it extracts components one at a time, and can 

be stopped after the desired number of PCs has been obtained. The steps are as 

follows: 

 

Initialization 

1. Originate a data matrix X which is used for PCA. 

 

New Principal Component 

2. Take a column of this matrix (often the column with greatest sum of squares) as 

the first guess of the scores first principal component; called initial�̂�. 

 

Iteration for each principal component 

3. Calculate    �̂� 
unnorm 

   =       
�̂�T

𝒊𝒏𝒊𝒕𝒊𝒂𝒍 .  𝑿

∑�̂�𝟐  

4. Normalize the guess of the loading, so 

                                           �̂�     =   
�̂�𝑢𝑛𝑛𝑜𝑟𝑚

√∑�̂�𝑢𝑛𝑛𝑜𝑟𝑚 
 

5. Now calculate a new guess of the score: 

        �̂�𝑛𝑒𝑤  =    X .  �̂�T
 

Check for Convergence 

6. Check if this new guess differs from the first guess; a simple approach is to look at  

the size of the sum of square difference in the old and new scores, i.e.                              

∑(�̂�𝑖𝑛𝑖𝑡𝑖𝑎𝑙  − �̂�𝑛𝑒𝑤)2. If this is small, the PC has been extracted, set the PC scores 

(t) and loading (p) for the current PC to �̂� and �̂�. Otherwise, return to step 3, 

substituting the initial scores by the new scores. 
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Compute the Component and Calculate Residuals 

7. Subtract the effect of the new PC from the data matrix to obtain a residual data 

matrix: 

                                  𝑿𝑟𝑒𝑠𝑖𝑑    =      X – t . p 

 

Further PCs 

8. If it desires to compute further PCs, substitute the residual data matrix for X and 

go to step 2. 

 

2.2.2 Partial least square (PLS) 

In order to construct a calibration model, partial least square (PLS) is one of the 

most popularly used multivariate calibration methods. Its purpose is to predict a 

dependent variable, y (of size M x 1 where M is the number of samples), from a 

matrix of independent variables or predictors, X (of size M x N where N is number of 

wavelengths), by projecting X and y to the latent subspaces that maximise the 

covariance between them34. This criterion combines high variance of X and high 

correlation with the interesting property of y. According simple structure of this latent 

variable (LV) model, T is a score matrix obtaining K LVs, K ≤ N (of size M x K); P is 

a loading matrix (of size K x N) and q (of size K x 1) are matrices of coefficients that 

relate T to predictor (wavelength) and predicted variable (sample), respectively; e and 

f represent the residual information in X and y after K LVs, respectively34. 

 

X = T . P + e     (1) 

y = T . q + f      (2) 

 

 In order to estimate T value, the general form was shown in equation (3), where H is 

a matrix of weights (of size N x K), usually estimated using the NIPALS algorithm. 

 

T = X . H           (3) 

Subsequently, T in equation (2) was substituted by equation (3) leads to the simple 

equation for prediction of y (eq. 4), (where y corresponds to the matrix of predicted 
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variables (each column of which follows to a different number of LVs) and b (of size 

N x 1) obtain the matrix of estimated regression coefficients. 

 

                         y = X . b                        (4) 

 

All parameters can be calculated following this step: 

 

Initialization 

1. To obtain matrix X which is used for PLS. 

2. Take the concentration vector y and preprocess it to give the vector c which is 

used for PLS. Note that if data matrix X is centred down the columns, the 

concentration vector must also be centred. Generally, centring is the only from of 

preprocessing useful for PLS. Start with an estimate of �̂� that is vector of 0s (equal 

to the mean concentration if the vector is already centred). 

 

New PLS component 

3. Calculate the vector 

H = 𝑿T. c 

4. Calculate the score, which are simply given by 

T = 
𝑿 .  𝑯

√∑𝑯𝟐
 

5. Calculate the X loadings by 

P = 
𝑻T.  𝑿

∑𝑻𝟐     

6. Calculate the c loading (a scalar) by 

q = 
𝒄T .  𝑻

∑𝑻𝟐  

Compute the component and calculate residuals 

7. Subtract the effect of the new PLS component from the data matrix to get a 

residual data matrix: 

Xresid = X - T . P 

8. Determine the new concentration estimate by 

                                           �̂�new  =   �̂�initial + T . P 
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and sum the contribution of all component calculated to give an estimated �̂�. Note that 

the initial concentration estimate is 0 (or the mean) before the first component has 

been computed. Calculate 

 cresid = ctrue - �̂�new   

where ctrue is, like all values of c, after the data have been preprocessed (such as 

centring). 

 

Further PLS Components 

9. If further components are required, replace both X and c by the residuals and 

return to step 3. 

Note that in the implementation used in this text the PLS loading are neither 

normalize nor orthogonal.  
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CHAPTER III 

EXPERIMENTS 

 

3. Materials and Methods 

3.1 Chemicals and Materials  

Analytical grade of D (+) – glucose was purchased from Ajex Finechem. 

Ingredients for the preparation of non-alcoholic drinks including tea, cocoa and coffee 

were bought from local supermarkets (Tesco lotus at Chamchuri Square, Bangkok, 

Thailnd). The dried tea leaves were purchased from Three Horses Tea Co.,Ltd., while 

Dutch cocoa powder were bought from Pongjit Company Limited. Instant Coffee 

Mixed with Finely Ground Roasted and Coffee were purchased from Quality Coffee 

Products Ltd. All of them was used without any further pretreatments. In this work, 

glucose solutions and non-alcoholic drink were prepared by using distilled deionized 

water (DI). All glassware was cleaned up with detergent followed by DI water for 

several times. 

 

3.2 Sample preparation 

For preparation solution of non-alcoholic drinks, the dried tea leaves were 

measured for 5 g (low) and 10 g (high) which was incubated in the 200 mL of hot DI 

water for 5 minutes. Then the solution was filtered to separate tea leaves in order to 

obtain the stock of tea solution. In case of soluble ingredients (e.g. cocoa and coffee), 

the stock solutions were prepared using 5 g (low) and 10 g (high) of the cocoa powder 

were dissolved in a 200 mL of hot DI water and were stirred until all powders were 

dissolved. This preparation protocol was repeatedly performed using the instant 

coffee. From this step, the stock solutions with high and low level of tea, cocoa and 

coffee were successfully prepared and were undisturbedly left until the temperature of 

the solution were cooled to the room temperature (25˚C)  

Subsequently, the glucose solutions were prepared using DI water as primary 

condition and the stock of non-alcoholic drink solution including tea, cocoa and 

coffee as secondary conditions. A calibration set of samples was prepared with 
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glucose concentrations at 3, 5, 7, 10, 12, 14, 16, and 18 %w/w using DI water as 

solvent. To prepare percent weight of solution, all steps were performed on the           

 

 

Figure 3. 1 Preparation procedure of stock solution of non-alcoholic drink including (A) 

tea, (B) cocoa and (C) coffee solution at low level (5g /DI 200 mL) which were further 

use as solvent for secondary condition. In order to obtain high level, 10g /DI 200 mL of 

tea, cocoa and coffee was used 

 

balances with 4 digits. These ranges of the glucose concentrations (3-18 %w/w) were 

chosen from the average of total sugar in commercial non-alcoholic beverages (100 

different types of drink from 20 bands). To perform the other calibration sets, the 

stock solution of tea, cocoa and coffee (secondary conditions) were used as solvents 
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instead of DI water. The validation set was prepared with the glucose concentration at 

4, 8, 13 and 17 %w/w which are different from the concentration in the calibration set. 

