CHAPTER IV

SELECTED EQUATIONS OF STATE

4.1 Soave-Redlich-Kwong Equation Of State (SRK EOS ).

4.1.1 Characteristics Of SRK.

SRK equation of state is two-parameter cubic equation of state. It can be

expressed in the following general equation:

- VR—Tb B V(Va+ b’ =
Rearranging Equation (4-1) into compressibility factor form then,

Z*-7*+(A-B-B*)Z-AB=0 (4-2)
where

A= (1:'7];2 (4-3)

i (4-4)



4.1.1.1 Mixing Rules.

The equations of state[11] are generally developed for pure fluids first, then
extended to mixtures. The mixtures extension requires so-call mixing rules, which are
simply means of calculating mixture parameters equivalent to those of pure substances.
Except or those of virial coefficients, the mixing rules are more or less arbitrary rules

that are to reflect the composition effect on system properties.

All the pure parameter symbols should have had subscript “i” which was omitted
for simplicity. The subscript “i” will be retained to distinguish the pure fluid parameters

from its mixture counterparts. Then, the mixing rule for 4 and a are

N
b= inbi (4-5)
RT,
b, = 0.08664 = (4-6)

ci

'aziixixj(a,.aj)oj(l—kq.) 4-7)

i

a, =a,a, (4-8)
(RT,)"
a, = 042748—"— (4-9)
Pci
2 =1+m(1- 1) (4-10)

m; =048 +1574w, - 0176w, . (4-11)
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4.1.2 System Represented of SRK.

SRK equation of State is wide spread use of simple equations of state in
hydrocarbon industries. It applies to all nonpolar compounds. And it can predict with a
good degree of accuracy volumetric and thermal properties of pure compounds and of

mixtures.

At reduced temperatures lower than 0.4, all the computed vapor pressure slightly
deviated increasingly when dealing with mixtures containing very light components,
particularly hydrogen. SRK equation fits the experimental curve well, particularly for
the vapor phase. However, for the liquid phase also, the error in computed bubble-

pressure is small.

It is noteworthy that the calculated vapor and liquid curves converge almost
exactly at the experimental critical pressure and composition. This fact was verified in
almost all cases examined, so it can be concluded that the SRK equation is able to
predict the phase behavior of mixtures in the critical zone also. In all the tables, the
OAD’s are defined as

ZI (calculated - experimental) values ‘/(number of data points) and are given in J/g.

An overall comparison for pure, nonpolar fluids and their mixtures in the two-
phase region for the SRK, and PR equations of state is presented in Table 4.1. In this
state, the enthalpy departure is dependent on the temperature, pressure, vapor and

liquid compositions, and also the phase distribution.
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Table 4.1 Overall Comparison in the Two-Phase State[11].

system OAD, Jig

SRK PR

nonpolar:
pure fluids | (47) 87.2 | (47) 98.8
mixtures (706) (609)

29.0 299

The enthalpy departure for the two-phase system is then evaluated from the
independently calculated vapor and liquid phase enthalpy departure and the estimated
phase distribution. Thus, it is clear that the accuracy of the results in this case is
“dependent on the ability of the equation of state to establish the phase equilibria
correctly. This result is extremely important, as it shows that the enthalpy calculations
in the two-phase region are highly dependent on the equation of state’s ability to
predict the phase equilibria and can include considerable uncertainties. More and better
equations of state developments and extensive and detailed evaluations of phase
equilibrium predictions are therefore certainly required to improve the estimation of

thermophysical properties that are required in process design and simulation.

4.2 Peng-Robinson Equation Of State (PR EOS).

4.2.1 Characteristics Of PR.

Soave has a common shortcoming, i.e. it predicts poor liquid densities and

an unrealistic universal, Z_ of 1/3 for all substances. To alleviate this shortcoming, it is



24

u RT a
T V-b VIV +b)+b(V -b)

P (4-12)

Rearranging Equation (4-12) to be compressibility factor form. Then it will give

Z*-(1-B)2* +(A-2B-3B*)Z-(AB-B*-B*) =0 (4-13)

where A, B are same as Equations (4-3) and (4-4) respectively.

4.2.1.1 Mixing Rules.

Peng-Robinson equation of state has different values from Soave-Redlich-Kwong

equation of state as the following:

RT,
b; = 0077796 —* (4-14)
(rT,)’
a, = 0457235 (4-15)
m, = 037646 + 1542260, — 0269920, . (4-16)

While b,a,a, and , are same as Equations (4-5), (4-7), (4-8), and (4-10)

respectively.

