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CHAPTER 1
INTRODUCTION

1.1 Background

Laos, officially the Lao People Democratic Republic (Lao PDR), is a landlock
country in Southeast Asia bordered by China and Myanmar on the Northwest,
Cambodia on the South, Vietham on the East, and Thailand on the West. The
population is estimated at 6.96 million people in 2018 with the area of 236,800
square kilometers. Laos currently is well-known of its abundance natural resources
such as gold, copper, iron, lead, zinc, coal and limestone. There are numbers of
mining companies invested in Lao PDR which comprise of the largest metal mining
companies as Lan Xang Minerals Limited (LXML), Phu Bia Mining Company. Hongsa
Power Company Limited is the biggest coal mine and coal-fired power plant in Laos.
As a developing country, Laos needs to develop its infrastructure and economic
growth, especially houses, schools, hospitals, roads, and electricity generation.
Nevertheless, these development require primary resources which is produced from
the mining industries in the upstream development and further supplies to the mid
and downstream industry. Therefore, mineral resources development is one of the
factors that plays a significant role for the development in Laos.

Since 1987, the Lao government has improved the renovation policy of
economic growth and poverty reduction by adding varieties of exports and market-
oriented economic. This expresses that the country opened up for the investment
and development of the abundant natural resources and cooperated with foreign
invested companies. Nowadays, Laos has an abundant natural resource that is still
under exploration and development. Due to the lack of knowledge and expertise,
the Lao government widely opened up for joint-venture from international
investment mining companies. These are particularly in the development of precious

metals, industrial minerals, and hydro-power generation.



1.2 Location of the study area

Lao Integrated Development Group (LID)’s concession area is located at the
contact zone between Koua village, Sangthong district, Vientiane Capital and Nam
Thom village, Hin Hoeup district, Vientiane Province. The LID’s concession area
comprises of 33.64 km? located at 78 km from Vientiane Capital. Based on the
exploration phase, the concession area was divided into three blocks, which are
called Block | (Nam Nga), Block Il (Nam Thom), and Block Ill (Houy Tong Kob). This
research study will be focused on Block | (Nam Nga exploration area) as shown in
Figsure 1.1. The location map of Lao Integrated Development Group Company is

presented in Figure 1.2.

LID’s Congession Area

Study Area

Figure 1.1 Location of the study area within the LID’s concession area.

Source: Google Earth (2019)
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Figure 1.2 Location of Lao Integrated Development Group Company.
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1.3 General information of the LID’s concession area

1.3.1 Geography and access roads to the LID’s concession area

The geography of the concession area was formed as undulating terrain along

North-South direction, with the average elevation of 228 meters above mean sea

level as shown in Figure 1.4. The concession area borders with Phou Pa Nang

Biodiversity Conservation on the East, with Phou Kalai on the West, and with Phou Bo

Jan on the North. Most areas nearby the concession area are rice fields belonging to

the local farmer. There are three alternative access roads to the concession area as

explained below. These three alternative access roads can be shown in Figure 1.3.

1)

Vientiane capital- Pak Ton village - Nam Thom village: starting from Vientiane
capital heads to Pak Ton village alongside Mekong river around 36 km, and then
turn right to Sang Thong road via Phia Lak village to Nam Thom village about 42
km. It takes approximately 3 hours. The road condition is unpaved throughout.
Vientiane capital- Nabon village - Tao Hai village - Nam Thom village:
starting from Vientiane capital heads to Hong Luey village along the 13 North
road for 54 km. And then, turns left to Nabon village, Tao Hai village, Nam Thom
village, respectively. This alternative route has a total distance of 85 km and
takes approximately 2 hours. The 13 North road is a paved road ended at Nabon
village, and the rest is a soil route.

Vientiane capital- Houy Elerk village - Suan Mon village - Nam Thom
village: starting from Vientiane capital heads to Phon Hong village along 13
North road that follows Nam Xong river until reaching Houy Elerk village. At Elerk
village, turns left and continues driving to Suan Mon village for around 25 km. At
Suan Mon village, takes a left turn via Nam Thom village for about 4 km. This
road has a longest distance for accessing to the concession area, but it is the

most convenient one.
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Figure 1.4 Elevation model map of LID’s concession area and surrounding areas.
Source: [talian Thai Development Company (2012)
1.3.2 Local climate

The LID’s concession area is categorized into tropical monsoon caused by the
influences of the monsoon from South China sea. It comprises 3 seasons: dry
season, rainy season and winter season. The dry season starts from early February to
late May, and has the average temperature between 23.8 °c to 34.3 °c. The rainy
season begins from early April to late September, which has the average rainfall
between 245 - 334 mm. The winter season starts from early October to mid-

February that has an average temperature between 16.4 °c - 30.3 °c.
1.3.3 Main rivers within the concession area

The main rivers surrounding the exploration area compose of 2 rivers such as
Nan Ton river and Nam Thom river.  Nan Ton river flows from the North to the
South and connects to Mekong river at Pak Ton village. This river consists of 5
tributary streams such as Huay Ka Dan, Huay Nam Thom, Huay Som Phou, Huay Jaen

Phila, and Huay Nam Ham.



1.4 Geological setting and coal deposits within the concession area
1.4.1 Regional geology

The geological formation belongs to the Paleozoic, Mesozoic, and Quaternary
periods. Thus, the rock strata in the Paleozoic comprises of 5 rock formations ranking
from the oldest to the youngest formation as: 1. Nam Xai Formation: this is the
lowest rock strata composed of shale, sericite-shale and quartzite, 2. Nam Sa
Formation: it is in early to late Devonian period, composed of thin limestone layer,
moderate grain size sandstone layer, siltstone, and shale. This formation scatters
along Lao and Thai border, 3. Nam Thom Formation: this formation is in early to
late Carboniferous period, it consists of sandstone layer, black siltstone infilled by
lenticular limestone and black claystone combined with lenticular coal seam and
conglomerate. It is covered by siltstone, and shale penetrating into conglomerate
layer.  This formation scatters from the North to the South of Vientiane province, 4.
Na Lang Formation: it is found in Carboniferous to Permian period. This formation
composes of thick massive limestone layer and scatters on the Northwest of
Vientiane province. Karst topography was formed and created a beautiful natural
sichtseeing especially natural tourist site in Vang Vieng city, and 5. Huay La
Formation: this formation is the marine limestone in Permian period which consists
of sandstone, brown shale, conglomerate, and volcanic rock (basalt, andesite,
andesitic basalt, and tuff in addition. The fault structures are found between the
Huay La and Na Lang Formation.

The Mesozoic period consists of 5 formations as: 1. Phu Lek Phay Formation:
it is found in early to mid-Triassic period. It is characterized with sandstone infilling
by claystone conglomerate and lenticular limestone penetrated with shale, 2. Nam
Set Formation: this is the marine rocks in late Triassic, and it composes of white-
brown sandstone infilling by claystone, shale, and sandstone. The sandstone
combines gypsum layer and lenticular coal seam, 3. Phu Phanang and Champa
Formation: It is the continent sedimentary rocks in Jurassic to Cretaceous period and
generally found in Vientiane province. These two formations comprise of massive

sandstone infilled by white thin sandstone-quartzite layer, and 4. Tha Ngon



Formation: it consists of rock salt, which scatters throughout Vientiane province
from the Middle to the East.

The Quaternary sediment deposit composes of the sediments found by the
traces of rock accumulation incurred by the rivers and streams. The LID’s concession
area coincides with the Loei - Petchaboon fold belt, which formed from the collision
of Shan - Thai and Indochina microcontinents in Triassic period. After the collision,
the major Pangea plate had separated from each other and became various sub-
continent in the Cretaceous period. This made the India plate moved into the North
and collided with Eurasia plate in the middle Miocene of Tertiary period. This
affected huge tectonic changes of Asia continent that made Himalayan mountain
rising, opening of Gulf of Thailand, and opening of the South and North China sea.
This is the source of Islands formed in the Pacific continent. Due to this change, the
various continents have moved Northward as can be seen in nowadays. This tectonic
change made the direction of rock strata fold belt align in the North - South direction
along the Loei - Petchaboon fold belt. There were two major faults occurred as
Northeast — Southwest (NE- SW) fault, and Northwest — Southeast (NW — SE) faults as

shown in Figure 1.5.

Figure 1.5 Geologic structures map of Lao PDR and its neighboring countries.

Source: Italian Thai Development Company (2012)



1.4.2 Local geology

A total of four sedimentary rock units was found within the entire of three
blocks of exploration area ranging from upper to lower layers as follows:

1) Unconsolidated Sediment Unit: this rock unit was found in Quaternary period
consisted of quartz, sand, sandy-silt, clay layer and other weathered rock types. Most
of these sediment layers are scattered in a large area along the rivers of Nam Ton,
Huay Nam Thom, Huay Som Phou, Huay Nam Nga, Huay Pa Pak, Huay Jaen Phi La,
and Huay Nam Ham.

2) Red Bed Unit: It consists of three sub-rock units as demonstrated below.

- Upper red bed forms in middle to late Mesozoic period which is found most
on Phou Pha Nang ridge in from North - South direction. It is also found in Phou
Duen with a narrow area on the Southwest of the exploration area. Most rocks found
in this unit are white — dark gray comprised of pebbly sandstone and conglomerate

sandstone, which are infilled by siltstone and shale from thin to moderate layer.

- Middle Red Bed is found on the East of Nam Thom river and Phu Duen
mountain with a large area composed of red to purple silicate-sandstone. It is infilled

by quartz-sandstone and conglomerate layer.

- Lower Red Beds, which is formed as asymmetric folding with lenticular rock
layer in the North — South direction. The folded rock strata on the West has a steep
dip angle, while there is only a moderate dip angle on the East. This rock strata
consists of coarse grain sandstone, conglomerate and brown to purple sandstone.

3) Coal Bearing Rock Unit composed of siltstone, sandstone, coarse-grain
sandstone with gray to black color infilled by carboniferous shale and para-
conglomerate. This combines split coal seams and lenticular coal seams, which are
found in a large area from the North-South direction in the exploration area. The
topography caused by this bearing rock unit is undulating terrain. Moreover, the fault
contact zone is also found, which caused the discontinuities occurrence between

coal bearing rock unit and sedimentary rock in the exploration area.
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1.4.3 Volcanic rocks

The volcanic rocks found in the exploration area are divided into two rock units
such as 1). Huay Pa Soud volcanic unit, consists of tuff, rhyolite, and thin andesite
layer. These rocks are found at the Phu Houy Pa Soud and in the middle part of the
exploration area, 2). Phou Ngot Huay Nam Nga volcanic unit, consists of tuff, rhyolite
and thin green dacite strata. This rock unit scatters in Huay Nam Nga on the West of

the concession area.
1.4.4 Geological setting of coal basin
1) Overview of coal accumulation in the concession area

The coal basin within the entire exploration area occurs in a transitional
environment in Carboniferous period. A total of two major coal seams are found
within the entire exploration area which demonstrated as upper and lower coal
seams. The upper coal seam has a better quality than the lower coal seam. The coal
deposits within the whole exploration area are ranking from Sub-bituminous C to
Anthracite coal. The overburden is composed of fined-grain-sandstone, siltstone, and
shale. The inter-burden consists of moderate to coarse grain size of sandstone,
quartz sandstone, and conglomerate. The under-burden comprises of gray fine-grain
sandstone, siltstone, shale and lenticular coal seam. The geologic map of coal
accumulation within the exploration area is presented in Figures 1.6 - 1.7.

The occurrence of coal seams in the entire exploration area covers two main
groups. The first group located on the West zone, covers the coal appearance area of
1.75 km?. The second group located on the East zone covers coal appearance area
of 0.3 km? These two groups cover a total coal appearance area of 2 km? as shown

in Figure 1.7.
2) Coal seams

The coal deposits within the LID’s concession area comprises of two major coal
seams, the upper and the lower coal seam, and two minor coal seams. The cross
section and overall stratigraphic units of coal accumulation are shown in Figure 1.9

1.8 = 1.9. The upper seam comprises of seam A and seam B incorporated with split
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seams and sub-split seams. This upper coal seam is shiny black and brittle, which has
the maximum and minimum appearance thickness of 4.58 meters and 0.34 meter,
respectively. The coal seam dips toward the West with dip angle between 25° to 85°
along the fault line.

The lower coal seam consists of seam C and seam D incorporated with split
seams and sub-split seams, which are shiny black and brittle. It has the maximum
and minimum appearance thickness of 5.07 meters and 0.35 meter, respectively. This
coal seam dips toward the West of the concession area with dip angle between 25°
to 85° along fault line.

The minor coal seam divides into two seams as seam O and seam U. The
minor coal seam O exhibits in thin layer surrounded by fined-grain sandstone,
siltstone, and shale. It is shiny black, and brittle which is found in block | (Nam Nga)
on the Northwest, covering the area of 0.14 km? It has a low quality when
interbedded with shale and mudstone. The minimum and maximum appearance
thickness of this coal seam are 0.4 meter and 0.65 meter, respectively. This coal
seam dips toward the West with dip angles between 25° to 85°. The minor seam U is
interbedded with sandstone, siltstone, and gray shale, which is found in block Il on
the East covering the area of 0.89 km?. It is shiny black and brittle with higher quality
compared to minor seam O. The maximum and minimum appearance thickness of
this coal seam are 1.44 meters and 0.30 meter, respectively. The minor seam U dips

toward the East with dip angle between 25° to 65°.
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Figure 1.8 2D cross section of geological map of coal bearing rock units in within the

LID’s concession area.

Source:

talian Thai Development Company (2012).
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Stratigraphic  Photograph  Stratigraphic
unit i indexg g columgn a Explanation

Light to dark grey arkosic sandstone intercalated by
siltstone, pebbly sandstone and shale; abundant of
lamination; intercalated by thin bed and lenticular coal;
the minor coal seam O is found in the lower of sequence.

Upper-
Fluviatile

Overburden —>1

_______________ Mainly coal (Black, dull to bright, brittle, friable); intercalated
Major A by grey arkosic sandstone, siltstone, shale and carbonaceous
shale; abundant of lamination; very thinly to thickly bed.

75
\
\

Interburden Light to dark grey arkosic sandstone intercalated by
siltstone and shale; abundant of lamination.

Mainly coal (Black, dull to bright, brittle, friable); intercalated
by grey arkosic sandstone, siltstone, shale and carbonaceous
shale, abundant of lamination; very thinly to thickly bed.

