CHAPTER 4.

CALCULATION

In this chapter, all of the linear curves shown were drawn by applying the least square method.

4.1 Determination of the chemical shift of hydrogen ions

Results shown in Table 3.3 were modified by eqs (A5.1) and (A6.3) of Appendices 5. and 6. respectively, then Table 4.1 and Fig 4.1 were obtained.

Table 4.1 Fraction of proton of hydronium ions and the difference of proton shifts of aqueous hydrochloric acid and water.

Concentration of hydrochloric acid (mf)*	Fraction of proton of hydronium ions	δ(HC1)	δ(HC1)-δ(H ₂ 0)**
2.450X10 ⁴	3.675X10 ⁴	4.75	0.05
1.216x10 ³	1.825X10 ³	4.92	0.22
2.350X10 ³	3.529X10 ³	5.15	0.45
4.756x10 ³	7.151x10 ³	5.63	0.93
8.850x1ō ³	1.292X10 ²	6.43	1.73

^{* (}mf) signifies the mole fraction.

^{**} $\delta(H_20) = 4.70 \text{ ppm (see page 21)}$

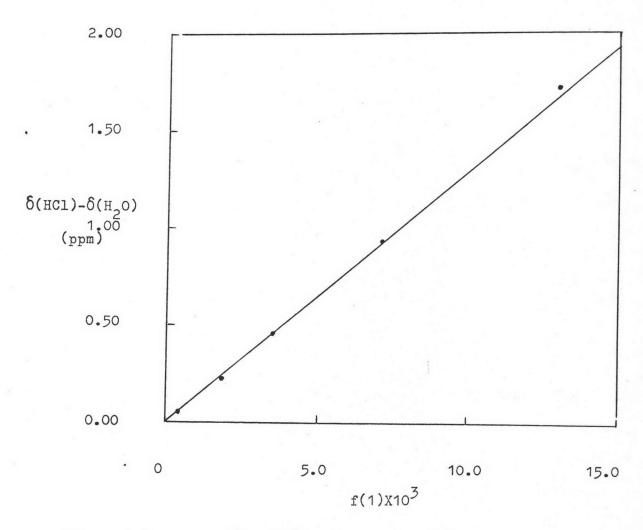


Figure 4.1 Plot of $\delta(\text{HCl})-\delta(\text{H}_2\text{O})$ against f(1).

The slope of the least square line shown in Fig 4.5 is equal to 134.44 ppm, it is then obvious from eq (2.4) i.e. $\delta(\text{HCl})-\delta(\text{H}_2\text{O}) = \delta(\text{H}_3^+\text{O})-\delta(\text{H}_2\text{O}) \text{ f(1) that}$

$$\delta(H_3^+0)-\delta(H_20) = 134.44 \text{ ppm}$$

 $\delta(\mathrm{H}_3^+\mathrm{O})$ is readily evaluated from the above equation, and is equal to 139.14 ppm. Finally, $\delta(\mathrm{H}^+)$ can be calculated from $\delta(\mathrm{H}^+) = 3\delta(\mathrm{H}_3^+\mathrm{O}) - 2\delta(\mathrm{H}_2\mathrm{O})$ (eq (2.5) page 8) and is equal to 408.02 ppm.

4.2 Determination of the limiting molar conductance of acetic acid

The resistances and the concentrations of aqueous hydrochloric acid, sodium chloride and sodium acetate shown in Tables 3.4, 3.5 and 3.6 were used to calculate the molar conductances of these electrolyte solutions using eqs (A7.11), (A7.2) and (A7.3) of Appendix 7. The resulting molar conductances are shown in Tables 4.2, 4.3 and 4.4 for hydrochloric acid, sodium chloride and sodium acetate respectively. The appropriate Onsager plots are shown in Figs 4.2, 4.3 and 4.4.

Table 4.2 Molar conductances of hydrochloric acid at various concentrations.

(C _{HC1})½	K _{HC1} X10 ⁵ (ohm ¹ cm ¹)	^HCl (ohm 1 cm 2 mole 1)
0.0156	8.4690	348.80
0.0110	4.7001	387.16
0.0055	1.3163	432.99

Table 4.3 Molar conductances of sodium chloride at various concentrations.

(C _{NaCl}) ^½ (M ^½)	K _{NaCl} X10 ⁶ (ohm ¹ cm ¹)	^NaCl (ohm1cm2mole1)
0.0316	107.4952	107.50
0.0224	60.2508	120.50
0.0158	31.1714	124.68
0.0112	16.6946	133.56
0.0079	8.7526	140.04
0.0056	4.4759	143.46

Table 4.4 Molar conductances of sodium acetate at various concentrations.

