การสังเคราะห์และศึกษาสมบัติการจับของอนุพันธ์คาลิกซ์[4]เอรีนที่มีหมู่ไทโอยูเรีย

นางสาว กมลวรรณ ธรรมเจริญ

สถาบนวิทยบริการ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรดุษฎีบัณฑิต สาขาวิชาเคมี ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2546 ISBN 974-17-4615-6 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

SYNTHESIS AND BINDING STUDY OF THIOUREA CALIX[4]ARENE DERIVATIVES

Miss Gamolwan Tumcharern

สถาบนวทยบรการ

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2003 ISBN 974-17-4615-6

Thesis Title	Synthesis and Binding Study of Thiourea Calix[4]arene Derivatives
Ву	Miss Gamolwan Tumcharern
Field of Study	Chemistry
Thesis Advisor	Assistant Professor Thawatchai Tuntulani, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Doctor's Degree

...... Dean of Faculty of Science

(Professor Piamsak Menasveta, Ph.D)

THESIS COMMITTEE

(Professor Sophon Roengsumran, Ph.D.)

(Assistant Professor Thawatchai Tuntulani, Ph.D.)

.....Member

(Professor Apichart Suksamrarn, Ph.D.)

......Member

(Assistant Professor Mongkol Sukwattanasinitt, Ph.D.)

......Member

(Assistant Professor Orawon Chailapakul, Ph.D.)

.....Member

(Soamwadee Chaianansutcharit, Ph.D.)

กมลวรรณ ธรรมเจริญ: การสังเคราะห์และศึกษาสมบัติการจับของอนุพันธ์คาลิกซ์[4]เอริ่นที่มีหมู่ไทโอยูเรีย (SYNTHESIS AND BINDING STUDY OF THIOUREA CALIX[4]ARENE DERIVATIVES) อาจารย์ที่ปรึกษา: ผศ.คร. ธวัชชัย ตันฑูลานิ; 276 หน้า ISBN 974-17-4615-6

ได้สังเคราะห์เฮเทอร์โรไดทอพปิครีเซพเตอร์ 14 และ 15 ซึ่งประกอบด้วยส่วนประกอบหลักของคาลิกซ์[4]เอรีน และบิสไทโอยูเรียซึ่งเป็นตัวรับแอนไอออนที่ด้านโลเวอร์ริม ทั้งสองส่วนนี้เชื่อมกันโดยหมู่เอไมด์หรือเอสเทอร์ สารประกอบ 14 และ 15 มีวิธีการที่เหมาะสมในการสังเคราะห์ที่แตกต่างกัน เปอร์เซนต์ผลิตภัณฑ์โดยรวมของการสังเคราะห์ 14 เป็น 3.7% และการสังเคราะห์ 15 เป็น 15% โครงสร้างของแมคโครโมเลกุล 14 และ 15 ในสารละลายคลอโรฟอร์มหรือเอซิ โต่ไนไตรล์ปรากฏอยู่ในรูปของโคนคอนฟอร์เมชัน โครงสร้างทางเอ็กซ์เรย์บ่งชี้ว่าโครงสร้างของโมเลกุล 14 เป็นแบบโคลส แฟลททินโคนคอนฟอร์เมชัน งานวิจัยนี้ได้ทำการศึกษาสมบัติการจับของทั้งสองรีเซพเตอร์กับแคทไอออน แอนไอออน และ การทำงานร่วมกันของไอออนทั้งสองชนิดในสารละลายแอซิโตไนไตรล์ โดยใช้วิธีโปรตอนเอ็มอาร์ไตเตรชันซึ่งจะสามารถ คำนวณหาสัดส่วนในการเกิดสารประกอบเชิงซ้อน ความสามารถในการจับ และพลังงานอิสระกิบบส์ของการเกิดสาร ประกอบเชิงซ้อนได้

จากการศึกษาพบว่ารีเซพเตอร์ทั้งสองสามารถจับกับแอลคาไลแคทไอออนได้ โดยจับได้ดีที่สุดกับโซเดียม ถึงแม้ว่า สารประกอบ 14 และ 15 มีโครงสร้างที่คล้ายคลึงกัน สารประกอบ 15 เป็นโฮสต์ที่แสดงสมบัติการเลือกจับต่อแคทไอออน มากกว่าสารประกอบ 14 นอกจากนี้แมคโครโมเลกุล 14 แสดงการเลือกจับกับคาร์บอกซีเลตแอนไอออนที่มีโครงสร้างแบบ ตัวอักษรวายขณะที่โมเลกุล 15 แสดงการเลือกจับกับฟอสเฟตแอนไอออนที่มีโครงสร้างแบบเตตระฮีดรอล

นอกจากนี้ยังพบว่าการเลือกจับกับกรดอะมิโนที่อยู่ในรูปของแอนไอออนได้รับอิทธิพลจากไซด์เซนของกรดอะมิโน แต่ผลกระทบนี้มิได้เด่นขัดมากมาย อย่างไรก็ดีรีเซพเตอร์ 14 แสดงความสามารถในการเลือกจับกับเกลือคาร์บอกซีเลตของ ลิวซีนในขณะที่แมคโครโมเลกุล 15 เลือกจับกับเกลือคาร์บอกซีเลตของพีไนล์อลานีนและแอสพาราจีน จากการศึกษาพบ ว่า ค่าคงที่การเกิดสารประกอบเชิงซ้อนของเกลือคาร์บอกซีเลตของแอสพาติกแอซิดและแอสพาราจีน จากการศึกษาพบ ว่า ค่าคงที่การเกิดสารประกอบเชิงซ้อนของเกลือคาร์บอกซีเลตของแอสพาติกแอซิดและแอสพาราจีนมากกว่าเกลือคาร์บอก ซีเลตของกลูตามิกแอซิดและกลูตามีนตามลำดับ แสดงว่าทั้งสองอนุพันธ์สามารถเกิดสารประกอบเชิงซ้อนกับเกลือของกรด อะมิโนที่มีขนาดสั้นได้ดีกว่าเกลือของกรดอะมิโนขนาดยาว นอกจากนี้ลิแกนด์ 14 สามารถเกิดสารประกอบเชิงซ้อนกับได คาร์บอกซิเลตของอะมิโนแอซิด เช่น แอสพาติกแอซิดหรือกลูตามิกแอซิดได้ดีกว่าโมโนคาร์บอกซิเลตของอะมิโนแอซิด เช่น แอสพาราจีนและกลูตามีน ในทางตรงกันข้ามลิแกนด์ 15 สามารถเกิดสารประกอบเชิงซ้อนกับโมโนคาร์บอกซิเลตของอะมิ โนแอซิด เช่น แอสพาราจีนและกลูตามีนได้ดีกว่าไดคาร์บอกซิเลตของอะมิโนแอซิด เช่น แอสพาติกแอซิดหรือกลูตามิกแอซิด

ค่าคงที่ในการเกิดสารประกอบเชิงซ้อนระหว่าง 14·Na⁺ กับคาร์บอกซิเลตหรือฟอสเฟตแอนไอออนสามารถ คำนวณได้ในระบบของไดฟีไนล์ฟอสเฟตเพียงอย่างเดียวเนื่องจากผลของไอออนแพร์ และพบว่าผลที่ได้เป็นแบบเนกาทีฟ เอลาวสเตอร์ริสซึม การไม่แสดงผลการเลือกจับซึ่งเป็นผลมาจากผลกระทบของไอออนแพร์นี้ไม่เด่นชัดในกรณีของ 15·Na⁺ ซึ่งสามารถจับกับทั้งคาร์บอกซิเลตและฟอสเฟตแอนไอออนได้ โดยเลือกจับได้ดีกับฟอสเฟตแอนไอออนเหมือนกับกรณีของ โมเลกุล 15 ซึ่งยังไม่เกิดสารประกอบเชิงซ้อนกับโซเดียม โดย 15·Na⁺ แสดงการจับกับแอนไอออนได้ดีกว่าโมเลกุล 15 เนื่องจากผลของซินเนอจิสติก นอกจากนี้ยังพบว่า 15·Na⁺ สามารถเลือกจับกับไดไฮโดรเจนฟอสเฟตโดยมีค่าคงที่การเกิด สารประกอบเชิงซ้อนมากที่สุดและจับกับแอซิเตดโดยมีค่าโคออพเพอเรติวิตีสูงที่สุด นอกจากนี้ยังพบว่าการเกิดสารประกอบ เชิงซ้อนของโมเลกุล 14 กับโซเดียมมีผลทำให้การเลือกจับกับเกลือคาร์บอกซีเลตของแอสพาติกแอชิด เป็นแบบโพสิทีฟเอ ลาวสเตอร์ริสซึม ส่วนการเลือกจับกับเกลือคาร์บอกซีเลตของกลูตามิกแอชิดเป็นแบบเนกาทีฟเอลาวสเตอร์ริสซึม และทำให้ การเลือกจับของ 15·Na⁺ กับไดคาร์บอกซีเลตของแอสพาติกแอชิด หรือ กลูตามิกแอชิดลดลงอย่างมาก

ภาควิชาเคมี	ลายมือชื่อนิสิต
สาขาวิชาเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา
ปีการศึกษา2546	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

4172338223: MAJOR CHEMISTRY.

KEY WORDS: BIS-THIOUREA/ HETERODITOPIC RECEPTOR/ CATION/ ANION/ AMINO ACID/ ION-PAIR/ COOPERATIVE BINDING/ ALLOSTERISM/ ¹H-NMR TITRATION

GAMOLWAN TUMCHARERN: SYNTHESIS AND BINDING STUDY OF THIOUREA CALIX[4]ARENE DERIVATIVES. THESIS ADVISOR: ASSISTANT PROF. THAWATCHAI TUNTULANI, Ph.D. 276 pp. ISBN 974-17-4615-6

Two novel macrocyclic heteroditopic receptors 14 and 15 which were comprised of calixarene scaffolds and bis-thiourea binding sites bearing two amide or ester moieties at the lower rim were synthesized. The proper synthetic pathway for the preparation of calix[4]arene amide 14 (3.7%) and ester 15 (15%) were different. Both macromolecule 14 and its analogous 15 existed in cone conformation in either chloroform or acetonitrile solution. The x-ray structure of 14 indicated the closed flattened cone conformation. The cations, anions (both basic anions and amino acid anions) as well as cooperative binding properties of both receptors were investigated. ¹H-NMR titration was employed to measure the stoichiometry of the complexes, binding constants and Gibbs free energy in acetonitrile- d_3 .

Both receptors recognized alkali cations with highest selectivity towards sodium. Compared to 14, compound 15 was found to be a more efficiency and specific host for sodium. Despite their similar structures, macromolecule 14 can selectively bind Y-shaped carboxylate anions while analogous molecule 15 displayed a good selectivity with tetrahedral phosphate type anions.

Moreover, the binding affinity of both receptors towards TBA salt of amino acids was affected by changing the amino acid side chain. Bis-thiourea **14** and **15** did not show a significant difference in binding affinity among various amino acids. However, receptor **14** showed a moderate selectivity for TBA salt of leucine whereas ester macromolecule **15** formed a remarkably strong complex with carboxylate salts of phenylalanine and asparagine. Both bis-thiourea derivatives were more selective for TBA salts of shorter amino acids (aspartic acid and asparagine) than those of longer amino acids (glutamic acid and glutamine). Additionally, ligand **14** preferentially recognized dicarboxylate amino anions (aspartic acid and glutamic acid) over monocarboxylate amino anions (asparagine and glutamine) while the inverse trend was observed for ligand **15**.

The binding efficiency of sodium bound 14 towards common carboxylate or phosphate anion could be evaluated only with diphenylphosphate as a negative allosterism. Unlike bound 14, the sequestering by ion-pairing effect in the case of bound 15 was not predominantly observed. Both free and sodium bound 15 preferentially recognized phosphate type anions, in which the latter system was controlled by synergistic effects. The strongest binding efficiency was found in the case of dihydrogen phosphate whereas the highest cooperativity factor was discovered in the case of acetate. On the other hand, the presence of sodium cation in the amide cavity of 14 displayed the positive allosterism in the case of dicarboxylate salt of aspartic acid and negative allosterism in the case of dicarboxylate anion of glutamic acid. On the contrary, the binding affinity of the sodium bound 15 towards bis-TBA salts of aspartic acid and glutamic acid were decreased.

DepartmentChemistry	Student's signature
Field of studyChemistry	Advisor's signature
Academic year2003	Co-advisor's signature

ACKNOWLEDGEMENTS

I wish to express deepest appreciation to my thesis advisor and co-advisor, Assist. Prof. Thawatchai Tuntulani and Prof. Jeremy D. Kilburn, for their regularly close supervision, invaluable guidance, willing assistance, generous encouragement, sincere forgiveness and personal friendship throughout my postgraduate career. In addition, I would like to thank and pay my respect to Prof. Sophon Roengsumran, Prof. Apichart Suksamrarn, Assist. Prof. Mongkol Sukwattanasinitt, Assist. Prof. Orawon Chailapakul and Dr. Soamwadee Chaianansutcharit for their valuable suggestions and comments as committee members and thesis examiners. Furthermore, I would like to thank and express my gratitude to all staffs in Supramolecular Chemistry Research Unit especially Assoc. Prof. Vithaya Ruangpornvisuti, Assoc. Prof. Nuanphun Chantarasiri, Assist. Prof. Buncha Pulpoka and Dr. Boosayarat Tomapatanaget for their generous helps and useful suggestions.

Definitely, this thesis cannot be completed without kindness and helpful of many people. Firstly, I would like to thank the Scientific and Technological Research Equipment Center of Chulalongkorn University, particularly, Miss Amporn Aengpakornkaew for elemental analysis results. Absolutely, I am grateful to the University of Southampton to furnish many facilities for my research; and all staffs in the Department of Chemistry for their generous helps. I would like to thank Mrs. Joan Street and Mr. Neil Well for NMR spectra, Dr. John Langley and Ms Julie Herniman for Electrospray Ionization Mass Spectra as well as Dr. Simon Coles and Prof. Michael B. Hursthouse for an X-ray crystal structure. Finally, the Thailand Research Fund is gratefully acknowledged for the Royal Golden Jubilee grant during my Ph.D. degree.

I would like to express my highest gratitude to my family for their love, kindness, encouragement, and financial support throughout my life. Additionally, I would like to thank Mr. Thanawit Pothsree for his helps in NMR titration experiments and also his care and understanding. Finally, my appreciation would be expressed to all members in Tuntulani's and Kilburn's group as well as all my friends in Southampton in the past and present for their very nice friendship, sincere helps and encouragement throughout my doctoral course, especially when I was away from home.

CONTENTS

Page

ABSTRACT IN THAI	iv	
ABSTRACT IN ENGLISH		
ACKNOWLEDGEMENTS	vi	
CONTENTS	vii	
LIST OF TABLES	X	
LIST OF FIGURES	xii	
LIST OF SCHEMES	xvii	
LIST OF ABBREVIATIONS AND SIGNS	xviii	
CHAPTER I INTRODUCTION	1	
1.1 Supramolecular Chemistry	1	
1.2 Molecular Recognition	1	
1.3 Cation Recognition	3	
1.4 Anion Recognition	3	
1.5 Neutral Hydrogen Bonding Receptors for Anions	5	
1.6 Receptor for Amino Acids		
1.7 Ditopic Receptors	8	
1.8 Calixarene Building Block	9	
1.9 Thiourea-Based Receptor	10	
1.10 Determination of Binding Constant	10	
1.11 Literature Review	12	
1.12 Scope of This Thesis	17	
CHAPTER II EXPERIMENTAL SECTION	20	
2.1 Synthesis of Heteroditopic Receptors	20	
2.1.1 General Procedure	20	
2.1.1.1 Materials	20	
2.1.1.2 Instrumentation.	20	

CONTENTS (Continued)

viii

2.1.2.1 Synthesis of 5,11,17,23-Tetra-tert-butyl-25,27-N,N'-1,3-	
bis(methoxyl-carbamoylpropylthioureidomethyl)benzene-26,28-bis(3-	
oxabutyloxy)calix[4] arene, 14	21
2.1.2.2 Synthesis of 5,11,17,23-Tetra- <i>tert</i> -butyl-25,27- <i>N</i> , <i>N</i> '-1,3-	
bis(methoxyl-carbonylpropylthioureidomethyl)benzene-26,28-bis(3-	
oxabutyloxy)calix[4]arene, 15	31
2.2 Binding Studies	44
2.2.1 General Procedure	44
2.2.1.1 Materials	44
2.2.1.2 Instrumentation	45
2.2.2 Experimental Procedure	45
2.2.2.1 General Procedure for Determination of Binding Constants:	
¹ H-NMR Titration	45
2.2.2.1.1 Cation Complexation	45
2.2.2.1.2 Anion Complexation	47
2.2.2.1.3 Binding Enhancement of Anions in the Presence of Cations	48
2.2.2.2 General Procedure for Determination of Binding	
Stoichiometry: Conventional Job's Plots	50
CHAPTER III RESULTS AND DISCUSSION	52
3.1 Synthesis of Heteroditopic Receptors	52
3.1.1 Synthesis and Characterization of Receptor 14	52
3.1.2 Synthesis and Characterization of Receptor 15	60
3.2 Investigation of Binding Ability	66
3.2.1 Binding Ability of Receptors 14 and 15 towards Cations	68
3.2.2 Binding Ability of Receptors 14 and 15 towards Anions	78
3.2.3 Binding Abilities of Receptors 14 and 15 towards Amino Acids in	
Anionic Forms	101
3.2.4 Binding Enhancement of Receptors 14 and 15 towards Anions	
Using Sodium Cation	117

CONTENTS (Continued)

ľ	age
3.2.5 Binding Ability of Chiral 26 1	40
CHAPTER IV CONCLUSION 1	41
4.1 Conclusion 1	41
4.2 Suggestions for Future Work 1	43
REFERENCES 1	45
APPENDICES 1	58
APPENDIX A 1	59
APPENDIX B	

VITA.....