4.2.2 System Represented Of PR.
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The development of a new-constant equation of state[8] in which the attfactive
pressure term of the semiempirical van der Waals equation has been modified is
outlined. Examples of the use of the equation for predicting the vapor pressure and
volumetric behavior of single-component systems, and the phase behavior and
volumetric behavior of binary, ternary, and multicomponent systems are given. The
proposed equation combines simplicity and accuracy. It performs as well as or better
than the Soave-Redlich-Kwong equation in all cases tested and shows its greatest

advantages in the prediction of liquid densities.

Although one can not expect a two-constant equation of state to give reliable
predictions for all of the thermodynamic properties, the demand for more accurate
predictions of the volumetric behavior of the coexisting phases in VLE calculations has
been prompted the present investigation into the possibility that a new simple equation
might exist which would give better results than the SRK equation. An equation is
presented which gives improved liquid density values as well as accurate vapor

pressures and equilibrium ratios.

Both the SRK and PR equations are designed with a view to reproduce
accurately the vapor pressures of pure nonpolar substances. Nevertheless PR equation

gives better agreement between calculated vapor pressures and publiched experimental

values.

Generally, saturated liquid density values calculated from the SRK equation are
lower than literature values. This is true except for small molecules like nitrogen and
methane at very low temperatures where the predicted values are slightly higher. PR

equation predicts saturated liquid densities which are higher at low temperatures and
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lower at high temperatures than the experimental values. The fact that PR equation
gives a universal critical comprssibility factor of 0.307 as compared with SRK’s 0.333

has improved the predictions in the critical region.

Both equations yield acceptable values except that in the critical region better
results have been obtained with PR equation. The improvement is more well for small
molecules. Compare with the values calculated from the SRK and PR equation, the
results are presented is fair to say that both equations generate enthalpy values of
about the same reliability. Vapor-liquid equilibrium conditions for a number of
paraffin-paraffin binaries were predicted using PR equation. It was found that the
optimum binary interaction coefficients were negligibly small for components with
moderate differences in molecule size. However, systems involving components
having relatively large differences in molecular size required the use of a nontrivial
interaction coefficient in order to get good agreement between predicted and
experimental bubble point pressures. Although both the SRK and PR equations
generate reliable equilibrium ratios, the PR equation predicts much more accurate

volumetric behavior.

While the PR equation offers the same simplicity as the SRK equation and
although both equations predict vapor densities and enthalpy values with reasonable
accuracy, more accurate liquid density values can be obtained with the PR equation. In
regions where engineering calculations are frequently required the PR equation gives

better agreement between predictions and experimental PVT data.
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Since two-constant equations have their inherent limitations, and the equation
obtained is no exception, the justification for the PR equation is the compromise of its

simplicity and accuracy.

Peng-Robinson equation of state can apply to all nonpolar compounds. The
different values which were shown as above do affect the prediction of molar volumes
in dense region, where PR, though not as accurate as desired, shows a marked

improvement over the SRK equation.

It should be pointed out that, while there is a large improvement in liquid density
predictions, the saturated vapor densities are slightly worse than with the usual Peng-
Robinson parameters. This is a result of the fact that simple cubic equations of state,
such as the Peng-Robinson one, are not of high accuracy;for example, Z. = 0.307 for
this equation. Therefore, by fitting the parameters as we have here, a compromise
between the accuracy of the vapor and liquid predictions results. However, the
increase inerror in the vapor density is far smaller than the large decrease in error of

the liquid density.

What is also impressive is that with the proposed fluid-specific parameters, the
errors in volume predictions for water and methanol are reduced by almost an order of
magnitude, so that the errors for these distinctly non-hydrocarbon fluids, using the
Peng-Robinson equation of state, are of the same order as those for the hydrocarbons.
Also, with the revised parameters, the errors in vapor pressure predictions for the polar
fluids water and methanol are only slightly higher than for the hydrocarbons. Note that

the overall improvement is so great with the parameters proposed here, that the errors
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in the volume and vapor pressure predictions for water and methanol are significantly

smaller than for the hydrocarbons with the original Peng-Robinson parameters.