(C _{NaOAc}) ^{1/2} (M ^{1/2})	K _{NaOAc} X10 ⁵ (ohm 1cm 1)	\(\lambda_{\text{NaOAc}}\) \((\text{ohm}^1 \text{cm}^2 \text{mole}^1)
0.0704	49.3663	99.54
0.0498	25.0667	101.09
0.0352	12.6502	102.03
0.0316	10.2257	102.22
0.0224	5.1282	102.52
0.0158	2.5737	102.91

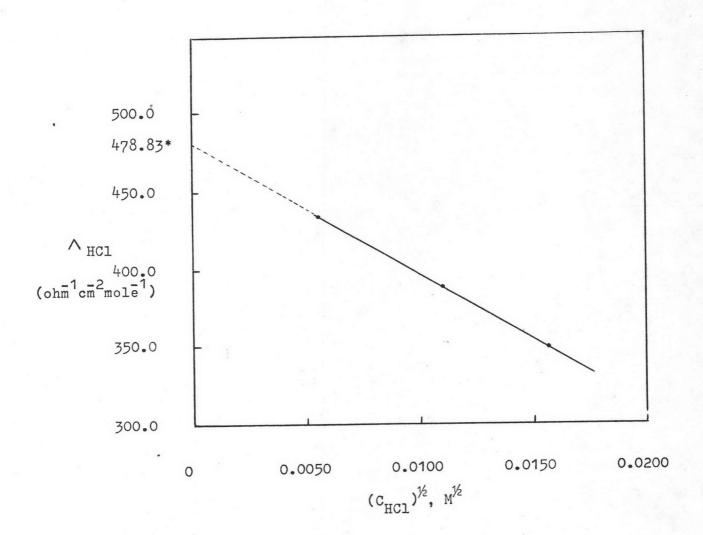


Figure 4.2 The Onsager plot of hydrochloric acid.

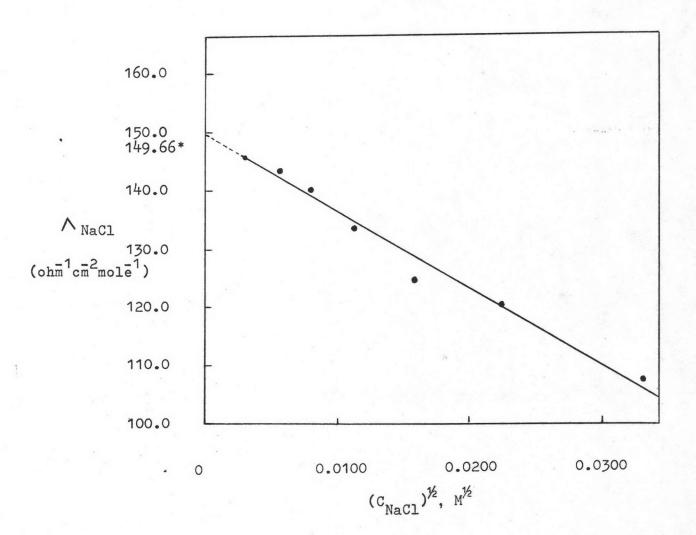


Figure 4.3 The Onsager plot of sodium chloride.

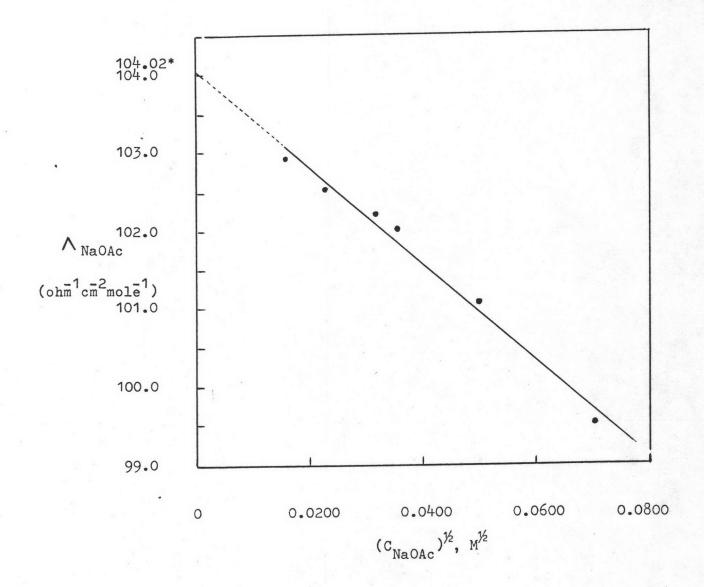


Figure 4.4 The Onsager plot of sodium acetate.

The limiting molar conductance of the electrolytes in question are obtained by the extrapolation of the straight line in each figure to the ordinate. The intercept on the ordinate was read and taken as \bigwedge^{O} (according to the Onsager equation $\bigwedge = \bigwedge^{O} + b \sqrt{c}$). Then

From Fig 4.2
$$\Lambda_{\text{HCl}}^{\text{O}} = 478.83 \text{ ohm}^{-1} \text{cm}^{2} \text{mole}^{-1}$$

From Fig 4.3 $\Lambda_{\text{NaCl}}^{\text{O}} = 149.66 \text{ ohm}^{-1} \text{cm}^{2} \text{mole}^{-1}$
From Fig 4.4 $\Lambda_{\text{NaOAc}}^{\text{O}} = 104.02 \text{ ohm}^{-1} \text{cm}^{2} \text{mole}^{-1}$

The limiting molar conductance of acetic acid, \bigwedge_{HOAc}^{o} a weak electrolyte can be calculated from Kohlrausch's equation (eq(A7.8) of Appendix 7). The calculation gave

$$\Lambda_{\text{HOAc}}^{\circ}$$
 (at 32°C) = 433.19 ohm⁻¹cm²mole⁻¹

4.3 Calculation involving data for the computer program

Data in Tables 3.7 and 3.8 were used in conjunction with eq(A5.8) of Appendix 5 to calculate the molar concentration of acetic acid. They were also fed into eqs(A7.1), (A7.2) and (A7.3) of Appendix 7 in order to calculate the molar conductance of acetic acid. Results are tabulated in Tables 4.5 and 4.6.

