## CHAPTER VI

## RESULTS AND DISCUSSION

Experimental results of the experiments described in the preceding chapter are shown in Tables 6.1 and 6.2. In the first serie of experiments, the combustion of nearly all of the fuel mixtures with the fluidizing velocities of was unstable and impossible to operate. In the 2.6umf second serie of experiments, the bed temperatures could not be maintained at the desired value of 850°c if a threshold of oil shale percentage was reached. The bed pressure drop versus ambient gas volume flow rate plots for each fuel mixing ratio of large particle oil shale (2.61mm) compiled in Figure 6.1 for the determination of minimum fluidizing velocities. The umf determinations were measured experimentally as no correlations for prediction of umf mixtures of different materials were available. equation for umf prediction was developed by Rowe Nienow(45) to obtain umf of a mixture of particles of various sizes but all of the same shape and density. However, since the minimum fluidizing velocity of small oil shale (1.44mm) was so low that it could not be determined using the available rotameter. The fluidizing velocities used for small-shale experiments were those assuring the fluidization of the largest particles in the bulk (i.e. lignite) which were about 44 Nm<sup>3</sup>/hr.

EA = excess air

"inlekgas condition TAFR = theoretical air flow rate

dp lignite = 2.59 mm

do oil shale = 2.61 mm

in-bed condition calculated by gas law

Table 6.1 First Serie Experimental Results

| TI12                     | 880<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87<br>87                                                                                                                                                | formed formed formed formed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TI8 TI                   | 883<br>885<br>877<br>777<br>777<br>777<br>777<br>777<br>777<br>777<br>777                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| T 17 T                   | 00000000000000000000000000000000000000                                                                                                                                                                         | s lag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| (°c)<br>TI6 T            | 150<br>141<br>143<br>240<br>219<br>219<br>200<br>125<br>215<br>215<br>115<br>115<br>160                                                                                                                        | # 141.56<br>441.29<br>45.74<br>45.74<br>45.79<br>45.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.79<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46.70<br>46 |
| 2                        | 26.88 1 1 1 2 2 2 3 3 1 1 1 1 2 2 3 3 3 3 3 3                                                                                                                                                                  | 4807049000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ratur<br>TI4 T           | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                          | 5 KNN 1 0 4 0 3 0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| emperature<br>TI3 TI4 TI | 88 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                         | 88 88 89 89 89 89 89 89 89 89 89 89 89 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Te<br>Tb T               | 827 8 8827 8 8227 8 8227 8 8 8 8 8 8 8 8                                                                                                                                                                       | 114<br>115<br>115<br>115<br>115<br>116<br>116<br>116<br>117<br>117<br>117<br>117<br>117<br>117<br>117                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| T12                      | 88 88 88 88 88 88 88 88 88 88 88 88 88                                                                                                                                                                         | Ash Analysis H(%) N(% H(%) N(%) N(% H(%) N(% H(%) N(% H(%) N(% H(%) N(%) N(% H(%) N(%) N(% H(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| IC1 T                    | 88128<br>74588<br>74588<br>7527<br>7527<br>7557<br>7587<br>7587<br>7587<br>7587<br>7                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| -                        | 88 25 25 25 25 25 25 25 25 25 25 25 25 25                                                                                                                                                                      | 21.2.2.3.8.8.8.2.3.2.2.2.2.2.2.3.3.8.8.8.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| (A/F)                    | 8 11 12 12 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                        | 88.88<br>8.83<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85<br>1.85                                                                                                                                                                                                                                                                                                                                                      |
| EA (2)                   | 855<br>956<br>957<br>97<br>97<br>97<br>97<br>97<br>97<br>97<br>97                                                                                                                                              | (%) 11 11 11 11 11 11 11 11 11 11 11 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| A ~                      | 1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>1110<br>111                                                                                                                                                    | Analysis<br>((\$) N(\$)<br>107<br>107<br>107<br>107<br>107<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108<br>108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TAFR<br>(m3/hr)          | 20.87<br>20.87<br>20.87<br>20.60<br>20.60<br>20.05<br>20.12<br>20.12<br>20.12<br>19.54<br>19.54<br>19.73<br>18.73                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          | 446666666666666666666666666666666666666                                                                                                                                                                        | C(%)<br>444<br>4466<br>51066<br>51066<br>51066<br>51066<br>51066<br>51066<br>51066<br>51066<br>51066<br>51066<br>51066<br>51066<br>51066<br>51066<br>51066<br>510666<br>510666<br>510666<br>510666<br>510666<br>510666<br>510666<br>510666<br>510666<br>510666<br>510666<br>510666<br>510666<br>510666<br>510666<br>510666<br>5106666<br>510666<br>510666<br>510666<br>510666<br>510666<br>510666<br>510666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>51066666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>51066666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>51066666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>51066666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>51066666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>51066666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>51066666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>51066666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>51066666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>5106666<br>51066666<br>5106666<br>5106666<br>5106666<br>51066666<br>51066666<br>51066666<br>51066666<br>51066666<br>51066666<br>51066666<br>51066666<br>51066666<br>510666666<br>51066666<br>51066666<br>51066666<br>51066666<br>51066666<br>51066666<br>51066666<br>51066666<br>51066666<br>51066666<br>510666666<br>51066666<br>51066666<br>51066666<br>510666666<br>51066666<br>51066666<br>51066666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>5106666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666<br>510666666666<br>5106666666<br>510666666<br>5106666666<br>5106666666<br>5106666666<br>5106666666<br>5106666666<br>5106666666<br>51066666666<br>5106666666<br>5106666666<br>510666666<br>5106666666<br>510666666<br>5106666666<br>5106666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (m3/hr)                  | 511<br>500<br>600<br>600<br>600<br>600<br>600<br>600<br>600<br>600<br>600                                                                                                                                      | NO(ppin)<br>98<br>87<br>87<br>38<br>88<br>88<br>88<br>88<br>112<br>124<br>124<br>123<br>201<br>273<br>273<br>273<br>158                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| , E                      |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| (*12ml                   | 000000000000000000000000000000000000000                                                                                                                                                                        | 2031<br>1773<br>933<br>432<br>452<br>293<br>100<br>100<br>264<br>265<br>263<br>263<br>263<br>263<br>263<br>263<br>263<br>263<br>263<br>263                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                          | 120<br>37<br>37<br>886<br>008<br>118<br>444<br>444<br>17<br>886<br>000                                                                                                                                         | Analysis<br>Analysis<br>SO <sub>2</sub> (pp<br>SI34 17<br>SI35 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (cm/s)                   | 123.50<br>119.12<br>111.37<br>111.37<br>167.86<br>154.08<br>159.18<br>154.42<br>165.57<br>154.42<br>165.57<br>154.42<br>165.37<br>153.17<br>154.42<br>165.37<br>154.42<br>165.37<br>154.42<br>165.37<br>174.00 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| um's)                    | 80000000000000000000000000000000000000                                                                                                                                                                         | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| .0                       | 1212124444000000000                                                                                                                                                                                            | Flue Flue 88.40 9.40 9.80 9.80 9.80 9.80 9.80 9.80 9.80 9.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Rate<br>al/hr)           | 17291<br>17291<br>17291<br>17291<br>17291<br>17291<br>17291<br>17291<br>17291<br>17291<br>17291                                                                                                                | 00   11111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| eed R<br>(kca            |                                                                                                                                                                                                                | 2 (x)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          | 8814<br>8814<br>8814<br>8817<br>8817<br>9035<br>904<br>769<br>769                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Fuel F<br>(kg/hr)        | 100 9 8 8 9 7 7 7 8 6 5 9 5 9 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6                                                                                                                                                    | (kg/hr)<br>266<br>272<br>272<br>11.436<br>11.436<br>11.436<br>12.734<br>1.857<br>1.857<br>1.857<br>1.857<br>1.209<br>6.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Ca/S                     | 925<br>925<br>925<br>925<br>925<br>782<br>782<br>1185<br>1185<br>1185<br>1185<br>1185<br>1185<br>1185                                                                                                          | a small and order or order                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0/r C2                   | 00000000000000000000000000000000000000                                                                                                                                                                         | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Ex. 0,                   | -000400V@@00101040                                                                                                                                                                                             | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WZI                      |                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