This set was used to validate and evaluate the calibration model build from the 

calibration set of samples. The scheme of the preparation process was shown in 

Figure 3.1 and 3.2. 

 

 

 

Figure 3. 2 Procedure for preparation of glucose solution of non-alcoholic drink (3% 

w/w in the case) using the stock solution of (A) tea, (B) cocoa and (C) coffee as solvent. 

The procedure will be repeated for glucose concentrations at 5, 7, 10, 12, 14, 16, and 18 

%w/w 
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3.3 Spectral acquisition 

NIR spectrometer with NIR256-2.5 detector, LS-1 tungsten halogen light 

source and fiber optic connector (SMA 905 to 0.22 numerical aperture single-strand 

optical fiber) purchased from Ocean Optics was used to acquire NIR spectra of the 

samples. To obtain homogeneous glucose solution, the samples were vigorously 

stirred for one hour before the NIR acquisition. In order to control the temperature of 

solution, all of samples were incubated in the water batch controlled at 25oC and the 

humidity was kept at a steady level in the laboratory prior the detection. In case of 

secondary conditions, the glucose solutions of tea, cocoa and coffee were centrifuged 

at 5000 rpm for 5 minutes using a temperature-controlled centrifuge (Andreas Hettich 

GmbH & Co. KG, Germany), then filtered through a 0.45 μm nylon filter in order to 

remove all small particles that might scatter the incident light during the NIR 

detection. According to the high absorptivity, the sample holder was developed and 

the path length was controlled by spacer of 0.4 mm put between the two individual 

quartz slide. The setup scheme of NIR instrument used in this work is shown in 

Figure 3.3. The NIR spectra of the samples were collected using transmittance mode 

in the range of 1350 nm - 2350 nm using path length 0.4 mm, integration time of 1 

millisecond and 32 averaged scans with smoothing windows of 1. Each sample was 

measured three replicated times. NIR spectra were preprocessed using standard 

normal variate (SNV) to remove multiplicative interferences of scatter and particle 

size. The preprocessed NIR spectra was used for the further multivariate data analysis.  

 

3.4 Reference measurement 

The accuracy of glucose contents in the solutions were verified by high 

performance liquid chromatography (HPLC) from food research and testing 

laboratory (FRTL) Chulalongkorn university to avoid mislabeled samples. The 

separation column in HPLC was Zorbax NH2 (4.6 x 250 mm, 5 μm) column with 

mobile phase of Acetonitrile : H2O (70:30), flow rate of 1.5 mL/min, run time of 15 

min and refractive index detection (RID). The determined amount of glucose from the 

standard HPLC was used as the benchmark of our prepared glucose solutions. 
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Figure 3.3 A set up of NIR spectrometer for spectrum acquisition 

 

 

 

Figure 3.4 Comparison of glucose contents in water and tea between present glucose 

concentration and glucose concentration determined from HPLC at food research and 

testing laboratory (FRTL) Chulalongkorn university 
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Figure 3.4 shows the comparison between presetting glucose concentration 

(%w/w) shown in pink bar chart and concentration of glucose in water and tea 

determined by HPLC representing in blue and gray chart, respectively. For sample 

prepared in 2017, it can be seen that presetting glucose concentration were slightly 

different from the concentration determined by HPLC. This might due to the 

preparation protocol and error from instruments. For next testing (2018), the balance 

was calibrated with the standards of the American Society of Testing Materials 

(ASTM E617). After calibrating balance, the accurate results with < 0.5% difference 

were obtained.   

 

3.5 Data simulation 

According to Beer-Lamberts law, the absorbance of a mixture is a linear 

combination of the pure spectrum of chemical species and their concentrations. The 

synthetic NIR spectra were generated by summation of spectra generated from water, 

glucose and noise. In this case, the noise level can be controlled in order to investigate 

the performance and limitation of our developed calibration model. Pure spectra of 

water and glucose were obtained by the acquired spectrum of pure water and pure 

melt glucose. Noise spectra were generated using the latter PC loading from the 

spectra of glucose solutions. The simulated NIR spectra was built by summation of 

spectra from water, glucose and noise as shown in Figure 3.5. 

 

 

Figure 3.5 Concept idea of NIR simulated calculation 

 

 

Constraint : ctotal  = cwater + cglucose + ∑cnoise % 100 =w/w all of parameter  

          cwater = 100 – (cglucose + ∑cnoise) 
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where  M   is total number of sample 

            N  is total number of wavelength 

            cwater  is water content (%w/w) 

            xwater  is pure spectrum of water 

            cglucose is glucose content (%w/w) 

           xglucose   is pure spectrum of glucose 

cnoise  is noise content (%w/w) that was simulated base on distribution 

            xnoise   is noise spectrum that come from latter loading PC 

            ctotal       is total content (100 %w/w) 

            Xsimulate  is simulated dataset 

 

The absorbance spectrum of M mixtures containing different concentrations of a 

diluent (water) and a species of interest (glucose) generated with N wavelengths can 

be grouped in a data matrix (X) where each row represents the spectrum of mixture 

and each column is wavelength. In this case, the pure spectrum of each species was 

constrained in all mixtures, while the concentration fraction was controlled by 

concentration vector of each species. The mass balance was used to limit the total 

mass of all species summed up to 100 %w/w. In the data simulation, glucose content 

was varied from 3% w/w – 18%w/w as this can be controlled in real experiment. The 

fractions of noise were controlled from 1% to 40 %w/w which randomly generated 

from normal distribution with standard deviation of 10%. Then, the water contents 

were inversely proportional to the summation of glucose and noise contents which can 

be provided as cwater = 100 – cglucose - ∑cnoise. The simulated spectra with 0% w/w of 

noise corresponds to the pure spectra of glucose solutions as a primary condition, 

while the simulated data with 1% - 40 %w/w noise represent the glucose solution in 

secondary condition.   

 

3.6 Wavelength selection 

 To quantify amount of glucose more precisely, a selection of signal regions 

from the target analyze might be necessary. Therefore, the wavelengths correlated to 

the variations of glucose were determined and selected. There are several methods of 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 23 

wavelength selection. One of method is changeable size moving window partial least 

square (CSMWPLS)35. Briefly, basic idea of CSMWPLS is spectral region 

prospection the window size is determined, then, it moves all over the spectral region. 