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

276

LIST OF TABLES

Table		Page
2.1	Amounts of alkali cations that used in cation complexation study with	
	compounds 14 and 15	45
2.2	Volume of the guest stock solution that added in each portion	46
2.3	Amounts of tetrabutylammonium salts that used in anion complexation	
	study with compound 14.	47
2.4	Amounts of tetrabutylammonium salts that used in anion complexation	
	study with compound 15.	48
2.5	Amounts of $NaClO_4$ and tetrabutylammonium salts that were used in	
	case of titration with compound 14.	49
2.6	Amounts of NaClO ₄ and tetrabutylammonium salts that were used in	
	case of titration with compound 15.	49
2.7	Amounts of NaClO ₄ and tetrabutylammonium salts that were used in	
	Job's plots experiment.	50
2.8	Volume of solution of hosts and anions in each NMR tube	51
3.1	Product yields of the conversion of the acid 19 to the acid chloride	
	under various conditions	56
3.2	Product yields of the conversion of the amine to the thiocyanate 21	
	under various conditions	56
3.3	Product yields of the conversion of the amine to the thiocyanate 25	
	under various conditions	63
3.4	Product yields of the conversion of the acid chloride to bis-thiourea	
	calix[4]arene ester 25 under various conditions	66
3.5	Donor numbers and acceptor numbers of organic solvents	67
3.6	The average association constants and Gibbs free energy upon the	
	formation of 14 cation and 15 cation complexes in acetonitrile- d_3	73
3.7	A comparison of the ionic radius (Å) of isoelectronic alkali cations	75
3.8	Geometry and basicity of a variation of anions	80
3.9	The average association constants and Gibbs free energy upon the	
	formation of 14 anion and 15 anion complexes	89
3.10	The average association constants and Gibbs free energy upon the	
	formation of 14 ·dicarboxylate ²⁻ and 15 ·dicarboxylate ²⁻	98

LIST OF TABLES (Continued)

Table		Page
3.11	Geometry and basicity of carboxylate anions	99
3.12	The average association constants and Gibbs free energy upon the	
	formation of 14 ·amino carboxylate and 15 ·amino carboxylate	
	complexes	112
3.13	Basicity of some amino acids in water at 25 °C	114
3.14	The average association constants and Gibbs free energy upon the	
	formation of 14 ·Na ⁺ ·anion and 15 ·Na ⁺ ·anion complexes	128
3.15	The average association constants and Gibbs free energy upon the	
	formation of $14 \cdot \text{Na}^+ \cdot \text{dicarboxylate}^{2-}$ and $15 \cdot \text{Na}^+ \cdot \text{dicarboxylate}^{2-}$	
	complexes	137

LIST OF FIGURES

Figure		Page
1.1	Supramolecular chemistry and molecular recognition represented by	
	"Lock and Key" principle	2
1.2	Formation of hydrogen bonding in carboxylate bound urea or thiourea	6
1.3	Twenty primary amino acids.	7
1.4	Two or four (thio)urea groups functionalized on <i>p-tert</i> -butylcalix[4]	
	arene	13
1.5	Calix[4]arene mono(thio)urea derivatives	14
1.6	Effect of the chain length towards the formation of solvent separate or	
	contact ion-pairing	15
1.7	Other contacted ion-pair recognitions by which the number of	
	hydrogen bond donor controlled the stability of	15
	complex	
1.8	Ion-pair recognition of tetramethylammonium sulfonate in a calixarene	
	derivative	16
1.9	Chiral macrobicyclic anion receptors containing two L-alanine units as	
	chiral center	17
1.10	The novel <i>p-tert</i> -butylcalix[4]arene derivatives containing <i>bis</i> -thiourea	
	moieties 14 and 15 that were designed and synthesized in this thesis	19
3.1	Crystal structure of 14 with the common numbering scheme	59
3.2	Examples of an open (a) and a closed (b) flattened cone conformation	
	of calix[4]arene derivatives	60
3.3	The complexation induced shifts of some proton signals on ¹ H-NMR	
	spectrum (a) $15 \cdot Li^+$ (b) $15 \cdot Na^+$ and (c) $15 \cdot K^+$	71
3.4	Job's plots of $-OCH_2COO$ - in 15·Li ⁺ , 15·Na ⁺ and 15·K ⁺ complexes	72
3.5	Titration curves of $-OCH_2COO$ - in $15 \cdot Li^+$, $15 \cdot Na^+$ and $15 \cdot K^+$	
	complexes	73
3.6	The selectivity of receptors 14 and 15 towards sodium over potassium	
	and lithium cation	74
3.7	From the intramolecular hydrogen bonding in amide 14 (a) or the exo-	
	annulus carbonyl (b) in ester 15 to the proposed structure of 14 cation	
	and 15 cation complexes (c)	77

Figure	Figures	
3.8	The structures of anions that used in this experiment	81
3.9	The complexation induced shifts of some proton signals on ¹ H-NMR	
	spectrum (a) $14 \cdot CH_3COO^-$ (b) $14 \cdot C_6H_5COO^-$ (c) $14 \cdot H_2PO_4^-$, (d)	
	$14 \cdot \mathrm{Ph}(\mathrm{H})\mathrm{POO}^{-}(\mathrm{e}) \ 14 \cdot (\mathrm{PhO})_{2}\mathrm{PO}_{2}^{-}$	83
3.10	The complexation induced shifts of some proton signals on ¹ H-NMR	
	spectrum (a) $15 \cdot CH_3COO^-$ (b) $15 \cdot C_6H_5COO^-$ (c) $15 \cdot H_2PO_4^-$, (d)	
	15 ·Ph(H)POO ⁻ (e) 15 ·(PhO) ₂ PO ₂ ⁻	84
3.11	Job's plots of -CH ₂ CH ₂ NHCSNH- in 14·CH ₃ COO ⁻ , 14·C ₆ H ₅ COO ⁻ ,	
	$14 \cdot H_2 PO_4^-$, $14 \cdot Ph(H) POO^-$ and $14 \cdot (PhO)_2 PO_2^-$ complexes	86
3.12	Job's plots of -NHCSNHCH ₂ Ar- in 15·CH ₃ COO ⁻ , 15·C ₆ H ₅ COO ⁻ , as	
	well as $15 \cdot H_2PO_4^-$ and $-CH_2CH_2NHCSNH$ in $15 \cdot Ph(H)POO^-$ as well	
	as $15 \cdot (PhO)_2 PO_2^-$ complexes	86
3.13	Titration curves of $-CH_2CH_2NHCSNH$ - in $14\cdot CH_3COO^-$,	
	14 ·C ₆ H ₅ COO ⁻ , 14 ·H ₂ PO ₄ ⁻ , 14 ·Ph(H)POO ⁻ and 14 ·(PhO) ₂ PO ₂ ⁻	87
	complexes	
3.14	Titration curves of $-NHCSNHCH_2Ar$ - in 15·CH ₃ COO ⁻ , 15·C ₆ H ₅ COO ⁻ ,	
	$15 \cdot H_2 PO_4^-$, $15 \cdot Ph(H) POO^-$ and $15 \cdot (PhO)_2 PO_2^-$ complexes	87
3.15	The selectivity of receptors 14 and 15 towards various anions	90
3.16	Simple acyclic thiourea and cyclophane cyclic thiourea receptors	91
3.17	Macrocyclic bis-urea calix[4]quinone	92
3.18	X-ray structure of $13b \cdot CH_3COO^-$ complex	93
3.19	X-ray structure of cyclic(thiourea) \cdot H ₂ PO ₄ ⁻	93
3.20	The proposed structures of 1:1 anion complexes (46-47)	93
3.21 0	The complexation induced shifts of some proton signals on ¹ H-NMR	
	spectrum (a) 14·succinate ²⁻ (b) 14·glutarate ²⁻	95
3.22	The complexation induced shifts of some proton signals on ¹ H-NMR	
	spectrum (a) $15 \cdot \text{succinate}^{2-}$ (b) $15 \cdot \text{glutarate}^{2-}$	95
3.23	Job's plots of -OCH ₂ CONH- in 14·succinate ²⁻ and 14·glutarate ²⁻	
	complexes	96

Figur	res
3.24	Job's plots of -NHCSNHCH2Ar- in 15-succinate2- and 15-glutarate2-
	complexes
3.25	Titration curves of -OCH ₂ CONH- in 14·succinate ²⁻ and 14·glutarate ²⁻
	complexes
3.26	Titration curves of -NHCSNHCH ₂ Ar- in 15·succinate ²⁻ and
	15 ·glutarate ²⁻ complexes.
3.27	The selectivity of receptors 14 and 15 towards dicarboxylate anions
	compared to the monocarboxylate complexes
3.28	Tris-guanidinium·tricarballate complex
3.29	The proposed structures of 1:1 dicarboxylate complexes (49)
3.30	The structures of all amino acid anions in this experiment
3.31	The complexation induced shifts of some proton signals on ¹ H-NMR
	spectrum (a) $14 \cdot Asp^{2-}$, (b) $14 \cdot Glu^{2-}$, (c) $14 \cdot Asn^{-}$, (d) $14 \cdot Gln^{-}$, (e) $14 \cdot Phe^{-1}$
	, (f) 14·Leu ⁻ , (g) 14·Thr- and (h) 14·Ser ⁻
3.32	The complexation induced shifts of some proton signals on ¹ H-NMR
	spectrum (a) $15 \cdot \text{Asp}^{2-}$, (b) $15 \cdot \text{Glu}^{2-}$, (c) $15 \cdot \text{Asn}^{-}$, (d) $15 \cdot \text{Gln}^{-}$ (e) $15 \cdot \text{Phe}^{-}$,
	(f) 15 ·Leu ⁻ , (g) 15 ·Thr- and (h) 15 ·Ser ⁻
3.33	Job's plots of -CH ₂ CH ₂ NHCSNHCH ₂ Ar- in 14·Asp ²⁻ , 14·Glu ²⁻ ,
	14 Asn ⁻ , 14 Gln ⁻ , 14 Phe ⁻ , 14 Leu ⁻ , 14 Thr ⁻ , and 14 Ser ⁻ complexes
3.34	Job's plots of -CH ₂ CH ₂ NHCSNHCH ₂ Ar- in 15·Asp ²⁻ , 15·Glu ²⁻ ,
	15 Asn ⁻ , 15 Gln ⁻ , 15 Phe ⁻ , 15 Leu ⁻ , 15 Thr ⁻ , and 15 Ser ⁻ complexes
3.35	Titration curves of -CH ₂ CH ₂ NHCSNHCH ₂ Ar- in 14·Asp ²⁻ , 14·Glu ²⁻ ,
	14 Asn ⁻ , 14 Gln ⁻ , 14 Phe ⁻ , 14 Leu ⁻ , 14 Thr ⁻ , and 14 Ser ⁻ complexes
3.36	Titration curves of -CH ₂ CH ₂ NHCSNHCH ₂ Ar- in 15·Asp ²⁻ , 15·Glu ²⁻ ,
	15 Asn ⁻ , 15 Gln ⁻ , 15 Phe ⁻ , 15 Leu ⁻ , 15 Thr ⁻ , and 15 Ser ⁻ complexes
3.37	The selectivity of receptors 14 and 15 towards various amino mono-
	and dicarboxylate anions
3.38	Intramolecular hydrogen bonding of carboxylate anion of serine
3.39	The selectivity of receptors 14 and 15 towards monocarboxylate,
	unsubstituted dicarboxylate and substituted dicarboxylate anions

Figures P		Page
3.40	The proposed structures of 1:1 amino acid anion complexes (58)	117
3.41	The complexation induced shifts of some proton signals on ¹ H-NMR	
	spectrum (a) $14 \cdot Na^{+} \cdot CH_{3}COO^{-}$ (b) $14 \cdot Na^{+} \cdot C_{6}H_{5}COO^{-}$ (c)	
	$14 \cdot \text{Na}^+ \cdot \text{H}_2\text{PO}_4^-$, (d) $14 \cdot \text{Na}^+ \cdot \text{Ph}(\text{H})\text{POO}^-$ and (e) $14 \cdot \text{Na}^+ \cdot (\text{PhO})_2\text{PO}_2^-$	120
3.42	The complexation induced shifts of some proton signals on ¹ H-NMR	
	spectra (a) $15 \cdot \text{Na}^+ \cdot \text{CH}_3\text{COO}^-$ (b) $15 \cdot \text{Na}^+ \cdot \text{C}_6\text{H}_5\text{COO}^-$ (c) $15 \cdot \text{Na}^+ \cdot \text{H}_2\text{PO}_4^-$,	
	(d) $15 \cdot \text{Na}^+ \cdot \text{Ph}(\text{H})\text{POO}^-$ and (e) $15 \cdot \text{Na}^+ \cdot (\text{PhO})_2 \text{PO}_2^-$	121
3.43	Job's plots of $-NHCSNHCH_2Ar$ - in $14\cdot Na^+ \cdot CH_3COO^-$,	
	14 ·Na ⁺ ·C ₆ H ₅ COO ⁻ , 14 ·Na ⁺ ·Ph(H)POO ⁻ and 14 ·Na ⁺ ·(PhO) ₂ PO ₂ ⁻	
	complexes	122
3.44	Job's plots of $15 \cdot Na^+ \cdot CH_3COO^-$, $15 \cdot Na^+ \cdot C_6H_5COO^-$, $15 \cdot Na^+ \cdot H_2PO_4^-$,	
	$15 \cdot \text{Na}^+ \cdot \text{Ph}(\text{H})\text{POO}^-$ and $15 \cdot \text{Na}^+ \cdot (\text{PhO})_2 \text{PO}_2^-$ complexes	123
3.45	Titration curves of $-CH_2CH_2NHCSNH$ - signals in 14 ·Na ⁺ ·CH ₃ COO ⁻ ,	
	14·Na ⁺ ·C ₆ H ₅ COO ⁻ , 14·Na ⁺ ·Ph(H)POO ⁻ and 14·Na ⁺ ·(PhO) ₂ PO ₂ ⁻	
	complexes	123
3.46	Titration curves of $-NHCSNHCH_2Ar$ - signals in $15 \cdot Na^+ \cdot CH_3COO^-$,	
	$15 \cdot \text{Na}^+ \cdot \text{C}_6\text{H}_5\text{COO}^-$, $15 \cdot \text{Na}^+ \cdot \text{H}_2\text{PO}_4^-$, $15 \cdot \text{Na}^+ \cdot \text{Ph}(\text{H})\text{POO}^-$ and	
	$15 \cdot \text{Na}^+ \cdot (\text{PhO})_2 \text{PO}_2^- \text{complexes}$	124
3.47	Titration curves of $-CH_2CH_2NHCSNHCH_2Ar$ - in the absence and in	
	the presence of sodium cation of (a) $14 \cdot CH_3COO^-$ and (b)	
a 40	$14 \cdot C_6 H_5 COO^2$ complexes.	125
3.48	The selectivity of sodium bound 14 and 15 towards various anions	129
3.49	The cooperativity factors of sodium bound to receptor 14 or 15 in the	120
2 50	The prepaged structures of action enhancement action complexes (64	130
3.50	(04-	122
2 5 1	The complexation induced shifts of some proton signals on ¹ H NMP	152
5.51	spectrum (a) $14 \cdot Na^+ \cdot A \sin^{2-}$ and (b) $14 \cdot Na^+ \cdot Glu^{2-}$	122
3 52	The complexation induced shifts of some proton signals on ¹ H-NMR	155
0.02	spectrum (a) $15 \cdot \text{Na}^+ \cdot \text{Asp}^{2-}$ and (b) $15 \cdot \text{Na}^+ \cdot \text{Glu}^{2-}$.	134

Figures		Page
3.53	Job's plots of $-CH_2CH_2NHCSNHCH_2Ar$ - in (a) $14 \cdot Na^+ \cdot Asp^{2-}$ and (b)	
	14 ·Na ⁺ ·Glu ²⁻ complexes	135
3.54	Job's plots of -CH ₂ CH ₂ NHCSNHCH ₂ Ar- signal in (a) 15·Na ⁺ ·Asp ²⁻	
	and (b) 15 ·Na ⁺ ·Glu ²⁻ complexes	135
3.55	Titration curves of $-CH_2CH_2NHCSNHCH_2Ar$ - in (a) 14·Na ⁺ ·Asp ²⁻ and	
	(b) 14 ·Na ⁺ ·Glu ²⁻ complexes	136
3.56	Titration curves of -CH ₂ CH ₂ NHCSNHCH ₂ Ar- signal in (a)	
	$15 \cdot \text{Na}^+ \cdot \text{Asp}^{2-}$ and (b) $15 \cdot \text{Na}^+ \cdot \text{Glu}^{2-}$ complexes	136
3.57	The selectivity of receptors 14 and 15 towards various carboxylate	
	anions	137
3.58	The cooperativity factors of sodium bound to receptor 14 or 15 in the	
	presence of carboxylate anions	138
3.59	The proposed structures of 1:1 sodium amino acid anion complexes	
	(66)	139

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

LIST OF SCHEMES

Scheme		Page
3.1	Synthetic scheme for calix[4]arene amide receptor 14	53
3.2	Synthetic scheme of 5,11,17,23-tetra-tert-butyl-26,28-dihydroxy-	
	25,27-bis(2-isothiocyanoethoxy)calix[4]arene from its amine analogue.	57
3.3	Proposed by-product during the preparation of the thiocyanate 21	57
3.4	Synthetic scheme for calix[4]arene ester receptor 15	61
3.5	The unexpected reaction during preparation of thiocyanate 25	63
3.6	Another synthetic route to achieve ester derivative receptor 15	65
3.7	Lewis theory of acids and bases	75
3.8	The interconversion between cone and pinched cone conformation of	
	calix[4]arene	78
3.9	The effects of cation to the binding curves	126
3.10	Equilibrium involved in ion-pair binding	127

LIST OF ABBREVIATIONS AND SIGNS

AN	Acceptor Number (Acceptivity)
ACN	Acetonitrile
ADP	Adenosine Diphosphate
ATP	Adenosine Triphosphate
α	Alpha
Å	Angstrom
Asn	Asparagine
Asp	Aspartic Acid
¹³ C-NMR	Carbon-13 Nuclear Magnetic Resonance
CPA	Carboxypeptidase A
δ	Chemical Shift
CIS	Complexation Induced Shift
J	Coupling Constant
°C	Degree Celcius
DNA	Deoxyribonucleic Acid
DCM	Dichloromethane
DMAP	4-(Dimethylamino)pyridine
DMF	Dimethylformamide
μ	Dipole Moment
DEPT	Distortionless Enhancement of NMR Signals by Polarization Transfer
DN	Donor Number (Donicity)
d	Doublet
ddd	Doublet of Doublet
dt	Doublet of Triplet
EPA	Electron Pair Acceptor
EPD	Electron Pair Donor
ESI-MS	Electrospray Ionization Mass Spectrometry
FT-IR	Fourier Transform Infrared Spectroscopy
ΔG	Gibbs Free Energy
Glu	Glutamic Acid
Gln	Glutamine
g	Gram

LIST OF ABBREVIATIONS AND SIGNS (Continued)

HSAB	Hard-Soft Acid-Base
Hz	Hertz
HBD	Hydrogen Bond Donor
ITC	Isothermal Calorimetry
Leu	Leucine
LRMS	Low Resolution Mass Spectroscopy
m/z	Mass per Charge Ratio
MHz	Megahertz
μL	Microliter
mg	Milligram
mL	Milliliter
mmol	Millimol
Х	Mole Fraction
m	Multiplet
NMR	Nuclear Magnetic Resonance
β_i	Overall Association Constant
ppm	Part per Million
M^{-1}	Per Molar
Phe	Phenylalanine
R	Gas Constant
¹ H-NMR	Proton-1 Nuclear Magnetic Resonance
q	Quartet
quint	Quintet
RNA	Ribonucleic Acid
RT	Room Temperature
Ser	Serine
s-curve	Sigmoidal Curve
S	Singlet
K_i	Stepwise Association Constant
Т	Temperature
TBA	Tetrabutylammonium
THF	Tetrahydrofuran

LIST OF ABBREVIATIONS AND SIGNS (Continued)

TLC	Thin Layer Chromatography
Thr	Threonine
TEA	Triethylamine
TFA	Trifluoroacetic Acid
t	Triplet
2D-NMR	Two-Dimentional Nuclear Magnetic Resonance
UV-VIS	Ultraviolet-Visible
VPO	Vapor Pressure Osmometry

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I

INTRODUCTION

1.1 Supramolecular Chemistry

Research in the area of supramolecular chemistry which may be defined as "*chemistry beyond the molecule*"^[1] is now an interesting branch of chemistry. These molecular systems result from the association of two or more chemical species held together by intermolecular forces, not by covalent bonds. Supramolecular chemistry is thermodynamically less stable, kinetically more labile and dynamically more flexible than ordinary molecules.

Supramolecular chemistry may be divided into two broad categories, supermolecules and supramolecular assemblies. Supermolecules come from intermolecular association of a few components. Supramolecular assemblies are polymolecular entities that result from the spontaneous association of a large number of components into a specific phase having more or less well-defined microscopic organization and microscopic characteristic. The development of supramolecular chemistry has led to a growing interest in the design and synthesis of macrocyclic molecules incorporating intermolecular cavities.

1.2 Molecular Recognition

Molecular recognition is a critical component of intermolecular processes, including enzyme-substrate recognition, receptor-ligand binding, molecular self-assembly, and chemical sensing. The design of new hosts and/or guests is essential for providing insight into the factors governing molecular recognition and for preparing new materials with desirable properties.

Basically, molecular recognition is defined by energy and information involved in the binding and selection of substrate(s) by a given receptor molecule containing a specific function. Sometimes, this idea is described as "*Lock and Key*" principle (Figure 1.1).^[2] The arrangement of binding sites in the host (lock) is complementary to the guest (key) both sterically (structurally) and electronically.

Figure 1.1. Supramolecular chemistry and molecular recognition represented by *"Lock and Key"* principle.^[2]

Molecular receptors are defined as organic structures held by covalent bonds, that are able to bind ionic or molecular substrates (or both) by means of various intermolecular interactions such as electrostatic interaction, ion-dipole interaction, dipole-dipole interaction, hydrogen bonding,^[3] π - π stacking interaction, cation- π interaction, hydrophobic effects and close packing in the solid state, leading to an assembly of two or more species. Design of receptor molecules depends on numerous types of complementary between host and guest such as geometry, size and electron cloud and interactions. Moreover, the large contact area and multiple interaction sites which lead to the strong overall bindings are also affected.^[1] Molecular recognition can be divided into neutral substrate recognition,^[4] cation recognition,^[5-6] and anion recognition.^[7-10]

Supramolecular chemists hope to probe fundamental aspects of molecular recognition through design and synthesis of completely artificial receptors, followed by examination of the structures and stabilities of artificial receptors and their complexes. Applications of these kinds of synthetic receptors can be used in a number of areas, such as medical analysis, detection of toxic compounds in environments, development of biosensors, separation of mixtures of compounds, including separation of enantiomers.