Table 6.2 Second Serie Experimental Results

|   | .1 0                                           | 1-500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                     |                                                                    |
|---|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------------|
| ٠ | 1112                                           | 18 20 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 81<br>71<br>59<br>68                | 86888                                                              |
|   | 60                                             | 83.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 81<br>24<br>80<br>80                | 81<br>57<br>57<br>57<br>57                                         |
|   | 117                                            | 988                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 38733                               | 36 44 35                                                           |
|   | Temperature (°c) 118 118 118 1                 | 320<br>159,<br>146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150<br>227<br>112<br>124            | 127<br>162<br>74<br>85<br>85                                       |
|   | ire<br>115                                     | 289<br>289<br>266<br>297                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 268<br>589<br>227,<br>242           | 246<br>294<br>153<br>175<br>305                                    |
| , | TIA                                            | 6.39<br>444<br>447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 540<br>540<br>570<br>417            | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500 |
|   | T13                                            | 875<br>781<br>719<br>785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 840<br>789<br>730<br>830            | 767<br>732<br>604<br>642<br>643                                    |
|   | 1 4                                            | 829<br>857<br>816<br>842                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 827<br>833<br>841<br>857            | 778<br>699<br>651<br>664<br>670                                    |
|   | 112                                            | 859<br>859<br>808<br>858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 842<br>874<br>831<br>860            | 782<br>710<br>655<br>671<br>676                                    |
|   | 1101                                           | 804<br>854<br>823<br>825                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 812<br>792<br>851<br>854            | 773<br>688<br>646<br>657<br>664                                    |
|   |                                                | 6.84<br>7.67<br>5.90<br>8.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.68<br>8.17<br>3.89                | 2.47                                                               |
|   | (A/F)                                          | 12-2 1-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                     | ผ่ผ่ผ่หทั                                                          |
|   | EA (2)                                         | . 66.09<br>151.31<br>134.36<br>275.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 110.83<br>142.96<br>167.64<br>54.33 | 9.78<br>7.51<br>5.48<br>0.17<br>5.87                               |
|   | ~                                              | 25 15 7 27 27 27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 11 14 16 16 16 16 16 16           | 86849                                                              |
|   | TAFR<br>(m3/hr                                 | 45.35<br>28.65<br>30.72<br>19.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 20.87<br>18.11<br>16.44<br>28.51    | 52.36<br>18.73<br>18.73                                            |
|   | - 0                                            | 72 22 72 72 72 72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4 4 4 4 4 4 4 4 4 4 4               | -                                                                  |
| - |                                                | KINKI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4444                                | 72<br>72<br>30<br>35<br>35                                         |
|   | .°°                                            | 29.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0                                   | . 0                                                                |
|   | (*Um()                                         | 3.27<br>2.12<br>2.15<br>2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9 111                               | 111.00                                                             |
| Ì | (cm/s)                                         | 25914 34.58 123.72<br>246.20 55.44 196.06<br>271.75 58.66 186.19<br>17291 56.59 204.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 - 1                               | 18.59                                                              |
| - |                                                | 25 4 4 4 4 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 6 7 5 | -                                   | -                                                                  |
| - | Fuel Feed Rate umn<br>(kg/hr) (kcal/hr) (cm/s) | 52.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 34.58<br>n.d.                       | 36150 n.d.<br>48344 56.59<br>17291 (28.29<br>17291 (28.29          |
| - | a =                                            | 25914<br>24620<br>27175<br>17291                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                     | 36150<br>48344<br>17291<br>17291<br>17291                          |
|   | Rat<br>(al/                                    | 25.<br>25.<br>27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 17291<br>15539<br>14127<br>25226    | 36150<br>48344<br>17291<br>17291<br>17291                          |
|   | Feed<br>(k                                     | #N40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | st (0,00 a                          |                                                                    |
|   | Fuel Feed Rate<br>kg/hr) (kcal/h               | 12.076<br>10.77<br>13.994<br>9.769                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.814<br>6.098<br>6.18<br>12.99     | 20.424<br>30.252<br>10.82<br>10.82<br>10.82                        |
| - |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                    |
|   | Ca/S                                           | 2.185<br>5.114<br>4.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5 1.664<br>1 2.185<br>3 3.114       | 7 4.018<br>5.194<br>5.194<br>5.194<br>5.194                        |
|   | Ex. 0/L Ca/S                                   | 7010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ONUN                                | V 3388                                                             |
| 1 | ₹.<br>19                                       | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2002                                | 22.2.2.3                                                           |
|   |                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                     |                                                                    |