PLS model was performed on each sub window size in order to search the most 

important regions for improvement of state glucose prediction (low RMSE)36. 

Extended detailed following in this step: 

 

Step 1: The NIR spectrum were divided into small sub windows. This window is 

made by certain number of spectral elements (i) and called window size (w). In this 

study, windows size (w) was divided into 3 sizes, including 3, 5 and 7. For each 

window size, there are N-w+1 windows over the whole spectra, where N is the 

number of wavelength. 

 

Step 2: According to each sub window, PLS models are performed to generate a 

predictive model. The prediction performance was evaluated by Leave-one -out-cross 

validation to obtain RMSECV of the sub window. Step 2 will be repeat until 

RMSECV all sub windows is determined. 

 

Step 3: The predictive ability was evaluated by RMSECV presented by each sub 

window. Region with RMSECV that lower than average of RMSECV – standard 

deviation of RMSECV was selected as shown in several highlight bands in Figure 

3.6A (step 3). It might be implied that significant dependence of the interest variable 

(glucose in the case) was occurred in that region. 

 

Step 4: The selected regions of each window sizes (3, 5 and 7) were unionly selected 

together as show in highlight bands in Figure 3.6B (step4) 
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Figure 3. 6 (A) Scheme for explanation of CSMWPLS with n is number of wavelength 

and w is sub window size including 3, 5 and 7. (B) Optimized region of NIR spectra for 

prediction of glucose in function of RMSECV on PLS model, applying CSMWPLS 

 

3.7 Chemometrics 

A proposed chemometrics approach is to extract only the variation from the 

interested component which might involve only water, glucose and their interactions 

for establishing the appropriate calibration model to quantify the glucose 

concentrations in secondary conditions. In this study, the calculation methodology 

was separated into two parts. Firstly, spectral decomposition was involved to separate 

the variation in the NIR spectra into smaller parts. Then, only the effective variations 

were chosen for the future analysis. This involves spectral decomposition method 

based on use of simple PCA decomposition. Secondly, the calibration model using 

PLSR was built from the selected variations in order to form a universal model. The 

calculation methodology was performed in the following steps:  

 

Step of this global model followings as: 

Step 1 The raw NIR spectra of both primary (Xprimary) and secondary (Xsecondary) 

condition were smoothed using Savitsky-Golay with 5 window sizes and follows by 

SNV in order to eliminate the influence of background shift. The N row and M 
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columns of the data matrix represents the sample different concentration of glucose 

and wavelengths, respectively.  

 

Step 2 To obtain the major variations, sample set from secondary condition were 

added to the calibration set from primary condition. In this step, number of inserted 

samples from Xsecondary secondary condition was varied at 1, 5, 10, 20 and 40 to 

investigate the influences of the variations from secondary conditions. 

 

𝑿𝑜𝑏𝑠 = [
𝑿𝑝𝑟𝑖𝑚𝑟𝑦

𝑿𝑠𝑒𝑐𝑜𝑛𝑑𝑎𝑟𝑦
] 

 

where  Xobs is observation matrix which is a combination of Xprimary and Xsecondary 

Xprimary is NIR spectra from primary condition  

            Xsecondary is NIR spectra from secondary condition  

 

Step 3 Perform PCA as a mathematical transformation to extract loading and scores 

matrix which correlate to the major variation of Xobs. In this step, the maximum 

number of principal component were set to 10 PCs (the total variance up to >99.99%) 

 

General form:     Xobs = Tobs  . Pobs + E 

 

Matrix form:                            [
𝑿primary

𝑿secondary
]  =   [

𝑻primary .        𝑷primary

𝑻secondary .     𝑷secondary
]  

   

where T (M x A) is the scores with M rows correspond to number for sample and A 

column correspond to number of PC  

P is the loadings (A x N) with A row (number of PC) and N column 

(wavelength) 

 

Step 4 Excluding the extracted data including score and loading from secondary 

condition (TsecondaryPsecondary). The data of score and loading of primary condition were 

remained for further calculation, however, the variations from secondary condition 
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were already included in TprimaryPprimary.  For further analysis, the new observation 

spectra (Xnew_primary) was generated with only significant of PCs (PC1 to PC10).  

 

Step 5 The calibration model of Xnew_primary is generated using Partial Least Squares 

Regression (PLSR). In its simplest form, a linear model specifies the linear 

relationship between response y (glucose concentrations), and a set of variables of the 

Xprimary (wavelength) which can be expressed by 

 

y = Xnew_primary  . b + E = T . q + E 

 

where T and q are PLS score matrix and PLS loading vector, respectively. b is the 

regression coefficient vector estimated as follows:  

 

b = H . q 

 

where H is the PLS weight matrix (described in Section 2.2).  

In our study, maximum number of PLS component was limited to 25.  

 

Step 6 This step involves the optimization of number of PCs and number of PLS 

component which give the smallest Root-Mean-Square Error using Leave one out 

cross validation (RMSECV). The number of PCs and PLS component were optimized 

using grid search approach with row and column of grid represents number of PCs 

and PLS component, respectively. 
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Where A (in row) represent as PC component (The maximum number of PCs is 10) 

K (in column) represent as PLS component (The maximum number of PLS is 

25) 

The optimal PC and PLS was selected by the coordination (PC comp, PLS comp) 

which gives the lowest RMSECV.  

 

Step 7 Using an optimal number of PC from step 6 to create the new Xnew and then 

separated into Xnew_primary and Xnew_secondary again. 

 

General form:     Xnew = Tobs_PC . Pobs_PC     

 

Matrix form:                            [
𝑿new_primary

𝑿new_secondary
]  =   [

𝑻new_primary .    𝑷new_primary

𝑻new_secondary .   𝑷new_secondary
]

  

 

Step 8 The PLS calibration model including PLS regression coefficients (b) was 

calculated from Xnew_primary. Then, the generated model was used to predict the 

response of Xnew_secondary as a validation sample set 

 

ysecondary = Xnew_secondary  .  bnew  
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Step 9 Estimate the model performance using RMSE as a validation index.                                                          

 The performance of calibration model was evaluated in terms of root mean 

square error of calibration (RMSEC) index, root mean square error of cross validation 

(RMSECV) and root mean square error of prediction (RMSEP). 

They can be denoted as, 

RMSEC = √(∑𝑚=1
𝑀 (𝑦 − 𝑦𝑐)𝑚

2 /M  

RMSECV = √(∑𝑚=1
𝑀 (𝑦 − 𝑦𝑐𝑣)𝑚

2 /M   

RMSEP = √(∑𝑚=1
𝑀 (𝑦 − 𝑦𝑝)𝑚

2 /M   

Where   y  contains the actual value (glucose concentration in the case) 

 ycv  contains the estimated glucose concentration by leave one out cross   

 validation  

yc  contains the estimated glucose concentration of the sample in 

calibration set 

yp  contains the estimated glucose concentration of the sample in 

validation set 

m is the selected number of sample in the data set. 