Mainly paraconglomerate (granule to boulder size clasts of
andesite, quartzite, etc with sandstone matrix, sub-angular
to sub-rounded) intercalated by pebbly sandstone, siltstone
shale and scattered intercalated with thin bed coal; thick to
tabular bed

Mainly coal (Black, dull to bright, brittle, friable); intercalated
by grey arkosic sandstone, siltstone, shale and carbonaceous

Upper coal

Major B

Middle-
Fluviatile

Major C

Light to dark grey arkosic sandstone intercalated by

T Upper lower~ n

o ? Interburden siltstone, and shale; abundant of lamination; intercalated by
'?; Ryvathe _thin bed and lenticularcoal. _
TR o — — -~ "Mainly coal (Black, dull to bright, brittle, friable); intercalated
E Lowercoal BN _ _ _ I V20T D _ _ _ \ by grey arkosic sandstone, siltstone, shale and carbonaceous
5 Interburden ™\ _shale; abundant of lamination; very thinly to thickly bed. _ _ _
2 Lower lower— 2 S Light to dark grey arkosic sandstone intercalated by

3 Fluviatile Ao siltstone, and shale; abundant of lamination; intercalated by

Underburden thin bed and lenticular coal, minor coal seam U is found in

the lower of this sequence.

Figure 1.9 The overall stratigraphic unit in the LID’s concession area.
Source: Italian Thai Development Company (2012).
1.5 Statement of problem

Natural resource extraction plays a very significant role in economic growth for
the nation’s development. Laos is known as a developing country, therefore the
demand of coal utilization for electricity generation, steel-making, and cement
factories is increasing simultaneously in recent development. In this attempt, the Ban
Koua coal basin owned by LID is selected as the study area. The full development of
NG coal basin is employed starting from 3D geological model development, resource,
and reserve estimation, and mine design. However, the focus of this study is placed
on the reserve estimation, when the initial mine pit layout was optimized. As mineral
reserve estimation has played a very essential role for mine design, planning and
day-to-day operation. Therefore, using the advanced geostatistical model for
resource and reserve estimation in the exploration phase is highly necessary and

required.
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It is the fact that NG coal deposit presents complex geologic structures,
resulting to high variation of coal thickness and qualities. The conventional reserve
estimation approaches have a limitation when dealing with high variation characters
of the coal grade. In order to model the high uncertainty data, the geostatistical
approach poses some advantages. In this attempt, both linear (Ordinary Kriging) and
non-linear model (Sequential Gaussian Simulation) will be adapted into this study
with an expectation that the geostatistical models will carry the true statistical nature
of the coal basin and the spatial information into the more accurate coal grades

estimation model.
1.6 Research objectives

This research study focuses on estimating the coal qualities as Calorific Value
(CV) and Ash Content (AC) at local blocks. The geostatistical linear (Ordinary Kriging)
and non-linear (Sequential Gaussian Simulation) methods will be applied to the coal
data of Ban Koua basin. The mineable reserve estimation will be calculated with the
advent of the optimum mine plan, and the Grade-Tonnage Curve will be
constructed. These findings will be used as a proposed guideline for mine planning

and operations at NG coal mine.
1.7 Scope of study

The scopes of this work can be elaborated as follows:

= Drill holes data analysis; it involves in statistical analysis of composited data

= Structural analysis: it involves variogram calculation and modeling, and
validation of composited data

= 3D block model constructions; Kriging estimation and Sequential Gaussian
Simulation are required a 3D gridded block model.

= Estimation and Simulation subroutine; the coal qualities as CV and AC are
estimated and simulated via linear (OK) and non-linear (SGS) geostatistical
method, respectively.

= Geological coal resource estimation; the geological resource is calculated from

OK’s and SGS’s estimated blocks.
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= Ultimate pit layout; the pit optimization by Lerch-Grossman algorithm make
use the estimated and simulated blocks. The mineable reserve is computed
from the generated optimum pits.

= Practical pit limit; the ultimate pit layout is adjusted for the sake of practical
operation, the final Grade-Tonnage Curve is then achieved.

= This study will be conducted using MineSight 3D software as a tool for 3D
geological model construction, geostatistical analysis, pit optimization and mine

design.
1.8 Contributions

Due to the fact that NG coal deposit presents a complex geologic structure
environment, consequently using a geostatistical estimation method to access the
coal qualities variation would be more advantage than a conventional method
conceptually. In the later state, the results of geostatistical block model would be
benefit to the mine planning and operation stages at NG coal mine. This research will
be offered a guideline of coal qualities investigation via geostatistical model. The
advantage of the model will be translated to an improvement of mine planning and

operation.
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CHAPTER 2
THEORY AND LITERATURE REVIEW

2.1. Theory
2.1.1 Background of geostatistical applications

Geostatistical approach is initiated from the work of mining engineering by D.G.
Krige (1951). In the past, it has been applied to agronomy in early 1910s and
meteorology in 1930s. It was then developed by Matheron (1963, 1968) in his theory
of Regionalized Variables (Daya, 2015). Geostatistics can be described as a branch of
statistics sciences that concerns of space phenomena and spatial correlation to
interpolate the values of variables at unknown location using the surrounding values.
Geostatistical estimation deals with the spatially autocorrelated data (Bohling, 2007).
Geostatistics is a specialized scientific principle that provide a process to model the
spatial continuity of regionalized variables (M. Abzalov, 2016). The applications of
geostatistical techniques in mining industry play a significant role for mineral
resources estimation to assess the uncertainty of the model and spatial relationship.
This means it can be used to quantify the risks and measure the optimum drilling
program and sampling grids (David, 1977).

The most popular geostatistical approaches are the linear univariate
geostatistical estimators, Ordinary Kriging (OK) and Simple Kriging (SK). In Multivariate
analysis, the methods of Co-kriging allows gathering the different types of data into a
single coherent model (Deutsch & Journel, 1998). Geostatistical methods are also
applied to estimate mining recovery by generating resources model in different
scenarios of the mining selectivity (M. Z. Abzalov, 2006). As geostatistical approaches
have been applied to many scientific fields since the past decades, the stochastic
methods of geostatistics are generally used to define the continuity of geological and

mineral resource models (Strebelle, 2002).
2.1.2 Summary of statistical analysis parameters

Statistical method has been applied to characterize the mineral deposit since

1945 (Alastair J, 2004). The applications of statistical analysis are the quantitative
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numeric variables as metal grades and other characteristics. This is commonly
concerned with the central tendency, dispersion of the values, histogram, sample
correlation, autocorrelation, relations among group of variables, and a variety of
probabilistic statements. In continuous distribution, the most common frequency
distributions is the symmetrical bell-shape curve presented in Figure 2.1 with a
single peak characterized by two parameters: the mean and the standard
deviation. The mean of arithmetic mean is the point on the x-axis intersected by the
axis symmetry of the “bell curve”. The standard deviation is measured for the width
of “bell”. The summary of statistical analysis parameters is explained in the following

according to (Alastair J, 2004):
1) Mean

The mean, X, of equally weighted values of the samples or population is

defined as the arithmetic mean. It is illustrated in equation (2.1).

X1+ X+ X3+ 0+ X
n

Or shorten to:
n
po z (2.2)
*=4 . (x:) :
i=1

Whereby X4, X, etc. are equivalent individual value of samples or measurements (i.e.
they have the same sample support) and n is the total number of samples or
measurements.

If the samples are not equivalent, and therefore each of the samples has a
different support, then they must be weighted. Defined x; as each sample value, and
a; is the weighting factor, for instance the core lengths of the analyzed sections.

Then the mean value is:

_ xl.al + xz.az + x3.a3 + b + xn.an
X = (2.3)
a1 + az + a3 + + an
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Or shorten to:
n
S . a
)_( — Zl—l(Xl 1) (24)

i=1(ap)

99.7% of the data are within

3 standard deviations of the mean
95% within
2 standard deviations
68% within
<— 1 standard —>
deviation
u— 30 u—2a nw—o u n+a u+ 20 u+3c

Figure 2.1 A single peak and symmetric frequency distribution with mean, standard

deviation.

Source: https://www.albert.io/blog/describing-distributions-ap-statistics/ (Access date:
June 26, 2019)

2) Mode
The mode of a set of data is the most frequency occurring number in a
dataset. A data set may have one mode, more than one mode, or no mode. If no

entry is repeated the data set has no mode.
3) Median

The median is the midpoint value that divides a sample size or population into
two equal halves, whereby, one half value less than the median and the other has

values greater than the median.


https://www.albert.io/blog/describing-distributions-ap-statistics/
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4) Variances and Standard Deviation

Variance is the expectation of the squared deviation of a random variable from
its average value. It measures the dispersion that how far a set of random numbers
are spread out from their average value. Variance, s2, is defined as the mean square

difference as shown in (2.5).

, N(x — X)?
TS

Where x; is any data value, X is the mean of the data, and n is the total number of
samples used. The term (n — 1) referred to as degrees of freedom, originates in
statistical theory which involved to the sampling distribution of s2.

The standard deviation (SD) is a measure that uses to determine the amount of
variation or dispersion of a set of data values. It is the square root of variance as

illustrates in (2.6).

soysie

5) Interquartile Range
The interquartile range or IQR is the difference between the maximum and

minimum of data input in the data set. (2.7) denotes the interquartile range.

IQR: Q3 - Ql (27)

The IQR is a tool uses to measure the variability depends on the quartiles divided by
the data set. Quartiles divide a rank-ordered data set into four equal parts. The
values that separate parts are called the first, second, and third quartiles; and they

are denoted by Q1, Q2, and Q3, respectively.
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6) Coefficient of variation

Coefficient of variation is a statistical parameter that uses as a quick indicator of

the variability of the data set. The coefficient of variation, o, is defined by (2.8).

Kl

(2.8)

If the o value is below 0.5, the distribution of the data set is likely to approach
the normal distribution. Whereas, the o above 0.5 is that the data distribution is

becoming skewed and could be express better by a lognormal distribution or a
combination of distributions.

7) Skewness and Kurtosis

Skewness characterizes the degree of asymmetry of a distribution around its
mean. Positive skewness indicates a distribution with an asymmetric tail extending

toward more positive values. Negative skewness indicates a distribution with an
asymmetric tail extending toward more negative values.

Kurtosis characterizes the relative peakedness or flatness of a distribution

compared with the normal distribution. Positive kurtosis indicates a relatively peaked

distribution. Negative kurtosis indicates a relatively flat distribution. The skewness and
kurtosis are defined as (2.9) and (2.10).

K
n X; —X)
Skewness = == 2);( S )

(2.9)
k
P { n(n+1) Z(xi—f)‘*}
urtosis =
— — — 4
mM=—1)(n-2)(n—-3) o S (2.10)
3(n —1)2
n=2)(n—-3)
Where: n = number of sample values, x; = sample values, ¥ = samples mean
value, s = standard deviation.



23

8) Covariance

Covariance, Sy, is a quantitative degerminator of the systematic variability of

two variables (x and y). The covariance equation is demonstrated in (2.11).

Yl — Dy — D (2.11)
n—1

Cov (x,y) =

Where: x; = Value of x-variable, y; = Value of y-variable, X = Mean value of x-
variable, y = Mean value of y-variable, n = Number of data points.

2.1.3 Histograms

Histogram is a graph used to express the numerical data distribution within
continuous variable intervals that expand the range of variable. In order to
demonstrate the attributes of mineral grades in simply and effectively, histogram
analysis is a method that can be carried on. The distribution of histogram shape can
be shown in various types such as positively skewness, symmetric and negatively
skewness. This is to measure as a qualitative evaluation of dispersion and expand to
the variables which can be clustered centrally with one or more modes. These all
characteristics have to be noted as a shape of histogram or the distribution of data.
The histogram shape of data distribution of CV and AC are shown in Figure 2.2 — 2.3.
A histogram can be constructed from the samples class interval and this class
interval should be in uniform (Arber & Ginn, 1991). Each histogram ought to contain
the information, which include number of items, class interval, mean and standard

deviation.
2.1.4 Scatterplots

A scatter plot is a two-dimensional data visualization that uses the dots as a
representative of the sample values obtained for two different variables. The scatter
plot can be shown as one variable is plotted along x-axis and the other is plotted
along y-axis as shown in Figure 2.4. The use of scatter plot is to express the

relationship between two variables as a correlation plot. Scatter plot is an essential
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tool for carrying the relationship between two variables, but it has to be well-

understood and interpreted properly by the practitioners.

Histogram Aa [%]
Aa [%] = nomal(x; 7,64; 5,15)

34%

30% |

25%

21% |

% observations

8% r

4% |

17% |

13% ¢

0%

16 37 59 80 10,2 12,3 14,4 16,6 18,7 20,8 23,0 25,1 27,3 29,4 31,5 33,7 35,8

ash content, %

Figure 2.2 Histogram of AC (Wierzchowski, Checko, & Pyka, 2017).

0.12

g 0.08

F

0.04

4000 5000 6000 7000

Calorific value, BTU/b

Figure 2.3 Histogram of CV (Olea, Luppens, Egozcue, & Pawlowsky-Glahn, 2016).
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Figure 2.4 Example of scatter plot between calorific value and ash content

(Lieskovsky, Jankovsky, Trenciansky, & Merganic, 2017)
2.1.5 The Method of linear squares

The least squares method is a form of mathematical regression analysis that
finds the line of best fit for a dataset. It provides a visual showing of the relationship
between the data points. Each point of data is representative of the relationship
between a known independent variable and an unknown dependent variable.

The least squares method provides the overall rationale for the placement of
the best fit line among the data points being investigated. The most common use of
the least square method, referred to as linear or ordinary. It aims to create a straight
line minimizing the sum of the squares of the errors generated by the results of the
associated equations, such as the squared residuals resulting from differences in the
observed value and the value anticipated based on the model as shown in Figure
2.5. The line of best fit equation and its components are demonstrated in Equation

(2.12).



26

y = c+by(x1) +by(xy) (2.12)

Where: y is the dependent variable, c is a constant, b, is the first regression
coefficient, x, is the first independent variable. b, and x, the second coefficient and

second independent variable.

121 ® Data ®

= |inear Regression
10 A

0 2 4 6 8 10
Figure 2.5 Example of linear square method.