freeboard water rate = 4 I/min

| (%)                                     | 8      | FIL C (2)                        | Ash Fly Ash $O_2(2)$ CO $_2(3)$ CO(ppm) SO                                           | $SO_2$ (ppm) NO(ppm) C(2)         | NO(ppm)                             | (%)                                       | Ash Analysis<br>H(%) N(%) S(%) | Sis<br>N(%) |                                         | Fly Ash Analysis<br>C(%) H(%) N(%) S( | Sh And                   | alysis                                        | is<br>S(%)                                                   | ٠.                                   | i s                                                                          | Note           |
|-----------------------------------------|--------|----------------------------------|--------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------|-------------------------------------------|--------------------------------|-------------|-----------------------------------------|---------------------------------------|--------------------------|-----------------------------------------------|--------------------------------------------------------------|--------------------------------------|------------------------------------------------------------------------------|----------------|
| five gas to<br>7.00<br>6.10<br>8.50     | FILL   | 13.40<br>14.30<br>10.60          | flue gas temperature was too high to 7.00 13.40 5186 5.10 14.30 5708 5.50 10.60 3262 | h to collect the sample 424 30 43 | ample 174 218 . 139                 | 55.54<br>2.40<br>1.36<br>.98              | .93                            | 1.46        | 2.82<br>1.94<br>1.14<br>1.03            | 25.61<br>6.72<br>5.74<br>4.30         | .20 .40 .40              | .59 3<br>.21 3<br>.34 7                       | 3.91 75.93<br>3.30 94.76<br>7.17 96.55<br>3.20 95.86         | 5.93                                 | 3.91 75.93 47.36<br>3.30 94.76 84.97<br>7.17 96.55 98.97<br>3.20 95.86 97.60 | meesured value |
| 4.30<br>7.60<br>1.40                    | 122    | 16.10<br>14.30<br>12.60<br>18.60 | 3514<br>4183<br>4044<br>>12101                                                       | 2031<br>2332<br>468<br>3000       | 98<br>193<br>267<br>1817            | 98 44.69<br>93 6.18<br>67 1.85<br>17 1.13 | 1.07                           | .05         | 4.85<br>.85<br>.85<br>.34               | 2.11<br>12.55<br>4.36<br>3.83         | . 46<br>. 55<br>. 39     | 258 5<br>288 5<br>28 5<br>28 5<br>4 5<br>28 5 | 8.09 95.14<br>5.09 95.67<br>6.48 96.53<br>4.73 97.03         | 5.67                                 | 8.09 95.14 41.56<br>5.09 95.67 21.38<br>6.48 96.53 82.39<br>4.73 97.03 30.88 | slag formed    |
| .50<br>4.10<br>1.80<br>5.40<br>4.40     | 227777 | 20.50<br>16.50<br>16.20<br>15.20 | )12101<br>10718<br>)12101<br>)12101<br>)12101                                        | 1146<br>45<br>329<br>153<br>108   | 7557<br>988<br>3388<br>2189<br>2391 | 1.36<br>1.66<br>2.67<br>2.93<br>1.74      | 113                            | .03         | S 2 2 8 2 8 8 2 8 8 2 8 8 8 8 8 8 8 8 8 | 5.58<br>4.01<br>6.31<br>5.25<br>3.61  | .21<br>.24<br>.25<br>.21 | 25 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2       | 3.13 94.36 8<br>2.10 89.61 9<br>3.96 87.96 9<br>2.15 86.89 9 | 4.36<br>7.96<br>7.96<br>7.96<br>1.47 | 80.63<br>99.07<br>91.10<br>99.97<br>96.84                                    |                |
| inlet gas condition<br>in-bed condition | ODO    | in-bed condition                 | AT.                                                                                  | TAFR = theoretical                | cal                                 | air flow                                  | ow rate                        |             | EA = excess                             | xcess                                 | Bir                      | n,d,≈ no                                      | n.d.= not determined                                         | per .                                |                                                                              |                |