Table 4.5 Molar concentrations and molar conductances of acetic acid.

Concentration of acetic acid	K _{HOAc} X10 ⁴ (ohm ¹ cm ¹)	\(\lambda_{\text{HOAc}}\) \((\text{ohm}^1 \text{cm}^2 \text{mole}^1)
14.1032	1.0637	7.5422
13.2442	2.0217	15.2648
12.8622	2.4582	19.1118
12.3121	3.2013	26.0012
11.7688	4.0285	34.2303
11.4121	4.6163	40.4509
11.0546	5.2536	47.5241
10.6946	5.9184	55.3401
10.5328	6.2431	59.2729
8.7127	10.1221	116.1764

Table 4.6 Molar concentrations and molar conductances of acetic acid.

Concentration of acetic acid	KHOAc	AHOAc
(M)	(ohm1cm1)	(ohm ¹ cm ² mole ¹)
16.8726	_	_
16.1334	8.7626x1ō ⁷	5.4313X10 ⁵
15.3622	1.1560x1ō ⁵	7.5248x10 ⁴
14.6290	4.5751x 10 ⁵	3.1274X10 ³
6.9262	1.2453X10 ³	1.7979X10 ¹
5.1482	1.5785X10 ³	3.0662X10 ¹
3•3952	1.7816x10 ³	5.2475X10 ¹
1.6776	1.6587X10 ³	9.8873X10 ¹
0.8338	1.3249X10 ³	1.5890
0.3322	8.9523X10 ⁴	2.6948
0,1658	6.3112X10 ⁴	3.8065
0.0331	3.2973X10 ⁴	9.9236
0.006628	1.4504X10 ⁴	21.7864
0.001326	5.3823X10 ⁵	40.4385
0.000265	2.3896x10 ⁵	90.1260
0.000053	8.7869x10 ⁶	165.6968

The mole fraction of acetic acid, X_{AS} was converted from the weight percent using eq (A5.2) of Appendix 5. The degree of dissociation of acetic acid, ∞_A was evaluated from the limiting molar conductance of acetic acid (from page 42) and the molar conductance of acetic acid (from Tables 4.5 and 4.6) using eq (A7.4) of Appendix 7.

The mole fraction of hydrogen ions (simple type, $X_{H\dot{S}}$ determined from ∞_A using eq (A7.6) of Appendix 7 was converted to the fraction of proton of hydrogen ions, $f(H^+)$ by eq (A6.3) of Appendix 6. Both are shown together with X_{AS} , ∞_A in Tables 4.7 and 4.8.

Table 4.7 Fraction of protons of hydrogen ions at various concentrations.

X _{AS}	∞ _A X10 ⁵	x _H 5x10 ⁶	f(H ⁺)X10 ⁶
0.5468	1.7411	9.5203	6.5513
0.4761	3.5238	16.7768	11.0104
0.4489	4.4119	19.8050	12.7685
0.4116	6.0023	24.7055	15.5519
0.3783	7.9019	29.8929	19.4352
0.3576	9.3379	33,3923	20.3319
0.3379	10.9707	37.0700	22.3045
0.3192	12.7750	40.7778	24,2601
0.3110	13.6829	42.5538	25.2004
0.2300	26.8188	61.6832	34.8548

Table 4.8 Fraction of protons of hydrogen ions at various concentrations.

X _{AS}	∞ _A	Х _Н ѣ	f(H ⁺)
1.0000	0	0	0
0.8506	1.2538x10 ⁷	1.0665X10̄ ⁷	9.2788 x 10̄ ⁸
0.7296	1.7371X10 ⁶	1.2674X10 ⁶	9.9764x1ō ⁷
0.6294	7.2195X10 ⁶	4.5440x10 ⁶	3.3153x10 ⁶
0.1666	4.1504X10 ⁴	6.9146x1ō ⁵	3.7715X10 ⁵
0.1138	7.0782X10 ⁴	8.0550x10 ⁵	4.2705X10 ⁵
0.0697	1.2114X10 ³	8.4434x1ō ⁵	4.3741X10 ⁵
0.0322	2.2824X10 ³	7.3493X1Ō ⁵	3.7348x10 ⁵
1.5531X10 ²	3.6681X10 ³	5.6865x10 ⁵	2.8654x1ō ⁵
6.0802X10 ³	6.2208X10̄ ³	3.7947x10 ⁵	1.9032X10 ⁵
3.0186x10 ³	8.7871X10 ³	2.6361X10 ⁵	1.3200X10 ⁵
6.0034X10 ⁴	2.2908X10 ²	1.3752X10̄ ⁵	6.8781X1Ō ⁶
1.1993X10 ⁴	5.0293X10 ²	6.0316x10 ⁶	3.0160x10 ⁶
2.3981X10 ⁵	9.3350X10 ²	2.2386x10 ⁶	1.1193X10 ⁶
4.7960x10 ⁶	2.0805X10 ¹	9.9781X10 ⁷	4.4891X10 ⁷
9.5920X10̄ ⁷	3.8250X10 ¹	3.6689x1ō ⁷	1.8344x10 ⁷

The ∞_A (from Table 4.8) and C_A (from Table 4.5) were used to calculate the molar conductance of hydrogen ions, C_{H^+} . The density of aqueous acetic acid (from Tables 3.7 and 3.8), C_A and C_{H^+} were used to calculate β in eq (A4.2) of Appendix 4. The ratio of the C_{H^+}/β are contained in Tables 4.9 and 4.10. Data in Table 4.9 was used in the computer program I (see - Appendix 8) whereas those in Table 4.10 was used in the computer program II (also Appendix 8).

