COLOR STABILITY, WATER SORPTION AND WATER SOLUBILITY OF VARIOUS ARTIFICIAL ACRYLIC RESIN TEETH

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Prosthodontics Department of Prosthodontics Faculty of Dentistry Chulalongkorn University Academic Year 2018 Copyright of Chulalongkorn University เสถียรภาพของสี การดูดน้ำ และการละลายน้ำ ของวัสดุฟันเทียมอะคริลิกเรซินชนิดต่างๆ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาทันตกรรมประดิษฐ์ ภาควิชาทันตกรรมประดิษฐ์ คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2561 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	COLOR STABILITY, WATER SORPTION AND WATER		
	Solubility of various artificial acrylic resin		
	TEETH		
Ву	Miss Piyaporn Foungfu		
Field of Study	Prosthodontics		
Thesis Advisor	Natthavoot Koottathape, Ph.D.		

Accepted by the Faculty of Dentistry, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

Dean of the Faculty of Dentistry

(Assistant Professor Suchit Poolthong, Ph.D.)

THESIS COMMITTEE

..... Chairman

(Assistant Professor Viritpon Srimaneepong, Ph.D.)

(Natthavoot Koottathape, Ph.D.)

Examiner (Associate Professor Mansuang Arksornnukit, Ph.D.) External Examiner

(Pisaisit Chaijareenont, Ph.D.)

ปัยพร เพื่องฟู : เสถียรภาพของสี การดูดน้ำ และการละลายน้ำ ของวัสดุฟันเทียม อะคริลิกเรซินชนิดต่างๆ. (COLOR STABILITY, WATER SORPTION AND WATER SOLUBILITY OF VARIOUS ARTIFICIAL ACRYLIC RESIN TEETH) อ.ที่ปรึกษาหลัก : อ. ทพ. ดร.ณัฐวุฒิ คุตตะเทพ

เสถียรภาพสี การดูดน้ำและการละลายน้ำของฟันเทียมชนิดอะคริลิกเรซินเป็น ้ปัจจัยทางกายภาพที่มีผลต่อความสวยงามและคุณสมบัติเชิงกลของฟันเทียม วัตถุประสงค์การวิจัยครั้งนี้ เพื่อเปรียบเทียบเสถียรภาพสี การดูดน้ำ และการละลายน้ำของฟันเทียมชนิดอะคริลิกเรซิน 3 ชนิด ได้แก่ โพลีเมทิลเมทาคริเลตชนิดเส้น (NEW) คอมโพสิทเรซิน (CPX) และโพลีเมทิลเมทาคริเลตชนิดครอสลิงค์ (ANT) และอะคริลิกเรซินส์เหมือนฟันชนิดบุ่มด้วยความร้อน (MAJ) เตรียมชิ้นงานทรงกระบอก (9 มม/ หนา 2 มม/ 80 ชิ้น) สำหรับทดสอบเสถียรภาพสี โดยแบ่งเป็น 2 กลุ่มเพื่อแช่ในน้ำกลั่นและสารละลาย กาแฟ และชิ้นงานทรงกระบอก (9 มม/ หนา 0.5 มม/ 40 ชิ้น) สำหรับทดสอบการดูดน้ำและการละลาย น้ำ เสถียรภาพสีวัดโดยสเปคโตโฟโตเมทรีภายหลังแช่ในวันที่ 1 7 28 56 และ 84 วัน สำหรับการทดสอบ การดูดน้ำและละลายน้ำวัดผลในวันที่ 1 8 36 และ 92 วัน สถิติที่ใช้ในการศึกษาครั้งนี้คือการวิเคราะห์ แปรปรวนแบบซ้ำแบบสองทางที่ระดับความเชื่อมั่น 95% ผลการศึกษาพบว่า MAJ มีการเปลี่ยนแปลงสี มากกว่า NEW CPX และ ANT ตามลำดับ โดยพบความแตกต่างอย่างมีนัยสำคัญตั้งแต่วันที่ 7 ถึง 84 การดูดน้ำพบว่ามีความแตกต่างอย่างมีนัยสำคัญตั้งแต่วันที่ 1 และในวันที่ 36 และ 92 พบว่า MAJ ดูดน้ำมากที่สุดตามด้วย NEW CPX และ ANT ตามลำดับ ส่วนการละลายน้ำพบว่ามีความแตกต่างอย่าง มีนัยสำคัญตั้งแต่วันที่ 1 และในวันที่ 36 และ 92 พบว่า MAJ ดูดน้ำมากที่สุดตามด้วย CPX NEW และ ANT ตามลำดับ ผลการศึกษาครั้งนี้ยืนยันอิทธิพลของชนิดชี่ฟันเทียมอคริลิกเรซินมีผลต่อเสถียรภาพสี การดูดน้ำและการละลายน้ำ นอกจากนี้ยังพบว่ากระบวนการผลิตและชนิดของสารละลายมีผลต่อ เสถียรภาพสีด้วย

สาขาวิชา ทันตกรรมประดิษฐ์ ปีการศึกษา 2561 ลายมือชื่อนิสิต ลายมือชื่อ อ.ที่ปรึกษาหลัก

5975828032 : MAJOR PROSTHODONTICS

KEYWORD: Acrylic resin denture teeth Color stability water sorption water solubility
 Piyaporn Foungfu : COLOR STABILITY, WATER SORPTION AND WATER
 SOLUBILITY OF VARIOUS ARTIFICIAL ACRYLIC RESIN TEETH . Advisor: Natthavoot
 Koottathape, Ph.D.

Color stability, water sorption and water solubility of the acrylic resin artificial teeth are the success keys to the appearance and mechanical properties of the denture teeth. The objective of the present study was to compare the color stability, water sorption and water solubility of 3 commercial artificial teeth: linear PMMA (NEW), resin composite (CPX) and cross-linked PMMA (ANT) and 1 color-liked heat-polymerized acrylic resin (MAJ). 80 colume-shaped specimens (9 mm/ 2 mm thickness) were fabricated for color stability test using a spectrophotometer after immersing in water or coffee solution at 1, 7, 28, 56 and 84 days. 40 colume-shape specimens (9 mm/ 0.5 mm thickness) were fabricated for the water sorption and water solubility tests using the weight measurement method at 1, 8, 36 and 92 days. The repeated 2-way ANOVA was calculated at the confidential level of 95. The results demonstrated the different color change depending on the type of denture teeth (MAJ>NEW>CPX>ANT) from 28 to 84 days, while the color change showed no significant difference at 1 day storage. The water sorption results demonstrated the greatest MAJ, followed by NEW, CPX and ANT respectively at 36 and 92 days, while the water solubility showed the greatest MAJ, followed by CPX, NEW and ANT respectively. This study confirmed the effect of the composition of acrylic resin denture teeth on the color stability, water sorption and water solubility. Moreover, the effect of the fabrication method as well as the type of storage solution was reported.

Field of Study: Prosthodontics Academic Year: 2018 Student's Signature Advisor's Signature

ACKNOWLEDGEMENTS

This research was supported by Faculty of Dentistry Chulalongkorn University

I would like to express my sincere thanks to my advisor, Dr. Natthavoot Koottathape for his invaluable help, encouragement and advise throughout the course of this research. I am lucky to have a supervisor who cared not only the reseach methodology, but also methodology in life. This thesis would not have been completed without all the support that I have always received from him. I am very fortunate to be his student.

Finally, I most gratefully acknowledge my parents and my classmates for their always supports during this research progression.

Piyaporn Foungfu

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

TABLE OF CONTENTS

	Page
ABSTRACT (THAI)	iii
ABSTRACT (ENGLISH)	iv
ACKNOWLEDGEMENTS	V
TABLE OF CONTENTS	vi
LIST OF TABLES	viii
LIST OF FIGURES.	X
CHAPER I INTRODUCTION	1
Background and Rationale	1
Research Objective	3
Research Hypothesis	3
Keywords	4
Research design	4
Proposed benefitsลุ่มสาสากรณ์มหาวิทยาลัย	4
CHAPTER II REVIEW LITERATURE	5
Acrylic resin	5
The acrylic resin in prosthodontics	11
Artificial denture teeth	13
The color stability of the acrylic resins and their factors related	15
The water sorption of the acrylic resins and their factors related	18
The water solubility of the acrylic resins and their factors related	20
CHAPTER III RESEARCH AND METHODOLOGY	22

Part I: Specimen preparation	
Color stability specimen fabrication	22
Water sorption and water solubility specimen fabrication	23
Part II: The physical properties measurements	23
The color stability measurement	23
The water sorption and water solubility measurement	24
CHAPTER IV RESULTS	
CHAPTER V DISCUSSION AND CONCLUSION	
APPENDIX	
REFERENCES	70
VITA	76
UHULALONGKORN UNIVERSITY	

LIST OF TABLES

Page
Table 1 The component, composition and function of acrylic resin materials
Table 2 The summarize of the physical properties of MMA and PMMA comparing the
ISO 20795
Table 3 The summarize of the mechanical properties of PMMA comparing the ISO
20795
Table 4 Acrylic resin classification (5)
Table 5 The mechanical properties summarize of the artificial polymer-based
denture teeth
Table 6 The materials used in the study
Table 7 The L*, a* and b* values (Means (SD)) of the experiment groups before
immersion
Table 8 Repeated two-way ANOVA of Δ E* at day727
Table 9 The Δ E* (mean (SD)) of the experimental groups after immersed in water
and coffee at 1d, 7d, 28d, 56d and 84d
Table $$ 10 The Δ L* (mean (SD)) of the experimental groups after immersed in water
and coffee at 1d, 7d, 28d, 56d and 84d28
Table $$ 11 The Δ a* (mean (SD)) of the experimental groups after immersed in water
andcoffee at 1d, 7d, 28d, 56d and 84d 28
Table $$ 12 The Δ b* (mean (SD)) of the experimental groups after immersed in water
and coffee at 1d, 7d, 28d, 56d and 84d29
Table 13 The water sorption (mean (SD)) of the experimental groups after immersion
1-92d

Table	14 The water	solubility (mean	(SD)) of the	experimental	groups after	
immer	sion 1-92d					30

Chulalongkorn University

LIST OF FIGURES

Page	9
------	---

Figure 1 Type of polymer according to the type of polymer (homopolymers,
copolymers) and molecular structure (linear, branched, and cross-linked)
Figure 2 The MMA and the PMMA: the molecular structure of MMA (a), the molecular
structure of PMMA (b), and the microscope of PMMA beads (c)
Figure 3 The polymerization reaction of methyl methacrylate
Figure 4 Spectrophotometer (UltraScan PRO USP 2086)
Figure 5 The low molecular mass pigments isolated from model systems

CHAPER I

INTRODUCTION

Background and Rationale

Edentulism is described as a condition which people partially or totally loss their tooth/teeth due to dental caries, periodontitis, congenital missing and/or accident. Fixed prosthesis, removable prosthesis as well as the latest technology dental implant are the possible prosthodontic plan for restoring the appearance, phonetic, chewing ability of the edentulous patients. According to the 7^{th} Thai national oral health survey, the 60 – 74-year-old Thai people was reported to be the most population that need both the removable partial denture (15.7%) and the full denture (20.8%), while the over 80-year-old population needed full denture (59.4%). (1). The prevalence study of the northern India population needed the removable denture data showed that the removable partial denture (12.23%) was needed rather than full denture (6.5%) (2). Nevertheless, the satisfaction study of the Dutch elderly population who worn the removable prosthesis reported the 90% of samples accepted daily use of their present prosthesis both the aspect of chewing ability and esthetics (3). Therefore, the removable prosthesis is still an alternative of choice under the reason of the comparative lower cost and acceptable appearance.

The materials which are considered to fabricate the removable prosthesis are acrylic resin, porcelain and metal alloy, especially acrylic resin that is a common used material. For selection of the materials for fabricating a removable prosthesis, the mechanical properties, physical properties including their appearance are the major considerations for predicting their duration of service, the patient satisfaction. The less toxicity, user-friendly and reasonable laboratory cost are also the consideration for materials selected. The polymeric materials are the only materials which can successfully fulfill all purposes. The acrylic resin material was invented since the 1890s, and firstly introduced to the dental field by the early 1930s. The polymethyl methacrylate (PMMA) became famous for fabricating the denture base by 1946 according to their polymerizing method and esthetics (4). The ISO 20795-1: 2013 specified the minimum mechanical properties of the denture polymers that the flexural strength was 60 – 65 MPa, the flexural modulus; 1.5 – 2.0 GPa (5). The mechanical properties of the acrylic resin materials used in prosthesis fabrication are under the influence of their molecular structures. The simple molecular acrylic resin structure called "linear structure" present by twice lesser impact strength than the acrylic with copolymer. The polymerization method is also a factor affecting on the impact strength (6). Moreover, the acrylic resins with different type of cross-linking polymer chain and their different concentration were reported to effect on the mechanical properties (7). The acrylic with higher molecular weight showed the greatest impact strength, while the molecular weight showed no correlation with the deflection, the tensile strength and flexural modulus, but their own cross-linking agent concentration.

Apart from the mechanical properties, the physical properties which predict the appearance are the color stability, water sorption and water solubility. Several studies reported the effect of color change when acrylic resins immersed in a staining solution such as coffee, tea and red wine. That the color of denture base acrylic resins was not significantly changed after immersing in the food colorants for 6 months (8), whereas the denture base acrylic resins were significantly changed after immersing in color beverages (9). The color of the acrylic denture tooth with copolymers or filler was reported to be darker and eye perceptible after wine immersion, whereas the PMMA acrylic denture tooth could not observe color change (10). Regarding water sorption and solubility of the acrylic resin, the type and the concentration of cross-linking polymers added to the PMMA and methyl methacrylate (MMA) solution presented the correlation to these parameters (11, 12), whilst other study reported no significant difference among the up to 60% ethylene glycol dimethacrylate (EGDM) concentration of the cross-linking polymer in PMMA/MMA group comparing to no cross-linking acrylic resin group (13). On the other hand, the acrylic resin with additive fillers showed no significantly different water sorption and water solubility comparing to the acrylic resin without the additive filler (14). The color stability, the water sorption and the water solubility of the PMMA materials are the crucial concerns when the materials are used for fabricating the removable prostheses. should be retain the color over period of time. However, the color stability, the water sorption and the water solubility of the various structure acrylic resins used in dental service are still not clearly elucidated. Therefore, the aim of this study is to evaluate color stability, water sorption and water solubility among several acrylic resins with cross-linking polymers or additive filler comparing to conventional heat-curing PMMA acrylic resin.

Research Objective

The purpose of this present study is to compare the color stability, the water sorption, water solubility of various acrylic resin teeth materials.

Research Hypothesis

H1₀: There would be no significant difference among the color difference (ΔE^*) of various acrylic resin teeth materials immersed in water and coffee.

H1_a: There would be significant difference among the color difference (ΔE^*) of various acrylic resin teeth materials immersed in water and coffee.

H2₀: There would be no significant difference among the water sorption of various acrylic resin teeth materials.

H2_a: There would be significant difference among the water sorption of various acrylic resin teeth materials.

H3₀: There would be no significant difference among the water solubility of various acrylic resin teeth materials.

H3_a: There would be significant difference among the water solubility of various acrylic resin teeth materials.

Keywords

Acrylic resin teeth, Color stability, Water sorption, Water solubility

Research design

Experimental study

Proposed benefits

The proposed benefits of this study are to determine the color change phenomena of the acrylic resins teeth which are presently used for fabricating the removable dentures after a period of service. This *in vitro* study simulates the actual intra-oral environment of the patient. Moreover, the water sorption, water solubility might be a reason of ageing effect of the dentures from daily stainable beverages.

CHAPTER II REVIEW LITERATURE

Acrylic resin

The acrylic resin is classified to be a type of polymer consisting of the repeated same molecules or the repeated same set of molecule orders with/without the additive copolymer or the additive fillers. The smallest molecular unit of the polymer is called "mer or monomer" a small and simple structural molecule which made up of many units to be a larger or complicated molecular structure. The monomer is the molecule that to forms the polymer when the polymerization reaction occurred and processed by polymerization reaction. Another type of polymer would also be combined between the main polymer molecules and more different types of monomer or small sets of polymers called the copolymers or cross-linking polymer (15, 16).

Figure 1 Type of polymer according to the type of polymer (homopolymers, copolymers) and molecular structure (linear, branched, and cross-linked). The open circles represent one type of mer units, and the solid circles represent another type of mer unit. The dashed lines indicate the repeated segment in the same order.

Modified from Powers, J. M.; and Sakaguchi, R. L. Craig's restorative dental materials. 13th ed. Philladelphia: Elsevier Mosby, 2012. Generally, the polymer has different classification according to the chemical composition, molecular weight and distribution or the arrangement of small repeated units as shown in Fig 1. Considering the molecular structure, the polymers can be classified to be linear structure and branched structure. Another classification is considered by the number of additive polymers. The polymeric molecule which consists of the same mer molecule called "homopolymer", the inserted or grafted short polymer to the main polymer molecular chain called "copolymer", and the short polymer which combines the several parts of the main polymer chain together called "cross-linked polymer".

Methyl methacrylate and Polymethyl methacrylate

The MMA was firstly synthesized in the early 1900s, and polymerized to be the larger polymer, PMMA, for producing the denture base in 1930's (17, 18). The large acrylic resin molecule used in Prosthodontic treatment basically is the PMMA (polymer) consisting of the same repeated the MMA (mer). The structure of the MMA and the PMMA are shown in Fig 2.

(a)

Scanning electron micrograph of polymethyl methacrylate beads (c)

Figure 2 The MMA and the PMMA: the molecular structure of MMA (a), the molecular structure of PMMA (b), and the microscope of PMMA beads (c).

(b)

Modified from (1) Anusavice, K. J.; Shen, C., and Rawls, H. R. <u>Phillips' Science of dental</u> <u>materials</u>. 12th ed. St. Louis: Elsevier Saunders, 2013., (2) Powers, J. M.; and Sakaguchi, R. L. <u>Craig's restorative dental materials</u>. 12th ed. Philladelphia: Elsevier Mosby, 2012., (3) O'Brien, W. J. Dental materials and their selection. 4th ed. Chicago: Quintessence, 2008.

The commercial application of the acrylic resin commonly consists of two components, the powder and the liquid (Table 1). The main composition of powder is PMMA with the initiator such as benzoyl peroxide and the color pigments. The main composition of the liquid part is the MMA and probably cross-linking agents depending on the commercial purpose. The activator is added in the liquid part for initiating the redox reaction, while the inhibitor is used for prolong the storage time.

