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The deep understanding of hematopoiesis would improve the strategy for
hematopoietic stem cell (HSC) generation from pluripotent stem cells (PSCs). Several
studies in animal model have indicated Etv2 as a master regulator in hematopoietic and
vascular development. Moreover, Etv2 might be essential for HSCs generation. To study
roles of ETV2 during human hematopoietic development in vitro, we used embryonic stem
cell-derived sacs (ES-sac) as a model of hematopoietic development in which the steps
of hematopoiesis could be visualized. ETV2 reporter iPSC line (ETV2:GFP iPSCs) was
generated to track ETV2 expression during the development. We found that hemato-
vascular mesoderm (HVM) were generated and given rise to hematopoietic lineage in
which might be inducted by ETV2. Moreover, ETV2:GFP expressing mesoderm failed to
contribute to cardiac cells, thus implying the inhibition of cardiac fate of mesoderm
progenitor. After ETV2 was upregulated during mesodermal specification then
downregulated, ETV2 was upregulated again, the second wave, in hemogenic
endothelium (HE) in later ES-sac. On the second wave, expression of ETV2 correlated with
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our studies in human hematopoietic development in vitro support the notion ETV2 might
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CHAPTER |

Introduction

In vitro generation of hematopoietic stem cells (HSCs) from human pluripotent
stem cells (hPSCs), embryonic stem cells (ESCs) and induced pluripotent stem cells
(iPSCs), provides a great source of hematopoietic cells for clinical transplantation.
However, the generation of long term repopulating HSCs in culture dish has been
unsuccessful. It is necessary to clearly understand cellular and molecular pathways in
hematopoietic development.

Several studies demonstrated that the hematopoietic development from hPSC in
vitro recapitulate early embryonic development that progress through mesoderm,
hemogenic endothelium (HE) and then hematopoietic cells (Keller 2005, Ackermann,
Liebhaber et al. 2015, Ditadi, Sturgeon et al. 2017). Most knowledge of hematopoiesis
have been from animal model, which revealed that the long term repopulating HSCs were
generated from HE lining up at ventral aspect of the dorsal aorta in the aorta-gonad-
mesonephros (AGM) region (Godin, Garcia-Porrero et al. 1993, Medvinsky, Samoylina et
al. 1993, Garcia-Porrero, Godin et al. 1995, Cumano, Dieterlen-Lievre et al. 1996,
Medvinsky and Dzierzak 1996). In order to derive the hematopoietic cells from hPSCs ex
vivo, it is important to strongly understand the development in culture dish, including
mesoderm patterning, HE formation and the process of hematopoietic formation from HE.
Many ETS protein are important in hematopoietic and vascular system. Among these ETS
protein, only Etv2 (Ets variant 2) acts as a master regulator in hematopoietic and
endothelial development, which Etv2 knockout mouse embryo died because of the lack
in hematopoietic and vascular system (Sumanas, Jorniak et al. 2005, Lee, Park et al.
2008). Intriguingly, Etv2 expression were detected in the dorsal aorta (DA) at the time
hematopoietic stem cells (HSCs) emerge (Lee, Park et al. 2008). This showed that Etv2
might be required for the generation of HSCs. Moreover, there are several studies
supporting the idea that Etv2 has an important function in HSC generation (Ren, Gomez

et al. 2010, Lee, Kim et al. 2011, Swiers, Baumann et al. 2013).



To study the roles of ETV2 in human hematopoiesis in vitro, we generated ETVZ2
reporter iPSC cell line (ETV2:GFP iPSCs). Using the reporter line, we found that ETV2:GFP
was detected during human hematopoietic development. Consistent with others studies,
we showed that ETV2 may play a role in specification of mesodermal progenitor (MP) into
hemato-vascular mesoderm (HVM) and inhibit cardiac differentiation. We demonstrated
that ES-sac derived HE were generated through ETV2:GFP expressing cells. Importantly,
our study support the notion that ETV2 may be necessary for HSC generation that need

to be investigated further.



CHAPTER I

Literature review

Pluripotent stem cells (PSCs)

Human pluripotent stem cells (PSCs), including embryonic stem cells (ESCs) and
induced pluripotent stem cells (iPSCs), provide an invaluable tool for the study of
embryonic development and are expected to be an unlimited source of cells for
regenerative medicine (Ye, Chou et al. 2012). The PSCs are able to differentiate into cells
of the three germ layers after directed differentiation in culture (Doetschman, Eistetter et
al. 1985, Thomson, Itskovitz-Eldor et al. 1998). ESCs are pluripotent stem cells originated
from the inner cell mass of blastocyst-stage embryos (Evans and Kaufman 1981,
Thomson, ltskovitz-Eldor et al. 1998). iPSCs are ESC-like cells generated through
reprogramming somatic cells with forced expression of a combination of pluripotent
transcription factors, such as Oct3/4, KLF4, c-Myc, and SOX2 (Takahashi and Yamanaka
2006). The advent of iPSCs has helped the scientific community to circumvent the ethical
problems faced with the use of ESCs, and also provided cells source for an individual
patient. Using gene targeting technology, it is possible to correct genetic defects in the
cells, solving the problems of immunological rejection (Togarrati and Suknuntha 2012,

Hockemeyer and Jaenisch 2016).

Hematopoiesis

Hematopoiesis is a process of blood production in an organism. The key players
in this process are hematopoietic stem cells (HSCs) which are multipotent stem cells with
an ability to self-renew and differentiate into all type of blood cells. Clinically, HSCs, with
their hematopoietic repopulation potential, are used for transplantation therapies in
patients with a variety of hematopoietic disorders. The major limitation of HSC
transplantation is the amount of compatible donors. Nonetheless, the discoveries from
PSCs research will hopefully lead to successful production of HSCs in a dish for

hematopoietic transplantation therapy. Many researchers have developed strategies to



differentiate PSC into hematopoietic lineage in vitro (Slukvin 2016). However, multi-lineage
engraftment potential from PSCs is unsuccessful. To overcome this limitation, it is
necessary to completely understand the process of HSC formation in the embryo.

Embryonic hematopoiesis occurs in sequential waves consisting of the primitive
wave, forming erythroid and myeloid cells to help the developing embryo, and the
definitive wave, generating erythro-myeloid progenitors and long-term HSCs. During
embryogenesis, yolk sac in which located on extra-embryonic area, was thought to be the
first place that HSCs are generated before migrating to intra-embryonic organs (Palis,
Robertson et al. 1999, Lichanska and Hume 2000, Palis and Yoder 2001, Lux, Yoshimoto
et al. 2008). However, the studies in chick-quail chimeras, Xenopus, and mice clearly
demonstrated that the intra-embryonic organ, dorsal aorta (DA) of aorta-gonads-
mesonephros (AGM), is the origin of HSCs. The specialized endothelial cells at the ventral
wall of the DA, namely hemogenic endothelium (HE), are able to form HSCs through a
process called the endothelial-to-hematopoietic transition (EHT) (Medvinsky and Dzierzak
1996, Taoudi, Gonneau et al. 2008, Zovein, Hofmann et al. 2008, Eilken, Nishikawa et al.
2009, Yoshimoto and Yoder 2009, Bertrand, Chi et al. 2010, Boisset, van Cappellen et al.
2010, Kissa and Herbomel 2010, Tavian, Biasch et al. 2010, Hirschi 2012, Li, Lan et al.
2012, Rafii, Kloss et al. 2013, Swiers, Baumann et al. 2013). After the HSCs generation in
AGM, HSCs migrate to an intermediate niche, fetal liver and placenta, to proliferate and
expand and finally colonize at bone marrow where the HSCs will remain throughout
adulthood (Zovein, Hofmann et al. 2008, Bertrand, Chi et al. 2010, Boisset, van Cappellen
et al. 2010, Kissa and Herbomel 2010, Li, Lan et al. 2012).