1.3 Cation Recognition

Both alkali and transition metal cations play important roles across many fields such as industry,^[11] environments,^[12] biology^[13] and chemical therapy.^[14] This thesis involves the chemistry of alkali cation recognition; therefore, solely the role of alkali cations will be briefly mentioned.

In living systems, the energy source called adenosine triphosphate (ATP) is strictly balanced its 4-ionic charge by alkali and alkaline earth metal cations. In addition, the Na⁺/K⁺-ATPase enzyme is an example of a transmembrane enzyme; i.e. an enzyme that exists in the phospholipid membrane of a biological cell, to transport the alkali metal cation; Na⁺ and K⁺, against the concentration gradient from one side of the cell membrane to the other.^[15] On the other hand, there is an increased interest in the development of optical sensors for the determination of clinically important metal ions such as sodium, potassium and lithium.

Cation complexation of chemistry has effectively given birth to the whole field of molecular recognition since the late 1960s. There are several kinds of cation based receptors such as podands, crown ethers, lariat crown ethers, cryptands, spherands^[16] and calixarenes.^[17] A principle in the design of artificial receptors is based on using the proper binding sites and the proper cavity size. The chemistry of them mainly depends on the hard-soft acid-base concept.^[18] Ion-ion interactions, ion-dipole interactions and cation- π interactions play important roles in this kind of chemistry.

1.4 Anion Recognition

The design of anion receptors is particularly challenging and this area of supramolecular chemistry has become a well established in the last 2 decades. There are a number of reasons for a sudden growth in this new area of coordination chemistry. Anions such as deoxyribonucleic acid (DNA) and adenosine triphosphate (ATP) are ubiquitous throughout biological systems. DNA, a polyanion containing phosphate esters along its ribose backbone, carries genetic information by transcription and translation processes.^[19] The free energy of life process (ATP), made up of adenosine diphosphate (ADP) and dihydrogen phosphate (H₂PO₄), is itself an anion bound by enzymes in order to perform many metabolic functions.

Moreover, the majority of enzyme is carboxypeptidase A (CPA), an enzyme that coordinates to the C-terminal carboxylate group of polypeptides by the formation of an argenine-aspartate salt-bridge and catalyses the hydrolysis of this residue. The salt-bridge motif is also observed in zinc finger DNA complexes and RNA (ribonucleic acid) stem loop-protein interactions. In addition, dicarboxylate anions are essential components of numerous metabolic processes in a living cell such as Krebs cycle (citric acid cycle).^[20] Dicarboxylate species such as succinate, fumarate, oxaloacetate, α -ketoglutarate and malate are important intermediates for generating ATP in this cycle.^[20]

Chemically, anions serve as nucleophiles, bases, redox mediators and phase-transfer catalysts.^[21] The chemical reactivity of some molecules can alter after coordinating to anion(s) leading to ability to separate hazardous anions or stabilization of unstable anionic species.

Anions also involve in pollution problems. In particular, nitrate^[22] and phosphate that use in fertilizers on agricultural land as well as the phosphate anion that use in detergents and insecticides^[23] often pollute natural water sources.

Medically, anions are of great importance in many disease pathways. Cystic fibrosis is caused by misregulation of chloride channels.^[24] There is a real need for selective halide detection as established methods of chloride analysis are unsuitable for biological application. Cancer is caused by the uncontrolled replication of polyanioic DNA. Anion-binding proteins have also been implicated in the mechanism of Alzheimer's disease.^[25]

Anion recognition chemistry actually grew from its beginnings in the same period as cation and neutral molecule recognition. Non-covalent interactions that used in anion-host binding can be actually categorized into 4 types; hydrogenbondings, electrostatic interactions, metal or Lewis acid center (dipole-dipole interactions) or hydrophobic effects.^[26] In comparison to cation and neutral molecule coordination chemistry, design and synthesis of anion receptors are a recent development due to a number of reasons. Firstly, the ordinary interaction is electrostatic forces. Most anion sizes are greater than isoelectronic cations, thus their charge to radius ratio are lower. This means that electrostatic binding interaction is less effective in the case of larger anions. Secondly, some anions such as carboxylates, phosphates and sulphates exist in narrow pH window. Thus, the stability and the basicity of anions should be considered for a well-match between hosts and anions. Finally, there are wide varieties of geometry and coordination number. Therefore, a higher degree of design may be required to make receptors complementary to their anionic guests. A well-designed host molecule would gain both high selective and great sensitive binding.

1.5 Neutral Hydrogen Bonding Receptors for Anions

The design and synthesis of neutral anion receptors have been a subject of current interest in host-guest chemistry due to their possible applications to ion sensors such as ion-selective electrodes and optodes. The synthetic anion receptors can be actually divided into two classes: positively charged and uncharged receptors.^[27] Many receptors for anion substrates reported in the first period are charged molecules for example polyammonium receptors, guanidinium based receptors, cobalticinium and ferrocinium based receptors. The particularly important anion receptor is neutral hydrogen bonding receptors, which show higher selectivity, although they are able to operate only in apolar non-competing media. Furthermore, the neutral receptor must compete with solution ion-pairing of guest leading to the lower sensitivity.

In nature, neutral anion binding proteins are known to bind anions only *via* hydrogen bonding interactions^[28-29] which are the most important of all noncovalent bond types in biochemistry. Hydrogen bonds play an essential role in the formation of biological macromolecules such as the globular proteins and the DNA double helix and in the mechanism of enzyme-substrate recognition. Additionally, phosphate or sulfate binding proteins are naturally known examples that bind anions strongly and selectively *via* neutral proton-donor groups using the main chain protein *NH*-groups. Therefore, the formation of hydrogen bonds as a driving force of the molecular recognition has also been widely used in artificial receptors.^[30]

Hydrogen bonds are in general significantly weaker than electrostatic interactions when the corresponding carboxylate anions are involved. The former interaction may become a dominating force in the association process if several hydrogen bond donor and acceptor sites act concertedly; for instance, the carboxylate binding pocket of the vancomycin group antibiotics in nature.^[31-32] This implies that

hydrogen bonding is one of the most important recognition elements in anion sensing. Thus, the design and synthesis of hydrogen bonding receptors for biologically and/or chemically important anions are of current interest.^[33-34]

The relatively strong hydrogen bonding of urea and thiourea groups has been used in the development of neutral anion receptors, because the hydrogen bond is directional in character, and correct orientation of the hydrogen bond donors can provide selective anion recognition. Urea and thiourea are particularly good hydrogen bond donors and are excellent receptors for anions such as carboxylate *via* the formation of two hydrogen bonds (Figure 1.2).

Carboxylate-Urea

Carboxylate-Thiourea

Figure 1.2. Formation of hydrogen bonding in carboxylate bound urea or thiourea.

In general, thiourea derivatives show stronger anion binding ability due to stronger hydrogen-bond donor capability than that of the corresponding ureas because of the higher acidity of the former.^[35] The higher acidity of the thiourea hydrogens dominates the weaker hydrogen bond accepting ability of sulfur as compare to oxygen, unlikely to interfere in conformational or complexing studies involving other strong acceptor centers.^[36-37]

1.6 Receptor for Amino Acids

Amino alcohol moieties are found in many natural products (amino polyols, amino sugars, amino acids, etc.) of biochemical and pharmacological interest.^[38] In addition, the protein amino acids are the basic building blocks for all peptide chains (amino acid polymers and oligomers) and protein chains (a protein is a large polypeptide), which make up the structure of an enormous number of biological molecules. The chains are held together by peptide links (amino bonds), formed by intermolecular condensation reactions between the acid and amine parts of amino acids. Amino acids are chiral molecules, and in the living systems the range of proteins found is limited to be L- α -amino acids. In bacteria and fungi, a much wider

range of amino acids is found. L-amino acids are easy to synthesize or to separate from some bacteria, but the D-enantiomers must be synthesized by the different route. The precise selectivity of an effective receptor towards a kind of amino acid would be ideally to serve as an indicative of some diseases in biological system. Additionally, a particular challenge has been the enantiospecific binding of chiral species such as protonated amino acids. The twenty primary protein constitutes are shown in Figure 1.3. All are α -amino acids except proline which is a cyclic α -amino acid.

Figure 1.3. Twenty primary amino acids.

As a consequence of the rapid development of supramolecular chemistry, supramolecular technology has allowed the development of probes for amino acid. Artificial receptors can be tailored to bind small, biologically relevant molecules, such as models of natural receptors, carriers or enzymes.^[39] Targeting guest molecules of biological importance also invite opportunities for practical applications of the hosts, e.g. as chemosensors or chemotherapeutic agents. The intermolecular interactions involved in this processes are of direct relevance to many biological events and may also lead to new biosensors, therapeutics, transport systems and separation of peptide mixtures.

1.7 Ditopic Receptors

The design of receptors for cations, and more recently anions, is a continuing challenge to supramolecular chemists. However, as stimulated by the needs of new selective extraction and transportation reagents for metal salt species in environmental and biological systems, ditopic receptors have been developed. As its name, a ditopic receptor contains two binding cavities. These two cavities are probably for either the same or different ions. In the case that ditopic receptors are designed for two alkali cations,^[40] two transition metal cations,^[41-43] or one organic salt with the same ends,^[44-46] they are defined as *"homoditopic receptors"*. On the other hand, the receptors for alkaline earth cation-transition metal cation,^[47] alkali cation-anion,^[48-50] transition metal cationanion^[51-52] or organic ion-pairs^[53] are categorized as *"heteroditopic receptors"*.

The simultaneous complexation of cationic and anionic guest species by heteroditopic multisite receptors named *"ion-pair recognition"* is a new field of supramolecular chemistry which is the interface of cation and anion coordination.^[55] The basic approach to develop receptors that recognize the salt as an associated ion-pair is to reduce the interference of anions during cation binding study or *vice versa*. These heteroditopic receptors consist of two recognition moieties that are either directly linked to allow a highly efficient communication or connected by a flexible spacer to ensure an optimal approaching of the ion-pair. Therefore, these bifunctional receptors can be designed to exhibit novel co-operative or allosteric behavior, which

one charged guest can enhance binding ability of another through hydrogen bonding, hydrophobic functionality, electrostatic force and conformational effects.^[56-57]

In biological systems, the selective recognition of oxoanion substrates such as phosphate and sulfate often take place by a combination of hygrogen bonds and electrostatic interactions.^[58-61] The effective receptors have been expected to be the artificial carriers and channels for the symport (co-transport) of inorganic and organic salts across lipophilic membranes and to the selective extraction and transportation reagents for ion-pair species of environmental importance and for zwitterion recognition. The subsequent coordination of the pairing anion has been demonstrated by a number of ditopic crown ethers functionalised boron, uranyl, polyammonium, amide, urea and amide-urea calix[4]arene based receptor systems.^[55]

1.8 Calixarene Building Block

Calix[*n*]arenes, a family of synthetic macrocyclic receptors consisting of cyclic arrays of *n* phenol moieties linked by methylene groups,^[62] were chosen as the putative hosts. This cyclic oligomer made up of phenols and formaldehydes provides new fascinating platforms.^[63] The most famous calixarene is calix[4]arene because it is easiest to prepare. Calix[4]arene can adopt 4 conformations: cone, partial cone, 1,2-alternate and 1,3-alternate. Cone conformation is the most stable due to an array of hydrogen bonding between the phenolic-*OH* groups at the narrow rim of the macrocycle. This conformation is particular useful because of its "bucket" shape leading to the rigidify cavity.

This cavity-containing molecule posses hydroxyl groups on the lower rim and potentially free *para* position on the upper rim. The hydroxyl group provides convenient points for attachment of various moieties, as numerous other researchers have been demonstrated.^[64-65] Calixarene with the appropriate appended groups are good candidates for probes because they have been shown to be highly specific ligands. In addition, their potential applications as sensing agents have received increasing interest. Indeed, the most significant feature of chemistry of these rigid macrocyclic molecules is their ability to bind selectively alkali, alkaline earth, transition metal cations^[63] and a wide variety of anions inside the cavity.^[66]

Their potential application in the treatment of metal rich nuclear wastes has been investigated worldwide.^[67-68] Calixarene-based receptors were found to form complexes with cationic or anionic species and also a variety of organic ion or organic compounds.^[69] Furthermore, calixarene derivatives can be used as more sophisticated molecules, for example, they are used as chemical sensors,^[70] enzyme mimetics,^[71] allosteric molecules^[72] and peptide libraries.^[73]

1.9 Thiourea-Based Receptor

In recent years, a number of molecules possessing thiourea functional groups have been designed as neutral receptors for various anions. Molecular recognition is achieved by establishing multiple hydrogen bonds with the relatively acidic *NH*-protons of these groups which are located in a well-defined position and direction with complementary acceptor groups in a specific and predictable manner. The potential for establishing highly ordered hydrogen bond networks with these functional groups is also used to construct supramolecular structures both in solution^[74-75] and in solid state.^[76-77] Several receptors contain thiourea functional groups with suitable spacers such as benzene and cyclohexene are particularly useful in the construction of neutral hydrogen bonding receptors.

1.10 Determination of Binding Constant^[78-79]

In the viewpoint of molecular recognition systems, the weak chemical interaction is amplified, integrated and converted to physical signal that can readily read out and record. This data are related to complexation process. There are several methodologies to determine binding constant such as UV-VIS spectroscopy, NMR spectroscopy, bomb calorimeter, electrochemical instrument and fluorescence depending on the molecular design.

¹H-NMR titration is one of the most useful techniques available to chemists for the investigation of dynamic molecular processes. Appeared NMR spectra are basically treated to display a qualitative description of reversible dynamic processes. This topic is often introduced with a discussion of simple two-site exchange systems; slow and fast exchange. It is stated that the spectrum consists of two signals under *"slow-exchange"* conditions. The binding constant can be evaluated by ratio of integration of the NMR signals for free and bound hosts. The bound and free molecules give rise to discrete NMR signals that can be integrated to determine [G] and [HG] directly and association constant (β_i) finally. Occasionally, observation of slow chemical exchange is classified as a moderately tightly bound host-guest system ($\beta_i \approx 10^3$). The exchange rate of ligand does not necessarily correlate with the binding constant. There is just one signal at the population-averages chemical shift under "*fast-exchange*" conditions. Most of the host-guest equilibria are fast on the NMR time scale. Basically, the association constant (β_i) of either slow or fast exchange process is represented by the following equation.

$\beta_i = [H \cdot G_i] / [H] [G]^i$

Generally, the Job's plot of chemical induced shift based on a series of solution containing both host and guest in varying proportions is essential to perform before any determination of β_i . The total concentration in each solution ([H]₀+[G]₀) is constant in this continuous variation analysis. Mole ratios between a host and a guest are in the range of $0 > [H]_0/([H]_0+[G]_0) < 1$. It is worth mentioning that the data obtained to determine stoichiometry are not the best data for abstracting the association constant. Therefore, the separate experiments should be planned and executed.

In a typical fast exchange NMR titration experiment, a small aliquot of a guest may be added to a known concentration solution of a host in a deuterated solvent and the NMR spectrum is monitored as a function of the guest concentration or a host to guest ratio. Commonly, changes in chemical shift ($\Delta \delta$) are noted for various atomic nuclei attributed to the influence of guest binding on their magnetic environments. As a result, two kinds of information are gained. Firstly, the location of nuclei most affected may give qualitative information about the selectivity of guest binding. More importantly, the shape of the titration curve plot of chemical induced shift (δ or $\Delta \delta$) against added guest concentration gives quantitative information about the binding constant. Such titration curves are often analyzed by modern curve fitting procedure; for instance, EQNMR, EMUL/MULTIFIT or NMRTIT. Although several methods have been developed to determine the association constant, curve fitting approaches are more widely used. Clear advantages of curve fitting treatments are that the experimental conditions are less constrained and more complex binding models (non 1:1 stoichiometry) can be accommodated. NMR based determinations of β_i are usually only reliable for association constants in the range of $10 \cdot 10^4 \text{ M}^{-1}$. To maximize the reliability of NMR titration data, the experiment needs to be designed. The binding curve should cover a large range of percentage bound (ideally from 20 to 80%). For $\beta_i \approx 1.5 \text{ M}^{-1}$, $\Delta \delta_{max}$ cannot be accurately measured. On the other hand, the graph of $\Delta \delta$ against $[H]_0/[G]_0$ become too steep to determine within convenient measurement times in the case of $\beta_i \approx 10^5 \text{ M}^{-1}$. A more dilution condition probing by a more sensitive NMR will slightly extend the range of measurable association constants.

1.11 Literature Review

A few group have been devoting their research efforts towards the molecular design of *p-tert*-butylcalix[4]arene containing thiourea. However, it seems to be no report, to our knowledge, about the macrocyclic framework containing both of them.

Derivatives of *p-tert*-butylcalix[4]arene which are functionalized with two or four (thio)urea groups (Figure 1.4) reported by Scheerder *et al.* in 1994^[80] were found to selectively bind spherical anions exclusively through hydrogen bonding. It was found that anions bound phenyl substituted derivatives **1a** stronger than *t*-butyl **1d**, octyl **1c** and propyl **1b** substituted which can be explained in term of steric hindrance. The larger bulky group, the less intramolecular hydrogen bonding was occurred leading to the higher binding constant. Moreover, they found that urea derivative **1a** bound anions stronger than thiourea derivative **2**. Thiourea is a better hydrogen bond donor thus it is easier to form intramolecular hydrogen bonding. In addition, *bis*-urea derivative **3** bound anions stronger than tetrakis-thiourea derivative because of more preorganization and less self-association. ¹H-NMR spectroscopy in CDCl₃ reveals a selectivity for Cl⁻ over Br⁻ and I⁻. The stoichiometry is 1:1 in all cases as confirmed by Job's plots. All receptors are not selectively bound H₂PO₄⁻ because this anion is too large to fit into the cavity. Moreover, hydrogen bond donor sites in the cavity.

Figure 1.4. Two or four (thio)urea groups functionalized on *p-tert*-butylcalix[4]arene.

Four years later, calix[4]arene tetramide mono(thio)urea derivatives (Figure 1.5) were synthesized to reduce the effect of intramolecular hydrogen bonding by Pelizzi and co-worker.^[81] These derivatives act as heteroditopic receptors containing amide moieties at the lower rim of calixarene as cation binding site and (thio)urea at the upper rim of calixarene as anion binding sites. These receptors were found to selectively bind Y-shape carboxylate anions over spherical anions. Receptors 5 and 6 bound acetate stronger than benzoate and formate which could be explained in term of pK_a (pK_a of acetate, benzoate and formate are 12.60, 10.90 and 10.26, respectively). Compared to urea **5b**, thiourea **5a** is a more effective ligand due to the higher degree of hydrogen bond donating. Sodium ion was encapsulated at the narrow rim in a slow exchange manner with the free ligand. The apolar cavity of the calix[4]arene building block is also rigidified by encapsulation of alkali ions. In addition, the anion coordination ability of the molecule that contains methylene linkage between the calixarene scaffold and the thiourea moiety has been affected by addition of sodium ion in the solution of the host. Receptor 6 containing thiourea group directly connected to the aromatic units is more efficient than 5a, which has methylene spacer, because of electron-delocalization effect. Co-bound sodium ion in 5a enhanced binding ability of anions towards receptor 4 due to intermolecular hydrogen bonding

and electrostatic interactions. Nevertheless, the cooperative binding decreases the selectivity.