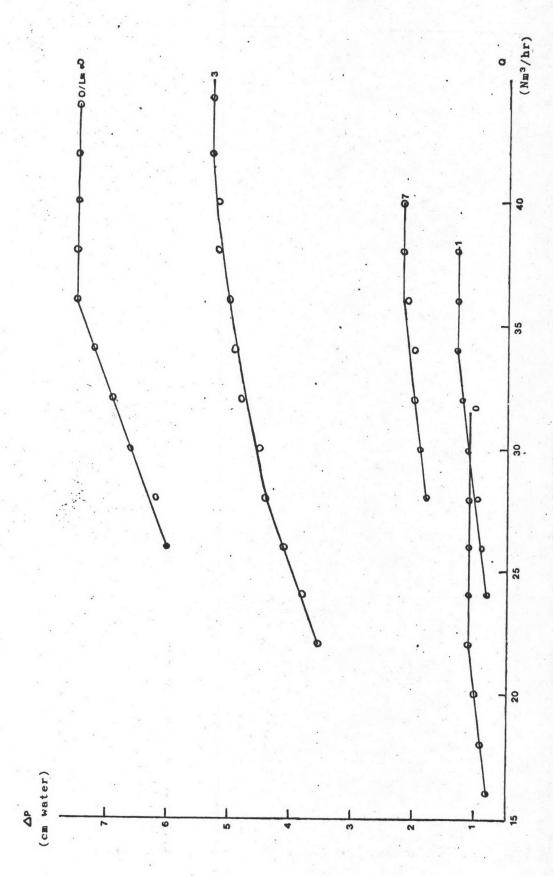



Figure 6.1 Bed Pressure Drop Versus Volumetric Flow
Rate Plots for Various Oil Shale to Lignite
Weight Ratios

damper problem encountered in running the combustor was caused by moisture both from fuel feeds and combustion reaction. A portion of moisture was condensed in the cyclones, this moisture entrapped fly ash and, then, adhered to the cylinder wall. This made elutriation-rate measurement inaccurate or, in some cases, impossible. Nevertheless, the graph of cyclones efficiency is provided in Appendix E herewith. Accordingly, the elutriation rates compiled in Table 6.1 and 6.2 were calculated from sulfur balances for which an example of calculation is provided in Appendix D. Furthermore, in experiments using lignite dominated fuel mixtures the moisture problem became more serious. This was so because at least a part of moisture evolved from vaporization and combustion went through the gravity drop pipe of the screw feeder and condensed mostly at the upper end connected to the screw housing. condensed water caused the fuel fines, produced by the mechanical movement in the screw feeder, adjacent to that area become a thick slurry, and clogged the fuel passage eventually. Thus, this mentioned part was removed for cleaning before hand and the experiments had been completed before the blockage would occur.

Referring again to Tables 6.1 and 6.2, the theoretical air flow rate calculations can be readily performed using stoichiometric air data represented in Table 5.1, fuel mixing ratios and fuel feed rates. The excess air defined as the quantity of air used beyond the theoretical air and air to fuel mass ratio are also compiled in these Tables. The "slag formed" term, as noted in these Tables, indicates slag formation in the vicinity of the internal bed wall during the start up process, i.e.

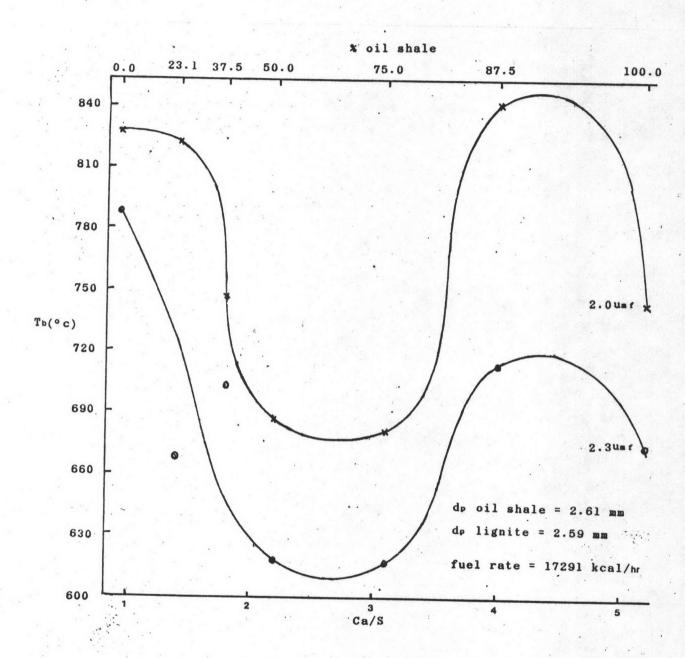



Figure 6.2 The Effect of Percent Oil Shale or Calcium to Sulfur Mole Ratio on Bed Temperature

the introduction of fluidizing air was too slow to blow the ignited particles away from the preheated refractory wall prior to the ash fusion. The fused particles blocked the TIC1 thermocouple (see Figure 5.1) but did not alter the combustion performance.