For the past decade, multiple studies have attempted to developed many
protocols for generation of in vitro hematopoiestic stem cells from human PSCs. The PSC
derived HSCs, however, do not effectively develop into cells of all lineages, fail to produce
adult hemoglobin, and have limited long term engraftment potential. Various in vitro
protocols have been described to generate blood cells from human PSC. There are two
major types of strategies for hematopoietic differentiation from PSC - embryoid body (EB)

method and co-culture of hPSC with stromal cell lines. The EB method is the aggregation



of PSCs into small clumps which differentiate spontaneously into embryoid bodies in the
presence of growth and differentiation factors (Civin, Aimeida-Porada et al. 1996, Yahata,
Ando et al. 2002, Zambidis, Peault et al. 2005, Ye, Zhan et al. 2009, Bai, Xie et al. 2013).
For co-culture of hPSC with stromal cell lines, PSCs are cultured on the irradiated stromal
cell lines layer and subsequently differentiate spontaneously (Kaufman, Hanson et al.
2001, Vodyanik, Bork et al. 2005, Tian, Woll et al. 2006, Weisel, Gao et al. 2006, Ledran,
Krassowska et al. 2008, Ma, Ebihara et al. 2008, Timmermans, Velghe et al. 2009).

In hematopoietic development process, PSCs are specified into primitive streak
(PS), mesodermal cell and hemato-vascular progenitor, respectively (Kennedy, D'Souza
et al. 2007, Wang, Tang et al. 2012). As PSCs develop into mesoderm expressing Kdr
(FIk1) and platelet-derived growth factor receptor alpha (Pdgfra) (Kataoka, Takakura et
al. 1997, Shalaby, Ho et al. 1997).

Hemangioblasts are mesodermal progenitor cells which can form blast colony
forming cells (BL-CFCs) consisting of vascular and hematopoietic progenitors. In mouse
ESC culture, mouse ESCs differentiate into Kdr™ Pdgfra primitive mesodermal cells and
then Kdr' Pdgfralateral plate mesoderm, respectively. The study by Choi revealed that the
differentiation of mesodermal cells from hPSCs were defined using expression of APLNR
(apelin receptor), PDGFRa, and KDR mesodermal markers which divide mesodermal cells

EMH,.

into two phases of development, including primitive mesodermal cells (7 lin

EMH,.
(

APPNR'PDGFRa") and hematovascular mesodermal progenitor lin

EMH

KDR”®"APLNRPDGFRa"""), ™lin" stand for lacking of expression of mesenchymal
endothelial and hematopoietic markers (Choi, Vodyanik et al. 2012).

Primitive mesodermal cells have potential to form blast-CFC (BL-CFCs) and act
like primitive posterior mesoderm in the embryo. These primitive mesoderm express gene
associated with primitive streak (T, MIXL1, EOMES) and lateral plate mesoderm (FOXF1,
WNT5a, BMP4). Following the primitive mesoderm phase, hematovascular mesodermal

progenitors were generated in which lack BL-CFC potential. The HVMPs still express

lateral plate mesodermal gene and begin upregulating expression of hematopoietic and



vascular genes (TAL1, HHEX, LMO2, GATA2, and ETV2) and downregulating expression
of lateral plate mesodermal gene (Choi, Vodyanik et al. 2012).

Following the mesodermal development, hemogenic endothelium (HE), an
endothelial cell in which can generate multilineage HSCs through endothelial to
hematopoietic transition (EHT) process, can be detected. Many studies show that only a
portion of endothelial cells undergo EHT in hPSC culture. The study of Choi revealed that
HE is enriched within VE-cadherin CD43 endothelial population (Choi, Vodyanik et al.
2012). CD43, which expresses in hematopoietic progenitor, was used to isolate
hematopoietic cells from endothelial cells (Vodyanik, Thomson et al. 2006). An expression
of CD73 was used to separate HE from non-HE (Choi, Vodyanik et al. 2012, Rafii, Kloss et
al. 2013, Uenishi, Theisen et al. 2014). Choi also showed that gene expression profiles of
VE-cadherin'CD43'CD73cells are similar to HE but unlike non-HE. However HE shares
many endothelial markers with non-HE. Consistently, Keller group demonstrated that HE
were enriched in CD34 'CD43 CD73 CD184 cells (Ditadi, Sturgeon et al. 2015).

In human PSC cultures, venous and arterial endothelial cells are the subpopulation
within CD73 non-HE. CXCR4 (CD184) expression can be used to identify venous and
arterial vascular endothelium in non-HE population. Subcutaneous transplantation of
CD184'CD73 cells in mice induced the formation of large vessels expressing EFNB2
(arterial endothelial marker) and lacking EPHB4 expression (venous endothelial marker),
which indicated generation of arterial vessels. In contrast, CD184 CD73 cells generated
smaller venous vessels with EPHB4 expression representing venous vasculature (Ditadi,
Sturgeon et al. 2015).

Hematopoietic progenitor cells (HPCs) with multi-lineage potential derived from
hPSC culture are enriched within CD34 population prior to an upregulation of CD45, a
pan-hematopoietic marker. However, CD34 cells in hPSC culture are also identified as
endothelial and mesenchymal stem cells (Kaiser, Hackanson et al. 2007, Maumus,
Peyrafitte et al. 2011, Lin, Ning et al. 2012, Zimmerlin, Donnenberg et al. 2013). Thus, only
expression of CD34 is not sufficient to isolate hematopoietic cells from hPSC culture. The

study of Vodyanik revealed that CD43 is a marker for emerging hematopoietic progenitor



cells (Vodyanik, Thomson et al. 2006). Time lapse video of hPSC culture showed round
hematopoietic progenitor cells gradually acquire expression of CD43 during EHT (Choi,
Vodyanik et al. 2012).

Primitive and definitive hematopoiesis are spatially separated during embryonic
development in vivo. However, hPSC culture systems are not set apart of these waves
existing together in culture. So, both hematopoietic programs generate HE and give rise
to HPCs (CD34'CD43"cells) which cannot be separated by surface markers expression.
Nevertheless, only definitive HPCs have ability to generate T lymphocyte (Kennedy,
Awong et al. 2012). The studies of Kennedy et al and Sturgeon et al showed that
Activin/Nodal pathway induced the development of primitive while definitive
hematopoietic program was triggered by the Wnt signaling pathway during mesoderm
development (Kennedy, Awong et al. 2012, Sturgeon, Ditadi et al. 2014). Glycophorin A
(CD235a) was identified as a marker for discrimination of primitive and definitive program
which KDR'CD235a mesodermal cells develop into primitive hematopoietic cells,
whereas KDR'CD235a mesodermal cells give rise to definitive hematopoietic cells
(Sturgeon, Ditadi et al. 2014). This led to a way to selectively generate definitive

hematopoietic progenitors in hPSC culture.