M  is total number of sample in the data set. 

 

A conceptual view was showed in Figure 3.7 

 

 

Figure 3.7 Conceptual view of the calculation methodology model using multivariate 

data analysis (PLS) with conventional way (full spectrum) and global model (using 

PCA) 
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CHAPTER IV  

RESULTS AND DISSCUSSION 

 

4.1 NIR spectrum acquisition 

 The NIR spectra in transmitting mode would be affected by different position 

of spectral measurement and different detection parameters of spectral scan such as 

path-length, scanning rate, integration time, smoothing windows. Therefore, the 

spectral measurement must be carried through under the uniform experimental 

conditions. Firstly, the measurement parameters were optimized in order to obtain the 

appropriate NIR spectra which demonstrate all overtones and not over absorbed. In 

this case, integration time of 1 millisecond and 32 averaged scans with smoothing 

window of 1 was set according the presetting of NIR instrument. The path-length of 

the detection was varied at 0.4 – 10 mm in order to obtain the maximum informative 

spectra from the detection as shown in Figure 4.1.  

 

 

Figure 4.1 NIR spectra of water acquired with different path-length in range of             

0.4 mm – 10 mm using integration time of 1 and 32 averaged scans with smoothing 

window of 1. 
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According to Beer-Lambert law, the higher path-length, the higher absorbance 

obtains. However, the problem of over adsorb band will occur when an excessive path 

length is used. Figure 1 show set of NIR spectra of DI water acquired using different 

path-lengths. The part of NIR spectra especially at the range of 1,900 – 2,000 nm 

exhibit over absorbance which represent by cut off at the top of peak, when large 

path-length > 0.6 mm was used. The NIR spectra acquired using path-length of 0.4 

mm show the minimum background shift. Therefore, the path-length of 0.4 mm was 

chosen for further NIR acquisition.  

 

4.1.1. Preprocessing techniques 

The NIR spectra data preprocessing is an essential part of chemometric 

modeling. The NIR spectra of samples are mostly influenced by the physical 

properties of the samples and other effects from environments e.g. human errors, 

outside incident lights, holder positions etc.  The purpose of preprocessing is to 

increase the important information and to minimize the contribution of irrelevant 

information. The proper options of the preprocessing technique depend on the nature 

of data and difficult to assess before the model validation. Therefore, the 

preprocessing technique of the acquired NIR spectra is carried out through trial and 

error approach. This study applies three basic techniques involving the Savitzky-

Golay smoothing, the second spectral derivative and Standard Normal Variate (SNV). 

Figure 4.2 shows the smoothed NIR spectra of raw spectra, derivative spectra and 

normalized spectra. It can be seen that preprocessing method affects the behavior of 

signal patterns. Original data without any signal pretreatment is highly susceptible to 

noise, inconsistency and baseline shift causing to the low quality of the data. In order 

to improve the quality of the NIR spectra, smoothed with second derivative which 

used to eliminate baseline errors and resolve overlapped peak was applied (Figure 

4.2). A second derivative spectrum was calculated for each measurement by using the 

Savizky-Golay algorithm (5 smoothing points). However, the improvement of the 

peak resolution is still unclear.  Even domination bands of water between 1400 – 1600 

nm still show fluctuation and noises. One of a major reason is wavelength gap 

spectral resolution due to the slit aperture of the instrument. For our NIR 

spectrometer, the slit aperture of 7 nm was constantly operated. Therefore, the change 
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of slope in some part of spectrum might be strongly fluctuated due to a high 

wavelength shift of the detection. Second derivatives can also be employed to 

decrease baseline shifts and curvilinearity, but noise and complexity of the spectra 

increases. Another preprocessing method including standard normal variate (SNV) is 

used to removes the multiplicative interference of scatter and particle size37 which 

causes the baseline shift. SNV is designed to operate on individual sample spectra, 

therefore, it is unaffected with the spectrum of other samples.  From figure 2c, it is 

obvious seen that the baseline shifts were corrected and intensity were more 

correlated to the responses. Therefore, it might be indicated that smooth with standard 

normal variate was selected as an appropriate preprocessing method which was used 

to pretreat the raw NIR spectra for the further multivariate data analysis. 

 

4.1.2. Variations of the NIR spectra of glucose solution with different 

concentrations 

In the previous section, we already mention on the importance of signal 

preprocessing method on the acquired NIR spectra. In this study, smooth with 

standard normal variate (SNV) was selected because it can reduce noise and remove 

multiplicative interferences of scatter and particle size. To visualize the characteristic 

overtones of samples, NIR spectrum of pure water (blue line), pure glucose (black 

line) and 18%w/w of glucose solutions (red line) were shown in figure 4.3A. It can be 

seen that these three samples have the same dominated peak at 1450 nm and 1900 nm 

corresponding to 1st vibration overtone O-H stretching and combination of O-H 

deformation24, respectively. However, the overtone patterns of pure glucose (black 

line) shows a tiny overtone peak at 1800 nm due to 1st overtone C-H stretching of 

glucose which do not appear in glucose solution (red line)24. From figure 4.3B, it is 

difficult to observe the characteristic overtone band of glucose from glucose solution 

directly. Therefore, mathematic and statistic approach in form of variance was 

calculated to reveal the major variations in the NIR spectra of glucose solution 

prepared with different concentrations. The variance of the NIR spectra was 

calculated and plotted as shown in Figure 4.3C 
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Figure 4.2 Savitzky-Golay smoothing NIR spectra of glucose solutions after performing 

different preprocessing methods including (A) raw data (B) the second spectral 

derivative and (C) Standard Normal Variate (SNV).   The red and blue line represent 

the NIR spectrum of the highest (18 %w/w) and the lowest (3%w/w) glucose 

concentration, respectively 
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According to the variance plot in Figure 4.3C, the three major bands with high 

variance were observed. They include 1st overtone O-H stretching of water at 1450 

nm, O-H and CH2 combination band at 1900 nm and 2100 nm, respectively. It could 

be implied that these bands are strongly correlated to the concentration of the glucose 

solutions. The intensities of these bands are influenced by the amount of glucose in 

the solution. The variance plot indicates the most variation regions in the spectra, 

however, they cannot provide the information about the direction of variation. 

Therefore, in order to visualize the variability direction of NIR spectra along with 

overtone patterns of glucose solutions (in Figure 4.3B) is required. 