Table 4.9 The ratio of $C_H^{+/\beta}$ for using in the computer program I.

Concentration of	В	C _H +/P
x10 ⁴ , (M)	(M)	x10 ⁵
2.4555	11.6895	2.1006
4.6670	14.5724	3.2026
.5.6747	15.7914	3.5935
7.3901	17.6047	4.1978
9.2996	19.3398	4.8085
10.6565	20.5023	5.1977
12.1277	21.6619	5.5786
13.6623	22.8132	5.9888
14.4119	23.3310	6.1772
23.3664	29.0715	8.0376

Table 4.10 The ratio of ${\rm C}_{\rm H}\text{+/}\beta$ for using in the computer program II.

Concentration of	В	c _{H+} /B
hydrogen ions, C _H +		
(M)	(M)	
0	2.0556x1ō ⁵	0
2.0228x10 ⁶	2.8327	7.1408x10 ⁷
2.6686x1 0 ⁵	5.6945	4.6863x10 ⁶
1.0561x10 ⁴	8.6129	1.2262 x 10̄ ⁵
2.8747X10 ³	34.6658	8.2927X10 ⁵
3.6440x10 ³	40.0823	9.0913x10 ⁵
4.1129X10̄ ³	45.3148	9.0763x10 ⁵
3.8290X10̄ ³	50.3777	7.6006x10 ⁵
3.0590X10̄ ³	52.8578	5•7872X10̄ ⁵
2.0665X10̄ ³	54.3070	3.8052X10̄ ⁵
1:4569x1ō ³	54.7776	2.6597X10 ⁵
7.5825X10 ⁴	55.1744	1.3743X10 ⁵
3.3334X10 ⁴	55.2619	6.0320X10 ⁶
1.2378X10 ⁴	55.2792	2.2392X10 ⁶
5.5133X10 ⁵	55.2826	9.9729x1ō ⁷
2.0272X10̄ ⁵	55.3832	3.6669x1ō ⁷

The fraction of protons of water, $f(H_20)$ was tabulated in Tables 4.11 and 4.12. These values were resulted from the calculation using eq (A6.2) of Appendix 6 and mole fraction of acetic acid. These two Tables are also containing other necessary quantities for the computer programs I and II which have been shown in previous Tables.

Table 4.11 The collection of necessary data for using in the computer program I.

Sobsda (ppm)	X _{AS}	с _н +/в ^с х10 ⁷	f(H ₂ O)	f(H ⁺) ^b
6.87	0.5468	4.5444	0.6236	6.5513
6.48	0.4761	8.5890	0.6875	11.0104
6.34	0.4489	10.4297	0.7106	12.7685
6.20	0.4116	13.5423	0.7409	15.5519
5.96	0.3783	17.0092	0.7667	18.4352
5.92	0.3576	19.4585	0.7823	20.3319
5.80	0.3379	22.1102	0.7967	22.3045
5.72	0.3192	24.8761	0.8101	24.2601
5.68	0.3110	26.2258	0.8158	25.2004
5.42	0.2300	42.3096	0.8696	34.8548
a from Tab	le 3.1		δ(H ₂ O) ^a	δ(H ⁺) ^d
b from Tab			(ppm)	(ppm)
c from Tab	le 4.9			100
d from pag	e 36		4.70	408.02

Table 4.12 The collection of necessary data for using in the computer program II.

X _{AS} e	C _H +/β f	f(H ₂ 0)	f(H ⁺) e
1.0000	0	0	0
0.8506	7.1408x1ō ⁷	0.2600	9.2788x10 ⁸
0.7296	4.6863x10 ⁶	0.4257	9.9764x10 ⁷
0.6294	1.2262X10̄ ⁵	0.5408	3.3153X10 ⁶
0.1666	8.2927X10 ⁵	0.9091	3.7715X10 ⁵
0.1138	9.0913X10 ⁵	0.9397	4.2705X10 ⁵
0.0697	9.0763X10̄ ⁵	0.9639	4.3741X10 ⁵
0.0322	7.6006x10 ⁵	0.9838	3.7348x10 ⁵
1.5531X10 ²	5.7872X10 ⁵	0.9922	2.8654X10 ⁵
6.0802X10 ³	3.8052X10 ⁵	0.9969	1.9032X10 ⁵
3.0186X10 ³	2.6597X10̄ ⁵	0.9985	1.3200X10 ⁵
6.0034X10 ⁴	1.3743X10 ⁵	0.999699	6.8781X10 ⁶
1.1993X104	6.0320X10 ⁶	0.999940	3.0160x10 ⁶
2.3981X10 ⁵	2.2392X10 ⁶	0.999988	1.1193X10 ⁶
4.7960x10 ⁶	9.9729x10 ⁷	0.999997	4.4891X10 ⁷
9.5920X10 ⁷	3.6669x10 ⁷	0.999999	1.8344X10 ⁷

e from Table 4.8

f from Table 4.10

4.4 Calculation of the equilibrium constants by the computer

In the computer program I (shown in Appendix 8) used was made of the data from Table 4.11, however six variables namely the set of equilibrium constants (K, K_1, K_c) and the set of chemical shifts $(\delta(E), \delta(I), \delta(C))$ were still unknown. The solution of the set of equilibrium constants must be treated simultaneously with the set of chemical shifts by the iteration method as described stepwisely below.