Deetz and co-worker reported an X-ray crystal structure of heteroditopic receptor 7 binding NaCl as a solvent separated ion-pair.^[82] However, the binding cooperativity would be improved if the salt were bound to the receptor as a contact ion-pair. Later, they designed host 8 as a salt binding analogous of 7 but with a shorter distance between the anion and cation binding site.^[83] These results suggested that macrocycle 8 is the first unambiguous example of a ditopic salt receptor that binds alkali halide as their contact ion-pair in solution more strongly than either of free ions (sodium or potassium was used as cation while chloride was served as anion). The solvent separated ion-pair of 7 and contact ion-pair of 8 are displayed in Figure 1.6. Furthermore, they also found that the significant binding enhancements were obtained in a less polar solvent like CDCl₃:DMSO-d₆ (85:15). The binding affinity of 8 towards chloride anion is higher in the presence of potassium, compared to sodium. When receptor $\mathbf{8}$ accommodated sodium cation, the diazacrown alters its conformation and reduced its effective binding. Even though chloride anion is located closer to the four diazacrown oxygen in $8 \cdot Na^+$, the association constant is much less than $8 \cdot K^+ \cdot Cl^-$. This explained by the fact that the closer of contact ion-pair in $\mathbf{8} \cdot \mathbf{Na}^+$ increase ion-dipole repulsions between chloride and diazacrown oxygen.

Figure 1.6. Effect of the chain length towards the formation of solvent separate or contact ion-pairing.

Analogous receptors have been reported by Mahoney *et al* (Figure 1.7).^[84] Compared to heteroditopic **9**, bicyclic **10** was found to be a better host towards chloride anion either in the absence or the presence of an alkali cation (sodium or potassium). The crystal structure of [**10**·NaCl] was obtained. The contact ion-pair affect was found as expected. Although the x-ray structure reveals that the Na-Cl distance is shorter than Na-Cl distance in crystalline NaCl, it does not lead to the effective enhancement like KCl. This also resulted from the repulsion between chloride anion and oxygen on diazacrown. Moreover, the binding of a cation or an anion was also revealed to displace any trapped solvent molecules (water and methanol). Therefore, they did not inhibit the binding of the second counterion.

Figure 1.7. Other contacted ion-pair recognitions by which the number of hydrogen bond donor controlled the stability of complex.

Arduini and co-workers have found a positive allosteric effect during ion-pair binding by extended-cavity calix[4]arenes in the cone conformation.^[85] In the complex, the sulfonate anion interacted with the phenolic upper rim of the calixarene by hydrogen bonds and, subsequently, the binding cavity of this macromolecule was further preorganized for complexing tetramethylammonium cation using chloroform-d as solvent (Figure 1.8). Therefore, sulfonate substrate was stabilized in the complex by hydrogen bonding and electrostatic forces.

Figure 1.8. Ion-pair recognition of tetramethylammonium sulfonate in a calixarene derivative.

Macrobicyclic anion receptors **13a** and **13b** (Figure 1.9) containing calix[4]arene as building block, two L-alanine units as chiral center and 2,6diacylpyridine or a phthaloyl bridge (to reduce conformational flexibility) were synthesized by Sansone *et al.*^[86] Receptor **12** which is the clef like molecule without rigid spacer was found to bind anions less strongly than **13a** and **13b** which contained rigid linkages to reduce mobility. The rigid receptors showed selectivity towards Y-shaped carboxylate anions over other basic inorganic anions (Cl⁻, l⁻, NO₃⁻, H₂PO₄⁻). Moreover, all receptors prefer to bind benzoate to acetate. Both hydrogen-bonding interactions and π - π stacking interactions are involved in the efficiency and the selectivity of these anion receptors.

Figure 1.9. Chiral macrobicyclic anion receptors containing two L-alanine units as chiral center.

1.12 Scope of This Thesis

To gain a basic understanding of molecular recognition, synthesis of receptor molecules with a high selectivity for a particular guest molecule has been of interest to supramolecular chemists. This has been one of the driving forces for design of synthetic receptors.

In the last few years evidence has been accumulated showing that preorganization plays a fundamental role in molecular recognition by synthetic receptors. Preorganization and rigidity of host molecules are usually obtained by covalently linking binding groups or rigid spacers to suitable templates.

However, these seems to be no report, to our knowledge, on calixarene based receptors having thiourea groups as a part of macrocyclic framework, despite the fact that preorganization of the binding sites would improve the binding ability and selectivity. Our approach utilizes cyclic framework to control molecular architecture and consequently to preorganize the host molecules. Moreover, the rigid molecular components have been used to hold hydrogen-bonding groups at a fixed distance. Recently, separation of two thiourea units by 1,3-(dimethylene)benzene leads to receptors that form strong, multiple hydrogen bonded complexes with dihydrogen phosphate.^[87] Thus, the novel neutral bifunctional receptors for the simultaneous

complexation of anions and cations in organic media have been developed. In these receptors, the appropriate binding sites for both anionic and cationic species are covalently combined in a neutral molecule.

The frame of this thesis aims at the understanding of molecular recognition processes involving cations and anions. According to the proposed concept, the synthesis of two *p-tert*-butylcalix[4] arene derivatives containing *bis*-thiourea moieties 14 and 15 have been developed (Figure 1.10). Their binding ability and selectivity towards several guests, cations, anions or both of them, have been investigated. The complex stoichiometry and binding association (β_1) for the complexation between the receptors and several guest substrates have been determined by ¹H-NMR spectroscopy in acetonitrile- d_3 . The target receptors are designed to contain thiourea moieties as carboxylate binding site. Calix[4]arene acts as a building block to maintain rigidity of the molecule. Amide or ester moiety is designed as a part of a flexible linkage between calixarene unit and the thiourea group to ensure an optimal approaching of them and also functions as alkali metal receptor to enhance binding ability of the receptor towards anions. The direct effect of ester and amide moieties on the binding efficiency for a wide variety of anions will also be evaluated. Both receptors possess two thiourea groups connected by 1,3-(dimethylene)benzene as a rigid spacer group. The aromatic unit which is linked between two thiourea moieties participates in the selective binding due to size-dependence and π - π stacking interactions. Both receptors are expected to be the stronger salt binders with guests containing phenyl groups.

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 1.10. The novel *p-tert*-butylcalix[4]arene derivatives containing *bis*-thiourea moieties **14** and **15** that were designed and synthesized in this thesis.

CHAPTER II

EXPERIMENTAL SECTION

2.1 Synthesis of Heteroditopic Receptors

2.1.1 General Procedure

2.1.1.1 Materials

Tetrahydrofuran was dried and distilled under argon from sodium benzophenone ketyl immediately before use. Acetone was dried with anhydrous potassium carbonate and distilled.^[88] Other dried reagents and solvents; acetonitrile, benzene, dichloromethane, pyridine and triethylamine, were dried and distilled from calcium hydride prior to use.^[88] *p-tert*-Butyl calix[4]arene was prepared according to a modified literature procedure.^[89] All other reagents and solvents, unless otherwise noted, were employed as purchased without further purification. Most reactions were carried out under argon atmosphere. Chromatograpic seperations were performed on silica gel flash column (Sorbsil C60, 40-60 mesh), small amount of triethylamine was added to neutralized silica gel if necessary. Thin Layer Chromatography was performed on aluminium backed plates coated with silica gel (0.25 mm) which contained the fluorescent indicator UV₂₅₄.

2.1.1.2 Instrumentation

¹H-NMR spectra were obtained at 200 MHz on Brüker AC-200, at 300 MHz on Brüker AC-300, Brüker AM-300 and Brüker DPX-300 spectrometer as well as at 400 MHz on a Brüker DPX-400 spectrometer. ¹³C-NMR spectra were recorded at 50 MHz on a Brüker AC-200, at 75.5 MHz on a Brüker AC-300 and at 100 MHz on a Brüker DPX-400 spectrometer. Two dimentional NMR spectra were obtained using Brüker DPX-400 spectrometer. Chemical shifts are reported in ppm on the δ scale relative to the residual proton peak of the deuterated solvent. Coupling constants were given in Hertz. Assignments of ¹H-NMR and ¹³C-NMR spectra were carried out using either Distortionless Enhancement by Polarization Transfer (DEPT) or twodimentional NMR experiments. Electrospray mass spectra were determined on a Micromass Platform quadrupole mass analyser with an electrospray ion source using acetonitrile as solvent. Infrared spectra were carried out on either a Bio-Rad FT-IR spectrophotometer or a Nicolet Impact 410 FT-IR spectrophotometer. Spectrum were obtained as neat films supported on sodium chloride plates for the former FT-IR spectrophotometer while the latter one afforded spectrum as potassium bromide pellet. Elemental analysis were analyzed by a Perkin Elmer CHON/S analyzer (PE2400 series II). All melting points were measured in open capillary tubes using an Electrothermal 9100 apparatus and are uncorrected.

2.1.2 Experimental procedure

2.1.2.1 Synthesis of 5,11,17,23-Tetra-*tert*-butyl-25,27-*N*,*N*'-1,3-bis(methoxylcarbamoylpropylthioureidomethyl)benzene-26,28-bis(3-oxabutyloxy)calix[4] arene, 14

tert-Butyl N-(3-aminopropyl)carbamate, [90] 16

This procedure was modified from the procedure reported by Muller et al.^[90]

Di-*tert*-bytyl dicarbonate (4.50 g, 20.62 mmol) in dichloromethane (400 mL) was added dropwise to a solution of excess 1,3-diaminopropane (8.00 g, 107.92 mmol) in dichloromethane (40 mL) for over a period of 12 hours with vigorous stirring. The stirring was continued for further 36 hours at room temperature. The reaction mixture was washed with aqueous sodium carbonate (2x120 mL) and water (2x100 mL). The organic layer was dried over magnesium sulfate and the solvent was evaporated under reduced pressure. The purified product was obtained from column chromatography (30% methanol in dichloromethane) as a colourless viscous liquid (3.35 g, 93%).

Characterization data for 16

TLC: $R_f = 0.82$ (30% methanol in dichloromethane)

IR (neat)/cm⁻¹: 3332 (NH), 1961 (CO)

¹**H-NMR (400 MHz, CDCl₃):** δ = 4.93 (broad s, 1H, –CH₂*NH*COO-), 3.20 (q, *J* = 6 Hz, 2H, –CH₂*CH*₂NH-, 2.75 (t, *J* = 7 Hz, 2H, H₂N*CH*₂CH₂-, 1.60 (quint, *J* = 7 Hz, 2H, –CH₂*CH*₂CH₂-), 1.43 (s, 9H, –COOC(*CH*₃)₃), 1.38 (s, 2H, *H*₂*N*CH₂CH₂-)

¹³C-NMR (75 MHz, CDCl₃): $\delta = 156.30$ (s, $-\text{NH}COOC(CH_3)_3$ -), 79.1 (s, $-CH_2CH_2NH$ -), 39.7 (s, $H_2NCH_2CH_2$ -), 38.5 (s, $-CH_2CH_2CH_2$ -), 35.5 (s, $-COOC(CH_3)_3$), 28.5 (s, $-COOC(CH_3)_3$)

All spectroscopic data are consistent with those reported in the literatures.^[91-92]

5,11,17,23-Tetra-*tert*-butyl-25,27-dihydroxy-26,28-bis(3-oxabutyloxy)calix[4]arene, ^[93] **17**

This procedure was modified from the procedure reported by Wieser and co worker.^[94]

A suspension of *p-tert*-butylcalix[4]arene (5.00 g, 7.70 mmol) and potassium carbonate (2.50 g, 18.09 mmol) was stirred at room temperature in dried acetonitrile (125 mL) for half an hour. Then, 2-bromoethyl methyl ether (2.68 g, 1.81 mL, 19.28 mmol) was added and the reaction mixture was heated at reflux for 36 hours under argon atmosphere. After the mixture cooled down to room temperature and the solid was filtered, the solvent was removed to dryness. The residue was dissolved in dichloromethane (100 mL) then washed with 2M HCl (2x50 mL) and subsequently with water (2x50 mL). The organic layer was dried over anhydrous magnesium sulfate and then purified by column chromatography (5% ethyl acetate in dichloromethane). After evaporation of the solvent, the purified product was obtained as a white solid (4.28 g, 73%).

Characterization data for 17

TLC: $R_f = 0.35$ (5% ethyl acetate in dichloromethane)

Melting point: 221-222 °C

IR (film)/cm⁻¹: 3368 (broad) (OH)

¹**H-NMR (400 MHz, CDCl₃):** $\delta = 7.80$ (s, 2H, -Ar*OH*), 7.23 and 7.08 (2s, 8H, Ar*H*-calixarene), 4.58 and 3.50 (AB spin system, 8H, -Ar*CH*₂Ar-, ²*J* = 13 Hz), 4.33 and 4.06 (2t, 8H, -O*CH*₂*CH*₂O-, *J* = 5 Hz), 3.72 (s, 6H, -CH₂O*CH*₃), 1.47 and 1.23 (2s, 36H, -ArC(*CH*₃)₃)

¹³C-NMR (100 MHz, CDCl₃): $\delta = 150.62$, 149.73, 146.81, 141.17, 132.64, 127.47, 125.53, 125.01 (8s, aromatic-*C*), 75.16 and 71.28 (2s, $-OCH_2CH_2O$ -), 59.06 (1s, $-CH_2OCH_3$), 33.85 and 33.64 (2s, $-ArC(CH_3)_3$), 31.58 and 31.00 (2s, $-ArC(CH_3)_3$), 31.35 (s, $-ArCH_2Ar$ -)

LRMS (ES⁺): m/z (%) = 787.6 (100) $[M+Na]^+$

Elemental analysis: Anal Calcd. for C₅₀H₆₈O₆: C, 78.49; H, 8.96.

Found. C, 78.24; H, 8.96.

All spectroscopic data are consistent with those reported in the literature.^[94]

5,11,17,23-Tetra-*tert*-butyl-25,27-bis(methoxycarbonylmethoxy)-26,28-bis(3-oxabutyloxy)calix[4]arene,^[95] 18

This procedure was modified from the procedure reported by Jeunesse and coworker.^[95] A suspension of compound **17** (1.87 g, 2.44 mmol) and sodium carbonate (0.78 g, 7.36 mmol) was stirred at room temperature in dried acetonitrile (100 mL) for half an hour. Then methyl bromoacetate (1.13 g, 0.70 mL, 7.39 mmol) was added and the reaction mixture was heated at reflux for 36 hours under argon atmosphere. After the mixture cooled to room temperature and the solid was filtered, the solvent was removed to dryness. The residue was dissolved in dichloromethane (70 mL) and washed with 2M HCl (2x30 mL) and subsequently with water (2x30 mL). The organic layer was dried over anhydrous magnesium sulfate and then purified by column chromatography (SiO₂) eluting with 10% ethyl acetate in dichloromethane. The purified product was a white solid after dryness (1.56 g, 70%).

Characterization data for 18

TLC: $R_f = 0.33$ (10% ethyl acetate in dichloromethane)

Melting point: 138-139 °C

IR (film)/cm⁻¹: 1762 (CO)

¹**H-NMR (300 MHz, CDCl₃):** $\delta = 6.89-6.86$ and 6.74-6.71 (2m, 8H, Ar*H*-calixarene), 4.97-4.96, 4.83-4.82 and 4.75-4.74 (3m, 4H, $-OCH_2COO$ -), 4.71-4.66 and 3.20-3.16 (2m, 8H, $-ArCH_2Ar$ -), 4.12-4.07 and 3.89-3.83 (2m, 8H, $-OCH_2CH_2O$ -), 3.80-3.77 (m, 6H, $-CH_2COOCH_3$), 3.45-3.44 (m, 6H, $-CH_2OCH_3$), 1.16-1.14 and 1.05-1.03 (2m, 36H, $-ArC(CH_3)_3$)

¹³C-NMR (100 MHz, CDCl₃): $\delta = 171.09$ and 165.25 (2s, -*COO*CH₃), 153.26, 153.23, 152.97, 152.89, 145.19, 145.08, 145.06, 144.73, 133.88, 133.86, 133.81, 133.37, 133.33, 133.29, 125.41 and 124.97 (16s, aromatic-*C*), 73.19, 73.14, 71.92 and 71.89 (4s, -O*CH*₂*CH*₂O-), 70.91 and 70.53 (2s, -O*CH*₂COO-), 60.38, 58.67 and 58.58 (3s, -CH₂O*CH*₃), 52.15 and 51.35 (2s, -CH₂COO*CH*₃), 33.86 and 33.77 (2s, -Ar*C*(CH₃)₃), 31.69, 31.61, 31.03 and 30.53 (4s, -Ar*C*(*CH*₃)₃), 31.43 and 30.36 (s, -Ar*CH*₂Ar-)

LRMS (ES⁺): m/z (%) = 931.8 (48) $[M+Na]^+$

Elemental analysis: *Anal Calcd.* for C₅₆H₇₆O₁₀: C, 73.98; H, 8.43.

Found. C, 73.95; H, 8.49.

All spectroscopic data are consistent with those reported in the literature.^[95]

5,11,17,23-Tetra-*tert*-butyl-25,27-bis(hydroxycarbonylmethoxy)-26,28-bis(3-oxabutyloxy)calix[4]arene,^[96] **19**

This procedure was modified from the procedure reported by Araki et al.^[97]

A mixture of compound **18** (1.79 g, 1.97 mmol) and sodium hydroxide (0.20 g, 5.00 mmol) in ethanol (100 mL) was heated at reflux for 24 hours under argon atmosphere. The solvent was then evaporated to dryness. Cold 3M HCl (50 mL) was added into the solid with vigorous stirring till pH reached 1 to afford a white precipitate. The solid was filtered off, taken up in dichloromethane (70 mL) and then washed with 3M HCl (2x50 mL) and sodium chloride solution (2x30 mL). After drying *in vacuo*, the desired product in dichloromethane was crystallized as white needle crystals (1.21 g, 70%) by adding methanol.

Characterization data for 19

Melting point: 262-263 °C

IR (film)/cm⁻¹: 3252 (OH), 1758 (CO)

¹**H-NMR (300 MHz, CDCl₃):** δ = 7.18 and 6.58 (2s, 8H, Ar*H*-calixarene), 4.76 (s, 4H, –OCH₂COOH), 4.42 and 3.26 (AB spin system, 8H, –Ar*CH*₂Ar-, *J* = 13 Hz), 3.99-3.75 (m, 8H, –OCH₂CH₂O-), 3.47 (s, 6H, –CH₂OCH₃), 1.35 and 0.84 (2s, 36H, –ArC(*CH*₃)₃)

¹³**C-NMR (75 MHz, CDCl₃):** δ = 170.43 (s, –OCH₂*COOH*), 153.01, 149.96, 147.23, 145.98, 134.78, 132.10, 126.04 and 125.34 (8s, aromatic-*C*), 76.23 (s, –O*CH*₂COOH),

72.00 and 70.91 (2s, -OCH₂CH₂O-), 58.74 (s, -CH₂OCH₃), 34.18 and 33.70 (2s, -ArC(CH₃)₃), 31.57 and 30.94 (2s, -ArC(CH₃)₃), 30.79 (s, -ArCH₂Ar-)

LRMS (ES⁺): m/z (%) = 902.8 (100) $[M+Na]^+$

Elemental analysis: *Anal Calcd.* for C₅₄H₇₂O₁₀: C, 73.61; H, 8.24.

Found. C, 73.61; H, 8.40.

All spectroscopic data are consistent with those reported in the literature.^[97]

5,11,17,23-Tetra-*tert*-butyl-25,27-bis(3-*tert*-butoxycarbonylaminopropylcarbamoylmethoxy)-26,28-bis(3-oxabutyloxy)calix[4]arene, **20**

This procedure was modified from the procedure reported by Boehmer and his co-worker^[98] as well as Kawaguchi and his co-worker.^[99]

To a solution of compound **19** (1.00 g, 1.13 mmol) in benzene (50 mL), thionyl chloride (0.30 g, 0.18 mL, 2.52 mmol) was added dropwise. The reaction mixture was heated at reflux for 24 hours under argon atmosphere. After drying *in vacuo*, the white solid of 5,11,17,23-tetra-*tert*-butyl-25,27-bis(chlorocarbonyl-methoxy)-26,28-bis(3-oxa-butyloxy)calix[4]arene was used in the next step without further purification.^{*}

Characterization data for 5,11,17,23-tetra-*tert*-butyl-25,27-bis(chlorocarbonyl-methoxy)-26,28-bis(3-oxa-butyloxy)calix[4]arene

The mixture of compound **16** (0.45 g, 2.58 mmol), triethylamine (0.25 g, 0.34 mL, 2.47 mmol) and 4-(dimethylamino)pyridine (0.02 g, 0.16 mmol) was stirred for approximately 15 minutes in toluene (20 mL) and then it was added to a solution of the previous white solid (acid chloride derivative) in toluene (40 mL). The reaction mixture was stirred at room temperature for 5 hours under argon atmosphere. After the solid was filtered, the solution was evaporated to dryness. The solid was dissolved in dichloromethane (30 mL) and washed with water (2x20 mL). The organic layer was dried over anhydrous magnesium sulfate and then purified using column chromatography (5% methanol in dichloromethane) to yield an oily yellowish compound (0.56 g, 42%).