Component	Constituent	Function
Powder		
Polymer	Polymethyl methacrylate beads	Main component of acrylic resin
Initiator	A peroxide such as benzoyl peroxide	Initiate the polymerization of the monomer
		liquid after being added to powder
Pigment	Salt of cadmium or iron or organic	Simulate tissue colors
	dyes	
Liquid		
Monomer	Methyl methacrylate	Main component
Cross-linking agent	Ethylene glycol dimethacrylate	Reduces the solubility and water sorption and
		reduces the tendency of the denture base
	จุฬาลงกรณ์มหาวิทย	crazing
Inhibitor	Hydroquinone	Prevent polymerization of the liquid during
		storage
Activator	N N'- dimethyl-p-toluidine	Speed up the peroxide decomposition and
		enable the polymerization of monomer at room
		temperature

ST 1120

Modified from (1) Rashid, H.; Sheikh Z.; and Vohra F. Allergic effects of the residual monomer used in denture base acrylic resins. <u>European journal of dentistry</u>. 9 (2015): 614 – 619., (2) Powers, J. M.; and Sakaguchi, R. L. <u>Craig's restorative dental materials</u>. 12th ed. Philladelphia: Elsevier Mosby, 2012. The physical and mechanical properties of the PMMA and the MMA indicates in Table 2 and Table 3, respectively. The MMA is a polymeric transparent liquid with the boiling point temperature almost similar to water. The PMMA has greater density than the MMA after polymerization, and can also absorb surrounding water, and dissolve in water. The PMMA is a transparent acrylic resin with the flexural strengths (78 – 92 MPa), the abrasive resistance (0.595 mm in depth), the tensile strength (48 – 62 MPa), the modulus of elasticity (1.1 – 2.4 GPa) and the Knoop hardness number (15-20). The mechanical properties of the presently commercial PMMA products are acceptable according to the ISO 20795-1 for base polymers, but some products showed their flexural modulus less than the standard (5, 15, 16).

Table 2 The summarize of the physical properties of MMA and PMMA comparing theISO 20795

Properties	ММА	РММА	ISO 20795
Molecular weight	100	150,000	
Melting point (°C)	48°C	160	
Boiling point (°C)	100.8	200	
Density (g/mL)	0.945	1.16 - 1.18	
Heat of polymerization (kcal/mol)	12.9	-	
Water sorption (mg/cm ²)	<u>ล</u> งกรณมหาว ิ ท	0.69	$< 32 \ \mu g/mm^3$
Water solubility (mg/cm ²)	Longkorn Un	0.04 PSITV	$< 1.6 \ \mu g/mm^3$

Modified from (1) Anusavice, K. J.; Shen, C., and Rawls, H. R. <u>Phillips' Science of dental</u> <u>materials</u>. 12th ed. St. Louis: Elsevier Saunders, 2013.

Table	3 The summarize of t	he mechanical	properties	of PMMA	comparing	the ISO
20795						

Properties	Anusavice	Craig	ISO 20795
Flexural strength (MPa)	-	78 - 92	65
Flexural modulus (GPa)	-	1.1 – 2.1	2
Abrasive resistance (µm)	-	595	N/A
Tensile strength (Mpa)	60	48 - 62	N/A
Modulus of elasticity (Gpa)	2.4	1.1 – 2.2	N/A
Knoop hardness number (KHN)	18 - 20	15	N/A

Modified from (1) Anusavice, K. J.; Shen, C., and Rawls, H. R. Phillips' Science of dental materials. 12th ed. St. Louis: Elsevier Saunders, 2013., (2) Powers, J. M.; and Sakaguchi, R. L. Craig's restorative dental materials. 12th ed. Philladelphia: Elsevier Mosby, 2012.

The methacrylate polymerization

The PMMA is synthesized by the polymerization reaction via a redox initiated system, the chain growth and termination as follows (Fig 3) (16-18).

1. Initiation:
$$C_6H_5COO - OOCC_6H_5 \xrightarrow{\text{Heat}} 2(C_6H_5COO^{-}) + CO_2$$
 (1)

Benzoyl peroxide Free radicals (R^{*}) + Carbon dioxide

$$\begin{array}{cccc} CH_{3} & CH_{3} \\ C = CH_{2} & + & R^{*} & & & \\ I & & & \\ COOCH_{3} & & & COOCH_{3} \end{array}$$

$$(2)$$

2. Propagation:

$$\begin{array}{ccc} CH_{3} & CH_{3} & CH_{3} \\ R - CH_{2} - C^{*}_{(n)} + & CH_{2} = C \\ I & COOCH_{3} & COOCH_{3} \end{array} \qquad R - CH_{2} - C - CH_{2} - C^{*}_{(n+1)} \\ COOCH_{3} & COOCH_{3} \end{array} \tag{3}$$

Polymer free radical + Monomer _____ Growing chain

Figure 3 The polymerization reaction of methyl methacrylate Modified from (1) O'Brien, W. J. Dental materials and their selection. 4th ed. Chicago: Quintessence, 2008., (2) Anusavice, K. J.; Shen, C., and Rawls, H. R. Phillips' Science of dental materials. 12th ed. St. Louis: Elsevier Saunders, 2013.

1.1 Initiation: The polymerization reaction of MMA starts from the breakdown of the initiator molecule, for example benzoyl peroxide, to be free radicals (R[•]) and a by product. Subsequently, the free monomer receives the free radical and forms the molecule with an extra electron, called "activated monomer".

1.2 **Propagation**: The activated monomer combines to another free monomer at the site with the double bond carbon, resulting dimer. The reaction propagates rapidly to combine other free monomers become linear oligomer chain and passes the free radical to the combined monomer.

1.3 **Termination**: The end of elongation is inhibited by two possible reactions which are the direct combine between two polymer free radicals (Fig 3/4.1) or the exchange of hydrogen atom from one polymer free radical to another (Fig 3/4.2) (16, 18).

The acrylic resin in prosthodontics

Prior to 1900s, the natural materials, for example horns and hoof from animals or resin from insects or natural rubber, were used in prosthesis fabrication (4, 14). The invention of synthetic thermoplastic polymer in 1930's was the change point of dental treatment. The acrylic resin became widely used for fabricating the dentures due to its durability to the masticatory force and acceptable appearance. The acrylic resin presently used in prosthodontic treatment could be classified following the ISO 20795 as shown in Table 4.

Туре	Class	Polymer
1	1	Heat-cured polymerizable materials (powder and liquid)
	2	Heat-cured polymerizable materials (plastic cake form)
2	1 ຈຸນ	Self-cured polymerizable materials (powder and liquid)
	² Chul	Self-cured polymerizable materials (powder and liquid for pour-type resins)
3	-	Thermoplastic polymerizable materials (blank of powder)
4	-	Light-cured polymerizable materials
5	-	Microwave-cured polymerizable materials

Table 4 Acrylic resin classification (5)

1. Heat-cured polymerizable materials (4, 15, 16, 20)

The heat- polymerizable materials consist of powder and liquid separately. The powder part composes of polymethyl methacrylate beads with Benzoyl peroxide (Initiator), Dibutyl phthalate (plasticizer), pigments and opacifiers, while the liquid part composes of methyl methacrylate monomer with hydroquinone (inhibitor), glycol dimethacrylate (cross-linking agent) and plasticizers. During the manipulation of powder part and liquid part following the manufacturer recommendation, the MMA is converted to PMMA structure via the additional polymerization with no by-product occurs (Fig 3).

2. Chemically-cured polymerizable materials (4, 15, 16, 20)

In 1947, the chemical activators were invented and added in to the denture base materials for activating polymerization without heat. The new invented materials were also referred to the terms of cold-curing, self-curing or autopolymerizing resins. The chemical activator, which is consisted of tertiary amine such as dimethyl-para-toluidine and benzoyl peroxide, would produce free radicals to initiate polymerization reaction at room temperature.

3. Thermoplastic polymerizable materials (19, 20)

The thermoplastic polymerizable materials, also called the injection-mold activated acrylic resin was first introduced in 1970. This system need more sophisticate machines for mixing methyl methacrylate liquid and powder, and for injecting the mixing material to the molds under continuous heat to the melting point temperature and pressure. The advantages of this material are good dimensional accuracy (19) and greater impact strength (21) comparing the heat-cured acrylic resin. However, the high cost of more sophisticated machines and special flasks are required.

4. Light-cured polymerizable materials (15, 17, 19)

These materials are mainly composed the PMMA derivative material, urethane dimethacrylate, microfine silica, and high molecular weight acrylic resin monomers, and light activator, camphorquinone as an initiator. Visible light activates the resin sheet after forming the denture base with a 3% polymerization shrinkage comparing to the conventional polymerization (7%).

5. Microwave-cured polymerizable materials

The microwave-cured polymerizable materials are polymerized by the 400watt-microwave activation for 2.5 minutes (20). Even though the materials need quite short time processing procedure comparing to the heat-cured polymerizable materials, no significant differences of the physical and mechanical properties including the density, transverse bending strength, Knoop hardness and transverse repair strength between the materials were reported (22).

Artificial denture teeth

Artificial denture teeth are designed and manufactured for replacing the natural teeth both the masticatory function and the esthetics. The materials which are considered to be fabricated the artificial denture teeth should withstand to the masticatory force in terms of their mechanical properties including wear resistance, hardness, elastic modulus. The studies of the wear resistance and the hardness reported that the correlation between the composition of the artificial denture teeth and two physical properties were significantly reported (23, 24). The elastic modulus (24) and the surface roughness (25) among the different compositions of the artificial denture teeth were significant differences. Nevertheless, the composition of the artificial denture teeth was also reported the relation to the color stability after immersing in the different color beverages (25) and several denture cleansing agents. (26).

Regarding the ISO 22112:2017 for artificial teeth for dental prostheses, the artificial denture teeth are classified, seem to be considered the position or function of the artificial teeth, to be two types: type 1; anterior teeth, type 2; posterior teeth (27). The standard separately gives more information between the polymer tooth and the porcelain tooth. The standard considerations of the porcelain denture teeth are the radioactivity, anchorage and resistance to thermal shock; whereas, the polymer denture teeth consider to the aspects of the bonding between the artificial teeth

and the denture base polymer, the resistance to blanching, distortion, crazing, color stability and dimensional stability. The mechanical properties of the artificial denture teeth are summarized as shown in Table 5.

Table 5 The mechanical properties summarize of the artificial polymer-based denture teeth

Mechanical properties	Craig (16)	Suwannaroop P. et al (23)	Shimoyama K. et al (28)
Compressive strength (MPa)	76	-	43.0
Elastic modulus (GPa)	2.70	5.27 - 9.56	2.76
Elastic limit (MPa)	55	-	-
Hardness	18 - 20	0.37 - 0.63	-
	(Knoop's hardness)	(Nano hardness)	
Wear resistance		$0.040 - 0.693 \text{ mm}^3$	-
Fracture load (kN)			2.2
	1 1 2 2 2		

Several researchers were classified the artificial acrylic resin denture teeth into 3 groups according to their composition and molecular structures (23-26, 28).

1. Commercial linear PMMA

The commercial linear PMMA is the conventional acrylic denture teeth which the manufacturers claim to fabricate from linear polymethyl methacrylate (PMMA). The lowest abrasive resistance (23) but greatest attrition wear resistance comparing to the cross-linked polymer(24) ,the lowest hardness (23, 24), the similar elastic modulus comparing to the cross-linked polymer but not for composite resin denture teeth (24) were reported. The brand and manufactures which are available in Thai, for example, are Major dent (Major Prodotti Dentari, Italy), Yamahashi FX (Yamahashi dental Mfg. Co., Aichi, Japan), Cosmo HXL (Densply International Inc., NJ, Brazil).

2. Cross-linked PMMA

The cross-linked PMMA is produced by the copolymerization between methylmethacrylate (MMA) and dimethacrylate (presumably triethylene glycol dimethacrylate (TEGDMA)) in the presence of finely powdered PMMA for improved mechanical properties of conventional acrylic resins (12). The mechanical properties of the cross-linked PMMA are informed as mention above. The example of the crosslinked PMMA artificial teeth are SR-Antaris (Ivoclar Vivadent, NY, USA), Truebyte Bioform IPN (Dentsply International. Inc., York, PA, USA)

3. Highly cross-link PMMA with colloidal silica

This material consists of the combination of the cross-linked copolymer with the additive colloidal silica fillers and silane as coupling agent. This material group showed the comparatively lowest wear resistance both attrition and abrasion, and greatest hardness (23, 24). The example of the highly cross-link PMMA with colloidal silica are Yamahashi PX (Yamahashi dental Mfg. Co., Aichi, Japan) and SE Orthosit PE (Dentsply International. Inc., York, PA, USA).

Regarding the color stability, one study reported that the color of two denture teeth with the cross-linked polymer groups and the conventional group were difference when immerse in red wine, coffee comparing to the water immersing group (29). The other study reported the lowest color stain of the porcelain denture tooth comparing to the cross-linked polymer denture teeth, and the storage time affected on the color stability (30). However, the water sorption and the water solubility of acrylic resin denture teeth study has no report.

Chulalongkorn University

The color stability of the acrylic resins and their factors related

Color is described as a phenomenon of light or visual perception that enables one to differentiate otherwise identical objects. The difference of color is explained according to the visual response to the light to be three dimension including hue, chroma and value. The "Hue" refers to the basic of color, which is the separatelywavelengths of radiant energy quality of the observer sensation as red, green, blue, etc., but white, gray and black are considered with no hue. The "Chroma" refers to the purity of a color or the intensity of an individual hue, and the "Value" is the relative whiteness or blackness of the color that can be distinguished by an observer (31). The standard color measurement using by many researchers is firstly introduced by the Commission Internationals d'Eclairage (CIE) which presented as color difference equation. (eq 1) The CIE coordinates into three dimensional matrices such that a specified distance between two colors is more nearly proportional to the magnitude of an observed difference between regardless of their hue (31).

$$\Delta E_{ab}^{*}(L^{*}a^{*}b^{*}) = [(\Delta L^{*})^{2} + (\Delta a^{*})^{2} + (\Delta b^{*})^{2}]^{1/2}$$
(eq 1)

where ΔE^* denote as color difference which the magnitude and the character of difference between two colors under specified condition, L* denote as value (blackness to whiteness), a* as the level of red (+a*) to and green (-a*) and b* as the level of yellow (+b*) to blue (-b*). The ΔE^* of 1 can be observed by the half of observers, whereas the ΔE^* value of 3.3 is considerable to be the clinically perceptive level (15). Color stability is considered after a service of period when an acrylic resin denture was delivered to a patient. The dairy beverage and food contain various spectrum colorants which could be absorbed into the surface of the acrylic resin or penetrated deeply, and result the color change of the denture. The color stability of the acrylic resin is a property, regarding the appearance aspect, to retain its color over a period of time, and to be the indication of ageing and damage of the acrylic resin.

The color stability is under the influence of several factors including staining agents (8, 9, 32, 33), immersion time (33), type of acrylic resin (9, 33) and polymerization methods (32-35).

1. **Staining agents**: Several studies have reported that the different types of staining agents result in different color changes such as food colorants (8, 9, 32, 33), The 3% erythrosine colorant show greater color change effect than the tartrazine and sunset yellow, but acceptable in clinic (8). Regarding the daily beverage, a study reported that tea could change the acrylic resin greater than coffee and cola (9), while the organic juice exhibited the greatest color change result comparing to coffee and cola (32). The other reported the difference color change results of the acrylic resin immersing in coffee, cola and red wine groups in each observation time period (33).

However, the coffee is the most famous beverage used in the color change test (36-38).

2. **Immersion time**: The color stability is also under the influence of the immersion time. The greater the immersion time is, the greater the color change (33-35, 37).

3. The composition of acrylic resin: The relationship between the composition of the acrylic resin and the color change have been reported. The cross-linked acrylic resin and the heat-polymerized acrylic resin showed the different color change after immersing in the colorant solution (8, 10), while the composite denture teeth (10), the thermoplastic nylon resin (9) and porcelain denture teeth (30) showed comparatively greater color stability than the heat-polymerized acrylic resin and the cross-linked acrylic resin.

4. Polymerization methods: The present acrylic resins might be polymerized from chemical free radicals, heat, light wave or microwave-length wave. Several studies reported the correlation between the polymerization method and color stability of the acrylic resins. One study reported that the heat-polymerized acrylic resin both normal set and fast set and the microwave-polymerized acrylic resin were reported significant difference (33); whereas, another reported the fast heat-polymerized acrylic resin showed the greatest color change following by the chemical-polymerized acrylic resin and the light-polymerized acrylic resin respectively (34, 35).

Color measurement methods (39)

The color perception of human consists of three main factors including the light source, the object and the observer. This visual perception happens from the reflected 400 – 700 nm of the light from an object passing through and affecting on the rod cells and the cone cells in the eyes.

There are two color measurement or shade specification methods, as follow.

1. Visual method

The visual measurement method bases on "the Munsell color system". Three variables are used to determine the difference between two observed colors. The "value" indicates the lightness from white to black, the "chroma" indicate saturation of color, and the "hue" indicates basic color (red/green/blue). This system relies on human experience to measure color.

2. Spectrophotometric and colorimetric measurement methods

The explanation of the spectrophotometric and colorimetric measurement methods imitates the visual perception of the human eyes which consist of the illumination, the object and the observer sensor. The data of color measurement will be determined following the CIE system as mention above. Comparing to the visual perception of the human eyes, the illumination unit should involve the entire wavelength of day light (380 – 780 nm). The observer sensor should interprete into the tristimulus which contain three-dimensional axis (X, Y, Z), and then the coordinated results will transform to be the three dimension of color according to the CIE L* a* b* system which L* is the lightness and which a* and b* are two different distinct color axes representing the RGB color system. The example of the spectrophotometry measuring the color in quantitative data is Hunter Lab (UltraScan PRO, Hunter Associates Laboratory, Inc., Virginia, USA)

The water sorption of the acrylic resins and their factors related

The water sorption could effect on the dimensional change of the polymer via the reversible and repeatable cycles between expansion and contraction. The expansion of the material is from the water immersion, and the contraction is from drying in the air. The result of the repeatable expansion/contraction cycle is that the warpage effect. (15) The water sorption might represent in term of adsorption which is the water sorption on the material surface, and in term of absorption which the water absorbs into the body of the material. The relation between the water sorption and the mechanical properties such as the surface hardness (40) and the transverse bond strength (41) are reported. The surface hardness and the transverse bond strength of acrylic resins were reduced after a period of water immersion.

According to ISO specification No 20795, the water sorption of the polymer was specified should not be greater than 32 μ g/mm³. The water sorption measurement can be performed by weighting specimen after stored in water solution with an analytic balancer with the accuracy of 0.0001 g. The calculation of the water sorption is used following the eq 2.

 $W_{sp} = (m_2 - m_3)/V$ (eq 2) where m_2 is the constant mass of wet specimens, m_3 the constant mass of reconditioned specimens and V the specimen volume in mm³.

Factors related the water sorption are the type of acrylic resin (11, 12, 42-46), storage solution (44), polymerization temperature, pressure and time (47, 48), the presence of copolymer or additive fillers (11-14).

