# EFFECT OF METHYL FORMATE-METHYL ACETATE TREATMENT ON FLEXURAL STRENGTH BETWEEN DENTURE BASE AND SELF-CURED HARD RELINE MATERIALS



A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Prosthodontics Department of Prosthodontics Faculty of Dentistry Chulalongkorn University Academic Year 2018 Copyright of Chulalongkorn University ผลของการปรับสภาพพื้นผิวด้วยสารละลายเมทิลฟอร์เมตและเมทิลอะซิเตตต่อความแข็งแรงดัดโค้ง ของฐานฟันเทียมอะคริลิกและวัสดุเสริมฐานฟันเทียมบ่มด้วยตัวเองชนิดแข็ง



วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาทันตกรรมประดิษฐ์ ภาควิชาทันตกรรมประดิษฐ์ คณะทันตแพทยศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2561 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

| Thesis Title   | EFFECT OF METHYL FORMATE-                      |
|----------------|------------------------------------------------|
|                | METHYL ACETATE TREATMENT ON                    |
|                | FLEXURAL STRENGTH BETWEEN DENTURE BASE AND SEL |
|                | F-CURED HARD RELINE MATERIALS                  |
| Ву             | Mr. Mongkol Puangpetch                         |
| Field of Study | Prosthodontics                                 |
| Thesis Advisor | Associate Professor Chairat Wiwatwarrapan      |

Accepted by the Faculty of Dentistry, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

|               | (Assistant Professor Suchit Poolthong, Ph.D.)      |
|---------------|----------------------------------------------------|
| THESIS COMMIT | TEE                                                |
|               | Chairman                                           |
|               | (Associate Professor VIRITPON SRIMANEEPONG, Ph.D.) |
|               | Thesis Advisor                                     |
|               | (Associate Professor Chairat Wiwatwarrapan)        |
|               | Examiner                                           |
|               | (Assistant Professor Wacharasak Tumrasvin, Ph.D.)  |
|               | External Examiner                                  |
|               | (Assistant Professor Vanthana Sattabanasuk, Ph.D.) |

มงคล พวงเพชร : ผลของการปรับสภาพพื้นผิวด้วยสารละลายเมทิลฟอร์เมตและเมทิลอะซิเตตต่อความแข็งแรงดัดโค้ง ของฐานฟันเทียมอะคริลิกและวัสดุเสริมฐานฟันเทียมบ่มด้วยตัวเองชนิดแข็ง. ( EFFECT OF METHYL FORMATE-METHYL ACETATE TREATMENT ON FLEXURAL STRENGTH BETWEEN DENTURE BASE AND SELF-CURED HARD RELINE MATERIALS) อ.ที่ปรึกษาหลัก : รศ.ชัยรัตน์ วิวัฒน์วรพันธ์

้งานวิจัยนี้ มีวัตถุประสงค์เพื่อประเมินผลของการปรับสภาพพื้นผิวด้วยสารละลายเมทิลฟอร์เมต และเมทิลอะซิเตต (MF-MA) ที่มี ต่อความต้านทานแรงดัดโค้งระหว่างฐานฟันเทียมอะคริลิกและวัสดุเสริมฐานฟันเทียมบ่มด้วยตัวเองชนิดแข็ง โดยเตรียมขึ้นงานอะคริลิกชนิดบ่ม ด้วยความร้อน (Meliodent®) จำนวน 180 ชิ้น ตามมาตรฐาน ISO 20795-1 (2013) แบ่งออกเป็น 18 กลุ่ม แต่ละกลุ่มเสริมฐานด้วยวัสดุเสริม ฐานฟันเทียมบ่มด้วยตัวเองชนิดแข็ง โดยกลุ่มที่ 1-3 เสริมฐานด้วย Unifast Trad®, กลุ่มที่ 4-6 เสริมฐานด้วย Kooliner®, กลุ่มที่ 7-9 เสริมฐาน ด้วย Tokuyama® Rebase II Fast (ไม่ทาสารยึดติด, แข่ hardener), กลุ่มที่ 10-12 เสริมฐานด้วย Tokuyama® Rebase II Fast (ทาสารยึด ติด, แช่ hardener), กลุ่มที่ 13-15 เสริมฐานด้วย Tokuyama® Rebase II Fast (ไม่ทาสารยึดติด, ไม่แช่ hardener), กลุ่มที่ 16-18 เสริมฐาน ด้วย Tokuyama® Rebase II Fast (ทาสารยึดติด, ไม่แช่ hardener) กลุ่มที่ 1, 4, 7 และ 13 ไม่ทาสาร (กลุ่มควบคุม) กลุ่มที่ 2, 5, 8 และ 14 ทาด้วยสารเมทิลเมทาคริเลต 180 วินาที กลุ่มที่ 3, 6, 9 และ 15 ทาด้วยสารละลายเมทิลฟอร์เมต และเมทิลอะซิเตต 15 วินาที กลุ่มที่ 10 และ 16 ทาด้วยสารทาสารยึดติดจากผู้ผลิต กลุ่มที่ 11 และ 17 ทาด้วยสารเมทีลเมทาคริเลต 180 วินาที และสารยึดติดจากผู้ผลิต กลุ่มที่ 12 และ 18 ทาด้วยสารละลายเมทิลฟอร์เมต และเมทิลอะซิเตต 15 วินาที และสารยึดติดจากผู้ผลิต วัดความแข็งแรงดัดโค้งด้วยเครื่องทดสอบ เอนกประสงค์ วิเคราะห์ข้อมูลทางสถิติโดยใช้การวิเคราะห์ความแปรปรวนสองทาง (กลุ่มที่ 1-9) และการวิเคราะห์ความแปรปรวนทางเดียว (กลุ่มที่ 1-18) ถ้าความแตกต่างอย่างมีนัยสำคัญระหว่างกลุ่ม จึงทดสอบความแตกต่างระหว่างค่าความแข็งแรงดัดโค้งเฉลี่ยของกลุ่มต่างๆโดยใช้ การทดสอบของ Tukey ที่ระดับความเชื่อมั่นร้อยละ 95 วิเคราะห์ความแปรปรวนสามทางสำหรับ Tokuyama® Rebase II Fast (การแข่ hardener, การทาสารยึดติด, การปรับสภาพพื้นผิว) ผลพบว่าชนิดของวัสดุเสริมฐาน และการปรับสภาพพื้นผิว มีผลต่อความแข็งแรงดัดโค้ง ้อย่างมีนัยสำคัญทางสถิติ ที่ระดับความเชื่อมั่นร้อยละ 95 สำหรับวัสดุเสริมฐานแต่ละชนิด กลุ่มที่ปรับสภาพพื้นผิวด้วยเมทิลฟอร์เมต และ เมทิลอะซิเตต มีค่าความแข็งแรงดัดโค้งสงกว่ากลุ่มปรับสภาพด้วยเมทิลเมทาคริเลต และกลุ่มปรับสภาพด้วยเมทิลเมทาคริเลตมีค่าความ แข็งแรงดัดโค้งสูงกว่ากลุ่มที่ไม่มีการปรับสภาพอย่างมีนัยสำคัญทางสถิติที่ระดับความเชื่อมั่นร้อยละ 95 สำหรับ Tokuyama® Rebase II Fast พบว่า การปรับสภาพพื้นผิว, การทาสารยึดติด มีผลต่อความแข็งแรงดัดโค้ง อย่างมีนัยสำคัญทางสถิติ ที่ระดับความเชื่อมั่นร้อยละ 95 ส่วนการ แช่ hardener ไม่มีผลต่อความแข็งแรงดัดโค้ง นอกจากนี้ กลุ่มที่ปรับสภาพพื้นผิว (เมทิลฟอร์เมต และเมทิลอะซิเต, เมทิลเมทาคริเลต) และการ ทาสารยึดติด มีค่าความแข็งแรงดัดโค้งสูงกว่า กลุ่มที่ทาเฉพาะสารยึดติด อย่างมีนัยสำคัญทางสถิติ ที่ระดับความเชื่อมันร้อยละ 95 สำหรับการ ปรับสภาพพื้นผิวด้วยสารชนิดเดียวกัน ค่าความแข็งแรงดัดโค้งของ Unifast Trad® สูงกว่าของ Kooliner® และค่าความแข็งแรงดัดโค้งของ Kooliner® สงกว่าของ Tokuyama® Rebase II Fast อย่างมีนัยสำคัญทางสถิติที่ระดับความเชื่อมั่นร้อยละ 95 การศึกษาครั้งนี้แนะนำให้ใช้ สารละลายเมทิลฟอร์เมต และเมทิลอะซิเตต เป็นเวลา 15 วินาทีก่อนการ เสริมฐานฟันเทียม ซึ่งสามารถเพิ่มความแข็งแรงดัดโค้งระหว่างฐานฟัน เทียมอะคริลิกและวัสดุเสริมฐานฟันเทียมบ่มด้วยตัวเองชนิดแข็ง

#### Chulalongkorn University

สาขาวิชา ปีการศึกษา ทันตกรรมประดิษฐ์ 2561 ลายมือชื่อนิสิต ..... ลายมือชื่อ อ.ที่ปรึกษาหลัก ......

#### # # 5975835332 : MAJOR PROSTHODONTICS

KEYWORD: Acrylic denture base Flexural strength Hard reline materials Methyl formate-methyl acetate Methyl methacrylate

Mongkol Puangpetch : EFFECT OF METHYL FORMATE-METHYL ACETATE TREATMENT ON FLEXURAL STRENGTH BETWEEN DENTURE BASE AND SELF-CURED HARD RELINE MATERIALS. Advisor: Assoc. Prof. Chairat Wiwatwarrapan

The purpose of this study was to evaluate the effect of methyl formate-methyl acetate (MF-MA) surface treatment on the flexural strength between denture base and hard reline materials. 180 heat-cured acrylic denture base (Meliodent®) specimens were prepared according to ISO 20795-1 (2013) and divided into 18 groups with various autopolymerizing hard reline materials. Group I-III: relined with Unifast Trad®, Group IV-VI: relined with Kooliner® Group VII-IX: relined with Tokuyama® Rebase II Fast (without adhesive, with hardener), Group X-XII: relined with Tokuyama® Rebase II Fast (with adhesive and hardener), Group XIII-XV: relined with Tokuyama® Rebase II Fast (without adhesive and hardener), Group XVI-XVIII: relined with Tokuyama® Rebase II Fast (with adhesive, without hardener). Group I, IV ,VII and XIII were untreated surface (control groups), Group II, V, VIII and XIV were surface treated with methyl methacrylate (MMA) for 180 s and Group III, VI, IX and XV were surface treated with MF-MA solution for 15 s. Group X and XVI were surface treated with the manufacturer adhesive, Group XI and XVII were surface treated with MMA 180 s and the manufacturer adhesive, Group XII and XVIII were surface treated with MF-MA 15 s and the manufacturer adhesive. The flexural strength was measured using a Universal Testing Machine. The data were analyzed using two-way ANOVA (group I-IX) and one-way ANOVA (group I-XVIII). If the significant differences in the groups were found, the mean flexural strengths of the groups were compared using Tukey's test at a 95 % confidence level. For Tokuyama® Rebase II Fast, the data were analyzed using three-way ANOVA (Hardener, Manufacturing Adhesive, Surface treatment). The reline material type and surface treatments significantly affected on the flexural strength (p<0.05). For each reline material, the flexural strength of the MF-MA treated group was significantly higher compared with that of the MMA treated group and the MMA treated group had higher flexural strength than the untreated group (p<0.05). For Tokuyama® Rebase II Fast, the surface treatment and manufacturing adhesive affected on the flexural strength (p < 0.05), but the hardener did not affected on the flexural strength (p > 0.05). Groups of additional surface treatment (MMA, and MF-MA) after applied with the adhesive significantly increased the flexural strength compared with the groups with only using the manufacturing adhesive (p<0.05). For the same surface treatment, the flexural strength of Unifast Trad<sup>®</sup> was significantly higher compared with Kooliner<sup>®</sup> (p<0.05). The flexural strength of Kooliner<sup>®</sup> was higher than that of Tokuyama<sup>®</sup> Rebase II Fast (p<0.05). This study suggests the application of MF-MA solutions for 15 s before relining procedure can increase the flexural strength between denture base and hard reline materials.

Field of Study: Academic Year: Prosthodontics 2018

Student's Signature ..... Advisor's Signature .....

#### ACKNOWLEDGEMENTS

This research paper was done with the help and support from many people. I greatly appreciate all those who supported me.

First, I would like to thank my advisor, Associate Professor Chairat Wiwatwarrapan, for his supporting me in any way he could.

Second, I would like to thank the staff in the Prosthodontic laboratory and Dental material science research center for their assistance.

Third, I would like to thank the Graduate school for providing me the research funds for this study.



Mongkol Puangpetch

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

# TABLE OF CONTENTS

|                                                               | Page |
|---------------------------------------------------------------|------|
| ABSTRACT (THAI)                                               | iii  |
| ABSTRACT (ENGLISH)                                            | iv   |
| ACKNOWLEDGEMENTS                                              | V    |
| TABLE OF CONTENTS                                             | vi   |
| LIST OF TABLES                                                | viii |
| LIST OF FIGURES                                               |      |
| CHAPTER I INTRODUCTION                                        |      |
| Background and rationale                                      |      |
| Research questions                                            | 1    |
| Research objective                                            | 2    |
| Research hypotheses                                           | 2    |
| Scope of the research                                         | 3    |
| Keywordsลิมาลากรณ์มหาวิทยาลัย                                 | 3    |
| Expected Benefits                                             | 3    |
| Conceptual Framework                                          | 4    |
| CHAPTER II LITERATURE REVIEW                                  | 5    |
| Denture base polymers                                         | 5    |
| Degree of conversion of heat-polymerized acrylic denture base | 6    |
| Denture lining materials (24, 28)                             | 7    |
| Factors affected on bonding to acrylic denture base materials | 9    |
| Type of denture base                                          | 9    |

| Type of denture relining materials  | 9  |
|-------------------------------------|----|
| Surface treatment                   | 10 |
| CHAPTER III METHODOLOGY             | 16 |
| Target population                   | 16 |
| Sample                              | 16 |
| Instruments                         | 17 |
| Sample preparation                  |    |
| Statistical analysis                | 22 |
| CHAPTER 4 RESULTS                   | 23 |
| CHAPTER 5 DISCUSSION AND CONCLUSION | 27 |
| Discussion                          | 27 |
| Conclusion                          | 29 |
| REFERENCES                          |    |
| APPENDIX                            |    |
| VITA                                | 56 |
| จุฬาลงกรณ์มหาวิทยาลัย               |    |
|                                     |    |