Transcription factors

ETV2

ETV2 (ETS Variant 2) or ER71 is a transcription factor in ETS family that has a
conserved winged helix-turn-helix ETS DNA-binding domain which binds to a GGAA/T-
binding motif. The studies from various animal models such as mouse, Xenopus, zebrafish
and chicken, show that ETV2 is an important transcription factor in embryonic
hematopoiesis and vasculogenesis. ETV2 deficient mouse embryos die at embryonic day
11.0 (E11.0) with defects in hematopoiesis and vasculogenesis (Lee, Park et al. 2008,
Ferdous, Caprioli et al. 2009). Lineage tracing study of Rasmussen revealed that
cardiomyocyte and hematopoietic and vascular cells are derived from the same

progenitors, mesodermal progenitors, which were induced into hematopoietic and



endothelial lineages by ETV2 upregulation and guided into cardiomyocytes by ETV2
downregulation (Rasmussen, Kweon et al. 2011). This result is consistent with the study
of Kataoka which showed that Etv2 deficient mouse embryo (Etv2”) cannot generate
Kdr'Pdgfracells, cells in hematopoietic lineage, from Kdr'Pdgfra'mesoderm. However,
these cells can give rise to KdrPdgfra'cells, which are of the cardiac lineage (Kataoka,
Hayashi et al. 2011). These results are also supported by the study in zebrafish, which
demonstrated that vascular endothelial/endocardial progenitors can differentiate into
cardiomyocytes in the absence of etv2 function during zebrafish embryonic development
(Palencia-Desai, Kohli et al. 2011). Some studies have also shown Etv2 to be essential
during embryonic stage in which HSCs emerged. The study in mouse embryo by
Nakagawa shown that Etv2 is expressed in AGM, the first organ of definitive
hematopoiesis (Koyano-Nakagawa, Kweon et al. 2012). Therefore, Etv2 may be required
for HSC formation from HE through EHT. The study of Swiers suggested that Etv2 was
expressed within HE, which was marked by +23 Runx1 enhancer driven GFP expression,
where Runx1 is a marker for hematopoietic stem and progenitor cell (HSPC) and HE
(Swiers, Baumann et al. 2013). The study in zebrafish by Ren also demonstrated that Etv2
is required for HSCs development from HE (Ren, Gomez et al. 2010). Correspondingly,
the study by Lee using conditional deletion of Etv2 in the hematopoietic system of adult
mice showed a decrease in the number of HSCs, which was likely a result from an
increased cell death (Lee, Kim et al. 2011). Thus, Etv2 was required for HSC maintenance
and function. Collectively, Etv2 is an important transcription factor in embryonic
hematopoiesis. First, it specifies mesodermal cell into hematopoietic/vascular lineage,
while prohibiting cardiac lineage specification. Second, Etv2 is necessary for HE,
especially in the process of ETH which generate HSCs. Lastly, Etv2 is an important

transcription factor for HSC maintenance.

RUNX1
Runx1 is a key transcription factor for hematopoiesis in vertebrates and is

especially important for the emergence of definitive HSCs from HE (Speck and Gilliland



2002). RUNX1 is also known as acute myeloid leukemia 1 due to the discovery of its gene
sequence from human patient with acute myeloid leukemia. During embryonic
hematopoiesis, HSCs were first detected in aorta-gonad-mesonephros region at 10.5
days post conception (dpc), where the HSCs emerge from the ventral aspect of dosal
aorta, and then move to colonize at fetal liver. Runx1 expression can be detected at the
two locations, suggesting that Runx1 expression marks earliest hematopoietic precursor
cells (North, Gu et al. 1999).

Runx1” mouse embryo died because of hemorrhage and a complete lack of the
definitive hematopoietic system (Okuda, van Deursen et al. 1996, Wang, Stacy et al. 19986,
North, Gu et al. 1999, Lacaud, Gore et al. 2002). Recent studies have established that
Runx1 is required for the HSC generation from HE through EHT (Yokomizo, Ogawa et al.
2001, Lancrin, Sroczynska et al. 2009, Kissa and Herbomel 2010). During hematopoiesis
in mouse and zebrafish, Runx1 expression is regulated by two promotors, proximal P2
and distal P1, which generate 3 isoforms consisting of Runxl1a, Runx1b and Runxilc
isoform. These three isoforms contain the Runt domain located in the N-terminal region,
sharing the same N-terminal region, and are the result of alternative splicing. Runxic is
transcribed from a distal P1 promoter, whereas Runx1a and Runx1b are transcribed from
the proximal P2 promoter. Recent studies revealed that the emergence of definitive
hematopoietic cells was shown to associate with the expression of Runxlc, and
overexpression of Runx1c can accelerate and enhance the production of haemato-
endothelial cells in vitro (Challen and Goodell 2010, Ran, Lam et al. 2013, Real, Navarro-
Montero et al. 2013, Ferrell, Xi et al. 2015). In contrast, Runx1a and Runx1b are expressed

throughout both primitive and definitive hematopoietic cells

KIT

c-Kit (CD117) is a growth factor receptor with tyrosine kinase activity that controls
intracellular signal transduction pathways including cellular proliferation, maintenance
and migration (Marcelo, Goldie et al. 2013). c-Kit mutations lead to embryonic lethality

around mid-gestation because of anemia and disrupted HSC development (Chabot,
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Stephenson et al. 1988, Sattler and Salgia 2004). Emerging hematopoietic from the aorta
endothelium can be discriminated from endothelial cells by c-kit expression, in which
hematopoietic clusters were identified in c-Kit"*"CD31 population, while c-Kit®" CD31
population are circulating hematopoietic cells (Yokomizo and Dzierzak 2010). This reveal
that c-Kit is a HSCs marker. The recent studies also showed c-Kit is a marker of HE
(Yokomizo and Dzierzak 2010, Tober, Yzaguirre et al. 2013). c-Kit can rescue the
development of HE in yolk sac and also activate Runx1 expression, promoting endothelial
to hematopoietic transition (EHT) (Marcelo, Sills et al. 2013, Pereira, Chang et al. 2016).

low,

Another study revealed that Kit”"Runx1 cells with endothelial morphology are in an initial
stage of the endothelial-to-hematopoietic transition, in which Kit®“Runx1 cells go through
Kit"""Runx1’cells and subsequently Kit"*"rounded hematopoietic cells (Frame, Fegan et

al. 2016).

SOX17

Sox17 is a transcription factor expressed in HE in AMG around E8.5-8.75
(lacovino, Chong et al. 2011). Sox17 is required for generation of fetal and neonatal HSCs,
but not in adult HSCs (Kim, Saunders et al. 2007, He, Kim et al. 2011, Clarke, Yzaguirre
et al. 2013, Swiers, Baumann et al. 2013). Lizama demonstrated that Sox17 modulates HE
by repressing the hematopoietic program through the Sox17/Notch axis, until initiation of
EHT (Lizama, Hawkins et al. 2015). Consistently, several studies of HE in murine AGM
revealed that the HE showed increasing in Runx1 levels together with decreasing in Sox17
when undergoing endothelium to hemogenic transition (EHT) (Bos, Hawkins et al. 2015).
Clark group also demonstrated that SOX17 is essential for definitive hematopoietic

commitment (Clarke, Robitaille et al. 2015).

Gene targeting

Gene targeting is a site-specific modification of the gene of interest using DNA
repair mechanism triggered double-strand break (DSB) of genomic DNA (Barnes 2001,

Lieber 2010). DSB is a critical DNA damage that needs to be repaired immediately to
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maintain the integrity of the genome. To repair DBS, there are several DNA repair
mechanisms such as non-homologous end joining (NHEJ) and homologous
recombination (HR) (van den Bosch, Lohman et al. 2002, Kim and Kim 2014). NHEJ is a
DNA repair mechanism in eukaryotic cells that joins the two broken end of DNA, causing
an insertion or a deletion (indel) of nucleotide. HR repairs DSBs by using a homologous
DNA template endogenous genomic locus or donor vector, which guides the repair
process. When properly supplemented with donor vector, HDR will insert the donor
molecule at the targeted site. Thus a targeted site specific gene can be modified by
inducing DBS and subsequently repaired through NHEJ or HDR using custom-
engineered nucleases such as zinc-finger nuclease (ZFN), transcription activator-like
effector nuclease (TALEN) or clustered regularly interspaced short palindromic repeat

(CRISPR).