The band assignment of the major components (in glucose solution) are briefly 

summarized in Figure 4.3B. Figure 4.3B shows the average NIR spectra of glucose 

solution at 3, 5, 7, 10, 12, 14, 16 and 18 %w/w. It can be seen that the NIR spectra are 

dominated by water absorption bands at 1450 corresponding to 1st overtone O-H 

stretching of water24 and 1950 nm relating to the combination bands of stretching and 

deformation of the O-H group in water38 (as mentioned above). The characteristic 

band of glucose associated to 1st overtone C-H stretching (-CH3 and –CH2-) in the 

range of 1600 to 1700 nm is unfortunately low intensity, while the band at 2100 nm 

corresponding to the 1st set of C-H combination band is very strong24. From variance 

plots, this suggests that the intensity of NIR spectra was changed depending on 

glucose concentrations.  

To demonstrate the direction of variability, the intensity of the assigned band 

was magnified and shown as the insets of Figure 4.3. The intensity of 1st overtone of 

CH (1600-1700 nm and combination bands at 2100-2200 nm) increases when the 

glucose concentration increases. This represents the direct variation due to 

characteristic band of glucose. On the other hand, the 1st overtone of OH stretching 

(1450 nm) and combination bands (1900 – 2000 nm) show an inverse variation 

because these overtone regions are correlated with water content. These trends are in 

good agreement with the variance plot.  
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Figure 4.3 NIR spectrum (A) combination spectrum of pure water, pure glucose and 

glucose solution (18%w/w) in water following blue, black and red line, respectively. (B) 

glucose solution in water system (18%w/w) after performed baseline correction using 

standard normal variate (SNV), (C) variance sample of average NIR spectrum of 

glucose in water (primary condition) 
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4.2 Primary calibration set of samples  

Selection of representative calibration samples is important for the success of 

the further statistical modeling. Moreover, it would be important to note that the 

samples selected for the calibration should cover the variation of future samples. The 

main concept of this work is to establish a universal calibration model from a primary 

condition (glucose solution in the case) which can be used to predict glucose 

concentrations in a secondary condition (non-alcoholic drinks). To search for an 

appropriate normal operating samples (NOS) is our primary target. The calibration set 

was constructed from glucose solution with 8 different actual concentrations (3, 5, 7, 

10, 12, 14, 16 and 18 %w/w) with 3 repetitions involving total 120 samples (yactual). 

To remove anomalous observations, the outlier detection has been performed. PLS 

regression with leave-one-out cross validation approach was performed on the all 

samples in the calibration sets in order to obtain the prediction of concentration 

(ypredict). The error of ypredict – yactual was calculated for all samples. Any sample with 

the error more than three standard deviations from the average errors was determined 

as an outlier39. Figure 4.4A shows the error of each sample (blue dot), the average 

error (red dashed line) and three stand derivations (black dashed line). It can be seen 

that only one sample (sample number 1, batch 1) was determined as an outlier. 

Therefore, this sample was removed from the calibration set. From the prediction 

error, it suggests that our experiment set up is consistent in each repetition as only one 

outlier exists. Next, the combination of the calibration set was optimized by 

RMSECV and RMSEC values which are an index to evaluate the appropriate NOS. 

Lower value of RMSE, higher accuracy of the prediction was occurred. Besides, the 

gap between RMSECV and RMSEC was also under consideration to estimate model. 

The small gap represents non-overfitting model. Figure 4.4B show acceptable value 

of RMSEC and RMSECV of approximately 0.05 and 0.11, respectively, occurred in 

individual batch and its combination. Meanwhile, gap between RMSEC and 

RMSECV in each batch was obtained of 0.06 which exhibit insignificantly different. 

Thus, the combination of batch 1, 2 and 3 was selected as a benchmark of NOS to 

construct a universal model.  
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Figure 4.4  (A) the error of each sample calculated from ypredict – yactual (blue spots) 

including the average error of all samples (red dot line) and three standard deviation of 

average error (black dot line) (B) Bar plot between root mean square error of cross 

validation (RMSECV) (gray bar) and root mean square error of calibration (RMSEC) 

(pink bar) on NIR spectra of glucose concentration in different repeated batches  
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Prior to the further data analysis, principal component analysis (PCA) was 

used to extract the major components of the data matrix which is the NIR spectra of 

all batches. The characteristic pattern of major components is revealed by loading of 

each PC as shown in Figure 4.5. It can be seen that the loading of PC1 shows the 

characteristic patterns for water because it reveals a strong absorbance at 1450 nm (1st 

overtone of O-H bond stretching) and 1950 nm (O-H combination band). In case of 

loading of PC2, it shows a similar pattern of PC1 loading but the direction of band at 

1950 nm is inversed. This suggests that there is some interaction between glucose and 

water though the combination band of O-H stretching. Whereas, the noticeably band 

of the PC3 loading was appeared at 1890 nm and 2050 nm which are corresponding to 

the CH2 stretching of glucose and the 1st set of C-H combination band of glucose, 

respectively. These PC loadings are in good agreement with the pure spectra (Figure 

4.3A). However, the latter PC loading do not show any distinctly signals compared to 

the loading from PC1-PC3. This suggest that the main components are occurred only 

in the first few PCs, therefore, the higher PC might not be necessary in the model.  

 

 

 

Figure 4.5 Loading profiles (PC1 to PC6) of the NIR spectra from batch 1-3 after 

performing PCA. 
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4.3 Simulated datasets 

 A motivation of the simulations was to produce the data with controllable 

underlying distribution of correlations that is similar to those found in the real 

datasets. The simulated NIR spectra were calculated using summation between 

concentration and pure spectra of the main components (water and glucose in the 

case) with the additional noises at several different levels. However, the total 

concentration of noise spectra was controlled by mass balance of 1% - 40 % w/w. The 

concentration of glucose was constrained, therefore, the added noise would only 

affect to the proportion of water spectrum. The simulated spectra with the different 

additional noise levels and the corresponding sample variances were shown in Figure 

4.6. It can be seen that low noise level does not affect the spectrum pattern, since they 

preserve as much as possible the characteristic of the original pure simulated NIR 

spectra until 12.5%w/w noise. The baseline shift was initially occurred in the spectra 

simulated with noise level over 15%w/w, while the pattern of the simulated NIR 

spectra was totally changed at noise level of 40%w/w. The variance plots of each 

simulated spectra were shown in Figure 4.6B. It can be seen that the variance plot 

demonstrates the strong variations correlated with presetting glucose concentrations 

which are including 1st overtone O-H stretching (1450 nm) and combination O-H 

deformation (1900 nm and 1980 nm) of water. The simulated NIR spectra without 

noise come from summation between concentration and pure spectra of the main 

components (water and glucose in the case), so added noise level would be effect to 

only the overtone regions of water. Obviously, the higher added noise level, the more 

variations on the pattern of spectra occurs. From the simulations, it can be noticed that 

an added noise is limited to 1-12.5 %w/w as it can be able to maintain the identity of 

NIR spectrum which is in good agreement with the real spectra from the experiments.  
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Figure 4.6 (A) Simulated NIR spectra and (B) Variance plot of the simulated NIR 

spectra at different additional noise levels (0-40%) 
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To evaluate the prediction performance, the PLS calibration model was built 

from the simulated NIR spectra without any additional noises. Then, the generated 

PLS model was used to predict the glucose concentration of the other independent 

simulated datasets with the noise at different levels. The root mean square error of 

prediction (RMSEP) and coefficient of determination (r2) were calculated in order to 

express the model performance. The lower RMSEP and the higher r2 represent a 

prediction performance of the model. A plot of RMSEP (black line) and r2 (blue line) 

against noise level is shown in figure 4.7A. It can be seen that the RMSEP values are 

slightly increased from 0.12 – 1.66 for the data with noise 1- 12.5%w/w, respectively. 