## LIST OF TABLES

| Page                                                                                            |
|-------------------------------------------------------------------------------------------------|
| Table 1. Classification of denture base followed ISO 20795-1: 2013                              |
| Table 2. Composition of acrylic denture base materials (24)                                     |
| Table 3. Composition of typical hard reline materials (24)                                      |
| Table 4. The solubility parameter and polarity of acrylic denture base and solvents             |
| in this study (30)                                                                              |
| Table 5. The product names and manufacturers of samples use in this study                       |
| Table 6. Description of experimental groups (N=10)                                              |
| Table 7. The mean flexural strength with standard deviation of each reline material             |
| and surface treatment                                                                           |
| Table 8. Two-way ANOVA of hard reline materials and the surface treatments (For                 |
| Tokuyama <sup>®</sup> rebase II Fast = without hardener)                                        |
| Table 9. Three-way ANOVA analysis of Tokuyama <sup>®</sup> Rebase II Fast                       |
| Table 10. Analysis of the data distribution                                                     |
| Table 11. Descriptive Statistics of two-way ANOVA analysis (For Tokuyama <sup>®</sup> rebase II |
| Fast = without hardener)                                                                        |
| Table 12. The Levene statistical analysis of hard reline materials and the surface              |
| treatments (For Tokuyama <sup>®</sup> rebase II Fast = without hardener)                        |
| Table 13. The Levene statistical analysis of Unifast Trad <sup>®</sup>                          |
| Table 14. One-way ANOVA analysis and Post Hoc Tests of Unifast Trad <sup>®</sup>                |
| Table 15. The Levene statistical analysis of Kooliner <sup>®</sup>                              |
| Table 16. One-way ANOVA analysis and Post Hoc Tests of Kooliner <sup>®</sup>                    |
| Table 17. The Levene statistical analysis of Tokuyama <sup>®</sup> Rebase II with hardener 40   |

| Table 18. One-way ANOVA analysis and Post Hoc Tests of Tokuyama® Rebase II with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | h  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| hardener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 40 |
| Table 19. The Levene statistical analysis of Tokuyama <sup>®</sup> Rebase II without hardener.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 43 |
| Table 20. One-way ANOVA analysis and Post Hoc Tests of Tokuyama $^{ m 	extsf{	extsf	extsf{	extsf	extsf{	extsf	extsf{	ex}	extsf{	extsf{	ex}	ex}	extsf{	extsf{	extsf	$ |    |
| without hardener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 43 |
| Table 21. The Levene statistical analysis of control group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 46 |
| Table 22. One-way ANOVA analysis and Post Hoc Tests of control group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46 |
| Table 23. The Levene statistical analysis of MMA group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 48 |
| Table 24. One-way ANOVA analysis and Post Hoc Tests of MMA group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 48 |
| Table 25. The Levene statistical analysis of MF-MA group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 50 |
| Table 26. One-way ANOVA analysis and Post Hoc Tests of MF-MA group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 50 |
| Table 27. The Levene statistical analysis of Adhesive group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52 |
| Table 28. One-way ANOVA analysis of Adhesive group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 52 |
| Table 29. The Levene statistical analysis of MMA+Adhesive group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 52 |
| Table 30. One-way ANOVA analysis of MMA+Adhesive group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52 |
| Table 31. The Levene statistical analysis of MF-MA+Adhesive group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 53 |
| Table 32. One-way ANOVA analysis of MF-MA+Adhesive group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 53 |
| Table 33. Descriptive Statistics of three-way ANOVA analysis of Tokuyama <sup>®</sup> Rebase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Fast                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 53 |
| Table 34. The Levene statistical analysis of Tokuyama <sup>®</sup> Rebase II Fast (Hardener,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |
| Manfacuture Adhesive, Surface treatment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55 |

# LIST OF FIGURES

| Page                                                                         | ÷                    |
|------------------------------------------------------------------------------|----------------------|
| Conceptual Framework                                                         | ٢                    |
| 2. Structural formula of methyl methacrylate13                               | ,                    |
| 3. Structural formula of acetone14                                           | -                    |
| 1. Structural formula of ethyl acetate14                                     |                      |
| 5. Structural formula of methyl formate15                                    | )                    |
| 5. Structural formula of methyl acetate15                                    | )                    |
| 7. Specimen preparation. [a] Heat-cured acrylic denture base (64x10x2 mm)    |                      |
| epared in a denture flask. [b] The specimens were placed in split metal mold |                      |
| 3.3 mm), apply surface treatment agent and relined with a relining material. |                      |
| ed lightly topped with 1 kg iron. [d] flexural strength test                 | 1                    |
|                                                                              | Conceptual Framework |



#### CHAPTER I

#### INTRODUCTION

#### Background and rationale

Alveolar ridge, supported prosthesis, are continuously resorbed (1), resulting in loss of stability and pain in the tissue under prosthesis. Patients need to reline denture for good stability and retention (2-4)

Relining the denture can be done directly and indirectly. Direct hard relines are autopolymerizing hard reline materials. Using direct hard relines is quick, easy and do not need the laboratory procedures. Patients can immediately use the prosthesis. However, These materials have many disadvantages because of the reline odor, unpleasant taste and tissue irritations under the denture base due to residual monomers and higher temperatures during polymerization (5).

Adhesion failure of reline materials to denture base also causes accumulation of bacteria, color change (5-7). It also reduces the strength of the denture base (5, 6, 8, 9). There are many methods to increase the bond strength of the reline materials and denture base, such as the surface grinding of the denture base (10), the abrasion with the surface particles (11, 12), and the application of various chemical agents such as methyl methacrylate (MMA) (5, 13-15), methylene chloride (16, 17), chloroform (5, 15, 17), acetone (15, 16), ethyl acetate (18), methyl formate (MF) (17), methyl acetate (MA) (17) and MF-MA (19, 20), etc. Chloroform and methylene chloride are a carcinogen (17). MMA is irritating and allergic (21).

#### **Research** questions

1. Does various chemical surface treatment affect on the flexural strength of the relined denture base material with the same hard reline materials?

2. Does the type of hard reline materials affect on the flexural strength of the relined denture base material with the same surface treatment condition?

#### Research objective

To evaluate the effect of MF-MA surface treatment on flexural strength between denture base and hard reline materials.

#### Research hypotheses

1.  $H_0$ : The flexural strength of relined denture base groups with various chemical surface treatments were not significantly different from that of the untreated surface group at the 95% confidence level.

H<sub>1</sub>: the flexural strength of relined denture base groups with various chemical surface treatments were significantly different from that of the untreated surface group at the 95% confidence level.

2.  $H_0$ : There were not significantly different flexural strength between the relined denture base groups with various chemical surface treatments at the 95% confidence level.

H<sub>1</sub>: There were significantly different flexural strength between the relined denture base groups with various chemical surface treatments at the 95% confidence level.

3. H<sub>0</sub>: In the same chemical surface treatments, there is no significant difference on the flexural strength of the relined denture base groups with various hard reline materials at the 95% confidence level.

H<sub>1</sub>: In the same chemical surface treatments, there is a significant difference on the flexural strength of the relined denture base groups with various hard reline materials at the 95% confidence level.

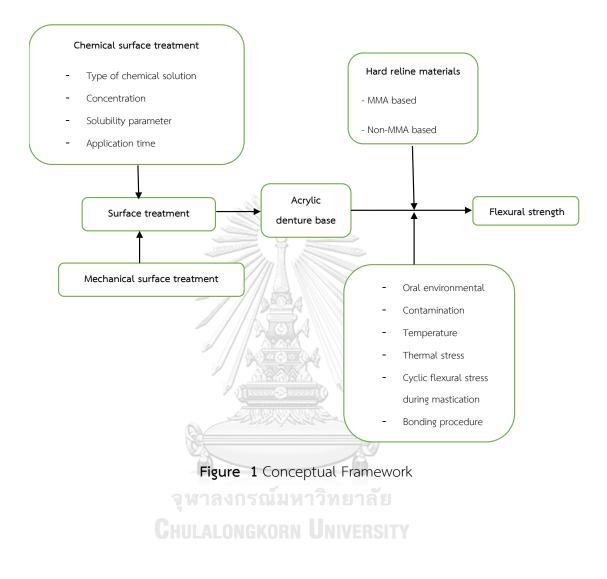
4.  $H_0$ : In Tokuyama® Rebase II Fast groups with the same chemical surface treatments, there were not significantly different flexural strength between the relined denture base groups with hardener and without hardener treatments at the 95% confidence level.

 $H_1$ : In Tokuyama® Rebase II Fast groups with the same chemical surface treatments, there were significantly different flexural strength between the relined denture base groups with hardener and without hardener treatments at the 95% confidence level.

#### Scope of the research

- 1. This research is an in-vitro study
- The three types of commercial hard reline materials used in this study are Unifast Trad<sup>®</sup>, Kooliner<sup>®</sup> and Tokuyama<sup>®</sup> Rebase II Fast.
- 3. A single investigator performed this study

# Keywords


| Acrylic denture base          |
|-------------------------------|
| Flexural strength             |
| Hard reline materials         |
| Methyl formate-methyl acetate |
| Methyl methacrylate           |

จุหาลงกรณ์มหาวิทยาลัย

# Expected Benefits GHULALONGKORN UNIVERSITY

- 1. To understand the flexural strength between denture base and hard reline materials after use various chemical surface treatment.
- 2. The results of this study can be used clinically in the selection of chemical agent to improve flexural strength between denture base and hard reline materials.

## **Conceptual Framework**



#### CHAPTER II

#### LITERATURE REVIEW

#### Denture base polymers

Denture base can be classified according to their chemical composition and curing methods followed ISO 20795-1: 2013 (22) The classification is shown in table 1.

| Туре | Class | Description                                                   |  |
|------|-------|---------------------------------------------------------------|--|
| 1    | 1     | Heat-processing polymers, powder and liquid                   |  |
| 1    | 2     | Heat-processing (plastic cake)                                |  |
| 2    | 1     | Autopolymerised polymers, powder and liquid                   |  |
| 2    | 2     | Autopolymerised polymers (powder and liquid pour type resins) |  |
| 3    | -     | Thermoplastic blank or powder                                 |  |
| 4    | -     | Light-activated materials                                     |  |
| 5    | -     | Microwave-cure materials                                      |  |

Table 1. Classification of denture base followed ISO 20795-1: 2013

จุฬาลงกรณ์มหาวิทยาลัย

**CHULALONGKORN UNIVERSITY** The chemical compositions of acrylic denture base materials are shown in table 2. Heat-polymerized acrylic resin is commonly used for denture base fabrication. The powder contains pre-polymerized poly(methyl methacrylate) (PMMA) resin and benzoyl peroxide. Benzoyl peroxide is a polymerization initiator. The liquid contains MMA monomer, hydroquinone, and glycol dimethacrylate. Hydroquinone is an inhibitor that prevents MMA polymerization during storage. Glycol dimethacrylate, the cross-linking agent, is incorporated into the growing polymer chains by unit two polymer chains. The polymerization of MMA in heat-polymerized acrylic resin is achieved by heat (23). The polymer forms a net-like structure that provides increased resistance to deformation.

Auto-polymerized acrylic resin is usually used as a reline or repair material of denture base and as a provisional restoration for fixed prosthesis. The addition of a tertiary amine to the denture base liquid allows the resin to auto-polymerize. Tertiary amine is an activator that causes decomposition of benzoyl peroxide and produces free radicals at room temperature. Because of the oxidation of the tertiary amine, the auto-polymerized acrylic resin generally has low color stability, but this can be minimized by the addition of stabilizing agents to prevent oxidation (24, 25).

| Powder | Polymer             | Poly(metyl metacrylate) beads                      |
|--------|---------------------|----------------------------------------------------|
|        | Initiator           | Benzoyl peroxide (approximately 0.5%)              |
|        | Pigments            | Salts of cadmium or iron or organic dyes           |
| Liquid | Monomer             | Methyl methacrylate                                |
|        | Cross-linking agent | Ethylene glycol dimethacrylate (approximately 10%) |
|        | Inhibitor           | Hydroquinone                                       |
|        | Activator*          | N N'-dimethyl-p-toluidine (approximately 1%)       |
|        |                     |                                                    |

Table 2. Composition of acrylic denture base materials (24)

\* Only in self-curing materials.

#### Degree of conversion of heat-polymerized acrylic denture base

Each monomer has at least one chemical group that participates in the polymerization reaction. However, not all monomers may be able to react completely, and any unreacted monomer is called *residual monomer*. The number of polymerized monomer was calculated by the *degree of conversion* (23). Polymers with high degrees of conversion have low levels of residual monomer (23). Proper processing techniques minimize residual monomer content in denture bases and keep residual monomer in

the range of 1–3% which is well tolerated by most individuals (26). As good as, ISO specification 20795-1: 2013 are determined the maximum residual monomer of denture base type 1, 3, 4 and 5 not more than 2.2% but type 2 (auto-polymerized acrylic resin) not more than 4.5% (22). Residual monomer may diffuse from acrylic resin resulting in irritation or allergic side effects. For acrylic resins to induce a primary irritation or sensitization, free monomer must be leached out. There are well-documented reports of both hypersensitivity and local irritation caused by methyl methacrylate monomer (27).

The residual monomer was calculated according to the equation:

Residual monomer (% mass fraction) =  $\frac{mMMA}{mSAMPLE} \times 100$ 

When *mMMA* is the total quantity of MMA in the sample solution, in micrograms and *mSAMPLE* is the mass of sample, in micrograms (22).

### Denture lining materials (24, 28)

Denture lining materials can be divided into three groups:

- 1. Hard reline materials; หาลงกรณ์มหาวิทยาลัย
- 2. Tissue conditioners; ULALONGKORN UNIVERSITY
- 3. Soft lining materials.

Hard reline materials are used to add on the fitting surface of a denture base because of reduced resorption of the residual alveolar ridge and improved retention of the denture. The criteria for relining are:

- poor retention or stability,
- collapse of the vertical dimension of the occlusion,
- degradation of the denture base,
- lack of denture extension into muco-buccal fold areas.

The reline can be achieved either with an auto-polymerized acrylic resin at the chairside, or heat-polymerized acrylic by sent to a dental laboratory. The auto-polymerized acrylic reline resins were two types, with constituents as listed in table 3. The reason for using the second type of reline material is that MMA can be very irritant to soft tissue and sensitize the patient. Poly(ethyl methacrylate) (PEMA) and butyl methacrylate are less irritating to the patient, but have the disadvantage that they cause a reduction in the glass transition temperature ( $T_g$ ) which increases the possibility of dimensional instability.

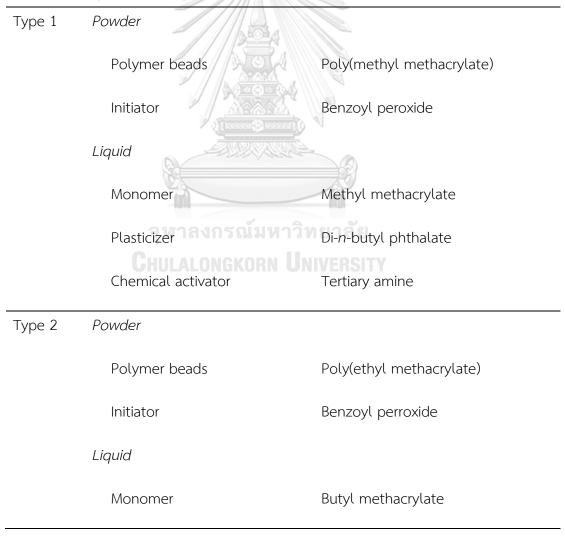



Table 3. Composition of typical hard reline materials (24).