Step I This step was devised in such a way that the "best approximate value" of the equilibrium constant set was obtained through the pre-assigned value set of the chemical shifts which was fed into the computer program I simultaneously with the assigned value of the equilibrium constant set. As a start, the assigned chemical shift set* i.e. $\delta(E) = 6.63$ ppm, $\delta(I) = 9.72$ ppm and $\delta(C) = 11.08$ ppm was obtained from reference 13 whereas the assigned equilibrium constant set was obtained by the "trial and error" process. The "best approximate value" means the set with the minimum standard deviation (δ) and this set was used in step II.

Step II The "best approximate value" of a set of chemical shifts was achieved in this step. Repetition of step I was made. This time the best set of equilibrium constants from step I was fed to the computer program I simultaneously with a set of chemical shifts which was then obtained by the trial and error process. The program was so written that a set of

^{*} down field shift from methyl proton of TMS (at 31°C)

chemical shifts with a minimum standard deviation was obainable.

Step III The identical procedure as (I) was performed. The only difference was to use the "best approximate value" of a set of chemical shifts from (II) instead of taking from the reference. It is quite obvious that this step should yield a more accurate value of an equilibrium constant set.

Step IV The processes in step II and III were alternately treated until the values of the equilibrium constants and the chemical shifts were constant (under the minimum condition of the standard deviation). Those values are as given below.

δ(E) 5.02 ppm $\delta(I)$ 7.17 ppm δ(c) 14.77 ppm mf-1 54.4 K mf^{-1} K = 141.7 $= 262.5 \text{ mf}^{-1}$ K 0 ±0.02287

4.5 Calculation of the mole fraction and other results

The values of the equilibrium constants, the chemical shifts (both from page 52) and the data from Table 4.1 were processed in the computer program II. The calculated chemical shifts (8) obtained from the computer programs I and II are tabulated in Tables 4.13 and 4.14 respectively. The mole fraction (X) and the mole percent (%X) of the hydrogen-bonded species are shown in Tables 4.15 and 4.16 respectively. The results of the fraction of protons of species group (f) are given in Table 4.17.

Table 4.13 The chemical shifts (observed and calculated) at various concentrations of acetic acid(from the computer program I)

Concentration	of acetic,acid	δobsd	δcalcd	Δδ	
(%w/w)	(%w/w) (mf)		(mqq)	(%)	
80.1	0.5468	6.87	6.873	-0.044	
75.2	0.4761	6.48	6.485	-0.077	
73.1	0.4489	6.34	6.342	-0.032	
70.0	0.4116	6.20	6.152	+0.758	
67.0	0.3783	5.96	5.991	-0.520	
65.0	0.3576	5.90	5.896	+0.068	
63.0	0.3379	5.80	5.809	-0.155	
61.0	0.3192	5.72	5.729	-0.157	
60.1	0.3110	5.68	5.695	-0.264	
50.0	0.2300	5.42	5.388	+0.572	

Table 4.14 The chemical shifts (observed and calculated) at various concentrations of acetic acid(from the computer program II)

Concentration (of acetic acid	δobsd	$\delta^{ ext{calcd}}$	Δδ		
(%w/w)	(mf)	(ppm)	(ppm)	(%)		
100.0	1.0000	11.06	7.131	+35.524		
95.0	0.8506	-	7.891	-		
90.0	0.7296	8.02	7.749	+3.379		
85.0	0.6294	7.40	7.319	+1.094		
40.0	0.1666	5.20	5.184	+0.308		
30.0	0.1138	5.02	5.030	-0.199		
20.0	0.0697	4.89	4.907	-0.378		
10.0	0.0322	4.80	4.800	-0.000		
5.0	0.0155		4.750			
1.0	0.0061	-	4.720	-		
2.0X10 ¹	0.0030186	- 1	4.71	-		
4.0x10 ²	0.0006003	-	4.703			
8.0x1ō ³	0.0001199	-	4.701	-		
1.6x10 ³	0.0000239	-	4.70	-		
3.2X10 ⁴	0.0000048	-	4.70	-		
6.4x10 ⁵	0.0000009	-	4.70	-		

Table 4.15 The mole fraction of the hydrogen-bonded species at various concentrations of acetic acid.