Characterization data for 20

TLC: $R_f = 0.28$ (10% methanol in dichloromethane)

Melting point:130-131 °C

IR (film)/cm⁻¹: 1695 (CO), 3347 (NH)

¹H-NMR (300 MHz, CDCl₃): $\delta = 8.33$ (broad s, 2H, -CH₂*NH*COOC(CH₃)₃), 7.27 and 7.05 (2s, 8H, Ar*H*-calixarene), 6.55 (broad s, 2H, -CH₂CO*NH*CH₂-), 4.73 (s, 4H, -O*CH*₂CONH-), 4.43 and 3.26 (AB spin system, 8H, -Ar*CH*₂Ar-, *J* = 13 Hz), 4.09-4.08 and 3.46-3.44 (2 broad m, 8H, -O*CH*₂C*H*₂O-), 3.49 (q, 4H, -CH₂C*H*₂NHCOOC(CH₃)₃, *J* = 7 Hz), 3.39 (s, 6H, -CH₂O*CH*₃), 3.16 (q, 4H, -CH₂C*H*₂CH₂-, *J* = 4 Hz), 1.86 (broad s, *H*₂O), 1.82 (quin, 4H, -CH₂C*H*₂CH₂-, *J* = 6 Hz), 1.43 (s, 18H, -COOC(*CH*₃)₃), 1.28 and 0.89 (2s, 36H, -ArC(*CH*₃)₃)

¹**H-NMR (300 MHz, CDCl₃):** δ = 7.16 and 6.46 (2s, 8H, Ar*H*-calixarene), 5.47 (s, 4H, –O*CH*₂COCl), 4.71 and 3.23 (AB spin system, 8H, –Ar*CH*₂Ar-, *J* = 13 Hz), 3.95-3.79 (m, 8H, –O*CH*₂*CH*₂O-), 3.55 (s, 6H, –CH₂O*CH*₃), 1.37 and 0.85 (2s, 36H, –Ar*C*(*CH*₃)₃)

¹³C-NMR (75 MHz, CDCl₃): $\delta = 171.63$ (s, $-OCH_2COCl$), 152.75, 152.07, 146.25, 144.87, 134.93, 131.59, 126.06 and 124.61 (8s, aromatic-*C*), 77.86 (s, $-OCH_2COCl$), 74.33 and 71.95 (2s, $-OCH_2CH_2O$ -), 59.11 (s, $-CH_2OCH_3$), 34.04 and 33.51 (2s, $-ArC(CH_3)_3$), 31.56 and 30.95 (2s, $-ArC(CH_3)_3$), 31.36 (s, $-ArCH_2Ar$ -)

All spectroscopic data are consistent with those reported in the literature.^[97]

¹³C-NMR (75 MHz, CDCl₃): $\delta = 174.07$ (s, $-COOC(CH_3)_3$), 170.91 (s, $-OCH_2CONH_2$), 156.20, 154.05, 150.37, 145.59, 133.55, 132.05, 126.28 and 125.04 (8s, ArC-calixarene), 78.71, 74.47, 73.83, 69.99, 37.58 and 36.76 (6s, $-OCH_2CH_2O_2$, $-OCH_2CONH_2$ and $-CONHCH_2CH_2CH_2NH_2$), 58.75 (s, $-CH_2OCH_3$), 33.97 and 33.71 (2s, $-ArC(CH_3)_3$), 33.71 and 31.50 (2s, $-ArC(CH_3)_3$), 31.08 (s, $-COOC(CH_3)_3$), 28.46 (s, $-COOC(CH_3)_3$)

LRMS (ES⁺): m/z (%) = 1215.6 (100) $[M+Na]^+$

Elemental analysis: Anal Calcd. for C₇₀H₁₀₄N₄O₁₂·4H₂O: C, 66.43; H, 8.92; N, 4.43. *Found.* C, 66.56; H, 8.78; N, 4.69.

5,11,17,23-Tetra-*tert*-butyl-25,27-bis(3-isothiocyanatopropylcarbamoylmethoxy)-26,28-bis(3-oxabutyloxy)calix[4]arene, **21**

To a solution of compound **20** (0.50 g, 4.19×10^{-1} mmol) in dichloromethane (20 mL), trifluoroacetic acid (5 mL) was added dropwise and the mixture was stirred at room temperature for 2 hours. After removal of the solvent in vacuum, the residue which was dissolved in dichloromethane was washed with sodium hydrogen carbonate solution (2x30 mL) and water (2x30 mL). The organic layer was dried over anhydrous magnesium sulfate and then evaporated to dryness. The yellowish liquid was used in the next step without further purification.

The above oily compound was taken up in dichloromethane (15 mL) and then stirred with potassium carbonate (0.18 g, 1.30 mmol) in water (5 mL). After that,

thiophosgene (0.10 g, 0.07 mL, 8.70×10^{-1} mmol) was slowly dropped into the mixture. The reaction was stirred at room temperature for 4 days. After extracting with dichloromethane (2x15 mL), the organic layer was washed with water (2x20 mL), dried over anhydrous magnesium sulfate, and then evaporated to dryness *in vacuo*. The purified product was eluted from column chromatography (SiO₂) using 10% methanol in dichloromethane as eluent to provide a white solid (0.28 g, 62%).

Characterization data for 21

TLC: $R_f = 0.48$ (10% methanol in dichloromethane)

Melting point: 185-187 °C

IR (film)/cm⁻¹: 1664 (CO), 2105 (NCS), 3336 (NH)

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 8.46$ (t, 2H, -CH₂CO*NH*CH₂-, J = 6 Hz), 7.09 and 6.54 (2s, 8H, Ar*H*-calixarene), 4.76 (s, 4H, -OCH₂CONH-), 4.46 and 3.28 (AB spin system, 8H, -Ar*CH*₂Ar-, J = 13 Hz), 4.11 and 3.45 (2t, 8H, -OCH₂CH₂O-, J = 4 Hz), 3.63 (t, 4H, -CH₂CH₂NCS, J = 7 Hz), 3.53 (q, 4H, -CONHCH₂CH₂-, J = 7 Hz), 3.41 (s, 6H, -CH₂OCH₃), 2.10 (quin, 4H, -CH₂CH₂CH₂-, J = 7 Hz), 1.80 (broad s, H_2O), 1.32 and 0.89 (2s, 36H, -ArC(*CH*₃)₃)

LRMS (ES⁺): m/z (%) = 1099.4 (100) $[M+Na]^+$

Elemental analysis: Anal Calcd. for C₆₂H₈₄N₄O₈S₂·1.5H₂O: C, 67.42; H, 7.94;

N, 5.07. *Found*. C, 67.43; H, 7.80; N, 5.21.

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

To a solution of 1,3-bis(aminomethyl)benzene (20.6 mg, 0.02 mL, 1.51×10^{-1} mmol) in dried pyridine (20 mL), the solution of compound **21** (100.0 mg, 9.28×10^{-2} mmol) in dried pyridine (5 mL) was slowly dropped for a period of 12 hours. The reaction mixture was stirred under argon atmosphere at room temperature for further 3 days. After concentrating *in vacuo*, the residue was dissolved in dichloromethane (50 mL) and washed with water (2x50 mL). The organic layer was dried over anhydrous magnesium sulfate and then evaporated under vacuum. The desired product was eluted from column chromatography (SiO₂) using 10% methanol in dichloromethane as eluent. This product could be further purified by precipitation in methanol (45.2 mg, 40%).

Characterization data for 14

TLC: $R_f = 0.33$ (10% methanol in dichloromethane)

Melting point: 158-159 °C

IR (film)/cm⁻¹: 1735 (CO), 2206 (NCS), 3308 (NH)

¹H-NMR (400 MHz, CDCl₃): $\delta = 8.67$ (broad s, 2H, -CH₂CO*NH*CH₂-), 7.58 (broad s, 2H, -CH₂CH₂*NH*CSNH-), 7.36-6.50 (m, 4H, Ar*H*-linkage), 7.14 and 6.47 (2s, 8H, Ar*H*-calixarene), 6.66 (broad s, 2H, -NHCS*NH*CH₂Ar-), 5.30 (s, *CH*₂Cl₂), 4.80 (s, 4H, -O*CH*₂CONH-), 4.75 (broad s, 4H, -NHCSHN*CH*₂Ar-), 4.42 and 3.30 (AB spin system, 8H, -Ar*CH*₂Ar-, *J* = 13 Hz), 4.07 and 3.36 (2 broad s, 8H, -O*CH*₂*CH*₂O-), 3.61 (broad s, 4H, -NHCSNH*CH*₂CH₂-), 3.43 (broad s, 4H, -CONH*CH*₂CH₂-), 3.35 (s, 6H, -CH₂O*CH*₃), 1.92 (broad s, 4H, -CH₂*CH*₂CH₂-), 1.91 (broad s, *H*₂O), 1.36 and 0.85 (2s, 4H, -ArC(*CH*₃)₃)

¹³C-NMR (100 MHz, CDCl₃): $\delta = 182.03$ (s, -NHCSNH-), 171.73 (s, -CH₂CONH-), 154.44, 149.69, 145.85, 145.72, 133.59, 131.46, 126.63 and 124.93 (8s, aromatic-*C* (calixarene)), 138.49, 135.95, 128.65 and 124.93 (4s, aromatic-*C* (linkage)), 75.03 and 69.40 (2s, -OCH₂CH₂O-), 73.39 (s, -OCH₂CONH-), 58.75 (s, -CH₂CH₂OCH₃), 47.53 (s, -NHCSNHCH₂Ar-), 45.91 (s, -CONHCH₂CH₂-), 41.42 (s, -CH₂CH₂NHCSNH-), 36.68 (s, -CH₂CH₂CH₂-), 33.99 and 33.65 (2s, -ArC(CH₃)₃), 31.51 and 30.97 (2s, -ArC(CH₃)₃), 29.06 (s, -ArCH₂Ar-)

LRMS (ES⁺): m/z (%) = 1235.2 (100) $[M+Na]^+$

Elemental analysis: Anal Calcd. for C₇₀H₉₆N₆O₈S₂·0.5CH₂Cl₂·H₂O: C, 66.46; H, 7.83; N, 6.60. *Found.* C, 66.55; H, 7.53; N, 6.37.

2.1.2.2 Synthesis of 5,11,17,23-Tetra-*tert*-butyl-25,27-*N*,*N*'-1,3-bis(methoxylcarbonylpropylthioureidomethyl)benzene-26,28-bis(3-oxabutyloxy)calix[4]arene, 15

HO NH₂
$$(Boc)_2 O/DCM, TEA$$

97% HO NH₂ (2.8)

This procedure was modified from the procedure reported by Dubowchik *et* al.^[100]

To a mixture of 3-amino-1-propanol (3.11 g, 3.17 mL, 41.41 mmol) and triethylamine (4.50g, 6.20 mL, 44.47 mmol) in dichloromethane (150 mL), the solution of di-*tert*-butyl dicarbonate (9.15 g, 41.92 mmol) in dichloromethane (50 mL) was added dropwise. The reaction mixture was stirred for further 24 hours. After that it was washed with 10% acetic acid solution (2x100 mL) and water (2x50 mL). The organic layer was dried over anhydrous magnesium sulfate and purified by column chromatography (SiO₂) using 20% ethyl acetate in dichloromethane as eluent to afford a colourless oil (7.07 g, 97%).

Characterization data for 22

TLC: $R_f = 0.33$ (50% ethyl acetate in dichloromethane)

¹**H-NMR** (**300 MHz, CDCl₃**): $\delta = 4.99$ (broad s, 1H, -CH₂*NH*COO-), 3.62 (t, 2H, HO*CH*₂CH₂-, *J* = 6 Hz), 3.23 (broad s, 2H, -CH₂*CH*₂NH-), 3.09 (broad s, 1H, *HO*CH₂-), 1.64 (q, 2H, -CH₂*CH*₂CH₂-, *J* = 6 Hz), 1.41 (s, 9H, -COOC(*CH*₃)₃)

¹³C-NMR (75 MHz, CDCl₃): $\delta = 156.90$ (s, $-NHCOOC(CH_3)_3$ -), 79.16 (s, $HOCH_2CH_2$ -), 59.08 (s, $-CH_2CH_2NH$ -), 36.90 (s, $-CH_2CH_2CH_2$ -), 32.38 (s, $-COOC(CH_3)_3$), 28.16 (s, $-COOC(CH_3)_3$)

All spectroscopic data are consistent with those reported in the literature.^[101]

tert-Butyl N-(3-(bromoacetatepropyl)carbamate), 23

A solution of bromoacetyl bromide (0.70 g, 0.30 mL, 3.44 mmol) in dried toluene (50 mL) was added dropwise for a period of 2 hours to a mixture of compound **22** (0.57 g, 3.25 mmol), triethylamine (0.36 g, 0.5 mL, 3.56 mmol), a catalytic amount of 4-dimethylaminopyridine (0.04 g, 3.27 mmol) and toluene (10 mL) in an iced bath (-5 °C). The reaction mixture was stirred under argon atmosphere for 5 hours. After the solid was filtered, the solvent was removed in vacuum.

Column chromatography (SiO₂) was done immediately using 10% ethyl acetate in dichloromethane as eluent to yield a yellow liquid (0.43 g, 45%).

Characterization data for 23

TLC: $R_f = 0.50$ (10% ethyl acetate in dichloromethane)

IR (neat)/cm⁻¹: 1686 (CO), 3347 (NH)

¹**H-NMR (300 MHz, CDCl₃):** $\delta = 4.80$ (broad S, 1H, -CH₂*NH*COO-), 4.22 (t, 2H, -COO*CH*₂CH₂-, *J* = 6 Hz), 3.83 (s, 2H, Br*CH*₂COO-), 3.20 (q, 2H, -CH₂*CH*₂NH-, ¹*J* = 10 Hz, ²*J* = 6 Hz), 1.84 (quin, 2H, -CH₂*CH*₂CH₂-, ¹*J* = 6 Hz, ²*J* = 7 Hz), 1.41 (s, 9H, -COOC(*CH*₃)₃)

¹³C-NMR (75 MHz, CDCl₃): $\delta = 167.48$ (s, $-NHCOOC(CH_3)_3$ -), 156.07 (s, $-CH_2COOCH_2$ -), 79.45 (s, $-COOC(CH_3)_3$), 60.00 (s, $-COOCH_2CH_2$ -), 37.37 (s, $-CH_2CH_2NH$ -), 29.04 (s, $-CH_2CH_2CH_2$ -), 28.52 (s, $-COOC(CH_3)_3$), 25.93 (s, Br*CH*₂COO-)

LRMS (ES⁺): m/z (%) = 295 (66) [M] and 296 (43) $[M+H]^+$

5,11,17,23-Tetra-*tert*-butyl-25,27-bis(3-(*tert*-butoxycarbonylamino)propylcarbonylmethoxy)-26,28-bis(3-oxabutyloxy)calix[4]arene, **24**

Method I

To a solution of compound **19** (0.50 g, 5.67×10^{-1} mmol) in benzene (25 mL), thionyl chloride (0.16 g, 0.10 mL, 1.34 mmol) was added. The reaction mixture was

heated at reflux for 24 hours under argon atmosphere. After drying *in vacuo*, the white solid was used in the next step without further purification.

The mixture of compound **22** (0.22 g, 1.26 mmol), triethylamine (0.15 g, 0.20 mL, 1.48 mmol) and 4-(dimethylamino)pyridine (0.02 g, 1.64 mmol) was stirred for 15 minutes in toluene (10 mL) and then it was added to a solution of the previous white solid (acid chloride derivative) in toluene (20 mL). The reaction mixture was stirred under argon atmosphere for further 20 hours at room temperature. After filtration, the solution was dried *in vacuo*, dissolved in dichloromethane (20 mL) and washed with water (2x15 mL). The organic layer was dried over anhydrous magnesium sulfate and then purified by column chromatography (SiO₂) using 5% methanol in dichloromethane as eluent to provide an off-white solid **24** (0.34 g, 60%)

Method II

A suspension of compound **17** (1.00 g, 1.31 mmol), potassium carbonate (0.42 g, 3.04 mmol) and a catalytic amount of sodium iodide (0.05 g, 0.33 mmol) in dried acetone (15 mL) was stirred at room temperature for half an hour. Then a solution of compound **23** (0.83 g, 2.80 mmol) in dried acetone (10 mL) was added dropwise for half an hour. The reaction mixture was heated at reflux for 24 hours. After allowing to cool to room temperature, the solid was filtered off and the solution was evaporated to dryness. The residue was taken up in dichloromethane (30 mL) and washed with water (2x25 mL). The organic layer was dried over anhydrous magnesium sulfate. Compound **24** was purified by column chromatography using 5% methanol in dichloromethane as eluent to provide an off-white solid as a product (0.55 g, 42%).

Characterization data for 24

TLC: $R_f = 0.28$ (10% methanol in dichloromethane)

Melting point: 77-78 °C

IR (film)/cm⁻¹: 1695 (CO), 3337 (NH)

¹**H-NMR** (400 MHz, CDCl₃): $\delta = 6.85$ and 6.69 (2s, 8H, Ar*H*-calixarene), 5.32 (s, CH_2Cl_2), 5.07 (broad s, 2H, $-CH_2NHCOOC(CH_3)_3$), 4.81 (s, 4H, $-OCH_2COO$ -), 4.63 and 3.16 (AB spin system, 8H, $-ArCH_2Ar$ -, J = 13 Hz), 4.23 (t, 4H, $-COOCH_2CH_2$ -, J = 6 Hz), 4.07 and 3.85 (2t, 8H, $-OCH_2CH_2O$ -, J = 5 Hz), 3.44 (s, 6H, $-CH_2OCH_3$), 3.14 (broad s, 4H, $-CH_2CH_2NH$ -), 2.53 (q, $N(CH_2CH_3)_3$), 1.84 (quin, 4H, $-CH_2CH_2CH_2$ -, J = 6 Hz), 1.43 (s, 18H, $-COOC(CH_3)_3$), 1.32 (t, $N(CH_2CH_3)_3$), 1.13 and 1.01 (2s, 36H, $-ArC(CH_3)_3$)

¹³C-NMR (100 MHz, CDCl₃): $\delta = 170.69$ (s, $-NHCOOC(CH_3)_3$), 155.96 (s, $-CH_2COOCH_2$ -), 153.07, 152.78, 145.08, 144.72, 133.79, 133.13, 125.34 and 124.88 (8s, aromatic-*C*), 79.48, 79.06, 72.98, 71.75, 70.84 and 61.72 (6s, $-OCH_2CH_2O$ - and $-OCH_2COOCH_2CH_2CH_2NH$ -), 58.50 (s, $-CH_2OCH_3$), 33.80 and 33.78 (2s, $-ArC(CH_3)_3$), 33.69 (s, $-ArCH_2Ar$ -), 31.36 and 31.33 (2s, $-ArC(CH_3)_3$), 28.92 (s, $-NHCOOC(CH_3)_3$)

LRMS (ES⁺): m/z (%) = 1217.8 (100) [M+Na⁺]

Elemental analysis: Anal Calcd. for C₇₀H₁₀₂N₂O₁₄·CH₂Cl₂·N(CH₂CH₃)₃: C, 66.93; H, 8.68; N, 3.04. *Found*. C, 67.27; H, 8.72; N, 2.95.

จุฬาลงกรณ์มหาวิทยาลย

To a solution of compound 24 (203 mg, 2.04×10^{-1} mmol) in dichloromethane (10 mL), trifluoroacetic acid (2.5 mL) was added dropwise and the mixture was stirred at room temperature for 2 hours. After the solution was concentrated in vacuum, the residue was dissolved in dichloromethane was washed with sodium hydrogen carbonate solution (2x15 mL) and water (2x15 mL). The organic layer was dried over anhydrous magnesium sulfate and then evaporated to dryness. The yellowish oil was used in the next step without further purification.