Source:  https://alexisalulema.com/2018/01/18/linear-least-squares-regression-with-

tensorflow/ (Access date: June 26, 2019).
2.1.6 Linear regression analysis

If there is a strong correlation between two variables, which can be shown by
an equation, then one variable can be used to interpolate the other one if one of
them is unknown. The commonly used method for this prediction is linear
regression. It is assumed that the dependent variable on the other can be expressed

by the (2.13) of a straight line such follows:

y=kx+b (2.13)


https://alexisalulema.com/2018/01/18/linear-least-squares-regression-with-tensorflow/
https://alexisalulema.com/2018/01/18/linear-least-squares-regression-with-tensorflow/
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Where: k is the slope, b is the constant of the line, and they are given by (2.16):
k = r(&); b = m, — am, (2.14)

The slope, k, is the correlation coefficient multiply by the ratio of standard
deviations. o, is the standard deviation that is trying to predict, and oy is the
standard deviation. When the slope is calculated. The constant, b, can be
computed using the means of those two variables such as m,, and m,. The linear
regression line described the relation between two different variables can be

illustrated in Figure 2.5.
2.1.7 Drill holes composite

In mineral deposits, raw data of assays compositing is required to produce such
supports for mineral resources evaluation and mine operation phase by combining
the assay samples into an appropriate fixed length. The term compositing used in
mineral resource estimation is taken to the process by which the values of adjacent
samples are matched. Therefore, the values of interval composited length can be
estimated. Compositing is numerical methodology to compute the estimation
weighted average grade over the bigger volumes than the original sample data
(Revuelta, 2017). After the assay samples dataset was composited, the dataset is
commonly validated. Samples data in mineral resource estimation are composited to
standard lengths because of several reasons such as;

1. Decreases the number of samples.

2. Provides a representative for analysis where irregular length assay samples are
presented.

3. Brings data to a common support; for instance, to gather drill core samples of
different lengths to an appropriate fixed length.

4. Reduces the effect of isolated high-grade data.

5. Produces bench composites extending from the top of a bench to the base in

an open-pit which will be provided for the design of the mine operations.
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6. Incorporates dilution (e.g., in mining continuous height benches in an open-pit
exploitation).

7. Provides equal-sized data for geostatistical analysis framework.
2.1.8 3D block modelling

3-D geological modeling of ore deposit is an approach developed for geolosgical
investigation, mineral resources and reserves estimation in mining and other fields
(Wang & Huang, 2012). 3D block model is used for grade interpolation and tonnage
calculation as the visualization of the mineral deposit (Hustrulid, Kuchta, & Martin,
2013). Nowadays, the block modeling of a deposit can be constructed throughout
various types of mining engineering software which are the modern and advanced
technologies provided for mineral deposit modeling. The 3D block model is also
used for the measurement of 3D geological spatial continuities. The 3D block
modeling is an essential process for mineral resources deposit and space variations
modeling, which is used the mineral grades, rock properties and complex or irregular

geological structures as presented in Figure 2.6.

limestone

sandstone carbonaceous shale
coal seam no. 8 coal seam no. 7
calcium shale

shale Sy,
coal seam no. 6 &

w8y

Figure 2.6 Geometric parameters and boundary conditions of the numerical model

of Baijiazhuang coal mine at Shanxi province, China (Bai et al., 2018).
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2.1.9 Spatial analysis

The spatial uncertainty measurement of a mineral deposit is very important for
ore reserve estimation to define the variations of ore grade and geological structure
conditions. The spatial continuity of ore deposit can be described by several
geostatistical tools such as correlation function, covariance, and variogram model.
These tools use the summary statistics parameters to demonstrate how the spatial
uncertainty varies as a function of a distance and direction at specific area. Variogram
measurement is widely used to quantify the space continuity in many fields such as
mining, environment, geosciences and others. In geostatistical estimation and
simulation methods, one of the most relevant parameters is variogram model. The
sample variogram model is concluded from the existing data collected from any
locations, which may be controlled the bias of a spatial and the effect of a
proportional. Over this example variogram, a variogram is fitted and carried out
through the procedure of estimation or simulation, that is usually do not respect to
its discontinuities. The simulated realizations require an adequate input variogram
model to reduce the bias in the simulation process (Ortiz Cabrera & Leuangthong,
2007).

Geostatistical estimation and simulation methods are based on the variogram
model, which characterizes the spatial uncertainty that used the random function
values calculated from the available sample data. The kriging estimation methods
use the variogram model to determine the closeness and redundancy of the dataset
with individual location being interpolated. In simulation model, the variogram
model is used to interpolate the conditional data distributions within the location,

which the simulated values are drawn randomly.
2.1.9.1. Variogram model

Geostatistical estimation such as kriging estimation and simulation, frequently
request a semi-variogram or covariance model as the input for the interpolation.
Apart from the initial decision of stationary, the appropriate variogram model is the
most essential decision in a geostatistical estimation. General practice composes of

experimental variograms’ fitting with a nested combination of proven models like the
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spherical, exponential, and Gaussian models. These models perform well in most
cases (Pyrcz & Deutsch, 2006). The empirical model provides a description of how
the data are related (correlated) with a distance. The semi-variogram function, y(h),
was originally defined by Matheron (1963) as half the average squared difference
between points separated by a distance h. Given a geostatistical model, Z(x), its

variogram y(h) is formally defined as in (2.15):

y(h) =

i

where f(x,u) is the joint probability density function of Zx)and Z(u).

ar[Z(x)- Z(u)]

Z(x) — Z(w)]? f(x,u)dxdu

NI»—\

(2.15)

—

For an intrinsic random field, the variogram can be estimated using the method of

moments estimator, as follows:

y(h) = LN Z [Z(x;) — Z(x; + h)]? (2.16)

where h is the distance separating sample locations x; and x; + h, N is the number of
distinct data pairs. In an isotropic case, h should be written as a scalar h, representing
magnitude.

The main aim of variogram analysis is to construct a variogram model that best
estimate the autocorrelation structure of the underlying stochastic process. Most
variograms are defined through several parameters namely: the nugget, sill and
range. According to Saputra (2008), the range, sill and nugget can be described as

follows and the variogram model is shown in Figure 2.7:

- Range: At some offset distance, the variogram values will stop changing and

reach a “plateau”. The distance at which this occurs is called the range.
= Sill: The “plateau” value at which the variogram stops changing.

- Nugget: The discontinuity at the origin. Although this theoretically should be

zero, sampling error and short scale variability can cause it to be nonzero.
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Figure 2.7 Experimental variogram model shape (Saputra, 2008).

The variogram offer a significant tool for explaining how the spatial data are related
with distance. As we have known, it is determined in terms of dissimilarity in sample
values between two locations separated by a distance h.
There are two reasons we need to fit a model to the empirical model such as:

1. Spatial prediction (kriging) requires estimates of the variogram y(h) for those
h’s which are not available in the data.

2. The empirical variogram cannot guarantee the variance of predicted values to
be positive, but a variogram model can ensure the variance positive. Several
parametric variogram models have been used in the literature and those are:

a) Linear Model

The linear model is expressed as linear function in (2.17)

r(h) = ¢, + kh (2.17)

where ¢g is the nugget effect, h is a distance separating of sample points. The linear
model has no sill, and so the total variance of the process does not reach its limit.
The existing linear variogram is taken into account when the variogram point data

exhibits a linearity as shown in Figure 2.8.



32

50000

45000

40000

35000

30000

25000

Variogram

20000

15000

10000

5000

0 T T T
0] 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000
Lag Distance

Figure 2.8 Linear variogram model (Asmael, Dupuy, Huneau, Hamid, & Coustumer,

2015).
b) Power Model

The power model is expressed as power function in (2.18)
r(h) = Cy + bh® (2.18)

where C, is the nugget effect. The power model has no sill, therefore, the variance of
the process still does not match its limit. The linear variogram is considered as a

special case of the power model as shown Figure 2.9.
c¢) Exponential Model

Mathematically, the exponential semi-variogram model is defined as (2.19):

0

h=0
_ h
r(h) = I Il)l b0 (2.19)

C0+C[1—6Xp(—7

Where: Cy = 0,c > 0anda > 0.
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The exponential semi-variogram model has a nugget effect of ¢, and Journel and
Huijbregts (1978:164) clarified that the exponential model reaches its sill value of
Co + € asymptotically. Armstrong (1998:37) adds that the range of the exponential
semi-variogram model is practically defined as 3a (The distance at which 95% of the
sill value is reached if ¢, = 0). The exponential variogram model is shown in Figure

2.9.
d) Spherical Model

Base on Armstrong (1998:37), the spherical semi-variogram model is probably
the most commonly used model in geostatistical estimation as shown in Figure 2.9.

In mathematical, the spherical semi-variogram model is measured as (2.20):

(O h=0
3h 1/h\°
T(h)=<€0+ C %—E(E)] 0<h<a (2.20)
kC0+C h=a

C,=20,C>0anda>0

Where: ¢, is the nugget effect, a is the range and ¢, + C is the sill value.
e) Gaussian Model

The Gaussian model is used to represent extremely continuous phenomena
(.,e. phenomena that have strong dependencies over short distance), since the
model illustrates a parabolic behavior near the origin (Isaaks & Srivastava, 1989:375).

The Gaussian semi-variogram model is measured as (2.21):

0 h=0
— h?
r(h) = Co+cC ll — exp <— ?)l h#0 (2.21)

co=0,c>0anda >0

Where: ¢ is the nugeet effect, a is the range, and ¢y + ¢ is the sill value. According
to Journel & Huijibregts (1978:165), a sill value reached asymptotically at a practical

range of v3a as shown in Figure 2.9.
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Figure 2.9 Variogram models of Spherical, Exponential, Power, and Gaussian.
Source: http://xongrid.sourceforge.net/GpVariogram.htm (Access date: June 26, 2019)
f) Nested Model

Nested structures of the ore deposit sometimes can be found when looking at
the experimental variogram. They point out the presence of the operating process at
different scales. For instance, there might be measurement at the level of a sample,
i.e. for h=0. At the petrographic scale (i.e. h<lcm), there can be discontinuity
because of a transition from a mineralogical constituent to another. At the level of
strata or mineralized lenses (i.e. for h<100m), a third type of variability comes into
play as the points pass from ore to waste or from ore facies to another.

The shorter range could be differentiated by the characteristics that change in
the curvature. This change is obvious when the two ranges are quite different. If they

are not, the change is more gradual and need not be obvious.
2.1.9.2. Regionalized Variables

The regionalized variables theory was developed by Matheron, which forms the
mathematical basis of geostatistics. The essential point of this theory is that the

geological or mineralogical process acted in the formation of ore deposit is


http://xongrid.sourceforge.net/GpVariogram.htm
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interpreted as a random process. Therefore, the grade at any locations within the
deposit is taken into account as a specific result of this random process. The
probabilistic interpretation of a natural process is significant to find a solution of the
practical issues of the grade estimation in an ore deposit. Such as the interpretation
is a simple conceptualization of facts and valid so far. It creates a great result of the
reality and allows the practical problems to be modified.

The regionalized variables are random variables that have a space correlation
in time. For instances, the regionalized variables are the metal grades and quality of
coal seams. In geostatistical estimation, variables can be classified as random
variables, but in term of regionalized is used to demonstrate that the variables are
correlated spatially to some degree.

Geostatistical approach aims to quantify the spatial variation of the regional
variable as the variogram model. And in the follow up process, the variogram model

will be used as conditioning information in the estimation or simulation process.
2.1.10 Kriging estimation

Geostatistical modeling does not provide the description of the physical
process thus it is not widely used in extrapolative predictions beyond the spatial
bounds of the given data. The geostatistical approaches are largely depended on the
interpolative predictions based on inferred spatial continuity of the existing data (i.e.
variogram models) and therefore these methods are widely applied for estimating
the grade and tonnage of mineral resources and ore reserves.

The estimation is usually applied using Ordinary Kriging (OK) or Simple Kriging
(SK), which are the variants of linear regression methods allowing estimation of a
single regionalized variable in unsampled points. Kriging technique defines the
following special limitations on the estimation:

e [t minimizes an estimation error.

e It assures that mathematical expectation of the estimate error is equal to zero.

These characteristics provide advantage to kriging comparing to other linear
estimators. Geostatistical techniques have become the most popular used methods

applied for estimating grade and tonnage of mineral resources and ore reserves (Krige
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1951; Matheron 1963, 1968; David 1977, 1988; Journey and Huijbregts 1978; Cressie
1990; Annels 1991; Goovaerts 1997; Sinclair and Black well 2002; Rossi and Deutsch
2014). The most commonly used approaches are linear estimators which is known as
Kriging system.

Kriging is a variable of the basic linear regression techniques allowing a single
regionalized variable at the unsampled locations to be estimated (Cressie 1990).
Apart from the use in the linear regression such as Ordinary Kriging (OK) and Simple
Kriging (SK), the Kriging equations also underly the non-linear estimators and
conditional simulation techniques (Lantuejoul 2002).

The specific essential point of kriging technique is the special conditions
determined to estimate as a constraining factor. These conditions can be seen as
follows: Kriging estimate minimizes an estimation error, € = Zrpyg - Zgricive- Kriging
approach guaranties that the mathematical expectation of the estimation error is
equal to zero, E () =(Zrrue - Zxrigive) = O

These both characteristics provide advantage to Kriging when being compared
with other linear estimators as it is concluded to be the Best Linear Unbiased
Estimator (BLUE) (Cressie 1990; Annels 1991; Sinclair and Blackwell 2002). Quality of
the Kriging estimate bases on many factors, including parameters that should be
defined by a practitioner and used in the Kriging equations. Those parameters are

commonly variogram model, search neighborhood and model grid dimension.
2.1.10.1.Ordinary Kriging

Ordinary Kriging (OK) is a widely used estimation technique for mineral
resources estimation (Journel & Huijbregts, 1978). It is a univariate linear estimator
which is allowed to estimate a single regionalized variable at the unsampled
locations by using the surrounding known samples. OK methodology is a
representative of a variant of the basic linear regression estimator, and in general

forms. The Ordinary Kriging equation is demonstrated in (2.22):
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n =1 (2.22)

Jz () = Z[w(xm
|
L4

Where 4; is the weight of OK assigned to each datum Z(x;), which are interpreted as
a realization of the regionalized variable of interest Z (x), Z*(x) is the estimated value
and Z(x;) is the sample value at location i.

The OK system of linear equations allows to compute the sample weights in
case of the intrinsic distribution model which is assured the optimal and unbiased
conditions of the estimator ((Dhaene & Goovaerts, 1997; Journel & Huijbregts, 1978),
as shown in (2.23).

(2.23)

lzlﬁ V(xg — xa) = 1= y(% — Xq)
2

Where A; are the Ok weights; u is the lagrange multiplier associated with the
constraint Zgzllﬁ =1. y(xﬁ = xa) are the semi-variogram between data points,
Y(xg — Xg) is a semi-variogram between each datum and block.