Concentration of acetic acid	יו	The mole f	raction o	of species		
(%w/w)	Х _с	x ₁	X ₂	х ₃	х ₄	
85.0	0.0593	0.0150	0.0320	0.0262	0.0214	
80.1	0.0554	0.0145	0.0299	0.0236	0.0187	
75.2	0.0518	0.0140	0.0280	0.0214	0.0164	
73.1	0.0504	0.0138	0.0272	0.0205	0.0154	
70.0	0.0482	0.0136	0.0260	0.0192	0.0142	
67.0	0.0462	0.0133	0.0250	0.0180	0.0130	
65.0	0.0449	0.0131	0.0242	0.0172	0.0123	
63.0	0.0436	0.0129	0.0235	0.0165	0.0116	
61.0	0.0422	0.0127	0.0228	0.0157	0.0109	
60.1	0.0417	0.0126	0.0225	0.0154	0.0106	
50.0	0.0350	0.0116	0.0189	0.0119	0.0075	
40.0	0.0285	0.0104	0.0154	0.0087	0.0049	
30.0	0.0217	0.0091	0.0117	0.0058	0.0029	
20.0	0.0146	0.0075	0.0079	0.0032	0.0013	
10.0	0.0072	0.0052	0.0039	0.0011	0.0003	
5.0	0.0034	0.0036	0.0018	0.0004	0.0000	
1.0	0.0012	0.0021	0.0006	0.00007	0.0000	

Table 4.16 The mole percent of the hydrogen-bonded species at various concentrations of acetic acid.

-XX%	0.000												1.21	2.63	5.22	9.41	20.82	38.23
†ДБ _{Х%}	38.43	0.0	+ 01 5	0.0	ω α ω (000	0	-	1			•	0.005	00000	00000	000.00	00000	00000
7X%	68 34 54	782 K	787	76	78	26	1.21	49.0	0.24	0°04	900.0	00000	00000	00000	00000	00000	00000	00000
9x%	5.73	- 0 0	- Wh	JU	0 0	20	~	10	9	-	0	٠.	00000	00000	00000	00000	00000	00000
%x ₅	7.00	-6-	1 10 4	- 0	00 [10	9.	7.	1		•	00000	00000	00000	00000	0.000	00000
4x%	8.56	o ∞ α	0 5	ס ת	4.	. 0	9	47	9	1	1	. 0	90.0	0.002	000.0	00000	00000	00000
%x3	10.47	150	- 01 0	- 10	0,0	1 0	-	0.7	٧.		~	~	0.92	0.11	0.007	00000	00000	00000
, %x ₂	12.80	- 10		7.0	50) N	0.6	1.6	2	7.0	9.6	5.	12.29	5.08	1.35	0.27	40.0	0.005
%x,	6.83	00-	4 00 0	n n	000	\sim	00	0.00	0.1	9.6	00	2	62.74	82.76	90.91	89.81	90.62	61.75
°x%	23.72	2000	200	ם מ	011	- 0	000	0.1	-	0.	7.9	6	22.76	9.41	2.50	0.50	0.08	0.01
Concentration of acetic acid (%w/w)	85.0 80.1							30.0			5.0		2.0X101	4.0X10 ²	8.0X10 ³	1.6X10 ³	3.2X104	6.4x10 ⁵

 * % $^{G}_{II}^{t} = \% X_5 + \% X_6 + \cdots \% X_{\infty}$

Table 4.17 Fraction of protons of the species groups at various concentrations of acetic acid.

Concentration of acetic acid	Fraction of pr	otons of the	species groups
(%w/w)	f(E)	f(I)	f(C)
100.0	0.0464	0.9455	0.0081
95.0	0.0945	0.7852	0.0382
90.0	0.1008	0.6220	0.0530
85.0	0.0947	0.4786	0.0589
80.1	0.0848	0.3672	0.0597
75.2	0.0743	0.2819	0.0580
73.1	0.0700	0.2521	0.0568
70.0	0.0639	0.2141	0.0547
67.0	0.0584	0.1830	0.0525
65.0	0.0550	0.1650	0.0509
63.0	0.0518	0.1488	0.0493
61.0	0.0488	0.1342	0.0477
60.1	0.0474	0.1281	0.0470
50.0	0.0345	0.0757	0.0387
40.0	0.0248	0.0443	0.0308
30.0	0.0170	0.0242	0.0229
20.0	0.0107	0.0115	0.0151
10.0	0.0054	0.0039	0.0073
5.0	0.0030	0.0014	0.0034
1.0	0.0014	0.0004	0.0012

4.6 Calculation of the heat of solvent transfer

It has been well established that in the water-benzene system, acetic acid presents in the form of monomer in a water layer whereas cyclic dimer is believed to constitute a major constituent in a benzene layer. This simple model was adopted in this part of the work in which carbon tetrachloride was introduced in place of benzene and results were compared.

Aqueous layer

$$C_1(H_20)$$
 $-K_1$

Non-aqueous layer

 $C_1(non-aq)$
 $C_1(non-aq)$
 $C_1(non-aq)$

Where $C_1(H_2O)$ and $C_1(\text{non-aq})$ are the molar concentration of monomers in aqueous and non-aqueous layer respectively. $C_c(\text{non-aq})$ is the molar concentration of cyclic dimers in non-aqueous layer. K_1 and K_2 are the equilibrium constants of distribution between monomeric species in aqueous and non-aqueous layer, and cyclic dimers and monomers in non-aqueous layer. The mathematical relation can be written as

$$C_1(\text{non-aq}) = C_1(H_20)/K_1$$
 (4.1)

$$C_{c}(\text{non-aq}) = K_{2}[C_{1}(\text{non-aq})]^{2}$$
 (4.2)

or

$$C_c(non-aq) = \frac{K_2}{K_1} C_1(H_20)$$
 (4.3)