The bed temperature attained with the combustion of mm oil shale and 2.59 mm lignite mixtures equivalent feed rate of 17,291 kcal/hr, and fluidizing velocities of 2.0 and 2.3 times of the individual minimum fluidizing velocity, were plotted versus calcium to sulfur mole ratio of the fuel mixtures and shown in Figure 6.2. Moving from the right most of the curves, which is the bed temperatures of pure oil shale combustions, to the left it can be noticed that addition of a little fraction of lignite into oil shale feed caused the bed temperature to increase. The higher fraction of lignite (Ca/S below about 4.3) caused the bed temperature to decrease. As the lignite fraction in fuel mixture increased further, the temperature started to increase again (Ca/S below about 2.7). This may be caused by the lower air flow rate used which results in lower heat convection along with the gas. However, the bed temperature variations as O/L changed may be affected by non-uniform fuel properties.

The carbon combustion efficiency ( $n_c$ ) and desulfurization efficiency ( $n_s$ ) are defined as

$$nc = 1 - \underline{carbon\ output}$$
 (6.1)

carbon input

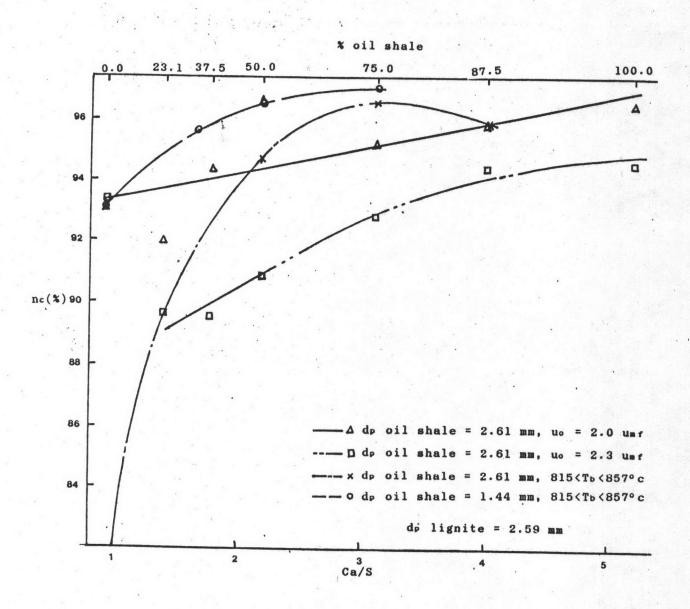



Figure 6.3 The Effect of Percent Oil Shale or Calcium to Sulfur Mole Ratio on Carbon Combustion Efficiency

Results from these calculations were plotted versus Ca/S ratio and shown respectively in Figures 6.3 and 6.4. More-over, carbon monoxide, sulfur dioxide, and nitric oxide emissions in terms of pounds per million Btu are depicted in Figures 6.5, 6.7, and 6.8 respectively.

In Figure 6.3, carbon combustion efficiencies of 2.61 mm oil shale and 2.59 mm lignite mixtures at an equivalent fuel feed of 17,291 kcal/hr, and fluidizing velocities of 2.0 and 2.3 times of the corresponding minimum fluidizing velocity, were plotted versus calcium to sulfur mole ratio of the fuel mixtures. It can be seen that combustion efficiency increases with calcium to sulfur mole ratio or, in other words, with oil shale to lignite weight ratio. For the lignite burned in the bed, coal debris from attrition and ash from combustion are found to strip off after their formation at the coal surface, and elutriated as fly ash resulting in shrinkage in particle size and carbon loss in the fly ash. The oil shale, on the other hand, are observed to retain the same particle size during combustion in the bed, which is an indication for relatively low attrition rate. Accordingly, as calcium to sulfur mole ratio increases with, in turn, the lignite fraction in fuel feed mixture decreasing, carbon loss along with fly ash decreases which causes the combustion efficiency to increase. Furthermore, it was found that carbon combustion efficiency decreases as fluidizing velocity increases. This is because the higher gas velocity causes elutriation rate higher and more heat convection by the fluidizing gas which, in turn, causes the temperature lower and, then, lower combustion rate. phenomena result in more carbon loss in both fly ash and

drained ash.

Also in Figure 6.3, carbon combustion efficiencies of 1.44 mm oil shale and 2.59 mm lignite mixtures and of 2.61 mm oil shale and 2.59 mm lignite mixtures at fuel feed rates for maintaining the bed temperature around 850°c (between 815°c to 857°c in the experiments) and fluidizing of 2.0 times of the minimum velocities of the largest particles in the mixtures, were plotted versus calcium to sulfur mole ratio of the fuel mixtures. It can be noticed that combustion of small-shale mixtures were more complete than of the big-shale mixtures. This is because larger surface area per unit volume of smaller shale results in higher reaction rates which causes the smaller shale to combust to more degree of completion than the bigger one before it comes out the firebox. Another relevant factor is the difference of fluidizing gas velocities. Moreover, the combustion efficiency increases with Ca/S until the ratio of about 3 is reached and, then, it becomes constant or even lower. Accordingly, the optimum calcium to sulfur mole ratio, in case of the bed temperature was kept around 850°c , was about 3, which is equivalent to oil shale to lignite weight ratio of about 3. The obtained carbon combustion efficiencies were compared to those available from prior investigators in Appendix F.