1. Type of acrylic resin and copolymers

Several studies have reported that the different types of acrylic resin and copolymer showed the different results of the water sorption (11, 12, 42-46). The water sorption data of the different additive copolymers were also significantly different, especially the quantity of absorbed water and the behavior of water sorption. The additive triethylene glycol dimethacrylate (TGDMA) showed the increase of the absorbed water comparing the acrylic resin without TGDMA group (11, 12), while the reduced water sorption results were reported in the acrylic resin with other copolymers, for example 1,4- butanediol dimethacrylate (1,4 BDMA), 1,6-hexanediol dimethacrylate (1,6 HDMA) and trimethylol-propane trimethacrylate (TMPT) (11).

Apart from the additive copolymers, the water sorption also might be under the influence of the polymerizing method, probably in term of the acrylic resin composition (42-46). A previous study reported the greater water sorption of thermoplastic acrylic resin rather than that of the heat-cured acrylic resin (43); whereas, the others reported that the heat-polymerized acrylic resin showed greater water sorption than the thermoplastic acrylic resin (42, 45).

2. Storage solution

One of the routine doctor suggestions after the delivery of the dental acrylic resin appliances is that the storage condition of the appliances during the bed time. The acrylic resin dentures are stored in the oral cavity with the saliva during the day time, and the distill water or the denture cleansing solution at night. The amount of water sorption of acrylic resin were differences when the acrylic resins were stored in the different storage media (44).

3. The storage condition

The relationship between the storage condition, especially temperature, pressure and time and the water sorption of acrylic resin was reported (47). The temperature was presented to be the most importance water absorbed factor comparing the pressure and the time. Furthermore, this relation was still ongoing until 90°C, and then the relation between the storage time and the water sorption was not significant.

ุหาลงกรณมหาวิทยาลัย

The water solubility of the acrylic resins and their factors related

The water solubility is the property of the chemical substance called "Solute" to dissolve in water called "Solvent". According to ISO specification No 20795, the water solubility of the polymer was specified should not be greater than 1.6 μ g/mm³, whereas that of the auto-polymerizing acrylic resin should not be greater than 8.0 μ g/mm³. The water solubility measurement can be performed by weighting specimen before and after stored in water solution with an analytic balancer with the accuracy of 0.2 mg. The calculation of the water sorption is used following the eq 3.

$$W_{sol} = (m_1 - m_3)/V$$

(eq 3)

where m_1 is the constant mass of the specimens, m_3 the constant mass of reconditioned specimens and V the specimen volume in mm^3 .

Several factors affecting the water solubility of the acrylic resins are the type of acrylic resin (11, 12, 42-46), storage solution (44), polymerization temperature, pressure and time (47, 48), the presence of copolymer or additive fillers (11-14).

1. Type of acrylic resin and the additive copolymers

Several studies have reported that the different types of acrylic resin and the additive copolymer resulted the different water solubility (11, 42, 43, 45). The increasing copolymer including ethylene glycol dimethacrylate (EGDMA), 1,4-butanediol dimethacrylate (1,4-BDMA), 1,6-hexaneiol dimethacrylate (1,6-HDMA) and Trimethylol-propane trimethacrylate (TMPT) caused the decrease of the water solubility. (11) In addition the different type of the main acrylic resins also showed the different behavior of their water solubility. Several studies reported that the heat-polymerized acrylic resin were greater the water solubility than the thermoplastic nylon resin. (42, 43, 45)

2. Polymerization method

The polymerization methods including the heat polymerization and chemical polymerization resulted the difference of the water solubility. Several studies reported that the heat-polymerized acrylic rein has lower water solubility than the auto-polymerized acrylic resin (41, 45, 46).

3. Additive fillers

A previous study reported that the additive fillers effect on the water solubility of acrylic resin. The study showed acrylic resins with addition reinforced glass-fiber fillers had the higher water solubility than the acrylic resin without the reinforced fillers (14).

CHAPTER III

RESEARCH AND METHODOLOGY

Part I: Specimen preparation

The materials used in this study are presented in table 6.

Table 6 The materials used in the study

กลุ่มทดลอง	ตัวย่อ	Ĩ	ยี่ห้อ	บริษัทผู้ผลิต	Batch No.
Commercial linear PMMA	NEW	A3	New Ace	Yamahashi Dental MFG.Co., Aichi, Japan	GC0241
Cross-linked PMMA with colloidal silica	СРХ	A3	Crown PX	Yamahashi Dental MFG.Co., Aichi, Japan	DC1049
Cross-linked PMMA	ANT	A3	Anteriores	Ivoclar Vivadent., New York, USA	UR0869
Heat-cured dentine acrylic resin	MAJ	3F	Major C&B	Major Dental., Piemonte, Italy	1102CH

Color stability specimen fabrication

Regarding the specimens for color stability test, TRI group (n = 20) will be prepared by the loss wax technique with the disc-shaped silicones with 9.0±0.1 mm in diameter and 2.0±0.1 mm in thickness in the plaster stone molds. The heatpolymerized acrylic resin will be sieved the nylon threats out before mixing according to the manufacturer recommendation, and then packed into the molds before heat-polymerization under 80°C for 8 hours. All specimens will be consequently polished using the SiC abrasive papers until the #1000 grid and the alumina suspension in water. All specimens is cleaned using an ultrasonic cleanser, and stored in distilled water at 37°C for 24 hours before testing.

Apart to the artificial polymeric teeth groups, the 20 specimens of each group are prepared from the upper maxillary central incisors to be 9.0 ± 0.1 -mm-in diameter and 2.0 ± 0.1 -mm- in thickness cylindrical specimens using a low speed cutting machine (Isomet 1000, Buehler, Lake Bluff, USA). All specimens will be polished using the SiC abrasive papers until the #1000 grid, cleaned with the ultrasonic cleansing machine, and then stored in distilled water at 37° C for 24 hours before testing.

Water sorption and water solubility specimen fabrication

All specimen groups will be prepared in the same manner of the color stability, but not specimen size. The size and shape of the specimens for the water sorption and the water solubility test is the 9.0 ± 0.1 mm in diameter and 2.0 ± 0.1 mm in thickness column.

Part II: The physical properties measurements

The color stability measurement

All specimens in each groups randomly divide into 2 group interventions. One group is immersed in the coffee solution at 37°C, while the other is immersed in the distilled water at 37°C incorporating with an orbital shaker incubator (ES-20 Biosan, Medical-Biological Research & technologies, Liga, Latvia) at $37\pm2^{\circ}$ C and the frequency of 1 Hz. All specimens are placed perpendicular and parallel each other on the acrylic resin racks. The coffee solution is changed every 24 hours. The color difference (Δ E) will be measured with a spectrophotometry (UltraScan PRO, Hunter Associates Laboratory, Inc., Virginia, USA) and automatically calculated by comparing the difference of specimen color before and after immersion in the solution following the eq 1. The results will be record every 1 hour for 24 hours, and then every week for 3 months.

Chulalongkorn University

Figure 4 Spectrophotometer (UltraScan PRO USP 2086)

Water sorption and water solubility specimen fabrication

All specimen groups will be prepared in the same manner of the color stability, but not specimen size. The size and shape of the specimens for the water sorption and the water solubility test is the 9.0±0.1 mm in diameter and 2.0±0.1 mm in thickness column.

Part II: The physical properties measurements

The color stability measurement

All specimens in each groups randomly divide into 2 group interventions. One group is immersed in the coffee solution at 37°C, while the other is immersed in the distilled water at 37°C incorporating with an orbital shaker incubator (ES-20 Biosan, Medical-Biological Research & technologies, Liga, Latvia) at 37±2°C and the frequency of 1 Hz. All specimens are placed perpendicular and parallel each other on the acrylic resin racks. The coffee solution is changed every 24 hours. The color difference (Δ E) will be measured with a spectrophotometry (UltraScan PRO, Hunter Associates Laboratory, Inc., Virginia, USA) and automatically calculated by comparing the difference of specimen color before and after immersion in the solution following the eq 1. The results will be record every 1 hour for 24 hours, and then every week for 3 months.

The water sorption and water solubility measurement

The water sorption specimens will be dried for 24 hours at 37± 2°C in desiccator, removed to a similar desiccator at room temperature for 1 hour, and then weighted with a balancer with a precision of 0.2 mg. This cycle will be repeated until the weight loss of each specimen was not greater than 0.5 mg in any 24-hour period (M1). The specimens will be immersed in the solution at $37\pm2^{\circ}$ C for 7 days. The specimens will be removed from the solution using tweezers, wiped with a clean, dry hand towel until devoid of visible moisture, waved in the air for 15 seconds, and weighted within 1 minute after removed from the solution (M2). After water sorption test, the specimens will be reconditioned in the dessicator for 24 hrs and followed by additional 1 hour in a separate dessicator. The specimens were then removed and weighed. The dehydration cycle was repeated until a constant weight was attained, that was until the weight loss of each disc was not more than 0.5 mg in any of 24 hrs period. The discs were finally weighed and the reading was noted (M3). The water sorption and the water solubility equation are shown in eq 2 and eq3, respectively.

CHAPTER IV RESULTS

The results of this experiment are separately explained into three parts: color stability, water sorption and water solubility. The color of the experimental specimens was recorded before immersed in the solution and shown in Table 7. The selected color of NEW, ANT and CPX groups were A3 following VITA shade guide, and that of MAJ was 3F, comparing to the A3 of the VITA shade guide. The L* values of all specimen groups showed the significant difference; whereas, the a* and b* values showed no significant difference.

Table 7 The L*, a* and b* values (Means (SD)) of the experiment groups before immersion

Group	NEW	MAJ	ANT	СРХ
L*	90.56 (1.37) ^a	81.77 (0.33) ^b	72.02 (1.26) ^c	87.90 (0.77) ^d
a*	1.93 (0.23) ^a	1.88 (0.05) ^a	1.90 (0.17) ^a	2.00 (0.16) ^a
b*	32.72 (0.26) ^a	$30.49(0.79)^{a}$	$29.72(0.79)^{a}$	32.10 (0.46) ^a

The different lower-case letters show the significant difference of L*, a* and b* among the experimental groups in the same row ($\alpha < 0.05$).

VIIULALUNUKUIN VNITLIIJIII

Regarding the repeated two-way analysis of varience (Table 8), the interception between the material and storage solution factors and their individual factors are significantly different in day 7 – 84, not for 1- day storage.

Considering the Δ E values after immersion in water for 1-84 days (Table 9), no significant difference of Δ E was observed in each period. The greatest Δ E was observed in MAJ (1.61±0.11), and the lowest value was observed in NEW (1.44±0.35) and CPX (1.47±0.17) at the period of 84 days. The Δ L and Δ a of all groups in water continuously became lesser, while the Δ b became greater comparing the baseline data. (Table 10 – 12) Apart to the experimental groups stored in coffee solution, the significant color changes (Δ E) among all materials were observed at 7-, 14-, 28-, 56 and 84-days immersion (Table 9). The ANT showed the lowest Δ E and Δ L, while the MAJ showed the greatest Δ E and Δ L in each observed period. Both Δ a and Δ b showed the lowest values in ANT, followed by CPX and NEW. MAJ showed the greatest (Table 9-12).

Source	Type III Sum of	df	Mean Square	F	Sig.
	Squares				
Corrected Model	1309.84 ^a	7	187.12	352.00	< 0.01
Intercept	2022.67	1	2022.66	3804.96	< 0.01
Material	75.65	3	25.22	47.43	< 0.01
Solution	1152.16	1	1152.16	2167.41	< 0.01
Material*Storage solution	82.03	3	27.35	51.44	< 0.01
Error	38.27	72	0.53		
Total	3370.78	80			
Corrected Total	1348.12	79			

Table 8 Repeated two-way ANOVA of Δ E* at day7

Table 9 The Δ E* (mean (SD)) of the experimental groups after immersed in water and coffee at 1d, 7d, 28d, 56d and 84d

G					$\Delta \mathbf{E}^{\star}$ (Mean (SD))						
Group		water ^A						coffee ^B			
	1d	7d	28d	56d	84d	1d	7d	28d	56d	84d	
	0.92 ^a	1.34 ^a	1.22 ^a	1.46 ^a	1.44 ^a	2.19 ^a	9.48 ^a	12.22 ^a	15.60 ^a	16.53 ^a	
NEW	(0.17)	(0.26)	(0.27)	(0.33)	(0.35)	(0.31)	(0.28)	(1.22)	(0.86)	(0.64)	
	0.80 ^a	1.14 ^a	1.20 ^a	1.50 ^a	1.61 ^a	2.13 ^a	10.50 ^b	14.91 ^b	17.44 ^b	18.95 ^b	
MAJ	(0.12)	(0.16)	(0.13)	(0.07)	(0.11)	(0.18)	(0.49)	(0.60)	(0.43)	(0.52)	
	0.83 ^a	1.30 ^a	1.32 ^a	1.52 ^a	1.57 ^a	2.10 ^a	5.45 [°]	9.45 [°]	10.54 ^c	10.73 ^c	
ANI	(0.10)	(0.17)	(0.18)	(0.10)	(0.08)	(0.33)	(0.32)	(0.40)	(0.66)	(0.93)	
CDV	0.98 ^a	1.16 ^a	1.24 ^a	1.31 ^a	1.47 ^a	2.56 ^a	9.86 ^{a,b}	11.31 ^a	13.15 ^d	13.43 ^d	
CPX	(0.14)	(0.17)	(0.28)	(0.36)	(0.17)	(0.12)	(1.92)	(1.78)	(2.27)	(2.12)	

The different upper-case letters show the significant difference of ΔE^* between immerse solution ($\alpha < 0.05$)

The different lower-case letters show the significant difference of ΔE^* among the experimental groups in the same column ($\alpha < 0.05$).

	24	Δ L* (Mean (SD))									
Group		water ^A							coffee ^B		
	1d	7d	28d	56d	84d		1d	7d	28d	56d	84d
NEW	-0.64 ^a	-0.88 ^a	-0.86 ^a	-1.02 ^a	-1.05 ^a		-2.13 ^a	-7.71 ^a	-11.55 ^a	-14.79 ^a	-15.85 ^a
NEW	(0.22)	(0.43)	(0.34)	(0.38)	(0.39)		(0.30)	(0.25)	(0.58)	(0.59)	(0.74)
	- 0.48 ^a	-0.64 ^a	-0.73 ^a	-0.88 ^a	-0.94 ^a		-2.09 ^a	-8.52 ^a	-13.02 ^b	-15.67 ^b	-16.97 ^b
MAJ	(0.05)	(0.15)	(0.14)	(0.11)	(0.14)		(0.23)	(0.44)	(0.59)	(0.39)	(0.78)
ANT	-0.53 ^a	-0.79 ^a	-0.87 ^a	-0.97 ^a	-1.02 ^a		-2.05 ^a	-5.26 ^b	-8.47 ^c	-9.22 ^c	-9.56 [°]
ANI	(0.09)	(0.14)	(0.15)	(0.09)	(0.08)		(0.35)	(0.33)	(0.43)	(0.70)	(0.76)
CDV	- 0.58 ^a	-0.72 ^a	-0.78 ^a	-0.85 ^a	-0.83 ^a		-1.16 ^b	-7.95 ^a	-9.77 ^d	-11.38 ^d	-11.77 ^d
СРХ	(0.16)	(0.20)	(0.22)	(0.28)	(0.14)		(0.77)	(1.92)	(1.78)	(1.72)	(1.64)

Table 10 The Δ L* (mean (SD)) of the experimental groups after immersed in water and coffee at 1d, 7d, 28d, 56d and 84d.

The different upper-case letters show the significant difference of Δ L* between immerse solution (α < 0.05)

The different lower-case letters show the significant difference of ΔL^* among the experimental groups in the same column ($\alpha < 0.05$).

Table 11 The Δ a* (mean (SD)) of the experimental groups after immersed in water andcoffee at 1d, 7d, 28d, 56d and 84d

G	~	Δ a* (Mean (SD))										
Group		water ^A						coffee ^B				
	1d	7d	28d	56d	84d	1 d	7d	28d	56d	84d		
NEW	-0.17 ^a	-0.29 ^a	-0.30 ^a	-0.28 ^a	-0.28 ^a	0.25 ^a	0.32 ^a	0.54 ^a	0.75 ^a	1.06 ^a		
NEW	(0.08)	(0.10)	(0.12)	(0.10)	(0.13)	(0.07)	(0.10)	(0.10)	(0.18)	(0.15)		
	- 0.28 ^a	-0.43 ^a	-0.46 ^a	-0.56 ^a	-0.61 ^a	0.24 ^a	0.64 ^b	0.69 ^b	0.88 ^{a,b}	1.63 ^b		
МАЈ	(0.07)	(0.08)	(0.06)	(0.08)	(0.08)	(0.05)	(0.06)	(0.06)	(0.28)	(0.15)		
ANT	-0.21 ^a	-0.49 ^a	-0.49 ^a	-0.57 ^a	-0.63 ^a	0.24 ^a	0.34 ^a	0.41 ^c	0.57 ^{a,c}	0.59 ^c		
ANI	(0.05)	(0.06)	(0.07)	(0.05)	(0.07)	(0.07)	(0.04)	(0.05)	(0.06)	(0.09)		
CDV	- 0.37 ^a	-0.61 ^a	-0.55 ^a	-0.70 ^a	-0.64 ^a	0.27 ^b	0.36 ^a	0.49 ^{a,c}	0.62 ^a	0.68 ^{c,d}		
UPX	(0.16)	(0.20)	(0.22)	(0.17)	(0.17)	(0.17)	(0.18)	(0.16)	(0.21)	(0.30)		

The different upper-case letters show the significant difference of Δa^* between immerse solution ($\alpha < 0.05$)

The different lower-case letters show the significant difference of Δa^* among the experimental groups in the same column ($\alpha < 0.05$).

	∆b* (Mean (SD))										
Group		water ^A						coffee ^B			
	1d	7d	28d	56d	84d	1d	7d	28d	56d	84d	
	0.47 ^a	0.85 ^a	0.78^{a}	0.93 ^a	0.96 ^a	0.59 ^a	5.05 ^a	5.28 ^a	6.64 ^a	7.72 ^a	
NEW	(0.24)	(0.39)	(0.30)	(0.34)	(0.30)	(0.09)	(0.40)	(0.71)	(0.87)	(0.76)	
	0.56 ^a	0.83 ^a	0.83 ^a	1.08 ^a	1.09 ^a	0.40^{a}	6.09 ^b	7.24 ^b	7.57 ^b	8.22 ^b	
MAJ	(0.14)	(0.14)	(0.13)	(0.07)	(0.07)	(0.05)	(0.53)	(0.45)	(0.72)	(0.65)	
ANT	0.54 ^a	0.90 ^a	0.86 ^a	1.00 ^a	1.07 ^a	0.37 ^a	2.03 ^c	4.14 ^c	5.05 ^c	4.81 ^c	
ANI	(0.10)	(0.19)	(0.14)	(0.14)	(0.11)	(0.04)	(0.30)	(0.61)	(0.48)	(0.79)	
CDV	0.67 ^a	0.60 ^a	0.76 ^a	0.85 ^a	1.05 ^a	0.53 ^a	5.50 ^a	5.76 ^a	5.88 ^a	6.73 ^a	
СРХ	(0.16)	(0.29)	(0.25)	(0.32)	(0.21)	(0.19)	(0.24)	(1.98)	(0.36)	(0.45)	

Table 12 The Δ b* (mean (SD)) of the experimental groups after immersed in water and coffee at 1d, 7d, 28d, 56d and 84d

The different upper-case letters show the significant difference of Δb^* between immerse solution ($\alpha < 0.05$)

The different lower-case letters show the significant difference of Δb^* among the experimental groups in the same column ($\alpha < 0.05$).