The above oily compound was taken up in dichloromethane (7 mL) and then stirred with potassium carbonate (56 mg, 4.05×10^{-4} mol) in water (3 mL). After that, thiophosgene was slowly dropped into the mixture. The reaction was stirred at room temperature for 3 days. After extracting with dichloromethane (2x10 mL), the organic layer was washed with water (2x10 mL), dried over magnesium sulfate, and then the solvent was evaporated to dryness *in vacuo*. Products were obtained by precipitation in methanol. Then they were purified by column chromatography (SiO₂) using 10% methanol in dichloromethane as eluent to provide two white solids, compound **25** (13 mg, 6%) and compound **26** (5,11,17,23-tetra-*tert*-butyl-25,27-(3-carbonyl-9-carbamoyl-4-propyl-1,11-dimethoxy)-26,28-bis(3-oxa-butyloxy)calix[4]arene) (50.2 mg, 27%).

Characterization data for 25

TLC: $R_f = 0.43$ (10% methanol in dichloromethane)

Melting point: 118-119 °C (decomposed)

IR (film)/cm⁻¹: 2092 (NCS), 1758 (CO)

¹**H-NMR (400 MHz, CDCl₃):** $\delta = 6.94$ and 6.65 (2s, 8H, Ar*H*-calixarene), 4.91 (s, 4H, -OCH₂COO-), 4.63 and 3.18 (AB spin system, 8H, -Ar*CH*₂Ar-, *J* = 13 Hz), 4.29 (t, 4H, -COO*CH*₂CH₂-, *J* = 6 Hz), 4.05 and 3.83 (2t, 8H, -O*CH*₂*CH*₂O-, *J* = 5 Hz), 3.51 (t, 4H, -CH₂*CH*₂NCS, *J* = 7 Hz), 3.44 (s, 6H, -CH₂O*CH*₃), 2.01 (quin, 4H, -CH₂*CH*₂CH₂-, *J* = 6 Hz), 1.20 and 0.98 (2s, 36H, -ArC(*CH*₃)₃)

¹³C-NMR (100 MHz, CDCl₃): $\delta = 179.60$ (s, -CH₂NCS), 170.50 (s, -CH₂COOCH₂-), 155.96, 152.92, 145.30, 144.78, 134.23, 132.81, 125.53 and 124.88 (8s, aromatic-*C*), 73.33, 71.92, 70.66, 60.64, 45.97 and 41.85 (6s, -OCH₂CH₂O-, -OCH₂COO- and -COOCH₂CH₂CH₂NCS-), 58.64 (s, -CH₂OCH₃), 33.93 and 33.71 (2s, -ArC(CH₃)₃), 31.48 and 31.26 (2s, -ArC(CH₃)₃), 29.22 (s, -ArCH₂Ar-)

LRMS (ES⁺): m/z (%) = $1101.4 (100) [M+Na]^+$

Elemental analysis: Anal Calcd. for C₆₂H₈₂N₂O₁₀S₂: C, 68.99; H, 7.66; N, 2.60.

Found. C, 68.96; H, 7.74; N, 2.62.

Characterization data for 26

TLC: $R_f = 0.70$ (10% methanol in dichloromethane)

Melting point: 260-261 °C

IR (KBr pellet)/cm⁻¹: 1697 (CO), 3343 (NH)

¹**H-NMR (400 MHz, CDCl₃):** $\delta = 8.65$ (t, 1H, -CH₂CO*NH*CH₂-), 7.14 and 7.11 (2s, 4H, Ar*H*-calixarene), 6.50 (dt, 4H, -Ar*H*-, ¹*J* = 6 Hz, ²*J* = 2 Hz), 4.96 (s, 2H, -OCH₂COO-), 4.91 (s, 2H, -OCH₂CONH-), 4.74, 4.48, 3.22 and 3.20 (ddd, 8H, -Ar*CH*₂Ar-, *J* = 13 Hz), 4.55 (t, 2H, -COO*CH*₂CH₂-, *J* = 5 Hz), 4.17 and 3.61 (ddd, 2H, -OC*H*_aH_bCH_cH_dO-, ¹*J* = 12 Hz, ²*J* = 8 Hz, ³*J* = 4 Hz), 3.87 and 3.53 (dt, 2H, -OCH_aH_bCH_cH_dO-, ¹*J* = 12 Hz, ²*J* = 4 Hz), 3.78 (q, 2H, -CH₂CH₂CONH-, *J* = 5 Hz), 3.41 (s, 6H, -CH₂OC*H*₃), 2.19 (quin, 2H, -CH₂CH₂CH₂-, *J* = 5 Hz), 1.36, 1.35 and 0.83 (3s, 36H, -ArC(*CH*₃)₃) ¹³C-NMR (100 MHz, CDCl₃): $\delta = 171.77$ (s, $-CH_2CONHCH_2$ -), 171.93 (s, $-CH_2COOCH_2$ -), 156.37, 155.84, 151,81, 145.43, 135.03, 134.50, 132.22 and 132.08 (8s, aromatic-*C*), 126.64, 126.41, 125.59 and 124.72 (4s, aromatic-*CH*), 75.30 and 71.42 (2s, $-OCH_2CH_2O$ -), 74.98 (s, $-OCH_2CONH$ -), 73.19 (s, $-OCH_2COO$ -), 65.28 (s, $-COOCH_2CH_2$ -), 59.39 (s, $-CH_2OCH_3$), 40.41 (s, $-CH_2CH_2CONH$ -), 34.49, 34.40 and 34.05 (3s, $-ArC(CH_3)_3$), 32.08, 32.05 and 31.50 (2s, $-ArC(CH_3)_3$), 31.89 (s, $-ArCH_2Ar$ -), 27.73 (s, $-CH_2CH_2CH_2$ -)

LRMS (ES⁺): m/z (%) = 920.5 (100) [M+H⁺] and 942.5 (37) [M+Na⁺]

Elemental analysis: Anal Calcd. for C₅₇H₇₇NO₉: C, 74.40; H, 8.43; N, 1.52.

Found. C, 74.26; H, 8.21; N, 1.39.

1,3-Bis(isothiocyanatomethyl)benzene,^[102] 27

This procedure was modified from the procedure reported by Gross *et al.*^[102]

To a mixture of 1,3-bis(aminomethyl)benzene (1.03 g, 1.0 mL, 7.56 mmol) and triethylamine (1.82 g, 2.5 mL, 17.99 mmol) which was stirred in dried dichloromethane (30 mL) for about 15 minutes, the solution of thiophosgene (1.96 g, 1.3 mL, 17.05 mmol) in dried dichloromethane (10 mL) was added dropwise. The reaction mixture was stirred at room temperature for further 2 hours, then the solution was heated at boiling for 1 hour. After evaporating to dryness, the residue was dissolved in dichloromethane and washed with water (2x30 mL). The purified product was eluted from column chromatography (SiO₂) using 20% ethyl acetate in petroleum ethers as eluent to afford a yellow oil (1.34 g, 80%)

Characterization data for 27

TLC: $R_f = 0.40$ (20% ethyl acetate in petroleum ethers)

¹**H-NMR** (300 MHz, CDCl₃): $\delta = 7.47-7.26$ (m, 4H, -Ar*H*-), 4.76 (s, 4H, -Ar*H*₂NCS)

¹³C-NMR (75 MHz, CDCl₃): $\delta = 171.12$ (s, -CH₂*NCS*), 135.14, 129.66, 126.78 and 125.20 (4s, aromatic-*C*), 48.38 (s, -Ar*CH*₂NCS)

LRMS (ES⁺): m/z (%) = 440.9 (4) $[2M+H]^+$

All spectroscopic data are consistent with those reported in the literature.^[103]

1,3-Bis(N'-hydroxypropylthioureidomethyl)benzene, 28

This procedure was modified from the procedure reported by Benito and coworker.^[104]

To a solution of 3-aminopropanol (0.88 g, 0.9 mL, 11.72 mmol) in dried acetone, the solution of compound **27** (1.16 g, 5.27 mmol) was added dropwise. While the reaction mixture was stirred for 2 hours, the white solid precipitated. The solid was filtered off and dried (1.95 g, 100%).

Characterization data for 28

Melting point: 122-123 °C

IR (film)/cm⁻¹: 2129 (NCS), 3268 (NH), 3391 (OH)

¹**H-NMR (400 MHz, DMSO-***d*₆): $\delta = 7.92$ (broad s, 2H, -NHCS*NH*CH₂Ar-), 7.58 (broad s, 2H, -CH₂CH₂*NH*CSNH-), 7.41-7.26 (m, 4H, Ar*H*-linkage), 4.74 (broad s, 4H, -NHCSNH*CH*₂Ar-), 4.61 (t, 2H, -CH₂CH₂*OH*, *J* = 5 Hz), 3.55 (t, 4H, -CH₂*CH*₂OH, *J* = 6 Hz), 3.54 (t, 4H, -CH₂*CH*₂NHCSNH-), *J* = 6 Hz), 1.75 (quin, 4H, -CH₂*CH*₂CH₂-, *J* = 7 Hz)

¹³C-NMR (100 MHz, DMSO- d_6): $\delta = 180.70$ (s, -HNCSNH-), 137.52, 126.33, 124.34 and 123.90 (4s, aromatic-*C*), 56.62 (s, -NHCSNH*CH*₂Ar-), 45.06 (s, -CH₂*CH*₂OH), 39.11 (s, -CH₂*CH*₂NHCSNH-), 30.04 (s, -CH₂*CH*₂CH₂-)

LRMS (ES⁺): m/z (%) = $371.1 (22) [M+H]^+$

Elemental analysis: *Anal Calcd.* for C₁₆H₂₆N₄O₂S₂: C, 51.86; H, 7.07; N, 15.12.

Found. C, 51.49; H, 7.24; N, 14.79.

5,11,17,23-Tetra-*tert*-butyl-25,27-N,N'-1,3-bis(methoxylcarbonylpropylthioureidomethyl)benzene-26,28-bis(3-oxabutyloxy)calix[4]arene, **15**

Method I

To a solution of 1,3-bis(aminomethyl)benzene (7.2 mg, 7 μ L, 5.30x10⁻² mmol) in dried pyridine (10 mL), the solution of compound **25** (52 mg, 4.82x10⁻² mmol) in dried pyridine (5 mL) was slowly dropped for over a period of 12 hours. The reaction mixture was stirred under argon atmosphere at room temperature for further 3 days. After evaporation *in vacuo*, the residue was dissolved in dichloromethane (30 mL) and washed with water (2x30 mL). The organic layer was dried over anhydrous magnesium sulfate and then evaporated under vacuum. The designed product was

purified from column chromatography (SiO_2) using 10% methanol in dichloromethane as eluent to yield the off-white solid (10.1 mg, 17%).

Method II

To a solution of compound **19** (50.2 mg, 5.70×10^{-2} mmol) in benzene (2 mL), thionyl chloride (16.3 mg, 10 µL, 1.37×10^{-1} mmol) was added. The reaction mixture was heated at reflux for 20 hours under argon atmosphere. After drying *in vacuo*, the white solid was used in the next step without further purification.

To a mixture of compound **28** (23.1 mg, 6.23×10^{-2} mmol) and 4-(dimethylamino)pyridine (15.1 mg, 1.24×10^{-1} mmol) in dried tetrahydrofuran (3 mL), the solution of previous white solid (acid chloride derivative) in dried tetrahydrofuran (2 mL) was added dropwise. The reaction mixture was further stirred under argon atmosphere for 5 hours. After the solid was filtered, the solution was evaporated to dryness. The product was carried out as a white solid from column chromatography (SiO₂) using 10% methanol in dichloromethane as eluent (29.7 mg, 43%).

To a solution of compound **19** (51.1 mg, 5.80×10^{-2} mmol) in benzene (2 mL), thionyl chloride (16.3 mg, 10 μ L, 1.37×10^{-1} mmol) was added. The reaction mixture was heated at reflux for 20 hours under argon atmosphere. After drying *in vacuo*, the white solid was used in the next step without further purification.

To a warm solution of compound **28** (22.9 mg, 6.18×10^{-2} mmol) and 4-(dimethylamino)pyridine (15.0 mg, 1.23×10^{-1} mmol) in dried acetonitrile (2 mL), the solution of the above white solid (acid chloride derivative) in dried dichloromethane (2 mL) was added dropwise. Then the reaction mixture was stirred for 5 hours. After drying *in vacuo*, the product was obtained as a white solid from column chromatography (SiO₂) using 10% methanol in dichloromethane as eluent (28.9 mg, 41%).

To a solution of compound **19** (50.8 mg, 5.77×10^{-2} mmol) in benzene (2 mL), thionyl chloride (16.3 mg, 10 μ L, 1.37×10^{-1} mmol) was added. The reaction mixture was heated at reflux for 20 hours under argon. After drying *in vacuo*, the white solid was used in the next step without further purification.

To a mixture of compound **28** (22.7 mg, 6.13×10^{-2} mmol) and triethylamine (14.5 mg, 20 µL, 1.43×10^{-1} mmol) in dried tetrahydrofuran (2 mL), the solution of the above white solid (acid chloride derivative) in dried tetrahydrofuran (2 mL) was added dropwise. The reaction mixture was further stirred under argon atmosphere for 5 hours. After the solid was filterd off, the solution was evaporated to dryness. The product was obtained as a white solid from column chromatography (SiO₂) using 10% methanol in dichloromethane as eluent (27.3 mg, 39%).

Characterization data for 15

TLC: $R_f = 0.45$ (10% methanol in dichloromethane)

Melting point: 193-194 °C

IR (film)/cm⁻¹: 1739 (CO), 2206 (NSC), 3262 (NH)

¹**H-NMR (400 MHz, CDCl₃):** $\delta = 8.21$ (broad s, 2H, -CH₂CH₂*NH*CSNH-), 8.01 (broad s, 2H, -NHCS*NH*CH₂Ar-), 7.70-7.09 (m, 4H, Ar*H*-linkage), 7.15 and 7.05 (2s, 8H, Ar*H*-calixarene), 5.31 (s, *CH*₂Cl₂), 4.78 (d, 4H, -NHCSNH*CH*₂Ar-, *J* = 4 Hz), 4.65 (t, 4H, -COO*CH*₂CH₂-, *J* = 7 Hz), 4.49 (s, 4H, -O*CH*₂COO-), 4.35 and 3.35 (AB spin system, 18H, -Ar*CH*₂Ar-, *J* = 12 Hz), 4.08 and 3.55 (2m, 8H, -O*CH*₂*CH*₂O-), 3.76 (q, 4H, -CH₂*CH*₂NHCSNH-, *J* = 6 Hz), 3.35 (s, 6H, -CH₂O*CH*₃), 2.18 (quin, 4H, -CH₂*CH*₂CH₂-, *J* = 6 Hz), 1.86 (broad s, *H*₂O), 1.18 and 1.10 (2s, 36H, -Ar*C*(*CH*₃)₃)

¹³C-NMR (100 MHz, CDCl₃): $\delta = 183.36$ (s, -NHCSNH-), 171.23 (s, -CH₂COOCH₂-), 148.81, 148.71, 148.18, 147.84, 138.37, 138.29, 134.54, 134.39, 128.42, 126.96, 126.42 and 125.91 (12s, aromatic-*C* (calixarene and linkage)), 75.92 and 69.95 (2s, -OCH₂CH₂O-), 72.60 (s, -OCH₂COO-), 65.02 (s, -COOCH₂CH₂-), 58.79 (s, -CH₂OCH₃), 49.13 (s, -NHCSNHCH₂Ar-), 40.32 (s, -CH₂CH₂NHCSNH-), 34.21 and 34.06 (2s, -ArC(CH₃)₃), 31.27 and 31.15 (2s, -ArC(CH₃)₃), 29.42 (s, -ArCH₂Ar-), 27.76 (s, -CH₂CH₂CH₂-)

LRMS (**ES**⁺): m/z (%) = 1237.3 (100) [M+Na]⁺

Elemental analysis: Anal Calcd. for C₇₀H₉₄N₄O₁₀S₂·2H₂O·CH₂Cl₂: C, 63.80;

H, 7.54; N, 4.19 *Found*. C, 64.07; H, 7.86; N, 4.28.

2.2 Binding Studies

2.2.1 General Procedure

2.2.1.1 Materials

Deuterated acetonitrile was purchased from Apollo[®] and stored over molecular seives (4 Å). All cations, lithium, sodium and potassium perchlorate, were dried in an oven at 105 °C prior to use. All tetra-*n*-butylammonium (TBA) salts were prepared under normal atmosphere and dried using either a freeze dryer or a rotary evaporator. All compounds were dried *in vacuo* over both silica gel and phosphorus pentaoxide prior to use.

2.2.1.2 Instrumentation

¹H-NMR titration experiments were carried out at 200 MHz on a Brüker AC-200 and at 300 MHz on either Brüker AC-300 or Brüker DPX-300. All titration experiments were recorded in acetonitrile- d_3 and using a residual proton signal as internal standard.

2.2.2 Experimental Procedure

2.2.2.1 General Procedure for Determination of Binding Constants: ¹H-NMR Titration

2.2.2.1.1 Cation Complexation

In a typical titration experiment, a stock solution of 0.0025 g (0.0021 mmol) of a host in CD₃CN (1.1 mL) was prepared. Then, a 600 μ L aliquot was transferred to a 5 mm NMR tube. The initial NMR spectrum was recorded. A solution of the alkali salt in the previous host solution was prepared (Table 2.1) and then added *via* microsyringe in 5 μ L portions into the NMR tube (Table 2.2). The ¹H-NMR spectrum of each solution was recorded and the chemical shifts of the diagnostic protons obtained at 12-21 different host-guest concentration ratios were plotted against the equivalents of guest added, then the binding constants were calculated using Christopher A. Hunter's 1:1 complexation model program (Department of Chemistry, University of Sheffield, UK).^[105] In the case of complexation with compound **14**, the binding constant was calculated using integration data^[79] processing in microsoft excel instead of chemical shift data in the program.

 Table 2.1. Amounts of alkali cations that used in cation complexation study with compounds 14 and 15.

Cat	ions
Name	Weight (g)
Li^+	0.0010
Na^+	0.0011
K^+	0.0013

Total volume of Total volume		Mole of alkali	Mole ratio of
added alkali (μ L)	in NMR tube (μ L)	(mmol)	alkali:host
0	600	0.00000	0.00
5	605	0.00009	0.08
10	610	0.00019	0.16
20	620	0.00037	0.32
30	630	0.00056	0.48
40	640	0.00075	0.63
50	650	0.00093	0.77
60	660	0.00112	0.91
70	670	0.00131	1.04
80	680	0.00150	1.18
90	690	0.00168	1.30
100	700	0.00187	1.43
120	720	0.00224	1.67
140	740	0.00262	1.89
160	760	0.00299	2.11
180	780	0.00337	2.31
200	800	0.00374	2.50
250	850	0.00467	2.94
300	900	0.00561	3.33
350	950	0.00654	3.68
400	1000	0.00748	4.00

Table 2.2. Volume of the guest stock solution that added in each portion.

2.2.2.1.2 Anion Complexation

.

Typically, a stock solution of 0.0025 g $(0.0021 \text{ mmol})^*$ of a host in CD₃CN (1.1 mL) was prepared (Table 2.3 and Table 2.4). Then, a 600 μ L aliquot was transferred to a 5 mm NMR tube. The initial NMR spectrum was recorded. A solution of the guest in the previous host solution was prepared and then added *via* microsyringe in 5 μ L portions into the NMR tube. These amounts were increased until completion of complexation of the host. The ¹H-NMR spectrum of each solution

was recorded and the chemical shifts of the diagnostic protons obtained at 21 different host-guest concentration ratios were plotted against the equivalents of guest added, then the binding constants were calculated using Christopher A. Hunter's 1:1 complexation model program (Department of Chemistry, University of Sheffield, UK).^[105]

Hosts	Anions	
-	Name	Weight (g)
14	CH ₃ COO ⁻	0.0028
	C ₆ H ₅ COO ⁻	0.0034
	$H_2PO_4^-$	0.0032
	Ph(H)POO ⁻	0.0036
	(PhO) ₂ PO ₂	0.0046
	⁻ OOC(CH ₂) ₂ COO ⁻	0.0056
	⁻ OOC(CH ₂) ₃ COO ⁻	0.0058
	⁻ OOCCH ₂ CH(NH ₂)COO ⁻	0.0058
	OOC(CH ₂) ₂ CH(NH ₂)COO	0.0059
	H2NOCCH2CH(NH2)COO ⁻	0.0035
	H ₂ NOC(CH ₂) ₂ CH(NH ₂)COO ⁻	0.0036
	C ₆ H ₅ CH ₂ CH(NH ₂)COO ⁻	0.0038
	(CH ₃) ₂ CHCH ₂ CH(NH ₂)COO ⁻	0.0035
	(CH ₃)CH(OH)CH(NH ₂)COO ⁻	0.0034
	HOCH ₂ CH(NH ₂)COO ⁻	0.0033

Table 2.3. Amounts of tetrabutylammonium salts that used in anion complexation study with compound 14.

