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CHAPTER 1
INTRODUCTION

One of the interesting topics in probability and statistics is studying a relationship
between two random variables or two data sets of which obvious application is in
making economic decisions. A tool chosen to study a relation between random
variables or data sets is a factor vastly affecting its reliability. When copulas were
introduced, they have been studied widely in several branches of mathematics
and economics. With abilities to detect independence and dependence structure
between two random variables and to be represented via joint distribution function
of random variables by Sklar’s theorem, copulas have been parts of many popular
tools with great potentials in quantifying dependence between random variables.
We will study a popular tool called a measure of dependence. Since there are many
levels of indicating dependence information between two random vaiables, it leads
to many definitions of being a measure of dependence. Only Rényi’s definition
[19] and Schweizer and Wolff’s definition [22] will be discussed in this thesis.

The motivation of this thesis began with studying a mapping ¢ on the set of

all copulas defined in [22] by

, |C—II|dA
O'(C)—fl| )z

= 1.1
Jp2 | M —TI|dA, (11)

where I denotes [0, 1], Ay denotes the Lebesgue measure on 1%, and IT and M
are the independent copula and the comonotonic copula, respectively. In [22], o
was proved to be a measure of dependence according to Schweizer and Wolft’s

definition. In [12], Edwards and Mikusinski introduced Dj-invariant copulas of

M4+W
2

which some examples are II and where W is the countermonotonic copula.

They showed that a function 7 on the class of all copulas defined by

B [;-(C —1I)dA

O = A

(1.2)



is a measure of concordance if A is Dj-invariant and the converse also holds.
Hence, D, denotes the dihedral group of the square I2.
The aim of this research is to generalize ¢ in three ways. Firstly, we define a

function o, on the class of all copulas via

(0~ Hdx,
[z (M~ TI))dA;

where ¢ is a nonnegative real function on I. We give a set of sufficient conditions

0¢(C)

(1.3)

for ¢, which makes o, a measure of dependence in the sense of Schweizer and
Wolff.  Secondly, we define 07 (X,Y) for all random variables X and Y whose

distribution functions are continuous by

S e(IC(x),90v) — TN
o (X,Y) = sup o,(C = sup L :
oY) = o 0 (Cronam) = B T F (M — T

where Z is the set of all injective Borel measurable functions on R. We show that

(1.4)

o, is a measure of dependence in the sense of Rényi. Finally, given a copula A,

we define o4 on the class of bivariate copulas by
B [ |C —1I]dA
Jpo |M —1I|dA

oa(C) (1.5)

Our attempt to characterize all copulas A for which o4 is a measure of dependence
is not successful due to the difficulty in proving that o4 is bounded by 1. We
focused only on o A We are able to show that o Argw is a measure of dependence
in the sense of Schweizer and Wolff.

In Chapter II, we will give a brief introduction to copulas. Some background
information of a measure of dependence is discussed. Moreover, selected properties
in both measure theory and probability theory are also given, some of which are
fundamental tools used to prove our main results.

In Chapter III, we give a set of sufficient conditions for ¢ which makes o,

defined in (1.3) a Schweizer and Wolff’s measure of dependence:

Theorem 1.1. The function o, satisfies the following properties for all random

variables X and 'Y whose distribution functions are continuous.

(i) 0,(Cxy) = 0,(Cyx).



(ZZ) 0 S O'cp(CX’y) S 1.
(111) 0,(Cxy) =0 if and only if X and Y are independent.

() 0,(Cxy) = 1lifand only if Y = f(X) for some strictly monotone function f.
(v) 0,(Crix)gvy) = 0,(Cxy) for all strictly monotone functions f and g.

(vi) If (X,Y) and (X,,,Y,), n=1,2,..., are pairs of random variables with joint
distribution functions H and H,, respectively, and if (X,,Y,) converges in

distribution to (X,Y), then lim 0,(Cx, y,) = 0,(Cxy)-
n—o0

In Chapter IV, we apply the results of o, to prove that o7, defined in (1.4) is

a measure of dependence in the sense of Rényi:

Theorem 1.2. The function oy, satisfies the following properties for all random

variables X and'Y whose distribution functions are continuous.
(i) o3 (X,Y) = o (Y, X).

(i) 0 < o(X,Y) <1

(iii) o, (X,Y) =0 if and only if X and Y are independent.

(i) o (X,Y) =1ifY = f(X) or X = g(Y) for some Borel measurable functions f, g.
(v) o (f(X),9(Y)) = 0, (X,Y) for all Borel measurable injective functions f and g.

In Chapter V, we investigate the mapping 04 when A is a Dy-invariant copula.

We also show that owmiw, as defined in (1.5) for A = M'gw, is a measure of
2

dependence in the sense of Schweizer and Wolff:

Theorem 1.3. The function O Mw satisfies the following properties for all random

variables X and'Y whose distribution functions are continuous.
(Z) UMJ2rW (C)Qy) = O‘AI;W (Cy){).



(iii) O AW (Cxy)=01if X and Y are independent.
(iv) O nsw (Cxy) =114 Y = g(X) for some strictly monotone function g.
(v) O asw (Crix)gvy) = O nsw (Cx.y) for all strictly monotone functions f and g.

(vi) If (X,Y) and (X,,Y,), n = 1,2,..., are pairs of random variables whose
joint distribution functions are H and H,, respectively, and if (X,,Y,) con-

verges in distribution to (X,Y), then lim O ayw (Cx,v,) = 0w (Cxy).
n—oQ



CHAPTER I1
PRELIMINARIES

In this chapter, the main purpose is to give a brief introduction to theory of
copulas (see [3], [7], [17]). By Sklar’s Theorem, a copula can be viewed as a joint
distribution function. Possessing many nice properties, copulas play an important
role in financial applications. Moreover, a copula can induce a probability measure
on the Borel subsets of [0, 1]? by using Carathéodory-Hahn extension theorem. We
will start with some essential definitions and some basic properties from measure
theory and probability theory in section 2.1 and 2.2. See [9], [14], [16], [20] for
an introduction to measure theory and [1], [15], [18], [24] for an introduction to
probability theory.

We use notations R and R? for [—oc, 00] and [—00, 00] X [—00, 00], respectively.
The closed interval [0, 1] will be denoted by I, hence the Cartesian product [0, 1]2
is denoted by I%. A bounded interval is a set belonging to {[a, b], [a,b)(a, ], (a,b) :
a,b € R}. The set B C R? is said to be a closed rectangle if it is a Cartesian

product [a,b] X [¢,d] where a,b,c,d € R.

2.1 Measure Theory

We begin with fundamental definitions leading to measures, a generalization of

functions which can quantify length, area and volume.

Definition 2.1. Let X be a nonempty set. A nonempty collection F of subsets
of X is called an algebra if the following properties hold:

(i) If A € F, then A° € F.

(ii) It is closed under finite unions.



The algebra F is called a o-algebra if it is closed under countable unions.
Then the ordered pair (X, F) is said to be a measurable space and every member

of F is called an F-measurable set.

Remark 2.2. Let X be a set and C C P(X). If F, is a o-algebra on X for all
a € A, then NyeaF, is a o-algebra. Moreover, there exists a smallest o-algebra on
X containing all of the elements in C, which is called the o-algebra on X generated

by C and is denoted by o(C).

Definition 2.3. Let X be a nonempty set. A collection 7 of subsets of X con-

taining @ and X is called a topology on X if the following properties hold:
(i) The union of arbitrary members of T is in T .
(ii) The intersection of a finite number of members of 7 is in 7.

Then the ordered pair (X, T) is said to be a topological space and every mem-
ber of T is called an open set. The o-algebra generated by a topology T is called
the Borel o-algebra on X, denoted by B(X).

Remark 2.4. Let X be a nonempty set, and X’ C X.
(i) If F is o-algebra on X, then F' = {ANX': A€ F} is o-algebra on X'.

(ii) If the o-algebra on X is generated by C, then the g-algebra on X' is generated
by C'={ANnX":AecC}.

Example 2.5. The Borel g-algebra on R? is also generated by {[a,b] x [c,d] :
a,b,c,d € R such that a < b and ¢ < d}. Consequently, the Borel g-algebra on I*
is generated by {[a,b] X [¢,d] : a,b,¢,d € I such that a < b and ¢ < d}.

Definition 2.6. Let (X, F) be a measurable space. A nonnegative set function p

on F is said to be a measure if it satisfies the following properties:

(i) n(2) =0,



(ii) (Countably additive property) If { A, }nen is a sequence of disjoint sets in F,
then

(A =S Ay,

Then the triple (X, F, u) is called a measure space. If a statement P is true
on a complement of some measurable set N C X such that pu(N) = 0, then P is

said to be true p-almost everywhere, denoted by p-a.e.

Definition 2.7. Let X be a nonempty set and P C P(X) be an algebra. Then a

function p : P — [0, 00] is called a premeasure if the following conditions hold:

(i) n(2) = 0.

(ii) If {A}nen is a sequence of elements in P such that A;NA; = @ for all i # j
and U2 A, € P, then p(U22 1 Ag) => 07 1i(Ay).

The premeasure p is called o-finite if there is a sequence {Ay}72; of elements
in P such that Ug2 | Ay = X and p(Ay) < oo for all & € N.
The following is required to define a function quantifying the length, which is

called a Lebesgue measure on R.

Definition 2.8. Let £ = {(a,b), 9 : a,b € R}. Define m* on the set of all subsets

of R, called Lebesgue outer measure on R, by
m*(A) =inf{> UE,): E, € £,AC U2, E,}
n=1

where [(a,b) = b —a for all a,b € R.

Definition 2.9. Let m* be a Lebesgue outer measure on R and B C R. A set B

is called Lebesgue measurable if
m*(E) =m*(EN B)+m"(EN B°)
for all £ C R.

Theorem 2.10. Let m* be Lebesgue outer measure on R and € be a collection of

all Lebesque measurable subsets of R. Then the following properties hold:



(i) € is a o-algebra containing B(R).

(ii) The restriction of m* to € is a measure on &, called Lebesgue measure on

R.

Definition 2.11. Let X be a set and P C P(X). Then P is called a semiring if

the following conditions hold:

(i) If A and B belong to P, then AN B € P.

(ii) If A and B are in P, then A~ B = Uf_,C, for some k € N such that
C1,Cs,...,Cp €P.

Theorem 2.12 (Carathéodory-Hahn extension theorem). Let X be a set. If p
is a premeasure on a semiring P C P(X), then a measure i induced by u is an

extension of u. Moreover, if u is o-finite, then i1 is the unique measure extending

L.

Example 2.13 ([20]). A collection of all products of two bounded intervals of I*

is a semiring.

Definition 2.14. Let (X, F) and (Y, F’) be measurable spaces. A function
f: X — Yiscalled (F, F')-measurable if f~}(E) € F for all E € F'. If F is either
R or C, then a (B(R), B(IF))-measurable function is said to be Borel measurable.

Proposition 2.15. Let (X, F) and (Y,N) be measurable spaces. If f : X =Y
and C generates N, then f is (F,N)-measurable if and only if f~1(E) € F for all
EecC.

Note that If f is (M, N)-measurable and g is (N, O)-measurable, then g o f
is (M, O)-measurable.

Corollary 2.16. Let (X, B(X)) and (Y,B(Y)) be topological spaces. If f : X =Y
is continuous, then f is (B(X),B(Y))-measurable.

Proposition 2.17. Let (X, F) be a measurable space. If f,g : X — R are

measurable functions, then the functions f + g and fg are measurable.



Let (X, F) be a measurable space and F C X. A function yg : X — R is said

to be the characteristic function of F if it is defined by

1 ifzxek
0 ifzxé¢FE.

xe(r) =

The characteristic function of E is measurable if and only if £ € F. Then a
function f : X — R is called a simple function if it is a measurable function written
by f = >_"  aixa, for some real numbers ay,as,...,a, and for some pairwise
disjoint measurable sets A;, Ag, ..., A, such that X = U |A;,. If f,g: X — R are

simple functions, then f 4 g, fg are also simple functions.

Theorem 2.18. Let (X, F) be a measurable space, and f : X — R nonnegative
measurable function. Then there exists a sequence {s, }nen of nonnegative increas-

ing simple functions such that s,, < f foralln € N and s,, converges pointwise to f.
Remark 2.19. If f : I — I is a continuous function and f = 0 a.e., then f = 0.

The easy way to understand the concept for an integral of a function f with
respect to a measure is to view it as the area under the graph of f. In general idea,

it is shown as follows: let (X, F, ) be a fixed measure space.

Definition 2.20. Let s be a nonnegative simple function. If s = >"" | a;x 4, where
aj, as, . .., a, are nonnegative real values and Ay, As, ..., A, such that X = U | A4;
are pairwise disjoint measurable sets, then the integral of s with respect to the

measure g is defined by
/ sdp = Z aipt(4;).
X i=1

Definition 2.21. Let f : X — [0,00] be a measurable function. The integral of
f with respect to the measure p is defined by

/ fdu = Sup{/ sdp = s is simple and 0 < s < f}.
X X

If E € F, then the integral of a measurable function fxg with respect to the

/E fp = /X Fxadp.

measure f is defined as
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Proposition 2.22. Let f : X — [0, 00] be measurable, and A € F. If [, fdu =0,
then f(x) =0 p-a.e. on A.