The molar concentration of acetic acid in non-aqueous layer, $C_A(\text{non-aq})$ is equal to the sum of $C_1(\text{non-aq})$ and $C_1(\text{non-aq})$. Thus

$$C_{A}(\text{non-aq}) = \frac{C_{1}(H_{2}0)}{K_{1}} + \frac{2K_{2}[C_{1}(H_{2}0)]^{2}}{K_{1}^{2}}$$
 (4.4)

Equation (4.4) can be rearranged.

$$\frac{C_{A}(\text{non-aq})}{C_{1}(H_{2}O)} = \frac{1}{K_{1}} + \frac{2K_{2}}{K_{1}^{2}} C_{1}(H_{2}O)$$
 (4.5)

A plot of $C_A(\text{non-aq})/C_1(\text{H}_2\text{O})$ against $C_1(\text{H}_2\text{O})$ is obviously a straight line and its slope and intercept are equal to $2K_2/K_1^2$ and $1/K_1$ respectively. The heat of solvent transfer or the enthalpy (ΔH) can be obtained from the equilibrium constant at various temperatures by the Van't Hoff equation viz

$$\frac{d \ln K}{d(1/T)} = -\frac{\Delta H}{R}$$
 (4.6)

Hence at the narrow range of temperature a straight line should be obtained when lnK is plotted against 1/T with $-\Delta H/R$ is its slope. This was illustrated graphically in Figs 4.5, 4.7-4.9 from which K_1 and K_2 were derived and shown in Table 4.20. The anomaly was occurred in the HOAc- H_2 O-CCl₄ system which can be seen from Fig 4.6 indicating the inadequacy of the simple model employed in such a case.

Figure 4.5 Plot of $C_A(benzene)/C_A(H_2O)$ against $C_A(H_2O)$ at 32°C.

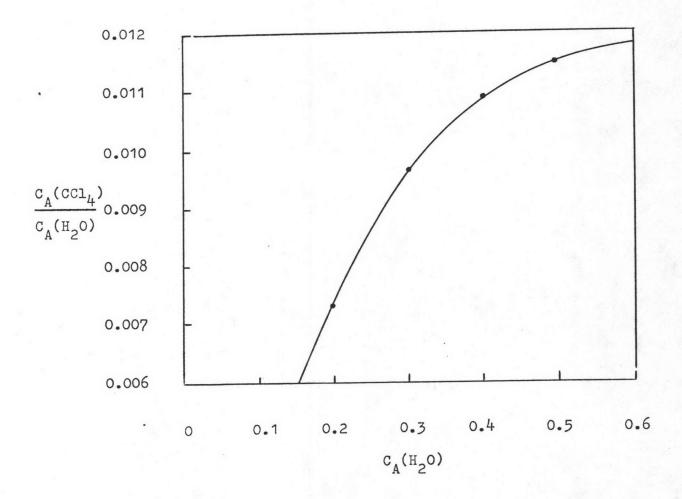


Figure 4.6 Non-linear relationship between $C_A(CCl_4)/C_A(H_2O)$ and $C_A(H_2O)$.

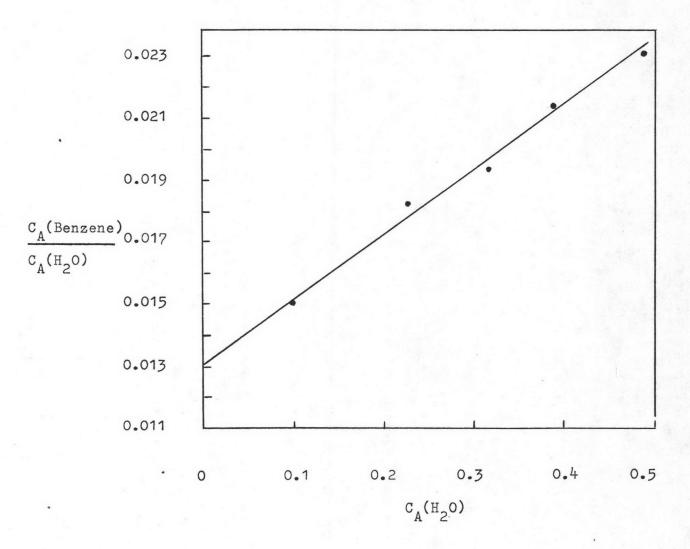


Figure 4.7 Plot of $C_A(benzene)/C_A(H_2O)$ against $C_A(H_2O)$ at 35°C.

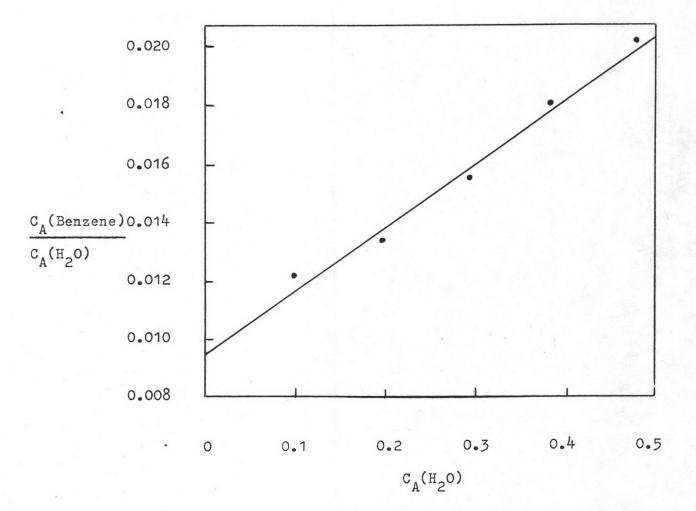


Figure 4.8 Plot of $C_A(benzene)/C_A(H_2O)$ against $C_A(H_2O)$ at 25°C.