After using noise level over 15%w/w, the RMSEP value dramatically raises from 2.05 

to 7.19. This suggests that the capability of a predictive model is directly related to 

noise in the data. The higher noise level, the lower predictive ability of the model 

occurs. These observations are in good agreement with r2 plot. The r2 value is over 

0.99 for the prediction of the data with noise only in the range of 1-12.5%w/w. The r2 

value is lower than 0.99 when the noise level is up to 15%w/w. However, the r2 value 

is still good (>0.98) even for the prediction of the data with noise 40%w/w. To 

demonstrate the ability to measure each sample independently, the concentration 

correlation plots between actual preset glucose concentration and the predictive value 

are presented in Figure 4.7B. In all the plots, the prediction points all fall on the ideal 

diagonal line with no apparent systematic variation for the data with 0% noise level. 

However, the appearance of variation on prediction especially for high glucose 

concentration will occur when the noise level was increased. This suggests that our 

PLS calibration model can predict more accurately at the low glucose concentration 

rather than the high one.  
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Figure 4.7  (A) RMSEP (black line on the left Y axis) and r2 (blue line on the right Y 

axis) plot against different additional noise levels, (B) concentration correlation between 

actual values (X-axis) and predicted values (Y-axis) of glucose concentrations at 

different levels of noise (%w/w) 

 

In the previous prediction, the PLS calibration models were generated using 

the dataset containing all samples and wavelengths without any additional noise. This 

calibration model was used to predict the glucose concentration of the other datasets 

with different noise levels. In this study, assessment of model selectivity is critical for 

achieving a prediction of glucose concentration. In order to extract the pure 

components of the dataset, principal component analysis (PCA) were performed on 

the data to extract the major components (glucose and water). To generate the 

universal model, the PCs of all major components contributed to the data matrix 

including calibration set (primary condition) and also system (secondary condition) 

must be determined and selected. Then, the new data matrix built from only the 

selected PCs was calculated for further data analysis. It should be noted that the 

inserted number of sample from secondary condition might affect the total variance of 

the data matrix (from primary condition) and the prediction. In this section, the 

influences from different number of inserted samples on the PC selection and model 
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prediction are investigated. The error of prediction (RMSEPpc) of the model built 

from major components with different number of inserted sample from 1– 40 are 

plotted against the added noise level as shown in Figure 4.8. The RMSEPpc generally 

increases when noise level of the data increases. It raises from 0.11 to 2.93 for noise 

level 1% and 40%, respectively. Moreover, the RMSEPpc seem increase when the 

number of inserted samples increases. This shows the number of inserted samples 

which come from secondary condition have strongly influenced on the variance of the 

data from primary condition and the prediction. Although, the lowest RMSEPpc would 

be obtained by using only single inserted sample, the calculation will not be practical 

when the external sets of samples are large. In this case, we would like to determine 

the optimal number of inserted samples that would insignificantly alter the prediction. 

Relative percent error of RMSEPpc using different number of inserted sample 

compared with single inserted sample was calculated: 

 

Relative percent error = (
𝑅𝑀𝑆𝐸𝑃pc_single added sample  − 𝑅𝑀𝑆𝐸𝑃pc_𝑚 added sample  

𝑅𝑀𝑆𝐸𝑃pc_single added sample
) 𝑥 100            

 

Where  RMSEPpc_single added sample is RMSEPpc that calculate from single added sample 
RMSEPpc_m added sample is RMSEPpc that calculate from various numbers of 

added sample with m obtain added number of sample 

 

The calculation result was show in an inset of Figure 4.8. The RMSEPpc will 

be increased more than 5% when the number of inserted sample were up to 20. On the 

other hand, the RMSEPpc was changed for less than 2% when the number of inserted 

sample equal to 10. For this observation, it might be suggested that limitation of 

inserted number of sample is around 20 samples and the optimal number sample of 10 

was selected to further multivariate data analysis. However, it should be note that the 

limitation of inserted sample strongly depends on the total sample number of the 

dataset from primary condition. The larger size of the dataset, the limitation might be 

raised.  
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Figure 4.8 RMSEP calculated using different number of inserted samples (1-40 

samples). The inset figure shows the relative percent error of RMSEP compared with 

RMSEP obtained from using single inserted sample 
 

In order to be able to quantify amount of glucose more precisely, a selection of 

signal from the target analyze is indispensable. Therefore, the wavelengths correlated 

to the variation of glucoses was determined and selected. There are several methods 

of wavelength selection available in the literatures. One of an efficient method is to 

use moving window partial least square35. The protocol detail was already discussed 

in section3.6, chapter 3. In this case, NIR spectrum of 9%w/w additional noise was 

selected to represent in this wavelength selection. Sub regions of 1st overtone O-H 

bond stretching of water (1350-1420 nm), 1st overtone CH2 stretching of glucose 

(1820-1946), OH, CH, CH2 combination bands are selected as shown in Figure 4.9B. 

It should be noted that the selected sub-regions might be changed due to the noise 

level of the dataset.  
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Figure 4.9 (A) Simulated NIR spectra with 9%w/w additional noise. (B) the selected 

wavelengths using CSWMPLS (window size of 3, 5, and 7). The yellow highlighted 

bands represent the sub-regions which are strongly correlate to the prediction of glucose 

concentrations   

 

RMSE is an index to evaluate the prediction performance of a model. In this 

section, there are 6 different RMSE indices which are summarized in Table 4.1. 
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Table 4.1 Details of 6 different RMSE indices 

 
 

Model 

 

RMSE(α, β, λ, ω) 

Calibration Validation Number 

of PCs 

Selected 

wavelength 

α β λ ω 

I RMSEC(1st, 1st, full, 0) 1st 1st full 0 

II RMSECV(1st, 1st CV, full, 0) 1st 1st CV full 0 

III RMSEP(1st, 2nd, full, 0) 1st 2nd full 0 

IV RMSEP(1st, 2nd, pc, 0) 1st 2nd pc 0 

V RMSEP(1st, 2nd, pc, ω) 1st 2nd pc ω  

VI RMSEP(2nd, 2nd, full, 0) 2nd 2nd full 0 
 

Note :   1st = Dataset from primary condition 

 1st CV = Primary set that are estimate by cross validation 

 2nd = Dataset from secondary condition  

 full = full spectrum with all wavelengths (without extract any main component)  

 pc = extract main components using PCA  

 

Description of the model (I-VI) 

 Model I: RMSEC(1st, 1st, full, 0) is RMSE of prediction when the calibration model was 

built from a dataset from primary condition. Then, it was used to estimate the responses of a 

dataset from primary condition. 