จุฬาลงกรณมหาวทยาลย

Hosts	Anions		
	Name	Weight (g)	
15	CH ₃ COO ⁻	0.0056^{*}	
	C ₆ H ₅ COO ⁻	0.0034	
	H_2PO_4	0.0032	
	Ph(H)POO ⁻	0.0072^{*}	
	(PhO) ₂ PO ₂ -	0.0046	
	⁻ OOC(CH ₂) ₂ COO ⁻	0.0056	
	⁻ OOC(CH ₂) ₃ COO ⁻	0.0058	
	⁻ OOCCH ₂ CH(NH ₂)COO ⁻	0.0058	
	⁻ OOC(CH ₂) ₂ CH(NH ₂)COO ⁻	0.0059	
	H2NOCCH2CH(NH2)COO	0.0035	
	H ₂ NOC (CH ₂) ₂ CH(NH ₂)COO ⁻	0.0036	
	C ₆ H ₅ CH ₂ CH(NH ₂)COO ⁻	0.0038	
	(CH ₃) ₂ CHCH ₂ CH(NH ₂)COO ⁻	0.0035	
	(CH ₃)CH(OH)CH(NH ₂)COO ⁻	0.0034	
	HOCH ₂ CH(NH ₂)COO ⁻	0.0032	

 Table 2.4. Amounts of tetrabutylammonium salts that used in anion complexation study with compound 15.

*0.0050 g of compound **15** was used in the case of titration with either phenylphosphinate or acetate anion.

2.2.2.1.3 Binding Enhancement of Anions in the Presence of Cations

In a typical titration experiment, a stock solution of 0.0025 g (0.0021 mmol) of host and 1 equivalent of NaClO₄ in CD₃CN (1.1 mL) was prepared (Table 2.5 and Table 2.6). Then, a 600 μ L aliquot was transferred to a 5 mm NMR tube. The initial NMR spectrum was recorded. A solution of the guest in the previous host solution was prepared and then added *via* microsyringe in 5 μ L portions into the NMR tube. These amounts were increased until completion of complexation of the host. The ¹H-NMR spectrum of each solution was recorded and the chemical shifts of the diagnostic protons obtained at 21 different host-guest concentration ratios were plotted against the equivalents of guest added, then the binding constants were calculated using Christopher A. Hunter's 1:1 complexation model program (Department of Chemistry, University of Sheffield, UK).^[105]

	Guests				
Host	Cations		Anions		
	Name Weight (g)		Name	Weight (g)	
14	Na ⁺	0.00024	CH ₃ COO ⁻	0.0028	
	Na^+	0.00024	C ₆ H ₅ COO ⁻	0.0034	
	Na^+	0.00024	$H_2PO_4^-$	0.0032	
	Na^+	0.00024	Ph(H)POO ⁻	0.0036	
	Na^+	0.00024	(PhO) ₂ PO ₂	0.0046	
	Na^+	0.00024	⁻ OOCCH ₂ CH(NH ₂)COO ⁻	0.0058	
	Na^+	0.00024	⁻ OOC(CH ₂) ₂ CH(NH ₂)COO ⁻	0.0059	

Table 2.5. Amounts of NaClO₄ and tetrabutylammonium salts that were used in the case of titration with compound 14.

Table 2.6. Amounts of NaClO₄ and tetrabutylammonium salts that were used in the case of titration with compound **15**.

		ag.	Guests	
Host	(Cations	Anions	
	Name	Weight (g)	Name	Weight (g)
15	Na^+	0.00025	CH ₃ COO ⁻	0.0028
	Na^+	0.00025	C ₆ H ₅ COO ⁻	0.0034
	Na ⁺	0.00025	$H_2PO_4^-$	0.0032
	Na^+	0.00025	Ph(H)POO ⁻	0.0036
	Na ⁺	0.00025	(PhO) ₂ PO ₂ ⁻	0.0046
	Na^+	0.00025	⁻ OOCCH ₂ CH(NH ₂)COO ⁻	0.0058
	Na^+	0.00025	⁻ OOC(CH ₂) ₂ CH(NH ₂)COO ⁻	0.0059

2.2.2.2 General Procedure for Determination of Binding Stoichiometry: Conventional Job's Plots^[106]

Stock solution of host (0.0050 g) and tetrabutylammonium anion salts in 1.1 mL of CD₃CN was prepared separately (Table 2.7). In the case of binding enhancement, 1 equivalent of NaClO₄ was added with a solution of a host in this step. Six NMR tubes were filled with 300 μ L mixtures of the host and guest solutions in various ratios (Table 2.8). The ¹H-NMR spectrum were recorded and the complex concentrations were calculated as follows:

$$[\text{Host} \cdot \text{Guest}] = [\text{Host}]_{\text{total}} \cdot (\delta_{\text{obs}} - \delta_{\text{host}}) / (\delta_{\text{host} \cdot \text{guest}} - \delta_{\text{host}})$$

where [Host]_{total} is the total concentration of the host in solution

 δ_{obs} is the observed chemical shift

 δ_{host} is the chemical shift of the observed protons of the host

 $\delta_{host:guest}$ is the chemical shift of the observed protons of the complex

Table 2.7. Amounts of NaClO₄ and tetrabutylammonium salts that were used in the Job's plot experiment.

			Guests	
Host	(Cations	Anions	
	Name	Weight (g)	Name	Weight (g)
14	Na ⁺	0.00050	CH ₃ COO ⁻	0.00124
15	-	<u> </u>	HOCH ₂ CH(NH ₂)COO ⁻	0.00154
15	-	-07	H ₂ NOCCH ₂ CH(NH ₂)COO ⁻	0.00159
15	- ิ	ถาบน	(CH ₃)CH(OH)CH(NH ₂)COO ⁻	0.00148
15	-	-	C ₆ H ₅ CH ₂ CH(NH ₂)COO ⁻	0.00167
15	Na ⁺	0.00050	Ph(H)POO ⁻	0.00158

Host		Anion		Mole ratio
Volume (µL)	Mole (mmol)	Volume (µL)	Mole (mmol)	host: anion
300	0.00124	0	0.00000	1.00:0.00
240	0.00090	60	0.00022	1.00:0.24
180	0.00067	120	0.00045	1.00:0.67
150	0.00056	150	0.00056	1.00:1.00
120	0.00045	180	0.00067	0.67:1.00
60	0.00022	240	0.00090	0.24:1.00
0	0.00000	300	0.00124	0.00:1.00

Table 2.8. Volume of solution of hosts and anions in each NMR tube.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER III

RESULTS AND DISCUSSION

3.1 Synthesis of Heteroditopic Receptors

It is our interest to combine a *p-tert*-butylcalix[4]arene framework with a cage constructing unit to form an interesting compound that can simultaneously bind metal ions and anions. Ligands **14** and **15** are ditopic ion receptors possessing a cavity of phenolic oxygen donors similar to a cryptand^[107] providing a cage to accommodate an alkali cation *via* ion-dipole interactions. In addition, both macromolecules contain thiourea moieties as neutral anion receptors which are well-known to bind anions especially Y-shaped carboxylate anion by means of hydrogen bonding interactions. Thus both receptors **14** and **15** can possibly exhibit appealing host-guest binding with both cations and anions. All calix[4]arenes containing thiourea that mentioned in Chapter I^[80-81] are not cyclic compounds. The cyclic molecule is expected to display an advantage in terms of selectivity. Therefore, compounds **14** and **15** were synthesized and their binding abilities with cations and anions were investigated.

3.1.1 Synthesis and Characterization of Receptor 14

The synthesis of host 14 was carried out via 6 steps from *p*-tertbutylcalix[4]arene in 3.7% overall yield as shown in Scheme 3.1.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Scheme 3.1. Synthetic scheme for calix[4]arene amide receptor 14.*

^{*}Reagents and conditions: (a) di-*tert*-butyl dicarbonate, DCM, RT, 24 hours, 93%; (b) 2-bromoethyl methyl ether, K₂CO₃, ACN, reflux, 36 hours, 73%; (c) methyl bromoacetate, Na₂CO₃, ACN, reflux, 24 hours, 70%; (d) NaOH, EtOH, reflux, 24 hours, 70%; (e) i. SOCl₂, benzene, reflux, 24 hours, ii. **16**, TEA, DMAP, toluene, RT, 24 hours, 42%; (f) i. TFA, DCM, RT, 2 hours, ii. NaHCO_{3 (aq)}, DCM, RT, 2 hours, iii. CSCl₂, K₂CO_{3 (aq)}, DCM, RT, 2 days, 62%; (g) 1,3-bis(aminomethyl)-benzene, pyridine, RT, 2 days, 40%.

In the first step, disubstituted compound **17** was prepared by a nucleophilic substitution of *p-tert*-butylcalix[4]arene and 2.5 equivalents of 2-bromoethyl methyl ether using potassium carbonate as base in acetonitrile at reflux for 36 hours. The product was purified by column chromatography using 5% ethyl acetate in dichloromethane as eluent to gain 73% yield of the product. The condition that used 2-ethoxyethyl tosylate as a reagent and refluxed for a longer time would improve the yield up to 82%.^[108] The formation of derivative **17** was indicated by the arising of two triplet of $-OCH_2CH_2O$ - signals at 4.06 and 4.33 ppm and one singlet of $-CH_2OCH_3$ at 3.72 ppm. Moreover, the spectrum also displayed typical signals of disubstituted *p-tert*-butylcalix[4]arene at the opposite phenol units (two singlets with an equal of integration (4H:4H) at 7.08 and 7.23 ppm belonging to ArH-calixarene and two singlets with an integral of 18H:18H corresponding to $-ArC(CH_3)_3$ at 1.23 and 1.47 ppm). Additionally, the doublet of doublet signals at 3.50 and 4.58 ppm owing to the methylene bridge protons on the lower rim with a coupling constant of 13 Hz indicated that this compound oriented in a cone conformation.^[109-110]

The excess of methyl bromoacetate was reacted with the rest of phenolic-OH moieties of 17 in the presence of sodium carbonate as a base in acetonitrile at reflux for a day. After the residue was purified by column chromatograpy using 10% ethyl acetate in dichloromethane, the tetrasubstituted compound 18 was obtained in 70% yield. According to the literature, other bases and solvents such as sodium hydride in tetrahydrofuran,^[111] sodium hydride in dimethylformamide,^[112-113] sodium hydride in tetrahydrofuran and dimethylformamide.^[97] sodium butoxide (NaOBu^t) in tetrahydrofuran and dimethylformamide^[94] could be used to produce this product. Compared to other conditions using different bases and solvents, the condition that used in this experiment was easy to work up and resulted in high yield of the desired product. ¹H-NMR data of derivative **18** displayed signals of -CH₂COOCH₃ at 3.77-3.80 ppm and -OCH₂COO- at 4.74-4.75, 4.82-4.83 and 4.96-4.97 ppm in place of the -ArOH signal. In addition, the infrared spectra exhibited the absence of broad OH and the arising of sharp CO at 1762 cm⁻¹. Even though the ¹H-NMR and ¹³C-NMR spectra of compound 18 showed complicated spectra due to the mixed conformation in chloroform-d solution, the structure of this product was confirmed by electrospray mass spectrometry, infrared spectrophotometry, melting point and elemental analysis. Moreover, acid derivative 19, which was afforded from treating 18 with sodium hydroxide in ethanol at reflux for 24 hours, was in a cone conformation. This was signified by the coupling constant of the methylene bridge signal (J = 13 Hz).^[109-110] The structure of **19** was easily diagnosed by the typical symmetry pattern for *p-tert*-butylcalix[4]arene derivatives in ¹H-NMR spectra. The absence of $-CH_2COOCH_3$ signal in ¹H-NMR spectra and the appearance of broad OH signal at 3252 cm⁻¹ in the infrared spectra supported the existence of product. Compared to tetrasubstituted calixarene derivative **18**, either its starting material **17** or subsequent product **19** showed well-defined ¹H-NMR spectra of cone conformation. This may be stemmed from the disappearance of intramolecular hydrogen bonding in macromolecule **18**. In addition, the ethyl methyl ether chains were probably not steric enough for protecting the rotation of aromatic unit on calixarene building block. Therefore, the unexpected conformational behavior was observed in both ¹H- and ¹³C-NMR spectra of tetrasubstituted calixarene **18**.

The acid derivative 19 was then transformed to acid chloride derivative using thionyl chloride in benzene at reflux for 24 hours. Previously, this reaction was carried out with other reagents and solvents (Table 3.1) but thionyl chloride and benzene vielded a better product in the case of quantity and quality due to the strongest vigorous condition (highest temperature). In spite of a broad NMR spectra, the intermediate compound was assigned by the downfield shift of $-OCH_2COC1$ signal (from 4.76 to 5.47 ppm) affecting by the presence of the acid chloride group instead of the carboxylic acid (-OCH₂COOH). Attributed to the unstable property of this intermediate, only characteristic ¹H-NMR and ¹³C-NMR spectrum were used as tools for characterization and this step must be done immediately prior to use.^[114] After that, this acid chloride was condensed with boc-protecting diaminopropane 16 which prepared in toluene using triethylamine as organic base and 4-(dimethylamino)pyridine as a catalyst at room temperature for 24 hours according to the procedure reported in the literature.^[98-99] The purified product **20** was obtained in 42% yield. In the absence of 4-(dimethylamino)pyridine, only 23% of the product was received. This implied that, 4-(dimethylamino)pyridine acted as a catalyst in this reaction. The ¹H-NMR spectrum showed a broad signal of -CH₂CONHCH₂- at 6.55 ppm and -CH₂NHCOOC(CH₃)₃ at 8.33 ppm which were confirmed by COSY and deuterium exchanged experiment as well as an additional signal of boc-protecting moiety $(-COOC(CH_3)_3)$ at 1.43 ppm accompanied with two *t*-butyl signal of the calixarene scaffold (0.89 and 1.28 ppm). In addition, the infrared spectra displayed the signal of CO (1695 cm^{-1}) and NH (3347 cm^{-1}).

Conditions		Percentage yield of	
Reagents	Solvents	acid chloride derivative (%)	
(COCl) ₂	DCM and DMF	57	
(COCl) ₂		55	
SOCl ₂	DCM	85	
SOCl ₂	benzene	99	

Table 3.1. Product yields of the conversion of the acid 19 to the acid chloride under various conditions.

In the next step, the protecting group was deprotected by trifluoroacetic acid at room temperature for 2 hours to obtain trifluoroacetate salt. Then the salt was extracted with sodium hydrogen carbonate solution and dichloromethane. After removal of the solvent, amine **31** was obtained. It was further reacted with thiophosgene using potassium carbonate in aqueous solution as a base to afford thiocyanate **21** in 62% yield after purification by a column chromatography (10% methanol in dichloromethane). Other bases as shown in Table 3.2 were also used. Barium carbonate gave a low percent yield while sodium hydrogencarbonate did not give the desired product at all. This could be ascribed by the basicity of inorganic base (K₂CO₃ > Ba₂CO₃ > NaHCO₃). The product had characteristic signals of – CH₂NCS in the infrared spectra (2105 cm⁻¹) and a highest molecular mass at 1099.4 according to [M+Na]⁺ species.

Table 3.2. Product yields of the conversion of the amine to the thiocyanate 21 under various conditions.

Base	Percentage yield (%)
NaHCO ₃	0
Ba_2CO_3	40
K ₂ CO ₃	62

Compared to thiocyanate **30** (Scheme 3.2) which prepared from compound **29** using potassium carbonate as base, a much lower yield was obtained in our case.^[115] The unstable primary amine in intermediate **31** could attack the carbonyl group of the opposite substituent. Thus, after deprotecting, some of compound **31** was cyclised to gain a cyclic compound **32** (Scheme 3.3) and 1,3-diaminopropane before treating with thiophosgene. The existence of compound **26** is an evidence to support this assumption (*see* Section 3.1.2).

Scheme 3.2. Synthetic scheme of 5,11,17,23-tetra-*tert*-butyl-26,28-dihydroxy-25,27-bis(2-isothiocyanoethoxy)calix[4]arene from its amine analogue.^{*}

*Reagent and condition: CSCl₂, BaCO₃, DCM, RT, 24 hours, 96%.^[115]

Scheme 3.3. Proposed by-product during the preparation of the thiocyanate 21.

From the literature, the isothiocyanates were readily transformed to the corresponding symmetric N,N'-disubstituted thioureas by a simple treatment with pyridine-water.^[116] Therefore, the last step was carried out by treating compound **21**

with 1,3-bis(aminomethyl)benzene in pyridine at room temperature for 2 days. Separation of the desired product by a column chromatography using 10% methanol in dichloromethane as an eluent gave bis-thiourea calix[4]arene amide **14** in 40% yield. The symmetrical structure of molecule **14** resulted in a well-defined ¹H-NMR spectra. The spectrum showed broad singlets of both $-NHCSNHCH_2Ar$ - at 6.66 ppm and $-CH_2CH_2NHCSNH$ - at 7.58 ppm. The signal of $-CH_2CH_2NHCSNH$ - at 3.61 ppm and the signal of $-HNCSNHCH_2Ar$ - at 4.75 ppm as well as signals of Ar*H*-linkage in aromatic region indicating by the integration were observed in the spectrum. The characteristic signal of thiourea appeared at 182.03 ppm in the ¹³C-NMR spectrum and 2206 cm⁻¹ in the infrared spectrum.

This reaction was also done at 60 °C, compound 14 was obtained in higher yield (60%) but it existed as a mixture of at least two conformations in either chloroform-*d* or methanol- d_4 solution. Nevertheless, a rod crystal of size 0.26 x 0.08 x 0.06 mm was obtained from this condition. Crystal of ligand 14 was clear and colorless. Single rod crystal of receptor 14 was obtained by rapidly cooling a methanol solution to gain a small crystal and consequently by slowly cooling this solution to grow the crystal. X-ray crystallographic analysis produced the crystal structure shown in Figure 3.1.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

The hydrogen atoms are omitted for clarity. The structure is solvated by one molecule of methanol and two molecules of pyridine. The x-ray structure of this desired product 14 is in C_2 symmetry. The crystal data and details of data collection together with structure refinement are displayed in Appendix A.

The crystal structure indicates that compound **14** adopts a closed flattened cone conformation^[117] which is a type of the pinch cone conformations to reduce the steric strain of the macromolecule. The closed flattened cone conformation is defined as the pinched cone conformation that 2 aromatic units of the calixarene building block which contain larger substituted group are parallel while other 2 units composed of smaller substituents are flattened. *Vice versa*, two aromatic units with the larger substituents are flattened while the rest of them are parallel in an open flattened cone conformation (Figure 3.2). Receptor **14** hardly exists in an open flattened cone conformation due to the presence of bis-thiourea linkage.

Figure 3.2. Examples of an open (a) and a closed (b) flattened cone conformation of calix[4]arene derivatives.^[117]

3.1.2 Synthesis and Characterization of Receptor 15

The analogous derivative 15 was synthesized by the similar procedure as host 14 via either 6 steps (0.2%) or 4 steps (0.3%) (Scheme 3.4). The aim of this synthesis is to compare the functional group specificity towards the interaction between the ester donor and cations with the interaction between the amide donor and cations in the case of derivative 14.