Regarding the water sorption of the acrylic resin (Table 13), there was no significant difference among all groups at day 1, except MAJ which showed significantly greater than CPX. Thereafter, MAJ demonstrated the greatest water uptake, followed by NEW, CPX and ANT, subsequently.

 Table 13 The water sorption (mean (SD)) of the experimental groups after immersion

 1-92d.

Group	Chulalongko	HULALONGKOR Water sorption (µg/mm ³)										
	1d	8d	36d	92d								
NEW	9.41(2.13) ^a	20.43(3.99) ^a	27.34(3.65) ^a	24.51(2.88) ^a								
MAJ	10.04(2.03) ^{a,b}	25.14(2.66) ^b	29.85(2.67) ^a	29.22(3.65) ^b								
ANT	7.47(2.33) ^a	11.00(2.22) ^c	16.30(3.79) ^b	15.40(2.32) ^c								
СРХ	7.42(2.17) ^{a,c}	18.22(5.09) ^a	21.35(4.63) ^b	21.05(5.35) ^a								

The water solubility of the groups trended to be different from the water sorption. In day 1, MAJ (0.66 ± 0.23) ANT (0.53 ± 0.21) and CPX (0.49 ± 0.22) showed greater water solubility comparing to NEW (0.25 ± 0.12); whereas, ANT (0.87 ± 0.23)

showed comparatively lowest rather than the others. NEW, MAJ and CPX had no significant difference at day 8. At day 36 and 92, all groups showed significant difference in the same order (ANT < NEW < CPX < MAJ).

Group		Water solubility (µg/mm ³)									
	1d	8d	36d	92d							
NEW	0.25(0.12) ^{a,d}	1.94(0.87) ^a	2.52(0.42) ^a	2.89(0.39) ^a							
MAJ	0.66(0.23) ^{b,c,d}	2.45(0.52) ^a	4.65(0.41) ^b	5.62(0.40) ^b							
ANT	0.53(0.21) ^{b,c,d}	0.87(0.23) ^b	1.63(0.25) ^c	1.53(0.32) ^c							
СРХ	0.49(0.22) ^{a,c,d}	2.77(0.80) ^a	$3.8(0.40)^{d}$	$4.56(0.50)^{d}$							

Table 14 The water solubility (mean (SD)) of the experimental groups after immersion 1-92d.

CHULALONGKORN UNIVERSITY

CHAPTER V DISCUSSION AND CONCLUSION

According to the results of color stability of three acrylic resin teeth (linear PMMA, cross-linked PMMA and composite resin) and one heat-cured acrylic resin (heat-cured dentine color acrylic resin) immersed in coffee solution and water, the null hypothesis of color stability was partially rejected. The specimen surface roughness of all specimen groups were similar (0.11±0.01 µm), observed with a contact profilometry (Talyscan150, Leicester, England). The baseline color of all specimens were observed before the experiment, and found that the hue (a* and b*) of NEW, ANT and CPX with the same VITA shade (A3) including the MAJ which uses the different color system (3F, Major Dent system) were similar, but not for the value (brightness). The difference of L*could be explained in the presence of additive fillers, the difference of resin composition and the fabrication process. That the presence of additive fillers would increase the surface roughness due to the distribution of exposed fillers on the specimen surface and that the difference of resin composition would induce the colour change due to the photochemical process were reported (18). The effect of fabrication and polishing system could be explained in the difference L* between NEW with the heat-pressed method and MAJ with the lost wax method and free hand polishing (49).

The color stability of acrylic denture teeth is under influence of various factors including the beverage, acrylic resin composition, storage time as well as the interaction among the factors. Similar to the other previous studies (10, 29, 50) reported that the significant color change of the resin-based materials after immersed in the different color solutions were observed after 7 days storage. However, one study found the interaction between type of denture tooth (2 porcelain denture teeth, 2 reinfoced acrylic resin denture teeth and 2 acrylic resin denture teeth) and storage solution (filtered coffee, tea, cola and distilled water) since 1 day storage (37). After immersing in the colour solutions, the water with some colloidal colorant

would adsorpt on the acrylic resin surface as extrinsic staining and /or absorpt in the deeper layer of the acrylic resin teeth as intrinsic stain; however, the presence of the porcelain denture teeth which were much less water sorption than acrylic resin denture teeth and the various of storage solutions might be the reasons of the different result, comparing the present study.

Regarding the color stability of the specimens stored in distilled water, the results were similar to the previous studies (30, 37). All color parameters of the experimental groups showed no significant difference in each immersion period. However, all specimen groups consequently became less value, more greenish and more yellowish after the periods of immersion.

Considering the study groups immersed in coffee solution, ΔE^* showed significant difference from day 7. MAJ showed the greatest Δ E*, and that of ANT showed the lowest ΔE^* in each period. The ΔE^* of NEW and CPX demonstrated similar at 7d and 28 d, and then the ΔE^* became significant different at 56 d and 84 d. The explaination of this phenomenon would be under the influence of denture tooth composition and the fabrication method. NEW and MAJ consist of the linear PMMA with different fabrication methods. MAJ was fabricated by the lost wax technique in dental laboratory which the polymerization reaction was complete with much residual monomer, comparing NEW (51). Several studies reported the different result in the denture tooth with cross-linker. Some showed the reduction of color change (29, 37, 51), while only one showed the increase of color change (10). Our present study was supported by the result of ANT that decreased the color change. The higher molecular wieght of ANT exhibited the lower hydrophiliciy rather than NEW and MAJ. The higher degree of conversion and the fewer residual monomer from manufacturing process would also reduce the color change. Interestingly, the ΔE^* of NEW and CPX showed no significant different in the period of 1 to 28 day. The manufaturer claimed that their product exhibited not only high mechanical properties by the additive fillers, but also color change resistance by presence of fluoride containing resin matrix. Moreover, a study (10) reported the similar Δ E*

between the PMMA denture tooth and resin composite denture tooth after immersed in coffee for 7 days.

 Δ L* and Δ a* in coffee solution groups were significant different at day 1 storage, while Δ b* showed significant different at 7 days storage. Under the present of the low molecular mass pigments (Fig 5) in both the hand-brew coffee and the constant coffee turned all specimen groups to be darker, more redness and more yellowish (52). These low molecular structure colorants were isolated and identified to be furans compounds, pyrroles, pyridines, 1,4-quinones derivative in aliphatic structure, and present the color of yellow, deep orange and red. The low molecular weight with polarity of the colorants might adsorpt to the surface of the denture teeth in the different level that depend on the composition of the denture tooth. Δa^* showed significant different since day 1 period, but not for Δb^* could explain by the polarity of the low molecular red and yellow. The red color molecular colorant with polarity could turn to be ionic from that would be easier to penetrate into the acrylic resin surface than the yellow color molecular colorant. That the turbidity of the color pigments which are extract from the coffee, especially constant coffee, is not only make the color of the specimen change, but also greater darkness (ΔL^*). The difference in composition of the acrylic resin denture teeth would allow the penetrattion of the coffee pigments through their surface in the different level as already mention above.

According the color solution used in this study, coffee was selected even many color solutions have been suggested including the beverages such as coffee, tea, red wine and the synthetic color solution such as cola and food-staining color (8). The coffee is the most popular selected in the comparable color stability experiments, and mimic the human beverage consumption behavior. This in vitro study could represent the actual coffee drinker behavior that drinks 3.2 120-ml glasses per day for 6.9 years compairing at 84 day storage (50). The human color diffence perception threshold of 50% population is ΔE^* 3.3 (53) comparing to the 7-day storage in the present study. This present study (ΔE^* = 10.73 – 18.95 at 84 day

storage) was supported by a comparable clinical study (54) that the 1.83 – 11.03 of Δ E* in complete prostheses wearer for 5 years was observed.

จุหาลงกรณ์มหาวิทยาลัย

Water sorption and water solubility of the denture teeth are also observed in this study. The null hypotheses of these physical properities were rejected. The linear PMMA groups (MAJ and NEW) demonstrate the greatest water sorption rather than CPX and ANT with cross-linker polymer. Several studies (11-13) reported that the different cross-linkers could present the different trend of water sorption. Some (11) reported the water sorption reduction when 1,6 HDMA and 1,4 BDMA were added in different amount, while higher water sorption were reported after TEGDMA, DEGDMA added in different amount (11-13). The water sorption result of PMMA with EGDMA were not still illucidiated depend on each studies (11-13). However, ANT claimed to be a PMMA with cross-linker denture tooth by the manufacturer demonstrated the lowest water sorption in this study. The water sorptions of composite resin denture tooth (CPX) showed similar to that of the linear PMMA (NEW), but significantly lower than lost wax technique linear PMMA (MAJ). Therefore, the fabrication method (41, 44, 48) and the remaining residual monomer (46, 55) would affect on the water sorption of acrylic resin denture tooth.

The water solubility of the acrylic resin denture tooth also depends on their composition as well as the fabrication method. At 1 day storage NEW and CPX showed significantly lower water solubility than MAJ and ANT. Thereafter, ANT showed the lowest water solubility through 92 days storage, followed by NEW CPX and MAJ. The presence of cross-linker in ANT could reduce the hydrolysis and degradation of denture tooth (11); whereas, the additive organic fillers in CPX increased water solubility. One study (14) that added the fiber glass in to the acrylic resin also reported the increase of water solubility comparing the control. The explanation of the water solubility of composite resin denture tooth was the type of fillers, the silane treatment. The organic fillers in CPX that its manufacturer claimed to be Bis-GMA and UDMA filler, as well as its resin would be degraded after the attack of water. The solubility of resin composite study (55) reported the leached out of the resin matrix and unbounded substances after periods of water storage. The remaining of higher residual monomer or the lower degree of conversion would be the reason of the greatest water solubility in MAJ (41).

This *in vitro* study focused on the material and color solution that affect on the color stability, water sorption and water solubility. Several factors, for example the storage temperature, pH of the daily food as well as the cleaning methods (26, 51, 56) also affect on the color stability. The correlation between the remaining residual monomer or degree of conversion after polymerization and the color stability, water sorption and water solubility would be considered. Moreover, no research has been reported on the comparative between *in vitro* and *in vivo* color stability and the correlation between the color change and water sorption or water solubility.

Conclusion

Within the limitation of the present study, the color stability, the water sorption and the water solubility were under the influence of the acrylic resin tooth materials after stored in coffee solution.

1. The different compositions of acrylic resin teeth effect on color stability; Heatcured acrylic resin has the greatest color change followed by linear PMMA, composite resin teeth and the least color change was cross-linked PMMA.

2. The different compositions of acrylic resin teeth effect on water sorption; Heatcured acrylic resin has the greatest water sorption followed by linear PMMA, composite resin teeth and the least color change was cross-linked PMMA.

3. The different compositions of acrylic resin teeth effect on water solubility; Heatcured acrylic resin has the greatest water solubility followed by composite resin teeth, linear PMMA and the least was cross-linked PMMA.

APPENDIX

L*,a* and b* before immersion

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
L	7.668	3	76	.000
а	14.132	3	76	.000
b	2.456	3	76	.069

Robust Tests of Equality of Means

		Statistic	df1	df2	Sig.
L	Welch	1858.863	3	39.457	.000
а	Welch	2.222	3	36.776	.102
b	Welch	1.907	3	41.762	.143

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
L	Between Groups	4065.133	3	1355.044	1658.374	.000
	Within Groups	62.099	76	.817		
	Total	4127.232	179 N E	าลย		
а	Between Groups	.102	3	.034	1.306	.279
	Within Groups	1.988	76	.026		
	Total	2.091	79			
b	Between Groups	6.231	3	2.077	1.818	.151
	Within Groups	86.800	76	1.142		
	Total	93.031	79			

				Mean			95% Confider	nce Interval
				Difference			Lower	Upper
Depend	lent Variable			(I-J)	Std. Error	Sig.	Bound	Bound
L*	Games-	Linear	Filler PMMA	2.66050*	.27298	.000	1.9133	3.4077
	Howell	PMMA	Cross-link PMMA	18.54100 [*]	.30639	.000	17.6985	19.3835
			Heat cured dentine	8.79700 [*]	.14740	.000	8.4001	9.1939
		Filler PMMA	Linear PMMA	-2.66050*	.27298	.000	-3.4077	-1.9133
			Cross-link PMMA	15.88050*	.37642	.000	14.8684	16.8926
			Heat cured dentine	6.13650 [*]	.26371	.000	5.4093	6.8637
		Cross-link	Linear PMMA	-18.54100*	.30639	.000	-19.3835	-17.6985
		PMMA	Filler PMMA	-15.88050*	.37642	.000	-16.8926	-14.8684
			Heat cured dentine	-9.74400*	.29816	.000	-10.5694	-8.9186
		Heat cured	Linear PMMA	-8.79700*	.14740	.000	-9.1939	-8.4001
		dentine	Filler PMMA	-6.13650*	.26371	.000	-6.8637	-5.4093
			Cross-link PMMA	9.74400*	.29816	.000	8.9186	10.5694
a*	Games-	Linear	Filler PMMA	06950	.06950	.751	2597	.1207
	Howell	PMMA	Cross-link PMMA	01350	.03457	.979	1073	.0803
		CHUL	Heat cured dentine	.02900	.03082	.783	0565	.1145
		Filler PMMA	Linear PMMA	.06950	.06950	.751	1207	.2597
			Cross-link PMMA	.05600	.06544	.827	1257	.2377
		_	Heat cured dentine	.09850	.06354	.428	0795	.2765
		Cross-link	Linear PMMA	.01350	.03457	.979	0803	.1073
		PMMA	Filler PMMA	05600	.06544	.827	2377	.1257
			Heat cured dentine	.04250	.02006	.172	0123	.0973
		Heat cured	Linear PMMA	02900	.03082	.783	1145	.0565
		dentine	Filler PMMA	09850	.06354	.428	2765	.0795
			Cross-link PMMA	04250	.02006	.172	0973	.0123

Multiple comparisons

b*	Games-	Linear	Filler PMMA	.62050	.36885	.350	3801	1.6211
	Howell	PMMA	Cross-link PMMA	.09300	.28391	.988	6700	.8560
			Heat cured dentine	.57950	.29089	.209	2027	1.3617
		Filler PMMA	Linear PMMA	62050	.36885	.350	-1.6211	.3801
			Cross-link PMMA	52750	.37922	.514	-1.5531	.4981
			Heat cured dentine	04100	.38447	1.00 0	-1.0795	.9975
		Cross-link	Linear PMMA	09300	.28391	.988	8560	.6700
		PMMA	Filler PMMA	.52750	.37922	.514	4981	1.5531
			Heat cured dentine	.48650	.30393	.390	3301	1.3031
		Heat cured	Linear PMMA	57950	.29089	.209	-1.3617	.2027
		dentine	Filler PMMA	.04100	.38447	1.00 0	9975	1.0795
			Cross-link PMMA	48650	.30393	.390	-1.3031	.3301

Color stability : coffee solution

 $\Delta {\rm E}^*$

Test of Homogeneity of Variances

			~	
	Levene Statistic	ง _{df1} ลงกร	df2	ร _{ig} ยาลย
DE1d	.708	³ ALONG	36	.553/ERST
DE7d	10.361	3	36	.000
DE28d	7.110	3	36	.001
DE56d	6.971	3	36	.001
DE84d	6.424	3	36	.001

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
DE1d	Between Groups	.807	3	.269	2.936	.056
	Within Groups	3.296	36	.092		
	Total	4.103	39			
DE7d	Between Groups	157.364	3	52.455	51.099	.000
	Within Groups	36.955	36	1.027		
	Total	194.319	39			

DE28d	Between Groups	155.158	3	51.719	51.235	.000
	Within Groups	36.340	36	1.009		
	Total	191.498	39			
DE56d	Between Groups	269.887	3	89.962	55.080	.000
	Within Groups	58.799	36	1.633		
	Total	328.686	39			
DE84d	Between Groups	385.792	3	128.597	85.161	.000
	Within Groups	54.362	36	1.510		
	Total	440.154	39			

Robust Tests of Equality of Means										
		Statistic ^a	df1	df2	Sig.					
DE1d	Welch	2.386	3	19.166	.101					
DE7d	Welch	367.861	3	18.919	.000					
DE28d	Welch	187.327	3	19.004	.000					
DE56d	Welch	237.737	3	18.576	.000					
DE84d	Welch	192.507	3	18.979	.000					

a. Asymptotically F distributed.