Cross-linking agent

Di-methacrylate

Chemical activator

Tertiary amine

#### Factors affected on bonding to acrylic denture base materials

The factors affected on bond strength of denture base and denture reline material had been investigated. Many studies found that type of denture base, type of denture reline material, type of surface treatment affected on bond strength (6, 8, 16, 25, 29)

#### Type of denture base

Poly(methyl methacrylate) resins have been preferred as denture base resins because of their physical and esthetic properties as well as the material's availability, reasonable cost, and ease of manipulation (25). In previous study revealed that high cross-linked denture base or denture teeth polymers restrict the penetration of monomers because of high density polymer network can cause decreasing of bond strength between denture base and denture relining material (8, 16).

## Type of denture relining materials

Differences of components in a denture relining material affected on bond strength. In previous studies were found that MMA based reline resin had better adhesion compared with non-MMA-based reline resin because of lower molecular weight of MMA monomer in the denture lining material. The monomers with lower molecular weight can better diffuse, penetrate and form an interpenetrating polymer network than the monomers with high molecular weight (6).

A weak bond strength of relined denture base could accumulate bacteria, promote staining and result in complete delamination of denture base and denture reline materials. In addition, the relined denture must exhibit satisfactory strength to prevent fracture during function (7). Consequently, the adhesion between denture base and reline materials is necessary in the success of the relining procedure (5).

#### Surface treatment

Surface treatment of the denture base before relining has been suggested to improve the bond strength of denture base and denture reline material. This treatment can be classified into mechanical and chemical surface treatment.

#### Mechanical surface treatment

The preparation of denture base with fine tungsten carbide bur also improves the bond strength of denture base and reline material by producing a rough surface (10). However, the polishing with 240-grit silicone carbide paper and air abrasion with 50-µm aluminum oxide particles prior relining did not improve the bond strength between some groups of denture reline materials and denture base acrylic resin

(11).

## จุหาลงกรณ์มหาวิทยาลัย

## Chemical surface treatment

Takahashi et al (2001) revealed that the application of various chemical agents could improve the bond strength between denture base and relining materials (11). The action of nonpolymerizable solvents such as dichloromethane are dissolving and swelling the surface layer of the denture base. This process promotes the diffusion of denture reline monomers and the formation of a more extensive interwoven polymer network (11). Denture base or denture reline monomers are polymerizable solvents such as MMA and isobuthyl methacrylate monomers. The denture base or denture reline monomers can improves bond strength by dissolving the denture base (11), the penetration of monomers from reline materials into the denture base, and then polymerization with other monomer molecules in the reline material.

Manufacturing adhesive or bonding agent can improve the bond strength of the denture base and denture reline materials in comparison to untreated specimens. Thus, the manufacturer recommend to use bonding agent prior to relining. The various composition manufacturing adhesive or bonding agent of such as MMA (5, 11, 13) tetrahydrofurfuryl methacrylate (THFMA) (11), 1,6-hexa-nediol dimethacrylate (HDDMA) (11), acetone (5, 11). For example, Tetrahydrofurfuryl methacrylate (THFMA) in Triad bonding agent can increase viscosity of its mix with MMA. Acetone in GC bonding agent acts likely nonpolymerizable solvents (11).

Arima et al (1996) investigated the effect of resin surface primers for reline acrylic resins on the surface texture of denture base resin by use of scanning electron microscopy. The results of this study suggest the importance of denture base resin surface treatment with the related primer before relining the denture base. Primers that consist of solvents may dissolve the surface of the denture base and promote penetration of the reline acrylic resin into the denture base, these reactions may result in formation of a mixed layer of reline acrylic resin and denture base resin. (29) In addition, factors that need to be considered in selecting chemical surface treatment to improve bond strength are solubility parameter and polarity.

#### Solubility parameter and polarity

Asmussen and Peutzfeldt (2001) found that the dissolution efficiency depend on relative closeness of solubility parameter and polarity of PMMA and the solvents (17). The solubility parameter and polarity of solvent this study are presented in Table 4 (30).

Table 4. The solubility parameter and polarity of acrylic denture base and solventsin this study (30)

| Name                      | Solubility parameter (MPa <sup>1/2</sup> ) | Polarity     |
|---------------------------|--------------------------------------------|--------------|
| Poly(methyl methacrylate) | 18.3                                       | Methyl ester |
| Methyl methacrylate       | 18                                         | Methyl ester |
| Methyl formate            | 20.9                                       | Methyl ester |
| Methyl acetate            | 19.6                                       | Methyl ester |
| Ethyl acetate             | 18.2                                       | Ethyl ester  |
| Acetone                   | 19.7                                       | Ketone       |

Chemical agents that have been used to improve the denture base include MMA, chloroform, methylene chloride, acetone, ethyl acetate, MF and MA.

#### Methyl methacrylate

Methyl methacrylate ( $CH_2=C(CH_3)COOCH_3$ ) is a clear colorless, low viscosity liquid with a boiling point of 100.3 °C and a distinct odor exaggerated by a relatively high vapor pressure at room temperature (24). The structure formula of methyl methacrylate is shown in Figure 1.

The application of MMA monomer and chloroform provided higher transverse bond strength compared with the application of acetone and isobuthyl methacrylate (5). In addition, adequate wetting time of MMA (for 180 seconds) is important to increase the bond strength of repaired acrylic resin because of MMA dissolves the heatpolymerized PMMA surface (13).

However, MMA has the potential adverse effects such as mucosal irritation or allergic reaction to patients and dentists. (21)

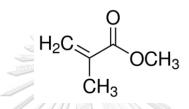



Figure 2. Structural formula of methyl methacrylate

#### Chloroform and Methylene chloride

The use of methylene chloride  $(CH_2Cl_2)$  or acetone prior to denture base repair can improve the shear bond strength of denture base (16). In addition, the treating the fractured surface of denture base with chloroform  $(CHCl_3)$  before repair denture base can improve the transverse strength (31). However, chloroform and methylene chloride are carcinogens which should not be used in human (32, 33).

#### Acetone

Acetone  $(CH_3-CO-CH_3)$  is a clear, colorless liquid. It is used as a solvent for fats, oils, waxes, resins, plastics and varnishes for making other chemicals and nail polish remover (34), the structural formula of acetone is shown in Figure 2.

Acetone in manufacturing bonding agent acts likely nonpolymerizable solvent to improve the bond strength of denture base and reline materials (11).

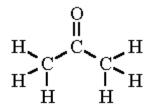



Figure 3. Structural formula of acetone

#### Ethyl acetate

Ethyl acetate  $(CH_3COOC_2H_5)$  is a clear colorless liquid. It is used in glues, nail polish removers, decaffeinating tea and coffee (35), the structural formula of ethyl acetate is shown in Figure 3.

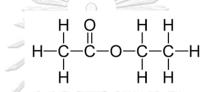



Figure 4. Structural formula of ethyl acetate

Acetone and ethyl acetate are presented in the composition of Tokuyama<sup>®</sup> Rebase II Fast adhesive which is material in this study.



# Methyl formate and Methyl acetate

Methyl formate (HCOOCH<sub>3</sub>) or methyl methanoate, is the methyl ester of formic acid. It is a colorless liquid with an ethereal odor, high vapor pressure, and low surface tension (36, 37). The structural formula of methyl formate is shown in Figure 4.

Methyl acetate (CH<sub>3</sub>COOCH<sub>3</sub>) or methyl ethanoate, is a carboxylate ester. It is a flammable liquid. It is occasionally used as a solvent, being weakly polar and lipophilic, but its close relative ethyl acetate is a more common solvent being less toxic and less soluble in water (38, 39). The structural formula of methyl formate is shown in Figure 5. Asmussen et al., 2000 (17) found that methyl formate and methyl acetate improved the bond strength between the hard reline materials and the denture base, which is close to methylene chloride and higher than ethyl acetate.

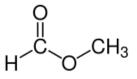



Figure 5. Structural formula of methyl formate

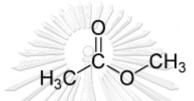



Figure 6. Structural formula of methyl acetate

#### Methyl formate- methyl acetate (MF-MA)

Thunyakitpisal et al., 2011 (19), found that the application of MF-MA solution at the denture base surface for 15 seconds before repairing the denture could significantly increase the flexural strength. In addition, Osathananda and Wiwatwarrapan, 2016 (20) also found that the application of MF-MA solution increased the shear strength between the hard reline and denture base compared to the adhesive which is recommended by the manufacturer.

There are many types of hard reline materials used in Thailand such as Kooliner<sup>®</sup>, Tokuyama<sup>®</sup> Rebase II Fast, Unifast Trad<sup>®</sup>. No research has not been shown on the effect of this MF-MA surface treatment of the denture base and hard reline materials on the flexural strength.

This study aims to evaluate the effect of MF-MA surface treatment on the flexural strength between the denture base and hard reline materials.

# CHAPTER III METHODOLOGY

## Target population

Heat -polymerized acrylic resin

## Sample

Relined denture base 180 specimens

Table 5. The product names and manufacturers of samples use in this study.



| Product name                    | Materials               | Manufacturer          |
|---------------------------------|-------------------------|-----------------------|
| Meliodent®                      | Powder:PMMA             | Kulzer, Germany       |
|                                 | Liquid: MMA             |                       |
| Kooliner®                       | Powder:PEMA             | GC America, USA       |
|                                 | Liquid: IBMA            |                       |
| Tokuyama <sup>®</sup> Rebase II | Powder:PEMA             | Tokuyama Dental Corp, |
| Fast                            | Liquid: AAEMA, 1,9-NDMA | Japan                 |
| Unifast Trad <sup>®</sup>       | Powder:PMMA             | GC America, USA       |
|                                 | Liquid: MMA             |                       |
| _                               |                         |                       |
| Adhesive-Tokuyama <sup>®</sup>  | ethyl acetate& acetone  | Tokuyama Dental Corp, |
| Rebase II Fast                  |                         | Japan                 |
| Methyl formate                  | Methyl formate          | Merck Schuchardt OHG, |
|                                 | ANTA                    | Germany               |
| Methyl acetate                  | Methyl acetate          | Merck KGaA, USA       |

PMMA, Poly(methyl methacrylate); MMA, Methyl methacrylate; PEMA, Poly(ethyl methacrylate); IBMA, Isobutyl methacrylate; AAEMA, 2-(Acetoacetoxy) ethyl methacrylate; 1,9-NDMA, 1,9 Nonanediol dimethacrylate.

#### Instruments

- 1. Heat-polymerized curing unit 'EWL 5518' (Kavo, Germany)
- 2. Hydraulic flask pressure 'EWG 5414' (Kavo, Germany)
- 3. Universal testing machine (SHIMADZU, EZ-S 500N model, Japan)
- 4. Automatic grinding and polishing unit (Minitech 233, Metallography India, Maharashtra, India)

- 5. Digital Vernier caliper (Mitutoyo, Japan)
- 6. Incubator 37°C (Contherm Scientific Ltd., New Zealand)
- 7. Hanau flask
- 8. Rectangular stainless-steel mold
- 9. Teflon sheet
- 10. Dental stone
- 11. Metallographic grinding paper P500 and P1200 (TOA, Thailand)

#### Sample preparation

One-hundred eighty specimens of heat-cured acrylic denture base (Meliodent®) (64x10x2 mm) were prepared in a denture flask (Figure 6 [a]) as recommended from ISO 20795-1 (2013). The specimens were finished with 500-grit silicon carbide paper using an automatic grinding and polishing unit (Minitech 233, Metallography India, Maharashtra, India).

The specimens were randomly divided into groups as shown in Table 6, and then were placed in split metal mold (64x10x3.3 mm) (Figure 6 [b]) and applied the chemical surface treatment. For MMA surface treatment, Unifast Trad® (MMA) liquid was applied for 180 s (by brush 1 time per 5 seconds) and then wait for 30 seconds to evaporate. For MF-MA surface treatment, MF-MA solution (25:75 by volume) was applied for 15 s (by brush 1 time per 5 seconds) and then wait for 30 seconds to evaporate. For adhesive surface treatment, Tokuyama® Rebase II Fast adhesive was applied following the manufacturer instructions. After that, the specimens were relined with a relining material (Figure 6 [c])

The specimens were randomly divided into groups as shown in Table 6, and then were placed in split metal mold (64x10x3.3 mm) (Figure 6 [b]) and relined with a relining material (Figure 6 [c]).

The specimens were randomly divided into 18 groups:

• Group I, II, III relined with Unifast trad®.

- Group IV V, VI relined with Kooliner®;
- Group VII, VIII, IX relined with Tokuyama® Rebase II Fast (without adhesive, with hardener);
- Group X, XI, XII relined with Tokuyama® Rebase II Fast (with adhesive and hardener);
- Group XIII, XIV, XV relined with Tokuyama® Rebase II Fast (without adhesive and hardener);
- Group XVI, XVII, XVIII relined with Tokuyama® Rebase II Fast (with adhesive, without hardener);

The reline surface of specimens were finished with a 500-grit new silicon carbide paper using an automatic grinding and polishing unit (Minitech 233, France) and stored in a water at  $37\pm1^{\circ}$ C for  $48\pm2$  hrs. The flexural strength was measured by universal testing machine (SHIMADZU, EZ-S 500N model, Japan). The force was increased on the loading plunger from zero, uniformly, using a constant displacement rate of  $5\pm1$  mm/min and span of 50 mm and 500 N load cell until the specimen breaks (Figure 6 [d]). Flexural strength (MPa) was calculated using the following equations:

CHULALONGKORN UNIVERSITY  
$$\delta = \frac{3Fl}{2bh^2}$$

| Where | $\delta$ =flexural strength (MPa)      |
|-------|----------------------------------------|
|       | F = the load (N) at fracture           |
|       | l = the distance between supports (mm) |
|       | b = mean of specimen width (mm)        |
|       | h = mean of specimen height (mm)       |

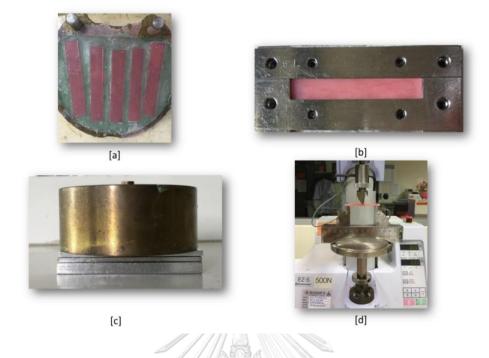



Figure 7. Specimen preparation. [a] Heat-cured acrylic denture base (64x10x2 mm) were prepared in a denture flask. [b] The specimens were placed in split metal mold (64x10x3.3 mm), apply surface treatment agent and relined with a relining material. [c] pressed lightly topped with 1 kg iron. [d] flexural strength test.