In Figure 6.4, desulfurization efficiencies of 2.61 mm oil shale and 2.59 mm lignite mixtures at an equivalent fuel feed rate of 17,291 kcal/hr, and fluidizing velocities of 2.0 and 2.3 times of the individual minimum fluidizing velocity, were plotted versus calcium to sulfur mole ratio of the fuel mixtures. From reactions<sup>(37)</sup>

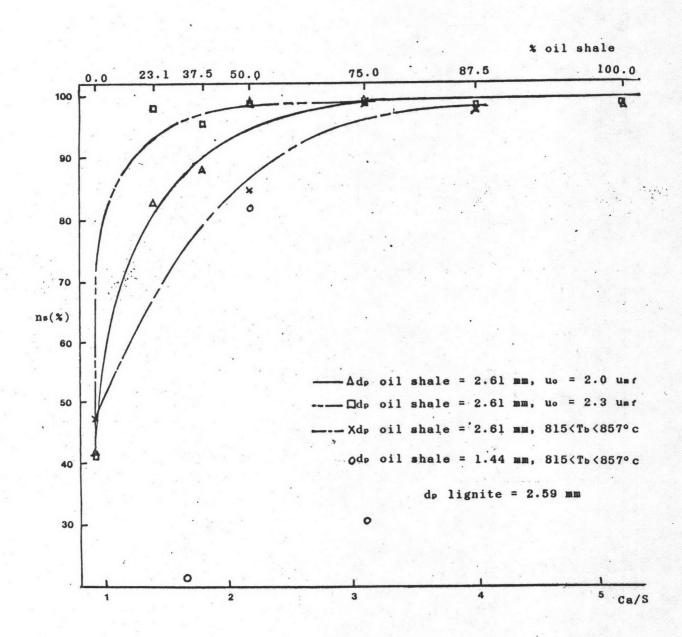



Figure 6.4 The Effect of Percent Oil Shale or Calcium to Sulfur Mole Ratio on Desulfurization Efficiency

CaCO<sub>3</sub> 
$$\rightarrow$$
 770° c CaO + CO<sub>2</sub> (6.3) calcination of calcium carbonate

$$2CaO + 2SO_2 + O_2 \longrightarrow 2CaSO_4$$
 (6.4)  
sulfation of fully calcined calcium carbonate

CaCO<sub>3</sub> + SO<sub>2</sub> + 
$$1/2O_2$$
 -(770°c > CaSO<sub>4</sub> + CO<sub>2</sub> (6.5)  
sulfation of raw calcium carbonate

$$CaSO_4 + CO \rightarrow 1100^{\circ} c \Rightarrow CaO + CO_2 + SO_2$$
 (6.6)  
thermal decrepitation

reaction 6.6 can be ignored because the bed temperatures did not exceed even 900°c. Examining these reactions leads to the fact that desulfurization in an FBC depends on bed calcium content and excess oxygen in the emulsion phase. In Figure 6.4, desulfurization efficiency increases rapidly at the range of low calcium to sulfur mole ratios. This may be explained as follows:

In case of lignite-dominant mixtures burning without other bed materials, the low ash content and high attrition rate of lignite causes large bed voidage, i.e. lean phase fluidization, which results in good solid-gas contact. Subsequently, although the bed calcium content is low, its utilization is quite efficient. This causes desulfurization efficiency to increas quickly as the bed calcium content increased.

After these initial Ca/S values, say beyond 1.0, the bed becomes denser which may cause the gas to form bubbles, the extent of gas by-passing via the bubbles

increases with oil shale fraction in the fuel mixtures. Moreover, sulfur dioxide being generated by the fuel combustion' would has a higher fraction in the bubbles. These are reasons why desulfurization efficiency increases more slowly as the Ca/S increases. Furthermore, while the fluidizing gas is increased at the same Ca/S, thereby increasing the excess oxygen as can be observed in Figure 6.4, the desulfurization efficiency becomes better. phenomenon confirms the above assumptions to some extent. Subsequently, the more excess air is used, the more efficient is the utilization. This statement can be verified by the calcium to sulfur mole ratio which is decreased from about 3.0 for uo=2.0umf curve to about 2.0 for uo=2.3umf curve before these curves levell off. The levelled off section of the curves appear to have the same manner. This may be because of excess calcium and oxygen.

Also in Figure 6.4, desulfurization efficiencies of 1.44 mm oil shale and 2.59 mm lignite mixtures and of 2.61 mm oil shale and 2.59 mm mixtures at fuel feed rates for maintaining the bed temperature around 850°c, and fluidizing velocities of 2.0 times the minimum fluidizing velocities of the largest particles in the mixtures, were plotted versus calcium to sulfur mole ratios of the fuel mixtures. The curve of big-shale mixtures has lower slope at low Ca/S than the former curves in Figure 6.4 and the calcium to sulfur mole ratio where the curve starts to be levelled off is shifted to about 3.5. This is because of higher fuel feed rates needed for raising the bed temperature to the desired level, causing the excess oxygen to decrease as shown in Tables 6.1 and 6.2. For small-shale mixtures, the plots are substantially scattered. This may be caused by



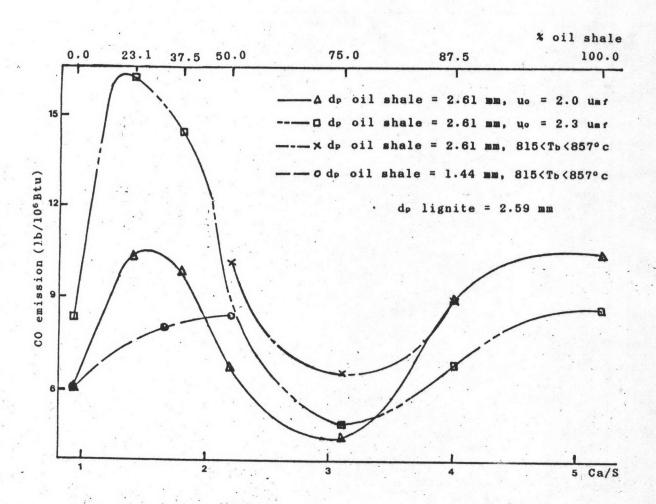



Figure 6.5 Carbon Monoxide Emissions of Various

Experimental Conditions

the smaller bed voidage than in case of combustion with big shale mixtures in which promoting the fluidizing air to bypass easier through the bed in form of bubbles, and different fuel feed rates needed for raising the bed temperature to the desired value, causing variation in the excess oxygen among the tests.