 Model II: RMSECV(1st, 1st CV, full, 0) is RMSE of prediction when the calibration model 

was built from a dataset from primary condition. Then, it was used to estimate the responses 

of  a dataset from primary condition using Leave-One-Out cross validation. 

 Model III: RMSEP(1st, 2nd, full, 0) is RMSE of prediction when the calibration model was 

built from a dataset from primary condition. Then, it was used to estimate the responses of a 

dataset from secondary conditions (without extract any main components).  

Model IV: RMSEP(1st, 2nd, pc, 0) is RMSE of prediction when the calibration model was 

built from the main components extracted from a dataset from primary condition and then it 

was used to estimate the responses of a dataset from secondary condition.   

Model V: RMSEP(1st, 2nd, pc, ω) is RMSE of prediction when the calibration model was 

built from the main components extracted from a dataset from primary condition with only 

selected wavelengths and then it was used to estimate the responses from secondary 

condition. This represents our universal model. 

Model VI: RMSEP(2nd, 2nd, full, 0) is RMSE of prediction when the calibration model was 

built from a dataset from secondary condition and directly used to estimate the responses of 

the secondary condition. This basic idea was represented as a conventional model.  
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In this study, model VI represents a conventional prediction that a calibration 

model was built and predicted the samples from the identical system. This will 

obviously provide the lowest RMSEP compared to model III and model V because 

these two models were built from primary condition and they were used to predict 

samples from the other secondary conditions. However, an improvement of the 

prediction of model V (our universal model) was expected. Figure 4.10 shows a 

summary of the comparison of RMSE based on 6 different strategies. Generally, 

RMSEP of all models linearly increases when noise level increases.   

From the results, the RMSEP of model VI provides very low value in between 

0.006 to 0.49 for noise level 1% w/w to 40 %w/w, respectively. On the other hand, 

the RMSEP of model III shows the highest value in the range of 0.11 to 6.53 for noise 

level 1%w/w to 40 %w/w, respectively. This shows that it was not possible to obtain 

an accurate prediction (low RMSE) when a model was generated using one condition 

and was used to estimate the responses form the other conditions without any 

pretreatment. In this case, our proposed strategy was applied as model V to maintain 

the model from primary condition to accurately estimate the responds from secondary 

conditions. The RMSEP(1st, 2nd, pc, ω) of model V was reduced to 0.07 - 4.76 for noise 

level 1% w/w to 40 %w/w, respectively. It can be seen that our proposed universal 

model (Model V) can be used to predict an unknown sample from other condition 

more accurate compared with the model III. In order to visualize more clearly, percent 

improvement of model V compared to model III was shown as an inset of Figure 

4.10.  

Percent improvement  =  (
𝑅𝑀𝑆𝐸𝑃(1𝑠𝑡,2𝑛𝑑,𝑓𝑢𝑙𝑙,0)  − 𝑅𝑀𝑆𝐸𝑃(1𝑠𝑡,2𝑛𝑑,𝑝𝑐,𝜔)  

𝑅𝑀𝑆𝐸𝑃(1𝑠𝑡,2𝑛𝑑,𝑓𝑢𝑙𝑙,0)
) 𝑥 100 

It might be seen that the accuracy of prediction from our universal model 

(model V) has improved up to 30 percent based on noise level of 1-40%w/w. 

Therefore, it could be indicated that our universal model shows high ability prediction 

compared to model III. One of this reason, it might be noted that this universal model 

composed of only variations of glucose without any influences from noise while 

model III was constructed from full spectrum including noise as interferences, so 

ability prediction of model V was more corrected. By the way, RMSEP(1st, 2nd, pc, ω) 

(orange triangle) of the universal model (model V) still higher than RMSEP(2nd, 2nd, full, 
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0) of model VI (pink triangle). This observation might originate from influences of 

interference in the systems because noise level is inversely proportional to amount of 

glucose. That means the higher noise level, the lower glucose concentration was 

occurred. Therefore, it causes to prediction accuracy of glucose in our universal 

model becomes more error.  

  

 

Figure 4.10 plots of six different strategies including Model I: RMSEC(1st, 1st, full, 0) , Model 

II: RMSECV(1st, 1st CV, full, 0, Model III: RMSEP(1st, 2nd, full, 0), Model IV: RMSEP(1st, 2nd, pc, 0), 

Model V: RMSEP(1st, 2nd, pc, ω) and Model VI: RMSEP(2nd, 2nd, full, 0). In this case, our 

proposed universal model was represented as model V. 

 

4.4 Prediction of glucose concentration in non-alcoholic drinks 

The performance and limitation of our universal model were discussed in the 

previous section. In this section, our proposed strategies to build a universal model 

were applied to the real non-alcoholic drinks in order to estimate amount of glucose in 

the drinks which are tea, cocoa and coffee. The glucose solution using DI water as 

solvent was defined as primary condition, while the glucose in the drinks was defined 

as secondary condition. In this study, influent levels from chemical contents of the 

drinks were set to 2 different levels (high and low). The details of experimental were 

set up already discussed in section 3.2, chapter 3. Table 4.2 shows the results obtained 

from multivariate data analysis on experimental details that was calculated using 3 

models (A, B and C). 
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The model A represents the conventional way that the calibration model of 

each system (tea, cocoa and coffee in the case) was built to predict glucose 

concentrations of the system. For example, to predict glucose concentration in tea and 

cocoa, two calibration models were built from set of samples using tea and cocoa 

solutions, respectively. In case of model B, it was built from full spectrum without 

extracted any important component for building the calibration model. In order to 

improve performance of calibration model, the strategy to generate model C was 

proposed. For model C, it is represented as a universal model.  This involves the 

determination and extraction of only significant components and wavelengths which 

are strongly related to the variations of glucose in the system (as mentioned in section 

3.6 chapter 3) prior to build the calibration model. For the universal model (model C), 

it was found that there are 5-9 significant components contributed in NIR spectra of 

all systems. These components might be related to the patterns of pure NIR spectrum 

of (i) water, (ii) glucose, interaction between (iii) glucose-water and (iv) glucose-

glucose, the other components might be effect by noise which might originate from 

chemical contents of each system. 