Table 6. Description of experimental groups (N=10)

| Group | Reline                    |       | Manufacturing |               |          |
|-------|---------------------------|-------|---------------|---------------|----------|
|       | materials                 | MMA   | MF-MA         | Manufacturing | hardener |
|       |                           | 180 s | 15 s          | adhesive      |          |
| I     | Unifast trad <sup>®</sup> | -     | -             | -             | -        |
| II    | Unifast trad <sup>®</sup> | +     | -             | -             | -        |
| III   | Unifast trad <sup>®</sup> | -     | +             | -             | -        |
| IV    | Kooliner®                 | -     | -             | -             | -        |
| V     | Kooliner®                 | +     | -             | -             | -        |
| VI    | Kooliner®                 | -     | +             | -             | -        |

Chill al ongkorn University

| VII   | Tokuyama <sup>®</sup>     | -   | + |
|-------|---------------------------|-----|---|
|       | Rebase II Fast            |     |   |
| VIII  | Tokuyama® + -             | -   | + |
|       | Rebase II Fast            |     |   |
| IX    | Tokuyama <sup>®</sup> - + | -   | + |
|       | Rebase II Fast            |     |   |
| Х     | Tokuyama <sup>®</sup>     | +   | + |
|       | Rebase II Fast            |     |   |
| XI    | Tokuyama <sup>®</sup> + - | +   | + |
|       | Rebase II Fast            |     |   |
| XII   | Tokuyama® - +             | +   | + |
|       | Rebase II Fast            |     |   |
| XIII  | Tokuyama® -               | -   | - |
|       | Rebase II Fast            |     |   |
| XIV   | Tokuyama <sup>®</sup> + - | -   | - |
|       | Rebase II Fast            |     |   |
| XV    | Tokuyama® - +             | -   | - |
|       | Rebase II Fast            |     |   |
| XVI   | Tokuyama <sup>®</sup>     | +   | - |
|       | Rebase II Fast            |     |   |
| XVII  | Tokuyama® + -             | Y + | - |
|       | Rebase II Fast            |     |   |
| XVIII | Tokuyama <sup>®</sup> - + | +   | - |
|       | Rebase II Fast            |     |   |

#### Statistical analysis

The data were analyzed using SPSS software version 22.0 (SPSS Inc., Chicago, IL, USA). The results were statistically analyzed by two-way ANOVA (group I-IX) (Type of reline: Unifast trad<sup>®</sup>, Kooliner<sup>®</sup>, Tokuyama<sup>®</sup> Rebase II Fast ; Surface treatment: untreat, MMA, MF-MA) and one-way ANOVA (group I-XVIII, the groups in each row and each column) If the significant differences were found, the mean flexural strengths of the groups were compared using Tukey's HSD Post-hoc test at a 95% confidence level. For Tokuyama<sup>®</sup> Rebase II Fast, the data were analyzed by three-way ANOVA (Hardener: with and without Hardener; Manfacuture Adhesive: with and without adhesive; Surface treatment: untreat, MMA, MF-MA)



**Chulalongkorn University** 

# CHAPTER 4 RESULTS

#### Result

The mean flexural strengths and standard deviation of each group (n=10) of Unifast Trad<sup>®</sup>, Kooliner<sup>®</sup>, Tokuyama<sup>®</sup> Rebase II Fast with Hardener and Tokuyama<sup>®</sup> Rebase II Fast without Hardener, respectively were presented in Table 7.



Table 7. The mean flexural strength with standard deviation of each reline materialand surface treatment.

| Surface       | Surface Reline materials   |                            |                            |                            |  |
|---------------|----------------------------|----------------------------|----------------------------|----------------------------|--|
| treatment     | Unifast                    | Kooliner®                  | Tokuyama®                  | Tokuyama®                  |  |
|               | Trad®                      |                            | Rebase II with             | Rebase II                  |  |
|               | 58                         |                            | hardener                   | without                    |  |
|               |                            | STATION STATE              |                            | hardener                   |  |
| Control       | 79.56±2.35 <sup>a, A</sup> | 72.28±2.47 <sup>a, B</sup> | 60.05±2.45 <sup>a, C</sup> | 60.18±2.52 <sup>a, C</sup> |  |
| MMA           | 88.94±3.72 <sup>b, A</sup> | 76.42±3.18 <sup>b, B</sup> | 64.60±2.22 <sup>b, C</sup> | 64.95±1.99 <sup>b, C</sup> |  |
| MF-MA         | 97.53±2.36 <sup>с, A</sup> | 81.09±2.17 <sup>c, B</sup> | 71.97±2.48 <sup>c, C</sup> | 72.64±1.42 <sup>c, C</sup> |  |
| Adhesive      | CHULALON                   | gkorn Uni                  | 66.89±1.54 <sup>b, A</sup> | 65.70±2.63 <sup>b, A</sup> |  |
| MMA+Adhesive  | -                          | -                          | 71.99±2.39 <sup>c, A</sup> | 71.52±2.48 <sup>c, A</sup> |  |
| MFMA+Adhesive | -                          | -                          | 76.32±2.88 <sup>d, A</sup> | 77.41±2.87 <sup>d, A</sup> |  |

\*\*\*Same uppercase letter indicates no significant difference between the group in each row (p>0.05)

\*\*\*Same lowercase letter indicates no significant difference between the group in each column (p>0.05)

The results were shown that all data were normal distributed in all groups (p>0.05) (Table 10 in appendix). The results of two-way ANOVA of Group I-IX (Table 8) were showed that the surface treatment and type of reline materials affected on the

flexural strength (p< 0.05). There is an interaction effect on the flexural strength between the two factors of hard reline materials and the surface treatments (p<0.05).

Table 8. Two-way ANOVA of hard reline materials and the surface treatments (For Tokuyama<sup>®</sup> rebase II Fast = without hardener).

| Source            | Type III sum of        | df | Mean       | F         | Ρ       |
|-------------------|------------------------|----|------------|-----------|---------|
|                   | squares                |    | square     |           |         |
| Corrected model   | 10568.714 <sup>a</sup> | 8  | 1321.089   | 204.365   | < 0.005 |
| Intercept         | 534529.776             | 1  | 534529.776 | 82688.690 | < 0.005 |
| Product           | 7775.142               | 2  | 3887.571   | 601.385   | < 0.005 |
| SurfaceTx         | 2569.490               | 2  | 1284.745   | 198.743   | < 0.005 |
| Product*SurfaceTx | 224.082                | 4  | 56.021     | 8.666     | < 0.005 |
| Error             | 523.613                | 81 | 6.464      |           |         |
| Total             | 545622.103             | 90 | B          |           |         |
| Corrected total   | 11092.327              | 89 |            |           |         |
|                   | Allerer and a second   |    |            |           |         |



For each material (Table 7), the flexural strength of surface treatment groups were significantly higher than that of the control group (p<0.05). The MF-MA treated group also had significantly higher flexural strength than the MMA treated group in each hard reline material (p<0.05).

For the same surface treatment (Table 7), the flexural strength of Unifast Trad<sup>®</sup> was significantly higher than that of Kooliner<sup>®</sup> (p<0.05), and the flexural strength of Kooliner<sup>®</sup> also was significantly higher than that of Tokuyama<sup>®</sup> Rebase II with and without hardener (p<0.05), respectively.

For Tokuyama<sup>®</sup> Rebase II with and without hardener, The results of three-way ANOVA (Table 9) were showed that the surface treatment and manufacturing adhesive

affect on flexural strength (p<0.05) but the hardener do not affect on flexural strength. There is no interaction between hardener-surface treatment, hardener-adhesive, surface treatment-adhesive (p>0.05). There is no interaction between hardener-surface treatment-adhesive (p>0.05).

| Source             | Type III sum of | df   | Mean       | F          | Р       |
|--------------------|-----------------|------|------------|------------|---------|
|                    | squares         | 1220 | square     |            |         |
| Corrected model    | 3693.750°       | 11   | 335.795    | 60.193     | < 0.005 |
| Intercept          | 566148.476      | 1    | 566148.476 | 101484.240 | < 0.005 |
| Hardener           | .273            | 1    | .273       | .049       | > 0.005 |
| SurfaceTx          | 2600.040        | 2    | 1300.020   | 233.033    | < 0.005 |
| Adhesive           | 1046.189        | 1    | 1046.189   | 187.533    | < 0.005 |
| Hardener*SurfaceTx | 10.401          | 2    | 5.201      | .932       | > 0.005 |
| Hardener*Adhesive  | 2.431           | 1    | 2.431      | .436       | > 0.005 |
| SurfaceTx*Adhesive | 30.429          | 2    | 15.215     | 2.727      | > 0.005 |
| Hardener*SurfaceTx | 3.987           | 2    | 1.993      | .357       | > 0.005 |
| *Adhesive          | Ch.             |      | 10         |            |         |
| Error              | 602.498         | 108  | 5.579      |            |         |
| Total 🧃            | 570444.724      | 120  |            |            |         |
| Corrected total    | 4296.248        | 119  |            |            |         |

Table 9. Three-way ANOVA analysis of Tokuyama<sup>®</sup> Rebase II Fast.

For Tokuyama<sup>®</sup> Rebase II with and without hardener (Table 7), there were no significant differences in the mean flexural strength between the groups of with and without hardener (p>0.05). Additional surface treatment (MMA, and MF-MA) with the adhesive groups significantly increased the flexural strength compared with the groups with only using the manufacturing adhesive. (p<0.05). The MF-MA+Adhesive treated group also had significantly higher flexural strength than the other groups (p<0.05). The

orders of the flexural strength of various groups were MF-MA+Adhesive>MMA+Adhesive, MF-MA>Adhesive, MMA>Control, respectively.



CHULALONGKORN UNIVERSITY

# CHAPTER 5 DISCUSSION AND CONCLUSION

#### Discussion

In this study, the flexural strength was used to compare the bond strength of relined denture base with the difference surface treatment and hard reline materials. Vallittu *et al.*, 1994 concluded that the MMA wetting time of 180 seconds was recommended to strengthen the repaired acrylic resin (13). In addition, Thunyakitpisal *et al.*, (2011) was found that the application of MF-MA solution at the denture base for 15 seconds before the repairing could significantly increase the flexural strength (19). For these reason, the surface treatment with MMA 180 seconds and MF-MA for 15 seconds were used to improve the bonding between hard reline and denture base materials in this study. Unifast<sup>®</sup> and Kooliner<sup>®</sup> do not have any adhesive from the manufacturer, thus the groups of these reline materials were not applied the adhesive.

For each hard reline material, the mean flexural strength of MF-MA treated groups were significantly higher than that of MMA-treated group and the flexural strength of MMA-treated groups also were significantly higher than that of the untreated groups. (p<0.05) The bonding mechanism of relined denture base was explained that the solvents or monomers in the surface treatment dissolved and swelled the surface of denture base and evaporated causing of swellen surface layers. Next, the monomer in the reline material diffused and penetrated into the pores of the denture base and polymerized form an interpenetrating polymer network (40). Three solvents were used for the denture base surface treatment (MF-MA, MMA, and Tokuyama Rebase II adhesive (ethyl acetate and acetone)). The dissolution efficiency can be explained by the relative closeness of solubility parameters and polarities of

PMMA and the solvents. The solubility parameters of various solvents are closed to the acrylic denture base (PMMA, 18.3 MPa<sup>1/2</sup>). These solubility parameters of MMA, MF, MA, ethyl acetate, and acetone are 18.0, 20.9, 19.6, 18.2 and 19.7 MPa<sup>1/2</sup>, respectively. Based on these results, the first null hypothesis was rejected.

For each hard reline material, the mean flexural strength of MF-MA treated group was significantly higher than that of MMA treated group and manufacturer adhesive treated group (for Tokuyama<sup>®</sup> Rebase II Fast) (*p*<0.05) MF, MA and MMA have similar polarities due to their methyl ester groups that enhance their ability to soften the acrylic denture base while the other solvents have different functional groups. Acetone has ketone group. Ethyl acetate is being ethyl ester. The dissimilar polarity of ethyl acetate and acetone to PMMA is likely to bring these compounds out of the range of effective solubility. In addition, the molecular weight of solvent has an effect on the softening efficacy which lower molecular weight promotes the faster kinetics of diffusion. MF (60.05 Da), MA (74.08 Da), acetone (58.08 Da), and ethyl acetate (88.11 Da) have lower molecular weight than MMA (100.12 Da) that promotes greater solubility to the denture base (41).

The boiling point of solvents also affects to the bonding process that lower boiling point of solvent causes an easier evaporation and takes less chair-time. Methyl formate (31.8°C) has the least boiling point compared to the other solvents. Methyl acetate (56.9°C) and acetone (57°C) have a similar boiling point. Ethyl acetate and MMA have a higher boiling point of 77.1°C, 101°C, respectively. A higher molecular weight and boiling point of MMA might be provided lower solubility to the acrylic denture base material compared to MF-MA solution. Ethyl acetate and acetone (in Tokuyama<sup>®</sup> Rebase II Fast adhesive) has similar solubility parameter compared to PMMA but they have different functional groups in their chemical structure. Besides, ethyl acetate has a higher molecular weight and boiling point compared to MF-MA solution and acetone. Acetone has many requirements to promote PMMA dissolution similar to MF-MA except the different functional group in chemical structure. The second null hypothesis was rejected

For the same surface treatment, the flexural strength of Unifast Trad<sup>®</sup> relined groups was significantly higher compared with those of the Kooliner<sup>®</sup> and Tokuyama Rebase II relined groups. The monomer (in liquid part) with lower molecular weight can diffuse and penetrate and form an interpenetrating polymer network better than that with high molecular weight. The Unifast Trad<sup>®</sup> liquid contains MMA (100.12 Da) that are lower in molecular weight compared with the IBMA (142.20 Da) in Kooliner, or AAEMA (214.21 Da) and 1,9 NDMA (296.40 Da) in Tokuyama<sup>®</sup> Rebase II Fast (42). The third null hypothesis was also rejected.

For Tokuyama<sup>®</sup> rebase II Fast, there was no significant difference on the flexural strength between Tokuyama<sup>®</sup> rebase II Fast with and without hardener. Yatabe M et al. (2001) reported that reducing agent help removing oxygen from the free radical on the surface oxygen-inhibited layer of the reline material. Thus, allow the polymerization to continue and the unpolymerized layer was further cured after immerse in reducing agent solution. The flexural strength of the cross-linked reline material was increase significantly after immerse for 15 minutes (43). However, the previous study have found in contrast of this study, it may be explained by the short duration of immerse for 3 minutes. Thus, no different in flexural strength of Tokuyama<sup>®</sup> rebase II Fast with and without hardener. The last null hypothesis was accepted.

#### Conclusion

Surface treatment with MF-MA solution significantly increases the flexural strength of relined denture base. This study suggests the application of MF-MA solutions for 15 s before relining procedure to improve the flexural strength between denture base and hard reline materials.

#### REFERENCES

 Tallgren A. The continuing reduction of the residual alveolar ridges in complete denture wearers: a mixed-longitudinal study covering 25 years. *J Prosthet Dent*. 1972;27(2):120-32.