The estimation error variance is also known as Ordinary Kriging variance and it is

calculated as (2.24):

700 = 5§ = ) A ¥t~ %a) = K (2.20)

Where s2 is the point variance of the regionalized variable Z(x) and the matrix

notation of OK system can be represented as follows:
[K] x [A] = [M,] (2.25)

The matrix of [K], [A] and [M,] are illustrated as Equation (2.26] and (2.271:
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y(0) ... y(x1,%x,) 1
Kj=| = Y(XarXg) e 1 (2.26)
Y xg) e y(0) 1
1 1 1 0
Y (X1, %0) ]
Aq
= {;| and M) =|¥Cao) (2.27)
n s
U ]/(xn, xO)
A
The sample weights are estimated as Equation (2.28]:
[A] = [M] x [K]™* (2.28)

2.1.11 Sequential Gaussian Simulation (SGS)

According to (M. Abzalov, 2016), Sequential Gaussian Simulation (SGS) is a
based Gaussian method of conditional simulation, and it uses the transformed data
from the original data, which has zero mean and a unit variance. These transformed
data will be used to simulate the spatial viability of the interested variable. To
produce realizations, the random path through grid nodes were defined including the
conditional data, which is considered as hard data. A sequential neighborhood of the
grid node is constructed by using the original data and simulated data. The original
and simulated data are combined and used to compute the local conditioning
distribution and obtain the simulated value at the target node. SGS method is widely
used for modeling metal grades at different deposit types and mineralization styles
(M. Abzalov, 2016).

SGS is an algorithm which simulates the grid nodes by each other sequentially,
and subsequently the simulated values are used as conditional data for simulating
other ¢grid nodes. In SGS method, it requires the transformation of original data to

normal score distribution data, therefore the original data known as composited data
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is transformed into Gaussian data before they are used in the next process (Asghari,
Soltni, & Amnieh, 2009).
The fundamental steps in SGS approach are demonstrated as follows:
1. Computes the histogram and statistical parameters of original data.
2. Transforms original data into normal score distribution data.
3. Calculates the variogram experimental and fit the model of the transformed
data.
4. Defines a grid pattern.
5. Selects random path.
6. Kriges a value at each node using the known and previously simulated values
and define Gaussian distribution.
7. Draws a value from Gaussian distribution, which is known as simulated value.
8. Simulates other grid nodes sequentially.
9. Back transform the simulated values into the original data (a realization was
produced in this step).

10. To generate another realization, repeat step 6 until 9.

The variogram model of the transformed data are computed and used as
spatial viability parameters in simulation process. The establishment of a grid for
simulation and a random path is an essential to simulate each value at grid nodes.
Based on the kriging mean and variance, the distribution of Gaussian probability is
defined in individual node. It is very important to select a random path for
estimation value at each node. A random value drawing from Gaussian probability
distribution is conserved as a simulated value in each node. The basic steps in SGS

algorithm are illustrated in Fig 2.12. (Deutsch & Journel, 1992).
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Figure 2.10 Fundamental steps of SGS method (Asghari et al., 2009)
2.1.12 Pit limit

The processes related to the development of a geometric surface which is
called a pit onto the mineral deposit. When the pit limit was calculated, the
mineable reserves volume will be lying within the pit boundaries. A vertical section
which is taken through a pit limit is demonstrated in Figure 2.11. The size and shape
of the pit are based on the economic factors and design/production constraints. If

the price of minerals increases, the pit might expand in size by defining all other
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factors remained constant. In contrast, when the price of minerals decreases the
pit’s size and shape would move in or narrower assuming all other factors remained
constant. The pit existed at the end of mining phase is named the final or the

ultimate pit.

Criginal Surface —

Unconsolidated
Owerburden

Toe of Bench—\

Over-All Wall =

Slope Angle — [

Figure 2.11 The Open Pit Schematic.

Source: http://www.vbnc.com/eis/chap3/chap3.htm (Access date: June 26, 2019)
Within the pit, different values of materials are found. To produce the final pit, the
economic criteria are applied to define the objectivity for these materials depending
upon their values (i.e. mill, waste dump, leach dump, stock pile, etc.). Once the pit
limits have been determined and rules established for classifying the in-pit materials,
then the ore reserves (tonnage and grade) can be calculated. The ore grade and
tonnage will be used as the inputs in the follow up process such as reserve

estimation, mine design, mine production, and mine life calculation.

2.2. Literature review

- Lesmana and Hitch (2013) discussed the modelling and spatial variability of
three coal parameters, namely calorific value, ash content and sulfur content of a
coal seam in Malinau, East of Kalinmantan, Indonesia. The author concluded that the
use of Kriging approach is strongly influenced by the amount of drill hole data and
the area distribution of them. The results are more realistic when there are more drill

holes available, and the variables distribution is performed well. Therefore, it can be
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concluded that geostatistical estimation of the three coal parameters interpolated in
this study is incorporated into mine planning and mine operation in Malinau coal

mine.

- Wood (1979) evaluated low-ash coal reserves in No. 2 seam in Witbank,
South Africa. This seam composes of several zones with different qualities and
physical occurrences characteristics. The spherical variogram model was used in this
variography study, and the typical value for the range was from 150 to 320 m. It is
concluded that a consideration of the geological structure of the coal seam provides
a deeper insight into the problems that could be predicted when the coal is mined.
This makes the possibility of the estimation of low-ash coal reserves more realistic
with  more confidence. Geostatistical estimation method provides the most
appropriate for reserves estimation and be placeable to confidences limits on all the

estimates.

- Pardo-lglizquiza, Dowd, Baltuille, and Chica-Olmo (2013) studied on
geostatistical modelling of a coal seam for resource risk assessment. The study area
is located in the North-West of Iberian Peninsula, which consists of several basins
along dextral strike-slip fault zones. Based on the coal deposit, sampling density and
spatial variability of seam thickness, the uncertainty in the semi-variogram are small.
The consequences of selecting from the distribution of possible resources is very
important. The variability of thickness in the simulation and kriging models were
compared and summarized that simulation model is more effective than kriging
estimated field. The total resources calculated from simulation is 245 million cubic
meters with 95% confidences interval. Geostatistical simulation is an alternative
approach that provides a mean of quantifying the uncertainty and resources risk

assessment.

- De Souza, Costa, and Koppe (2004) investigated the methods capable of
incorporating uncertainty to the estimates of resources and reserves via OK,
Sequential Gaussian Simulation and Sequential Indicator Simulation. The coal deposit
of this study is located in the Southern Santa Catarina coal basin, Brazil. It has been

exploited since the early 1900’s. The authors concluded that both methodologies,
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OK and Simulation methods, led to similar results in term of tonnages within each
class. However, the spread of the error derived from simulation is different from the
interval obtained via Kriging variance. The OK variance may be used as a measure for
spread of the estimates that depends on spatial continuity of dataset and spatial
configuration of the observations. The conditional simulation methods had illustrated
that the error associated with estimates can be evaluated using multiple simulated
scenarios to define confidence levels, and these can then use in the classification
process.  Stochastic simulation allows reproduction of statistics (histogram, semi-
variogram and scatter-gram) inferred from the data, therefore the model or

realization looks more realistic than a smooth estimate.

-Irfan  Manrwanza (2016) studied on coal resources classification using
variogram to describe the spatial variability. The coal deposit in this study area was
named Sangatta Coalfield containing high volatile bituminous coal, and it is occupied
in the Northern Kutei Basin, Indonesia. This coal basin is divided into two zones (west
zone and east zone). The research aimed using the range of variogram of calorific
value to calculate distance between drill holes spacing for resources classification.
After studied, the author reported that variogram may assist in defining distances of
continuity between points observation. The coal measured resources distances
between drill holes in west zone is 60 m. It is shorter than the variogram range
expressed with 116 m. Then the distance can be extended according to the
variogram. In east zone, the distance between drill holes is relatively similar to the
practical drilling spaces. The acceptable confidence of drill holes spacing is required
in a resource estimates and this is based on the geological conditions and range of

variogram.

- Olea and Luppens (2012) applied Sequential Simulation approach for
modeling of multi-seam coal deposits with an application to the assessment of a
Louisiana lignite. The author reported that Stochastic simulation allows both detailed
geological characterization of coal deposits and a quantification of associated
uncertainties inherent to the modelling. Geological factors considered in the

modeling can be bed boundaries, erosion, oxidation, bed thickness and coal density.
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The modeling provides detailed as well as synoptic results for uncertainties at both
the deposit and the local cell level. For total resources, a probability distribution
provides total resources and associated probabilities. At the cell level, it is possible
to map cell tonnage generated probability distributions cell by cell and summarized
the expected cell tonnage in the form of cumulative distribution as a function of cell
uncertainties.

- COSTA, Zingano, and KOPPE (2000) studied on comparing the methods used in
ore reserves estimation between the conventional method and geostatistical
simulation method as FGT method (F=Fault, G=Grade and T=Thickness). This study
area is located in Eastern portion of Central Iran. After the studies, the authors
reported that a new method as FGT method can be applied into Parvadeh Il coal
deposit to access a particular aspect of the fault existence risk. The results of
conventional method and FGT method were compared to verify the resources
classification. The comparison indicated that the areas which should be rejected
from the region in FGT method are less and more distinguishable than those
determined with the conventional method. Therefore, the inferred resources can be
differentiated from indicated and measured resources with high resolution. The
conventional method cannot distinguish between these three categories at this level
of resolution. Thus, the FGT approach has high precision in classifying the coal

resources compared to the conventional method.
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CHAPTER 3
RESEARCH METHODOLOGY

The methodology of this study is expressed by the flowchart in Figure 3.1:

Preliminary study

of the project

Data collection: Topography, geology
data, geophysical data, assay data

Statistical analysis: . Structural analysis:
Composited
histogram, scatterplot, variogram calculation,
data analysis
statistical parameters modelling and validation
\4
4 N
A Grades and Resources 4 ) )
Ordinary Kriging 4 » Sequential Gaussian

estimation using MS3D

Simulation (SGS)

A

(OK)

Y, software .

\ J
v

—,{ Pit optimization (Ultimate pit limit) }4—

v

[ Pit Adjustment Process ]
v

Mineable reserves calculation

and Grade-Tonnage Curve

!

Conclusions

Figure 3.1 Flowchart of the research study.
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3.1 Topography and drill holes data preparation.

The X, y, z coordinates of assay data collected within NG exploration area
represent in Easting, Northing and Elevation. In this study, the data points were
edited in excel spreadsheet and saved into csv (comma-separated values) format.
This prepared csv file was imported to MS3D as point data and then triangulated to
wireframe and 2D surface. The 5-meter interval was used to create a contour map
within the NG exploration area as shown in Figure 3.2. The topography is setting
within the coordinate of 200133.2 - 204124.31 Easting, and 2037413.07 - 2042116.35
Northing. The elevation (Z) is ranging from 200 to 320 m above msl. A total of 295
assays data from 51 exploration drill holes (DH) which collected from the Lao
Integrated Development Group (LID) company were used for coal grades, resource

and reserve estimation.

Figure 3.2 The contour map of 5-meter interval at NG exploration area.
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3.2 Database formatting and loading

The prepared DH data files of csv format were imported into MS3D software by
a procedure called concsa.dat. This procedure was used to convert and combine the
DH data files into a main database, which kept all DH information ready for loading
and displaying after the completely converting process. After importing, the DH data
validation was followed up to check for any bias occurred in the running process or
prior. These validations included DH coordinates or collar, assay information, and
lithology logging information.

In order to complete a project in MS3D software, there are some required files
to be created during the processes. The characters of those files are explained
below:

e File 10 (F10) is a MS main data file as a project control file, which is be
used to store all information about the project created such as a project
control area and other minor files creation later.

e File 11 (F11) is a MS assay file that contains all the information of coal
qualities in term of a coal deposit.

e File 12 (F12) is a MS survey file containing the DH survey information or
orientation such as DH dip and azimuth.

e File 8 and 9 (F8 and F9) are MS unsorted and sorted composite files that
are used to store the DH composited data.

e File 25 (F25) is a MS digital file containing the topography data

e File 13 (F13) is a MS gridded surface file (GSF) or 3D surface model that
uses to store the elevation data for surface and pit optimization.

e File 15 (F15)is a MS 3D block model (3DBM) file which is used to store the
3DBM information such as block size, density, grades and other attributes
required for other purpose such as mining cost, block value, milling cost
and others.

These required files and the processes of a complete project construction in

MS3D software are denoted in Figure 3.3.
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Project
Control File
File 10
Drillhole Digitized Data Digitized Data
Assay Topo Map Geologic Map
File 11 & 12 File 25 File 25

Composites Gridded Data Gridded Data
Sorted Data Topo & Surface Model Code
File8 &9 File 13 File 15
Block Model

GSM

File 15

Material
Summary File

File 14&18

Figures 3.3 Flowchart of necessary files creation in MS3D software (Vang, 2015).

Figures 3.4 - 3.9 display the method of importing the collar, assay, survey and

geology files to MS3D software, respectively.
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Figure 3.4 Method of importing collar.csv to MS3D software.
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Figure 3.5 Method of importing survey.csv to MS3D software.
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Figure 3.7 Method of importing assay.csv to MS3D software (Parameters loading)
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Figure 3.8 Method of importing geology.csv to MS3D software (Data input).
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Figure 3.9 Method of importing geology.csv to MS3D software (Lithology code).

After the four DH data files were imported into MS3D software, the initialize of
assay data was carried out, and then the DH database (dat201.txt) was loaded to

display DH information and validation.
3.3. Drill hole composites

Drill hole composite was accomplished using a bench compositing method in
MS3D. In order to provide an appropriate interpolation of coal quality parameters
such CV and AC for geostatistical estimation, a fixed length of 1 m interval was
considered as a suitable composite length for DH composite in this study. This is
because of the high variations of coal seam thickness within NG exploration area.
Gross calorific value and ash content are the chosen parameters used for DH
compositing and furthermore process like Ordinary Kriging estimation and Sequential
Gaussian simulation. The drill hole composite was succeeded by the following steps:
MineSight > MScompass > Group: 2 — Composites, Operation: Calculation > Bench

compositing. DH composite procedures are presented in Figure 3.10 — 3.11.
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Figure 3.11 Drill hole composite in MS3D software (Composite report).
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3.4. Statistical analysis of composited data

The composited data of CV and AC were used to calculate the statistical
parameters such as minimum, maximum, mean, variance, standard deviation,
coefficient of correlation and other required parameters. The statistical analysis of
these two variables were accomplished using histogram plot and scatterplot by a
tool called MineSight Data Analysis (MSDA) in MS3D software. This is to show the

distribution characteristics of each parameter and a correlation between them.
3.5. 3D Solid zone construction

The cross-sectional method was used to define drill holes section for creating
3D solid model of NG coal deposit. There was a total of 15 cross sections of drill
holes defined along East-West direction within NG exploration area. The 2D cross
section view of drill holes data were used for creating a closed segment based on
each coal seam, which had a correlation to each other from one drill hole to others.
The geological structures such as fault and fold, and geophysical information were
used to assist the coal seams interpretation. The maximum distance of coal seams
interpretation is 75 meters. The closed segments from each DH section were
connected together to construct a wireframe model of the domain. The wireframe
model was then validated and saved to generate a solid model of each coal seam
for the entire deposit. In this study, the cross section spacing is varied from 50 meters
to 200 meters similarly to the exploration drilling program.