The following theorem shows when the order between limit and integral can

be changed.

Theorem 2.23 (The Monotone Convergence Theorem). Let { f,,}nen be a sequence

of nonnegative measurable functions on X. If
(i) fi(x) < folz) < -+ < oo for every x € X and
(ii) lim, o fn(x) = f(x) for each x € X,

then lim,, fX fndp = fX fdu.

Theorem 2.24. If f,g: X — [0,00] are measurable functions, then

/)((erg)du:/deunL/ngu-

If {fn}nen is a sequence of nonnegative measurable functions on X, then

/X f:j fuddp = f:j /X Fudp

Definition 2.25. Let f be a real valued measurable function on X. Define f+ = fx(s>o
and [~ = —fxqr<op. If [ fTdu < ocoor [ f~du < oo, we will define the integral

/X fu = /X Fdy— /X 1 dp

If u(X) < oo, then p is called finite.

of f with respect to u by

Remark 2.26. Let n € N.If y14, o, . . ., i, be finite measures on X, then pn=>"" |
is also a measure on X. Moreover, [, fdu = >"", [ fdu; for all nonnegative

measurable functions f.

A measurable function f on X is said to be integrable with respect to p if

Jx [ fldp < .

The following theorem shows that when the order of limit and integral can be

switched.
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Theorem 2.27 (The Dominated Convergence Theorem (DCT)). Let {f,}nen be
a sequence of integrable functions on X. If
(1) im, o fo(x) = f(x) for each x € X and
(ii) |fn] < g for some nonnegative integrable function g for allm € N,
then f is an integrable function and lim,, . fx fndp = fX fdpu.

Definition 2.28. Let (X, F) be a measurable space. A function
w o F — [—00,00] is said to be a signed measure if it satisfies the following

properties:
(i) (@) =0
(ii) Ranp is a subset of either (—oo, co] or [—o0, 00).

(iii) If {A,}» € Nis a sequence of pairwise disjoint measurable sets in F, then

p(U A = 3 (A

Remark 2.29. If 4, uo are finite measures on X, then pu = py — po is a signed
measure on X. Moreover, [, fdu = [y fdur — [y fdus for all nonnegative mea-

surable functions f.

For each n € N, )\, denotes the Lebesgue measure on R".

Theorem 2.30 (Mean Value Theorem). Let ACR" f: A— R and

0 < M(A) < oo. If A is connected and fis a continuous bounded function, then

for some x € A.

Theorem 2.31. Let (X, Fi,p) be a measure space, (Y, Fs) be another measurable
space and g : X — Y be a measurable function. Define a measure v on Y by

v = u(g Y (B)) for all measurable sets B C Y. If f : Y — R is measurable, then
[x(fog)du= [, fdv.
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2.2 Probability Theory

In this section, we will study some properties of a specific case of a measurable

space, which is called a probability space.

Definition 2.32. Let (X, F) be a measurable space. A measure P on X is called

a probability measure if P(X) = 1.

Then a triple (X, F,P) is called a probability space and every member of F is

called an event.

Definition 2.33. Let X be a set and P be a collection of subsets of X containing
. A collection P is called a m-system if AN B € P for all A, B € P. A family P

is said to be a A-system if it satisfies the following properties:
(i) If A € P, then A° € P.
(ii) If {A,}nen is a sequence of pairwise disjoint sets in P, then U, A, € P.

Lemma 2.34. Let P be a w-system. If P and ) are probability measures on
(X,0(P)) such that P = @Q on P, then P = @Q on o(P).

Let (92, F,P) be a fixed probability space.

Definition 2.35. A function X : Q@ — R is called a random variable if X is a
(F, B(R))-measurable function.

Definition 2.36. Let X be a random variable. A probability measure Py :
B(R) — R defined by

for all A € B(R) is called the probability law of X.

Definition 2.37. Let X be a random variable on €2, and
Fx(z) =P{w: X(w) < z})

for each z € R. Then Fx is said to be the distribution function of X.
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Theorem 2.38. Let F' be the distribution function of a random variable X. Then

F' has the following properties:

(i) F is nondecreasing; that is, if v1 < xa, then F(x1) < F(x2).

(77) lim, o F(z) =1 and lim,,_ F(z) =0.

(iii) F' is a right continuous function; that is lim,_,,+ F(y) = F(z).

Definition 2.39. Let X be a random variable. Its distribution function is con-

tinuous on R if and only if P(X = z) =0 for all z € R.

Definition 2.40. The random variable X on €2 is called continuous if its distri-

bution can be written as follows: for all x € R,

F(z) = / OO f(u)du

for some integrable function f : R — [0, 00), which is called a probability density

function of X.

Example 2.41. (i) A continuous random variable X is called a uniform ran-

dom variable on [a,b] if its probability density function can be written as

follows:
L ifa<x<b

fX (17) _ b—a

0 otherwise.

The uniform random variable X on [a, b] is denoted by X ~ Ula, b].

Let £ € R and ¢ > 0. A continuous random variable X is called a normal
random variable with parameters ;1 and o? if its probability density function

can be written as follows:

1 (z—w)?
fX<"L‘) = 6_ 20‘3

2ro

for all —oo < x < 00. The normal random variable X with parameters p and
0? is denoted by X ~ N(u,0?). If X ~ N(0, 1), then it is called a standard

normal random variable.
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Definition 2.42. Fix n € N. A function X : 2 — R" is called a n-dimentional

random vector if X is a (F, B(R"))-measurable function.

Definition 2.43. Fix n € N. If X is a n-dimentional random vector on {2, then

Fx defined by
Fx(z) =P{w: Xi(w) <21, Xo(w) < z9,..., Xp(w) < 2, })

for all x = (21, 22, ..., x,), is called the joint distribution function of the random

vector X.

Theorem 2.44. Let Fx be a joint distribution function of a random vector X.

Then F has the following properties:

(i) Fx(-,-,...,-) is nondecreasing and right continous for each of its arqguments.

(ZZ) hm Fx($1,[[)2,...,$n) =1.
T;—00,i=1,2,....,n

(iii) For eachi=1,2,...,n, lim Fx(xy,2z9,...,2,) =0.
Ti—>—00

If X = (X1,Xs,...,X,) is a random vector, then, for each i, the marginal
distribution function of X is obtained from F'x by setting the components x; = oo

for all i # j.

Definition 2.45. Fix & € N. Let {X,},en be a sequence of k-random vectors

associated with distribution functions F;, for all n € N and X be another k-

random vector associated with a distribution function F. If lim F,(x) = F(z)
n—oo

for all continuity points x of F, then we say that X,, converges in distribution to

X, denoted by X, NS¢

Theorem 2.46. Fiz k € N. Let {X, },en be a sequence of k-random wvectors
associated with distribution functions F,, for alln € N and X be another k-random
vector associated with a distribution function F. Then lim, . F,(z) = F(z) for

all continuity points x of F' if and only if

lim [ fdF,= [ fdF
Rk

n—0o0 Rk
for all f € Cy(R*) where Cy(R¥) is the collection of all bounded continuous func-

tions on RF.
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2.3 A Copula and Its Fundamental Properties

In the beginning of this section, we will study some basic definitions and some

properties leading to being a copula function.

Definition 2.47. A real valued function H is called a 2-place real function if its

domain is a subset of R2.

Definition 2.48. Let H be a 2-place real function whose domain is the Cartesian
product of nonempty subsets Si, Sy in R. If B := [z, 23] X [y1, 2] is a rectangle
whose vertices are in S; X Ss; that is, (z1,41), (€1, y2), (T2, y1), (T2, y2) € S1 X Sa,

then we will define the H-volume of B by
Vi(B) = H(x2,y2) — H(z9,y1) — H(21,92) + H(z1, 1)

Definition 2.49. Let H be a 2-place real function. If Vi (B) > 0 for all rectangles

B whose vertices are in dom H, then H is 2-increasing.

Lemma 2.50. Let H be a 2-increasing function whose domain is Sy x Sy C R2. If
1, Xy € Sy such that x1 < x9, and y1,y2 € Sa such that y1 < ys, then the following
holds:

(i) The function t — H(t,yo) — H(t,y1) is nondecreasing on S;.
(i) The function t — H(x9,t) — H(x1,t) is nondecreasing on Ss.

Definition 2.51. Let H be a function whose domain is Sy x S, C R2. Suppose a;
and ay are the least elements in S; and Sy, respectively. If H(z,a2) = 0= H(ay,y)
for all (z,y) € S1 x Ss, then H is grounded.

Lemma 2.52. If H is a grounded 2-increasing function whose domain is S X Sy C

R?, then H is nondecreasing for each of its arguments.

Definition 2.53. Let H be a function whose domain is S; x Sy C R2. Suppose b;
and by, are the greatest elements in S; and S, respectively. Then margins F, G of
H are defined by

F(x) = H(x,by) for all x € Sy
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and

G(y) = H(by,y) for all x € S,.

Lemma 2.54. Let H be a grounded 2-increasing function whose domain is S X

Sy C R? and whose margins are F and G. Then
|H (22, y2) — H(z1,91)| < [F(22) — F(21)| + |G (y2) — G(y1)]

for all (z1,11), (x2,y2) € S1 x Ss.

Definition 2.55. A function C : I? — I is called a copula if it satisfies the

following properties:

(i) C'is grounded and 2-increasing; that is, C'(u,0) = C'(0,v) = 0 for all u,v € I
and Vo (B) > 0 for all rectangles B C 2.

(ii)) C(u,1) =u and C(1,v) = v for all u,v € I.
Example 2.56. The following functions are all copulas.
(i) M(u,v) = min{u,v} for all u,v € I.
(ii) II(u,v) = uv for all u,v € I.
(iii) W (u,v) = max{u+v — 1,0} for all u,v € I.

(iv) Fixedr € [=1,1]. Forallu,v € I, C%(u,v;r) = ®o(®1(u), ®~1(v); r) where
7;4:272m:y+y 22
Oy (h, k;r) = ffoo ffoo W%e 20-7) dydx and ®(h) = ff Le Tdx
for all h, k € R. It is called a Gaussian copula.

Theorem 2.57. Let C' be any copula. Then
W (u,v) < Cu,v) < M(u,v)
for all u,v € I.

Then the copulas M and W are called the Fréchet-Hoeftding upper bound and

the Fréchet-Hoeftding lower bound, respectively.
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Theorem 2.58. Let C' be any copula. Then
|C(ug,v2) — Clug,v1)| < |ug — ur| + |va — vy

for all uy,us, vi,v9 € I. Consequently, C' is Lipschitz and then uniformly continu-

ous on I?.

Definition 2.59. Let C be a copula, and a € I. The functions
t+— C(t,a) and t — C(a,t) for all t € I

are said to be the horizontal section of a copula C' at a and the vertical section of

a copula C' at a, respectively.

Corollary 2.60. The horizontal and vertical sections of a copula C are nonde-

creasing and uniformly continuous on I.

The following famous theorem reveals a fact that a copula function is associated

with random variables and is indeed a joint distribution function.

Theorem 2.61 (Sklar’'s Theorem). For any random variables X and Y, the
joint distribution function Fxy of X,Y can be written in terms of a copula and
its marginal distribution functions (Fx and Fy, respectively) as follows: for all
(u,v) € R?,

FX’y(u7 U) = O(Fx(u),Fy(U)) (21)

for some a copula C. The copula C' is unique on I* when Fx and Fy are continuous,
otherwise it is unique only on Ran F'x X Ran Fy.

Conwversely, for any copula C and any marginal distribution functions Fx and
Fy, if the function Fxy is defined by (2.1), then it becomes a joint distribution

function whose marginal distribution functions are Fx and Fy .

If X.Y are random variables whose their distribution functions are continuous,

then a copula C' which is associated with X,Y sometimes write Cx y instead of

C.
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Remark 2.62. Every copula can be considered as a joint distribution function

whose marginal distributions are continuous.

Let C be any copula and define a joint distribution He of C' as follows:

4

0 ifu<Oorv<0

C(u,v) if (u,v) € I?
Heo(u,v) =S« ifo>1luel

Y ifo>1luel

1 ifu>1andv>1.

\

One can prove that H¢ is constructed from uniform random variables on 1.

Definition 2.63. A 2-place real function C is said to be a positively quadrant de-
pendent (PQD) copula if C(u,v) > I(u,v) for all u,v € I. It is called a negatively
quadrant dependent (NQD) copula if C(u,v) < II(u,v) for all u,v € I.

Any copula C' induces a probability measure jic on the Borel subsets of I? via

po([ur, ug] X [v1, va]) = Vo ([ur, ug] x [v1,v2]),

for all rectangles [u, us] X [v1,v5] C I?, by using Carathéodory-Hahn extension
theorem. Let A\ denote Lebesgue measure on I. A measure p on 12 is called doubly
stochastic if u(S x I) = u(I x S) = A(S) for any Borel set S of I. One can prove
that uc is doubly stochastic. If S is the union of all open subsets A of I? with
tc(A) =0, then the complement of S is called the support of a copula C.

The following theorem shows that dependence structure can be captured by

copulas, which is regardless of their marginal distribution functions.

Theorem 2.64 (][22, Theorem 2). Let X and Y be random variables whose their

distribution functions are continuous. Then
(i) Cxy =1l if and only if X and Y are independent.