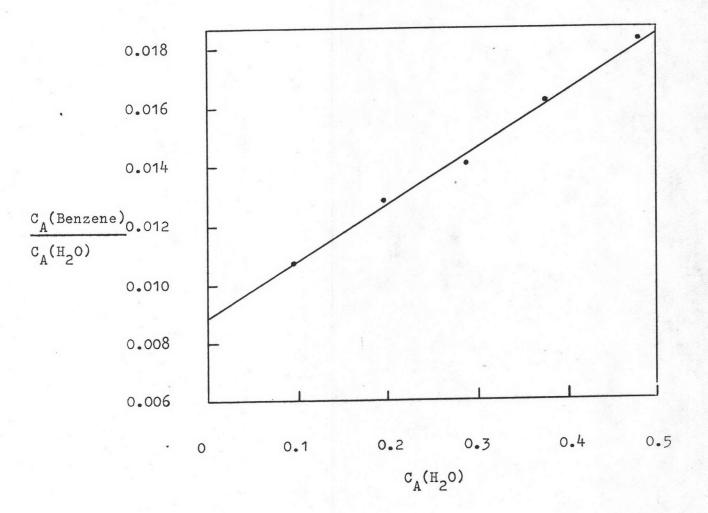


Figure 4.9 Plot of $C_A(benzene)/C_A(H_2O)$ against $C_A(H_2O)$ at 20°C.

Table 4.18 Equilibrium constants K₁ and K₂ at various temperature

Temperature	1/T X10 ³ (\bar{k}^1)	К ₁	lnK ₁	К2	lnK ₂
20 , 293	3.4130	113.2	4.7291	125.2	4.8299
25 , 298	3.3557	104.7	4.6511	119.4	4.8299
32 , 305	3.2787	82.6	4.4140	63.2	4.1463
35 , 308	3.2468	75.8	4.3281	59.2	4.0809

Heat of solvent transfer of acetic acid in $\mathrm{H_2O\text{-}benzene}$ system, $\Delta\mathrm{H_{benzene-H_2O}}$ and heat of dimerization of acetic acid in benzene, $\Delta\mathrm{H_{dimer}}$ can be determined from the slope of the plot $\mathrm{lnK_1}$ against 1/T and $\mathrm{lnK_2}$ against 1/T (show in Figs 4.10 and 4.11) respectively. The results are obtained below.

$$\Delta H_{\text{benzene-H}_2O} = -22.46 \text{ KJ mole}^{-1}$$

$$\Delta H_{\text{dimer}} = -4.95 \text{ KJ mole}^{-1}$$

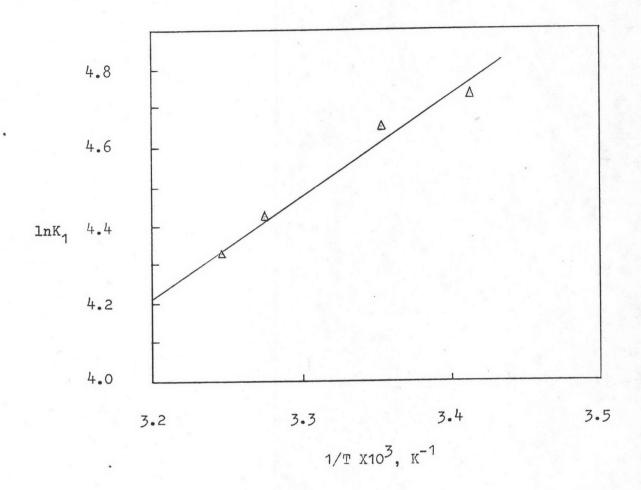


Figure 4.10 Plot of lnK₁ against 1/T

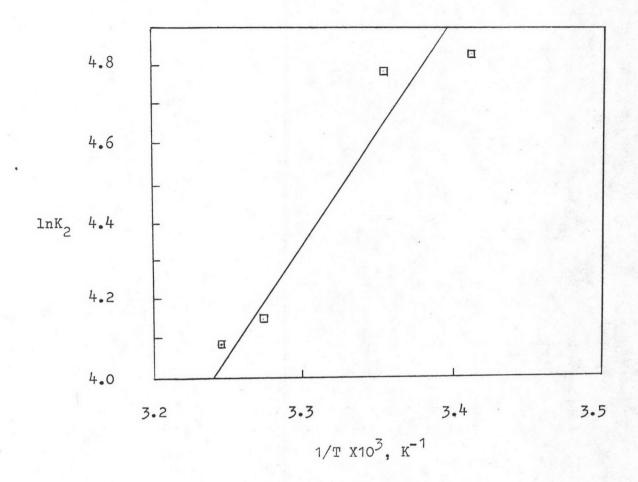


Figure 4.11 Plot of lnK2 against 1/T