Carbon monoxide emissions as a function of calcium to sulfur mole ratio of various experimental conditions are shown in Figure 6.5. Prior investigators (38) have that at relatively low operating temperature of FBCs there is potential for unacceptably high emission of CO. Rapid increases in emissions from small scale FBCs have been observed when the bed temperature has been reduced, with the reported transition temperature varying in the range of 950 to 1050K (677 to 777°c). The bed temperatures below this range may not be so efficient enough for combustion of carbon monoxide diffusing away from the solid-fuel surface and allows it to join with the main gas stream. Moreover, CO may be produced by elutriated fines burning in the freeboard. CO produced at the surface of fines quickly diffuses away from the particles, it can escape the vicinity of the particle unreacted. Since the freeboard is usually deficient in oxygen and lower in local temperature, the CO oxidation there would be slow(39).

To verify the effect of bed temperature and fly ash on the CO emission, weights of carbon monoxide emitted per million Btu were plotted as a function of elutriated carbon in the same basis at various bed temperatures in Figure 6.6. In this Figure, there seems to be no relationship between carbon monoxide and bed temperature whereas the

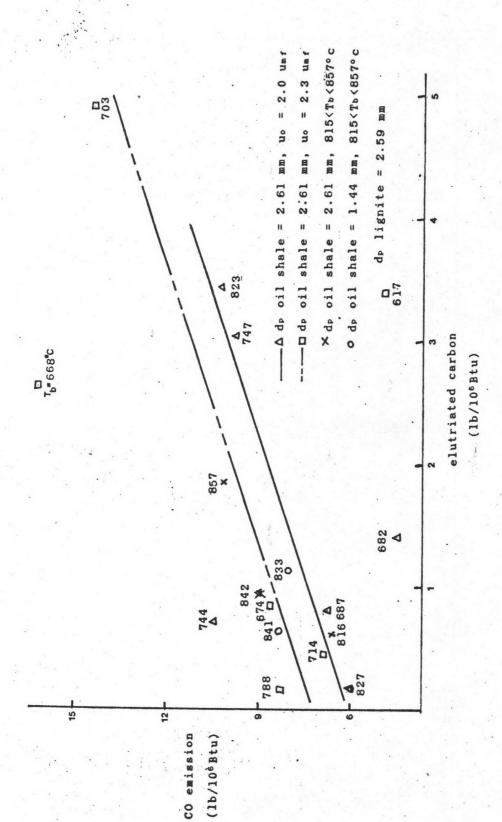
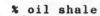




Figure 6.6 Effect of Elutriated Carbon and Bed Temperature on Carbon Monoxide Emission

% oil shale 0.0 23.1 37.5 50.0 87.5 100.0 75.0 3 SO2 emission(lb/106Btu)  $-\Delta d_P$  oil shale = 2.61 mm,  $u_0$  = 2.0  $u_{mf}$ 2 -- Ddp oil shale = 2.61 mm, uo = 2.3 umf ---xdp oil shale = 2.61 mm, 815(Tb(857°c o dp oil shale = 1.44 mm,  $815 < T_b < 857$ ° c 1 dp lignite = 2.59 mm EPA upper standard **EPA** lower standard D Ca/S

Figure 6.7 Sulfur Dioxide Emissions of Various
Experimental Conditions



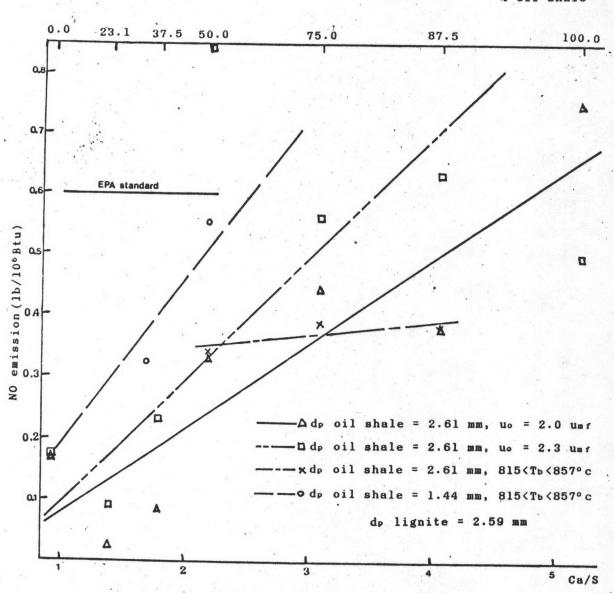



Figure 6.8 Nitric Oxide Emissions of Various

Experimental Conditions

emission has a tendency to increase along with the elutriated carbon, even though the plots are relatively scattered.

The graphs of sulfur dioxide emission versus fuel calcium to sulfur mole ratio of various experimental condition are shown in Figure 6.7. It can be stated that this Figure is the "reverse" of Figure 6.4 and the explanation will be similar to that made for that Figure.