Due to NG coal deposit exhibits a complex geological setting area, resulted in a
high variation of coal seam thickness and qualities. The coal seam thickness has
demonstrated as a thin, moderate and thick layer with multiple seams within the
entire NG exploration area. In this research study, the minimum thickness of 0.3
meter was considered for 3D solid model construction. For a practical consideration,
a group of split seams and sub-split seams occurred near each other with partings
less than 0.3 meter were then grouped together. And for a group of split seams and
major seams having thickness greater 1 meter, which consisted of partings less than
0.45 meter were also grouped together. The cross-sections determination within NG

exploration drill holes are illustrated in Figure 3.12, and Figure 3.13 represents a 2D
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cross-section of section-KK’. The procedures of constructing a 3D solid model of NG

coal deposit can be seen in Figure 3.14.
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Figure 3.13 2D cross section of section-KK’ of coal seams digitization.
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Figure 3.14 Flowchart of steps used to generate the 3D solid model.
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3.6. 3D block model development

The 3D block model used for OK estimation and SGS was created by defining
the block size interval based on bench dimension. Then, the attributes and required
economic parameters used for pit optimization were added into the block model. In
this study, the block size discretization was defined as 20 x 20 x 5 (in x, y and z
dimension) cubic meters for coal quality parameters as CV and AC interpolation. The
3D block model of NG coal deposit is demonstrated in Figure 3.15. The 3D solid
model of NG coal deposit was used for block model coding to determine the
percentage of solid model volume intersected within the entire block model
volume. In this study, a minimum 8 percent of solid model volume intersected
within the entire 3D block model volume was considered to be coal and used for
the interpolation. The 3D block model containing the percentage less than 8 percent
were classified as waste. There is a total of 4,796 blocks generated within the 3D
solid zone model of this coal deposit. These blocks were used for coal quality
parameters as CV and AC interpolation, geological resource and mineable reserve

computation.

G- B

HHT- 044
HG-1

RHT-D4T
RHG- Ll

Figure 3.15 3D block model generated within 3D solid model of NG coal deposit.
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3.7.  Kriging estimation

Kriging estimation is a popular and widely used geostatistical tool applied to
mining industries and other geoscience fields. Kriging methods comprise of many
estimators used for metal grades and coal quality parameters interpolation which
will be used for mineral resource and reserve estimation. Kriging estimation methods
use neighboring sample values to interpolate the unknown values at unsampled
locations. It minimizes the error variance into minimum and no biased when the sum
of sample weights equal to one. In this study, Ordinary kriging (OK), a Best Linear
Unbiased Estimator (BLUE), was used to interpolate coal quality parameters such as

CV and AC at NG coal deposit.
3.7.1.Variogram calculation and modelling

The exploration drill holes spacing grid pattern within NG exploration area and
other blocks varies from 50 meters x 50 meters to 200 meters x 200 meters. The DH
drilling direction is assumed as vertical direction with dip angle of 90° based on the
exploration stage. In this research, the experimental variogram calculations of CV and
AC were carried out using azimuth ranging from 0° to 225° with 45° increasement in
order to observe the anisotropic characteristics. The dip angle is ranging from 0° to
90° with 30° increasement for both parameters. In this case, only the vertical
experimental variogram calculations were constructed for both variables by a tool
called MSDA in MS3D software as presented in Figure 3.16 — 3.17. Consequently, the
vertical experimental variogram calculation was used for fitting a best variogram
model based on the practitioner’s observation. The best fitted model provides the
range, the nugget effect, and partial sill included CV and AC. These parameters will

be stored and retrieved for the subsequent related process.
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Figure 3.17 Global vertical experimental variogram of AC.
3.7.2. Ordinary Kriging Estimation (OK)
The interpolation of CV and AC within each block in the entire 3D block model

of NG coal deposit was implemented using Ordinary Kriging approach, which is

demonstrated in Equation (3.1). The Ordinary Kriging method provided in MS3D
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software is a module used for metal grades and coal quality parameters
interpolation. Then the estimated block model was used for geological resource, pit
optimization, and mineable reserve calculation. In this study, the fitted variogram
model as spherical model from the composited data was applied as the input of the
uncertainty determination for Ordinary Kriging estimation. This fitted variogramn model
minimized the error variance and defined the anisotropic characteristics. There is a
total of 4,796 blocks used for CV and AC interpolation within NG coal deposit. Prior
to the interpolation, the attributes such as CV’s mean, AC’s mean, CV’s variance and
AC’s variance were added into the 3D block model to store the interpolated results.
In accordance with the fitted vertical variogram model, the ranges for CV and
AC fitted were very close to each other. Therefore, the vertical search distance of
100 m was used. However, the searching dimension criteria along Easting and
Northing for this interpolation is 250 m based on JORC Code 2012 as shown in Table
3.1. Ordinary Kriging input parameters for coal quality parameters interpolation are

demonstrated in Table 3.6.

n

7@ = ) MZG) G.1)

i=1

Where: Z* (x) = estimated value at location x
A; = sample weight from the estimated value to known sample value

Z(x;) =sample value at location x;

Table 3.1 Coal resource classification based on sampling spacing defined by the JORC

Code 2012 system (De Souza et al., 2004)

Maximum extrapolation | Maximum spacing between Degree of

Classes of

distance points of observation uncertainty
resource
Measured 500 meter + 1 km; <500 meter 0-10%
Indicated 1,000 meter + 2 km; < 1 km 10 - 20 %

Inferred 2,000 meter + 4 km > 20%
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Table 3.2 Kriging input parameters for coal quality parameters interpolation.

Input files Composited data of CV and AC

Grid
20 meter X 20 meter X 5 meter

discretization
Variable | Structure | Nugget (Cy) | Partial Sill (C;) | Range (a)
Variogram
1% 669,322.7 1,075,697.2 9.37
model cv

an
(Spherical

1,497,238.5

48.5

1 63.13

Model) AC

105.98

9.04

an

155.48

40.08

Searching

dimension

x = 250-meter, y = 250-meter, z= 100 meter

Conditional data | Min = 1, Max = 7

The Ordinary Kriging estimation in MS3D software is as followed; MineSight >
MScompass > Group: 5a — 3D Modeling, Operation: Calculation > Ordinary Kriging.
This procedure is shown in Figure 3.18 - 3.27.
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Figure 3.18 OK method of CV in MS3D software (Data input)
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Figure 3.19 OK method of CV in MS3D software (Model parameters)
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Figure 3.20 OK method of CV in MS3D software (Kriging search parameters)



62

eSight 30 - univ_c sive - 12, Thes 8\NG PROJECT] - xViewer! - 3D b -
File Viewer Snap EditGrid Query GeoTools OPEngTools UGEngTools Scheduling Utilities Model Selection Label Point Polyline Surface Element MineSight Help
BERSCl /04 40=0f + 4PRINAY kRN s 8BSV MM~ REAE-J !
steneyulivrasNael@aed 98, 0-6n-02015ewrn el uuvloce®l Rl
Data Manager X O pB2401.dat - - % 0 MineSight ass- - xbd A -
@ Fie Edt Go Fie Help
Project view Open view BEE & B[ 2 G0 | usingresponse fe: d52e01 dat Project: |coal Fath: |FMhesis Project Dec_{8 201EWG PROJECTIcoalpr [+
—F _msresaurces B Setup| Menu Options | Project | Extent | Rotation
£ 0o INTERPOLATION CONTROL ITEMS
-9 02GRD Enter item labels for interpolation: C:\WineSightimetib\compass. mnu B Dl:l
-1 0270R0 Item fiine Hodel Composite Calc Type Sa- 30 odeing B
& wsow s== Note on calc type:
5
& osmenc S TR T e | - 0 for kriging Cakcuiaton EI:H:H:I
-5 06 GEOPHYSICS.
2 El = E El = 1 for polygonal
-3 OTFAULT .
FE 0BFENCEGRD 3 = - 2 [=] grade assignment
£ tepLoT = Ll o - ] [
5 o - = ] Blank out extra labels ezl e
Name.
B otow = [*] seam attribute used for compositing (GSH only)
& 026RD WeD [v] Item to store distance to the closest composites [7] IIH:I
E Eilz::} Huab | E Iten to store distance to the farthest composites
[ p— HUFD [*] Item to store the average distance
B 05GEOPHYSICS E Iten to store max ¥ of conmposites used per block D
BI o7FAUT [*] Item to store max ¥ of drillholes used per block
[ 08 FENCE GRD Handling of interpolated blocks: ] pide procadures
B tepor [*] 1tem to store flag for interpolated block ‘Emm,m Mame Operation
3 10KRIBNG MODE Flag value Apply Diution & Losses to O Sands 3DBM|osdin.dat Calculston [+ ]
[ 101KRGHG PT Handling of uninterpolated blocks: Statistics (Model) pe0301 dat Calculation
By 11565 MODEL RESET = set uninterpolated blocks to nissing (DEFAULT) | statics a User Cutots odel) pe080Z dat Calculation
[ 111sesAr — _ . | | User-Cacs (Model) pE1201.dat Calculation
epr—_ [*] oMIT = leave uninterpolated blocks as they are. Canelatons (odel) 180 dat Caloulation
ﬁl tems DW Interpolation p62001.dat Calculation
h
materials Trend Interpolation p62101.dat Calculation
E Ordinary Kriging A Calculation
Debuq Elipsoid p624db.dat Calculation

Coordinates e: 19930000 m n: 2038300.00m z -100.00m  Distance e:0.00m n: 0.00m z0.00m 3d:0.00m  Angles az 0.00° dip: 000 Length: 0.00m  Area: 0

Figure 3.21 OK method of CV in MS3D software (Interpolation control items)
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Figure 3.22 OK method of CV in MS3D software (Variogram model parameters)
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Figure 3.23 OK method of CV in MS3D software (Optional search parameters)
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Figure 3.24 OK method of CV in MS3D software (block limiting)
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Figure 3.25 OK method of CV in MS3D software (Optional composite data selection)
3.7.3. The geological resource estimation

The geological resource of NG coal deposit was calculated using the 3D block
model method, which coded from the 3D solid model of deposit. The equation used
for geological resource calculation is denoted in Equations (3.2). In this research, the
3D solid model was coded within the 3D block model to compute the coal volume,
which defined in percentage that intersected inside a full block volume. These coal
percentages were applied to geological resource computation. The coal density of
1.15 ton/m’ adopted from LID coal mine was employed for geolosical resource

calculation.

Qc=V. XD, (3.2)

Where: Q. = Tonnage of coal (T)
V. = Volume of coal (m?)

D, = Density of coal (T/m?)
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3.7.4. The Pit optimization and mineable reserve estimation

Pit optimization was employed by applying the geotechnical and economic
parameters into the 3D block model of NG coal deposit. The net profit in the block
model is a main parameter used for running pit optimization to produce the optimal
pits for pit design and mineable reserve calculation. Those parameters were
calculated using user-calc (Model) tool in MS3D software and stored in 3DBM. Lerch-
Grossman algorithm, the most popular algorithm for pit optimization in mining
industries, was applied for pit optimization in this case. The geotechnical and
economic parameters used for pit optimization are represented in Table 3.3. The
coal prices selling at the LID mine mouth is shown in Table 3.4. The computed
equations of calculating costs and revenues for pit optimization are illustrated in
Equation (3.3] — [3.10]. The pit optimization will generate the optimal pits for

mineable reserve computation.

Table 3.3 Geotechnical and economic parameters for pit optimization.

Parameter Cost (USS)
Mining cost per ton coal and waste 1.63
Processing cost per ton coal 15
Mining recovery 80 %
Overall pit slope angle 45°
Density of coal 1.15 T/m?
Density of waste 1.8 T/m3

Table 3.4 Coal prices at the LID mine mouth based on CV basis.

CV bin (kcalZkg) Price (US$)
500 - 4000 46.6
4001 - 5000 53.6
5001 - 5500 58.4
5500 - up 65.8




Qw = Vw XDy
M = Q¢ X m

P=QcXxy
Cc= M.+ P
R=Q.Xx gXr
B.=R—- C,
By = — My

Where:

Q. =Tonnages of coal (T)

R = Revenue of coal sales,

Qw = Tonnages of waste (T),

V,, = Volume of waste (m?)

D,, = Density of waste (T/m?),

M. = Total mining cost of coal in a block (US$)
m. = Mining cost of coal (US$/T),

M,, = Total mining cost of waste in a block (USS)

m,, = Mining cost waste (USS/T),

p = Total processing cost of coal in a block (US$)
y = Processing cost of coal (USS$/T)

C. = Total cost of coal mining and processing ($)
q = Coal price (US$)

r = Mining recovery (%)

B. = Block value of coal exists (USS)

B,, = Block value of waste (USS)

3.7.5. The pits adjustment and mineable reserve estimation

(3.3)
(3.4)
(3.5)
(3.6)
(3.7)
(3.8)
(3.9
(3.10)
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The pits adjustment was implemented in order to achieve the practical pit

operation. The pits adjustment for NG coal deposit was carried out using a pit
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expansion tool in MS3D software. This is a required process allowing to access and
excavate the ore material to the full extent of the coal seams. The pits adjustment
parameters derived from the current LID coal mine are presented in Table 3.5. The
mineable reserves and waste materials from individual adjusted pit were computed

and classified depending on CV basis and bench level.