2. Reis JM, Vergani CE, Pavarina AC, Giampaolo ET, Machado AL. Effect of relining, water storage and cyclic loading on the flexural strength of a denture base acrylic resin. *J Dent*. 2006;34(7):420-6.

3. Takahashi Y, Kawaguchi M, Chai J. Flexural strength at the proportional limit of a denture base material relined with four different denture reline materials. *Int J Prosthodont*. 1997;10(6):508-12.

4. Aydın AK, Terzioğlu H, Akınay AE, Ulubayram K, Hasırcı N. Bond strength and failure analysis of lining materials to denture resin. *Dent Mater*. 1999;15(3):211-8.

5. Leles CR, Machado AL, Vergani CE, Giampaolo ET, Pavarina AC. Bonding strength between a hard chairside reline resin and a denture base material as influenced by surface treatment. *J Oral Rehabil*. 2001;28(12):1153-7.

6. Mutluay MM, Ruyter IE. Evaluation of adhesion of chairside hard relining materials to denture base polymers. *J Prosthet Dent*. 2005;94(5):445-52.

7. Arena C, Evans DB, Hilton TJ. A comparison of bond strengths among chairside hard reline materials. *J Prosthet Dent* 1993;70(2):126-31.

8. Takahashi Y, Chai J. Shear bond strength of denture reline polymers to denture base polymers. *Int J Prosthodont*. 2001;14(3):271-5.

 Chai J, Takahashi Y, Kawaguchi M. The flexural strengths of denture base acrylic resins after relining with a visible-light-activated material. *Int J Prosthodont*.
 1998;11(2):121-4.

10. Baig MR, Ariff FTM, Yunus N. The effect of bur preparation on the surface roughness and reline bond strength of urethane dimethacrylate denture base resin. *Indian J Dent Res.* 2011;22(2):210-2.

11. Takahashi Y, Chai J. Assessment of shear bond strength between three denture reline materials and a denture base acrylic resin. *Int J Prosthodont*. 2001;14(6):531-5.

12. Memarian M, Shayestehmajd M. The effect of chemical and mechanical treatment of the denture base resin surface on the shear bond strength of denture repairs. *Rev Clin Pesq Odontol*. 2009;5(1):11-7.

13. Vallittu PK, Lassila VP, Lappalainen R. Wetting the repair surface with methyl methacrylate affects the transverse strength of repaired heat-polymerized resin. *J Prosthet Dent*. 1994;72(6):639-43.

14. da Cruz Perez LE, Machado AL, Canevarolo SV, Vergani CE, Giampaolo ET, Pavarina AC. Effect of reline material and denture base surface treatment on the impact strength of a denture base acrylic resin. *Gerodontology*. 2010;27(1):62-9.

15. Vojdani M, Rezaei S, Zareeian L. Effect of chemical surface treatments and repair material on transverse strength of repaired acrylic denture resin. *Indian J Dent Res* 2008;19(1):2-5.

16. Sarac YS, Sarac D, Kulunk T, Kulunk S. The effect of chemical surface treatments of different denture base resins on the shear bond strength of denture repair. *J Prosthet Dent*. 2005;94(3):259-66.

17. Asmussen E, Peutzfeldt A. Substitutes for methylene chloride as dental softening agent. *Eur J Oral Sci* 2000;108(4):335-40.

18. Shimizu H, Kakigi M, Fujii J, Tsue F, Takahashi Y. Effect of surface preparation using ethyl acetate on the shear bond strength of repair resin to denture base resin. *J Prosthodont*. 2008;17(6):451-5.

19. Thunyakitpisal N, Thunyakitpisal P, Wiwatwarapan C. The effect of chemical surface treatments on the flexural strength of repaired acrylic denture base resin. *J Prosthodont*. 2011;20(3):195-9.

20. Osathananda R, Wiwatwarrapan C. Surface treatment with methyl formatemethyl acetate increased the shear bond strength between reline resins and denture base resin. *Gerodontology*. 2016;33(2):147-54.

Leggat PA, Kedjarune U. Toxicity of methyl methacrylate in dentistry. *Int Dent J*.
 2003;53(3):126-31.

22. International Organization for Standardization. Denture base polymers- Part1: denture base polymers 20795-1(2013): Genewa, Switzerland

23. Powers JM, Wataha JC. Dental materials: properties and manipulation. 9<sup>th</sup> ed. St. Louis, Missouri: Mosby Elsevier; 2008 p. 288-99.

24. McCabe JF, Walls AWG. Applied dental materials. 9<sup>th</sup> ed. Oxford: Blackwell Publishing; 2008 p. 112-8.

25. Anusavice KJ. Phillip's science of dental material. 11<sup>th</sup> ed. Philadelphia: WB Saunders; 2003 p. 107-8.

26. Powers JM, Sakaguchi RL. Craig's restorative dental materials. 13<sup>th</sup> ed. St. Louis, Missouri: Mosby Elsevier; 2012 p. 191-2.

 Bartoloni JA, Murchison DF, Wofford DT, Sarkar NK. Degree of conversion in denture base materials for varied polymerization techniques. *J Oral Rehabil*.
 2000;27(6):488-93.

28. van Noort R. Introduction to dental materials. 3<sup>rd</sup> ed. Philadelphia: Mosby Elsevier; 2007 p. 23-9.

29. Arima T, Nikawa H, Hamada T. Composition and effect of denture base resin surface primers for reline acrylic resins. *J* **Prosth Dent**. 1996;75(4):457-62.

30. Grulke EA. Polymer Handbook: Solubility parameter values. 4<sup>th</sup> ed. In: Brandrup J, Immerut EH, Grulke EA., editor. New York: Wiley; 1999 p.688-705.

31. Shen C, Colaizzi FA, Birns B. Strength of denture repairs as influenced by surface treatment. *J Prosthet Dent*. 1984;52(6):844-8.

32. Groger W, Grey T. Effect of chloroform on the activities of liver enzymes in rats. *Toxicology*. 1979;14(1):23-38.

33. Kumagai S, Kurumatani N, Arimoto A, Ichihara G. Cholangiocarcinoma among offset colour proof-printing workers exposed to 1, 2-dichloropropane and/or dichloromethane. *Occup Environ Med*. 2013;70(7):508-10.

34. Health NJDo. Hazardous Substance Fact Sheet: Acetone 2011 [cited 2019 20 May]. Available from: <u>https://www.nj.gov/health/eoh/rtkweb/documents/fs/0006.pdf</u>.

35. Health NJDo. Hazardous Substance Fact Sheet: Ethyl acetate 2016 [cited 201920 May]. Available from:

https://www.nj.gov/health/eoh/rtkweb/documents/fs/0841.pdf.

36. Merckmilipore[Internet]. Methyl-formate [cited 2018 25 May]. Available from: http://www.merckmillipore.com/TH/en/product/Methyl-formate,MDA\_CHEM-800889.

37. Chemicalland21.com[Internet]. Methyl formate [cited 2018 25 May]. Available from:

http://www.chemicalland21.com/industrialchem/organic/METHYL%20FORMATE.htm.

38. Merckmillipore[Internet]. Methyl-acetate [cited 2018 25 May]. Available from: http://www.merckmillipore.com/TH/en/product/Methyl-acetate,MDA\_CHEM-809711.

39. Chemicalland21.com[Internet]. Methyl acetate [cited 2018 25 May]. Available from:

http://www.chemicalland21.com/industrialchem/solalc/METHYL%20ACETATE.htm.

40. Vallittu PK, Ruyter IE. Swelling of poly (methyl methacrylate) resin at the repair joint. *Int J Prosthodont* 1997;10(3):254-8.

41. Evchuk IY, Musii RI, Makitra RG, Pristanskii RE. Solubility of polymethyl methacrylate in organic solvents. *Russ J Appl Chem*. 2005;78(10):1576-80.

42. Asmussen E, Uno S. Solubility parameters, fractional polarities, and bond strengths of some intermediary resins used in dentin bonding. *J Dent Res*. 1993;72(3):558-65.

43. Yatabe M, Seki H, Shirasu N, Sone M. Effect of the reducing agent on the oxygen-inhibited layer of the cross-linked reline material. *J Oral Rehabil*.
2001;28(2):180-5.

**CHULALONGKORN UNIVERSITY** 



| _         |                  | Tests o   | f Norm  | ality               |              |    |      |
|-----------|------------------|-----------|---------|---------------------|--------------|----|------|
|           |                  | Kolmo     | gorov-S | mirnov <sup>a</sup> | Shapiro-Wilk |    |      |
|           | group            | Statistic | df      | Sig.                | Statistic    | df | Sig. |
| Maxstress | No Tx Unifast    | .150      | 10      | .200*               | .968         | 10 | .876 |
|           | MMA Unifast      | .147      | 10      | .200*               | .968         | 10 | .869 |
|           | MFMA             | .136      | 10      | .200*               | .938         | 10 | .534 |
|           | No Tx Kooliner   | .216      | 10      | .200*               | .949         | 10 | .656 |
|           | MMA Kooliner     | .130      | 10      | .200*               | .965         | 10 | .843 |
|           | MFMA Kooliner    | .207      | 10      | .200*               | .894         | 10 | .190 |
|           | No Tx Rebase+H   | .178      | 10      | .200*               | .933         | 10 | .483 |
|           | MMA Rebase+H     | .222      | 10      | .175                | .937         | 10 | .520 |
|           | MFMA Rebase+H    | .238      | 10      | .116                | .868         | 10 | .094 |
|           | Ad Rebase+H      | .231      | 10      | .140                | .822         | 10 | .027 |
|           | MMA Ad Rebase+H  | .181      | 10      | .200*               | .867         | 10 | .093 |
|           | MFMA Ad Rebase+H | .134      | 10      | .200*               | .968         | 10 | .869 |
|           | No Tx Rebase-H   | .179      | 10      | .200*               | .938         | 10 | .528 |
|           | MMA Rebase-H     | .189      | 10      | .200*               | .916         | 10 | .321 |
|           | MFMA Rebase-H    | .216      | 10      | .200*               | .856         | 10 | .068 |
|           | Ad Rebase-H      | .136      | 10      | .200*               | .976         | 10 | .939 |
|           | MMA Ad Rebase-H  | .178      | 10      | .200*               | .941         | 10 | .565 |
|           | MFMA Ad Rebase-H | .254      | 10      | .067                | .893         | 10 | .185 |

Table 10. Analysis of the data distribution.

Tests of Normality

\*. This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Table 11. Descriptive Statistics of two-way ANOVA analysis (For Tokuyama<sup>®</sup> rebase II Fast = without hardener).

| Dependent V | /ariable: Maxstres | s3x3    |                |    |
|-------------|--------------------|---------|----------------|----|
| Product     | SurfaceTx          | Mean    | Std. Deviation | Ν  |
| Unifast     | Control            | 79.5640 | 2.35170        | 10 |
|             | MMA                | 88.9410 | 3.72188        | 10 |
|             | MF-MA              | 97.5260 | 2.35935        | 10 |
|             | Total              | 88.6770 | 7.96275        | 30 |
| Kooliner    | Control            | 72.2840 | 2.47284        | 10 |
|             | MMA                | 76.4160 | 3.18002        | 10 |
|             | MF-MA              | 81.0930 | 2.16877        | 10 |
|             | Total              | 76.5977 | 4.46004        | 30 |
| Rebase-H    | Control            | 60.1800 | 2.52232        | 10 |
|             | MMA                | 64.9500 | 1.98015        | 10 |
|             | MF-MA              | 72.6430 | 1.41979        | 10 |
|             | Total              | 65.9243 | 5.57569        | 30 |
| Total       | Control            | 70.6760 | 8.46809        | 30 |
|             | MMA                | 76.7690 | 10.39012       | 30 |
|             | MF-MA              | 83.7540 | 10.68774       | 30 |
|             | Total              | 77.0663 | 11.16391       | 90 |

**Descriptive Statistics** 

ndent Variable: Maystress3y3

UNULALUNUKUNN UNIVENJII T

Table 12. The Levene statistical analysis of hard reline materials and the surface treatments (For Tokuyama<sup>®</sup> rebase II Fast = without hardener).

#### Levene's Test of Equality of Error Variances<sup>a</sup>

Dependent Variable: Maxstress3x3

| F     | df1 | df2 | Sig. |
|-------|-----|-----|------|
| 1.629 | 8   | 81  | .129 |

Tests the null hypothesis that the error variance of the dependent variable is equal across groups. a. Design: Intercept + Product3x3 +

SurfaceTx3x3 + Product3x3 \* SurfaceTx3x3

Table 13. The Levene statistical analysis of Unifast Trad<sup>®</sup>.

#### Test of Homogeneity of Variances

Maxstress

| Levene Statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| 1.633            | 2   | 27  | .214 |



Table 14. One-way ANOVA analysis and Post Hoc Tests of Unifast Trad<sup>®</sup>.



Maxstress\_column

|                | Sum of   |    |             |        |      |  |
|----------------|----------|----|-------------|--------|------|--|
|                | Squares  | df | Mean Square | F      | Sig. |  |
| Between Groups | 1614.213 | 2  | 807.106     | 97.049 | .000 |  |
| Within Groups  | 224.545  | 27 | 8.316       |        |      |  |
| Total          | 1838.757 | 29 |             |        |      |  |
|                |          |    |             |        |      |  |

#### Multiple Comparisons

|           |           | -         |                      |            |      | 95% Cor  | nfidence |
|-----------|-----------|-----------|----------------------|------------|------|----------|----------|
|           | (I)       | (L)       |                      |            |      | Inte     | rval     |
|           | SurfaceTx | SurfaceTx | Mean                 |            |      | Lower    | Upper    |
|           | _column   | _column   | Difference (I-J)     | Std. Error | Sig. | Bound    | Bound    |
| Tukey HSD | No Tx     | MMA       | -9.37700*            | 1.28969    | .000 | -12.5747 | -6.1793  |
|           |           | MFMA      | -17.96200*           | 1.28969    | .000 | -21.1597 | -14.7643 |
|           | MMA       | No Tx     | 9.37700 <sup>*</sup> | 1.28969    | .000 | 6.1793   | 12.5747  |
|           |           | MFMA      | -8.58500*            | 1.28969    | .000 | -11.7827 | -5.3873  |
|           | MFMA      | No Tx     | 17.96200*            | 1.28969    | .000 | 14.7643  | 21.1597  |
|           |           | MMA       | 8.58500*             | 1.28969    | .000 | 5.3873   | 11.7827  |
|           | No Tx     | MMA       | -9.37700*            | 1.39222    | .000 | -12.9883 | -5.7657  |

| Games- |      | MFMA  | -17.96200*           | 1.05342 | .000 | -20.6505 | -15.2735 |
|--------|------|-------|----------------------|---------|------|----------|----------|
| Howell | MMA  | No Tx | 9.37700 <sup>*</sup> | 1.39222 | .000 | 5.7657   | 12.9883  |
|        |      | MFMA  | -8.58500*            | 1.39352 | .000 | -12.1989 | -4.9711  |
|        | MFMA | No Tx | 17.96200*            | 1.05342 | .000 | 15.2735  | 20.6505  |
|        |      | MMA   | 8.58500*             | 1.39352 | .000 | 4.9711   | 12.1989  |

Maxstress\_column

|                        |                  |    | Subset for alpha = 0.05 |         |         |
|------------------------|------------------|----|-------------------------|---------|---------|
|                        | SurfaceTx_column | Ν  | 1                       | 2       | 3       |
| Tukey HSD <sup>a</sup> | No Tx            | 10 | 79.5640                 |         |         |
|                        | MMA              | 10 |                         | 88.9410 |         |
|                        | MFMA             | 10 |                         |         | 97.5260 |
|                        | Sig.             |    | 1.000                   | 1.000   | 1.000   |

/ () ( core () poposi ()

Means for groups in homogeneous subsets are displayed.

a. Uses Harmonic Mean Sample Size = 10.000.