(1) Cxy = M if and only if Y = f(X) a.s. where f is strictly increasing a.e.
on Ran X.
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(i) Cxy = W if and only if Y = f(X) a.s. where f is strictly decreasing a.e.
on Ran X.

The copula 11, M and W are called the independent copula, the comonotonic
copula and the countermonotonic copula, respectively.

Observe that if X is a random variable whose distribution is continuous, then
a distribution function of f(X) is continuous for all injective functions f. Let f, g
be strictly monotone functions on Ran X and RanY, respectively. Then a copula
Cr(xy),9v) can be written in the form of Cxy. In particular, a copula is invariant

under strictly increasing functions, which is shown by the following theorem.

Theorem 2.65. Let X and Y be random variables whose distribution functions

are continuous. Then for all u,v € I,

(1) Cpxy,9v)(w,v) = Cxy(u,v) if f and g are both strictly increasing a.e. on
Ran X and RanY, respectively.

(it)  Crix)grv)(u,v) = u—Cxy(u, 1=v) if f is strictly increasing a.e. on Ran X

and g is strictly decreasing a.e. on RanY.

(iii) Crixygvy(u,v) =v—Cxy(l—u,v) if f is strictly decreasing a.e. on Ran X

and g is strictly increasing a.e. on RanY.

(iv) Crixygvy(u,v) =u+v—14+Cxy(l—u,1—v)if f and g are both strictly

decreasing a.e. on Ran X and RanY, respectively.

We next review some basic definitions of abstract algebra which are necessary

to define a Dy-invariant copula. For an introduction to abstract algebra, see [10].

Definition 2.66. Let S be a set. Then a function * : S xS — S is called a binary

operation on S.
Definition 2.67. Let % be a binary operation on S.
(i) If (axb)*xc=ax(bxc) for all a,b,c € S, then x is said to be associative.

(ii) If axb="bx*a for all a,b € S, then * is said to be commutative.
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(iii) An element e € S is called an identity element for « if for all a € S, axe =

a=exa.

Definition 2.68. Let * be a binary operation on a nonempty set S. If * is asso-
ciate, then the ordered pair (5,x*) is a semigroup. A semigroup (S, *) equipped

with an identity element is called a monoid.

Definition 2.69. Let (G,*) be a monoid with an element e. Fixed a € G. An
element a’ € G is called an inverse of a if axa’ = e = a’ xa. Then (G, ) is a group
if every element in G has its inverse. Moreover, a group (G, ) is abelian if x is

commutative.

Definition 2.70. Let (G,*) be a group with an identity e. The cardinality of
the set G is the order of a group G, which is denoted by |G|. Let a € G. Then
the order of a, denoted by o(a), is the smallest positive integer n € N such that

a” =e.

Proposition 2.71. Let (G,*) be a group. Then the following are true:

(i) The identity of G is unique.

(ii) For all a € G, the inverse of a is unique, which is denoted by a™*.

Definition 2.72. Let (G, *) be a group and a nonempty set H be a subset of G.
If (H,x) is a group, then it is called a subgroup of G, denoted by H < G.

Proposition 2.73. Let (G,*) be a group. The intersection of subgroups of G is
a subgroup of G.

Definition 2.74. Let (G,*) be a group and A C G such that A # @. Then the
subgroup of G generated by A, denoted by (A), is the intersection of all subgroups

of G containing A. Moreover, it is the smallest subgroup of G containing A.

Definition 2.75. For each n > 2 | the dihedral group of order 2n denoted by
D,, is a group which is generated by two elements a, b such that the order of a

is n, the order of b is 2 and ba = a~'b. So we can see it is a group of rotations
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and reflections of a regular n-gons with n vertices where a is the rotation through

angle 27“ and b is the reflection.

Example 2.76. The dihedral group of order 8 on the unit square [0, 1]?, denoted
by Dy, is {e,r,7?,73, h, hr,hr* hr*} where e is the identity, h is the reflection
about z = 1, and r is a 90° counterclockwise rotation around the point (3,1).
Definition 2.77 ([12]). For d € Dy, a copula C? is defined by

Od(u’ U) = /Lc(d([o, u] X [07 U]))v

which has a mass distribution on the the rectangle d([0, u] x [0, v]) with respect to

the doubly stochastic measure associated with C'
Example 2.78. For all rectangles [uy, us] X [v1,vs] on I?,
(1) hr(ug, ug] X [v1,v9]) = [v1,va] X [u1, us)
(i) hr?(fur,ug] x [v1,ve]) = [ug, us] X [1 — v, 1 — v1]
(iii) h([uy, us] X [v1,v2]) = [1 — w2, 1 — uq] X [v1, 9]
(iv) r2([ug, ug] x [v1,v2]) = [1 — Uz, 1 — u1] X [1 — w9, 1 — vy].

The following table displays a relationship between C? and C for all d € Dj.

Copula List

D, wvel Copula

e e(u,v) = (u,v) C(u,v) = C(u,v)

r r(u,v) = (1 —v,u) C"(u,v) =u—C(l —v,u)

r2 r2(u,v) = (1 —u,1 —v) C(u,v) =u+v—1+C(1—u,1—0)
3 r3(u,v) = (v,1 —u) C"* (u,v) = v — C(v,1 —u)

h h(u,v) = (1 —u,v) Ch(u,v) =v—C(1 —u,v)

hr hr(u,v) = (v, u) Ch (u,v) = C(v,u)

hi? hr?(u,v) = (u,1 — ) CM (u,v) = u — C(u, 1 —v)

hr® hr3(u,v) = (1 —v,1—u) | C" (u,v)=u+v—1+C1—v,1—u)
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Table 2.1: C¢ for d € D,.

In [12], Edwards, Mikusinski and Taylor introduced a D,-invariant copula de-
fined by
C(u,v) = C%u,v)

for all (u,v) € I? and for every d € D,.

One can see that if C' is a Dy-invariant copula then for all d € Dy, then

pe([ur, uz] X o1, v2]) = pe(d([ur, ug] x [vr, va]))
for all rectangle [uy, us] X [v1,v5] C T2
Example 2.79. II and w are examples of Dy-invariant copulas.

Next, we will introduce you to a well-known function quantifying the relation-
ship between two random variables X and Y. It is called a measure of dependence.
Since there are many definitions of being a measure of dependence, we will focus
on Rényi’s definition and Schweizer and Wolff’s definition.

A history for measures of dependence began in 1959. Initially, Rényi [19] con-
structed a measure of dependence based on a set of six postulates. It was defined
as follows: a real function R on the Cartesian product of the class A of all random
variables which are not constant with probability one is said to be a measure of

dependence if the following conditions hold for all X,Y € A :
(i) R(X,Y) =R(Y, X).
(ii)) 0 <R(X,Y) < 1.
(i) R(X,Y) =0 if and only if X and Y are independent.

(iv) R(X,Y)=1i#fY = f(X) or X = g(Y) for some Borel measurable functions
f on Ran X and g on RanY.

(v) If f and g are Borel measurable injective functions on Ran X and RanY,
respectively, then R(f(X),g(Y)) = R(X,Y). In other words, R is invariant

under Borel measurable injective transformations.
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(vi) If X and Y are jointly normal with correlation coefficient r, then R(X,Y) = |r|.

Afterwards, Schweizer and Wolff [22] proposed a definition for a measure of
dependence R’ based on Rényi’s definition. The domain of R’ became the set of
all random variables of which distribution functions are continuous. Moreover the
conditions (iv)-(vi) in Rényi’s postulates were adjusted and a continuity property
of R’ was added. Then a measure of dependence in sense of Schweizer and Wolff
is defined as follows: a real function R’ on the Cartesian product of the collection
A of all random variables whose distribution functions are continuous, is said to

be a measure of dependence if the following conditions hold for all X,Y € A :
(i) R(X,Y) =R(Y,X).
(i) 0 <R(X,Y) < 1.
(iii) R'(X,Y) =0 if and only if X and Y are independent.

(iv) R'(X,Y) =1 if and only if Y = ¢g(X) for some strictly monotone function

g on Ran X.

(v) RI(f(X),9(Y)) = R'(X,Y) for all strictly monotone functions f and g on
Ran X and on Ran Y, respectively. Specifically, R’ is invariant under strictly

monotone functions.

(vi) If X and Y have a bivariate normal distribution associated with correlation

coefficient r, then R'(X,Y) is a strictly increasing function ¢ of |r|.

(vii) Let (X, Yy )nen be a sequence of 2- dimentional random vectors whose joint
distribution functions are H, for all n € N and (X,Y’) be another pair of

random variables whose joint distribution function is H. If H, 4 , then

lim R'(X,,Y,) =R (X,Y).

n—oo

In [22], the following result was established.
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Theorem 2.80 ([22, Theorem 4]). A function o on a set of all copulas defined by

[ ]C = dr

o(C) = [ [M = Ti[d),

is a Schweizer-Wolff measure of dependence and a function ¢ in (vi) is given by

7]

o(|r|) = g arcsin(?).

All copulas can be approximated by checkerboard copulas. The idea of checker-
board copulas, which can be seen in [25], is shown as follows: let (X, F,P) be

a probability space, and C' be a copula associated with uniform random vari-

ables U,V on I. Fix m € N. Denote Iy = [0, ] and I; = (%, 2] for all

m

1=1,2,...,m — 1. Then the following are true.
(i) {f;:i=0,1,2,...,m — 1} is a partition of I.
(i) {fi x I; :4,7=0,1,2,...,m — 1} is a partition of 1%

(iii) {A;;} is a partition of X where 4;; = {w : (U(w),V(w)) € I; x I;} for all
i =012 m—1.

By Sklar’s Theorem (Theorem 2.61) and conditional probability, we get

Clu,0) =P(U <u,V <v) =Y PU <u,V <o|A)P(A)

4,J
for all u,v € I. Note that P(U < u,V < v|4,;;) is a joint distribution for all

1,7 =0,1,2,...,m — 1. Using Sklar’s Theorem again, we have
PU < u,V <0|Aij) = Cy(Fi(u), (Gi;(v))

where Fj;(u) = P(U < u|4;;) and G;;(v) = P(V < v|A;;) for all i,j =
0,1,2,...,m — 1. Thus

Cu,v) =P(U <u,V <v) = ZP(Ai,j)Ci,j(Fz’,j(u), (Gij(v)) (2.2)

for all u,v € I. Note that [P(A;;)]mxm is a doubly stochastic matrix.
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Theorem 2.81 ([2], Theorem 3.1). Fiz m € N. Let D;; be a copula, H;; and
L;; be distribution functions over I; and I, respectively, and a;; > 0 for all

i,7€40,1,2,...,m—1}. Then for all u,v € I,

D(u,v) = a;;D; ;(H;;(u), Li j(v)) (2.3)

2%
is a copula if and only if the following conditions hold:
(i) for each h=10,1,2,....,m—1, Z?:_ol ap;Hp;(u) =u — % for all u € Iy,
(it) for each k=0,1,2,...,m —1, Z;.n_ol a;pLin(u) =v— L forallv € I.

Remark 2.82 ([2]). Let C be a copula. Fix m € N. If D, ; =11, H; ; and L, ; are
uniform distribution functions over I; and I; and a; ; = P(A; ;) which is defined as
(2.3) for all i,7 € {0,1,2,...,m — 1}, then the conditions (i) and (ii) hold. Thus
for all u,v € I,
Con(u,0) = P(A; I(H; 5(u), Lij(v))
(2]

is a copula, which is called the checkerboard approximation of C.

Theorem 2.83 ([2], Theorem 4.2). If {C),}men is a sequence of checkerboard

copulas of C, then ||Cy, — Cl|oo < % Consequently, C,, converges uniformly to C.

In [5], Darsow et al. introduced a binary operation *-product on the class of

all copulas defined by
1
Ax B(u,v) = / OaA(u, t)01B(t,v)dt
0

for all u,v € [0,1]. Then (Cy, %) is a monoid with identity M. Moreover, we can

prove that the following properties hold:
(i) II is the zero; that is Il « C' = II = C % II for all copula C.
(ii) C*« W(u,v) =u— C(u,1 —v) for all u,v € I.
(iii) W C(u,v) =v—C(1 —u,v) for all u,v € I.

(iv) W W = M.



26

Theorem 2.84 ([5], Theorem 2.3). Let A, B be copulas. If A,, converges uniformly

to A, then A, x B and B x A,, converge uniformly to Ax B and B x A, respectively.

For any copula C, a copula CT defined by C7(u,v) = C(v,u) for all u,v € I
is called the transposed copula of C.

Definition 2.85 ([5]). A copula C is said to be left invertible if there exists a
copula A such that A« C' = M. Then A is called a left inverse of C. Similarly, a
copula C is said to be right invertible if there is a copula A such that C'x A = M.
Then A is called a right inverse of C. A copula C is said to be invertible if C is
both left invertible and right invertible.

Theorem 2.86 ([5|, Theorem 7.3). If a copula C is left invertible, then its left
inverse is unique and equal to CT. Similarly, If a copula C is right invertible, then

its Tight inverse is unique and equal to C7.