The use of the Peng-Robinson equation with the proposed fluid-specific,
temperature-dependent parameters results in a marked improvement in the prediction
of volumes in the low-temperature, high-pressure, and saturated liquid regions.
However, in the critical and saturated vapor regions, our proposed parameters result in
almost the same deviations as the original Peng-Robinson parameters. The largest
deviations with the proposed parameters are confined to the near proximity of the

critical temperature, and are an inherent limitation of a cubic equation of state.

4.3 ALS EOS.

4.3.1 Characteristics Of ALS.

This is a new method[3] for the prediction of phase behavior in reservoir fluids
using a four-parameter cubic equation of state. It seems natural to choose a cubic
equation of state as thermodynamic basis for the model to be developed, since cubic
equation of state ‘s are simple and fast models and easy to implement in any reservoir
simulation program. Jensen (1987) found the ALS EOS (Adachi et al.,1983) to be the
most accurate for prediction of the phase behavior of well-defined hydrocarbon
mixtures with and without a considerable content of CO, or N,. The ALS EOS seems
to be well suited for calculation of the phase equilibria of reservoir fluids but often
proves to give inaccurate predictions of the densities of hydrocarbon mixtures

(Aasberg-Petersen, 1989). It was therefore decided to incorporate the volume
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translation principle of Peneloux et al. (1982) into the ALS equation, resulting in the

following new equation of state:

Rearranging Equation (4-17) into compressibility factor form then,
23—@+B+J9—B)Z?JA+B By # B B, -B.B, - )
1772 73 AWB/ gL 2 2737 13

'( 1 ~B,B; -8B, 3)=0

T o TV

The b parameters are calculated as follows:

by=p,-C
b,=8,-C
b,=p,+C.

(4-17)

(4-18)

(4-19)

(4-20)

(4-21)

(4-22)

For each component, the Peneloux-type parameter, C, is determined such that

the equation of state gives the correct value of the liquid density at atmospheric

pressure and at a temperature where the component is a liquid. The C parameters of
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the C,, fractions are determined by matching the equation of state to measure specific

gravity data at 288.15 K and 1 atm.

4.3.1.1 Mixing Rules.

N
b= ) xk, k=123 (4-23)
Q _(RT)’a,
e _% (4-24)
Q,,,RT,
ﬂkj = 'P k — 1)2,3- (4‘25)

The following expressions for calculation of Q, and Q,, were obtained by Adachi

et al. (1983) by fitting to pure component properties along the critical isotherm:
Q, =0.44869 + 0.04024w + 0011110 - 0.00576w> (4-26)

Q,, = 0.08974 - 0.03452w + 0.0033w>. (4-27)

The value of m as function of ~ was obtained by fitting to pure component vapor

pressure:

m=04070+13787w — 0.2933w>. (4-28)

Using the experimentally observed critical point criteria

).~ w2
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Jensen (1987) derived the following expressions for Q, , and Q,,:

Q,, =032(1+0,,) - 30 +(40, -302°) | (4-30)
Q,, =08-2(1+9,,) +30)" +(40, -302)"|. (4-31)
T,P, and , which are necessary input parameters for equation of state

calculations, are not known for the C,, fractions. These parameters are calculated by

using the following functions:

T. =d SG+d,In MW +d, MW +d, | MW (4-32)
InP, =d,+d,SG+d, | MW +d, | MW? (4-33)
=d, +d, MW +d, SG +d,, MW, (4-34)

The functional form of the equations for the calculation of 7, and P, is the same

as those used by Pedersen et al. (1988).

4.3.2 System Represented of ALS.

The ALS equation is shown that P-V-T properties and phase equilibria can be
accurately predicted even in the near-critical region and can predict liquid volumes of
mixtures including those with a considerable content of N,. This model preserves the
good qualities of the model of Pedersen et al. with respect to phase equilibrium

predictions and at the same time improves liquid dropout and liquid density
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calculations. The model should also be able to accurately predict the phase behavior of
fluids with a considerable content of CO, or N,. This is of special importance in the
simulation of miscible or immiscible gas injection processes. The model can calculate

the phase behavior of oil and gas condensate mixtures.

The thermodynamic framework is a four parameter cubic equation of state.The
necessary parameters in the employed C,, -characterization procedure are calculated
with only measured molecular weights and specific gravities. The model has been used
for prediction of a number of different P-V-T properties for a wide variety of reservoir
fluids ranging from light gas condensates and near critical mixtures to heavy oils. The
model is able to predict simultaneously phase compositions and phase densities. This

results in very accurate liquid dropout predictions even in the near critical region.