Table 3.5 The pits adjustment parameters

Parameters Value
Overall pit slope angle (°) 45
Bench slope angle (°) 60
Bench height (meter) 5
Berm width (meter) 5
Ramp width (meter) 8
Ramp gradient 1:10
Pit floor width (meter) 23

3.8. Sequential Gaussian Simulation (SGS)

SGS is a non-linear geostatistical method which is widely used in mineral
resource simulation in mining industries and others. It produces realizations (maps) of
grades distribution in a block model within the deposit. SGS is a method that requires
a normal score data transformation, which used the drill holes composite data as
original input data. The Gaussian normal scores data was used to calculate
experimental variogram and fit by an appropriate model which will be used as inputs

for SGS process.
3.8.1. Variogram calculation and modeling

For variogram experimental calculation of CV and AC in SGS, the drill holes
composited data of them were transformed to Gaussian normal scores data in MS3D
software. Then Gaussian normal scores data was validated using statistical analysis
(histogram) of both variables to check for a standard normal score distribution such a

unit variance and mean value equal to zero were produced. In this study, variogram
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model constructions were implemented by different azimuth directions ranging from
0° to 225° with 45° increasement, and dip angle ranging from 0° to 90° with 30°
increasement. The experimental vertical variogram calculation of transformed data,
CV and AC, were fitted by spherical model which was considered as the best and
appropriate model that provides the least error of nugget effect. Both vertical

experimental variogram calculation of CV and AC are presented in Figure 3.26 - 3.29.
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Figure 3.26 The vertical experimental variogram of CV for SGS.
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3.8.2.SGS block grades simulation

Sequential Gaussian Simulation was used to estimate the probability

distribution function (pdf) for all blocks within NG coal deposit using the (3.11]:

FIZ'Gl = ) Aaf12(x,)] 3.1

Where:
f [Z(x4)] = estimated distribution function (pdf) at location x,;

Aq = sample weight for function at location x,;

This simulation process involves with two steps: (1) Estimation of statistical
inference (u, %) of the assumed pdf, and (2) Draws a realization from the estimated
pdf. The block grades simulation using SGS was carried out by the following steps as
the flowchart Figure 3.28 . The Sequential Gaussian Simulation input parameters are
determined in Table 3.6. There are 5 realizations (Maps) generated for each CV and
AC in this case. The post-simulation processing (E-type map) was accomplished to
calculate the mean and unit variance (u, 0%) of each block. The mean value of CV
here was used for economic evaluation of pit optimization in order to compute the
mineable reserves for NG coal deposit. The procedures of SGS in MS3D software

were employed by the flowing Figure 3.29 - 3.41.



70

t Composited data ]

v
p
Normal Score Transformation ]
-
4 + N\
Check for bivariate normality (histogram)
Variogram calculation and modeling

\4

R
-

Block discretization/searching pattern

A 4

4{ Select block at random to be simulated ]

A 4

[ Set up kriging system ]

[ Solve kriging system (Realizations) ]

[ Back transform to original data ]

Yes (

L More blocks

4

No

4

[ Post-simulation processing, N (4, 2) ]

\ 4

( More simulated maps (realization) ]

L
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Table 3.6 SGS’s input parameters for block grades simulation

Input file Composited data of CV and AC

Grid
20 meter X 20 meter X 5 meter

discretization
Variogram No. of
Variable | Nugget (C,) | Partial Sill (C;) | Range (a)
model Realizations

(Spherical cv 0.1195 0.8755 10.679 5

model) AC 0.1478 0.8506 11.313 5

Searching
x = 250-meter, y = 250-meter, z= 125 meter
dimension

Conditional
Min =1, Max =7
data

The SGS method in MS3D software is demonstrated by the following steps:
MineSight > MScompass > Group: 3a — Advanced Geostatistics, Operation: Calculation

> Conditional Simulation-SGS.
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Figure 3.29 SGS method of CV simulation in MS3D software (Data input type)
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Figure 3.31 SGS method of CV simulation in MS3D software (composited items)
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Figure 3.34 SGS method of CV simulation in MS3D software (Block model items)
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Figure 3.35 SGS method of CV simulation in MS3D software (Block model limiting)
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Figure 3.39 SGS method of CV in MS3D software (Conditioning Parameters)
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3.8.3. SGS’s geological resource estimation

The geological resource calculation based on SGS approach was computed
using simulated block model. SGS’s geological resource was calculated using the
Equation (3.1]. The geological resource was classified based on the CV basis for NG
coal deposit. It also was summarized based on the bench level basis. The coal

density of 1.15 ton/m?’ was used for the calculation.
3.8.4.5GS’s Pit optimization and mineable reserves estimation

SGS’s pit optimization was employed using LG algorithm to produce optimal
pits for mineable reserves calculation. The SGS’s pit optimization uses the calorific
values calculated from multiple realizations (E-type map). The economic parameters
were used for pit optimization especially net profit value of each block. The
geotechnical parameter such as overall pit angle was used. These multiple optimized
pits were used for mineable reserves computation. The economic and geotechnical
parameters used for SGS’s pit optimization can be seen in Table 3.3, and the coal
prices are illustrated in Table 3.4. The computation of costs and revenues for SGS’s
pit optimization is illustrated in Equations (3.3)- (3.11).

After the pit optimization has been accomplished and generated multiple
optimal pits for NG coal deposit. The optimum pits were used for mineable reserves
computation. A mineable reserve was computed from each generated pit and then

combined together as total mineable reserves for NG coal deposit.
3.8.5. Pits adjustment and mineable reserves estimation

SGS’s optimum pits adjustment was implemented in order to apply the open
pit design parameters to the generated optimal pits. A pit expansion tool in MS3D
software was used to adjust the optimal pits generated from LG algorithm for NG
coal deposit. This process allows us to access and excavate the ore materials to the
full extent. The optimal pits adjustment parameters used for SGS’s optimal pits are
presented in Table 3.5. Furthermore, the mineable reserves and waste materials
from individual adjusted pit was computed and classified based on CV and bench

level basis.



78

CHAPTER 4
RESULTS AND DISCUSSIONS

4.1. Drill hole data statistical analysis

In the coal washing plant of LID Coal Mine, there are few main parameters
must be quantified as a coal shipment and sales qualities which are CV, %M, and VM.
CV is @ main parameter used for price negotiation between producer and buyers. In
accordance with DH statistical analysis, CV and AC parameters have a very strong
negative correlation. In this study, CV and AC were chosen as studied variables. The
AC displays highly varied percentage which could decrease the CV. The DH boundary
and average values of variables are summarized in  Table 4.1. In order to
demonstrate the coal quality parameters distribution, histograms of both CV and AC
are plotted. The histograms of CV, AC and other parameters are shown in Figure 4.1
- 4.2. The scatterplot between CV and AC was plotted to demonstrate the

correlation of these two variables as shown in Figure 4.3

Table 4.1 Drill-hole data statistics

Variable Min Max Average DH No.
Easting (m) 200,584.32 201,662.94 - -
Northing (m) 2,038,794 2,041,129.21 - -
Elevation (m. MSL) 214.69 236.84 - -
Calorific Value (kcalZkg) 373 7,486 3,745.91 -
Fixed carbon (%) 6.05 80.37 42.38 -
Ash content (%) 9.64 85.58 48.32 -
Sulphur (%) 0.01 11.34 0.80 -
Volatile matter (%) 4.30 26.44 8.32 -
Total moisture (%) 1.27 30.45 6.80 -
Inherent moisture (%) 0.04 30.55 2.21 -
Total - - - 51
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The DH composited statistical analysis of CV and AC demonstrate similar distribution
of symmetrical shape. The statistical parameters of CV such as minimum, maximum,
mean, standard deviation and coefficient of variation are 373 kcal/kg, 7,403.3 kcal/kg,
3,793.49 kcal/kg, 1,803.66, and 0.5, respectively. The AC statistical parameters such as
minimum, maximum, mean, standard deviation and coefficient of variation are 11.5
%, 83.7 %, 47.83 %, 18.07, 0.4, respectively. The correlation coefficient between CV
and AC is - 0.98, which indicates that these two variables have a high negative

correlation.
4.2. Drill holes data compositing

In this study, the coal seam thickness varies from 0.05 meter to 5.5 meters and
the average thickness of coal seams within NG exploration area is 0.5 meter. To
provide the best input data for geostatistical estimation model, the 1-meter interval
was used for DHs composited in this case. The DHs locations and composited data
are shown in Figure 4.4 —4.5. The CV and AC are used for DHs composited, which
will later use for the interpolation. The entire assays data of CV and AC were
composted into 317 sample values by length weighting method. The composited
data were used for DH statistical analysis, and geostatistical estimation and

simulation.
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Figure 4.1 Histogram of CV of composited data.
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Figure 4.3 Scatterplots of CV and AC.
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Figure 4.4 3D display of topography map and drill hole data.
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Figure 4.5 Example of NG DHs composited data (Left = assays, Right = composited).
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4.3. 3D geological solid model

The 3D geological solid model of the NG coal deposit was created by a cross
sectional method from the exploration drill-hole database, which has the boundary
in 2038769 - 2041241 Northing and 200671 - 201438 Easting. Due to the high
variations of coal seam thickness, there were multiple 3D solid models generated for
major coal seams and split-seams. The 3D solid models were colored based on the
major coal seams (A, B and C) including its split seams and sub-split-seams. The 3D
major coal seams (A, B and C) and minor seam (O) distribution can be seen in Figure

4.6 -4.7.

150,00

16590010
401050.0
-100, 00 202400.0 Eas;

Legend

Dril.-hole

Figure 4.6 3D solid model view of major coal seams with topography and DHs data.
4.4. Ordinary Kriging (OK) Estimation
4.4.1.Variogram calculation and modelling

The vertical experimental variogram calculations for both CV and AC were
carried out using DHs composited data. The best fitted variogram model was
selected as spherical model of both parameters. The variogram results present a
nest structure for these two variables. The variogram structures of CV and AC are

presented in Table 4.2. It was concluded that the variogram models of CV and AC
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are zonal anisotropic variogram. The CV’s variogram model shows the range of 9.37
meter for the 1 structure and 48.5 meter for the 2" structure. And the AC’s
variogram model shows the range of 9.04 meter for the 1° structure and 40.08 meter
for the 2™ structure.

In general, the variogram model of both CV and AC are comparable and
illustrated that they provide a similar range in vertical direction. Due to the
exploration drilling program is systematically controlled in vertical direction. The dip
angle is set equal to 90°. The horizontal variogram calculation shows an erratic
result, therefore it will not be used in this OK’s estimation. The azimuths parameters
do not have any impacts for variogram calculations. The vertical experimental

variogram and their best fitted models for CV and AC are shown in Figure 4.7 — 4.9,

Table 4.2 Results of variogram model fitted for CV and AC.

Variogram
Variable | Structure | Nugget (Cy) | Partial Sill (C;) Range (a)
Model
1% 669,322.7 1,075,697.2 9.37 Spherical
cv
2 1,497,238.5 48.5 Spherical
1t 63.13 105.98 9.04 Spherical
AC
2 155.48 40.08 Spherical
3000000.00 A '-JJJ?:_I_‘.{_i 'I -ﬂ'— !
i —— EIR AT
el AN
1000000.00 ,’f ) I .‘: “i'. .

800000.00 /’
600000.00
400000.00
200000.00

0.00

o 3 & 9 12 15 18 21 24 27 30 33 36 33 42 45 48 51 54 5 8 63 65 69
Lag distance (m)

-B-HV_VERT_global - c0 +-(at.cl) - (a2,c2) — Model ==Variance

Ficure 4.7 Variogram fitted model of CV.
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Figure 4.8 Variogram fitted model of AC.
4.4.2. Variogram model validation

The fitted variogram models of CV and AC were validated using a point
validation tool in MS3D software. To keep in mind that the interpolation used the
composited data as the original data, the validation process starts with the
comparison between the composited data to the estimated ones. The scatterplot is
used for the sake of comparison. The scatterplot of both variables can be seen in
Figure 4.9 — 4.11. The statistical parameters comparison between composited data
and point estimated values for CV and AC are demonstrated in Table 4.3 - 4.4. The
comparison of mean values was used as a main criterion to justify the adopted

variogram model.

Table 4.3 Comparison between composited and estimated CV statistical parameters.

No Parameters Composited data Point estimated | % Different
1 Min 373 433 16.09
2 Max 7403 6875 7.13
3 Mean 3845 3854 0.23
4 Standard. Dev 1789 1549 13.42
5 Median 4156 4018 3.32
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Figure 4.9 Scatterplot between composited data versus estimated values of CV.
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Figure 4.10 Scatterplot between composited data versus estimated values of AC.
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Table 4.4 Comparison between composited and estimated AC statistical parameters.

No Parameters Composited data | Point estimated % Different
1 Min 11.5 15.7 36.52

2 Max 83.7 83.7 0.00

3 Mean a7.42 47.28 0.3

4 Standard. Dev 17.95 15.93 11.23

5 Median a5.7 46.2 1.09

It can be observed that it provides a comparable result between the
composited data and the point estimated values for both CV and AC parameters.
The mean value of the composited and estimated CV are 3,844.6 kcal/kg and
3,853.68 kcal’kg, respectively. The mean values of the composited data and
estimated AC are 47.42 % and 47.28 %, respectively. It can be seen that the average
values between the composited data and estimated value for both CV and AC are
very close to each other. Therefore, it can be concluded that the two variogram
fitted models can be applied for the block grades estimation using Ordinary Kriging
method.

4.4.3. 3D block model and resources estimation

A total of 4,796 blocks were used for coal grades, CV and AC, estimation by the
Ordinary Kriging method. The variogram fitted models of both CV and AC were
applied into the estimation model. The OK’s output and variogram input parameters
are presented in Table 4.5 - 4.6. The histograms of estimated CV and AC from 3D
block models were produced to show the grades distribution within the NG coal
deposit. A scatterplot between estimated CV and AC was carried out to observe their
correlation.

The statistical analysis results of 3DBM showed that the histograms for both CV
and AC are multimodal and symmetric shape. The minimum, maximum, mean,

standard deviation, coefficient of variations of CV are 998 kcal/kg, 6,457.03 kcal/kg,
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3,733.84 kcal/kg, 1,258.23 and 0.34, respectively. The minimum, maximum, mean,
standard deviation, coefficient of variations of AC are 20.91 %, 76.01 %, 48.68 %,
12.48 and 0.26, individually. The histograms of CV and AC are represented in Figure
4.11 - 4.12. The scatterplot between CV and AC is shown in Figure 4.13. The
geological resource of NG coal deposit was computed into 2.2 Mts with an average
CV of 4,018.12 kcal/kg and an average AC of 45.891 %. The summary of OK’s
geological resource classified by CV basis can be seen in Table 4.7 by bench level.
The 3D block model results of CV and its variance estimation are presented in Figure
4.14- 4.15, and the 3D block model results of AC and its variance is shown in Figure

4.16- 4.17, respectively.