#### Table 15. The Levene statistical analysis of Kooliner<sup>®</sup>.

## Test of Homogeneity of Variances

Maxstress

Maxstress

| Levene Statistic | df1 | df2 | Sig. | ยาลัย    |
|------------------|-----|-----|------|----------|
| 1.213            | 2   | 27  | .313 | IVERSITY |

Table 16. One-way ANOVA analysis and Post Hoc Tests of Kooliner<sup>®</sup>.

#### ANOVA

|                | Sum of<br>Squares | df | Mean Square | F      | Sig. |
|----------------|-------------------|----|-------------|--------|------|
| Between Groups | 388.487           | 2  | 194.244     | 27.841 | .000 |
| Within Groups  | 188.379           | 27 | 6.977       |        |      |
| Total          | 576.866           | 29 |             |        |      |

## Multiple Comparisons

Dependent Variable: Maxstress\_column

|           |           | -         |                      |            |      |          |          |
|-----------|-----------|-----------|----------------------|------------|------|----------|----------|
|           |           |           |                      |            |      | 95% Cor  | nfidence |
|           | (I)       | (L)       | Mean                 |            |      | Inte     | rval     |
|           | SurfaceTx | SurfaceTx | Difference (I-       |            |      | Lower    | Upper    |
|           | _column   | _column   | J)                   | Std. Error | Sig. | Bound    | Bound    |
| Tukey HSD | No Tx     | MMA       | -4.13200*            | 1.18127    | .005 | -7.0609  | -1.2031  |
|           |           | MFMA      | -8.80900*            | 1.18127    | .000 | -11.7379 | -5.8801  |
|           | MMA       | No Tx     | 4.13200*             | 1.18127    | .005 | 1.2031   | 7.0609   |
|           |           | MFMA      | -4.67700*            | 1.18127    | .001 | -7.6059  | -1.7481  |
|           | MFMA      | No Tx     | 8.80900*             | 1.18127    | .000 | 5.8801   | 11.7379  |
|           |           | MMA       | 4.67700 <sup>*</sup> | 1.18127    | .001 | 1.7481   | 7.6059   |
| Games-    | No Tx     | MMA       | -4.13200*            | 1.27387    | .013 | -7.4005  | 8635     |
| Howell    |           | MFMA      | -8.80900*            | 1.04012    | .000 | -11.4675 | -6.1505  |
|           | MMA       | No Tx     | 4.13200*             | 1.27387    | .013 | .8635    | 7.4005   |
|           |           | MFMA      | -4.67700*            | 1.21721    | .004 | -7.8201  | -1.5339  |
|           | MFMA      | No Tx     | 8.80900*             | 1.04012    | .000 | 6.1505   | 11.4675  |
|           |           | MMA       | 4.67700 <sup>*</sup> | 1.21721    | .004 | 1.5339   | 7.8201   |

\*. The mean difference is significant at the 0.05 level.

| Maxstress | column |
|-----------|--------|
|           |        |

|                        |                  |    | Subset for alpha = 0.05 |         |         |  |
|------------------------|------------------|----|-------------------------|---------|---------|--|
|                        | SurfaceTx_column | Ν  | 1                       | 2       | 3       |  |
| Tukey HSD <sup>a</sup> | No Tx            | 10 | 72.2840                 |         |         |  |
|                        | MMA              | 10 |                         | 76.4160 |         |  |
|                        | MFMA             | 10 |                         |         | 81.0930 |  |
|                        | Sig.             |    | 1.000                   | 1.000   | 1.000   |  |

Means for groups in homogeneous subsets are displayed.

Table 17. The Levene statistical analysis of Tokuyama<sup>®</sup> Rebase II with hardener.

Test of Homogeneity of Variances

Maxstress\_column

| Levene Statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| .476             | 5   | 54  | .793 |

Table 18. One-way ANOVA analysis and Post Hoc Tests of Tokuyama<sup>®</sup> Rebase II with hardener.

#### ANOVA

Maxstress\_column

|                | Sum of Squares | df | Mean Square | F      | Sig. |
|----------------|----------------|----|-------------|--------|------|
| Between Groups | 1742.981       | 5  | 348.596     | 62.603 | .000 |
| Within Groups  | 300.690        | 54 | 5.568       |        |      |
| Total          | 2043.671       | 59 |             |        |      |



Multiple Comparisons

|           |           |           |                        |            |      | 95% Cor  | nfidence |
|-----------|-----------|-----------|------------------------|------------|------|----------|----------|
|           | (I)       | (L)       |                        |            |      | Inte     | rval     |
|           | SurfaceTx | SurfaceTx | Mean                   |            |      | Lower    | Upper    |
|           | _column   | _column   | Difference (I-J)       | Std. Error | Sig. | Bound    | Bound    |
| Tukey HSD | No Tx     | MMA       | -4.54300*              | 1.05530    | .001 | -7.6609  | -1.4251  |
|           |           | MFMA      | -11.91300*             | 1.05530    | .000 | -15.0309 | -8.7951  |
|           |           | Ad        | -6.83400*              | 1.05530    | .000 | -9.9519  | -3.7161  |
|           |           | MMA Ad    | -11.93100 <sup>*</sup> | 1.05530    | .000 | -15.0489 | -8.8131  |
|           |           | MFMA Ad   | -16.26100*             | 1.05530    | .000 | -19.3789 | -13.1431 |
|           | MMA       | No Tx     | 4.54300*               | 1.05530    | .001 | 1.4251   | 7.6609   |
|           |           | MFMA      | -7.37000*              | 1.05530    | .000 | -10.4879 | -4.2521  |
|           |           | Ad        | -2.29100               | 1.05530    | .268 | -5.4089  | .8269    |
|           |           | MMA Ad    | -7.38800*              | 1.05530    | .000 | -10.5059 | -4.2701  |
|           |           | MFMA Ad   | -11.71800 <sup>*</sup> | 1.05530    | .000 | -14.8359 | -8.6001  |
|           | MFMA      | No Tx     | 11.91300 <sup>*</sup>  | 1.05530    | .000 | 8.7951   | 15.0309  |

|        |         |         |                       |         | 1     |          |          |
|--------|---------|---------|-----------------------|---------|-------|----------|----------|
|        |         | MMA     | 7.37000 <sup>*</sup>  | 1.05530 | .000  | 4.2521   | 10.4879  |
|        |         | Ad      | 5.07900*              | 1.05530 | .000  | 1.9611   | 8.1969   |
|        |         | MMA Ad  | 01800                 | 1.05530 | 1.000 | -3.1359  | 3.0999   |
|        |         | MFMA Ad | -4.34800*             | 1.05530 | .002  | -7.4659  | -1.2301  |
|        | Ad      | No Tx   | 6.83400*              | 1.05530 | .000  | 3.7161   | 9.9519   |
|        |         | MMA     | 2.29100               | 1.05530 | .268  | 8269     | 5.4089   |
|        |         | MFMA    | -5.07900*             | 1.05530 | .000  | -8.1969  | -1.9611  |
|        |         | MMA Ad  | -5.09700*             | 1.05530 | .000  | -8.2149  | -1.9791  |
|        |         | MFMA Ad | -9.42700*             | 1.05530 | .000  | -12.5449 | -6.3091  |
|        | MMA Ad  | No Tx   | 11.93100 <sup>*</sup> | 1.05530 | .000  | 8.8131   | 15.0489  |
|        |         | MMA     | 7.38800*              | 1.05530 | .000  | 4.2701   | 10.5059  |
|        |         | MFMA    | .01800                | 1.05530 | 1.000 | -3.0999  | 3.1359   |
|        |         | Ad      | 5.09700*              | 1.05530 | .000  | 1.9791   | 8.2149   |
|        |         | MFMA Ad | -4.33000*             | 1.05530 | .002  | -7.4479  | -1.2121  |
|        | MFMA Ad | No Tx   | 16.26100*             | 1.05530 | .000  | 13.1431  | 19.3789  |
|        |         | MMA     | 11.71800 <sup>*</sup> | 1.05530 | .000  | 8.6001   | 14.8359  |
|        |         | MFMA    | 4.34800*              | 1.05530 | .002  | 1.2301   | 7.4659   |
|        |         | Ad      | 9.42700*              | 1.05530 | .000  | 6.3091   | 12.5449  |
|        |         | MMA Ad  | 4.33000*              | 1.05530 | .002  | 1.2121   | 7.4479   |
| Games- | No Tx   | MMA     | -4.54300*             | 1.04500 | .005  | -7.8676  | -1.2184  |
| Howell |         | MFMA    | -11.91300*            | 1.10145 | .000  | -15.4135 | -8.4125  |
|        |         | Ad      | -6.83400*             | .91424  | .000  | -9.8007  | -3.8673  |
|        |         | MMA Ad  | -11.93100*            | 1.08180 | .000  | -15.3692 | -8.4928  |
|        |         | MFMA Ad | -16.26100*            | 1.19510 | .000  | -20.0698 | -12.4522 |
|        | MMA     | No Tx   | 4.54300*              | 1.04500 | .005  | 1.2184   | 7.8676   |
|        |         | MFMA    | -7.37000*             | 1.05162 | .000  | -10.7165 | -4.0235  |
|        |         | Ad      | -2.29100              | .85355  | .133  | -5.0408  | .4588    |
|        |         | MMA Ad  | -7.38800*             | 1.03102 | .000  | -10.6666 | -4.1094  |
|        |         | MFMA Ad | -11.71800*            | 1.14934 | .000  | -15.3968 | -8.0392  |
|        | MFMA    | No Tx   | 11.91300*             | 1.10145 | .000  | 8.4125   | 15.4135  |
|        |         | MMA     | 7.37000*              | 1.05162 | .000  | 4.0235   | 10.7165  |
|        |         | Ad      | 5.07900*              | .92181  | .001  | 2.0850   | 8.0730   |
|        |         | -       | • •                   |         | •     | •        | I I      |

|         | MMA Ad  | 01800     | 1.08820 | 1.000 | -3.4768  | 3.4408  |
|---------|---------|-----------|---------|-------|----------|---------|
|         | MFMA Ad | -4.34800* | 1.20090 | .021  | -8.1739  | 5221    |
| Ad      | No Tx   | 6.83400*  | .91424  | .000  | 3.8673   | 9.8007  |
|         | MMA     | 2.29100   | .85355  | .133  | 4588     | 5.0408  |
|         | MFMA    | -5.07900* | .92181  | .001  | -8.0730  | -2.0850 |
|         | MMA Ad  | -5.09700* | .89823  | .000  | -8.0062  | -2.1878 |
|         | MFMA Ad | -9.42700* | 1.03189 | .000  | -12.8205 | -6.0335 |
| MMA Ad  | No Tx   | 11.93100* | 1.08180 | .000  | 8.4928   | 15.3692 |
|         | MMA     | 7.38800*  | 1.03102 | .000  | 4.1094   | 10.6666 |
|         | MFMA    | .01800    | 1.08820 | 1.000 | -3.4408  | 3.4768  |
|         | Ad      | 5.09700*  | .89823  | .000  | 2.1878   | 8.0062  |
|         | MFMA Ad | -4.33000* | 1.18290 | .019  | -8.1034  | 5566    |
| MFMA Ad | No Tx   | 16.26100* | 1.19510 | .000  | 12.4522  | 20.0698 |
|         | MMA     | 11.71800* | 1.14934 | .000  | 8.0392   | 15.3968 |
|         | MFMA    | 4.34800*  | 1.20090 | .021  | .5221    | 8.1739  |
|         | Ad      | 9.42700*  | 1.03189 | .000  | 6.0335   | 12.8205 |
|         | MMA Ad  | 4.33000*  | 1.18290 | .019  | .5566    | 8.1034  |
| -       | -       |           |         |       |          |         |



# Maxstress\_column

|                        |                  |    | Subset for alpha = 0.05 |         |         |         |  |
|------------------------|------------------|----|-------------------------|---------|---------|---------|--|
|                        | SurfaceTx_column | Ν  | 1                       | 2       | 3       | 4       |  |
| Tukey HSD <sup>a</sup> | No Tx            | 10 | 60.0590                 |         |         |         |  |
|                        | MMA              | 10 |                         | 64.6020 |         |         |  |
|                        | Ad               | 10 |                         | 66.8930 |         |         |  |
|                        | MFMA             | 10 |                         |         | 71.9720 |         |  |
|                        | MMA Ad           | 10 |                         |         | 71.9900 |         |  |
|                        | MFMA Ad          | 10 |                         |         |         | 76.3200 |  |
|                        | Sig.             |    | 1.000                   | .268    | 1.000   | 1.000   |  |

Means for groups in homogeneous subsets are displayed.

Table 19. The Levene statistical analysis of Tokuyama<sup>®</sup> Rebase II without hardener.

Test of Homogeneity of Variances

Maxstress\_column

| Levene Statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| .757             | 5   | 54  | .585 |

Table 20. One-way ANOVA analysis and Post Hoc Tests of Tokuyama<sup>®</sup> Rebase II without hardener.