The new model has also been applied for the prediction of phase behavior for a
number of mixtures with a significant content of CO, or N,. Predicted saturation points
agree well with experimental data, and the new model is able to accurately predict

liquid volumes of mixtures with a considerable content of N;.

The results that have been described up to now are all for mixtures which were-
used in estimating the parameters in Equation (4-32) to (4-34). In order to test the
predictive capacibilities of the model, various properties were calculated for fluids not

inncluded in the parameter estimation.

Accurate predictions of phase equilibria and related properties for oil and gas
condensate mixtures have been the main objective for developing the new model. No

attempt has been made to calculate physical properties of the individual Ci.
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components. The functions for the calculation of 7,,P,, and  (Equations (4-32) to

(4-34)) should therefore not be used for quantitative conclusions regarding the phase

behavior of oil fractions.

Table 4.2 Measured and Predicted Liquid- and Vapor-Phase Compositions of Mixture
7 at T=394 K and P=12.4 MPa"[3].

compone liquid vapor
nt phase phase
Expt SRK ALS Expt SRK ALS
C 0.2885 0.3138 0.3001 0.7771 0.7812 0.7688
C, 0.0570 0.0598 0.0581 0.0737 0.0753 0.0769
G 0.0532 0.0529 0.0523 0.0446 0.0413 0.0433
n-C,4 0.0833 0.0803 0.0804 0.0385 0.0390 0.0419
n-Cs 0.0919 0.0900 0.0912 0.0283 0.0281 0.0308
Cs 0.1087 0.1045 0.1068 0.0211 0.0214 0.0238
Cr 0.3174 0.2987 0.3111 0.0167 0.0138 0.0145

*Total vapor mole fraction: experimental 0.38, SRK 0.344, ALS 0.373.

In Table 4.2, The liquid-phase composition is predicted with greater accuracy by
using the new model,  while the gas-phase composition is predicted slightly better by
using the SRK EOS. Aasberg-Petersen (1989) has made a more thorough comparison
between the two models with experimental data for a number of fluids. It concluded

that the two models are of comparable quality regarding the prediction of phase

compositions.

4.4 TCC Equation Of State.
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4.4.1 Characteristics of TCC EOS.

In summary, the optimum three-parameter cubic equation of state[15] based on

the assumption discussed is proposed as the following:

RT a

Py v ) s <)

(4-35)

Equation (4-35) can be expressed in terms of compressibility factor,

Z*+(3B+C-12*+(A-4B-C-4B*)Z-(A+BC+C)B=0  (4-36)

where
A= Pa/R*T* (4-37)
B = Pb/RT (4-38)
C = P¢/RT. (4-39)

Expression of the critical conditions results in:

C,=1-3z,+B) (4-40)
A, =32 +B,+(1-3Z ) +4B? (4-41)

where B, is the smallest positive real root of the cubic equation:
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B (37 +1)8 +(37° ~ 62 +2)B. =7 =0, (4-42)
The parameters A, B, and C, are all functions of Z_.
4.6.1.1 Mixing Rules.

Equation (4-35) can be extended to the calculation of mixture properties if the

constants a,b, and ¢ are replaced by any usual set of mixing rules, such as the classical

quadratic one:

a=2.2xxa, (4-43)
b= xb (4-44)
=2 x, (4-45)

where x; is the mole fraction of conponent i and a;; is not equal to a,. For a binary

system, the following mixing rule is used for a,,

[ &Y (H.G.x2)]
0.5 X
a, = (alaz) {_[l - %]4_(3513—(;12;21} (4-46)
where
k,—-k
B, = % (4-47)

11699% 244
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Gy, = exp(—ﬂleIZ)' (4-48)

The expression for , which is similar to Equation (4-46), can be obtained by
interchanging subscript 1 and 2. Equation (4-46) has four adjustable parameters, and .
These four parameters all have meanings (Twu et al., 1992)[15] or nonpolar/nonpolar
systems, where deviations from ideality are not large or only weakly asymmetric, two
parameters, and are sufficient to fit binary data. For other polar/polar or
polar/nonpolar systems, where the nonideality is large or strongly asymmetric, it may
be necessary to include the additional parameters, and in Equation (4-46). However,
for polar/polar systems, generally can be set equal to , or polar/nonpolar systems,
which have the greatest deviation from an ideal solution, is usually not equal to .