Table 4.5 OK’s input parameters and outputs of block grades estimation

Input file Composite data file of CV and AC

Grid
20 meter x 20 meter X 5 meter
discretization

Variable | Structure | Nusgset (Co) | Partial Sill (C;) | Range (a)

5 669,322.7 1,075,697.2 9.37

Variogram v
ond 1,497,238.5 48.5

model

1t 63.13 105.98 9.04

AC
ond 155.48 40.08

3D Searching
x = 250-meter, y = 250-meter, z= 100 meter
dimension

Conditional
Min =1, Max =7
data

Block (x = 200770, | cv= 5650.01 kcal/kg, var= 2,051,303.88
Output data y = 2039350, z =

207.5)

AC content = 30.39 %, var = 224.44




Table 4.6 OK’s geological resource classified by CV basis.

CV basis Average grade
V. (m? | D¢ (T/m?) Q. (M
(kcal/kg) CV (kcalKg) | AC (%)
500-4000 815,716 938,073.40 2,753.34 58.42
4000-
679,628 781,572.20 4,516.42 41.003
5000
1.15
5000-
64,708 74,414.20 5,147.35 35.049
5500
>=5500 337,803 388,473.45 5,853.42 27.537
Total 1,897,855 2,182,533.25 4,018.12 45,891
11.00
Valid samples: 4796
10,00 - Minimum: 998.00
Maximum: & 45703
Average: 3,733.5041
9.00 - Variance: 1,583,135.000
Standard deviation: 1,258.227
Coeflicient ofvariation: 0.34
8.00 -
7.00 -
& 600-
E 5.00
4.00
3.00 -
2.00 -
1.00 -
um I I I I I I 1 I I I I 1 I I I 1 I I
0 400 GOD 1200 1600 2000 2400 2300 3200 3600 40D0 4400 4800 5200 5600 6000 6400 6300
Heating value (kcal/kg)

Figure 4.11 Histogram plot of CV’s estimated values.
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Figure 4.12 Histogram plot of AC’s estimated values.
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Figure 4.13 Scatterplot between estimated CV and AC.



Table 4.7 OK’s geological coal resource classified by bench level.
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Bench | Bench 5 D. Average grade
No level Ve (m?) (T/m?) Qe (M CV (kcal/kg) | AC (%)
1 225 550 632.50 3,529.13 48.53
2 220 16,283 18,725.45 4,043.48 42.94
3 215 49,382 56,789.30 4,295.06 42.88
il 210 82,508 94,884.20 3,887.24 47.25
5 205 120,015 138,017.25 3,607.39 50.10
6 200 136,644 157,140.60 3,645.16 49.23
7 195 140,623 161,716.45 3,636.89 49.45
8 190 130,702 150,307.30 3,687.64 49.14
9 185 114,188 131,316.20 3,864.39 47.53
10 180 113,571 130,606.65 3,843.23 47.68
11 175 113,834 130,909.10 4,008.70 46.06
12 170 98,104 112,819.60 4,190.07 44.20
13 165 87,539 100,669.85 4,278.25 43.13
14 160 78,573 90,358.95 4,370.29 42.16
15 155 68,079 78,290.85 4,324.98 42.58
16 150 63,530 5 73,059.50 4,287.04 42.92
17 145 54,570 62,755.50 4,306.96 42.68
18 140 41,175 47,351.25 4,258.04 43.10
19 135 32,429 37,293.35 4,006.22 45.73
20 130 29,659 34,107.85 3,943.04 46.56
21 125 32,813 37,734.95 4,449.08 41.73
22 120 31,689 36,442.35 4,232.68 44.19
23 115 31,811 36,582.65 4,360.52 43.01
24 110 31,389 36,097.35 4,414.02 42.59
25 105 29,890 34,373.50 4,281.84 43.81
26 100 27,352 31,454.80 4,195.50 44.80
27 95 26,099 30,013.85 4,244.61 44.36
28 90 24,704 28,409.60 4,251.58 44.26
29 85 21,418 24,630.70 4,307.23 43.87
30 80 18,401 21,161.15 4,354.86 43.44
31 75 14,635 16,830.25 4,406.21 43.05
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Table 4.7 OK’s geological coal resource classified by bench level (Continue).

32 70 11,729 13,488.35 4,413.11 43.05
33 65 8,207 9,438.05 4,486.76 42.35
34 60 3,874 4,455.10 4,560.55 a1.72
35 55 3,148 3,620.20 4,606.17 41.25
36 50 1,972 2,267.80 4,639.68 40.95
37 a5 2,031 2,335.65 4,651.00 40.85
1.15
38 40 1,467 1,687.05 4,700.72 40.41
39 35 1,206 1,386.90 4,700.72 40.41
40 30 951 1,093.65 4,700.72 40.41
a1 25 589 677.35 4,175.25 45.6
a2 20 341 392.15 3,950.24 47.32
43 15 182 209.3 3,950.24 47.32
Total 1,897,856 2,182,534.40 4,018.12 45.89

PROJECT. NG EXPOLRATION

DATE: 2019/03/11

TIME: 13:04:11

SCALE: X = Imm : 12998.0 .. o ! ! L

Y = Imm : 12998.0 ... 5 5 = B
NAME. TONGVANG BLIACHON.. B B - B

Figure 4.14 Top view of 3D estiamted blocks model of CV.
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Figure 4.16 3D estimated blocks model of AC.
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Figure 4.17 3D estimated blocks model AC’s variance
4.4.4. Pit optimization and mineable reserve estimation

The pit optimization was carried out using the Lerch-Grossman algorithm in
MS3D software. The economic parameters, overall pit slope angle and coal prices
were used as conditioned data. The results have shown that there are nine optimum
pits produced for NG coal deposit. These nine optimum pits will be used for
mineable reserve calculation. It can be observed that the nine optimal pits consist of
narrow pit floor as shown in Figure 4.18, which resulted to a lower mineable reserve
computation. The top view and 2D cross sections of them are displayed in Figure
4.19 — 4.26. This could cause by the inclined coal seams which comprise of thin, and
many split seams. The mineable reserve calculated from nine optimal pits are 0.68
Mts with an average CV of 4,073.21 kcal/kg, and an average AC of 45.24 % yielding a
stripping ratio of 5:1. It can be seen that the mineable reserve generated by LG
algorithm presents only 31 % from the original geological resource. This could reduce
the mine life and impact to the mine feasibility study. The summary of mineable
reserve is presented in Table 4.8, classified by CV basis, and in Table 4.9 classified by

bench level.
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Figure 4.19 Top views and 2D cross section view of optimum pits No. 1, 2, 3, and 4.
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Top view of section line of pit 5

PROJECT: NG EXPOLRATION

DATE: 2019/03/20

TIME: 13:02:19

SCALE: X = 1lmm . 3664.18 ...
Y = Imm : 3664.18 ...

NAME: TONGVANG BLIACHONM..

Figure 4.20 Top views and 2D cross section view of optimum pits No. 5.
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Figure 4.21 Top views and 2D cross section view of optimum pits No. 6 and 7.
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Top view of section line of pit 9

Figure 4.22 Top views and 2D cross section view of optimum pits No. 9.

Table 4.8 OK’s mineable reserve from nine optimal pits classified by CV basis.

CV basis Average grade
Ve (m?) D, (T/m?) Q. (M

(kcal/kg) CV (kcalkg) | AC (%)
500 - 4000 244,354.00 1.15 281,007.10 2,705.56 58.95
4000 - 5000 | 207,899.00 1.15 239,083.85 4,607.75 39.51
5000 - 5500 11,394.00 1.15 13,103.10 5,431.70 31.16
>= 5500 130,948.00 1.15 150,590.20 5,658.43 29.96
Total 594,595.00 1.15 683,784.25 4,073.21 45.24
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4.4.5. Pits adjustment, mineable reserve and Grade Tonnage Curve

As a results from pit optimization, there are nine optimum pits generated by LG
algorithm with very narrow pit floor width. Thus, the minimum pit floor width of 23
meter adopted from the current LID’s coal mine was applied for pits design and
adjustment. The pit design and adjustment will allow the practical excavation and
transportation activities in the mining pit and the smooth overall operation in the
operating phase. Due to the proximity of the generated pits, thereby they were
combined to generate a bigger pit resulting a hisher mineable reserve and feasibility
of the mine development. After an adjustment, there were five pits generated from
the previously LG’s pits as shown in Figure 4.23. The bottom view of the five
adjusted pits are shown in Figure 4.24. The mineable computed from five adjusted
pits based on CV basis is shown in Table 4.10, and Table 4.11 - 4.15, based on
bench level.

The Grade-Tonnage Curve (GTC) is an important criterion for mine production
phase in terms of defining various grades. In this case, there are 21 grades ranging
from 500 kcal/kg to 5500 kcal/kg by 250 kcal/kg increasement were defined for

Grade-Tonnage Curve construction as presented in Figure 4.28.

Figure 4.23 Top views of 5 adjusted pits (Pits No. 1, 2, 3, 4 and 5).



Figure 4.24 Bottom views of 5 adjusted pits (Pits No. 1, 2, 3, 4 and 5).

Table 4.10 OK’s mineable reserve from the five adjusted pits based on the CV basis.

CV basis (kcal’kg) V. (m?) Q. (M CV (kcalkg) | AC (%)
500 - 4000 177,859.66 204,538.62 2,692.37 59.03
4000 - 5000 175,548.78 201,881.10 4,636.50 39.20
5000 - 5500 373.60 429.64 5,125.95 35.65

>= 5500 124,664.14 143,363.77 5,635.40 30.10
Total 478,446.18 550,213.13 4,174.44 44.20

The waste materials calculated from five adjusted pits consist of 9.3 Mts, yielding a
stripping ratio of 10.36:1. The 2D cross section of pits No. 1 - 5 are shown in Figure
4.25 - 4.31, respectively.
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Pit 2
A
- o
LT R
Pit 1
Ore block
PROJECT: NG EXPOLRATION
DATE: 2019/03/21
TIME: 23:27:03
SCALE: X = Imm . 4580.23 ...
Y = Imm . 4580.23 ...
NAME : TONGVANG BLTACHON..
Figure 4.25 2D cross section views of adjusted pits No. 1, 2 and 3.
pPit 4
B T g = 5
PROJECT: NG EXPOLRATION
DATE: 2018/03/21
TIME: 23.33.31
SCALE: X = Imm s 5725.29...
Y o= Imm . 5725.29...
NAME : TONGVANG BLIACHON..

Figure 4.26 2D cross section views of adjusted pit No. 4.
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Pit 5

C C'
=
~

-t
=
=

PROJECT: NG EXPOLRATION

DATE: 2019/03/21

TIME: 23:36:33

SCALE: X = Imm . 2831.36 ...
Y = lmm : 2931.35...

NAME TONGYANG BLIACHON..
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Figure 4.27 2D cross section view of adjusted pit No.5.
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Figure 4.28 OK’s Grade Tonnage Curve of NG coal deposit.
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4.5. Sequential Gaussian Simulation (SGS)
4.5.1. Gaussian data transformation and variogram modelling

According to SGS criterion, the composited data must be transformed into
Gaussian data values. The Gaussian data contains of zero mean and a unit variance
as of standard normal distribution. In this study, the composited data of CV and AC
were transformed into Gaussian data using MS3D software. The univariate analysis
was followed up to check the normality of the transformed data. As the results of
both CV and AC, the histogram plots of Gaussian transformed data display a normal
score distribution with a unit variance and zero mean as demonstrated in Figure 4.29
- 4.34.

After the Gaussian data was validated, the transformed data were used to
calculate experimental variogram and modeling. In this case, spherical model was
chosen for modeling CV and AC experimental variograms. The variogram models
have shown that both variables exhibit a very close range in comparison. CV’s
variogram model shows the range of 32 meters and AC’s variogram model gives the
range of 33 meters. The variogram models for CV and AC can be seen in Figure 4.31
- 4.36 and the summary of variogram model parameters of both CV and AC is shown

in Table 4.17.
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Figure 4.29 Normal scores distribution plot of CV.
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Figure 4.30 Normal scores distribution plot of AC.
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Figure 4.31 A vertical variogram model of CV.
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Figure 4.32 A vertical variogram model of AC.

Table 4.17 Variogram model results of normal transformed data for SGS simulation.

Nugget Partial | Range
Variable Model Variogram equation
effect (Cp) | Sill (Cy) (@)

i 3h 1 h
v 0.1195 | 08755 | 32037 | Spherical | y ()= co+c, Gt - 1 (%))

AC 0.1478 0.8506 | 33.933 | Spherical O<h<a

4.5.2. 3D block model and geological resources estimation.

The 3D block model initialized from the previous grid discretization step was
used for SGS of CV and AC. A total of 4,796 blocks were simulated for both CV and
AC. The inputs and outputs-controlled parameters of SGS are represented in Table
4.18. There are five realizations (maps) were produced for CV and AC separately. The
E-Type maps of each variable were produced by combining these realizations
together to calculate the mean and variance, sequentially. The CV’s five realization
maps and E-Type map are illustrated in Figure 4.33 — 4.38. The AC’s five realizations
and E-Type map are presented in Figure 4.40 — 4.45. The variance maps of CV and
AC are shown in Figure 4.389 and Figure 4.46.
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For SGS’s geological resource calculation, the same criteria as Ordinary Kriging was
applied and the coal density of 1.15 ton/m’ was used. SGS’s geological resource
contains 2.2 Mts (the same as OK’s geological resource) with an average CV of 3,769
kcal/kg and an average AC of 46.3 %. In comparison, SGS’s and Ok’s geological
resource are the same in terms of quantity, but they both have different CV’s and
AC’s statistics. This can be explained that the same number of blocks was computed
for both OK’s and SGS’s model, resulting in the same resource quantities. However,
the grade distributions are differentiated when comparing Ok’s and SGS’s model. The
SGS’s geological resource is presented in Table 4.19 by CV basis, and Table 4.20 by
bench level.

The statistical analysis of individual five realizations of CV and AC were carried
out for the comparison purpose as shown in Table 4.21 - 4.22. The CV’s five
realizations’ histogram plots are shown in Figure 4.47 - 451, and AC’s five

realizations’ histogram plots are shown in Figure 4.52 - 4.56.

Table 4.18 SGS’s input parameters and outputs of block grades simulation.