Corollary 2.87 ([21], Corollary 4.9). Let f,g : R — R be Borel measurable

functions. Then for all random variables X andY,

Crxyx * Cxy * Cygvy = Cp(x),9(v)-

Definition 2.88 ([23]). Let X and Y be two random variables. Y is said to be
completely dependent on X if there exists a Borel measurable function f such
that P(Y = f(X)) = 1. They are called mutually completely dependent (m.c.d.)
if there is a Borel measurable injection f such that P(Y = f(X)) = 1.

Lemma 2.89 ([23], Theorem 4.1). Let X and Y be continuous random variables

associated with a copula C. The following statements hold :
(i) Y is completely dependent on X if and only if C' is left invertible.
(ii) X is completely dependent on'Y if and only if C' is right invertible.

(7ii) X andY are mutually completely dependent if and only if C is invertible.
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In 1992, Mikusinski et al. introduced a shuffle of Min, which is constructed
from M by cutting the support of M on I? into a finite number of vertical strips.
Each vertical strip may be flipped with respect to its vertical axis of symmetry.

Then all vertical strips will be rearranged to form the I2.

Corollary 2.90. Let C' be a copula. There exists a sequence of the shuffles of Min

converging uniformly to C.

Remark 2.91. The set of all shuffles of Min is a subset of the class of all invertible

copulas.

Definition 2.92 ([4]). A measurable function f : I — I is said to be measure

preserving if A(f71(A)) = A(A) for all Borel measurable sets A in I.
Denote F as the class of all measure preserving functions.

Theorem 2.93 ([4], Theorem 2.2). If f is a measure preserving function on I, then
there exists a sequence of injective piecewise linear measure preserving functions

on I which converges to f almost everywhere.

Theorem 2.94 ([6], Theorem 2.2). Fiz f,g € F. If a function Cy, is defined by
Crglu,v) = Mf7[0, 4] N g~"[0,0])

for all u,v € I, then Cy 4 is a copula. Furthermore, if C' is any copula, there exist

f,9 € F such that C = Cy,.
Let e be the identity function; that is, e(x) = x for all z € I.

Theorem 2.95 ([6], Theorem 2.4). Let C' be left invertible. A function f defined
by
f(z) = inf{y|o,C(z,y) =1}

becomes a measure preserving Borel function and C = C. ;.

For each f € F, if there exists g € F such that go f = e ass. and fog=-e

a.s., then ¢ is called an essential inverse of f.



28

Corollary 2.96 ([6], Corollary 2.4.1). A copula C is invertible if and only if
C = Cy. for some measure preserving Borel function f whose an essential inverse

is g. Consequently, Ct. = C.q.

Definition 2.97 ([13]). If T : R — R is an increasing function with T'(—o0) =
Em T(xz) and T'(o0) = liTm T(z), then the generalized inverse T~ : R — R of T is
defined by for all y € R,

T (y) =inf{z e R: T'(z) > y}.

Proposition 2.98 ([13], Proposition 1). IfT : R — R is increasing with T'(—o0) =
lfm T(x) and T(o0) = liTm T(x), then the following statements hold: for all
r,y e R

(i) T~ is increasing.

(i) T~ (T(z)) < x for all x € R.

(iii) If T is strictly increasing, then T~ (T(z)) = x for all x € R.

(iv) T is continuous if and only if T~ is strictly increasing on [inf Ran T, sup Ran T7.
(v) T is strictly increasing if and only if T~ is continuous on RanT.

Proposition 2.99 ([13], Proposition 2). Let X be a random variable with a dis-
tribution function F, denoted by X ~ F then the following statements hold:

(i) If F is continuous, then F(X) ~ UJ0,1].
(ii) If U ~ U0, 1], then F~(U) ~ F.

Corollary 2.100. Let X and Y be two random variables whose marginal distri-

bution functions are Fx and Fy, respectively, and joint distribution function is

Fxy. Then for all u,v € I,
Cxy(u,v) = Fxy(F~ x(u), F"y(v)).

Let (€2, F,P) be a probability space. Denote E(X) = [, XdP.
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Definition 2.101. Let X and Y be two random variables. Then the correlation

coefficient px y is defined by

_ cov(X,Y)
Vvar(X)var(Y)

PXY
where cov(X,Y) = E[(X — B(X))(Y — E(Y))] and var(X) = E(X — E(X)).

Definition 2.102. Let X and Y be random variables. If their joint probability

density function fxy is defined by for all z,y € R,

1 —12)[($—M1 )2_2T($;fl)(y—ﬂ2)+(l/;g2 )2]

€T e 62(177' o1 o9
fX,Y( 7y) 27T010_2m

then we will say that X and Y have a bivariate normal distribution with correlation

(2.4)

coefficient r.
Moreover, one can prove that X ~ N(uy,0%) and Y ~ N(pg,05) if X and YV

have a bivariate normal distribution of which fxy is defined by (2.4).

Proposition 2.103. X and Y are standard normal random variables with cor-
relation coefficient v if and only if Cxy is a Gaussian copula with parameter r,

denoted by CY°.

Definition 2.104. Let C; and Cy be copulas. If C)(u,v) < Cy(u,v) for all
u,v € [0, 1], then C} is said to be smaller than Cy, denoted by C; < Cs.

Remark 2.105. Let p1,p2 € [—1,1]. If p; < po, then Cg“ < C’ga. Moreover,
Cfr = M,C% =W and C§* = 1L.



CHAPTER III
GENERALIZATIONS OF SCHWEIZER-WOLFF
MEASURE OF DEPENDENCE

Let ¢ : I — [0,00) be a function satisfying the following conditions:

(A) ¢ is a strictly increasing continuous function.

(B) ¢(0) = 0.

Let us define a function o,(X,Y’) for all random variables X,Y with continuous

distribution functions setting by

_ _ fIQ 90(|CX,Y _H|(u7v))d)‘2(u7v)
S A (Y TR PEM RO

For brevity, we will drop the integration variables u and v and write

Ji2 0(|Cxy — H])dA;
Sz 0(IM —T0))dA;

0,(Cxy) =

Our goal in this chapter is to show that o, is a measure of dependence in the sense
of Schweizer-Wolff.
Let us begin with the existence and boundedness of o,. The main idea of the

following lemma was communicated to us by [11].

Lemma 3.1. If ¢ : I — [0, 00) satisfies the conditions A and B, then the following

statements hold:
(i) [ 0(|C=T01|)dNs < [}, o(|M —11|)dNy for all copulas C.
(1i) [ (|M —10))dAs = [, (W —TI|)dAs.

Proof. (i) Let C be a copula. Note that the integral of a measurable function

with respect to Ay can be transformed into iterated integrals. For each
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fixed v € I, we denote Cy(u) = C(u,v) for all u € I and put A(C,) =
[;¢(|C = I|(u, v))du. We will show that A(C,) < A(M,).

For each v € I, consider the set L, := {u € I : Cy(u) < IL,(u)}. If L, is
empty, then C, > II,, and hence 0 < C, — II, < M, — 11, together with ¢
is increasing, A(C,) < A(M,). If L, # @ then, by the continuity of C,, it
must be open and hence equal to a disjoint union of countably many open

intervals, i.e., L, = Ujen(rs, $;)-

For each i € N, we first define a parallelogram whose farthest corners are
(r;,riv) and (s;, s;v). Define f; (u) = max{u + s;v — s;,r;v} and g, (u) =
min{r;v + u — r;, s;v} on [r;, s;]. The graphs of f;, and g;, consists of line
segments those of W, and M, respectively. See Figure 3.1. Note that C, =
I1, on the boundary of (r;, s;) for all € N. The facts that Vo ([u, s;] X [v,1]) >
0 and C(u,v) > rv for all w € [ry, s;] imply Cy(u) > fi, (u) for all u € [ry, s4].
Similarly, using Vo([ri, u] x [v,1]) > 0 and C(u,v) < s;v for all u € [ry, si],
we have C, < g;, on [r;, s;]. Observe that the mapping u — s; —u +r; is a

flip with respect to the center of [r;, s;], hence for all u € [r;, s;],
(IT — fi)(u,v) = (g; — ) (s; — u+ 15, 0). (3.1)
Since ¢ is increasing, we have

/ o(IC, — TL|(u)) du (I, — Cy)(w))du

I
g &

Define a function H, on I by

H, () = Cyp(u) if Cy(u) > 11:[[1,(u),
< 1l

Gin(w) if Cy(u) (u) and r; < u < s;.
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Then

Ti+1

Z/ (I1-C)) uvdu+Z/ IT) (u, v)) du

ieEN I~ Ly
< A(H,)
A(M,).

Therefore, we have proved (i).

(ii) The proof follows from the equation (3.1) when r =0 and s; = 1.

0
M,
Giy
IL,
W,
T z 1
L Jiv
0 v 1 S8 1—w 1
2

/ —

Figure 3.1: Graphs of W,, M,, 11, f;, and g;,.

The following lemma shows that the maximum value of o, occurs exactly when

C=Mor(C=W.
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Lemma 3.2. 0,(C) attains its mazimum value ezactly when C' = M or C = W.

Proof. (<) This follows from Lemma 3.1.
(=) Let D be a copula such that o,(D) is the maximum value. Then
[ oD =10hixs = [ 21 =Tihare = [ oW — 10,
For any copula C' and for each fixed v € I, we define C, and A(C,) as we did in
Lemma 3.1. By the assumption, we have A(M,) = A(D,) = A(W,) a.e. v € I.
Using the continuity of both copulas C' and ¢ and DCT, we have v — A(C,) is
continuous on I. Then A(M,) = A(D,) = A(W,) for all v € [0, 1].

Let v € I. Consider the set L, := {u € I : D,(u) < II,(u)}. If L, is an empty
set, then D, > II,. Using the fact that ¢ is strictly increasing, we obtain D, = M,
a.e. u € I. Because of the continuity of both D and M, we have D, = M,. If L,
is not an empty set, by the continuity of D, and II,, then L, is an open set and it
is equal to a disjoint union of countably many open intervals U;en(r;, $;). Define a
function H, as we did in the Lemma 3.1. Then A(D,) < A(H,) < A(M,), which
implies that A(H,) = A(M,). Thus o(|H, — II,|) = ¢(|M, —I1,|) ae. u € I.
Using the fact that ¢ is strictly increasing, we have H, = M, a.e. u € I. Because
of the continuity of H and M, we have H, = M,. If there were i € N such that
(riy8;) # (0,1), then H, would not be M,. Then (r;,s;) = (0,1) for all i € N. By
the assumption, it implies that D, = W,. If there exists v € I such that D, = M,,
then, by using the facts that D is Lipschitz continuous and the distance between
M, and W,isvifv<lorl—ovifv > %, D, = M, for all v € I. Similarly, if

2
there is v € I such that D, = W, then D, =W, for all v € I. [l

Theorem 3.3. The function o, satisfies the following properties for all random

variables X, Y with continuous distribution functions.
(i) 0,(Cxy) =0,(Cyx).
(ZZ) 0 S U¢(0X7y) S 1.

(717) 0,(Cxy) =0 if and only if X and Y are independent.
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(v) 0,(Cxy) = 1ifand only if Y = f(X) for some strictly monotone function f.
(v) 0,(Crx)g9v)) = 0o(Cx,y) for all strictly monotone functions f and g.

(vi) If (X,Y) and (X,,Y,), n=1,2,..., are pairs of random variables with joint
distribution functions H and H,, respectively, and if (X,,Y,) LN (X,Y),

then 71113010 0,(Cx,v,) = 0,(Cxy).
Proof. (i) It follows from the fact that Cxy(u,v) = Cy.x(v,u) for all u,v € I.
(ii) This follows immediately from Lemma 3.1.
(ii) (<) By Theorem 2.64 (i), we have Cxy = II. Since ¢(0) = 0, we get

Uw(CX’y) = 0

(=) By the assumption, we have ¢(|Cxy — II|) = 0 a.e. As ¢ is strictly
increasing, C'xy = II a.e. Using the continuity of copulas, we have Cxy =

IL.

(=) This follows from Lemma 3.2.

(v) Let f and g be strictly monotone.

Case 1: Assume that f and g are both strictly increasing. It follows from

Theorem 2.65 (i).

Case 2: Assume that f is strictly increasing and g is strictly decreasing. It

follows from Theorem 2.65 (ii) and by a change of variable.

Case 3: Assume that f is strictly decreasing and g is strictly increasing. It

follows from Theorem 2.65 (iii) and by a change of variable.
Case 4: Assume that f and g are both strictly decreasing. It follows from

Theorem 2.65 (iv) and by a change of variable.

(vi) By the assumption, we obtain lim H,(u,v) = H(u,v) for all (u,v) at which
n—oo

H is continuous. By Sklar’s Theorem and the continuity of the distribution
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functions of X and Y, we have lim Cx, y, (u,v) = Cx y(u,v) for all u,v € I.
n—oo
By using DCT and the continuity of ¢, the proof is complete.
Il

Given a function ¢, the following example shows that o,(Cxy) is a strictly
increasing function of |r| when X and Y have a bivariate normal distribution with

correlation coeflicient r.

Example 3.4. Define ¢; and ¢, both of which satisfy conditions (A) and (B),

as follows:
@ 21 if0<az<i,
P1{T) =19 2241
TR ofl<a<
and
42 if0<z<4q,
o) =< 9r —2 if%ggggg,
bdr —37 if § <ax <1

If X and Y have a bivariate normal distribution with correlation coefficient r,
then the graphs of o, (Cxy) (Y-axis) as a function of r (X-axis) for i = 1,2 is
shown in the following figures. For more details on how the graphs are plotted,

see Appendix.