Multiple Comparisons

							95% Con	fidence
				Mean			Interval	
		. d M . 19	1111278910.1.1	Difference	Std.		Lower	Upper
Dependent Variable		CHULAL	ongkorn Un	(I-J)ERSIT	Error	Sig.	Bound	Bound
DE1d	Games-	Linear	FillerPMMA	26600	.14894	.312	6876	.1556
	Howell	PMMA	Cross-linked PMMA	.09200	.14417	.918	3156	.4996
			Heat cured dentine	.06600	.11444	.937	2649	.3969
		FillerPMMA	LinearPMMA	.26600	.14894	.312	1556	.6876
			Cross-linked PMMA	.35800	.15340	.127	0757	.7917
			Heat cured dentine	.33200	.12586	.083	0354	.6994
		Cross-linked	LinearPMMA	09200	.14417	.918	4996	.3156
		PMMA	FillerPMMA	35800	.15340	.127	7917	.0757
			Heat cured dentine	02600	.12018	.996	3752	.3232
		Heat cured	LinearPMMA	06600	.11444	.937	3969	.2649
		dentine	FillerPMMA	33200	.12586	.083	6994	.0354
			Cross-linked PMMA	.02600	.12018	.996	3232	.3752

DE7d	Games-	Linear	FillerPMMA	38300	.61371	.922	-2.2832	1.5172
	Howell	PMMA	Cross-linked PMMA	4.03200*	.13434	.000	3.6516	4.4124
			Heat cured dentine	-1.02600*	.17766	.000	-1.5408	5112
		FillerPMMA	LinearPMMA	.38300	.61371	.922	-1.5172	2.2832
			Cross-linked PMMA	4.41500*	.61567	.000	2.5133	6.3167
			Heat cured dentine	64300	.62655	.739	-2.5546	1.2686
		Cross-linked	LinearPMMA	-4.03200*	.13434	.000	-4.4124	-3.6516
		PMMA	FillerPMMA	-4.41500*	.61567	.000	-6.3167	-2.5133
			Heat cured dentine	-5.05800*	.18431	.000	-5.5870	-4.5290
		Heat cured	LinearPMMA	1.02600*	.17766	.000	.5112	1.5408
		dentine	FillerPMMA	.64300	.62655	.739	-1.2686	2.5546
			Cross-linked PMMA	5.05800*	.18431	.000	4.5290	5.5870
DE28d	Games-	Linear	FillerPMMA	.90700	.59312	.454	8819	2.6959
	Howell	PMMA	Cross-linked PMMA	2.76500*	.22152	.000	2.1313	3.3987
			Heat cured dentine	-2.69900*	.26326	.000	-3.4432	-1.9548
		FillerPMMA	LinearPMMA	90700	.59312	.454	-2.6959	.8819
		1	Cross-linked PMMA	1.85800*	.57834	.040	.0852	3.6308
		/	Heat cured dentine	-3.60600*	.59558	.000	-5.3980	-1.8140
		Cross-linked	LinearPMMA	-2.76500*	.22152	.000	-3.3987	-2.1313
		PMMA	FillerPMMA	-1.85800*	.57834	.040	-3.6308	0852
		1	Heat cured dentine	-5.46400*	.22802	.000	-6.1181	-4.8099
		Heat cured	LinearPMMA	2.69900*	.26326	.000	1.9548	3.4432
		dentine	FillerPMMA	3.60600*	.59558	.000	1.8140	5.3980
			Cross-linked PMMA	5.46400*	.22802	.000	4.8099	6.1181
DE56d	Games-	Linear	FillerPMMA	2.45600*	.76820	.035	.1618	4.7502
	Howell	PMMA	Cross-linked PMMA	5.06300*	.34447	.000	4.0833	6.0427
		จุหาส	Heat cured dentine	-1.84000*	.30558	.000	-2.7341	9459
		FillerPMMA	LinearPMMA	-2.45600*	.76820	.035	-4.7502	1618
			Cross-linked PMMA	2.60700*	.74829	.024	.3386	4.8754
			Heat cured dentine	-4.29600*	.73120	.001	-6.5473	-2.0447
		Cross-linked	LinearPMMA	-5.06300*	.34447	.000	-6.0427	-4.0833
		PMMA	FillerPMMA	-2.60700*	.74829	.024	-4.8754	3386
			Heat cured dentine	-6.90300*	.25138	.000	-7.6247	-6.1813
		Heat cured	LinearPMMA	1.84000*	.30558	.000	.9459	2.7341
		dentine	FillerPMMA	4.29600*	.73120	.001	2.0447	6.5473
			Cross-linked PMMA	6.90300*	.25138	.000	6.1813	7.6247
DE84d	Games-	Linear	FillerPMMA	3.10900*	.69975	.005	.9912	5.2268
	Howell	PMMA	Cross-linked PMMA	5.80100*	.35791	.000	4.7767	6.8253
			Heat cured dentine	-2.41200*	.26162	.000	-3.1543	-1.6697
		FillerPMMA	LinearPMMA	-3.10900*	.69975	.005	-5.2268	9912
			Cross-linked PMMA	2.69200*	.73183	.014	.5288	4.8552
			Heat cured dentine	-5.52100 [*]	.68987	.000	-7.6280	-3.4140

Cross-linked	LinearPMMA	-5.80100 [*]	.35791	.000	-6.8253	-4.7767
PMMA	FillerPMMA	-2.69200*	.73183	.014	-4.8552	5288
	Heat cured dentine	-8.21300*	.33819	.000	-9.1946	-7.2314
Heat cured	LinearPMMA	2.41200*	.26162	.000	1.6697	3.1543
dentine	FillerPMMA	5.52100*	.68987	.000	3.4140	7.6280
	Cross-linked PMMA	8.21300*	.33819	.000	7.2314	9.1946

$\Delta \mathsf{L}^*$

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
DL1d	3.893	3	36	.017
DL7d	6.201	3	36	.002
DL28d	2.527	3	36	.073
DL56d	4.646	3	36	.008
DL84d	3.083	3	36	.039

*. The mean difference is significant at the 0.05 level.

		Sum of Squares	df	Mean Square	F	Sig.
DL1d	Between Groups	6.558	3	2.186	10.116	.000
	Within Groups	7.779	36	.216		
	Total	14.336	39			
DL7d	Between Groups	71.920	3	23.973	15.997	.000
	Within Groups	53.952	36	1.499		
	Total	125.872	39			
DL28d	Between Groups	119.387	3	39.796	63.227	.000
	Within Groups	22.659	36	.629		
	Total	142.045	39			
DL56d	Between Groups	270.563	3	90.188	91.399	.000
	Within Groups	35.523	36	.987		
	Total	306.086	39			
DL84d	Between Groups	360.800	3	120.267	108.523	.000
	Within Groups	39.896	36	1.108		
	Total	400.696	39			

// 🔗

ANOVA

		Statistic ^ª	df1	df2	Sig.
DL1d	Welch	4.446	3	19.226	.016
DL7d	Welch	132.281	3	18.115	.000
DL28d	Welch	136.069	3	19.309	.000
DL56d	Welch	211.782	3	18.740	.000
DL84d	Welch	177.668	3	19.604	.000

Multiple Comparisons

Dependen	t Variable			Mean	Std.	Sig.	95% Confid	ence
				Difference	Error		Interval	
			- a 6 11 12	(I-J)			Lower	Upper
				2			Bound	Bound
DL1d	Games-	Linear	FillerPMMA	97200*	.26256	.014	-1.7550	1890
	Howell	PMMA	Cross-linked PMMA	07600	.14497	.952	4865	.3345
			Heat cured dentine	04100	.12063	.986	3839	.3019
		Filler	LinearPMMA	.97200*	.26256	.014	.1890	1.7550
		PMMA 🥖	Cross-linked PMMA	.89600*	.26810	.025	.1044	1.6876
		J	Heat cured dentine	.93100	.25576	.018	.1570	1.7050
		Cross-	LinearPMMA	.07600	.14497	.952	3345	.4865
		linked	FillerPMMA	89600*	.26810	.025	-1.6876	1044
		PMMA	Heat cured dentine	.03500	.13226	.993	3438	.4138
		Heat 🚫	LinearPMMA	.04100	.12063	.986	3019	.3839
		cured	FillerPMMA	93100*	.25576	.018	-1.7050	1570
		dentine	Cross-linked PMMA	03500	.13226	.993	4138	.3438
DL7d	Games-	Linear	FillerPMMA	.23700	.75460	.989	-1.9421	2.4161
	Howell	PMMA	Cross-linked PMMA	-2.67100*	.65484	.011	-4.6954	6466
		CHUL	Heat cured dentine	.81200	.66157	.625	-1.2181	2.8421
		Filler	LinearPMMA	23700	.75460	.989	-2.4161	1.9421
		PMMA	Cross-linked PMMA	-2.90800*	.40223	.000	-4.1330	-1.6830
			Heat cured dentine	.57500	.41309	.529	6632	1.8132
		Cross-	LinearPMMA	2.67100*	.65484	.011	.6466	4.6954
		linked	FillerPMMA	2.90800*	.40223	.000	1.6830	4.1330
		PMMA	Heat cured dentine	3.48300 [*]	.17333	.000	2.9889	3.9771
		Heat	LinearPMMA	81200	.66157	.625	-2.8421	1.2181
		cured	FillerPMMA	57500	.41309	.529	-1.8132	.6632
		dentine	Cross-linked PMMA	-3.48300*	.17333	.000	-3.9771	-2.9889
DL28d	Games-	Linear	FillerPMMA	-1.78300*	.44484	.008	-3.0962	4698
	Howell	PMMA	Cross-linked PMMA	-3.08200*	.22765	.000	-3.7303	-2.4337
			Heat cured dentine	1.46600*	.26132	.000	.7274	2.2046
		Filler	LinearPMMA	1.78300*	.44484	.008	.4698	3.0962
		PMMA	Cross-linked PMMA	-1.29900*	.42834	.048	-2.5878	0102

			Heat cured dentine	3.24900*	.44715	.000	1.9320	4.5660
		Cross-	LinearPMMA	3.08200*	.22765	.000	2.4337	3.7303
		linked	FillerPMMA	1.29900*	.42834	.048	.0102	2.5878
		PMMA	Heat cured dentine	4.54800*	.23213	.000	3.8859	5.2101
		Heat	LinearPMMA	-1.46600*	.26132	.000	-2.2046	7274
		cured	FillerPMMA	-3.24900*	.44715	.000	-4.5660	-1.9320
		dentine	Cross-linked PMMA	-4.54800*	.23213	.000	-5.2101	-3.8859
DL56d	Games-	Linear	FillerPMMA	-3.40900*	.57443	.000	-5.1357	-1.6823
	Howell	PMMA	Cross-linked PMMA	-5.57400*	.29033	.000	-6.3971	-4.7509
			Heat cured dentine	.88100 [*]	.22281	.006	.2416	1.5204
		Filler	LinearPMMA	3.40900*	.57443	.000	1.6823	5.1357
		PMMA	Cross-linked PMMA	-2.16500*	.58741	.014	-3.9102	4198
			Heat cured dentine	4.29000*	.55714	.000	2.5828	5.9972
		Cross-	LinearPMMA	5.57400*	.29033	.000	4.7509	6.3971
		linked	FillerPMMA	2.16500*	.58741	.014	.4198	3.9102
		PMMA	Heat cured dentine	6.45500*	.25442	.000	5.7155	7.1945
		Heat	LinearPMMA	88100*	.22281	.006	-1.5204	2416
		cured	FillerPMMA	-4.29000*	.55714	.000	-5.9972	-2.5828
		dentine	Cross-linked PMMA	-6.45500*	.25442	.000	-7.1945	-5.7155
DL84d	Games-	Linear	FillerPMMA	-4.08100*	.57036	.000	-5.7641	-2.3979
	Howell	PMMA	Cross-linked PMMA	-6.29200*	.33535	.000	-7.2399	-5.3441
			Heat cured dentine	1.11800*	.33963	.019	.1579	2.0781
		Filler	LinearPMMA	4.08100*	.57036	.000	2.3979	5.7641
		PMMA	Cross-linked PMMA	-2.21100*	.57266	.010	-3.8979	5241
		4	Heat cured dentine	5.19900*	.57517	.000	3.5078	6.8902
		Cross-	LinearPMMA	6.29200 [*]	.33535	.000	5.3441	7.2399
		linked	FillerPMMA	2.21100	.57266	.010	.5241	3.8979
		PMMA	Heat cured dentine	7.41000*	.34348	.000	6.4392	8.3808
		Heat	LinearPMMA	-1.11800*	.33963	.019	-2.0781	1579
		cured	FillerPMMA	-5.19900*	.57517	.000	-6.8902	-3.5078
		dentine	Cross-linked PMMA	-7.41000*	.34348	.000	-8.3808	-6.4392

Δ a*

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
DA1d	5.586	3	36	.003
DA7d	4.639	3	36	.008
DA28d	2.700	3	36	.060
DA56d	6.562	3	36	.001
DA84d	5.302	3	36	.004

		Sum of		Mean		
		Squares	df	Square	F	Sig.
DA1d	Between Groups	.024	3	.008	.808	.498
	Within Groups	.359	36	.010		
	Total	.383	39			
DA7d	Between Groups	.669	3	.223	19.094	.000
	Within Groups	.420	36	.012		
	Total	1.089	39			
DA28d	Between Groups	.403	3	.134	12.824	.000
	Within Groups	.377	36	.010		
	Total	.779	39	-		
DA56d	Between Groups	.569	3	.190	4.633	.008
	Within Groups	1.473	36	.041		
	Total	2.042	39			
DA84d	Between Groups	6.707	3	2.236	60.561	.000
	Within Groups	1.329	36	.037		
	Total	8.036	39			

		Statistic ^ª	df1	df2	Sig.
DA1d	Welch	2.397	3	19.064	.100
DA7d	Welch	59.563	3	18.450	.000
DA28d	Welch	40.801	ร 3 มี ม ท	18.828	.000
DA56d	Welch	5.593	3	17.005	.007
DA84d	Welch	115.577	3	18.575	.000

a. Asymptotically F distributed.

Multiple Comparisons

							95% Confidence	
				Mean			Interval	
				Difference	Std.		Lower	Upper
Dependent Variable			(I-J)	Error	Sig.	Bound	Bound	
DA1d	Games-	LinearPMMA	FillerPMMA	01900	.05745	.987	1889	.1509
	Howell		Cross-linked PMMA	.01200	.03146	.981	0770	.1010
			Heat cured dentine	05300	.02738	.254	1316	.0256
		FillerPMMA	LinearPMMA	.01900	.05745	.987	1509	.1889
			Cross-linked PMMA	.03100	.05688	.946	1380	.2000

			Heat cured dentine	03400	.05472	.923	2002	.1322
		Cross-linked	LinearPMMA	01200	.03146	.981	1010	.0770
		PMMA	FillerPMMA	03100	.05688	.946	2000	.1380
			Heat cured dentine	06500	.02616	.101	1398	.0098
		Heat cured	LinearPMMA	.05300	.02738	.254	0256	.1316
		dentine	FillerPMMA	.03400	.05472	.923	1322	.2002
			Cross-linked PMMA	.06500	.02616	.101	0098	.1398
DA7d	Games-	LinearPMMA	FillerPMMA	04200	.06464	.914	2288	.1448
	Howell		Cross-linked PMMA	02200	.03548	.924	1278	.0838
			Heat cured dentine	31800*	.03771	.000	4277	2083
		FillerPMMA	LinearPMMA	.04200	.06464	.914	1448	.2288
			Cross-linked PMMA	.02000	.05700	.984	1545	.1945
			Heat cured dentine	27600*	.05841	.003	4521	0999
		Cross-linked	LinearPMMA	.02200	.03548	.924	0838	.1278
		PMMA	FillerPMMA	02000	.05700	.984	1945	.1545
			Heat cured dentine	29600*	.02219	.000	3594	2326
		Heat cured	LinearPMMA	.31800*	.03771	.000	.2083	.4277
		dentine	FillerPMMA	.27600*	.05841	.003	.0999	.4521
			Cross-linked PMMA	.29600*	.02219	.000	.2326	.3594
DA28d	Games-	LinearPMMA	FillerPMMA	.05400	.06004	.805	1188	.2268
	Howell		Cross-linked PMMA	.13300 [*]	.03530	.011	.0291	.2369
			Heat cured dentine	14200*	.03722	.008	2496	0344
		FillerPMMA	LinearPMMA	05400	.06004	.805	2268	.1188
		S.	Cross-linked PMMA	.07900	.05292	.475	0814	.2394
		2	Heat cured dentine	19600*	.05423	.017	3581	0339
		Cross-linked	LinearPMMA	13300*	.03530	.011	2369	0291
		PMMA	FillerPMMA	07900	.05292	.475	2394	.0814
		^	Heat cured dentine	27500*	.02411	.000	3435	2065
		Heat cured	LinearPMMA	.14200*	.03722	.008	.0344	.2496
		dentine	FillerPMMA	.19600 [*]	.05423	.017	.0339	.3581
			Cross-linked PMMA	.27500 [*]	.02411	.000	.2065	.3435
DA56d	Games-	LinearPMMA	FillerPMMA	.13000	.08870	.478	1211	.3811
	Howell		Cross-linked PMMA	.17800	.06186	.062	0079	.3639
			Heat cured dentine	12800	.10731	.640	4362	.1802
		FillerPMMA	LinearPMMA	13000	.08870	.478	3811	.1211
			Cross-linked PMMA	.04800	.06965	.899	1628	.2588
			Heat cured dentine	25800	.11198	.137	5771	.0611
		Cross-linked	LinearPMMA	17800	.06186	.062	3639	.0079
		PMMA	FillerPMMA	04800	.06965	.899	2588	.1628
			Heat cured dentine	30600*	.09219	.033	5886	0234
		Heat cured	LinearPMMA	.12800	.10731	.640	1802	.4362
				1		I	1	1

			Cross-linked PMMA	.30600*	.09219	.033	.0234	.5886
DA84d	Games-	LinearPMMA	FillerPMMA	.38500 [*]	.10819	.015	.0701	.6999
	Howell		Cross-linked PMMA	.47100 [*]	.05812	.000	.3015	.6405
			Heat cured dentine	56700*	.07052	.000	7664	3676
		FillerPMMA	LinearPMMA	38500*	.10819	.015	6999	0701
			Cross-linked PMMA	.08600	.09896	.821	2144	.3864
			Heat cured dentine	95200*	.10672	.000	-1.2641	6399
		Cross-linked	LinearPMMA	47100*	.05812	.000	6405	3015
		PMMA	FillerPMMA	08600	.09896	.821	3864	.2144
			Heat cured dentine	-1.03800*	.05533	.000	-1.1986	8774
		Heat cured	LinearPMMA	.56700*	.07052	.000	.3676	.7664
		dentine	FillerPMMA	.95200 [*]	.10672	.000	.6399	1.2641
			Cross-linked PMMA	1.03800*	.05533	.000	.8774	1.1986

$\Delta \mathsf{b}^*$

Test of Homogeneity of Variances

		/// // // \Polink SY	ALL PAT IN THE REAL	
	Levene Statistic	df1	df2	Sig.
DB1d	6.622	3	36	.001
DB7d	29.464	3	36	.000
DB28d	11.047	3	36	.000
DB56d	10.570	3	36	.000
DB84d	12.114	3	36	.000

ANOVA

	A	Sum of Squares	df	Mean Square	F	Sig.
DB1d	Between Groups	.146	_3_\E	.049	4.039	.014
	Within Groups	.434	36	.012		
	Total	.580	39			
DB7d	Between Groups	955.798	3	318.599	229.298	.000
	Within Groups	50.020	36	1.389		
	Total	1005.819	39			
DB28d	Between Groups	1305.294	3	435.098	347.768	.000
	Within Groups	45.040	36	1.251		
	Total	1350.335	39			
DB56d	Between Groups	1487.810	3	495.937	281.152	.000
	Within Groups	63.502	36	1.764		
	Total	1551.312	39			
DB84d	Between Groups	1637.602	3	545.867	285.811	.000
	Within Groups	68.756	36	1.910		
	Total	1706.358	39			

		Statistic ^ª	df1	df2	Sig.
DB1d	Welch	2.117	3	18.477	.133
DB7d	Welch	1034.679	3	18.806	.000
DB28d	Welch	756.886	3	19.023	.000
DB56d	Welch	525.200	3	18.728	.000
DB84d	Welch	666.951	3	19.360	.000

a. Asymptotically F distributed.