ZFN

The zinc-finger DNA recognition domain, which is a common DNA binding module
in eukaryotic cells and transcriptional regulation, has been modified to bind to specific
DNA sequences of interest and fused with restriction enzyme Fokl, the engineered DNA-
binding proteins are named zinc-finger nucleases (ZFNs). ZFNs are composed of 6 to 6
zinc finger proteins, each of which can bind 3-bp combination of DNA sequence. The Fokl
nuclease is a restriction enzyme that can cleave DNA when it forms dimers. Thus, ZFN
system requires two ZFNs that bind to the top and bottom strands of targeted DNA
sequence to induce a DSB and consequence DNA damage response pathway, either

NHEJ or HDR (Kim and Kim 2014).

TALEN

Transcription activator-like effector (TAL effector or TALE) was found in
Xanthomonas, a plant pathogen. TALE consists of 10 to 30 tandem repeats of repeat
variable di-rescidue or RVD domain. Two amino acid residues of each domain can
recognize a single base, guanine (G), adenine (A), cytosine (C), and thymine (T). TALE

was engineered by conjugating with a Fokl nuclease to form TALE Nucleases (TALENSs)
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that can induce specific DSBs in target DNA sequences similar to ZFNs (Kim and Kim

2014).

CRISPR

CRISPR or clustered regulatory interspaced short palindromic repeat system is an
adaptive defense mechanism in prokaryotic cells that act against viruses and plasmid,
whose DNA segment is copied into the genome of the host at CRISPR locus, a genomic
memory of invading pathogens. When the host cell is invaded with a pathogen which was
memorized, crispr RNA (crRNA) will be transcribed from specific sequences in CRISPR
locus and combined with an endogenous CRISPR- associated endonuclease (Cas). This
crRNA, together with Cas, subsequently recognizes and binds to DNA of the invading
pathogen and induces DBS to obstruct the integration and replication. Type Il CRISPR
system is one of three CRISPR systems in prokaryotic cells. Type Il CRISPR system
requires two small RNAs, crRNA and the trans activating crRNA (tracrRNA) that form
single guide RNA (sgRNA) which then combines with Cas9 protein. The sgRNA quides
endonuclease Cas9 to cleave DNA of invading pathogens. The type Il CRISPR also
requires a protospacer adjacent motif (PAM) downstream of the target sequence which is
recognized by a PAM-binding domain of Cas9. The CRISPR-Cas9 system can be
modified and introduced into eukaryotic cells to disrupt and edit a target gene of interest.
In contrast to ZFNs and TALENSs, the Cas9 endonuclease in CRISPR system induces
DSBs as a monomer whereas the Fokl in ZFNs and TALENSs induces as a dimer. Apart
from genome editing capability of CRISPR system which can bind to specific target
sequences, Cas9 protein can be engineered into a form lacking nuclease activity (dCas9),
to block transcriptional initiation or elongation, a system called CRISPR interference or
CRISPRI. To repress or activate transcription, transcriptional repressor or activator domain
can be fused to dCas9 (Kim and Kim 2014).

The advancement in iPSC and genome targeting technologies benefit the

genomics study of human in understanding gene function, modeling disease, and
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generating reporter lines and collections. These technologies are the hope for next

generation gene therapy using iPSCs.
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CHAPTER III

Material and method

Cell culture and transfection

HS4#2sevtx generated from human skin fibroblast as previously described
(Ingrungruanglert et al.,2014) was maintained on Matrigel (BD Biosciences) in a basal
growth-factor free mTeSR1 medium (StemCell Technologies). Every 3-5 days, the cells
were dissected into small clumps in dissociation solution (CTK; 0.25% trypsin, 20%
knockout serum replacement, and 1mM CaCl, in PBS) and transferred to a new Matrigel-
coated plastic ware to maintain undifferentiated state. The VEGF expressing C3H10T1/2
cells were cultured in Eagle basal medium (Invitrogen) containing 10% fetal bovine serum
(FBS) and 2 mM L-glutamine.

hiPSCs ware transfected with 5 ug (each) of CRISPR/TALEN and donor vector using P3
Primary Cell 4D-Nucleofector® X (Lonza) according to the manufacturer’s instructions.
Briefly, iPSCs were passaged two days before transfection. The day of transfection, 5x10°
cells were dissociated into single cells with Accutase (Thermo Fisher Scientific). Cells
were re-suspended in the cocktail solution together with 5 ug each CRISPR/TALEN and
5ug donor plasmid. The transfection was processed using the 4D-Nucleofector X Unit with
CB-150 program. Cells were re-plated on a new Matrigel-coated plastic dish with mTeSR1
medium supplemented with 10 uM Y27632. After 24 hours of transfection, medium was
changed to mTeSR1 medium without Y27632. After 3 days of transfection, cells were

selected by 0.5 pg/ml puromycin or 20 y/ml hygromycin depend on donor vector.

ES-sac differentiation

hPSCs were cultured on Matrigel-coated dish 4-5 days, followed by ES-sac differentiation,
as previously described (Takayama et al.,2008). Briefly, the hPSCs were dissociated with
CTK into small clumps (20-30 cells) and transferred into irradiated VEGF expressing
C3H10T1/2 feeder and cultured in ES-sac differentiation medium, which was refreshed

every 3 days. ES-sac differentiation medium was Iscove modified Dulbecco medium
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supplemented with a cocktail of 10 ug/mL human insulin, 5.5 pg/mL human transferrin, 5
ng/mL sodium selenite, 2 mM L-glutamine, 0.45 mM mono-thioglycerol, 50 ug/mL
ascorbic acid, and 15% FBS. Cultures were maintained in a 5% CO,/ 5% O,/ 90% N,

environment for the first 7 days and then transferred to a 5% CO,/ air environment.

Flow cytometry and cell sorting

ES-sac was dissociated to single cells with sequential collagenase IV (1 mg/ml) and
trypsin-EDTA (0.25%) treatment. The cells ware stained with CD34-FITC (clone 561),
CD43-PE/Cy7 (CD43-10G7), CD73PerCP-Cy5.5 (clone AD2), CD184-Brilliant Violet 421
(clone 12G5), KDR-APC (7D4-6). PDGFRa or CD140a, CD144, CD235a, KIT or CD117 All
antibodies were purchased from BD Biosciences. For cell surface markers, staining was
carried out in PBS with 10% FCS. The cells were analyzed and sorted using FACSAria
(BD).

Real time quantitative PCR

Total RNA was prepared with TRIzol reagent according to the manufacturer’s instructions.
Briefly, the pelleted cells were add with 1 mL TRIzol reagent and incubate in 5 minutes at
room temperature. Add 0.1 ml of BCP per 1 ml of TRIZOL Reagent. Cap sample tubes
securely. Vortex samples vigorously for 15 seconds and incubate the sample at room
temperature for 3 to 5 minutes. Centrifuge the samples at 12,000 x g for 10 minutes at
4°C. The mixture was separates and RNA remains in the aqueous phase. Transfer upper
aqueous phase carefully without disturbing the interphase into new tube. Add 0.5 ml of
isopropy! alcohol per 1 ml of TRIZOL Reagent and Incubate samples overnight at 20°C.
Centrifuge at 12,000 x g for 10 minutes at 2 to 4°C. Wash the RNA pellet twice with 75%
ethanol. Air-dry RNA pellet and dissolve RNA in water. cDNA was synthesized from total
RNA using RevertAid™ H Minus M M-MuLV (Fermentas). Real-time PCR was carried out
using Maxiima SYBR Green/ROX gPCR Master Mix (2X) (Fermentas) and Applied
Biosystems 7500 Fast Real-Time PCR system (Applied Biosystems). Primer sequences

used are listed in Table 1.