RMSE values represent the average prediction error of the model. It can be 

seen that RMSEC, which represent root mean square error of calibration samples, are 

quite low in all models (A, B, and C) with 0.05 - 0.29. This suggests that our 

calculation procedure including optimization of significant components and prediction 

using PLS is correct and appropriate to quantify glucose concentrations. In case of 

RMSECV, the average prediction error is slightly higher (0.11-0.28) but it still in the 

acceptable range. This represents the capability of the model in order to be used to 

predict the glucose concentration of an unknown solution. Next step, the generated 

model was used to predict the glucose concentration of the validation set. In case of 

low system, RMSEP of our universal model (model C) is in range of 0.54 – 0.99 

which are lower than model A (conventional model) and model B (using full 

spectrum). These show approximately 30 and 60 % improvement of the prediction. To 

make it easier to understand, an example in case of low level of tea system was 

demonstrated. The RMSEP of 0.92, 1.12 and 0.72 corresponds to model A 

(conventional way), model B (full spectrum) and model C (our universal model), 

respectively, they can be seen that RMSEP of model C lower than RMSEP of model 
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A and B. These observations were also found in low level of cocoa and coffee system. 

Therefore, it might be concluded that this universal model has a capability to predict 

concentration of glucose in non-alcoholic drinks without the requirement of building a 

new calibration model. 

 To evaluate the limitation of prediction using universal model, the model was 

used to estimate amount of glucose in more complex system. In this case, more 

complex system was represented as extremely amount of tea, cocoa and coffee that 

was dissolved in water in order to prepare as a solvent (20 g in water 100 mL), also 

called high level system. It seems to be that RMSEP of model C (0.84 – 2.80) lower 

than RMSEP of model B (1.39 – 5.64) while slightly higher than RMSEP of model A 

(0.33 – 0.73). One of the main reason could be come from interference which 

originate from high amount of chemical components in solutions.  From this result, it 

might be suggested that our universal model has limitation in predicting the amount of 

glucose due to the interferences from level of chemical content in the solution. These 

results are in good agreement with the calculations on the simulated datasets in the 

previous section. 

Further investigation, correlation plot between actual values and the predicted 

value of glucose concentrations in different models were shown in Figure 4.11. It can 

be seen that the higher glucose concentration, the higher variation on prediction is 

occurred. This suggests that our universal model (model C) can be able to accurately 

predict glucose concentration in non-alcoholic drink (tea, cocoa, and coffee) in the 

same level as using model A (conventional model) especially for low concentration of 

glucose. 
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Figure 4. 11A-F show correlation plots between actual value (X-axis) and predicted 

value (Y-axis) of glucose concentration in high/low level of tea, high/low level of cocoa, 

high/low level of coffee, respectively, using calibration model A, B and C 

 

To examine the selectivity of the prediction, the universal model was used to 

estimate glucose concentration in the solution mixed with several types of sugar 

including monosaccharide (fructose, galactose) and disaccharide (sucrose). The 

calibration model that was constructed from primary condition (only glucose in the 

solution), and it was used to predict glucose concentration in the mixed sugar 

solutions. In the solution, the total concentration of sugar is 16%w/w which consist of 

8%w/w glucose + 8%w/w of another sugar. For the result (Table 4.3), RMSEP from 

the prediction of glucose concentrations in all solutions show high error, while 

RMSEP from the prediction of total sugar shows high accuracy. This result suggests 

that our universal model is capable to predict total sugar, not for glucose. One 

possible reason because of all sugar (glucose, fructose, galactose and sucrose in this 

case) provide similar characteristic of NIR spectra as shown in Figure 4.12 
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Figure 4.12 NIR spectra of glucose, fructose, galactose and sucrose solution (8%w/w) in 

water system following black, pink, blue and green line, respectively. 

 

From Figure 4.12, it can be seen that overtone patterns of sugars (glucose, 

fructose, galactose and sucrose) show high similarity. Moreover, variation of intensity 

of all sugars are not significant different. From these spectra, our analyte (glucose) 

cannot differentiated from interferences (fructose, galactose and sucrose) 
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CHAPTER V 

CONCLUSIONS 

 

This study has demonstrated the potential of NIR spectroscopy combined with 

chemometric to quantify amount of glucose in non-alcoholic beverages. A 

methodology of “universal model” was proposed in order to construct the universal 

calibration model from primary condition and use the model to predict glucose 

concentrations in secondary condition (tea, cocoa, and coffee in the case). Three 

stages of methodology including pre-processing, feature selection and main 

component extraction were applied to spectral data in order to obtain the universal 

calibration model. The NIR spectra of the samples were collected using transmittance 

(T) mode in the range of 1350 nm - 2350 nm using path length 0.4 mm, integration 

time of 1 and 32 averaged scans with smoothing windows of 1. SNV is useful 

pretreatment for raw data spectra in order to remove background signals. According 

to characteristic overtones of glucose (3-18%w/w) in water system, it shows 

dominated peaks of water at 1450 nm and 1950 nm corresponding to 1st vibration 

overtone O-H stretching and combination of O-H deformation of O-H group, 

respectively. The characteristic bands of glucose associated to 1st overtone C-H 

stretching (-CH3 and –CH2-) in the range of 1600 to 1700 nm is unfortunately low 

intensity, while the band at 2100 nm corresponding to the 1st set of C-H combination 

band is very strong. These results are consistent with the variance plot. In this study, 

variation of our universal model was separated into two parts including simulation 

and experimentation.  

In case of simulated part, the noise spectra were controlled by mass balance of 

1% - 40 % w/w. Different additional noise levels, difference simulated NIR patterns 

were occurred. It was found that the spectra with noise level in range of 1 – 12.5 

%w/w can be able to maintain the identity pattern of NIR spectra which are in good 

agreement with the real spectra from the experiments, while the simulated spectra 

with >15%w/w noise level render to baseline shift. Additionally, influences from 

different number of inserted samples on the PC selection and model prediction are 

investigated base on relative percent error of RMSEPpc using different number of 
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inserted sample compared with single inserted sample. For the result, the RMSEPpc 

will be increased more than 5% when the number of inserted sample were up to 20 

while the RMSEPpc was changed for less than 2% when the number of inserted 

sample equal to 10. So, it could be suggested that the limitation of inserted number of 

sample is around 20 samples and the optimal number sample of 10 was selected to 

further multivariate data analysis. From the analysis, the universal model improves 

the prediction accuracy for the test set (unseen data) for at least 30 percent. 

 In case of experimental part, it was used to quantify amount of glucose in 

non-alcoholic beverages (tea, cocoa and coffee in the case). The promising values for 

root mean square error of prediction (RMSEP) were obtained to be 0.72, 0.99 and 

0.54 corresponding to tea, cocoa and coffee system, respectively. These observations 

are in good agreement with r2 plot. The r2 value is over 0.99 for the prediction of the 

data with noise only in the range of 1-12.5%w/w. Therefore, it might be implied that 

our universal model approach can be used to estimate glucose concentrations in other 

non-alcoholic drinks without any requirement of a new calibration model. However, 

the universal model cannot be used to determine glucose selectivity in the solution 

mixed with other sugar (fructose, galactose and sucrose) 
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