Multiple	e Comparison	S	111113	1				
				12			95% Confic	lence
				Mean			Interval	
		-		Difference	Std.		Lower	Upper
Depend	ent Variable	4		(I-J)	Error	Sig.	Bound	Bound
DB1d	Games-	LinearPMMA	FillerPMMA	13500	.06692	.233	3326	.0626
	Howell		Cross-linked PMMA	.01600	.02941	.946	0714	.1034
		J.	Heat cured dentine	00600	.03106	.997	0963	.0843
		FillerPMMA	LinearPMMA	.13500	.06692	.233	0626	.3326
			Cross-linked PMMA	.15100	.06212	.136	0405	.3425
			Heat cured dentine	.12900	.06292	.233	0633	.3213
		Cross-linked	LinearPMMA	01600	.02941	.946	1034	.0714
		PMMA	FillerPMMA	15100	.06212	.136	3425	.0405
		-01	Heat cured dentine	02200	.01858	.645	0750	.0310
		Heat cured	LinearPMMA	.00600	.03106	.997	0843	.0963
		dentine	FillerPMMA	12900	.06292	.233	3213	.0633
			Cross-linked PMMA	.02200	.01858	.645	0310	.0750
DB7d	Games-	LinearPMMA	FillerPMMA	.44900	.71989	.922	-1.7709	2.6689
	Howell		Cross-linked PMMA	-7.08200*	.15933	.000	-7.5358	-6.6282
			Heat cured dentine	-11.14700*	.21140	.000	-11.7488	-10.5452
		FillerPMMA	LinearPMMA	44900	.71989	.922	-2.6689	1.7709
			Cross-linked PMMA	-7.53100 [*]	.71491	.000	-9.7470	-5.3150
			Heat cured dentine	-11.59600*	.72828	.000	-13.8234	-9.3686
		Cross-linked	LinearPMMA	7.08200*	.15933	.000	6.6282	7.5358
		PMMA	FillerPMMA	7.53100*	.71491	.000	5.3150	9.7470
			Heat cured dentine	-4.06500*	.19376	.000	-4.6270	-3.5030
		Heat cured	LinearPMMA	11.14700*	.21140	.000	10.5452	11.7488
		dentine	FillerPMMA	11.59600*	.72828	.000	9.3686	13.8234
			Cross-linked PMMA	4.06500*	.19376	.000	3.5030	4.6270

					1	1	1	1
DB28d	Games-	LinearPMMA	FillerPMMA	.47600	.66508	.889	-1.5170	2.4690
	Howell		Cross-linked PMMA	-9.41900	.29742	.000	-10.2614	-8.5766
			Heat cured dentine	-12.52000*	.26700	.000	-13.2881	-11.7519
		FillerPMMA	LinearPMMA	47600	.66508	.889	-2.4690	1.5170
			Cross-linked PMMA	-9.89500*	.65510	.000	-11.8752	-7.9148
			Heat cured dentine	-12.99600*	.64186	.000	-14.9619	-11.0301
		Cross-linked	LinearPMMA	9.41900*	.29742	.000	8.5766	10.2614
		PMMA	FillerPMMA	9.89500*	.65510	.000	7.9148	11.8752
			Heat cured dentine	-3.10100*	.24107	.000	-3.7882	-2.4138
		Heat cured	LinearPMMA	12.52000*	.26700	.000	11.7519	13.2881
		dentine	FillerPMMA	12.99600*	.64186	.000	11.0301	14.9619
			Cross-linked PMMA	3.10100*	.24107	.000	2.4138	3.7882
DB56d	Games-	LinearPMMA	FillerPMMA	.24300	.79433	.990	-2.1338	2.6198
	Howell		Cross-linked PMMA	-10.68400*	.31386	.000	-11.5961	-9.7719
		4	Heat cured dentine	-13.20400*	.35653	.000	-14.2151	-12.1929
		FillerPMMA	LinearPMMA	24300	.79433	.990	-2.6198	2.1338
			Cross-linked PMMA	-10.92700*	.76057	.000	-13.2650	-8.5890
			Heat cured dentine	-13.44700*	.77915	.000	-15.8042	-11.0898
		Cross-linked	LinearPMMA	10.68400*	.31386	.000	9.7719	11.5961
		PMMA	FillerPMMA	10.92700*	.76057	.000	8.5890	13.2650
			Heat cured dentine	-2.52000*	.27315	.000	-3.3032	-1.7368
		Heat cured	LinearPMMA	13.20400*	.35653	.000	12.1929	14.2151
		dentine	FillerPMMA	13.44700*	.77915	.000	11.0898	15.8042
		Q.	Cross-linked PMMA	2.52000	.27315	.000	1.7368	3.3032
DB84d	Games-	LinearPMMA	FillerPMMA	.65100	.81209	.852	-1.8032	3.1052
	Howell	-10	Cross-linked PMMA	-10.53000*	.34634	.000	-11.5089	-9.5511
		จหา	Heat cured dentine	-13.93800*	.31776	.000	-14.8382	-13.0378
		FillerPMMA	LinearPMMA	65100	.81209	.852	-3.1052	1.8032
			Cross-linked PMMA	-11.18100*	.81424	.000	-13.6378	-8.7242
			Heat cured dentine	-14.58900*	.80250	.000	-17.0323	-12.1457
		Cross-linked	LinearPMMA	10.53000	.34634	.000	9.5511	11,5089
		PMMA	FillerPMMA	11 18100*	81424	000	8 7242	13 6378
			Host cured deptine	3.40800*	30300	.000	4 3 2 4 4	2 / 016
				-3.40000	.32322	.000	-4.5244	-2.4910
		Heat Cured		15.95800	.51770	.000	15.0578	14.8382
		dentine	FillerPMMA	14.58900	.80250	.000	12.1457	17.0323
			Cross-linked PMMA	3.40800	.32322	.000	2.4916	4.3244

Color stability ; water solution

$\Delta {\rm E}^*$

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
DE1d	1.932	3	36	.142
DE7d	.816	3	36	.494
DE28d	.624	3	36	.604
DE56d	6.159	3	36	.002
DE84d	3.173	3	36	.036

ANOVA		-U0000.	31///2			
	1 A	Sum of		-		
	1000	Squares	df	Mean Square	F	Sig.
DE1d	Between Groups	.137	3	.046	2.038	.126
	Within Groups	.805	36	.022		
	Total	.942	39			
DE7d	Between Groups	.314	3	.105	2.855	.051
	Within Groups	1.319	36	.037		
	Total	1.633	39	0		
DE28d	Between Groups	.078	3	.026	.517	.673
	Within Groups	1.801	36	.050		
	Total	1.878	39	Ě)		
DE56d	Between Groups	.151	3	.050	.751	.529
	Within Groups	2.416	36	.067		
	Total จุฬาลง	2.567	13977718	าลย		
DE84d	Between Groups	.106	3	.035	1.196	.325
	Within Groups	1.068	36	.030		
	Total	1.174	39			

a Million

Robust Tests of Equality of Means

		Statistic ^a	df1	df2	Sig.
DE1d	Welch	2.068	3	19.457	.138
DE7d	Welch	2.467	3	19.796	.092
DE28d	Welch	.969	3	19.133	.428
DE56d	Welch	.400	3	18.036	.754
DE84d	Welch	1.039	3	18.686	.398

a. Asymptotically F distributed.

Depender	nt Variable			Mean	Std.	Sig.	95% Con	fidence
				Differenc	Error		Interval	
				e (I-J)			Lower	Upper
							Bound	Bound
DE1d	Games-	LinearPMMA	FillerPMMA	05900	.08119	.885	2894	.1714
	Howell		Cross-linked	.06200	.07048	.815	1444	.2684
			PMMA					
			Heat cured	.09300	.07309	.594	1185	.3045
			dentine					
		FillerPMMA	LinearPMMA	.05900	.08119	.885	1714	.2894
			Cross-linked	.12100	.06002	.226	0520	.2940
		Petterson	PMMA					
			Heat cured	.15200	.06305	.114	0279	.3319
			dentine					
		Cross-linked	LinearPMMA	06200	.07048	.815	2684	.1444
		PMMA	FillerPMMA	12100	.06002	.226	2940	.0520
			Heat cured	.03100	.04849	.918	1064	.1684
			dentine	4				
		Heat cured	LinearPMMA	09300	.07309	.594	3045	.1185
		dentine	FillerPMMA	15200	.06305	.114	3319	.0279
			Cross-linked	03100	.04849	.918	1684	.1064
		A CONTRACTOR	PMMA	18				
DE7d	Games-	LinearPMMA	FillerPMMA	.20000	.09540	.198	0739	.4739
	Howell		Cross-linked	.07200	.09740	.880	2065	.3505
		จุฬาลงก	РММА	ยาลย				
			Heat cured	.21100	.09401	.156	0599	.4819
		GHULALON	dentine					
		FillerPMMA	LinearPMMA	20000	.09540	.198	4739	.0739
			Cross-linked	12800	.07627	.363	3437	.0877
			PMMA					
			Heat cured	.01100	.07190	.999	1923	.2143
			dentine					
		Cross-linked	LinearPMMA	07200	.09740	.880	3505	.2065
		PMMA	FillerPMMA	.12800	.07627	.363	0877	.3437
			Heat cured	.13900	.07453	.278	0719	.3499
			dentine					
		Heat cured	LinearPMMA	21100	.09401	.156	4819	.0599
		dentine	FillerPMMA	01100	.07190	.999	2143	.1923
			Cross-linked	13900	.07453	.278	3499	.0719
			PMMA					

DE28d	Games-	LinearPMMA	FillerPMMA	.03300	.12320	.993	3157	.3817
	Howell		Cross-linked	04700	.09919	.964	3309	.2369
			PMMA					
			Heat cured	.07300	.09157	.854	1950	.3410
			dentine					
		FillerPMMA	LinearPMMA	03300	.12320	.993	3817	.3157
			Cross-linked	08000	.10782	.879	3911	.2311
			PMMA					
			Heat cured	.04000	.10086	.978	2578	.3378
			dentine			 		
		Cross-linked	LinearPMMA	.04700	.09919	.964	2369	.3309
		PMMA	FillerPMMA	.08000	.10782	.879	2311	.3911
		2	Heat cured	.12000	.06951	.342	0782	.3182
			dentine	2				
		Heat cured	LinearPMMA	07300	.09157	.854	3410	.1950
		dentine	FillerPMMA	04000	.10086	.978	3378	.2578
			Cross-linked	12000	.06951	.342	3182	.0782
			PMMA					
DE56d	Games-	LinearPMMA	FillerPMMA	.14600	.15897	.795	3062	.5982
	Howell		Cross-linked	0.00000	.10211	1.00	3074	.3074
			PMMA			0		
		15	Heat cured	.01400	.09954	.999	2905	.3185
			dentine			ļ		
		FillerPMMA	LinearPMMA	14600	.15897	.795	5982	.3062
			Cross-linked	14600	.13015	.685	5429	.2509
			PMMA			ļ		
		21822-10	Heat cured	13200	.12814	.737	5270	.2630
		มี พาย งาา	dentine	មារម	ļ		ļ	
		Cross-linked	LinearPMMA	0.00000	.10211	1.00	3074	.3074
		PMMA		<u> </u>	<u> </u>	0	 	
			FillerPMMA	.14600	.13015	.685	2509	.5429
			Heat cured	.01400	.03971	.984	0994	.1274
			dentine		00054		0.105	0005
		Heat cured	LinearPMMA	01400	.09954	.999	3185	.2905
		dentine	FillerPMMA	.13200	.12814	./3/	2630	.5270
			Cross-linked	01400	.03971	.984	1274	.0994
0504			PMMA	00400	10000		0700	4070
DE84d	Games-	LinearPMMA	FillerPMMA	09100	.10036	.802	3793	.1973
	nowell		Cross-linked	14100	.08772	.415	4071	.1251
			Heat cured	10100	00100	601	2716	1606
			dontino	10100	.09109	.091	5710	.1090
			dentine					

	FillerPMMA	LinearPMMA	.09100	.10036	.802	1973	.3793
		Cross-linked	05000	.05971	.836	2263	.1263
		PMMA					
		Heat cured	01000	.06456	.999	1957	.1757
		dentine					
	Cross-linked	LinearPMMA	.14100	.08772	.415	1251	.4071
	PMMA	FillerPMMA	.05000	.05971	.836	1263	.2263
		Heat cured	.04000	.04231	.781	0809	.1609
		dentine					
	Heat cured	LinearPMMA	.10100	.09109	.691	1696	.3716
	dentine	FillerPMMA	.01000	.06456	.999	1757	.1957
		Cross-linked	04000	.04231	.781	1609	.0809
	2	PMMA					

$\Delta \mathsf{L}^*$

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
DL1d	8.767	3	36	.000
DL7d	8.020	3	36	.000
DL28d	7.059	3	36	.001
DL56d	4.650	3	36	.008
DL84d	18.705	3	36	.000

ANOVA

	ຈາ	Sum of Squares	df	Mean Square	F	Sig.
DL1d	Between Groups	.142	3	.047	2.160	.110
	Within Groups	.789	36	.022		
	Total	.931	39			
DL7d	Between Groups	.791	3	.264	3.999	.510
	Within Groups	2.372	36	.066		
	Total	3.163	39			
DL28d	Between Groups	.130	3	.043	.862	.470
	Within Groups	1.811	36	.050		
	Total	1.942	39			
DL56d	Between Groups	.188	3	.063	1.025	.393
	Within Groups	2.201	36	.061		
	Total	2.389	39			
DL84d	Between Groups	.134	3	.045	.915	.443
	Within Groups	1.754	36	.049		
	Total	1.887	39			

		Statistic ^ª	df1	df2	Sig.
DL1d	Welch	2.458	3	18.038	.096
DL7d	Welch	3.003	3	19.308	.056
DL28d	Welch	1.547	3	19.368	.234
DL56d	Welch	2.010	3	18.570	.148
DL84d	Welch	1.885	3	17.767	.169

a. Asymptotically F distributed.

Multiple	Comparisons			12				
Depende	nt Variable	. (i		Mean	Std.	Sig.	95% Con	nfidence
			1111	Difference	Error		Interval	1
				(I-J)			Lower	Upper
							Bound	Bound
DL1d	Games-	LinearPMMA	FillerPMMA	06700	.08742	.868	3165	.1825
	Howell		Cross-linked	11700	.07655	.452	3446	.1106
			PMMA					
		1	Heat cured	16000	.07292	.190	3830	.0630
			dentine					
		FillerPMMA	LinearPMMA	.06700	.08742	.868	1825	.3165
		S.	Cross-linked	05000	.05870	.829	2203	.1203
			РММА					
		-1010	Heat cured	09300	.05388	.357	2552	.0692
		จหาล	dentine	ิทยาลัย				
		Cross-linked	LinearPMMA	.11700	.07655	.452	1106	.3446
		PMMA	FillerPMMA	.05000	.05870	.829	1203	.2203
			Heat cured	04300	.03347	.586	1398	.0538
			dentine					
		Heat cured	LinearPMMA	.16000	.07292	.190	0630	.3830
		dentine	FillerPMMA	.09300	.05388	.357	0692	.2552
			Cross-linked	.04300	.03347	.586	0538	.1398
			PMMA					
DL7d	Games-	LinearPMMA	FillerPMMA	30000	.14857	.232	7375	.1375
	Howell		Cross-linked	22900	.14164	.409	6562	.1982
			PMMA					
			Heat cured	37600	.14344	.093	8056	.0536
			dentine					
		FillerPMMA	LinearPMMA	.30000	.14857	.232	1375	.7375
			Cross-linked	.07100	.07605	.788	1465	.2885
			PMMA					

and the

			Heat cured	07600	.07935	.775	3015	.1495
			dentine					
		Cross-linked	LinearPMMA	.22900	.14164	.409	1982	.6562
		PMMA	FillerPMMA	07100	.07605	.788	2885	.1465
			Heat cured	14700	.06545	.149	3322	.0382
			dentine					
		Heat cured	LinearPMMA	.37600	.14344	.093	0536	.8056
		dentine	FillerPMMA	.07600	.07935	.775	1495	.3015
			Cross-linked	.14700	.06545	.149	0382	.3322
			PMMA					
DL28d	Games-	LinearPMMA	FillerPMMA	08000	.12628	.920	4430	.2830
	Howell		Cross-linked	.01200	.11622	1.00	3314	.3554
			РММА	74		0		
			Heat cured	12600	.11519	.700	4678	.2158
		103	dentine					
		FillerPMMA	LinearPMMA	.08000	.12628	.920	2830	.4430
			Cross-linked	.09200	.08281	.688	1450	.3290
			PMMA					
			Heat cured	04600	.08137	.941	2797	.1877
			dentine					
		Cross-linked	LinearPMMA	01200	.11622	1.00	3554	.3314
		PMMA				0		
		,	FillerPMMA	09200	.08281	.688	3290	.1450
			Heat cured	13800	.06465	.180	3208	.0448
			dentine	No.				
		Heat cured	LinearPMMA	.12600	.11519	.700	2158	.4678
		dentine	FillerPMMA	.04600	.08137	.941	1877	.2797
		จุฬาลง	Cross-linked	.13800	.06465	.180	0448	.3208
		CHULAL O	PMMA	NIVERSI	ТУ			
DL56d	Games-	LinearPMMA	FillerPMMA	16300	.14936	.699	5884	.2624
	Howell		Cross-linked	03200	.12339	.994	4084	.3444
			PMMA					
			Heat cured	13700	.12454	.697	5146	.2406
			dentine					
		FillerPMMA	LinearPMMA	.16300	.14936	.699	2624	.5884
			Cross-linked	.13100	.09457	.533	1534	.4154
			PMMA					
			Heat cured	.02600	.09606	.993	2604	.3124
			dentine					
		Cross-linked	LinearPMMA	.03200	.12339	.994	3444	.4084
		PMMA	FillerPMMA	13100	.09457	.533	4154	.1534
			Heat cured	10500	.04630	.144	2361	.0261
			dentine					

		Heat cured	LinearPMMA	.13700	.12454	.697	2406	.5146
		dentine	FillerPMMA	02600	.09606	.993	3124	.2604
			Cross-linked	.10500	.04630	.144	0261	.2361
			PMMA					
DL84d	Games-	LinearPMMA	FillerPMMA	.07500	.13111	.938	3172	.4672
	Howell		Cross-linked	.16300	.12456	.579	2220	.5480
			PMMA					
			Heat cured	.08800	.13047	.905	3034	.4794
			dentine					
		FillerPMMA	LinearPMMA	07500	.13111	.938	4672	.3172
			Cross-linked	.08800	.04960	.330	0587	.2347
			PMMA					
			Heat cured	.01300	.06299	.997	1650	.1910
			dentine					
		Cross-linked	LinearPMMA	16300	.12456	.579	5480	.2220
		PMMA	FillerPMMA	08800	.04960	.330	2347	.0587
			Heat cured	07500	.04790	.431	2163	.0663
			dentine					
		Heat cured	LinearPMMA	08800	.13047	.905	4794	.3034
		dentine	FillerPMMA	01300	.06299	.997	1910	.1650
			Cross-linked PMMA	.07500	.04790	.431	0663	.2163

8

Δ a*

Test of Hor	Test of Homogeneity of Variances							
	Levene Statistic	df1 ลงกรณ์ม	df2าวิทยาลัย	Sig.				
DA1d	4.271	3	36	.011				
DA7d	3.770 UH	D ₃ _ALONGKOH	1 ₃₆ UNIVERS	.019				
DA28d	4.176	3	36	.012				
DA56d	9.409	3	36	.000				
DA84d	3.818	3	36	.018				

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
DA1d	Between Groups	.052	3	.017	2.604	.067
	Within Groups	.238	36	.007		
	Total	.290	39			
DA7d	Between Groups	.071	3	.024	2.659	.063
	Within Groups	.319	36	.009		
	Total	.389	39			

DA28d	Between Groups	.107	3	.036	2.289	.095
	Within Groups	.562	36	.016		
	Total	.669	39			
DA56d	Between Groups	.083	3	.028	2.513	.074
	Within Groups	.395	36	.011		
	Total	.477	39			
DA84d	Between Groups	.020	3	.007	.582	.631
	Within Groups	.403	36	.011		
	Total	.422	39			

		Statistic ^ª	df1	df2	Sig.
DA1d	Welch	3.081	3	19.404	.052
DA7d	Welch	2.868	3	19.452	.063
DA28d	Welch	1.887	3	19.116	.166
DA56d	Welch	2.889	3	19.060	.062
DA84d	Welch	.767	3	19.537	.526

a. Asymptotically F distributed.