Table 1 Real time quantitative PCR primers
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AG

Gene Forward primer sequence (5-3’) Reverse primer sequence (5’-3)

ETV2 AGGGAACAAGCTGGCAGGGCTTGA | TCCAGCATGTCTCTGCTGTCGCTGT
A

RUNX1 ACTCGGCTGAGCTGAGAAATG GACTTGCGGTGGGTTTGTG

RUNX1a CTGGTCACTGTGATGGCTGG CTGCCTTAACATCTCCAGGG

RUNX1b TGCATGATAAAAGTGGCCTTGT CGAAGAGTAAAACGATCAGCAAAC

RUNX1c TGGTTTTCGCTCCGAAGGT CATGAAGCACTGTGGGTACGA

PDGFRa TCCTCTGCCTGACATTGACC TGAAGGTGGAACTGCTGGAAC

BRACHYURY | GGTCTCGGCGCCCTCTTCCTC GGGCCAACTGCATCATCTCCACA

TAL1/SCL ATGGTGCAGCTGAGTCCTCC TCTCATTCTTGCTGAGCTTC

HOXA1 TCCTGGAATACCCCATACTTAGCA GCCGCCGCAACTGTTG

HOXA2 ACAGCGAAGGGAAATGTAAAAGC GGGCCCCAGAGACGCTAA

HOXA3 TGCAAAAAGCGACCTACTACGA CGTCGGCGCCCAAAG

HOXA4 TCCCCATCTGGACCATAATAGG GCAACCAGCACAGACTCTTAACC

HOXAS5 TCTCGTTGCCCTAATTCATCTTTT CATTCAGGACAAAGAGATGAACAGA

A

HOXAG6 CCCTCTACCAGGCTGGCTATG CAGGACCGAGTTGGACTGTTG

HOXA7 CAAAATGCCGAGCCGACTT TAGCCGGACGCAAAGGG

HOXA9 CCGAGAGGCAGGTCAAGATC AAATAAGCCCAAATGGCATCA

HOXA10 ACAAGAAATGTCAGCCAGAAAGG GATGAGCGAGTCGACCAAAAA

HOXA11 ACAGGCTTTCGACCAGTTTTTC CCTTCTCGGCGCTCTTGTC

HOXB4 TTTTCAGCTTTGGCGAAGATG ACCGAGGCCCGTCTTCTC

LIN28b TTGTGAGGGTTGTAAGGG CAGTAGTAAATAAGGAGGG

GAPDH CCAGGTGGTCTCCTCTGACTTCAAC | AGGGTCTCTCTCTTCCTCTTGTGCTC

T
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Immunofluorescence staining

ES-sac were differentiate on VEGF expressing C3H101/2 feeder cells on glass slide in 24
well plate. At the staining day, the ES-sac were fixed with 4% paraformaldehyde for 15
min and permeabilized with 0.3% Triton X-100 in PBS for 45 min. The ES-sac were blocked
in blocking buffer (5% normal goat serum and 0.3% Triton X-100 in PBS) for 60 min.
Aspirate blocking solution, apply diluted primary antibody and incubate overnight at 4°C.
Aspirate primary antibody and wash with washing buffer 3 times, 0.05% tween 20 in PSC.
Incubate the ES-sac in fluorochrome-conjugated secondary antibody (Molecular Probes,
Invitrogen) for 60 min at room temperature in the dark. Aspirate the secondary antibody
and wash 5-7 times. DAP| was added and washed after incubation in 5 min. Fluorescence

images were obtained by using Axio Observer fluorescence microscope (Carl Zeiss).

Targeting vector construction

To generate CRISPR-dCas9 vector to target ETV2 gene (ETV2 stop codon), gRNAs were
designed using Optimized CRISPR Design — MIT web site (http://crispr.mit.edu/). Single-
stranded oligonucleotides of gRNA were annealed. The gRNAs were cloned into px461
(provided by Dr. Feng Zhang, and also available through Addgene; 48140) at the Bbsl-
digested site.

ETV2-GFP vector and RUNX1-RFP vector were designed and generated for gene specific
donor templates. ETV2-GFP vector contain ETV2 homology arms (left and right arms,~1000
bp for each), 2A-H2B-GFP and PGK-Puromycin flanked by loxp recombination site for

PGK-Puromysin removal (Fig 7).

CRISPR/TALEN test, genomic DNA isolation, PCR and T7EI assay

HEK293 1x10° cells were transfected with 5 ug (each) of CRISPR or TALEN plasmids
using Amaxa® Cell Line Nucleofector® Kit V following manufacturer’s instructions. The
genomic DNA was harvested after 2-3 days after transfection using the QlAamp DNA Mini
Kit (QIAGEN) following the manufacturer’s instruction. T7 endonuclease | assay was

performed for checking double strand break (DSB) as previously described (Shen, Zhang
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et al. 2014). PCR was done using Phusion High-Fidelity DNA Polymerase (Thermo Fisher
Scientific) with gene specific primers. To double check for induced double strand break,
PCR products were cloned into pCR8/GW/TOPO vector (Invitrogen) for sequencing

analysis.
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CHAPTER IV

Results

Evaluation of the suitability of ES-sac differentiation method for the study of early

human hematopoiesis

While mouse hematopoiesis is well characterized, experimental limitations make
the study of early human hematopoiesis challenging. Pluripotent stem cells (PSC) provide
the possibility of a model studying early human hematopoietic development in vitro.
Several studies demonstrated that in vitro hematopoietic differentiation via embryoid body
(EB) mimics the development cascade in vivo (Keller 2005, Ackermann, Liebhaber et al.
2015, Ditadi, Sturgeon et al. 2017). Nevertheless, the structure and density of EB prevents
real-time monitoring events occurring within the model. We therefore aim to use a
hematopoietic differentiation model called ES-sac, embryonic stem cell-derived sacs
(Takayama, Nishikii et al. 2008), to study the roles of ETV2 in hemogenic endothelium
generation and hematopoietic stem cell emergence. For ES-sac methods, PSCs were co-
cultured with VEGF expressing C3H101/2 feeder cells (Fig 1). The PSCs were induced to
generated inflated sac like structure containing hematopoietic like cells emerged from
wall of vascular like structure that provides an opportunity to visualize and track the
development (Fig 2). Since ES-sac model was much less used than the EB, there are
limits of information about cell types generated in the ES-sac model. We therefore first
analyzed the components of this structure. Immunofluorescence staining of ES-sacs,
CD31 (PECAM-1) and RUNX1 expression were detected in the cells within ES-sac
colonies, indicating hematopoietic differentiation (Fig 2). Intriguingly, cells expressing
RUNX1 together with CD31 emerged from the wall were observed suggest that this system
contain hemogenic endothelium (HE) and allows monitoring of HSC emergence (Fig 2-e
and f). Fluorescence activated cell sorting (FACS) analysis was used to study the
dynamic change of ES-sac components during the first 14 days of the culture. Mesoderm
with  hematopoietic potential or hemato-vascular mesoderm (HVM), identified as

KDR""PDGFR cells (Ema, Takahashi et al. 2006, Sakurai, Era et al. 2006, Choi, Vodyanik