Equation (4-46) can be simplified, if is zero, to the following,

osl— k k21 Q k12
a, =(a1a2) ' lt[l——u_)—k(T)

2 |
T %5 J (4-49)

Equation (4-49) is not quite the same as that proposed by Panagiotopoulos and Reid

(1986), whose mixing rule is given below,
) :(alaz)oj[(l"klz)‘*'(ku —k2])x1]' (4-50)

Although Equation (4-49) does not appear to be the same as Equation (4-50),
the properties calculated from either equation, using Equation (4-43), are identical for
a binary isotherm. However, the Panagiotopoulos-Reid mixing rule is not readily

generalized to multicomponent solutions.
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Unlike the conventional mixing rule which can be obtained at a temperature by
setting the asymmetric definition of in the new mixing rule[14] provides a powerful
way to fit binary data. It should be noted that a temperature-dependent function is
built into Equation (4-46). As a result, Equation (4-46) gives not only an expression
for the mixing rule as a function of composition but also an estimation of the variation
of the mixing rule with temperature. This is an important practical advantage in

isobaric calculations where the temperature varies as the composition changes.

For a multicomponent system, Equation (4-46) is generalized as:

"|3
25 AP (RS T
a= e X, X, a,.aj) 1—7 A : X ZG,-,-X,- (4-51)

Sropiea)s

where
k,—k,
Hy = (4-52)
G, = exp|-B,H, ). (4-53)

4.4.2 System Represented of TCC.

TCC equation of state can be modified to allow a simultaneous calculation of all
thermodynamic properties for polar and nonpolar systems. To significantly improve
the accuracy of liquid density calculations, adjusting the volume function of a EOS by

the addition of a third parameter. The volume function chosen gives the best fit for
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liquid hydrocarbon densities and also improves the predicted liquid densities for polar
components. The range of application for the TCC EOS is extended to polar/nonpolar

systems by combining an appropriate function and advanced mixing rule.

Two-parameter cubic equation of state are analyzed and a new three-parameter
cubic equation of state is proposed with the critical compressibility factor taken as
substance dependent. An apparent critical compressibility factor is determined by
optimizing the calculation of saturated liquid densities while the equality of fugacities
along the saturation curve is imposed. TCC equation of state, combined with a
previously proposed function and mixing rule, proves to be a powerful equation for
predicting properties of pure components and mixtures. The new equation not only
improves volumetric property calculations relative to either efforts, but also achieves
high degree of accuracy in the calculation of vapor-liquid equilibria for highly nonideal
systems such as polar/nonpolar mixtures. Alcohol/hydrocarbon mixtures are used as

an extreme test of the new equation of state.

The results of predicting vapor pressures and saturated liquid densities from the
new cubic EOS are shown in Table 4.3. The accuracy for the majority of components
is generally within 0.5% for vapor pressure and 1.5% for liquid density for reduced
temperature less than 0.7. Also listed in Table 4.3 are the calculated saturated liquid

densities calculated with RK and PR.
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Table 4.3 Average absolute deviation percents(AAD%) when predicting saturated

vapor pressures (VP) and saturated liquid densities (DENS) from the triple point to

critical temperature using the TCC[15].

TCC

DENS (upto T,)
Component VP DENS (T,<0.7) TCC RK PR
Argon 0.23 0.83 1.83 1439 10.06
Methane 0.08 0.70 204 .64 8$.94
Ethane 0.20 .73 e, | 6.53 7.00
Propane 0.69 2.02 245 8.00 5.8
n-Butane 0.18 1.67 246 9.52 449
n-Pentane 0.32 1.61 2.36 1121 29
n-Hexare 0.15 1.38 2128 12.66 230
n-Heptane 0.14 1.43 236 14.34 341
n-Octane 0.13 1.23 2354 15.99 825
n-Nonane 0.83 1.51 2.80 16.54 5.86
n-Decane 0.16 1.38 262 17.22 6.64
n-Undecane 0.09 1.46 2 18.33 792
n-Dodecane 0.24 1.40 230 19.50 9.32
n-Tridecane 0.10 1.86 3.04 19.08 8.76
n-Tetradecane 0.17 a8 3.33 21.37 11.37
n-Pentadecane 0.18 1.69 3.03 20.63 10.32
n-Hexadecane 0.08 1.72 1.08 230 12.42
n-Heptadecane 0.48 1.36 322 24.89 1333
n-Octadecane 1.22 1.34 2.59 28,57 19.41
n-Nonadecane 0.19 1.65 418 30.78 21.97
Eicosane 1.20 1.91 150 32.87 24.28
Cyclohexane 0.08 0.77 2353 10.22 3.00
Benzene 0.18 0.80 242 11.73 3.95
Acetone 0.15 1.44 333 B2 13.96
Methanol 0.30 1221 5.04 26.92 17.63
Ethanol 0.72 2.07 453 20.08 9.79
Water 0.13 3.63 6.80 28.65 19.50
EG 1.59 1.30 447 YL 7.19
DEG 0.99 1.98 543 2527 15.77
TEG 1.54 1.36 3.46 2169 15.12
Table 4.4 The binary interaction parameters for binaries[15].