-\ /
3\ /

0.7 - ™, /
0.6 - N .
N\ /

04 - \ / _
03- \ /
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Figure 3.2: The graph of o, (X, Y)(a) and o,,(X,Y)(b) for X,Y which are jointly

normal with correlation coefficient r.



CHAPTER IV
GENERALIZATIONS OF RENYI MEASURE OF
DEPENDENCE

Denote the set of all injective Borel measurable functions on R by Z. We de-
fine o7 (X,Y’) for all random variables X and Y whose distribution functions are

continuous by

Ji2 #(1Cx)90) — 1) dAs
oX(X,Y) = sup o X),g(Y)) = sup
‘P( ) f.geT ‘P(f( ) g( )) FoeT flz ‘M 1—[| d)\g

where ¢ satisfies the conditions (A) and (B) in page 30. For all f,g € Z, the

(4.1)

copula Cf(x)4(v) still has continuous distribution function. See the paragraph
before Theorem 2.65. Let M be the class of all invertible copulas. In this chapter,

we will show that the equation (4.1) can be newly written as

o'* (X Y) _ sup flg |Sl * CXY * 52 H|>d)\2
v , S1,52eM f]2 90 |M - H|)d)\2

Moreover, the function o7 satisfies all of Rényi’s postulates except for (vi).

(4.2)

The following lemmas are required to prove (4.2).
Proposition 4.1. Let U ~ U|0,1]. If f is measure preserving, then
Cuywy(z,y) = A([0, 2] N 710, y])
for all x,y € 1. Consequently,
Cu,rwy = Cur s
for all U" ~ U|0, 1].
Proof. Using the facts that U ~ U[0, 1] and f is measure preserving, we have

P(f(U) < 2) = P(U € f7[0,a]) = A(f ' [0,2]) =
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for all z € I. That is f(U) ~ UJ0, 1]. By Sklar’s Theorem,
Cusw)(z,y) =P(U <, f(U) < y) =P(U € [0,2]nf 1[0, y]) = A0, 2] f [0, 9])
for all z,y € I. Furthermore, we have

Cu,swy = Cur s
for all U’ ~ U0, 1]. O

Lemma 4.2. Let X be a random variable with a continuous distribution function

F. Ifo={zxeR| F(z)— F(x —h) >0 forall h >0}, then P(X € ©) = 1.

Proof. Put
©={zeR| F(x)— F(x—h) >0 forall h >0}

and

O°={x € R| F(z) = F(x — h) for some h > 0}.

By Proposition 2.98, F~(F (X)) < X. Our first claim is that {F~(F(X)) < X} =
{X € ©°}, which implies that {F~(F(X)) = X} = {X € O}, by taking a
complement.

Claim that {F~(F(X)) < X} = {X € ©°}. Let w € {F~(F(X)) < X}.
By the definition of F'~, there exists ¢ € R such that F(t) > F(X(w)) and t <
X(w). Since F' is increasing, F(t) < F(X(w)). Consequently, F(t) = F(X(w))
and w € {X € ©°}. Conversely, if w € {X € O°}, then there is h > 0 such that
F(X(w)) = F(X(w) — h). Since X(w) —h < X(w), F(F(X(w))) < X(w). It
implies w € {F~(F(X)) < X}.

Let us focus on proving that P(X € ©) = 1. If ©¢ = &, the proof is done. If
O°¢ # &, our next claim is that ©¢ can be written as disjoint union of a countable
collection of intervals. For each fixed x € ©° there is h > 0 such that F(z) =
F(x —h). Let a = sup{h > 0| F(z) = F(x —h)} and b = sup{s > 0 | F(z) =
F(x+s)}. Then z € (z — a,x +b]. Denote I, = (z — a,x + b]. Claim that I, C ©°.
Let y € I, be such that x # y.
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Case 1: x —a < y < z. Then we can find 0 < h < a such that y = x — h.
Since h is not an upper bound of I, there is an element b’ € I, such that h < b’/
and F(z) = F(x — 1'). Because of monotonicity of F, F'(z) = F(x — h). Choose
h* = h — h. Then F(y) = F(y — h*), which implies y € ©¢.

Case 2: z < y < x + b. Then there exists 0 < h < b such that y = x + h.
Since h is not an upper bound of I, there is an element A’ € I, such that h < A’
and F(z) = F(x 4+ h'). Because of monotonicity of F, F'(z) = F(x + h). Choose
h* = h. Thus F(y) = F(y — h*), which implies y € ©°.

Case 3: y = x + b. Then we choose h = b. By left continuity of F, F(y) =
F(z) = F(y — h), which implies y € ©°.

Next, we will prove that z — a ¢ ©°. Suppose x — a € O°. Then there exists
h > 0 such that F(r —a — h) = F(x — a). By right continuity of F, we have
F(zx —a—h)=F(x —a) = F(x). It contradicts the definition of a.

Now, we obtain

0° = U I,.

TEOC
Claim that I, NI, = @ for all z # y.

Let (a,b], (¢,d] € {I, : x € ©°} be such that (a,b]N(c,d] # @. WLOG, assume
¢ < b. Since ¢ ¢ ©° and a ¢ ©° , we have ¢ < a and a < ¢, respectively. Then
a = c. Claim that b = d.

If b < d, we have a < d. Consequently, (a,b] C (c,d]. Note that for each
(a,b] € {I, : © € ©°}, F(y) = F(b) for all y € (a,b]. Thus F(z) = F(b) for
all z € (b,d], which contradicts the definition of (a,b]. Similarly, if b > d, then
F(z) = F(d) for all z € (d,b]. It contradicts the definition of (¢, d]. Thus b = d.

Therefore, ©°¢ is a disjoint union of a collection of intervals. Note that for
each © € ©¢ [, always contains a rational number. So ©°¢ is a disjoint union of a

countable collection of intervals.
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By right continuity of F', we have

P(X €0’ =P(X € |J L)

r€O°

<> P(Xel)

reO°

= ZF(m—i—b)—F(x—a)

reO°

=0.
Therefore, the proof is done. O]

Lemma 4.3. Let X be a random variable with a continuous distribution function

F. Then
{Cxrx)lf €L} =M.

Proof. (C) This follows from Theorem 2.89.
(D) Let A € M. By Remark 2.62, there exist X', Y’ ~ UJ[0, 1] such that
Cxyr = A. Because A is invertible, A is also left invertible. Then there is a

measurable function f such that Y’ = f(X’). Using f(X'), X' ~ UJ0, 1], we get
AB) =P(f(X') € B) =P(X" € f7(B)) = A(f(B))

forall B C B([0,1]). Then f is measure-preserving. By Proposition 4.1, Cx/ r(x/) =
Cu,sw) for all U ~ UJ0,1]. Since F' is continuous and by Theorem 2.99, F(X) ~
U[0,1]. Then Cx/ y(xy = Crx),f(r(x))- By Proposition 2.98, F'~ is strictly increas-
ing on /. Note that an identity function is strictly increasing. Using Theorem 2.65

(i), we have

Cr-(rx)),1(P(x) = Crx),pr(x)) = Cx p(x) = A

Our claim is that Cx fr(x)) = Cr-(rx)),f(F(X)-

Let F and G be the distributions of F~(F(X)) and f(F(X)), respectively.
Since FI(X) ~ U[0,1] and f is measure preserving, we have f(F (X)) ~ U|0,1].
Then Ran G = I. Claim that F(z) = F(z) for all € R. Let # € R. Then

{(FF(FX)<z}={F (F(X)) <X and F (F(X)) < z}{F (F(X)) = X < x}.
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By Lemma 4.2 and P(F~(F(X)) < X) = P(X € ©°), we get F(z) = P{F~(F(X))
X <z} = F(z). This implies Ran F' = I. Then

Cr-(re0) ooy (F(2),Gly)) = P(F(F(X)) <z, f(F(X)) <)
=P(X <=, f(F(X)) <v)
= Cx,yrx)(F(z),Gly

= Cx prox (F(x), G(

<

for all z,y € R. Therefore, Cx s(r(x)) = A. ]

Similarly, if Y is a random variable with a continuous distribution function,

then
{Cronylf €I} =M.
Thus, we have

{Croyy|f € T} = {Cxyx)lg € I}

for all random variables X, Y with continuous distribution functions.
By Corollary 2.87, we have Cyx)qv) = Crx),x * Cx,y * Cygy) for all Borel

measurable functions f, g. Thus o7(X,Y) in (4.1) can be expressed as follows:

o (X Y) — sup fIQ @('Sl * CX,Y * SQ — H|)d)\2
P -

4.3
51,526 M f[2 @(‘M - HDd)‘? ( )

The following corollary is key to prove that the maximum value of 073 (C) occurs

when C' is left invertible or right invertible.

Corollary 4.4. For each copula C, there exists a sequence of invertible copulas

(Cp)nen such that C,, converges uniformly to C.

Proof. Let C be a copula. Since the shuffles of Min are dense in the set of bivariate
copulas [Corollary 2.90], there exists a sequence of shuffles of Min converging
uniformly to C. Because the shuffles of Min are invertible [Remark 2.91], the proof

is complete. O
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Theorem 4.5. The function o}, satisfies the following properties for all random

variables X, Y with continuous distribution functions.
(i) o3 (X,Y) = a3 (Y, X).
(i) 0 < o%(X,Y) < 1
(iii) o (X,Y) =0 if and only if X and Y are independent.
() o3 (X,Y)=1ifY = f(X) or X = g(Y') for some Borel measurable functions f, g.
(v) o (f(X),9(Y)) =0, (X,Y) for all Borel measurable injective functions f and g.

Proof. (i) Because o, is symmetric and the supremum is taken over functions

in the same set, we have o7 (X,Y) = o7 (Y, X) for all X and Y.
(i) As 0 <o, <1 forall X and Y, the proof is done.

(iii) Assume that X and Y are independent. Then f(X) and ¢g(Y) are indepen-
dent. It implies that o, (f(X),g(Y)) = 0forall f,g € Z. Thus 0,(X,Y) = 0.
Conversely, if o7 (X,Y) = 0, then we have o,(f(X),g(Y)) = 0 for all
f,9 € Z. Choose f and g as the identity function. Then o,(X,Y) = 0.
Thus X and Y are independent.

(iv) WLOG, we assume Y = f(X) for some measurable function f. Using The-
orem 2.89, Cxy is left invertible. By Corollary 4.4, we can find a sequence
(Cy)nen of invertible copulas such that C,, converges uniformly to Cxy.
Then CF also converges uniformly to C%,. By the continuity of the x-
product in each coordinate, we have that C x Cxy converges uniformly to

Cxy * Cxy = M. Using DCT and continuity of ¢, o (Cx,y) = 1.

(v) Since o (f(X),g(Y)) = o;,(X,Y) for all Borel measurable injective functions
f and g, then the proof is done.
O
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Example 4.6. Let 1 < p < oo, and ¢(t) =17 for all ¢ € I. Then o7, (X,Y) for all

random variables X and Y whose distribution functions are continuous defined by

o (X,Y) = sup (fp [Crx),000) — H!”d&)
A o

foeT Jpo | M —TIPdA,
. Sup f]2|Sl*CX7Y*Sz_H|pdA2
S1,52eM f[2 ‘M - H|pd)\2

is a measure of dependence in the sense of Rényi.



CHAPTER V
D,-INVARIANT COPULAS

Given a copula A, we first introduce a function o4 on the class of bivariate copulas

defined by
B flg |C' — TI|(u, v)dA(u, v)

[ |M = T(u, v)dA(u,v)’

Schweizer and Wolff proved that oy is a measure of dependence (Theorem 2.80).

O'A(C)

The aim of this chapter is to show that o Argw is a measure of dependence satisfying
the same set of properties.

We begin with studying properties of 4. When A is a Dy-invariant copula,
o4 is symmetric and invariant under strictly monotone functions. The following
lemma is a necessary tool for obtaining symmetric and invariance properties of
oA

For any random variables X and Y with continuous distribution functions, a

copula of X and Y is denoted by Cx y.

Lemma 5.1. Let X and Y be random variables with continuous distribution
functions. If f and g are strictly monotone on Ran X and RanY, respectively,

then the following statements hold for all copulas A.
(i) [ 1C%y — |(u,v)dA(u,v) = [ |Cxy — I|(u, v)dA (u,v).

(i1) [12 105090 — Wl(u,v)dA(u,v) = [ |Cxy = H|(w,0)dA™ (u,v) if f is

strictly increasing on Ran X and g is strictly decreasing on RanY.

(iii) [5|Crix)ygry — H|(u,v)dA(u,v) = [ |Cxy — I|dA" (u,v) if f is strictly

decreasing on Ran X and g s strictly increasing on RanY.

(W) [121Crx)00r) — I|(u, v)dA(u,v) = [, |Cxy — 1| (w, v)dA" (u,v) if both f

and g are strictly decreasing on Ran X and RanY, respectively.
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Consequently, the following are true: if A is a Dy-invariant copula, then
(Zj) f[2 |C)7;,Y - H|(u’ U>dA(uv U) = f]2 |CX,Y - H|(u,v)dA(u, U)?