#### ANOVA

Maxstress\_column

|                | Sum of   |    |             |        |      |
|----------------|----------|----|-------------|--------|------|
|                | Squares  | df | Mean Square | F      | Sig. |
| Between Groups | 1950.496 | 5  | 390.099     | 69.797 | .000 |
| Within Groups  | 301.808  | 54 | 5.589       |        |      |
| Total          | 2252.304 | 59 |             |        |      |



Multiple Comparisons

|           |           |           |                  |         |      | 95% Co   | nfidence |
|-----------|-----------|-----------|------------------|---------|------|----------|----------|
|           | (I)       | (L)       |                  |         |      | Inte     | erval    |
|           | SurfaceTx | SurfaceTx | Mean             | Std.    |      | Lower    | Upper    |
|           | _column   | _column   | Difference (I-J) | Error   | Sig. | Bound    | Bound    |
| Tukey HSD | No Tx     | MMA       | -4.77000*        | 1.05726 | .000 | -7.8937  | -1.6463  |
|           |           | MFMA      | -12.46300*       | 1.05726 | .000 | -15.5867 | -9.3393  |
|           |           | Ad        | -5.52100*        | 1.05726 | .000 | -8.6447  | -2.3973  |
|           |           | MMA Ad    | -11.34200*       | 1.05726 | .000 | -14.4657 | -8.2183  |
|           |           | MFMA Ad   | -17.23200*       | 1.05726 | .000 | -20.3557 | -14.1083 |
|           | MMA       | No Tx     | 4.77000*         | 1.05726 | .000 | 1.6463   | 7.8937   |
|           |           | MFMA      | -7.69300*        | 1.05726 | .000 | -10.8167 | -4.5693  |
|           |           | Ad        | 75100            | 1.05726 | .980 | -3.8747  | 2.3727   |
|           |           | MMA Ad    | -6.57200*        | 1.05726 | .000 | -9.6957  | -3.4483  |
|           |           | MFMA Ad   | -12.46200*       | 1.05726 | .000 | -15.5857 | -9.3383  |

|        | MFMA    | No Tx   | 12.46300*             | 1.05726 | .000 | 9.3393   | 15.5867  |
|--------|---------|---------|-----------------------|---------|------|----------|----------|
|        |         | MMA     | 7.69300*              | 1.05726 | .000 | 4.5693   | 10.8167  |
|        |         | Ad      | 6.94200*              | 1.05726 | .000 | 3.8183   | 10.0657  |
|        |         | MMA Ad  | 1.12100               | 1.05726 | .895 | -2.0027  | 4.2447   |
|        |         | MFMA Ad | -4.76900*             | 1.05726 | .000 | -7.8927  | -1.6453  |
|        | Ad      | No Tx   | 5.52100*              | 1.05726 | .000 | 2.3973   | 8.6447   |
|        |         | MMA     | .75100                | 1.05726 | .980 | -2.3727  | 3.8747   |
|        |         | MFMA    | -6.94200*             | 1.05726 | .000 | -10.0657 | -3.8183  |
|        |         | MMA Ad  | -5.82100*             | 1.05726 | .000 | -8.9447  | -2.6973  |
|        |         | MFMA Ad | -11.71100*            | 1.05726 | .000 | -14.8347 | -8.5873  |
|        | MMA Ad  | No Tx   | 11.34200*             | 1.05726 | .000 | 8.2183   | 14.4657  |
|        |         | MMA     | 6.57200 <sup>*</sup>  | 1.05726 | .000 | 3.4483   | 9.6957   |
|        |         | MFMA    | -1.12100              | 1.05726 | .895 | -4.2447  | 2.0027   |
|        |         | Ad      | 5.82100 <sup>*</sup>  | 1.05726 | .000 | 2.6973   | 8.9447   |
|        |         | MFMA Ad | -5.89000*             | 1.05726 | .000 | -9.0137  | -2.7663  |
|        | MFMA Ad | No Tx   | 17.23200*             | 1.05726 | .000 | 14.1083  | 20.3557  |
|        |         | MMA     | 12.46200*             | 1.05726 | .000 | 9.3383   | 15.5857  |
|        |         | MFMA    | 4.76900*              | 1.05726 | .000 | 1.6453   | 7.8927   |
|        |         | Ad      | 11.71100 <sup>*</sup> | 1.05726 | .000 | 8.5873   | 14.8347  |
|        |         | MMA Ad  | 5.89000*              | 1.05726 | .000 | 2.7663   | 9.0137   |
| Games- | No Tx   | MMA     | -4.77000*             | 1.01406 | .002 | -8.0128  | -1.5272  |
| Howell |         | MFMA    | -12.46300*            | .91531  | .000 | -15.4596 | -9.4664  |
|        |         | Ad      | -5.52100*             | 1.15129 | .002 | -9.1805  | -1.8615  |
|        |         | MMA Ad  | -11.34200*            | 1.11764 | .000 | -14.8940 | -7.7900  |
|        |         | MFMA Ad | -17.23200*            | 1.20730 | .000 | -21.0757 | -13.3883 |
|        | MMA     | No Tx   | 4.77000*              | 1.01406 | .002 | 1.5272   | 8.0128   |
|        |         | MFMA    | -7.69300*             | .77051  | .000 | -10.1697 | -5.2163  |
|        |         | Ad      | 75100                 | 1.03989 | .976 | -4.0834  | 2.5814   |
|        |         | MMA Ad  | -6.57200*             | 1.00250 | .000 | -9.7750  | -3.3690  |
|        |         | MFMA Ad | -12.46200*            | 1.10158 | .000 | -16.0115 | -8.9125  |
|        | MFMA    | No Tx   | 12.46300*             | .91531  | .000 | 9.4664   | 15.4596  |
|        |         | MMA     | 7.69300*              | .77051  | .000 | 5.2163   | 10.1697  |
|        |         |         |                       |         |      |          |          |

| Ad 6.94200 <sup>*</sup> .94384 .000 3.8414 1               | 10.0426 |
|------------------------------------------------------------|---------|
|                                                            |         |
| MMA Ad 1.12100 .90249 .810 -1.8291                         | 4.0711  |
| MFMA Ad -4.76900 <sup>*</sup> 1.01141 .004 -8.1164 -       | -1.4216 |
| Ad No Tx 5.52100 <sup>*</sup> 1.15129 .002 1.8615          | 9.1805  |
| MMA .75100 1.03989 .976 -2.5814                            | 4.0834  |
| MFMA -6.94200 <sup>*</sup> .94384 .000 -10.0426 ·          | -3.8414 |
| MMA Ad -5.82100 <sup>*</sup> 1.14112 .001 -9.4489          | -2.1931 |
| MFMA Ad -11.71100 <sup>*</sup> 1.22908 .000 -15.6203       | -7.8017 |
| MMA Ad No Tx 11.34200 <sup>*</sup> 1.11764 .000 7.7900 1   | 14.8940 |
| MMA 6.57200 <sup>*</sup> 1.00250 .000 3.3690               | 9.7750  |
| MFMA -1.12100 .90249 .810 -4.0711                          | 1.8291  |
| Ad 5.82100 <sup>*</sup> 1.14112 .001 2.1931                | 9.4489  |
| MFMA Ad -5.89000 <sup>*</sup> 1.19761 .001 -9.7049         | -2.0751 |
| MFMA Ad No Tx 17.23200 <sup>*</sup> 1.20730 .000 13.3883 2 | 21.0757 |
| MMA 12.46200 <sup>*</sup> 1.10158 .000 8.9125 1            | 16.0115 |
| MFMA 4.76900 <sup>*</sup> 1.01141 .004 1.4216              | 8.1164  |
| Ad 11.71100 <sup>*</sup> 1.22908 .000 7.8017 1             | 15.6203 |
| MMA Ad 5.89000 <sup>*</sup> 1.19761 .001 2.0751            | 9.7049  |

|  |  |  |  |   |  |  | 1 |
|--|--|--|--|---|--|--|---|
|  |  |  |  | 1 |  |  |   |

#### Maxstress\_column

|                        |                  |    | Subset for alpha = 0.05 |         |         |         |  |
|------------------------|------------------|----|-------------------------|---------|---------|---------|--|
|                        | SurfaceTx_column | Ν  | 1                       | 2       | 3       | 4       |  |
| Tukey HSD <sup>a</sup> | No Tx            | 10 | 60.1800                 |         |         |         |  |
|                        | MMA              | 10 |                         | 64.9500 |         |         |  |
|                        | Ad               | 10 |                         | 65.7010 |         |         |  |
|                        | MMA Ad           | 10 |                         |         | 71.5220 |         |  |
|                        | MFMA             | 10 |                         |         | 72.6430 |         |  |
|                        | MFMA Ad          | 10 |                         |         |         | 77.4120 |  |
|                        | Sig.             |    | 1.000                   | .980    | .895    | 1.000   |  |

Means for groups in homogeneous subsets are displayed.

Table 21. The Levene statistical analysis of control group.

#### Test of Homogeneity of Variances

Maxstress\_column

| Levene Statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| .128             | 3   | 36  | .943 |

Table 22. One-way ANOVA analysis and Post Hoc Tests of control group.

ANOVA

Maxstress\_column

|                | Sum of   |            |             |         |      |
|----------------|----------|------------|-------------|---------|------|
|                | Squares  | df         | Mean Square | F       | Sig. |
| Between Groups | 2762.887 | 3          | 920.962     | 153.468 | .000 |
| Within Groups  | 216.036  | 36         | 6.001       |         |      |
| Total          | 2978.923 | 39         |             |         |      |
|                | 2 1      | A YAMA A A | - 11/2      |         |      |



#### Multiple Comparisons

|           |           |           |                       |         |       | 95% Cor  | nfidence |
|-----------|-----------|-----------|-----------------------|---------|-------|----------|----------|
|           | (I)       | (L)       | Mean                  |         |       | Inte     | rval     |
|           | Product_c | Product_c | Difference            | Std.    |       | Lower    | Upper    |
|           | olumn     | olumn     | (L-I)                 | Error   | Sig.  | Bound    | Bound    |
| Tukey HSD | Unifast   | Kooliner  | 7.28000*              | 1.09554 | .000  | 4.3295   | 10.2305  |
|           |           | Rebase+H  | 19.50500 <sup>*</sup> | 1.09554 | .000  | 16.5545  | 22.4555  |
|           |           | Rebase-H  | 19.38400 <sup>*</sup> | 1.09554 | .000  | 16.4335  | 22.3345  |
|           | Kooliner  | Unifast   | -7.28000*             | 1.09554 | .000  | -10.2305 | -4.3295  |
|           |           | Rebase+H  | 12.22500 <sup>*</sup> | 1.09554 | .000  | 9.2745   | 15.1755  |
|           |           | Rebase-H  | 12.10400*             | 1.09554 | .000  | 9.1535   | 15.0545  |
|           | Rebase+H  | Unifast   | -19.50500*            | 1.09554 | .000  | -22.4555 | -16.5545 |
|           |           | Kooliner  | -12.22500*            | 1.09554 | .000  | -15.1755 | -9.2745  |
|           |           | Rebase-H  | 12100                 | 1.09554 | 1.000 | -3.0715  | 2.8295   |
|           | Rebase-H  | Unifast   | -19.38400*            | 1.09554 | .000  | -22.3345 | -16.4335 |

|        | -        | Kooliner | -12.10400*            | 1.09554 | .000  | -15.0545 | -9.1535  |
|--------|----------|----------|-----------------------|---------|-------|----------|----------|
|        |          | Rebase+H | .12100                | 1.09554 | 1.000 | -2.8295  | 3.0715   |
| Games- | Unifast  | Kooliner | 7.28000*              | 1.07914 | .000  | 4.2293   | 10.3307  |
| Howell |          | Rebase+H | 19.50500*             | 1.07364 | .000  | 16.4701  | 22.5399  |
|        |          | Rebase-H | 19.38400 <sup>*</sup> | 1.09053 | .000  | 16.3004  | 22.4676  |
|        | Kooliner | Unifast  | -7.28000*             | 1.07914 | .000  | -10.3307 | -4.2293  |
|        |          | Rebase+H | 12.22500*             | 1.10052 | .000  | 9.1146   | 15.3354  |
|        |          | Rebase-H | 12.10400 <sup>*</sup> | 1.11701 | .000  | 8.9469   | 15.2611  |
|        | Rebase+H | Unifast  | -19.50500*            | 1.07364 | .000  | -22.5399 | -16.4701 |
|        |          | Kooliner | -12.22500*            | 1.10052 | .000  | -15.3354 | -9.1146  |
|        |          | Rebase-H | 12100                 | 1.11169 | 1.000 | -3.2632  | 3.0212   |
|        | Rebase-H | Unifast  | -19.38400*            | 1.09053 | .000  | -22.4676 | -16.3004 |
|        |          | Kooliner | -12.10400*            | 1.11701 | .000  | -15.2611 | -8.9469  |
|        |          | Rebase+H | .12100                | 1.11169 | 1.000 | -3.0212  | 3.2632   |

## Maxstress\_column

111

|                        |                |    | Subset for alpha = 0.05 |         |         |  |  |
|------------------------|----------------|----|-------------------------|---------|---------|--|--|
|                        | Product_column | Ν  | 1                       | 2       | 3       |  |  |
| Tukey HSD <sup>a</sup> | Rebase+H       | 10 | 60.0590                 |         |         |  |  |
|                        | Rebase-H       | 10 | 60.1800                 |         |         |  |  |
|                        | Kooliner       | 10 |                         | 72.2840 |         |  |  |
|                        | Unifast        | 10 |                         |         | 79.5640 |  |  |
|                        | Sig.           |    | 1.000                   | 1.000   | 1.000   |  |  |

Means for groups in homogeneous subsets are displayed.

Table 23. The Levene statistical analysis of MMA group.

Test of Homogeneity of Variances

Maxstress\_column

| Levene Statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| 2.260            | 3   | 36  | .098 |

Table 24. One-way ANOVA analysis and Post Hoc Tests of MMA group.

#### ANOVA

Maxstress\_column

|                | Sum of   |    |             |         |      |
|----------------|----------|----|-------------|---------|------|
|                | Squares  | df | Mean Square | F       | Sig. |
| Between Groups | 3989.979 | 3  | 1329.993    | 162.147 | .000 |
| Within Groups  | 295.286  | 36 | 8.202       |         |      |
| Total          | 4285.265 | 39 |             |         |      |
|                | ~ //     |    | A III A     |         |      |



Multiple Comparisons

|           |          |           |                       |            |      | 95% Cor  | nfidence |
|-----------|----------|-----------|-----------------------|------------|------|----------|----------|
|           | (I)      | (J)       | Mean                  |            |      | Inte     | rval     |
|           | Product_ | Product_c | Difference            |            |      | Lower    | Upper    |
|           | column   | olumn     | (I-J)                 | Std. Error | Sig. | Bound    | Bound    |
| Tukey HSD | Unifast  | Kooliner  | 12.52500*             | 1.28081    | .000 | 9.0755   | 15.9745  |
|           |          | Rebase+H  | 24.33900*             | 1.28081    | .000 | 20.8895  | 27.7885  |
|           |          | Rebase-H  | 23.99100 <sup>*</sup> | 1.28081    | .000 | 20.5415  | 27.4405  |
|           | Kooliner | Unifast   | -12.52500*            | 1.28081    | .000 | -15.9745 | -9.0755  |
|           |          | Rebase+H  | 11.81400 <sup>*</sup> | 1.28081    | .000 | 8.3645   | 15.2635  |
|           |          | Rebase-H  | 11.46600*             | 1.28081    | .000 | 8.0165   | 14.9155  |
|           | Rebase+H | Unifast   | -24.33900*            | 1.28081    | .000 | -27.7885 | -20.8895 |
|           |          | Kooliner  | -11.81400*            | 1.28081    | .000 | -15.2635 | -8.3645  |
|           |          | Rebase-H  | 34800                 | 1.28081    | .993 | -3.7975  | 3.1015   |

|        | Rebase-H | Unifast  | -23.99100*            | 1.28081 | .000 | -27.4405 | -20.5415 |
|--------|----------|----------|-----------------------|---------|------|----------|----------|
|        |          | Kooliner | -11.46600*            | 1.28081 | .000 | -14.9155 | -8.0165  |
|        |          | Rebase+H | .34800                | 1.28081 | .993 | -3.1015  | 3.7975   |
| Games- | Unifast  | Kooliner | 12.52500 <sup>*</sup> | 1.54806 | .000 | 8.1393   | 16.9107  |
| Howell |          | Rebase+H | 24.33900*             | 1.37026 | .000 | 20.3796  | 28.2984  |
|        |          | Rebase-H | 23.99100*             | 1.33317 | .000 | 20.1059  | 27.8761  |
|        | Kooliner | Unifast  | -12.52500*            | 1.54806 | .000 | -16.9107 | -8.1393  |
|        |          | Rebase+H | 11.81400*             | 1.22622 | .000 | 8.3078   | 15.3202  |
|        |          | Rebase-H | 11.46600*             | 1.18463 | .000 | 8.0535   | 14.8785  |
|        | Rebase+H | Unifast  | -24.33900*            | 1.37026 | .000 | -28.2984 | -20.3796 |
|        |          | Kooliner | -11.81400*            | 1.22622 | .000 | -15.3202 | -8.3078  |
|        |          | Rebase-H | 34800                 | .94046  | .982 | -3.0093  | 2.3133   |
|        | Rebase-H | Unifast  | -23.99100*            | 1.33317 | .000 | -27.8761 | -20.1059 |
|        |          | Kooliner | -11.46600*            | 1.18463 | .000 | -14.8785 | -8.0535  |
|        |          | Rebase+H | .34800                | .94046  | .982 | -2.3133  | 3.0093   |



## Maxstress\_column

|                        |                |    | Subset for alpha = 0.05 |         |         |  |  |
|------------------------|----------------|----|-------------------------|---------|---------|--|--|
|                        | Product_column | Ν  | 1                       | 2       | 3       |  |  |
| Tukey HSD <sup>a</sup> | Rebase+H       | 10 | 64.6020                 |         |         |  |  |
|                        | Rebase-H       | 10 | 64.9500                 |         |         |  |  |
|                        | Kooliner       | 10 |                         | 76.4160 |         |  |  |
|                        | Unifast        | 10 |                         |         | 88.9410 |  |  |
|                        | Sig.           |    | .993                    | 1.000   | 1.000   |  |  |

Means for groups in homogeneous subsets are displayed.