20

et al. 2012), were first detected at Day3 and peaked around Day5-6 of differentiation (Fig
3). HE, which were identified as CD34'CD43 CD73'CD184 cells (Ditadi, Sturgeon et al.
2015), were detected following the mesoderm generation. Next, hematopoietic progenitor
cells (HPC), CD34'CD43'cells, were observed. We also found arterial
(CD34'CD73'CD184") and venous (CD34'CD73'CD184) vascular endothelium (VE)
(Ditadi, Sturgeon et al. 2015) in the culture started from Day5. Unlike HE and HPC, arterial
and venous VE were unable to give rise to hematopoietic colonies in methylcellulose (Fig
4). Taken together, ES-sac method provides useful tool for interrogating early human

hematopoiesis in the dish.

hPSC on
VEGF expressing C3H101/2 feeder cells ES-sac
e o5
I L1 1 U T SRR SR SR | 1 11 2 I
' LN B B BN BN B | S — —
Day0 14

Figure 1 Schematic of ES-sac differentiation protocol hPSCs were plated on irradiated
VEGF expressing C3H101/2 feeder cells at Day0 in ES-sac differentiation medium that

was refreshed every 3 days. VEGF indicates vascular endothelial growth factor.
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Figure 2 Human PSC derived ES-sac (a to d) Day10 ES-sac colony generated vascular
like structure spreading out from the middle of colony (red arrow in a) and blood-like cells
were observed emerging from the vascular-like structure (red arrow in b). (e and f)
Immunofluorescent staining of CD31 and RUNX1 markers in ES-sac was shown. Cells in
the ES-sac colony were stained with CD31 (vascular and HE marker) in which form
vascular-like structure. RUNX1, a hematopoietic progenitor marker, positive cells also co-
stained with CD31, which the cells were located at the vascular wall (f, red arrow). This

indicated that hematopoietic cells were likely to emerge from endothelial cells.
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Figure 3 Time-course analysis of ES-sac differentiation (Day1-14, n=4) showing the
percentages of hemato-vascular mesoderm (HVM, KDRhighPDGFRa'CeIIs), hemogenic
endothelium (HE, CD34'CD43 CD73' CD184 cells), arterial vascular endothelium (arterial
VE, CD34+CD43'CD73+CD184+cells), venous vascular endothelium (venous VE,
CD34°CD43CD73'CD184 cells), and hematopoietic progenitor cells (HPCs) in the ES-sac
combined with feeder cells. HVM were first detected at Day3 and highest at Day5, and
follow by the highest HE generation at Day6. After the formation of HE, HPCs were
observed. Additionally, arterial VE and venous VE also were detected in the ES-sac model

which indicated that major vessels were existed in the ES-sac model.
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Figure 4 Clonogenic frequency of HE, HPCs, and AV A top diagram showed
hematopoietic colonies were derived from HE (CD34°CD43'CD73'CD184 cells) and HPC
(CD34'CD43 cells) population, but not AV (CD34-CD43 CD73 cells), in methylcelluose.
A bottom image showed CFU-G/M colony types. This implied that hematopoietic potential
was limited in AV population. (Abbreviations: HE, hemogenic endothelium; HPCs,

hematopoietic progenitor cells; AV, arterial and venous vascular endothelium)
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Generation and validation of ETV2-2A-H2B-GFP iPSC reporter cell line

The study in mouse model revealed that Etv2 is a key master regulator of
hematopoietic development that fate mesoderm towards hematopoietic and vascular
cells and likely plays a key role in HSC generation (Ren, Gomez et al. 2010, Lee, Kim et
al. 2011, Koyano-Nakagawa, Kweon et al. 2012, Swiers, Baumann et al. 2013). Its
expression in the mesoderm marks the earliest stage of hemato-vascular commitment.
From immunofluorescence staining, we observed ETV2 positive cells within the ES-sac
colonies (Fig 5). ETV2 mRNA was also detected throughout first 14 days of the culture
(Fig 6). Importantly, we observed 2 peaks of ETV2 expression at Day4-10 which might
correlates with the separating waves of primitive and definitive hematopoiesis in human.
This pattern of temporal expression has not been reported previously and could lead to
the new model of human hematopoiesis.

To track the fate of cell expressing ETV2 during human hematopoiesis in vitro, we
generated ETV2 reporter iPSC cell line, ETV2-2A-H2B-GFP (ETV2:GFP). CRISPR/Cas9n
system was used to mediate knock in ETVZ reporter line in which gRNAs were design to
target at the last exon of ETV2 before the stop codon (Fig 7). The ETV2:GFP reporter iPSC
line retains the pluripotency (Fig 8) and capability to generate blood cell upon co-culture
with VEGF expressing C3H101/2 or OP9 feeder cells (Fig 9). To evaluate the accuracy
of the ETV2:GFP reporter to mark ETV2 expressing cells, dynamic changes of
ETV2:GFP cells were analyzed by FACS. Similar to ETV2 transcripts, ETV2:GFP "cells were
first detected from Day4 of the culture and persist through Day13 (Fig 10). These
demonstrated that ETV2:GFP was detected following ETVZ2 mRNA expression during ES-
sac differentiation. Importantly, the ETVZ2 transcripts were detected exclusively within the
ETV2:GFP" cell population (Fig 11). Taken together, our data validate the accuracy of the

ETV2:GFP reporter iPSC lines in marking cells expressing ETV2.
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Figure 5 Immunofluorescent anti-ETV2 and anti-VE-cadherin staining of Day10 ES-sac

ETV2 expressing cells were detected in ES-sac. VE-cadherin is a marker of hematopoietic

and vascular cells.
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Figure 6 Quantitative reverse transcription PCR (RT-gPCR) analysis of ETV2 mRNA

expression in ES-sac colonies (Day1-13) A chart showed that ETV2 function during

human hematopoietic differentiation in vitro.
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Figure 7 ETV2 gene targeting strategy Using a Cas9 nickase mediated homology

recombination technique, a H2B-2A-GFP followed by an excisable LoxP fragment of

selection markers were incorporated into the last exon, before the stop codon of ETV2

gene.
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Figure 8 The ETV2:GFP reporter iPSC line retains the pluripotency that expressed

pluripotent markers, mRNA and protein level. A top shows mRNA expression of pluripotent

genes in the reporter iPSC line. A bottom is immunofluorescent anti-pluripotent markers

staining of the reporter iPSC line.
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Figure 9 ETV2:GFP iPSCs derived ES-sac (Day10) (a) ETV2:GFP reporter iPSC line
derived ES-sac was shown in bright field (BF), fluorescence (ETV2:GFP) and merged
images. (b) The cells from ES-sac also was analyzed by FACS. These demonstrated that
ETV2:GFP iPSCs could differentiate into ES-sac colony and ETV2:GFP expression was

observed during the ES-sac development.
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Figure 10 Time-course differentiation with analysis of ETV2:GFP cells percentages in ES-
sac culture by FACS (Day1-13 ES-sac, n=4) a chart displayed percentages of
ETV2:GFP cells in ES-sac culture (ES-sac colonies combined with feeder cells). The
detection of ETV2:GFP cells could indicate that ETV2:GFP expression system represents

the ETV2 expression during hematopoietic development.
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Figure 11 Analysis of ETV2 expression in GFP" and GFPpopulation by RT-qgPCR
GFP'cells and GFPcells were sorted from Day6 ES-sac and analyzed by real time
quantitative PCR for ETV2 mRNA expression, which is strongly detected in GFPcell

population.
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ETV2 is first detected in subgroup of mesoderm then in newly emerge hemogenic

endothelium

ETV2:GFP cells were found 30-40 percent within VE-cadherin’cells (endothelial
cells, hemogenic endothelium and some hematopoietic cells) and different subpopulation
of mesodermal cells, VE-cadherincells. Next, we analyzed ETV2:GFP expression in
difference population of mesodermal cells based on previous studies (Fig 12). The VE-
cadherin'cells were separated into 6 subgroups based on an expression of PDGFRa and
KDR. Primitive mesodermal progenitor (MP), which also contributes to cardiac lineage
(Sakurai, Era et al. 2006), was identified as KDR'PDGFRcells (Fig 13). While hemato-

vascular mesoderm (HVM) was identified as KDR""