(i7) [z |Cr000000) = T, 0)dA(w,0) = fra [Cy = 11|, 0)dA(u, v),

Proof. (i) and (ii') clearly follow from (i-iv). Only (i) needs proof. Using the

symmetry of II, we have

/ IOy — T1|(u, 0)dA(u, v) = / Cxy — T (u, v)dA(u, v).
12 72

We claim that [, [Cxy — H|" (u,v)dA(u,v) = [, |Cx,y — II|(u, v)dA” (u,v).
Define a function G : R? — R? via G(u,v) = (v,u) for all u,v € R, which is
clearly a measurable function. By Theorem 2.31, we obtain that
|Cxy — O (u,v)dA(u,v) = | |Cxy — 10| o G(u,v)dA(u,v)
2 2
= |CX,Y - H| © G(u7 U)dMA(u7 U)
12
= |CX,Y - H|(U, U)d:uA ° G_l(ua U)
12
= [ |Cxy — I|(u,v)dur (u,v).
12
By Example 2.78 (i), u4 0 G™' = pyr on the set of all closed rectangles in I2.
Note that a collection of all closed rectangles of I? containing @ is a m-system and
pa oG~ is a probability measure on B(I?). By Corollary 2.34, we get puaoG™! =
par on B(I?). Hence, the last equation holds and we have proved (i).
To prove (ii), (iii) and (iv), we use the same process as we did in the proof of
(i) and define a measurable function G : R* — R? in (ii), (iii) and (iv) by for all
u,v € R, G(u,v) = (u,1 —v), G(u,v) = (1 —u,v) and G(u,v) = (1 —u,1 —v),

respectively. ]
Note that AT = A" and Lemma 5.1 (i) can also be written as
O — | (u, v)dA(u,v) = / |C' — | (u, v)dA™ (u, v).
2 2

Next, we determine the value of o4(M) and o4(W) by using the following

readily verified facts.
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Remark 5.2. (i) (M —1I)(u,v) = (Il = W)(u,1 —v) for all u,v € I.
(ii) (M —1I)(u,v) = (II = W)(1 — u,v) for all u,v € I.

Corollary 5.3. For all D-invariant copulas A,
/ (M — T0)(u, 0)dA(u, v) = / (T1 — W) (u, 0)dA(u, 0).
12 72

Proof. The proof uses Remark 5.2 (i) and Lemma 5.1 (ii). O

The idea of constructing the checkerboard copulas in [12] is shown as follows.
Let n € N and denote I; = [0, %] and [; = (%, %] for all i = 2,3,...,n. Observe
that {I, X I, : 1 <r,s < n} is a partition of I%. Let p = (p1,p2) € I; X I; where
1 <i,j<n.Forallr,s € {l1,2,3,...,n}, the probability mass of the checkerboard

copula B} and the probability mass of the checkerboard copula N} on I, X I, are

defined by

(

0 i (r,5) = (1,5) or (r,5) = (i, 1)
0% =9 2 if (r,s) = (1,1) or (r,5) = (i, ) (5.1)
\ # otherwise
and )
% if (rs) = (1,5) or (r.s) = (i,1)
MNo=9 0 i (r,s) = (1,1) or (r,8) = (i,7) (5.2)
L otherwise.
\ N
Then for all u,v € I,
Pr(u,v) =Y 6%, JI(F(u), Fy(v)) (5.3)
r=1 s=1
and
Ny (u,v) =N 6N I(F, (), Fu(v)) (5.4)
r=1 s=1
where F,,,(z) = min(max(nz—m+1,0),1) forallz € [ and forallm =1,2,... n.

Remark 5.4. For each n € N, Il(u,v) = Y."_ >0 | LII(F.(u), Fy(v)) for all

s=1 n2

u,v € 1.
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F----I——--A----T1----fF--------17 F----I——--A----T----fF--------1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
| e R - TTTA I T e R -7 TA
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
Lo ol e _L_o_o__bLo________2J Lol e Je Ll _L___d____2
| I | | 1 1 1 | I | I 1 1 1
| I | | 1 1 1 | I | I 1 1 1
0 D2 1 1 1 G2 0 1 1 1
I | 62 1 1 1 62 I I 1 1 1
| T T Ty Sy PR L T e T Ty Sy P
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
r----I—---A----T1----F----|----17 r—---I-—---A----T1----fF----|----1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
L [ 1 1 1 L [ 1 1 1
i T I T T i T TTTTTrTTT o T T T
I | I | 1 1 1 I | I | 1 1 1
2 0 1 1 1 I 2 1 1 1
62 I | 1 1 1 I I 62 1 1 1
T ) O | Y T N A

Figure 5.1: Fixed p € I3 x I, the checkerboard copulas P (on the left) and
N]? (on the right) whose density in each member of the partition is 6% except on

Il X [1,[1 X [4,[3 X [1 and 13 X I4.

Figure 5.2: The independent copula II.
Corollary 5.5. Let n € N. If p € I; X I; where 1 < 1,5 < n, then P} is PQD.

Proof. Our claim is to prove that P,(u,v) > l(u,v) for all u,v € I. We divide the

proof into four steps.

Step 1: Claim that P’ (u,v) > Il(u,v) for all (u,v) € (U, Ia) X (Uee; I.). From
the definition of P in (5.3) and Remark 5.4, if (u,v) € I X I, then it is
obvious that P}(u,v) > II(u,v). Because the probability masses of both P}
and IT on Iy x I, are & for all d < i and e < j such that (d,e) # (1,1), we

have P7'(u,v) > I(u,v) for all (u,v) € (Uze; La) X (U,e; Ie)-

e<j ¢
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Step 2: Claim that P;} > Il on 1 x I; and I; x I . Let (u,v) € I x I;. Since
v < %, we get

J

Pl (u,v) = Z 071 JI(Fy (u), Fy(v))

s=1
G—1
= Z (SPPLSH(Fl (U), FS(U))
s=1
j—1
= 0" TI(F) (u), Fi(v) + Y 671 JI(Fy (u), Fiy(v))
s=2
j—1
= 5Pp171F1(U) + Z 6Pp1,sF1(U)
s=2
2 1
= EFI(U) + £ EFl(u)
J
Jnu
T2
_Ju
N n
> uv.

Similarly, if (u,v) € I; X Iy, then P}'(u,v) > Il(u,v).

Step 3: Claim that P'(u,v) > II(u,v) for all (u,v) € (Uze, La) X (Ues; I.). We
have P)(u,v) > Il(u,v) for all (u,v) € <(Ud§i 1) % (Ues; Ie)> NI ox L,
which directly follows from Step 1, Step 2 and the probability masses of both
PI?andHonldejandlz-xlethatare#foralll<d<iand1<e<j.
As the probability mass of P on I; x I; is 2, we have P"(u,v) > II(u,v)
for all (u,v) € (Uye; Ta) % (Uog; Le)-

Step 4: Claim that P}'(u,v) > TI(u,v) for all (u,v) € I?. It obviously follows
from Step 3 and the probability masses of both P} and IT on {Iz x I : 1 <

d,egn}\{fdx[ezlgdgi,lgegj}thatare#.

Corollary 5.6. Let n € N. If p € I; X Ij where 1 <i,j < n, then N is NQD.
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Proof. The proof is divided into four steps like Lemma 5.5 by swapping the direc-
tion of an inequality symbol. It suffices to show that Step 2 holds; that is, P} <II

on I} x I; and I; x I;. Let (u,v) € I; x I;. By using v < %, we have
J
Py(u,v) = 6% JI(Fy(u), Fu(v))
s=1
J
= " JI(F (u), Fu(v))
s=2

= 87 GIL(F (), Fy(0) + ) 6% JI(F) (u), Fy(v))

j—1
= 5Pp171F1(U)F}'(’U) + Z (SPpLsFl(U,)
s=2
2 1
— —2F1(u)(m) —Jj+ 1)+ ﬁFl(u)
s=2
2nv —j
= n2 Fl(u)
(2nv — j)(nu)
-z
J
— (20— 2L
u(2v n)
< uv.
Similarly, if (u,v) € I; x Iy, then P,(u,v) < II(u,v). O

Lemma 5.7 ([12], Lemma 2.2). [,, AdB = [}, BdA for all copulas A, B.

Denote the set of all PQD copulas and the class of all NQD copulas by P and

N, respectively.

Lemma 5.8. If for every copula A, [,|C —1II|dA = [,|C — II|dA™ for all
Ce€PUN, then A= AT,

Proof. Clearly, A(u,v) = AT (u,v) on the boundary. Let p = (p1,p2) € (0,1)2. By

Lemma 5.7 and the assumption,

/ (A—AT)dC = HdA—/ I1dA”
I2 I2 12
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for all C' € P UN. Consequently,
0= / (A—A")d(P} — N})
12

- 2(/ (A— AT)dII — / (A— AT)dH)
11><11UIZ'><I]' IlXI]'UIinl

for all n € N such that % < min{py, p2}. Using the mean value theorem (Theorem

2.30), we have

(A - AT) (pr,s)

n2

[ A=A = (4= AT DA, < 1) =
for some p, s € I, x I;. Then
(A = AT)(py) + (A — AT)(pig) — (A — AT)(py,) — (A — AT)(pi) = 0

Note that lim p;; = (0,0), lim p;; = (0,p2), lim p;1 = (p1,0) and lim p;; =
n—oo n—oo n—oo n—oo

(p1,p2). Using the continuity of copulas, we obtain

0= lim (A—A")(p1a) + (A= A")(pij) — (A= AT)(pry) — (A= AT)(pia)

= (A= AT)(p).
Hence, A(p) = AT (p). O

Similarly, for every copula A, we can prove that A = A" if |, 2 |C —1|dA =
[12|C —TI|dA" for all C € PUN.
Given a copula A, the following lemma shows that the symmetric and invari-

ance properties of o4 leads to the conclusion that A is D,-invariant.

Lemma 5.9. Let A be a copula. If o4 is a measure of dependence in the sense of

Schweizer and Wolff, then A is Dj-invariant.

Proof. Since 04 is a measure of dependence, 04 is symmetric and invariant under
monotone functions. Using Lemma 5.1 (i, iii) and Lemma 5.8, we have A = AT =
AP and A = AR, This proof is completed by using the facts that h(hr) = h2(r) =r
and Dy = (r, h). O
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We will close this chapter by showing that the converse of Lemma 5.9 still
holds if we consider a D,-invariant copula A as w The hardest task is to prove
that O aw satisfies the boundedness condition. Hence, we will start the process
of solving this problem with checkerboard approximations. This can help us see

the relationship between the integral with respect to w

and Lebesgue measure

on I?.
M+W .
5 i

Fix n € N. By Remark 2.82, a checkerboard approximation Cyn of

shown as follows: for all u,v € I,

Con(u,0) =) 2n1+1 [LI(Fy(w), Fi(v) + T(Fi(u), Fon iz (v))] (5.5)

where F; denotes the uniform distribution on I; = [, 5] forall i = 1,2,..., 2",
1
0 1
w
Figure 5.3: The support of i on I2.

The following lemma gives a relationship between the measure induced by a

checkerboard copula and the Lebesgue measure on 2.

Lemma 5.10. Letn € N. Then
277.—1

_ on-1 2 2 2 2
MGy = 2 E A A i+ AS i T A gn ]
i=1

on B(I?) where X} ; is the Lebesgue measure on I; x I;.

Proof. Note that
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0 ifugi;—nl
Fi(u)=1< 2"4—i+1 ifuel
1 iquQLn.

Since oy, (A) = 0 where A C [0,1)> N [[; U Ipnyy* and ¢ = 1,2,...,2" 71 it
is enough to consider all closed rectangles B C I; x I;, [; X Iony1 4, Ionyq_; X I; or

]éTL+1_i X ]én,%l_@ fOI i - 17 27... ,27P_1. 17}K3D

fon ([ar, as] X [b1, ba]) = Vi, ([an, as] X [b1, ba])

[Con(ar, by) + Con(az, by) — Con(ay, by) — Caon(az, by)]

- 2n+1

= %[Fi(al)ﬂ(bl) + Fi(ag) Fi(b2) — Fi(a1) Fi(b2) — Fi(az) Fi(by)]

= rilFiles) = F(@)][Fi(ba) — Fi(by)]

22n
= ont1 (Gz - al)(bQ - b1)

= 2n_1((12 — al)(bg - bl)
= 2”1/ X[a1,a2]><[b1,b2}d/\2
IiXIi
= 2”71)\1271-([&1, ag] X [bh bg]) (56)
Similarly, we have for all i = 1,2,...,2"1,
(i) pcpn (B) = 27N g0 ;41 (B) for all closed rectangles B C I; X Ioni1_,
(ii) peyn (B) =2"7'A50_;41,4(B) for all closed rectangles B C Ipnyq—; X I,
(iii) iy (B) = 2" A3 _iy19n_i41(B) for all closed rectangles B C Ipny1—; X Ton_it1.