Dealing with nitric oxide, its emissions at various experimental conditions were plotted versus calcium to sulfur mole ratio of fuel feeds as shown in Figure 6.8. It may be noticed that NO emission increases with the Ca/S in every set of experiments although the nitrogen content in oil shale is much lower than that in lignite (see Table 5.1). This circumstance results in an opposition between NO emission and fuel nitrogen content, i.e. higher emission at lower nitrogen content. The following explanation will be made to clear the puzzling event.

The oxides of nitrogen, which are known toxicants, originate from nitrogen compounds in fuels, known as fuelbond nitrogen which is assumed to be ammonia (NH3), and from nitrogen in the air. The bed temperature in an FBC is not high enough to burn the atmospheric nitrogen into nitric oxides. Subsequently, the nitrogen oxides are mostly formed from fuel-bond nitrogen. The mechanics of the formation and destruction of nitrogen oxides inside an FBC, as presently known, are as follows: (14,38,40,41,42)

- Decomposition of nitrogen compounds in fuel into volatile nitrogen compounds such as various amines and ammonia.
- Oxidation of decomposed nitrogen compounds to oxides of nitrogen in a high temperature and oxygen-rich zone near the distributor

$$NH_3 + O_2 \longrightarrow NO \qquad (6.7)$$

 $k_1 = 2.544 * 10^3 T \exp(-15,098/T)$  cm<sup>3</sup>/mole\*s and more NO is formed during the combustion of the residual char.

char nitrogen + 02  $\longrightarrow$  NO (6.8)

Nitric oxide is the candidate of nitrogen oxides in equation 6.7 and 6.8 because it is considered to be the only oxide of nitrogen existing at the operating temperature of the combustor as shown in the reactions:

$$2N_2O -500 -900^{\circ}C \rightarrow 2N_2 + O_2$$
 (6.9)

$$2N_2O_5 \longrightarrow 4NO_2 + O_2$$
 (6.10)

$$N_2O_4 \rightleftharpoons 140° c^2 2NO_2 \rightleftharpoons 620° c^2 2NO + O_2$$
 (6.11)

- "Relaxation" (the return of nitrogen oxides to their equilibrium concentration) and reduction of the oxides of nitrogen back to molecular nitrogen and oxygen under reducing conditions. Relaxation takes place in-bed and/or over-bed. Reduction is effected by the presence of carbon particles and possibly carbon monoxide with sufficient gas residence time.

$$C + NO \longrightarrow 1/2N_2 + CO$$
 (6.12)

$$C + 2NO \longrightarrow N_2 + CO_2$$
 (6.13)

$$C + 2NO \longrightarrow N_2O + CO$$
 (6.14)

$$CO + NO \longrightarrow 1/2N_2 + CO_2$$
 (6.15)

N2 and CO2 were produced in the low temperature region

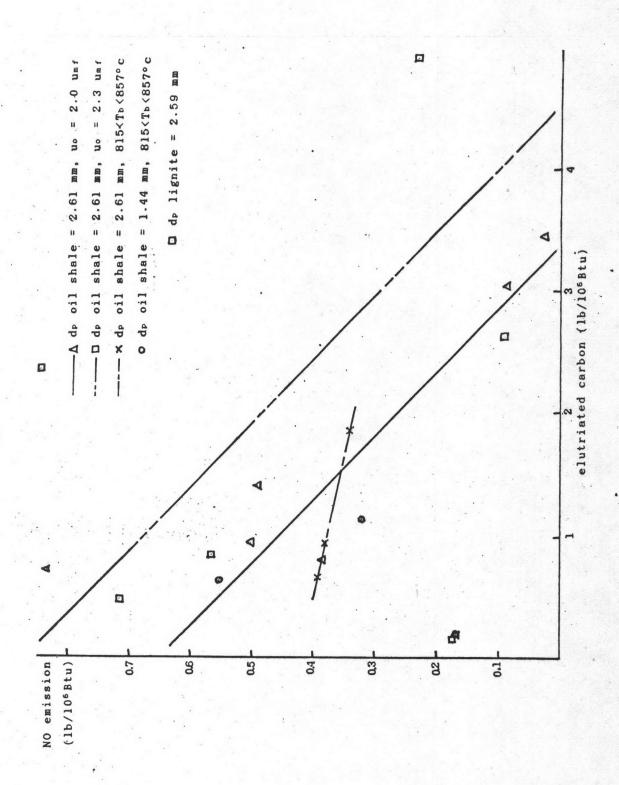



Figure 6.9 Effect of Elutriated Carbon on Nitric Oxide
Emission

(<640°c). Equation 6.15 is extremely slow within this region and hence can be disregarded. Thus, equation 6.13 can be regarded as the main reaction occurring. At 680°c and above, equations 6.12 and 6.13 represent the actual reactions that occurring, from which N2, C0, and CO2 were formed. As the temperature was raised, the amount of CO2 that was formed decreased, while the proportion of CO in the reaction products increased.

Furthermore, the NO formed may react with nitrogen containing volatiles in the fluidized combustion temperature range  $(700-900^{\circ}\text{c})$ , in the presence of oxygen.

$$NH_3 + NO \xrightarrow{k_2} N_2$$
 (6.16)  
 $k_2 = 6.564 * 10^{11} \sqrt{T} \exp(-13.588/T)$  cm<sup>3</sup>/mole\*s

It may be noticed from the above discussion that nitric oxide-carbon reaction has a major role on the reduction of NO emission from the combustor. Accordingly, if carbon concentration in the bed and/or in the freeboard is high nitric oxide emission should be low, as illustrated in Figure 6.9. This is the reason explaining the trends in Figure 6.8.