PDGFRcells, and early hemato-
vascular mesoderm (EHVM) as KDR"PDGFR'cells (Wang and Nakayama 2009,
Kattman, Witty et al. 2011, Slukvin 2013) (Fig 13). ETV2:GFP cells were enriched in the
population of EHVM and HVM, in which the majority of the population positively expressed
ETV2:GFP on Day4-5 of differentiation (Fig 14). ETV2:GFP expression was also detected
in ES-sac derived MP, however the percentage was relatively low compared to EHVM and

HVM (Fig 14). These results may indicate that MP were likely fated to EHVM and HVM via
ETV2.
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Figure 12 Schematic diagram for analysis of mesodermal subpopulation in
ETV2:GFP’population in ES-sac culture (Day5 ES-sac) by FACS. Firstly, VE-cadherin’
cells were isolated from VE-cadherin'cells, which VE-cadherin'cells committed to
hematopoietic and endothelial cells. ES-sac derived VE-cadherin'cells were then divided
into 6 subgroup, PDGFR'KDR cells (mesodermal progenitor or MP), KDR""PDGFR 'cells
(early hemato-vascular mesoderm or EHVM), KDR""PDGFRcells (hemato-vascular
mesoderm or HVM), PDGFR'KDRcells (paraxial mesoderm or PM) (Sakurai, Era et al.
2006), PDGFR KDR cells and PDGFR'KDR cells. Finally, the population were analyzed for
ETV2:GFP cell. ETV2:GFP cell (red dot) were enriched in EHVM and HVM of Dayb ES-
sac. ETV2:GFP cell were also detectable in the MP fractions, at lower levels than in the
EHVM and HVM fraction. Unexpectedly, ETV2:GFP cell also found in other subgroups,

indicating that ETV2 probably plays roles in the subgroups.
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Figure 13 Schematic representation depicting Etv2 functions in mouse model Etv2 played
the roles in specification of MP (Pdgfra‘Kdrcells) into HVM (Pdgfra Kdr'VE-cadherin’
cells), at the same time, inhibited the MP differentiation into PM (Pdgfra’Kdr) and CM
(Pdgfra’KdrNkx2.57). Although the HVM and PM populations exhibit the specific
properties of paraxial and lateral mesoderm, respectively, both populations can be
converted into each other at an early stage. Additionally, Etv2 promotes the differentiation
of HVM into endothelial and hematopoietic lineages (Sakurai, Era et al. 2006, Lammerts
van Bueren and Black 2012). (Abbreviations: MP, mesodermal progenitor: CM, cardiac
mesoderm: PM, paraxial mesoderm: HVM, hemato-vascular mesoderm: HVP, hemato-

vascular progenitor)
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Figure 14 Percentage of ETV2:GFP'cells in mesodermal subpopulation Mesodermal
progenitor (MP: KDR'PDGFRa’cells), early hemato-vascular mesoderm (EHVM:
KDR""PDGFRa’cells), and hemato-vascular mesoderm (HVM: KDR"PDGFRacells)
were analyzed by FACS for ETV2:GFP cells during ES-sac differentiation (Day4-14, n=4).

ETV2:GFP cells were enriched in EHVM and HVM especially on Day4-5.
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ETV2 might inhibit specification of mesodermal progenitor into cardiac lineage

From previous study in animal model, Etv2 induced MP into hematopoietic and
vascular lineages, while inhibited the differentiation of MP into cardiac lineage
(Schoenebeck, Keegan et al. 2007, Kataoka, Hayashi et al. 2011, Rasmussen, Kweon et
al. 2011, Liu, Kang et al. 2012). To prove whether ETV2 inhibit the generation of cardiac
cells, ETV2:GFP mesoderm (ETV2:GFP'VE-cadherin) from Day5 ES-sac were sorted and
cultured in cardiac differentiation condition (Fig 15). The results demonstrated that
ETV2:GFP 'mesodermal cells were less proliferative and unable to differentiate into
cardiac cells. On the other hand, ETV2:GFP mesoderm (ETV2:GFPVE-cadherin), the
number was equal to ETV2:GFP 'mesodermal, were able to generate cardiac cells, or
cTnT cells (Fig 16). These results were correlated with others studies in animal models
(Schoenebeck, Keegan et al. 2007, Lee, Park et al. 2008, Kataoka, Hayashi et al. 2011,
Palencia-Desai, Kohli et al. 2011, Rasmussen, Kweon et al. 2011, Liu, Kang et al. 2012,
Liu, Li et al. 2015). Overall, the results could imply the inhibiting roles of ETV2 towards

cardiac cell differentiation.
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Figure 15 Schematic strategy for cardiac differentiation from ETV2:GFP" and ETV2:GFP’
mesoderm ES-sac derived ETV2:GFP" and ETV2:GFP'mesodermal cells (30,000 cells)
were cultured in cardiac differentiation condition, which 5 uM IWP2 (WNT pathway
inhibitor) was added into RPMI/B27 medium (without insulin) during Day0-2 . From Day2,
insulin was added into the RPMI/B27 medium, which refreshed every 3 days. Day12 after

differentiation, cTnT expressing cells were determined by immunofluorescence staining.
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Figure 16 Cardiac differentiation capability of ETV2:GFP™ and ETV2:GFP'mesodermal
cells ETV2:GFP'mesodermal cells inefficiently proliferated and were unable to
differentiate into cardiac cells under cardiac differentiation condition. Conversely,

ETV2:GFPmesodermal cells were able to generate cardiac cell, identified as cTnT cells.

ETV2 might play a role in definitive hematopoiesis

HSCs with long term engraftment first emerge from HE that line the lumen of dorsal
aorta (DA) in aorta-gonad-mesonephros (AGM) (Zovein, Hofmann et al. 2008, Boisset,
van Cappellen et al. 2010, Nguyen, Hollway et al. 2014). Interestingly, Etv2 also was
detected within DA at the time of HSC emergence (Koyano-Nakagawa, Kweon et al.
2012). This indicated that Etv2 might play a role in HSCs generation. There are several
studies supporting the context that ETV2 might be important for HSCs formation (Ren,
Gomez et al. 2010, Lee, Kim et al. 2011, Swiers, Baumann et al. 2013). Nevertheless,
recent studies suggested that there is heterogeneity of HE defined by expression of CD34
and lack of CD43, CD73 and CD184 expression (CD34'CD43CD73CD184cells). To
study definitive HE population in ES-sac model, we identified HE, described by Keller
group, in combination with an expression of CD235a and KIT. CD235a can be used to
distinguish definitive program (CD235acells) from primitive hematopoietic program
(CD235a"cells) in early development (Sturgeon, Ditadi et al. 2014). And KIT (CD117) is a
marker of HSC and HE in AGM (Goldie, Lucitti et al. 2008, Yokomizo and Dzierzak 2010,
Tober, Yzaguirre et al. 2013). Taken together, definitive HE is identified as CD34 'CD43"
CD73CD184'CD235aKIT cells (KIT'CD235a HE).
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We first analyzed the time-course of HE subpopulation in ES-sac culture. Our data
demonstrates that even as early as Day4, primitive subgroup of HE (CD235") were rare
(Fig 17). In contrast, Both KIT" and KITHE were able to detect within CD235a HE
population from Day4-14. We observed ETV2:GFP expressed in most KIT positive fraction
of CD235a HE population whereas the KIT negative fraction contained lower (Fig 18). This
result implied that KIT'CD235a HE were generated through ETV2:GFP cells.