AAD%
System” case k2 (K) ks (K) B, 8., P K, K,
BZ(1)/ I 6.964 7.393 0.0 0.0 0.26 058 048
CH(2)
DMK(1)/ 1 -91.72 -33.83 0.0 0.0 235 242 3.70
H20(2) 2 29283 -39.67 5.793 5.793 1.56 112 1.64
ETOH(1) 1 36.86 -1.455 0.0 0.0 441 546 7.14
/NC7(2) 2 37.00 -0.9193 -8.154 -82.74 119 138 215
ETOH(1) 1 41.10 14.69 0.0 0.0 146 396 262
/BZ(2) 2 46.40 17.66 -11.84 -38.75 065 171 0.92
MEOH(1) 1 66.12 -11.95 0.0 0.0 443 3.03 822
/NC7(2) 2 101.7 -7.030 -1.977 -28.66 0.59  0.26 0.66

* BZ is benzene, CH is cyclohexane. DMK is acetone, ETOH is ethanol. NC7 is n-heptane,

and MEOH is methanol
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The effect of the interaction parameter can be visualized in Table 4.4, where the
results of the prediction from the equation of state are shown in two cases for
polar/polar and polar/nonpolar systems: case 1: for nonpolar/nonpolar, and case 2: for

polar/polar or for polar/nonpolar

The accuracy for case 2 is improved significantly over case 1. The results clearly

indicate that the use of additional parameters, for a nonideal system is justified.

110

100

=

°[C

m A . e
0.0 0.2 0.4 0.6 0.8 1.0
Mole Fractions of Methanol

Temperature, C

Figure 4.1. Methanol/n-heptane system; comparison of predicted T-x and T-y curves
(lines) with experimental data (symbols) at 760 mmHg from Budantseva, 1.S., Lesteva,

T.M., and Nemstov, M.S., Zh. Fiz. Khim., 49, 1844 (1975)[15]

The result for these binaries are plotted in Figure 4.1. The system,
methanol/n-heptane, which has the strongest deviations from Raout’s law, is shown in
Figure 4.1 to demonstrate the temperature-dependence of the interaction parameters
given in the mixing rule. The system is at atmospheric pressure. The usual treatment
of the system at isobaric conditions is to set the interaction parameters to be functions

of temperature, Since a temperature-depedent function is automatically built into
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Equation (4-66), no modification of to include additional parameters is needed in the
mixing rule. The result for this strongly asymmetric system is in excellent agreement
with data. The reason for choosing the methanol/n-heptane system for demonstration
is that alcohol/hydrocarbon mixtures are highly non-ideal and can be used as an

extreme test of an equation of state.

4.5 SBC Equation of State.

4.5.1 Characteristics of SBC EOS.

SBC equation of state is a noncubic equation[10] that contains four parameters
which depend on three properties of the fluid-critical temperature, crirical volume, and

“acentric factor. The equation of state can be written as:

RTI Pk, RT aV +k,pc
= I —— . (4-50)
V-kB) (v -k;p) VI +elV—k;B)
The equation of state can be rewritten as a quartic:
frq )V +q Vi +qV +q,=0 (4-51)
where
RT
q; =\ -2k, +e~ 7) (4-52)

9, =_%Z(,B(k0 ~k,)-e)+k, Bk, —2e)}+% (4-53)
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1 fkoﬁ a)l
eLk B’ +—— k —k, J+L J (4-54)
g=-BL (4-55)