Input data Gaussian transformed data of CV and AC

Grid

discretization

20 meter X 20 meter X 5 meter

Variable | Nugget (Co) | Partial sill (C1) | Range (a) Model
Variogram
cv 0.1195 0.8755 32.037 Spherical
model
AC 0.1478 0.8506 33.933 Spherical
Searching
X=250 m, Y= 250 m, Z= 125 m
dimension
Conditional
Min =1, Max =7
data

CV = Realization 1, 2, 3, 4, 5 and E-Type Map

Output data

AC = Realization 1, 2, 3, 4, 5 and E-Type Map




Table 4.19 SGS’s geological resource estimation based on the CV basis.
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CV basis Average grade
V., (m?) D, (T/m3) Q. (M
(kcalZkg) CV (kcalkg) | AC (%)
500-4000 1,079,380 1,241,287.00 2,918.75 a7.71
4000-5000 512,570 589,455.50 4,482.11 44.89
1.15
5000-5500 158,963 182,807.45 5,231.36 44.67
>= 5500 146,943 168,984.45 5,945.32 42.47
Total 1,897,856 2,182,534.40 3,769.01 46.29

Table 4.20 SGS’s geological resource estimation by bench level.

Average grade
B‘::h BL:::[‘ Vo) | ity | Qe
. CV (kcal’kg) | AC (%)
1 225 550 632.50 4,689.97 54.68
2 220 16,281 18,723.15 3,603.08 45.27
3 215 49,381 56,788.15 3,731.71 46.58
q 210 82,507 94,883.05 3,478.12 46.63
5 205 120,015 138,017.25 3,313.69 48.29
6 200 136,644 157,140.60 3,339.11 48.72
7 195 140,623 161,716.45 3,322.61 48.53
8 190 130,702 1.15 150,307.30 3,363.52 47.85
9 185 114,189 131,317.35 3,516.86 a7.27
10 180 113,571 130,606.65 3,609.31 47.96
11 175 113,833 130,907.95 3,576.06 45.39
12 170 98,106 112,821.90 3,844.20 43,71
13 165 87,539 100,669.85 3,926.37 43.15
14 160 78,572 90,357.80 4,208.89 44.92
15 155 68,079 78,290.85 4,229.54 43.33
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Table 4.20 SGS’s geological resource estimation by bench level (Continue)

16 150 63,530 73,059.50 4,193.96 43.76
17 145 54,571 62,756.65 4,322.65 44.94
18 140 41,175 47,351.25 4,275.04 44.23
19 135 32,429 37,293.35 4,124.53 45.52
20 130 29,660 34,109.00 4,205.19 48.44
21 125 32,812 37,7133.80 4,071.02 47.69
22 120 31,690 36,443.50 4,102.26 47.21
23 115 31,811 36,582.65 3,988.38 45.52
24 110 31,389 36,097.35 4,168.96 47.32
25 105 29,890 34,373.50 4,009.59 45.18
26 100 27,351 31,453.65 4,144.03 45.85
27 95 26,100 30,015.00 4,283.44 45.71
28 90 24,704 28,409.60 4,216.12 44.96
29 85 21,418 24,630.70 4,343.73 45.22
30 80 18,401 2 21,161.15 4,455.19 46.03
31 75 14,636 16,831.40 4,327.77 43.43
32 70 11,730 13,489.50 4,147.25 41.49
33 65 8,207 9,438.05 4,477.39 43.46
34 60 3,874 4,455.10 4,297.74 40.28
35 55 3,148 3,620.20 4,508.37 42.48
36 50 1,972 2,267.80 4,238.78 40.13
37 a5 2,030 2,334.50 4,562.36 44.03
38 40 1,466 1,685.90 4,543.10 46.03
39 35 1,207 1,388.05 4,866.01 49.73
40 30 951 1,093.65 4,538.75 44.23
41 25 589 677.35 4,525.46 45.72
a2 20 341 392.15 4,542.95 46.13
43 15 182 209.3 6,090.51 69.65

Total 1,897,856 2,182,534.4 3,769.01 46.29
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Figure 4.33 Map of realization No. 1 of CV.
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Figure 4.34 Map of realization No. 2 of CV.
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Figure 4.35 Map of realization No. 3 of CV.
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Figure 4.36 Map of realization No. 4 of CV.
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Figure 4.37 Map of realization No. 5 of CV.
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Figure 4.38 Map of E-Type Map (Mean) of CV.
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Figure 4.39 Map of variance map of CV.
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Figure 4.40 Map of realization No. 1 of AC.
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Figure 4.42 Map of realization No. 3 of AC.
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Figure 4.44 Map of realization No. 5 of AC.
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As mentioned previously, the statistical analysis (histogram) of CV and AC of

each realization was carried out prior to E-Type map construction. Therefore, the

statistical parameters of both variables are comparable, which illustrated in Table

4.21 and Table 4.22.

Table 4.21 Comparison of statistical parameters of CV for 5 realizations.

Real Standard Coef. of
Min Max Mean Variance

No. deviation variation
Real 1 0.5 7,999.85 3,348.05 4,427,969 2,104.27 0.63
Real 2 1.45 7,998.62 3,633.40 4,343 488 2,084.10 0.57
Real 3 0.00 7,991.13 3,319.09 4,430,863 2,104.96 0.63
Real 4 0.14 7,945.12 3,724.54 4,292,047 2,071.73 0.56
Real 5 0.21 8,000.00 4,043.44 4,385,375 2,094.13 0.52

Table 4.22 Comparison of statistical parameters of AC for 5 realizations.

Standard | Coefficient of
Real No. Min Max Mean Variance
deviation variation
Real 1 0.01 99.98 46.498 475.30 21.80 0.47
Real 2 0.01 99.94 49.231 481.49 21.94 0.55
Real 3 0.00 99.99 46.957 491.41 2217 0.47
Real 4 0.00 99.98 50.066 496.05 22.27 0.44
Real 5 0.33 99.98 52.139 463.70 21.53 0.41
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4.5.3. SGS’s Pit optimization and mineable reserves estimation

In this process, the simulated CV averaged from 5 realization maps were used
in order to compute the block value for pit optimization. The results show that there
are nine optimal pits generated by LG algorithm as shown in Figure 4.57. The most
optimum pits consist of narrow pit floor width which caused by the thin coal seams
and high-quality variations. The LG pits consist of the lowest bench level at 170
meters above msl. The 2D cross section views of these nine optimal pits are shown
in Figures 4.58 — 4.62.

The mineable reserve calculated from optimal pits are 0.65 Mts with an
average CV of 3,511.9 kcal/kg, and an average AC of 45.4 %. The mineable reserve
presents only 30 % from the original geological resource. The reasons for a huge
decrease of mineable reserve are the coal qualities and thickness uncertainties.
SGS’s mineable reserves are very similar to OK’s mineable reserve, only one percent
difference. The SGS’s total waste materials from all optimum pits are 5.7 Mts, which
yielded the stripping ratio to 4.84:1. The SGS’s mineable reserve based on CV basis
and bench level can be seen in Table 4.23 and Table 4.24, respectively.

Optimum pits

Figure 4.57 SGS’s nine ultimate pits from pit optimization.
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Figure 4.58 2D cross section views of SGS’s pits No. 1, 2, 3, and 4.
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Figure 4.59 2D cross section views of SGS’s pit No. 5.
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Figure 4.61 2D cross section view of SGS’s pit No. 9.
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Figure 4.62 2D cross section of long section views of SGS’s pits.
Table 4.23 The SGS’s mineable reserves from multiple optimal pits by CV basis.
CV basis Average grade
V. (m?) | D, (T/m?) Q. (M
(kcal/kg) CV (kcalkg) | AC (%)
500-4000 375,927 1.15 432,316.05 2,913.51 45.52
4000-5000 145,539 1.15 167,369.85 4,445.64 43.48
5000-5500 32,536 1.15 37,416.40 5,203.45 47.50
>= 5500 14,602 1.15 16,792.30 5,841.09 56.15
Total 568,604 1.15 653,894.6 3,511.88 45.39
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4.5.4. SGS’s Pits adjustment, mineable reserve and Grade-Tonnage Curve

The nine optimum pits were designed and adjusted using the minimum pit
floor width of 23 meters similarly to Kriging approach. The pit design parameters are
illustrated in Table 3.5. In this study, the lowest bench level of SGS’s adjusted pits is
180 meters. The proximity pits were combined to create a larger pit allowing the
practical mining operation. There are finally five pits created in the pit design and
adjustment process. The top and bottom views of 5 adjusted pits are shown in Figure
4.63 - 4.64. The 2D cross section of SGS’s pits No. 1 — 5 are shown in Figure 4.65 -
4.67. The mineable reserve from five adjusted pits shown in Table 4.25 by CV basis.

The GTC construction using SGS’s mineable reserve was constructed by
defining 21 various grades similar to Ordinary Krigcing method. The various grades
begin at 500 kcal/kg to 5,500 kcal/ke with 250 kcal/kg increasement simultaneously
as shown in Figure 4.68. The mineable reserves of 5 pits are presented in Table 4.26

- 4.29 and the stripping ratio among those pits is 10.12: 1 (BCM: T).

Figure 4.63 Top view of SGS’s 5 adjusted pits generated by LG algorithm.
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Figure 4.65 2D cross section views of SGS’s pits No.1, 2 and 3.
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Table 4.25 SGS’s mineable reserves after pits adjustment based on the CV basis.

CV basis Average grade
V. (m?) Q. (M
(kcal/kg) CV (kcalzkg) AC (%)
500 - 4000 307,333.44 353,433.54 2,879.82 44.31
4000 - 5000 121,720.25 139,978.33 4,392.47 41.98
5000 - 5500 29,480.37 33,902.44 5,146.39 46.27
> = 5500 13,047.07 15,004.12 5,810.45 55.57
Total 471,581.13 542,318.43 3,493.02 44.14
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Figure 4.68 SGS’s Grade Tonnage Curve of NG coal deposit.
4.6. Composited data, OK’s and SGS’s results comparison

The both composited data and 3D block model results which are estimated by
OK and simulated by SGS provide a very similar data distribution as the histograms
presented in Figure 4.70 - 4.71 for CV and AC, respectively. This shows that the
estimated and simulated values honored the local samples data. The global mean
and other statistical parameters among composited data, OK’s results, and SGS’s

results, are compared to observe the difference of their characteristics.

Table 4.31 Statistical parameters comparison among composited data, OK’s results

and SGS’s results of CV.

Data source Mean (kcalZkg) Variance Coefficient of variation
Composite 3,793.49 3,252,824.04 0.48
OK’s results 3,733.84 1,583,134.6 0.34

Real No. 4 3,724.536 4,292,047 0.56
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Table 4.32 Statistical parameters comparison among composited data, OK’s results

and SGS’s results of AC.

Data source Mean (%) Variance Coefficient of variation
Composite 47.83 326.46 0.38
OK’s results 48.68 155.65 0.26
Real No. 2 49.23 481.49 0.55

The comparison reveals that OK estimates generates a smoother map than

SGS’s map. SGS gives a more reliable results while maintaining the variance close to

the composited data variance. The mean values of CV from OK’s and SGS’s results

are almost identical to the composite’s mean, the same can be said for AC. In

general, it can be concluded that SGS method provides better images of spatial

relationship of coal qualities. SGS also provides multiple of probable equal images of

coal qualities which are necessary for the risk assessment analysis. The GTC between

OK estimates and SGS are compared in Figure 4.69. It shows that OK estimates

produce a higher grade compared to SGS while the tonnages are quite similar.
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Figure 4.69 Comparing GTC between OK’s and SGS’s results.
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CHAPTER 5
CONCLUSIONS AND RECOMMENDATIONS

5.1. Conclusions

In summary, this research has been carried out with a few objectives which
include estimating the coal qualities such as CV and AC using geostatistical
estimation approach as linear (OK) and non-linear (SGS) methods. The geological coal
resource from estimated blocks have been computed using 3D block model method
and estimated grades. The mineable reserve was calculated through the optimal pits
and adjusted pits scheme. It was found that NG coal deposit exhibits complex
geological structure area causing a high variation for coal seam thickness and coal
qualities. The mean values for both CV and AC of composite data are 3,793 kcal/kg,
and 47.83 %, respectively.

It can be summarized that OK estimates produces a total geological resource
of 2.2 Mts with an average CV of 3,733 kcal/kg, and an average AC of 48.68 %. The LG
pit optimization produces nine optimum pits and generates mineable reserve of 0.68
Mts. There are finally five pits adjusted from the LG pits in order to be realistic for
mine operations. The mineable reserve after pits adjustment is 0.55 Mts with an
average CV of 4,174 kcal/kg and an average AC of 44.2 %. The total waste materials
generated from five adjusted pits are 9.32 Mts, yielding the stripping ratio of 10.36:1.

It can be summarized that SGS produces five realization maps for coal qualities
distribution of each CV and AC. SGS generates a geological resource of 2.2 Mts, the
same as OK approach, with an average CV of 3,769 kcal/kg and an average AC of
46.29 %. The SGS’s LG pit optimization produces nine optimum pits and generates
mineable reserve of 0.65 Mts. There are five pits adjusted finally to achieve a
practical mine operation which produce the mineable reserve of 0.54 Mts with an
average CV of 3,493 kcal/kg and an average AC of 44.14 %. The total waste material
from the five adjusted pits are 9.5 Mts, yielding the stripping ratio of 10.12:1.

In comparison between OK and SGS methods, they both produce a very similar

results throughout the statistical analysis of the findings. The both approaches have
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the same geological resource, but different average grades of CV and AC. The Ok
estimates generates more mineable reserve with higher grades included CV and AC
comparing to SGS method. These two approaches produce the very close stripping
ratio in comparison. OK generates a smoother map than SGS’s maps. However, SGS
provides a closer statistical map to the original data. The local variation is still
maintaining in certain extent, as can be observed by the overall variance of the
estimated block which is quite close to the original variance. OK approach can be
used for coal grades, geological resource and reserve estimation. The SGS method
could be considered as a suitable decision-making for a mine planning and mine

operation at NG coal deposit.
5.2. Recommendations

Due to the fact that this coal basin presents complex geological structures
resulted in coal seams thickness and coal grades variations, it is recommended that
the regular drilling grid program should be implemented in order to ensure the coal
seam continuities within the entire deposit. The grid dimension for future exploration
drill holes has to be within the range of 50 meter according to the range computed
from variogram model.

This study is just an attempt to interpolate the coal qualities at NG coal
deposit (Block 1) and generate a conceptual mine design scheme to achieve a
realistic mine operation. Therefore, this research could be taken into account to
evaluate the other blocks such as block Il and block Il with the full exploration area.
It is advised that as soon as the pit has been developed, more information regarding
to the coal seam thickness and coal grade distribution must be added to the
database. Therefore, the estimation model can then be upgraded, and will provide a

better coal grade distribution images for future mine plan and operation.
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