Let B be any closed rectangle of I2. Using (3.6) and (i) - (iii), we have

2n71

fioyn (B) = Z Pcon (B N R;)

= 2n—1 Z XBd)\z
i=1 [IiU12n+1_i]2
2n—1

S Z Noi + Afaninn + An_igri T Adnig1 2041 (B)
i=1
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where R; € {[[UIn, 1 ;]*:i=1,2,...,2" 1} Note that a collection of all closed

rectangles of I? is a m-system. By Corollary 2.34, we have

on— 1
fop = 2" ZP‘Q + A anin T Mgy T A ig1an i)
i=1
on B(I?). Therefore, the proof is complete. O

Corollary 5.11. Let f be any bounded measurable function. Then

2n1

/ fdpc,, =2"" Z / Xy
I UI2TL z+1
for alln € N.

Proof. By Remark 2.26 and Lemma 5.10, we have

Jduc,,
]2

277,1

— gn-1 Z fd)\ / fd)\z 9n_it1 +/ fd)\zn—z—l-l i / fd)‘zn i+1, 2”—1—4—1)
i=1
2n—1

— gn-1 ; / fdX,.

[]iU]2"+1—i]2

The support of Css is illustrated in Figure 5.4.

—_

ool
-—-T == -
1 I
| 1
| 1
= =-T ="
1 1
(R R |
1 1
1 1
] 1
| 1
1 I
1 I

I
1 L |

1I 1 | |
=r-T1-"1m ) I

2I 1 1 | | 1 1
L I R e s R I I
1 1 | I 1 I | 1
ll__l [ R B | 1_
N B
== --r-a--r-- - -
| 1 1 1 1 1 1 1
[ENR N RN IR [ N NP [
012315 6 7]

Figure 5.4: The region of integration in case of Css.

Next proposition plays a key role in the way to prove boundedness in Theorem

2.80. We will give an original proof and also propose a new approach to prove it.
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Proposition 5.12 ([11]). For any copula C, [,, |C' —|dXy < [, |M —TI|dXs.
Proof. Use Lemma 3.1 when ¢(u) = |u| for all u € I. O

The following lemma is the crucial ingredient in the new proof of Proposition
5.12. In addition, it is the core of our proof of the boundedness of CYEL Indeed,

it is bounded by o uyw (Cyat C=Mor C=W.
Lemma 5.13. Let C' be any copula. Then

< |M —1|(u,v) + |M —TI|(1 —u,v) + |M —|(u,1 —v) +|M —II|(1 —u,1 —v)

for all u,v € I.

1

Proof. Let C' be a copula. By the symmetry with respect to u = 5 and v = % of

2
the sum on both sides, it suffices to show the inequality for u,v € [0, %] If u <w,

then the right-hand side is

\M — 10| (u,v) + |M — I|(1 —u,v) + |M — |(u, 1 —v) +|M —I|(1 —u,1 —v)
=u—w+v—v(l—u)+u—ul—v)+1—-v—(1—-u)(l—0v)

= 2u.
Similarly, if v < u, then

M — 10| (u, v) + |M —1I|(1 —u,v) + |M —I|(u, 1 —v) + |M - 1|(1 —u, 1 —v) = 2v.

That is, the right-hand side is equal to 2min{w, v}. Define fi(u,v) = C(u,v),
fa(u,v) = C(1 —u,v), f3(u,v) = C(u,1 —v) and fy(u,v) = C(1 —u,1 —v) for all
u,v € [0, 1]. We also define II; (u, v) = II(u, v), Ha(u, v) = (1 — u,v),

IT3(u,v) = H(u,1 — v) and y(u,v) = II(1 — u,1 —v) for all u,v € [0, 1]. We will

need the following properties, which hold for all u,v € [0, 3] in the proof.
() Clu,v) < M(u,v).

(ii) —C(u,v) <0.
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(iii) —C(1—u,v) < —C(l—u,1—v)—2v+1 because Vo ([1—wu, 1] x [v, 1—v]) > 0.
(iv) —C(u,1 —v) < =C(u,v) as Ve ([0,u] x [v,1 —v]) > 0.
(v) = C(1l —u,1 —v) <u+wv—1since C(1 —u,1—v)>W({1—u,1—0o).

Our claim is that for all u,v € [0, 3],

4
Z |fz - HJ(U,’U) < 2min{uav}'
i=1

If u < v, we will consider all possible cases as follows:

Case 1: f; > II; for all : = 1,2, 3,4. Note that the sum of II at the four vertices

of [u,1 —u] x [v,1 —v] is equal to 1. Using (i), we have

|IC' — |(u,v) + |C = T|(1 —u,v) + |C = TI|(u, 1 —v) + |C = II|(1 —u,1 —v)
=C(u,v)+C(1 —u,v)+Cu, 1 —v) +C(1 —u,1 —v) —1
<ut+v+u+l—v-—1

= 2u.

Case 2: f; > 1I; for all i = 1,2,3 and f; < Il4. Using (i) and (v), we have

|C' — |(u,v) + |C = T|(1 — u,v) + |C = TI|(u, 1 —v) + |C = TI|(1 — u,1 —v)
=C(u,v) +C(1 —u,v) + C(u,1 —v) = C(1l —u,1 —v) —uv — (1 — u)v
—u(l—v)+ (1 —u)(1l—wv)
=C(u,v)+C(1—u,v)+C(u,1 —v) —C(1 —u,1 —v)+1—2u—2v+2uv
<ut+v+ut+ut+v—1+1-—2u—2v+2uv

=u+ 2uv

< 2u.
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Case 3: f; > II; for all i = 1,2,4 and f3 < II3. Using (iv) and (i), we have

|IC —TI|(u,v) + |C — (1 — u,v) + |C — 1T|(u,1 —v) +|C = T|(1 —u,1 —v)
=C(u,v) +C(1 —u,v) = C(u,1 —v) +C(1 —u,1 —v) —uv — (1 —u)v
+u(l—v)—(1—u)(l—0)

=C(u,v)+C(1 —u,v) —C(u,1 —v) +C(1 —u,1 —v) +2u—1—2uv

< C(u,v) +C(1 —u,v) = Clu,v) + C(1 —u,1 —v) +2u — 1 —2uv

=C(l—u,v)+C(1—u,1—v)+2u—1-2uw
<v+1l—v+4+2u—1-2uv

< 2u.

Case 4: f; > 11, for all i = 1, 3,4 and f, < IIy. Using (iii) and (i), we have
|IC —T|(u,v) + |C — (1 — u,v) + |C — TT|(u,1 —v) +|C = T|(1 —u,1 —v)
=C(u,v) —C(1l —u,v) +C(u, 1 —v) +C(1 —u,1 —v) —wv + (1 — u)v
—u(l—v)— (1 —u)(l—wv)
=C(u,v) = C(1l —u,v) +C(u,1 —v) + C(1 —u,1 —v) —2uv +2v — 1
<C(u,v) —C(l—u,1—-v)—2v+1+C(u,1 —v)+C(1 —u,1 —v)
—2uv +2v—1
<u+4+u-—2uv

< 2u.

Case 5: f; > 1I; for all i = 2,3,4 and f; < II;. Using (ii) and (i), we have
|IC —TI|(u,v) + |C — (1 — u,v) + |C — 1T|(u,1 —v) +|C = T|(1 —u,1 —v)
=—Cu,v) +C(1 —u,v)+C(u, 1 —v) +C(1 —u,1 —v) +uv — (1 —u)v
—u(l—v)— (1 —u)(1—wv)
=—Cu,v)+Cl—u,v)+Clu,1 =)+ C(1 —u,1 —v)+2uv —1
<0+v+u+1l—-v+2uv—-1
= u + 2uv

< 2u.
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Case 6: f; > II; for all i = 1,2 and f; < II; for all i = 3,4. Using (iv), (v) and

(i), we have

O — TI|(u,v) + |C = TI|(1 — w,v) + |C — |(u,1 — v) +|C = T|(1 — u, 1 — v)
= C(u,v) + C(1 —u,v) — Cu, 1 —v) — C(1 —u, 1 —v) —uv — (1 — u)v
+u(l =)+ (1 —u)(1—v)

= C(u,v) + O(1 —uyw) — Clu, 1 —v) = C(1 —u, 1 —v) — 20+ 1

< C(u,v) +C(1 —u,v) = Clu,v) —C(1 —u,1 —v) =20 +1
<vtut+v—1-2v+1

< 2u.

Case 7: f; > II; for all i = 1,3 and f; < II; for all 4 = 2,4. Using (iii), (v) and

(i), we have

|IC —1I|(u,v) + |C = II|(1 — u,v) + |C — II|(u,1 —v) +|C = I|(1 —u,1 —v)
=C(u,v) = C(1 —u,v) +C(u,1 —v) = C(1 —u,1 —v) —uwv+ (1 —u)v
—u(l —v)+ (1 —u)(1l—v)

=C(u,v) —C(1l—u,v)+Cu, 1 —v) —C(1 —u,1 —v) —2u+1

<C(u,v) —2C(1—-u,1—v)—20+1+C(u,1 —v) —2u+1
<ut+2u+20—-2—-220+1+u—2u+1

= 2u.

Case 8: f; > II; for all i = 2,3 and f; < II; for all i = 1,4. Using (ii), (v) and (i),
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we have

|IC —1I|(u,v) + |C = II|(1 — u,v) + |C —II|(u,1 —v) +|C = I|(1 — u,1 —v)
=—Cu,v)+C1—-u,v)+Cu, 1 —v) = C(1 —u,1 —v) +uv — (1 —u)v
—u(l —v)+ (1 —u)(1l—v)
=—Cu,v)+C1—u,v)+Cu,1 —v) = C(1 —u,1 —v) +4uv —2u —2v+1
<O04+v+u+tu+v—1+4uv—2u—2v+1

= 4duv

< 2u.

Case 9: f; > 1II; for all i = 3,4 and f; <II; for all ¢ = 1,2. Using (iii), (ii) and

(i), we have

|IC = 1I|(u,v) + |C = II|(1 —u,v) + |C = II|(u,1 —v) +|C =I|(1 —u,1 —v)

= —C(u,v) — C(1 —u,v) + Clu, 1 —v) + C(1 —u, 1 — v) + uwv + (1 — w)v
—u(l—v) = (1—u)(1—v)

=—C(u,v) —C(l —u,v)+Clu, 1 —v) +C(1 —u,1 —v)+2v—1

< —Cu,v)—C(l—-u,1—=v)—=2v+1+C(u,1 —v) +C(1 —u,1 —v)
+2v —1

<0—2v+1+u+2v-1

< 2u.

Case 10: f; > 1I; for all i = 1,4 and f; < II; for all i = 2, 3. Using (iii) and (iv),
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we have

|IC —T|(u,v) + |C = T|(1 — u,v) + |C — 1T|(u,1 —v) +|C = T|(1 —u,1 —v)
=C(u,v) = C(1 —u,v) = C(u, 1 —v) + C(1 —u,1 —v) —uv+ (1 —u)v
+u(l—v)—(1—u)(1l—0)

=C(u,v) —C(1 —u,v) = C(u, 1 —v) + C(1 —u,1 —v) — duv + 2u + 2v — 1

<C(u,v) —C(l—u,1—=v)—2v+1—-C(u,v) + C(1 —u,1 —v) — duw

+2u+2v—1
= 2u — 4uv
< 2u.

Case 11: f; > 11, for all i = 2,4 and f; <1I; for all i = 1, 3. Using (ii) and (i), we

have

IC = 10| (u,v) + |C = I|(1 — u,v) + |C — |(u,1 —v) + |C = T|(1 — u, 1 — )
= —C(u,v) +C(1 —u,v) = Clu, 1 =) +C(1 —u,1 —v) +uv — (1 —u)v
Fu(l =) — (1—u)(l—0)

= —Cuv) +C(1 —u,v) — Clu, 1 —v) + C(1 —u, 1 —v) +2u— 1
<0+v+0+1—v+2u—1

= 2u.

Case 12: f; <1I, for all i = 1,2,3 and f; > Il,. Using (ii), (iii) and (iv), we have

|C —1|(u,v) + |C = TI|(1 — u,v) + |C = IT|(u,1 —v) + |C = TI|(1 —u,1 —v)

= —C(u,v) —C(l —u,v) = C(u,1 —v) + C(1 —u,1 —v) +uv+ (1 —u)v
+u(l—v)—(1—u)(l—-0)

=—C(u,v) —C(1l —u,v) —Cu,1 —v)+C(l —u,1 —v) —2uv+2u+2v—1
<0-C(l—u,1-v)—20+1—Cu,v) +C(1—u,1—v)—2uv+2u+2v—1
<0+ 2u — 2w

< 2u.
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Case 13: f; <1I; for all i = 1,2,4 and f3 > Il5. Using (ii), (iii), (i) and (v), we

have

|IC —T|(u,v) + |C — T|(1 — u,v) + |C — 1T|(u,1 —v) +|C = T|(1 —u,1 —v)
= —C(u,v) —C(l —u,v)+Clu, 1 —v) = C(1 —u,1 —v) +uv+ (1 —u)v
—u(l—v)+ (1 —u)(1l—wv)

=—C(u,v) = C(1 —u,v) +C(u,1 —v) = C(1 —u,1 —v) —2u+ 2uv + 1
<0-2C1—u,1—v)—2v+14+u—2u+2uw+1
<2u+4+2v—-2—-2v4+1+4+u—2u+2uv+1

=u+ 2uv

< 2u.