Dependen	t Variable		- ZIQQXQXQIQ	Mean	Std.	Sig.	95% Confic	lence
		0	-2200VAR	Difference	Error		Interval	
		C.		(I-J)			Lower	Upper
							Bound	Bound
DA1d	Games-	LinearPMMA	FillerPMMA	.07500	.04258	.337	0515	.2015
	Howell	4 W 161 V	Cross-linked	.01000	.02339	.973	0561	.0761
		CHULALO	PMMAORN	JNIVERS	ITY			
			Heat cured	.07800	.02846	.063	0034	.1594
			dentine					
		FillerPMMA	LinearPMMA	07500	.04258	.337	2015	.0515
			Cross-linked	06500	.04284	.457	1919	.0619
			PMMA					
			Heat cured	.00300	.04581	1.000	1294	.1354
			dentine					
		Cross-linked	LinearPMMA	01000	.02339	.973	0761	.0561
		PMMA	FillerPMMA	.06500	.04284	.457	0619	.1919
			Heat cured	.06800	.02885	.126	0143	.1503
			dentine					
		Heat cured	LinearPMMA	07800	.02846	.063	1594	.0034
		dentine	FillerPMMA	00300	.04581	1.000	1354	.1294

Multiple Comparisons

			Cross-linked	06800	.02885	.126	1503	.0143
			PMMA					
DA7d	Games-	LinearPMMA	FillerPMMA	.10300	.05141	.235	0475	.2535
	Howell		Cross-linked	.07200	.02930	.103	0112	.1552
			PMMA					
			Heat cured	.01400	.03304	.974	0794	.1074
			dentine					
		FillerPMMA	LinearPMMA	10300	.05141	.235	2535	.0475
			Cross-linked	03100	.04947	.921	1783	.1163
			PMMA					
			Heat cured	08900	.05177	.352	2402	.0622
			dentine					
		Cross-linked	LinearPMMA	07200	.02930	.103	1552	.0112
		PMMA	FillerPMMA	.03100	.04947	.921	1163	.1783
		1000	Heat cured	05800	.02994	.250	1432	.0272
			dentine					
		Heat cured	LinearPMMA	01400	.03304	.974	1074	.0794
		dentine	FillerPMMA	.08900	.05177	.352	0622	.2402
			Cross-linked	.05800	.02994	.250	0272	.1432
			PMMA					
DA28d	Games-	LinearPMMA	FillerPMMA	.14300	.07306	.252	0707	.3567
	Howell	9	Cross-linked	.08300	.04028	.208	0322	.1982
			PMMA					
		0	Heat cured	.05200	.03842	.546	0591	.1631
			dentine	A.				
		FillerPMMA	LinearPMMA	14300	.07306	.252	3567	.0707
		21822	Cross-linked	06000	.06905	.821	2672	.1472
		ขุพายา	PMMA	1119 191	Ð			
		CHULALO	Heat cured	09100	.06798	.560	2969	.1149
			dentine					
		Cross-linked	LinearPMMA	08300	.04028	.208	1982	.0322
		PMMA	FillerPMMA	.06000	.06905	.821	1472	.2672
			Heat cured	03100	.03011	.735	1163	.0543
			dentine					
		Heat cured	LinearPMMA	05200	.03842	.546	1631	.0591
		dentine	FillerPMMA	.09100	.06798	.560	1149	.2969
			Cross-linked	.03100	.03011	.735	0543	.1163
			PMMA					
DAF				10000	0.4464	04.0	0507	2007
DA56d	Games-	LINEARPMMA		.12800	.06101	.210	0537	.3097
	Howell		Cross-linked	.07300	.02682	.066	0040	.1500
			PIVIIVIA					
I								

			Heat cured	.06200	.03075	.219	0249	.1489
			dentine					
		FillerPMMA	LinearPMMA	12800	.06101	.210	3097	.0537
			Cross-linked	05500	.05864	.786	2337	.1237
			PMMA					
			Heat cured	06600	.06054	.702	2471	.1151
			dentine					
		Cross-linked	LinearPMMA	07300	.02682	.066	1500	.0040
		PMMA	FillerPMMA	.05500	.05864	.786	1237	.2337
			Heat cured	01100	.02574	.973	0846	.0626
			dentine					
		Heat cured	LinearPMMA	06200	.03075	.219	1489	.0249
		dentine	FillerPMMA	.06600	.06054	.702	1151	.2471
			Cross-linked	.01100	.02574	.973	0626	.0846
		1000	PMMA					
DA84d	Games-	LinearPMMA	FillerPMMA	.05900	.05860	.748	1137	.2317
	Howell		Cross-linked	.04700	.03236	.485	0446	.1386
			PMMA					
			Heat cured	.03200	.03432	.788	0650	.1290
			dentine					
		FillerPMMA	LinearPMMA	05900	.05860	.748	2317	.1137
			Cross-linked	01200	.05740	.997	1828	.1588
			PMMA					
			Heat cured	02700	.05853	.966	1996	.1456
			dentine	10				
		Cross-linked	LinearPMMA	04700	.03236	.485	1386	.0446
		PMMA	FillerPMMA	.01200	.05740	.997	1588	.1828
		.ส.พ.เยง	Heat cured	01500	.03224	.966	1063	.0763
		CHULALO	dentine	INIVERS	ІТУ			
		Heat cured	LinearPMMA	03200	.03432	.788	1290	.0650
		dentine	FillerPMMA	.02700	.05853	.966	1456	.1996
			Cross-linked	.01500	.03224	.966	0763	.1063
			PMMA					

 Δ b*

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
DB1d	1.850	3	36	.156
DB7d	3.110	3	36	.038
DB28d	1.876	3	36	.151
DB56d	5.670	3	36	.003
DB84d	5.624	3	36	.003

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
DB1d	Between Groups	.182	3	.061	2.507	.074
	Within Groups	.873	36	.024		
	Total	1.055	39			
DB7d	Between Groups	.460	3	.153	1.749	.174
	Within Groups	3.156	36	.088		
	Total	3.616	39			
DB28d	Between Groups	.064	3	.021	.447	.721
	Within Groups	1.731	36	.048		
	Total	1.796	39			
DB56d	Between Groups	.188	3	.063	1.023	.394
	Within Groups	2.208	36	.061		
	Total	2.397	39			
DB84d	Between Groups	.107	3	.036	.917	.442
	Within Groups	1.398	36	.039		
	Total	1.505	39 ทยา	ลัย		

Robust Tests of Equality of Means

		Statistic ^a	df1	df2	Sig.
DB1d	Welch	2.623	3	18.701	.081
DB7d	Welch	2.158	3	18.156	.128
DB28d	Welch	.473	3	19.173	.705
DB56d	Welch	.941	3	17.879	.442
DB84d	Welch	.592	3	17.996	.628

Asymptotically F distributed.

Multiple Comparisons

Depender	ependent Variable			Mean	Std.	Sig.	95% Confid	dence
				Difference	Error		Interval	
				(L-J)			Lower	Upper
							Bound	Bound
DB1d	Games-	LinearPMMA	FillerPMMA	.16620	.08479	.241	0748	.4072
	Howell		Cross-linked PMMA	.00200	.07143	1.000	2115	.2155
			Heat cured dentine	.04900	.07969	.926	1799	.2779
		FillerPMMA	LinearPMMA	16620	.08479	.241	4072	.0748
			Cross-linked PMMA	16420	.05787	.060	3341	.0057
		X U	Heat cured dentine	11720	.06779	.339	3094	.0750
		Cross-linked	LinearPMMA	00200	.07143	1.000	2155	.2115
		PMMA	FillerPMMA	.16420	.05787	.060	0057	.3341
			Heat cured dentine	.04700	.05009	.785	0980	.1920
		Heat cured	LinearPMMA	04900	.07969	.926	2779	.1799
		dentine	FillerPMMA	.11720	.06779	.339	0750	.3094
		U.	Cross-linked PMMA	04700	.05009	.785	1920	.0980
DB7d	Games-	LinearPMMA	FillerPMMA	24600	.15227	.397	6800	.1880
	Howell		Cross-linked PMMA	01500	.15839	1.000	4643	.4343
		จุหาลง	Heat cured dentine	.01600	.12944 B	.999	3730	.4050
		FillerPMMA	LinearPMMA	.24600	.15227	.397	1880	.6800
			Cross-linked PMMA	.23100	.13531	.349	1518	.6138
			Heat cured dentine	.26200	.09990	.087	0321	.5561
		Cross-linked	LinearPMMA	.01500	.15839	1.000	4343	.4643
		PMMA	FillerPMMA	23100	.13531	.349	6138	.1518
			Heat cured dentine	.03100	.10900	.992	2923	.3543
		Heat cured	LinearPMMA	01600	.12944	.999	4050	.3730
		dentine	FillerPMMA	26200	.09990	.087	5561	.0321
			Cross-linked PMMA	03100	.10900	.992	3543	.2923
DB28d	Games- Howell	LinearPMMA	FillerPMMA	01300	.12469	1.000	3663	.3403
			Cross-linked PMMA	.08600	.10527	.845	2235	.3955
-------	--------	--------------	----------------------	--------	--------	-------	-------	-------
			Heat cured	.05400	.10350	.952	2525	.3605
			dentine					
		FillerPMMA	LinearPMMA	.01300	.12469	1.000	3403	.3663
			Cross-linked	.09900	.09234	.711	1691	.3671
			PMMA					
			Heat cured	.06700	.09031	.878	1972	.3312
			dentine					
		Cross-linked	LinearPMMA	08600	.10527	.845	3955	.2235
		PMMA	FillerPMMA	09900	.09234	.711	3671	.1691
			Heat cured	03200	.06075	.951	2039	.1399
			dentine	2				
		Heat cured	LinearPMMA	05400	.10350	.952	3605	.2525
		dentine	FillerPMMA	06700	.09031	.878	3312	.1972
			Cross-linked	.03200	.06075	.951	1399	.2039
			PMMA					
DB56d	Games-	LinearPMMA	FillerPMMA	08600	.14889	.938	5070	.3350
	Howell		Cross-linked	.07800	.11655	.907	2700	.4260
			PMMA					
			Heat cured	.08200	.11180	.881	2602	.4242
			dentine					
		FillerPMMA	LinearPMMA	.08600	.14889	.938	3350	.5070
		Q	Cross-linked	.16400	.10972	.470	1620	.4900
		2	РММА	10				1075
		_(0))	Heat cured	.16800	.10466	.418	1515	.4875
		Cross linked	dentine	07900	11455	007	4260	2700
			EillorPMMA	16400	10072	.901	4200	.2700
		GAULALO	Heat cured	10400	.10972	1 000	4900	.1020
			dentine	.00400	.04000	1.000	.1504	.1444
		Heat cured	LinearPMMA	08200	.11180	.881	4242	.2602
		dentine	FillerPMMA	16800	.10466	.418	4875	.1515
			Cross-linked	00400	.04868	1.000	1444	.1364
			PMMA					
DB84d	Games-	LinearPMMA	FillerPMMA	.08900	.11540	.866	2412	.4192
	Howell		Cross-linked	.12700	.10350	.622	1793	.4333
			PMMA					
			Heat cured	.12600	.09772	.589	1727	.4247
			dentine	00000	44540	0.6.5	4462	0440
		FillerPMMA	LinearPMMA	08900	.11540	.866	4192	.2412
			Cross-linked PMMA	.03800	.07737	.960	1848	.2608

		Heat cured	.03700	.06944	.949	1715	.2455
		dentine					
	Cross-linked	LinearPMMA	12700	.10350	.622	4333	.1793
	PMMA	FillerPMMA	03800	.07737	.960	2608	.1848
		Heat cured	00100	.04710	1.000	1378	.1358
		dentine					
	Heat cured	LinearPMMA	12600	.09772	.589	4247	.1727
	dentine	FillerPMMA	03700	.06944	.949	2455	.1715
		Cross-linked	.00100	.04710	1.000	1358	.1378
		PMMA					

Water sorption

Test of Homogeneity of Variances

	Levene Statistic	df1	df2	Sig.
watersorptionD1	.616	3	36	.609
watersorptionD7	4.549	3	36	.008
watersorptionD28	1.204	3	36	.322
watersorptionD56	2.788	3	36	.055

ANOVA

		Sum of Squares	df	Mean Square	F	Sig.
watersorptionD1	Between Groups	53.895	3	17.965	4.308	.011
	Within Groups	150.116	36	4.170		
	Total	204.011	39			
watersorptionD7	Between Groups	1039.435	3	346.478	24.978	.000
	Within Groups	499.361	36	13.871		
	Total	1538.796	39	ТҮ		
watersorptionD28	Between Groups	1114.374	3	371.458	26.404	.000
	Within Groups	506.458	36	14.068		
	Total	1620.832	39			
watersorptionD56	Between Groups	1017.656	3	339.219	24.387	.000
	Within Groups	500.743	36	13.910		
	Total	1518.399	39			

Robust Tests of Equality of Means

		Statistic ^ª	df1	df2	Sig.
watersorptionD1	Welch	4.239	3	19.902	.018
watersorptionD7	Welch	48.738	3	19.227	.000
watersorptionD28	Welch	29.923	3	19.616	.000
watersorptionD56	Welch	38.659	3	19.376	.000

Asymptotically F distributed.

Multiple Comparisons

Dependent Vari	iable			Mean	Std. Error	Sig.	95% Confic	lence
				Difference			Interval	
				(I-J)			Lower Bound	Upper Bound
watersorption	Games-	LinearPMMA	FillerPMMA	1.98400	.86605	.139	4739	4.4419
D1	Howell							
			Cross-linked PMMA	1.94500	.97926	.230	8235	4.7135
			Heat cured dentine	62800	.92956	.905	-3.2558	1.9998
		FillerPMMA	LinearPMMA	-1.98400	.86605	.139	-4.4419	.4739
			Cross-linked PMMA	03900	.89658	1.000	-2.5898	2.5118
			Heat cured dentine	-2.61200*	.84203	.029	-4.9978	2262
		Cross-linked PMMA	LinearPMMA	-1.94500	.97926	.230	-4.7135	.8235
			FillerPMMA	.03900	.89658	1.000	-2.5118	2.5898
		Heat cured	Heat cured dentine	-2.57300	.95808	.066	-5.2836	.1376
		Heat cured dentine	LinearPMMA	.62800	.92956	.905	-1.9998	3.2558
			FillerPMMA	2.61200*	.84203	.029	.2262	4.9978
		จุฬาลงก	Cross-linked PMMA	2.57300	.95808	.066	1376	5.2836
watersorption D7	Games- Howell	LinearPMMA	FillerPMMA	2.20200	2.04376	.707	-3.6065	8.0105
			Cross-linked PMMA	9.42600*	1.44321	.000	5.2347	13.6173
			Heat cured dentine	-4.71200*	1.57111	.037	-9.1886	2354
		FillerPMMA	LinearPMMA	-2.20200	2.04376	.707	-8.0105	3.6065
			Cross-linked PMMA	7.22400*	1.75501	.006	2.0331	12.4149
			Heat cured dentine	-6.91400 [*]	1.86161	.010	-12.3022	-1.5258
		Cross-linked PMMA	LinearPMMA	-9.42600 [*]	1.44321	.000	-13.6173	-5.2347
			FillerPMMA	-7.22400*	1.75501	.006	-12.4149	-2.0331

			Heat cured	-14.13800*	1.17110	.000	-17.4735	-10.8025
			dentine					
		Heat cured	LinearPMMA	4.71200*	1.57111	.037	.2354	9.1886
		dentine						
			FillerPMMA	6.91400 [*]	1.86161	.010	1.5258	12.3022
			Cross-linked	14.13800	1.17110	.000	10.8025	17.4735
			PMMA					
watersorption D28	Games- Howell	LinearPMMA	FillerPMMA	5.99300 [°]	1.86482	.024	.6941	11.2919
			Cross-linked	11.04300*	1.66352	.000	6.3407	15.7453
			PMMA					
			Heat cured	-2.51200	1.42961	.328	-6.5887	1.5647
			dentine	2.2				
		FillerPMMA	LinearPMMA	-5.99300	1.86482	.024	-11.2919	6941
		Lataral		and the second				
			Cross-linked	5.05000	1.89302	.069	3208	10.4208
			РММА					
			Heat cured	-8.50500	1.69116	.001	-13.4038	-3.6062
			dentine					
		Cross-linked	LinearPMMA	-11.04300	1.66352	.000	-15.7453	-6.3407
		PMMA	<u>Kaomk</u>					
		1	FillerPMMA	-5.05000	1.89302	.069	-10.4208	.3208
			Heat cured	-13.55500	1.46621	.000	-17.7450	-9.3650
		S.	dentine					
		Heat cured	LinearPMMA	2.51200	1.42961	.328	-1.5647	6.5887
		dentine	511 D.0.4	0.50500	1 (011)	0.01	2 (0(0	42,4020
		จุหาลงก	FILLERPMIMA	8.50500	8	.001	3.6062	13.4038
	C	HULALON	Cross-linked	13.55500*	1.46621	.000	9.3650	17.7450
			PMMA					
watersorption	Games-	LinearPMMA	FillerPMMA	3.45800	1.92266	.315	-2.1390	9.0550
050	HOWELL		Crass linked	0.11200*	1 17124	000	F 7964	10.4276
				9.11200	1.17154	.000	5.7864	12.4376
			PIVIIVIA	4 71200*	1 47056	024	9 9007	E2E4
			dontino	-4.71500	1.47050	.024	-0.0900	5554
				2 45 900	1.02266	215	0.0550	2 1 2 0 0
		FILLEI PIVIIVIA	LINEARPININA	-3.43000	1.92200	.515	-9.0550	2.1390
			Cross-linked	5.65400	1.84425	.042	.1965	11.1115
			PMMA					
			Heat cured	-8.17100	2.04738	.005	-14.0337	-2.3083
			dentine					
		Cross-linked	LinearPMMA	-9.11200	1.17134	.000	-12.4376	-5.7864

	PMMA	FillerPMMA	-5.65400	1.84425	.042	-11.1115	1965
		Heat cured	-13.82500*	1.36645	.000	-17.7553	-9.8947
		dentine					
	Heat cured	LinearPMMA	4.71300*	1.47056	.024	.5354	8.8906
	dentine						
		FillerPMMA	8.17100*	2.04738	.005	2.3083	14.0337
		Cross-linked	13.82500	1.36645	.000	9.8947	17.7553
		PMMA					

*. The mean difference is significant at the 0.05 level.