Table 25. The Levene statistical analysis of MF-MA group.

Test of Homogeneity of Variances

Maxstress\_column

| Levene Statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| 1.095            | 3   | 36  | .364 |

Table 26. One-way ANOVA analysis and Post Hoc Tests of MF-MA group.

#### ANOVA

Maxstress\_column

|                | Sum of<br>Squares | df   | Mean Square | F       | Sig. |
|----------------|-------------------|------|-------------|---------|------|
| Between Groups | 4243.149          | 3    | 1414.383    | 307.117 | .000 |
| Within Groups  | 165.793           | 36   | 4.605       |         |      |
| Total          | 4408.941          | 39   |             |         |      |
|                | × 11              | NOAD | V III V     |         |      |



Multiple Comparisons

|           |           |           |                        |            |      | 95% Cor  | nfidence |
|-----------|-----------|-----------|------------------------|------------|------|----------|----------|
|           | (I)       | (L)       | Mean                   |            |      | Inte     | rval     |
|           | Product_c | Product_c | Difference             |            |      | Lower    | Upper    |
|           | olumn     | olumn     | (I-J)                  | Std. Error | Sig. | Bound    | Bound    |
| Tukey HSD | Unifast   | Kooliner  | 16.43300*              | .95972     | .000 | 13.8482  | 19.0178  |
|           |           | Rebase+H  | 25.55400 <sup>*</sup>  | .95972     | .000 | 22.9692  | 28.1388  |
|           |           | Rebase-H  | 24.88300*              | .95972     | .000 | 22.2982  | 27.4678  |
|           | Kooliner  | Unifast   | -16.43300*             | .95972     | .000 | -19.0178 | -13.8482 |
|           |           | Rebase+H  | 9.12100 <sup>*</sup>   | .95972     | .000 | 6.5362   | 11.7058  |
|           |           | Rebase-H  | 8.45000*               | .95972     | .000 | 5.8652   | 11.0348  |
|           | Rebase+H  | Unifast   | -25.55400 <sup>*</sup> | .95972     | .000 | -28.1388 | -22.9692 |
|           |           | Kooliner  | -9.12100*              | .95972     | .000 | -11.7058 | -6.5362  |
|           |           | Rebase-H  | 67100                  | .95972     | .897 | -3.2558  | 1.9138   |

|        | Rebase-H | Unifast  | -24.88300*           | .95972  | .000 | -27.4678 | -22.2982 |
|--------|----------|----------|----------------------|---------|------|----------|----------|
|        |          | Kooliner | -8.45000*            | .95972  | .000 | -11.0348 | -5.8652  |
|        |          | Rebase+H | .67100               | .95972  | .897 | -1.9138  | 3.2558   |
| Games- | Unifast  | Kooliner | 16.43300*            | 1.01341 | .000 | 13.5668  | 19.2992  |
| Howell |          | Rebase+H | 25.55400*            | 1.08176 | .000 | 22.4959  | 28.6121  |
|        |          | Rebase-H | 24.88300*            | .87077  | .000 | 22.3686  | 27.3974  |
|        | Kooliner | Unifast  | -16.43300*           | 1.01341 | .000 | -19.2992 | -13.5668 |
|        |          | Rebase+H | 9.12100 <sup>*</sup> | 1.04111 | .000 | 6.1735   | 12.0685  |
|        |          | Rebase-H | 8.45000*             | .81972  | .000 | 6.0967   | 10.8033  |
|        | Rebase+H | Unifast  | -25.55400*           | 1.08176 | .000 | -28.6121 | -22.4959 |
|        |          | Kooliner | -9.12100*            | 1.04111 | .000 | -12.0685 | -6.1735  |
|        |          | Rebase-H | 67100                | .90285  | .878 | -3.2874  | 1.9454   |
|        | Rebase-H | Unifast  | -24.88300*           | .87077  | .000 | -27.3974 | -22.3686 |
|        |          | Kooliner | -8.45000*            | .81972  | .000 | -10.8033 | -6.0967  |
|        |          | Rebase+H | .67100               | .90285  | .878 | -1.9454  | 3.2874   |



Maxstress\_column

|                        |                |    | Subset for alpha = 0.05 |         |         |
|------------------------|----------------|----|-------------------------|---------|---------|
|                        | Product_column | Ν  | 1                       | 2       | 3       |
| Tukey HSD <sup>a</sup> | Rebase+H       | 10 | 71.9720                 |         |         |
|                        | Rebase-H       | 10 | 72.6430                 |         |         |
|                        | Kooliner       | 10 |                         | 81.0930 |         |
|                        | Unifast        | 10 |                         |         | 97.5260 |
|                        | Sig.           |    | .897                    | 1.000   | 1.000   |

Means for groups in homogeneous subsets are displayed.

Table 27. The Levene statistical analysis of Adhesive group.

#### Test of Homogeneity of Variances

Maxstress\_column

| Levene Statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| 1.342            | 1   | 18  | .262 |

Table 28. One-way ANOVA analysis of Adhesive group.

ANOVA

Maxstress\_column

|                | Sum of  |    |             |       |      |  |  |
|----------------|---------|----|-------------|-------|------|--|--|
|                | Squares | df | Mean Square | F     | Sig. |  |  |
| Between Groups | 7.104   | 1  | 7.104       | 1.535 | .231 |  |  |
| Within Groups  | 83.289  | 18 | 4.627       |       |      |  |  |
| Total          | 90.394  | 19 |             |       |      |  |  |
|                |         |    |             |       |      |  |  |

Table 29. The Levene statistical analysis of MMA+Adhesive group.

| Test of Homogeneity | of Variances |
|---------------------|--------------|
|---------------------|--------------|

| Test of Homogeneity of Variances<br>Maxstress |     |     |      |       |  |  |
|-----------------------------------------------|-----|-----|------|-------|--|--|
| Levene Statistic                              | df1 | df2 | Sig. |       |  |  |
| .000                                          | 1   | 18  | .985 | ยาลัย |  |  |
| 0                                             |     |     |      |       |  |  |

Table 30. One-way ANOVA analysis of MMA+Adhesive group.

ANOVA

#### Maxstress

|                | Sum of  |    |             |      |      |
|----------------|---------|----|-------------|------|------|
|                | Squares | df | Mean Square | F    | Sig. |
| Between Groups | 1.095   | 1  | 1.095       | .185 | .672 |
| Within Groups  | 106.518 | 18 | 5.918       |      |      |
| Total          | 107.613 | 19 |             |      |      |

Table 31. The Levene statistical analysis of MF-MA+Adhesive group.

Test of Homogeneity of Variances

Maxstress

| Levene Statistic | df1 | df2 | Sig. |
|------------------|-----|-----|------|
| .005             | 1   | 18  | .945 |

Table 32. One-way ANOVA analysis of MF-MA+Adhesive group.

ANOVA

Maxstress

|                | Sum of  |    |             |      |      |  |  |
|----------------|---------|----|-------------|------|------|--|--|
|                | Squares | df | Mean Square | F    | Sig. |  |  |
| Between Groups | 5.962   | 1  | 5.962       | .723 | .406 |  |  |
| Within Groups  | 148.499 | 18 | 8.250       |      |      |  |  |
| Total          | 154.462 | 19 |             |      |      |  |  |
|                |         |    |             |      |      |  |  |

Table 33. Descriptive Statistics of three-way ANOVA analysis of Tokuyama<sup>®</sup> Rebase II Fast.

#### **Descriptive Statistics**

Dependent Variable: RB\_Maxstress

| Product_RB        | RB_SurfaceTx | RB_Adhesive   | Mean    | Std. Deviation | Ν  |
|-------------------|--------------|---------------|---------|----------------|----|
| Rebase - Hardener | Control      | without       | 60.1800 | 2.52232        | 10 |
|                   |              | Adhesive      |         |                |    |
|                   |              | with Adhesive | 65.7010 | 2.62538        | 10 |
|                   |              | Total         | 62.9405 | 3.78153        | 20 |
|                   | MMA          | without       | 64.9500 | 1.98015        | 10 |
|                   |              | Adhesive      |         |                |    |
|                   |              | with Adhesive | 71.5220 | 2.47568        | 10 |
|                   |              | Total         | 68.2360 | 4.01580        | 20 |
|                   | MF-MA        | without       | 72.6430 | 1.41979        | 10 |
|                   |              | Adhesive      |         |                |    |
|                   |              | with Adhesive | 77.4120 | 2.86596        | 10 |
|                   |              | Total         | 75.0275 | 3.29100        | 20 |

|                   | Total   | without<br>Adhesive | 65.9243 | 5.57569 | 30 |
|-------------------|---------|---------------------|---------|---------|----|
|                   |         | with Adhesive       | 71.5450 | 5.49879 | 30 |
|                   |         | Total               | 68.7347 | 6.17856 | 60 |
| Rebase + Hardener | Control | without<br>Adhesive | 60.0590 | 2.44878 | 10 |
|                   |         | with Adhesive       | 66.8930 | 1.53680 | 10 |
|                   |         | Total               | 63.4760 | 4.03108 | 20 |
|                   | MMA     | without<br>Adhesive | 64.6020 | 2.21893 | 10 |
|                   |         | with Adhesive       | 71.9900 | 2.38879 | 10 |
|                   |         | Total               | 68.2960 | 4.40444 | 20 |
|                   | MF-MA   | without<br>Adhesive | 71.9720 | 2.47700 | 10 |
|                   |         | with Adhesive       | 76.3200 | 2.87858 | 10 |
|                   |         | Total               | 74.1460 | 3.43604 | 20 |
|                   | Total   | without<br>Adhesive | 65.5443 | 5.49739 | 30 |
|                   |         | with Adhesive       | 71.7343 | 4.52011 | 30 |
|                   |         | Total               | 68.6393 | 5.88545 | 60 |
| Total             | Control | without<br>Adhesive | 60.1195 | 2.42032 | 20 |
|                   |         | with Adhesive       | 66.2970 | 2.18119 | 20 |
|                   |         | Total               | 63.2083 | 3.86738 | 40 |
|                   | MMA     | without<br>Adhesive | 64.7760 | 2.05461 | 20 |
|                   |         | with Adhesive       | 71.7560 | 2.37988 | 20 |
|                   |         | Total               | 68.2660 | 4.16033 | 40 |
|                   | MF-MA   | without<br>Adhesive | 72.3075 | 1.99490 | 20 |
|                   |         | with Adhesive       | 76.8660 | 2.85124 | 20 |
|                   |         | Total               | 74.5867 | 3.35075 | 40 |

| Total without<br>Adhesive | 65.7343 | 5.49290 | 60  |
|---------------------------|---------|---------|-----|
| with Adhesive             | 71.6397 | 4.99137 | 60  |
| Total                     | 68.6870 | 6.00857 | 120 |

Table 34. The Levene statistical analysis of Tokuyama<sup>®</sup> Rebase II Fast (Hardener, Manfacuture Adhesive, Surface treatment).

|                                                           |     |     | 1 1963 |
|-----------------------------------------------------------|-----|-----|--------|
| Levene's Test of Equality of Error Variances <sup>a</sup> |     |     |        |
| Dependent Variable: RB_Maxstress                          |     |     |        |
| F                                                         | df1 | df2 | Sig.   |
| .578                                                      | 11  | 108 | .843   |
| Tests the null hypothesis that the error                  |     |     |        |
| variance of the dependent variable is equal               |     |     |        |
| across groups.                                            |     |     |        |
| a. Design: Intercept + Product_RB +                       |     |     |        |
| RB_SurfaceTx + RB_Adhesive + Product_RB *                 |     |     |        |
| RB_SurfaceTx + Product_RB * RB_Adhesive +                 |     |     |        |
| RB_SurfaceTx * RB_Adhesive + Product_RB *                 |     |     |        |
|                                                           |     |     |        |

RB\_SurfaceTx \* RB\_Adhesive

Chulalongkorn University

# VITA

| NAME                  | Mister Mongkol Puangpetch                               |  |
|-----------------------|---------------------------------------------------------|--|
| DATE OF BIRTH         | 7 October 1982                                          |  |
| PLACE OF BIRTH        | Phimai, Nakhon Ratchasima, Thailand                     |  |
| INSTITUTIONS ATTENDED | Phimai Wittaya School                                   |  |
|                       | Bachelor degree of Science (Radiological Technology),   |  |
|                       | Naresuan University                                     |  |
|                       | Doctor of Dental Surgery (D.D.S), Faculty of Dentistry, |  |
| 4                     | Thammasat University                                    |  |
| ے<br>ا                | Master Science in Prosthodontics, Faculty of Dentistry, |  |
|                       | Chulalongkorn University                                |  |
| HOME ADDRESS          | Phimai, Nakhon Ratchasima, Thailand                     |  |
|                       |                                                         |  |
|                       |                                                         |  |
| <u>S</u>              | Editor Co                                               |  |
| 24                    |                                                         |  |
| าหา                   | ลงกรณ์มหาวิทยาลัย                                       |  |
|                       |                                                         |  |
|                       | LONGKORN UNIVERSITY                                     |  |