Case 14: f; <1I; for all i = 1,3,4 and fo > Ily. Using (ii), (i), (iv) and (v), we

have

|IC' = 1I|(u,v) + |C = I|(1 —u,v) + |C = II|(u,1 —v) +|C =1|(1 —u,1 —v)
= —C(u,v) + C(1 —u,v) = C(u,1 —v) = C(1l —u,1 —v) +uv — (1 —u)v
+u(l—v)+ (1 —u)(l—0)

=—C(u,v) +C(1 —u,v) = C(u,1 —v) = C(1 —u,1 —v) — 2v +2uv + 1
<0+v—-Cu,v)+u+v—1—2v+2uwv+1
<v+04+u+v—1—-20+4+2uv+1

= u + 2uv

< 2u.
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Case 15: f; <1l for all i = 2,3,4 and f; > II;. Using (iii), (iv), and (v), we have

|IC —1I|(u,v) + |C = II|(1 — u,v) + |C — II|(u,1 —v) +|C = I|(1 — u,1 — v)
=C(u,v) = C(1 —u,v) — C(u,1 —v) = C(1l —u,1 —v) —uv+ (1 —u)v
+u(l—v)+ (1 —u)(l—-0)

=C(u,v) —C(1l —u,v) —C(u,1 —v) = C(1 —u,1 —v) —2uv + 1

< C(u,v) —2C(1 —u,1 —v) —2v+ 1 — C(u,v) — 2uv + 1
<2u+2v—2—2v—2uv+2

= 2u — 2uv

< 2u.

Case 16: f; <1I; for all i = 1, 2,3, 4. Using (ii), (iii), (iv) and (v), we have

|IC —T|(u,v) + |C —T|(1 — u,v) + |C — T|(u,1 —v) +|C = T|(1 —u,1 —v)
= —C(u,v) —C(1 —u,v) = C(u,1 —v) —C(1 —u,1 —v) +uv+ (1 —u)v
+u(l—v)+ (1 —u)(1l—v)

=—C(u,v) — C(1 —u,v) —C(u,1 —v) = C(1 —u,1 —v)+1
<0-21—u,1—v)—2v+1—-C(u,v)+1
<2u+4+2v—-2-204+14+0+1

= 2u.

Hence, 327 | fi — 11| (u, v) < 2u for all u < v. Conversely, if v < u, then

|IC —TI|(u,v) + |C = O|(1 — u,v) + |C = I|(u,1 —v) +|C =T|(1 — u,1 —v)
= |C" —1|(v,u) + [CT = 1|(v,1 —u) + [CT = T|(1 —v,u) + [CT = II|(1 —v,1 — u)

< 2v.

Therefore, the proof is complete. O

From the above lemma, we obtain a new way to prove Proposition 5.12



62

Proof of Proposition 5.12. If follows from Lemma 5.13 and the simple fact
that

3 3
[gaa= 7 [T () + £e1 =0+ £ =)+ 70 - 01 v)dudo
2 0o Jo
for all bounded continuous functions f on IZ. O

There are two ways to prove boundedness of Oargw, and we thus start with

proving via the checkerboard approximation.
Lemma 5.14. For any copula C, [, |C —l|duc,, < [5 |M —1l|duc,,.
Proof. Let C be any copula. Note that for alli =1,2,...,2" 1,

/[I o . |C' — II|(u, v)dudv
iUlan 15

= /2 (|C —10|(u,v) + |C = T|(1 = u,v) + |C = 1I|(u,1 —v) + |C = H|(1 — u,1 — v))dudv.
I:

3

By Lemma 5.13, it results in

/ € — TI|dA g/ M = TI|dA
[IiU12n+1_¢]2 [IiU12n+1—i]2

for all i = 1,2,...,2" . This proof is completed by using Corollary 5.11. ]
Lemma 5.15. For any bounded continuous function f on I?,

lim/ deCQn :/ fd,uM+W,
n—o0 72 12 2

where Con(u,v) = Z 2:“ IL(F;(u), Fi(v)) + IL(F;(u), Fon_iy1(v))] for allu,v € 1.

=1

Proof. Since any copula C' induces a probability measure pic, {fcym tnen is & se-
quence of probability measures. From Remark 2.62, every copula C' corresponds

to uniform random variables X and Y on I whose joint distribution is C that is
po(ur, ug) X [v1,v9]) = Plu; < X <wg,v; <Y < ).

Using Theorem 2.83 and Theorem 2.46, we have lim [ fd,, = /12 fd“Mgw'

n—oo 12
O]
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Corollary 5.16. Oasw (C) gives its mazimum if C = M or C = W.
Proof #1. It directly follows from Lemma 5.14, 5.15 and Corollary 5.3. [
Remark 5.17. [17] For all copulas C,

(i) [ CdM = [, C(u,u)du

(ii) [, CdW = [,C(u,1 — u)du.

Proof #2. A second proof is directly obtained via Lemma 5.13 and Remark
5.17. ]

Theorem 5.18. The function O aw satisfies the following properties for all ran-
dom variables X andY whose distribution functions are continuous.
(i) Uw(cx,y) = Uw(cxx).
(ii) 0 < oo (Cxy) < 1.
(1i1) UW(CX,Y) =04f X and Y are independent.
(iv) UW(Cij) =14fY = g(X) for some strictly monotone function g.
(v) [faw (Crx)evy) = aw(ny) for all strictly monotone functions [ and g.

(vi) If (X,Y) and (X,,Y,), n=1,2,..., are pairs of random variables whose
joint distribution functions are H and H,, respectively, and if (X,,Y,) 4,

(X, Y), then lim O'MJQrW (meyn) = O'M-gW (C)Qy).

n—oo
Proof. (i) Using Cxy(u,v) = Cy x(v,u) for all u,v € I, we have

M+ W M+ W
(u,v) = 2 |Cy.x — (v, u)d
I

- ‘CX,Y — H\(u, ’U)d

= |Cy,x — H|T(U» v)d
12
Note that w is Dy-invariant. By Lemma 5.1 (i), the proof is complete.

(ii) This follows from the Lemma 5.14 and Lemma 5.15.
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(iii) It directly follows from Theorem 2.64 (i).

(iv) It follows from Theorem 2.64 (ii - iii), Corollary 5.16 and Corollary 5.3.

M+

2W is Dy-invariant.

(v) Let f and g be strictly monotone. Note that

Case 1: Assume that f and g are both strictly increasing a.s. It follows from

Theorem 2.65 (i).

Case 2: Assume that f is strictly increasing and g is strictly decreasing. It

follows from Lemma 5.1 (ii).

Case 3: Assume that f is strictly decreasing and g is strictly increasing. It

follows from Lemma 5.1 (iii).

Case 4: Assume that f and g are both strictly decreasing. It follows from

Lemma 5.1 (iv).

(vi) By the assumption, we obtain nh_I& H,(u,v) = H(u,v) for all (u,v) at which
H is continuous. By Sklar’s Theorem 2.61 and the continuity of the distri-
bution functions of X and Y, we have Cx, y, converges pointwise to Cxy.
Using DCT, we get nh_)rgo aw(Xn, Y,) = UM(X, Y).

]

Remark 5.19. The converse of Theorem 5.18 (iii) does not hold because there
is an infinity of copulas whose diagonal section and opposite diagonal section are
diagonal and opposite diagonal sections of II. For example, for all A € [—1,1], a

copula C'\ defined by
w — Av—u)(u+v—1)min{v,1 —v}, f (u<vAu+v>1)V
Ci(u,v) = (u>vAu+v<1)
uw — ANu —v)(u+v —1)min{u,1 —u}, otherwise

has both diagonal section and opposite diagonal section as II. For more details,

please see [8].



CHAPTER VI
CONCLUSION, DISCUSSION AND FUTURE WORK

In this chapter, we will summarize all of the work which has been done, discuss
similarities and differences of our work with an original work [22] and also give

directions for future work.

6.1 Summary of the Thesis

We begin with a diagram that compares and contrasts the concept of being a
measure of dependence between the original version proposed by Rényi and the one
modified by Schweizer-Wolff. Let R and R’ be measures of dependence according

to Rényi’s postulates and Schweizer-Wolff, respectively.
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In this thesis, we obtain three generalized versions of o defined in (1.1): oy,

©

oy, and omsw. Recall the functions oy, 0, and omsw as follows: for all random
2 2

©

variables X, Y whose distribution functions are continuous,

(i)

(i)

(iif)

Ji2 0(|Cxy — T[)dN

g X,Y = )
AN = M — T

f[2§0 |Cf _H|)d)‘2
oX(X,Y)= sup o X),g(Y)) = sup ,
90( ) f,geI @(f( ) g( )) fngI f]z ’M Hl d)\2

f]2 |CXY _ H|dM+W

O'M+W<X Y) f2 |M H|dM+W
I 2

Then omsw and o, are measures of dependence in the sense of Schweizer and
2

Wolff. Moreover, o7, is a measure of dependence in the sense of Rényi.

6.2

(i)

(i)

(iii)

Discussion

In [22], for each 1 < p < o0, o, which is defined as the normalized L?-
norm of C' — II where C' is a copula, on the class of all copulas was proved
to be a measure of dependence satisfying the same set of Schweizer-Wolft’s
properties. In our work, o, is a generalization of . We are able to prove

that o, satisfies all properties in the Schweizer-Wolft’s definition except the

property (vi).

For each ¢, o7, satisfies all properties in the Rényi’s postulates except (vi).
Thus {07, : ¢} is the class of new measures of dependence in the sense of

Rényi.

oumsw gives the weaker sense of being a measure of dependence because the
2
minimum value of oumiw (C) does not be attained exactly when C' = II.
2
Moreover, we have no conclusion whether the maximum value of ou+w (C)
2

occurs exactly when C'= M or C =W.
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6.3 Future Work

The main result in the chapter V indicates that O aw is almost a measure of

dependence in the sense of Schweizer-Wolff. By Lemma 5.10, we see the relation-

M+W

= as a Dy-invariant copula and the

ship between the integral with respect to
Lebesgue measure on I2. From this point of view, it is worth investigating the
relationship between the integral with respect to all Dy-invariant copulas and the
Lebesgue measure on I2, which is one direction of research so as to classify all

copulas A for which o4 is measure of dependence in the sense of Schweizer-Wolff.



APPENDIX

In this appendix, the primary purpose is to give MATLAB code used in Example

3.4. Before going into the details, we recall the functions ¢; and s as follows:

2 if0<z<;
(,01(33’): 2 1 e 1
and
42 ifo<z<i
po(x) = ¢ 9 — 2 if}lgazgg
54r—37 iff<x<1

We begin with the MATLAB code of plotting functions o, on the class of

Gaussian copulas. Here is the code.

step = 0.01;
range = [0:step:1];
rho = [—0.99:0.01:0.99];

[U,V] = meshgrid(range);

% Define a Gaussian copula C with parameter i

for i = 1 : length(rho)

F = copulacdf(’Gaussian’,[U(:) V(:)],rho(i));
C(:,:,i) = reshape(F,length(range),length(range));

end

% Define a function varphi_1
PIECEl = @(x) x<0;
PIECE2 = Q(x) x>=0 & x<=0.25;




PIECE3 = @(x) x>0.25 & x<=1;
PIECE4 = Q(x) x>1;
varphi = @(x) PIECEL(x).*(0) + PIECE2(x).*(2*x)
+ PIECE3(x).*((2/3)*x+1/3)+PIECE4(x).*(1);

% Compute the integral of (M-PI)

for i = 1 : length(range)
for j =1 : length(range)
M(i,j) = min(U(i,j),V(i,j));
PI(i,§) = UG, §)*V(i,i);
KM, j)=PI(i,]);
varphi_ij(i,j)=varphi(K);
end

end

vol=trapz (range ,trapz (range,varphi_ij (:,:)));

% Compute the measure sigma_ {\varphi_ 1}
for i = 1 : length(rho)
if rho(i)<0
for j =1 : length(range)
for k = 1 : length(range)
K=PI(:,)) —C(:,:,i);
varphi_jk(j,k,i)=varphi(K);
end
end
NormalizedVol(i) = trapz(range,trapz(range,
varphi_jk(:,:,i)))/vol;
else

for j =1 : length(range)
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for k = 1 : length(range)
K=C(:,:,i)=PI(:,:);

end

end
NormalizedVol (i) = trapz(range,trapz(range,

varphi_jk(:,:,1)))/vol;

end

end
% Plot a graph of the measure sigma_{\varphi_ 1}
plot (rho, NormalizedVol (:),  Color’, ’red ’,

"LineSmoothing ’, "on’); hold on;
xlabel ("X=r")
ylabel ('Y")
legend (17, " Location ’ |, "southwest ”)

varphi_jk(j,k,i)=varphi(K);
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The following code defines the function s.

% Define a function varphi_2

PIECE]l = @Q(x) x<0;

PIECE2 = Q(x) x>=0 & x<=0.25;

PIECE3 = Q(x) x>0.25 & x<=7/9;

PIECE4 = @Q(x) x>7/9 & x<=1;

PIECES = @Q(x) x>1;

varphi = @(x) PIECE1(x).*(0) + PIECE2(x).*(4*x"2)

) Fx=2)
4)*x—37)
1);

(9
+PIECE4 (x).*((5

)-*(0) +
+PIECE3 (x ). * (
( (
+PIECES (x ). * (

Using the same code from the above and replacing ¢1’s code with @s’s code, we

have the graph of o,.
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