Water solubility

Test of Homogeneity of Variances										
	Levene Statistic	df1	df2	Sig.						
watersolubilityD1	2.535	3	36	.072						
watersolubilityD7	3.556	3	36	.024						
watersolubilityD28	1.325	3	36	.281						
watersolubilityD56	1.035	3	36	.389						
OVA										

ANOVA

ANOVA	108	() second prover				
	Ĵ.	Sum of Squares	df	Mean Square	F	Sig.
watersolubilityD1	Between Groups	.868	3	.289	6.189	.002
	Within Groups	1.683	36	.047		
	Total	2.552	39			
watersolubilityD7	Between Groups	20.680	3	6.893	15.091	.000
	Within Groups	16.445	36	.457		
	Total ALONG	37.125	39	SITY		
watersolubilityD28	Between Groups	53.783	3	17.928	125.439	.000
	Within Groups	5.145	36	.143		
	Total	58.928	39			
watersolubilityD56	Between Groups	46.619	3	15.540	94.886	.000
	Within Groups	5.896	36	.164		
	Total	52.515	39			

Robust Tests of Equality of Means

		Statistic ^ª	df1	df2	Sig.
watersolubilityD1	Welch	8.246	3	19.191	.001
watersolubilityD7	Welch	33.045	3	18.054	.000
watersolubilityD28	Welch	149.373	3	19.444	.000
watersolubilityD56	Welch	97.224	3	19.783	.000

a. Asymptotically F distributed.

Multiple Comparisons

Dependent Varial	ble		Mean	Std.	Sig.	95% Cor	nfidence	
				Difference	Error		Interval	
			11/1/100	(I-J)			Lower	Upper
			2000011				Bound	Bound
watersolubility	Games-	LinearPMMA	FillerPMMA	21800	.08135	.074	4532	.0172
D1	Howell		Cross-linked	28000*	.07859	.013	5065	0535
			PMMA					
			Heat cured	40700*	.09658	.005	6909	1231
			dentine	01				
		FillerPMMA	LinearPMMA	.21800	.08135	.074	0172	.4532
		10	Cross-linked	06200	.09684	.918	3358	.2118
		100	PMMA					
		<u>A</u>	Heat cured	18900	.11193	.359	5068	.1288
		a	dentine					
		Cross-linked	LinearPMMA	.28000	.07859	.013	.0535	.5065
		PMMA	FillerPMMA	.06200	.09684	.918	2118	.3358
	ิจ	หาลงกร	Heat cured	12700	.10994	.662	4398	.1858
			dentine					
	CH	Heat cured	LinearPMMA	.40700*S	.09658	.005	.1231	.6909
		dentine	FillerPMMA	.18900	.11193	.359	1288	.5068
			Cross-linked	.12700	.10994	.662	1858	.4398
			PMMA					
watersolubility	Games-	LinearPMMA	FillerPMMA	83400	.38472	.170	-1.921	.2534
D7	Howell		Cross-linked	1.06200*	.28947	.017	.1884	1.9356
			PMMA					
			Heat cured	51500	.32091	.406	-1.442	.4124
			dentine					
		FillerPMMA	LinearPMMA	.83400	.38472	.170	2534	1.9214
			Cross-linked	1.89600*	.28237	.000	1.0451	2.7469
			PMMA					

			Heat cured	.31900	.31453	.744	5882	1.2262
			dentine					
		Cross-linked	LinearPMMA	-1.06200*	.28947	.017	-1.935	1884
		PMMA	FillerPMMA	-1.89600*	.28237	.000	-2.746	-1.045
			Heat cured	-1.57700*	.18632	.000	-2.119	-1.034
			dentine					
		Heat cured	LinearPMMA	.51500	.32091	.406	4124	1.4424
		dentine	FillerPMMA	31900	.31453	.744	-1.226	.5882
			Cross-linked	1.57700*	.18632	.000	1.0344	2.1196
			PMMA					
watersolubility	Games-	LinearPMMA	FillerPMMA	-1.28600	.18390	.000	-1.805	7662
D28	Howell	_	Cross-linked	.88200*	.15451	.000	.4359	1.3281
			PMMA	2				
		Letter Disc	Heat cured	-2.13500	.18568	.000	-2.659	-1.610
			dentine			ļ		
		FillerPMMA	LinearPMMA	1.28600	.18390	.000	.7662	1.8058
			Cross-linked	2.16800	.15064	.000	1.7342	2.6018
			PMMA					
			Heat cured	84900	.18247	.001	-1.364	3333
			dentine					
		Cross-linked	LinearPMMA	88200	.15451	.000	-1.328	4359
		PIVIMA	FillerPMMA	-2.16800	.15064	.000	-2.601	-1.734
		0	Heat cured	-3.01700	.15280	.000	-3.457	-2.576
		S.	dentine	Nº.				
		Heat cured	LinearPMMA	2.13500	.18568	.000	1.6102	2.6598
	จ	dentine Mana 105	FillerPMMA	.84900	.18247	.001	.3333	1.3647
			Cross-linked	3.01700*	.15280	.000	2.5763	3.4577
	GHI	JLALONG	PMMA	IVERSIT	Υ			
watersolubility	Games-	LinearPMMA	FillerPMMA	72500	.17589	.003	-1.222	2278
D56	Howell		Cross-linked	1.28900	.15798	.000	.8408	1.7372
			PMMA	*				
			Heat cured	-1.66700	.19886	.000	-2.232	-1.101
			dentine	*				
		FillerPMMA	LinearPMMA	.72500	.17589	.003	.2278	1.2222
			Cross-linked	2.01400	.16113	.000	1.5563	2.4717
			PMMA	*			<u> </u>	
			Heat cured	94200	.20137	.001	-1.513	3704
			dentine	******			 	
		Cross-linked	LinearPMMA	-1.28900	.15798	.000	-1.737	8408
		РММА	FillerPMMA	-2.01400	.16113	.000	-2.471	-1.556
		1						

		Heat cured	-2.95600*	.18594	.000	-3.490	-2.421
		dentine					
	Heat cured	LinearPMMA	1.66700 [*]	.19886	.000	1.1017	2.2323
	dentine	FillerPMMA	.94200*	.20137	.001	.3704	1.5136
		Cross-linked	2.95600*	.18594	.000	2.4213	3.4907
		PMMA					

*. The mean difference is significant at the 0.05 level.

REFERENCES

1. กระทรวงสาธารณสุข สก. ผลการสำรวจสภาวะสุขภาพช่องปากแห่งชาติ ครั้งที่ 7. 2555:24 – 5.

2. Kar S, Tripathi A. Prevalence of type of removable dentures in elderly citizens in Northern India. J Contemp Dent. 2015;5:76-9.

3. Vanwaas M, Meeuwissen J, Meeuwissen R, Kayser A, Kalk W, Vanthof M. Relationship between Wearing a Removable Partial Denture and Satisfaction in the Elderly. <u>Community Dent Oral Epidemiol</u>. 1994;22(5):315-8.

4. Rueggeberg FA. From vulcanite to vinyl, a history of resins in restorative dentistry. <u>J Prosthet Dent</u>. 2002;87(4):364-79.

5. standardization Tiof. Base polymers – Part 1: Denture base polymers. <u>ISO 20795</u> <u>Dentistry</u>. 2013.

6. Robinson J, McCabe J. Impact strength of acrylic resin denture base materials with surface defects. <u>Dent Mater</u> 1993;9(6):355-60.

 Caycik S, Jagger R. The effect of cross-linking chain length on mechanical properties of a dough-molded poly (methylmethacrylate) resin. <u>Dent Mater</u>. 1992;8(3):153-7.

8. Hersek N, Uzun G, Yildiz P. Color stability of denture base acrylic resins in three food colorants. <u>J Prosthet Dent</u>. 1999;81(4):375-9.

9. Hatim NA, Al-Tahho OZ. Comparative evaluation of color change between two types of acrylic resin and flexible resin after thermo cycling. An in vitro study. <u>J Indian</u> <u>Prosthodont Soc</u>. 2013;13(3):327-37.

 Kurtulmus-Yilmaz S, Deniz ST. Evaluation of staining susceptibility of resin artificial teeth and stain removal efficacy of denture cleansers. <u>Acta Odontol Scand</u>. 2014;72(8):811-8.

11. Arima T, Murata H, Hamad T. The effects of cross-linking agents on the water sorption and solubility characteristics of denture base resin. <u>J Oral Rehabil</u> 1996;23(7):476-80.

12. DT Turner AA. Water sorption of poly (methyl methacrylate): 2. Effects of crosslinks. Polymer. <u>Polymer</u>. 1987;28:297-302.

13. Jagger R, Huggett R. The effect of cross-linking on sorption properties of a denture-base material. <u>Dent Mater</u>. 1990;6(4):276-8.

14. Miettinen VM, Vallittu PK. Water sorption and solubility of glass fiber-reinforced denture polymethyl methacrylate resin. <u>J Prosthet Dent</u> 1997;77(5):531-4.

15. Sakaguchi RL, Powers JM. <u>Craig's restorative dental materials.</u>: Elsevier Health Sciences; 2012.

16. Phillips RW. <u>Phillips' science of dental materials.</u>: Elsevier/Saunders; 2013.

17. O'brien WJ. <u>Dental materials and their selection 4th ed</u>. 2008;378.

18. Cook WD, Beech DR, Tyas MJ. Structure and properties of methaerylate based dental restorative materials. <u>Biomaterials</u>. 1985;6(6):362-8.

19. Gharechahi J, Asadzadeh N, Shahabian F, Gharechahi M. Dimensional changes of acrylic resin denture bases: Conventional versus injection-molding technique. <u>J Dent</u> (<u>Tehran</u>). 2014;11(4):398.

20. Tandon R, Gupta S, Agarwal SK. Denture base materials: From past to future. Indian J Dent Sci, 2010;2(2):33-9.

21. Hamanaka I, Takahashi Y, Shimizu H. Mechanical properties of injection-molded thermoplastic denture base resins. <u>Acta Odontol Scand</u>. 2011;69(2):75-9.

22. Shlosberg SR, Goodacre CJ, Munoz CA, Moore BK, Schnell RJ. Microwave energy polymerization of poly (methyl methacrylate) denture base resin. <u>Int J Prosthodont</u>. 1989;2(5).

Suzuki S. In vitro wear of nano-composite denture teeth. <u>J Prosthodont</u>.
 2004;13(4):238-43.

24. Suwannaroop P, Chaijareenont P, Koottathape N, Takahashi H, Arksornnukit M. In vitro wear resistance, hardness and elastic modulus of artificial denture teet. <u>Dent Mater J</u>. 2011;30:461-8.

25. Neppelenbroek KH, Kuroishi E, Hotta J, Marques VR, Moffa EB, Soares S, et al. Surface properties of multilayered, acrylic resin artificial teeth after immersion in staining beverages. J Appl Oral Sci. 2015;23(4):376-82.

26. Piskin B, Sipahi C, Akin H. Effect of different chemical disinfectants on color stability of acrylic denture teeth. <u>J Prosthodont</u>. 2014;23(6):476-83.

27. standardization Tiof. Artificial teeth for dental prostheses. <u>ISO 22112 Dentistry</u>.2017.

28. Shimoyama K, Uchida T, Nagao M, Odagiri K, Shirasaki Y, Tateishi T. Mechanical properties of artificial teeth. <u>Bull Tokyo Med Dent Univ</u>. 1993;40(1):13-6.

29. Gregorius WC, Kattadiyil MT, Goodacre CJ, Roggenkamp CL, Powers JM, Paravina RD. Effects of ageing and staining on color of acrylic resin denture teeth. <u>J Dent</u>. 2012;40:e47-e54.

30. Koksal T, Dikbas I. Color stability of different denture teeth materials against various staining agents. <u>Dent Mater J.</u> 2008;27(1):139-44.

31. Wiens JP, Koka S, Graser G, White SN, Marinello CP, Curtis DAJJoPD. The emergence and development of prosthodontics as a specialty. <u>Academy of Prosthodontics centennial</u>. 2017;118(5):569-72.

32. Hollis S, Eisenbeisz E, Versluis A. Color stability of denture resins after staining and exposure to cleansing agents. <u>J Prosthet Dent</u>. 2015;114(5):709-14.

33. Goiato MC, Nóbrega AS, Santos DMd, Andreotti AM, Moreno A. Effect of different solutions on color stability of acrylic resin-based dentures. <u>Braz Oral Res</u>. 2014;28(1):1-7.

34. May KB, Razzoog ME, Koran III A, Robinson E. Denture base resins: comparison study of color stability. <u>J Prosthet Dent</u>. 1992;68(1):78-82.

35. Hong G, Murata H, Li Y, Sadamori S, Hamada T. Influence of denture cleansers on the color stability of three types of denture base acrylic resin. <u>J Prosthet Dent</u>. 2009;101(3):205-13.

36. Shiozawa M, Takahashi H, Asakawa Y, Iwasaki N. Color stability of adhesive resin cements after immersion in coffee. <u>Clin Oral Investig</u> 2015;19(2):309-17.

37. Mutlu-Sagesen L, Ergün G, Özkan Y, Bek B. Color stability of different denture teeth materials: an in vitro study. <u>J Oral Sci</u>. 2001;43(3):193-205.

38. Lauvahutanon S, Shiozawa M, Takahashi H, Iwasaki N, Oki M, Finger WJ, et al. Discoloration of various CAD/CAM blocks after immersion in coffee. <u>Restor Dent Endod</u>. 2017;42(1):9-18.

39. Johnston WM. Color measurement in dentistry. <u>J Dent</u>. 2009;37:e2-e6.

40. Utami M, Febrida R, Djustiana N. The comparison of surface hardness between thermoplastic nylon resin and heat-cured acrylic resin. <u>Padjadjaran journal of dentistry</u>.

2009;21(3).

41. Cucci ALM, Vergani CE, Giampaolo ET, Afonso MCdSF. Water sorption, solubility, and bond strength of two autopolymerizing acrylic resins and one heat-polymerizing acrylic resin. J Prosthet Dent 1998;80(4):434-8.

42. Arikan A, Ozkan YK, Arda T, Akalin B. An in vitro investigation of water sorption and solubility of two acetal denture base materials. <u>Eur J Prosthodont Restor Dent</u>. 2005;13(3):119.

43. Nguyen LG, Kopperud HM, Øilo M. Water sorption and solubility of polyamide denture base materials. <u>Acta Biomater Odontol Scand</u>. 2017;3(1):47-52.

44. Saini R, Kotian R, Madhyastha P, Srikant N. Comparative study of sorption and solubility of heat-cure and self-cure acrylic resins in different solutions. <u>Indian J Dent</u> <u>Res</u>. 2016;27(3):288.

45. Shah J, Bulbule N, Kulkarni S, Shah R, Kakade D. Comparative evaluation of sorption, solubility and microhardness of heat cure polymethylmethacrylate denture base resin & flexible denture base resin. <u>J Clin Diagn Res</u>. 2014;8(8):ZF01.

46. Tuna SH, Keyf F, Gumus HO, Uzun C. The evaluation of water sorption/solubility on various acrylic resins. <u>Eur J Dent</u>. 2008;2:191.

47. Rizzatti-Barbosa CM, Fraga MA, Gonçalves TdM. Acrylic resin water sorption under different pressure, temperature and time conditions. <u>Mat Res</u>. 2001;4(1):01-6.

48. Wong DM, Cheng LY, Chow T, Clark RK. Effect of processing method on the dimensional accuracy and water sorption of acrylic resin dentures. <u>J Prosthet Dent</u>. 1999;81(3):300-4.

49. Güler AU, Güler E, Yücel AÇ, Erta**Ş** E. Effects of polishing procedures on color stability of composite resins. <u>J Appl Oral Sci</u>. 2009;17(2):108-12.

50. Mousavi S, Narimani S, Hekmatfar S, Jafari K. Colour Stability of Various Types of Acrylic Teeth Exposed to Coffee, Tea and Cola. <u>J Dent Biomater</u>. 2016;3(4):335.

51. Assunção WG, Barão VAR, Pita MS, Goiato MC. Effect of polymerization methods and thermal cycling on color stability of acrylic resin denture teeth. <u>J Prosthet Dent</u> 2009;102(6):385-92.

52. Clifford MN. <u>Coffee: botany, biochemistry and production of beans and</u>

beverage.: Springer Science & Business Media; 2012.

53. Ruyter I, Nilner K, Möller B. Color stability of dental composite resin materials for crown and bridge veneers. <u>Dent Mater</u> 1987;3(5):246-51.

54. Barão VAR, Ogawa ES, Moreno A, Mesquita MF, Wee AG, Assunção WG. Longterm clinical evaluation of the color stability and stainability of acrylic resin denture teeth. <u>J Prosthet Dent</u>. 2015;113(6):628-35.

55. Örtengren U, Wellendorf H, Karlsson S, Ruyter I. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment. <u>J Oral Rehabil</u>. 2001;28(12):1106-15.

56. Moon A, Powers JM, Kiat-amnuay S. Color stability of denture teeth and acrylic base resin subjected daily to various consumer cleansers. <u>J Esthet Restor Dent</u>.
2014;26(4):247-55.

Chulalongkorn University

VITA

NAME

Piyaporn Foungfu

DATE OF BIRTH 23 Jun 1988

PLACE OF BIRTH Bangkok

INSTITUTIONS ATTENDED Srinakarinwirot University

CHULALONGKORN UNIVERSITY