A temperature dependence was incorporated into S according to Nezbeda and Aim

(1984):
B = ,Bc{exp[-—0.031251n(Tr) . 0.0054[1n(T,)]2]}3 (4-56)
where [, =0165V, (4-57)

and e is a constant, and @ and c are temperature-dependent. A temperature

dependence was incorporated into @ and ¢ in the following manner:
a=a,a(T) (4-58)

where for 7, <=1

i+ x(1-JT)+ 11T+ 2 0-yT) ] (4-59)

and for 7, > 1

1+ X1 yT) + 50T + 14T | (4-60)

Finally,
c=c&(T) (4-61)
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5(7;)::[14-)(,(1-Vﬁi)]2
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(4-62)

where X,, X, X,, X, X, and X, are constants. The equation of state was extended

to nonspherical fluids with the introduction of the acentric factor,

, as the third

property to characterize the fluid. The parameters a,c and e, and the constants X,

through X, were made functions of the acentric factor. The parameters a_,c, and e

were defined and related to the acentric factor as shown in Equations (4-63) to (4-68).

a,RT,
a, =
Pe
¢,RT,
c, =
Pe
er
e =
Pe

a, RT,
a,=
P
¢RI,
c, =
P
er
e =
Pe

a, =a,(1+a,0+a,0%)

(4-63)

(4-64)

(4-65)

(4-66)

(4-67)

(4-68)

(4-69)

(4-70)
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e, = e,0(1+e,,a)+e,2a)2) (4-71)
¢, =c,(l+c,0+c,0°) (4-72)
where a, and c, are the values of @ and ¢ at the critical temperature. Equations (4-
67) to (4-68) were required to keep the critical compressibility, calculated by the
equation of state, dependent on the nature of the fluid. The constants X , toX, were
made functions of  as:

X=X, +X,0 fori=234567. (4-73)

4.5.2 System Represented of SBC EOS.

SBC equation of state models the forces between molecules correctly, unlike the
cubic equations of state. The equation of state has been generalized for simple and
nonpolar fluids. Only three properties of a fluid need to be specified to reproduce P-V-
T and thermodynamic properties accurately. The identification of the roots obtained
on solving the equation of state is very easy as one of them is always negative. Hence,

the rules used to identify the roots of a cubic equation of state can be used with the

SBC EOS.

A multiproperty nonlinear regression analysis was employed using data from 16
nonpolar fluids to determine all of the constants necessary to specify the equation of
state. Second virial coefficient data, high-temperature residual enthalpy data, and

density data were used for parameter evaluation.
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The performance of SBC EOS is substantially superior to those of the Peng-
Robinson (PR) equation. PR EOS overpredict densities at high pressures and
supercritical temperatures. At subcritical temperatures the SBC EOS performs better,
particularly for liquid density calculations. For argon the PR equation gives too high a
liquid density at lower reduced temperatures. For nonpolar hydrocarbons, as the chain
length of molecule increases from methane to n-octane, the performance of the PR
EOS becomes comparable to that of the SBC EOS for orthobaric liquid densities and

saturated vapor pressures.

- The SBC EOS is more accurate in predicting derived thermodynamic properties
such as specific heat, the Joule-Thomson coefficient and the adiabatic coefficient of
bulk compressibility. In general, the SBC EOS is better and more accurate than or
comparable to the Peng-Robinson EOS in estimating derived thermodynamic

properties.

Table 4.5 presents the absolute average deviation (AAD) for various physical
properties calculated from the SBC EOS, the PR EOS. The AAD summary was
generated using data from all 16 fluids used in the regressions. Table 4.5 shows that
the SBC EOS is remarkably superior to the other two equations. The PR EOS is
slightly better than the SBC EOS with regard to saturated vapor pressure
representation. The SBC EOS, however, gives a much better overall representation

of fluid behavior than either the PR equation.
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Table 4.5 Comparison of Physical and Thermodynamic Properties: AAD Summary
[10].

Property’ SBC PR Data Points
P, 1.52 131 409
O, 2.00 2.20 409
o, 3.46 6.31 581
P, 0.60 1.67 2,763
B, 6.09 46.46 537
H, 4.03 2227 1,204

" P, = saturated vapor pressure; p,, = saturated vapor density; p, = liquid density;
p, = single-phase gas density; B, = second virial coefficient; H, = residual enthalpy,

J/moi.
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