From previous result, KIT'CD235a HE were generated very early of time-course
that gave rise the question that whether HE with definitive hematopoietic program were
generated in early ES-sac. To prove the question, ES-sac derived HE (CD34 CD43 CD73
CD184 cells) were analyzed for mRNA expression of a definitive hematopoietic marker,
RUNX1C. RUNX1C, a definitive hematopoietic marker found in HE of the dorsal aorta and
associated with the generation of HSCs (Bee, Liddiard et al. 2009). We found that
RUNX1C was unable to be detected until Day7 of differentiation our data suggests that
HE with definitive hematopoietic program were generated in late ES-sac. Surprisingly,
expression of ETV2 mRNA in ES-sac began detected again in the HE population as same
time as RUNX1C expression in which peaked at Day8 within this time period (Fig 19).
Importantly, it seemed that time course expression of ETV2 was parallel to RUNXTC
expression, implying that ETV2 might be required for RUNX1C-mediated hematopoiesis
which generate more adult like HSC/HPC.

SOX17 is a marker of hemogenic endothelium in the AGM and is required for the
generation of HSCs from the AGM (Kim, Saunders et al. 2007, Clarke, Yzaguirre et al.
2013). The recent study showed that the hematopoietic culture mimicking hematopoiesis
in aorta-gonad-mesonephros (AGM) generated a network of aorta-like SOX17" vessels in
later culture which RUNX1C"blood cells emerged from the vessels (Ng, Azzola et al.
2016). In our study, ETV2:GFP'KIT CD235a HE found in the later day of culture expresses
higher level of SOX17 (Fig 20). Thus, ETV2:GFP'KIT'CD235a HE from the second wave
might be similar to HE in AGM. We also found emerging round blood like cells co-

expressing SOX17 and RUNX1 (Fig 21) in which might be able to generate HSC. The
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properties of cell emerged from late ETV2:GFP KIT 'CD235a HE need to be clarify in

future experiments.
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Figure 17 Time-course analysis of percentage of HE subpopulation in HE (Day4-14 ES-
sac, n=4) The percentages of HE subpopulation in which divided into each subpopulation
base on an expression of KIT and CD235a. The most population of HE with primitive
hematopoietic program (CD235a HE) were observed in early ES-sac differentiation. While
HE with definitive hematopoietic program (CD235a HE) were the major population in HE
and were observed from early ES-sac development (Day4) throughout the differentiation.
The more definitive HE, identified as KIT ' CD235a HE, were also detected in the early
phase in which peaked at Day8 then gradually decreased but still detected throughout

the differentiation.
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Figure 18 Percentage of ETV2:GFP’cells in KIT'CD235aHE and KITCD235aHE The
chart showing all most CD235a HE were detected for ETV2 on Day5, indicating that these

populations were generated through ETV2:GFP cells.
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Figure 19 RT-gPCR of ETV2 and RUNX1C on HE populations (CD34"'CD43 CD73'CD184
cells from Day7-14) ETV2 expression in ES-sac derived HE was parallel to RUNX1C

expression.
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Figure 20 RT-gPCR of SOX717 and HOXB4 in ETV2:GFP'KIT'CD235a HE of Day8 ES-
sac (first wave of ETV2 expression) compared to Day11 ES-sac (second wave of ETV2
expression) The second wave (Day11) exhibited higher expression levels of SOX77 than
the first wave. HOXB4 is a gene associated with mesodermal induction and patterning

which was used as negative control.
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Figure 21 Immunofluorescent anti RUNX1 and anti SOX17 staining (Day14 ES-sac) There

are emerging round blood like cells co-expressing SOX17 and RUNX1 (red arrow).
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CHAPTER V

Discussion

In mouse model, Etv2 plays as an important key master regulator in directing
mesodermal fate decision into hematopoietic and vascular lineage. Interestingly, Etv2
showed an important role in HSC generation. In our study in human hematopoietic
development in vitro, ETV2 expression was first detected during mesodermal
specification. Using ETV2:GFP iPSC reporter line, ETV2:GFP expression also was first
observed during mesodermal specification in ES-sac model, which around 73 and 80
percent of EHVM and HVM respectively at early ES-sac (Day4) were detected ETV2:GFP
expression. Corresponding to the study by Choi that ETV2 was expressed in mesodermal
cells with high hematopoietic and vascular potential, KDR™"APLNR ' PDGFRa"" cells
lacking expression of endothelial, mesenchymal and hematopoietic markers (Choi,
Vodyanik et al. 2012). We found that KIT" and KIT CD235a HE population began to appear
from Day4-14 of ES-sac differentiation following HVM generation in which ETV2:GFP cells
were detected in KIT'CD235a HE higher than in KIT'CD235a HE population. These studies
implied that HVM might be generated and given rise to hematopoietic lineage by ETV2
induction in human hematopoietic development in vitro, that were similar to mouse model.
However, ETVZ2 overexpression, ETV2 downregulation and ETVZ2 knock-out condition
need to be investigated to identify essential roles of ETV2 in human hematopoiesis. From
Figure 6 (ETV2 mRNA expression in ES-sac colonies) and Figure 9 (ETV2:GFP cells in ES-
sac culture) showed that the levels of ETV2 mRNA and numbers of ETV2:GFP cells at the
later phase of the development were not correlated that might result from ETV2:GFP " cells
in later ES-sac were express very high levels of ETVZ2 in the cells in which need to be
investigated in the future experiment.

We also found that ES-sac derived mesoderm acquired expression of ETV2:GFP
were unable to contribute to cardiac cells in cardiac differentiation condition. These
results might support the notion that ETV2 inducts mesodermal progenitor fate to

hematopoietic and vascular lineage while inhibits cardiac lineage (Lee, Park et al. 2008,
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Kataoka, Hayashi et al. 2011, Palencia-Desai, Kohli et al. 2011, Rasmussen, Kweon et al.
2011, Liu, Kang et al. 2012, Liu, Li et al. 2015).

Time course of ES-sac differentiation, there was the second wave of ETVZ2 surging
again around Day8 coinciding with expression of RUNX7C, a key transcription factor
associated with the generation of HSC from HE of DA (Bee et al., 2009). Interestingly,
ETV2 expression was parallel to RUNXTC expression. Additionally, ETV2:GFP expressing
KIT'CD235a HE at late time course of the differentiation express higher level of SOX17,
which marks HE of the AGM (Ng, Azzola et al. 2016), compared to early time course.
Implying that function of ETV2 at the later stage of the differentiation might be associated
with the generation of more adult like HSC/HPC from HE that resemble the HE in AGM.

To achieve the goal of generating fully functional, long-term engraftable
hematopoietic stem cells (HSCs) from pluripotent stem cells (PSCs), better understanding
of the ontogeny of human HSCs is required. Our data suggests that current available HE
markers are not sufficient to separate HE that can give rise to HSCs from others. There
were two waves of ETVZ2 expression, first wave emerged during mesodermal specification
or early ES-sac then ETV2 was downregulated and the second wave emerge at later
phase of ES-sac. The two waves of ETVZ2 expression suggests the new models that either
there are newly form HE which occur late in culture or there is a second pulse of high
ETVZ2 expression within subpopulation of early generated HE. We are in the process of
interrogating which cell population is the source of late ETV2:GFP cells. To prove that late
ET2:GFP cells truly contains HSC, transplantation in animal model is required.
Nevertheless, ETV2:GFP iPSC reporter line we created is a helpful tool for elucidating the
mechanism of human blood development and has a potential to be developed into a

screening platform for drugs or small molecules that promote hematopoiesis.
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