Scheme 3.4. Synthetic scheme for calix[4]arene ester receptor 15.*

^{*}Reagents and conditions: (h) di-*tert*-butyl dicarbonate, TEA, DCM, RT, 24 hours, 97%; (i) bromoacetyl bromide, TEA, toluene, RT, 5 hours, 45%; (j) i. SOCl₂, benzene, reflux, 24 hours, ii. **22**, TEA, DMAP, toluene, RT, 24 hours, 59%; (k) **23**, K₂CO₃, NaI, acetone, reflux, 4 days, 42%; (l) i. TFA, DCM, RT, 2 hours, ii. NaHCO₃(aq), DCM, RT, 2 hours, iii. CSCl₂, K₂CO₃(aq), DCM, RT, 4 days, 6%; (m) 1,3-bis(aminomethyl)benzene, pyridine, RT, 2 days, 17%.

First, the starting material for compound **24** was the acid chloride derivative which was prepared by the same procedure as previously mentioned. After that, this acid chloride was coupled with compound **22** which was prepared according to the literature^[100] in toluene using triethylamine as an organic base and 4-(dimethyl-amino)pyridine as a catalyst. After purifying by column chromatography using 5% methanol in dichloromethane as eluent, product **24** was obtained in 59% yield. Column chromatography in this step needed to be neutralized by a few drops of triethylamine and the product needed to be separated immediately. Otherwise the desired product was transformed to another compound such as polymer. The ¹H-NMR spectrum showed a broad singlet of $-CH_2NHCOOC(CH_3)_3$ at 5.07 ppm, a triplet of $-COOCH_2CH_2$ - at 4.23 ppm, a broad singlet of $-CH_2CH_2NH$ - at 3.14 ppm, a quintet of $-CH_2CH_2CH_2$ - at 1.84 ppm and a singlet of $-COOC(CH_3)_3$ at 1.43 ppm as well as the typical signals of *p-tert*-butylcalix[4]arene molecule.

Alternatively, compound **24** was able to prepare from a substitution reaction of compound **17** and compound **23** using 2.3 equivalents of base, potassium carbonate, and a catalytic amount of sodium iodide. The same product which was characterized by ¹H-NMR spectroscopy and electrospray mass spectroscopy was separated by column chromatography in 42% yield. Although this step gave the lower yield, the total yield was higher (old route: 21%, new route: 31%). The second procedure was thus the optimum condition and was used to prepare **24**.

Subsequently, the trifluoroacetate salt was yielded by treating the bocprotecting compound 24 with trifluoroacetic acid at room temperature for 2 hours. After that, the salt was extracted with sodium hydrogen carbonate solution and dichloromethane to yield amine derivative 33. Then, it was reacted with thiophosgene using potassium carbonate in an aqueous solution as base to yield thiocyanate derivative 25. After separation by column chromatography (10% methanol in dichloromethane), the desired product was obtained in only 6% yield. Unfortunately, the much lower yield was obtained in this step compared to that of compound 21. This can be explained in the similar manner as compound 31 and 32. The reactive primary amine moiety in compound 33 leaded to a chiral compound 26 (Scheme 3.5). Chiral molecule 26 was eluted from column chromatography before compound 25 due to its less polarity. In the case of di-thiocyanate macromolecule 25, the signals of $-CH_2NHCOO(CH_3)_3$ in ¹H-NMR spectra disappeared while the characteristic signal of -CH₂NCS was found at 179.60 ppm in ¹³C-NMR spectra. The absorption band at 2092 cm⁻¹ according to NCS functionality in the infrared spectrum supported the proposed structure. Chiral compound 26 was fully characterized by all techniques to support the structure. Compared to derivative 25, ¹H-NMR and ¹³C-NMR spectrum of compound 26 was more complicated owing to the chirality playing a role to the The NMR spectrum contained a signal of symmetry of its molecule. CH₂CONHCH₂- at 8.65 ppm with integration for only one proton in the proton type. There was no -CH₂NCS signal in the spectra but a signal of -CH₂CONHCH₂- at 177.77 and a signal of -CH₂COOCH₂- at 171.93 ppm were found in the ¹³C-NMR The structure of both compounds 25 and 26 were confirmed by LRMS spectrum. and elemental analysis. Unlike compound 25 or the others, the major peak in the electrospray mass spectra of chiral 26 was the molecular mass of monomer and proton [M+H]⁺, not the molecular mass of monomer and sodium ion [M+Na]⁺. Another base was also used to improve the yield of compound 25 (Table 3.3), but potassium carbonate produced a better percentage yield because of the stronger basicity.

Table 3.3. Product yields of the conversion of the amine to the thiocyanate 25 under various conditions.

Base	Percentage yield (%)
Ba ₂ CO ₃	0
K ₂ CO ₃	6

Scheme 3.5. The unexpected reaction during preparation of thiocyanate 25.

63

Finally, the last step was carried on by converting di-thiocyanate **25** to host **15** by stirring with 1,3-bis(aminomethyl)benzene in pyridine at room temperature for 2 days. The desired product was eluted in 17% yield from column chromatography using 10% methanol in dichloromethane as eluent. The ¹H-NMR spectra of receptor **15** displayed two broad singlets of $-NHCSNHCH_2Ar$ - and $-CH_2CH_2NHCSNH-$ signals at 8.01 and 8.21 ppm, respectively. Their NMR data also consisted with a doublet of $-NHCSNHCH_2Ar$ - at 4.78 ppm, a triplet of $-COOCH_2CH_2$ - at 4.65 ppm, , a quatet of $-CH_2CH_2NHCSNH$ - at 3.76 ppm, a quintet of $-CH_2CH_2CH_2$ - at 2.18 ppm as well as multiplet signal of Ar*H*-linkage in aromatic region. The spectrum was also composed of typical signals for calix[4]arene in cone conformation.

In summary, bis-thiourea calix[4]arene ester **15** was able to prepare by the same procedure as amide receptor **14**, but the overall percent yield was much lower. In order to improve the yields of ligand **15**, an alternative strategy was developed and carried out *via* 4 steps. Receptor **15** was efficiently prepared by the procedure shown in Scheme 3.6 (15%).

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Scheme 3.6. Another synthetic route to achieve ester derivative receptor 15.*

^{*}Reagents and conditions:(n) CSCl₂, TEA, DCM, RT, 2 hours, 80%; (o) 3aminopropanol, acetone, RT, 2 hours, quantitative; (p) i. SOCl₂, benzene, reflux, 24 hours, ii. **28**, DMAP, THF, RT, 2 hours, 43%.

Compound **27** was prepared according to the literature.^[102] The quantitative yield of bis-thiourea linkage **28** was obtained from treating **27** with 2.2 equivalents of 3-aminopropanol in acetone at room temperature for 2 hours. Then, the reaction mixture was stirred with acid chloride in dry tetrahydrofuran using 4-(dimethylamino)pyridine as a base to obtain bis-thiourea calix[4]arene ester **15**. This reaction was carried out using different bases and solvents as shown in Table 3.4 to find out the best condition. The higher yield under the condition of 4-

(dimethylamino)pyridine and tetrahydrofuran could be explained by a stronger basicity of base and a higher polarity of solvent.

Condition		Percentage yield
Base	Solvent	(%)
DMAP	THF	43
DMAP	ACN and DCM	41
TEA	THF	39
TEA	ACN and DCM	0
TEA	DMF and DCM	0
TEA	DCM	0

 Table 3.4. Product yields of the conversion of the acid chloride to bis-thiourea

 calix[4]arene ester 25 under various conditions.

The latter route was discovered to be the optimum procedure to obtain compound **15** because it gave much higher overall yield and also took less time. Moreover, this methodology gave access to study the binding property because enough material was obtained (>100 mg).

3.2 Investigation of Binding Ability

Both synthetic molecules **14** and **15** are heteroditopic receptors which are expected to encapsulate both cations and anions simultaneously. As previously mentioned in Chapter 1, the binding ability of this kind of receptors towards anions should be enhanced by electrostatic forces between cations and anions.^[56-57] Thus the binding efficacy of receptors will be investigated towards cations, anions as well as ion-pairs.

The solvent used in the binding recognition study is very important because the stability of the host-guest adducts is strongly dependent on the polarity of the media. In fact, salts are present as ion pairs or as aggregates of ion pairs in apolar media. Compared to a chloroform-*d* solution, the ion-pairs exist as the free species in more polar solvents such as methanol- d_4 , dimethylsulfoxide- d_6 or acetonitrile- d_3 . The free species will give an advantage in binding study compared to the aggregated ionpairs. The solubility of a host and a guest is the main criteria in recognition study. Receptor 14, receptor 15 as well as tetrabutylammonium anions were able to dissolve in chloroform-d while the cation perchlorate salts were hardly soluble in this media. Thus, other solvents will be considered to use in this experiment.

The electron pair donor (EPD) and electron pair acceptor (EPA) solvent are also one of the main criteria for complexation in supramolecular chemistry area. Some solvents mainly act as donors while some solvents prefer to serve as acceptors. However, all solvents are amphoteric. A measurement of the nucleophilicity of EPD solvents is provided by the donor number DN (or donicity) whereas a quantity for characterization of the electrophilicity is the acceptor number AN (acceptivity).^[118] EPD solvents are particularly important for cation complexation. Reciprocally, EPA solvents play a particular important role for anion complexation. Table 3.5 exhibits the donor or acceptor numbers of some organic solvents. The higher DN and AN reflect the stronger interaction of solvents towards cations and anions, respectively. Therefore, acetonitrile- d_3 was the solvent of choice for the whole experiment.

Solvents	DN/ (kcal·mol ⁻¹)	AN	
Acetone	17.0	12.5	
Acetonitrile	14.1	18.9	
Dimethyl sulfoxide	29.8	19.3	
Dichloromethane		20.4	
Chloroform	-	23.1	
Methanol	้เขาพยบริการ	41.5	
Water		54.8	
Acetonitrile Dimethyl sulfoxide Dichloromethane Chloroform Methanol Water	14.1 29.8	18.9 19.3 20.4 23.1 41.5 54.8	

 Table 3.5. Donor numbers and acceptor numbers of organic solvents.

¹H-NMR spectroscopy has been widely employed to investigate receptorsubstrate interactions. This technique allows access to the detail of the interaction between a host and a guest molecule. Therefore the binding ability of the novel multidentate thiourea receptors based on calix[4]arene building block in acetonitrile d_3 was investigated by ¹H-NMR titration technique to determine the stoichiometry of the complexes, association constant and Gibbs free energy. The concentration of hosts in this experiment is ~0.0018 mol/L while the stock solution of guests is 10 fold-higher in concentration. No effort was made to maintain a constant pH, but care was taken to avoid water absorption from the atmosphere. The calculated association constants for the different curves were within 10% of the error.

Both receptors exist in cone conformation in acetonitrile- d_3 ; like in chloroform-d, which could observed from a pair of doublet^[109-110] at 4.4861 and 3.2986 for **14** (${}^{2}J = 13$ Hz) and a pair of doublet at 3.4423 and 4.3514 ppm for **15** (${}^{2}J = 12$ Hz). Compared to other conformations of calix[4]arene, cone is the most steric conformation but it is stabilized in polar solvents due to the higher dipole moment (μ).^[109-110] In the non-polar solvent, a mixture of conformation is observed.

3.2.1 Binding Ability of Receptors 14 and 15 towards Cations

Basically, a proper cation for investigating the enhancement of anion binding should be found out before the cation enhancement anion recognition study. To reduce the effect of ion pair, perchlorate or hexafluorophosphate should be used as counter anions. For this purpose, compounds **14** and **15** were titrated with perchlorate salts of lithium, sodium and potassium to evaluate binding constants.

Addition of cations, lithium, sodium and potassium, caused a decrease in intensity of most signals in the ¹H-NMR spectra of **14** upon addition of successive aliquots of guests. In addition, a new set of signals was found to appear which became well resolved after the addition of 1 equivalent of sodium perchlorate. This result suggested that a new species was formed upon the addition of sodium. The simultaneously decrease in intensity of the unbound calixarene and increase in intensity of the host-guest complex indicated the relatively slow of the recognition process on the NMR time scale. For lithium and potassium perchlorate, the broaden spectrum were not well resolved at any equivalent of the guests added. The integration ratios of bound and unbound receptor were stable at 1.7 and 1.0 equivalents of lithium and potassium, respectively. Unlike the sodium case, the spectrum without unbound species was not monitored in both lithium and potassium cases. Therefore, receptor 14 exhibited changeable binding kenetics, showing the slower chemical exchange for lithium and potassium compared to sodium ion. This is supported by the more complicated spectrum of $14 \cdot Li^+$ and $14 \cdot K^+$, compared to $14 \cdot \mathrm{Na}^+$.

In the case of $14 \cdot Na^+$, slow interconversion between free ligand and the complex was shown by two sets of $-ArCH_2Ar$ - signals (4 doublets), $-OCH_2CONH$ -(2 singlets), $-OCH_2CH_2OCH_3$ (4 triplets), $-CH_2CH_2NHCSNH$ - (2 broad singlets), -NHCSNH CH_2Ar - (2 broad singlets), $-CH_2ArHCH_2$ - (4 singlets) and $-ArC(CH_3)_3$ (3 singlets). After 1 equivalent of sodium perchlorate was added, only one set of all previously mentioned signals appeared in the ¹H-NMR spectrum of **14** at the higher magnetic field (upfield) as compared to those of free ligand. Moreover, these complicated signals might be induced by the calixarene based molecule. The similar change to $14 \cdot Na^+$ was observed in the system of lithium and potassium perchlorate, but the spectrum was not as well-resolved as in the sodium case.

The stoichiometry of $14 \cdot \text{Na}^+$ complex was 1:1 as judged by the disappearance of the old set of signals as well as the rise of the new set of NMR peaks at 1 equivalent of sodium perchlorate in the ¹H-NMR spectrum. Indeed, it was not possible to measure an association constant by monitoring the change in the peak positions of any proton signal. However, the stability constants could be easily determined from the variation of the integration ratio between complex and ligand at various amount of the cationic salt. When a 1:1 complex formation between receptor 14 and each cation takes place, the stability constant (β_1) for the equilibrium is expressed as:^[79]

$$\beta_{1} = [HG]$$

$$\beta_{1} = n_{hg}/[H]_{0} - [HG])([G]_{0} - [HG])$$

$$\beta_{1} = n_{hg}/[H]_{0}$$

$$(1 - n_{hg})(R - n_{hg})$$

where $[H]_0$ represents initial concentration of the host

[G]₀ represents initial concentration of the guest

$$[HG] = n_{hg}[H]_0$$
$$n_{hg} = I_{hg}$$
$$I_{hg} + I_h$$

where I_{hg} represents integration of the complex

I_h represents integration of the host

and R = $[G]_0/[H]_0$

On the other hand, the complexation of receptor 15 towards alkali cations, was a fast process on the NMR time scale, and accordingly a singlet set of time-averaged signals was observed for both free ligand and complexed species of the host and the Upon addition of increasing amounts of lithium perchlorate (up to 4 guest. equivalents) in an acetonitrile- d_3 solution of 15, the triplet signal of $-COOCH_2CH_2$ moved upfield from 4.5077 to 4.4801 ppm ($\Delta \delta = -0.0276$ ppm) and the quartet signal of $-CH_2CH_2NHCSNH$ - also moved upfield from 3.6694 to 3.6658 ppm ($\Delta \delta = -0.0036$ ppm). The signal at 4.5419 ppm which belonged to -OCH₂CO- moved to the downfield region with $\Delta \delta = +0.0056$ ppm. Concomitantly, the downfield shifts were observed with –OCH₂CH₂OCH₃ shifting +0.0276 ppm (from 4.0647 to 4.0923 ppm) at 3.68 equivalents. The -CH₂CH₂NHCSNHCH₂Ar- and -CH₂CH₂NHCSNHCH₂Arsignals underwent the upfield complexation induced shift of respective -0.3709 and -0.2902 ppm (from 8.1811 and 8.1004 to 7.8102 ppm). Changes in the – OCH₂CH₂OCH₃, -ArCH₂Ar- and -CH₂ArHCH₂- of receptor 15 with lithium cation were also monitored. The singlet signal of $-OCH_2CH_2OCH_3$ was deshielded from 3.3173 to 3.3191 ($\Delta\delta$ = +0.0018 ppm). The -ArCH₂Ar- and -CH₂ArHCH₂- signals moved downfield from 4.3797 to 4.3814 ($\Delta\delta = +0.0017$ ppm) and from 7.3707 to 7.3726 ($\Delta \delta$ = +0.0019 ppm), respectively.

In the system of sodium or potassium, the similar complexation induced shifts in the spectrum of **15** upon the NMR titration were observed (Figure 3.3). The greater effect towards most signals was shown in both sodium and potassium cases compared to the lithium one. Unless otherwise noted, all data are presented at 4 equivalents of added cation. The positive sign in the following figure reflects the downfield shift while the negative sign indicates the upfield shift.

Figure 3.3. The complexation induced shifts of some proton signals on ¹H-NMR spectrum (a) $15 \cdot \text{Li}^+$ (b) $15 \cdot \text{Na}^+$ and (c) $15 \cdot \text{K}^+$.

The downfield shift of $-OCH_2COO$ - and the upfield shift of $-COOCH_2CH_2$ can be explained by the α -H and the normal cation complexation, respectively. It is still not clear why *NH*-thiourea and their adjacent methylene protons continuously shift to the highfield region. The upfield shift of *NH*-thiourea signals is probably a consequence of encapsulation of cationic substrate at the ester and crown cavity which enlarges the size of cavity until the intramolecular hydrogen bonding between both *NH*-thiourea groups are broken.^[119] The breaking of any hydrogen bond interactions was indicated by the upfield movement of that proton signal in NMR spectrum. The shift to the highfiled region of both *NH*-thiourea signals was also observed in the system of receptor **14**.

The association stoichiometry of **15** cation complexes indicated by the titration curves were confirmed by the continuous variation method (Job's plots). The bell-shaped Job's plots which obtained from the modified data of ¹H-NMR titration of receptor **15** with 0-100 μ L of cationic solution added in acetonitrile-*d*₃ showed the symmetry curve with maxima for mole ratio [G]_t/{[G]_t + [H]_t} about 0.5 or [G]_t/[H]_t of 1 indicating a 1:1 complex. $\Delta\delta(1-X)$ is the supramolecular complex concentration as determined by the chemical shift changes ($\Delta\delta$) for the corresponding protons multiplied by their inverse mole fractions (1-X). These were supported by the titration curve for all signals which were fitted well to a 1:1 binding model. Figures 3.4 and 3.5 show the Job's plots and titration curves, respectively, for only – OCH_2COO - signals in all complexes due to the closest of this proton to the binding site as well as its clearly resolved signal in the ¹H-NMR spectrum. For the case of any 1:1 complexes which display the faster exchange rate than the NMR time scale, the association constant can be calculated using NMRTit_HG program.^[105]

Figure 3.4. Job's plots of $-OCH_2COO$ - in 15·Li⁺, 15·Na⁺ and 15·K⁺ complexes.

Figure 3.5. Titration curves of $-OCH_2COO$ - in 15·Li⁺, 15·Na⁺ and 15·K⁺ complexes.

It was revealed that either **14** or **15** bound lithium, sodium as well as potassium perchlorate with the association constants and Gibbs free energies in acetonitrile- d_3 as shown in Table 3.6. The binding data of all **14**·cation complexes were calculated from the integration of $-\text{Ar}CH_2\text{Ar}$ - signal plus $-\text{O}CH_2\text{CONH}$ - signal according to their clear change. On the other hand, β_1 and ΔG values of the **15**·cation complexes were obtained by the complexation induced shift (CIS) of the - OCH₂COO-, -COOCH₂CH₂- and -OCH₂CH₂OCH₃. It should be noted that ΔG is calculated from $\Delta G = -\text{RT}ln\beta_i$ when R = 8.314 J·mol⁻¹·K⁻¹ and T = 298 K.

Complex		Association Constant	Gibbs free energy	
Туре	Stoichiometry	(M ⁻¹)	(kJ·Mol ⁻¹)	
14 ·Li ⁺	1:1	914	-16.9	
$14 \cdot \mathrm{Na}^+$	1:1	5531	-21.4	
$14 \cdot K^+$	1:1	617	-15.9	
15 ·Li ⁺	1:1	371	-14.7	
$15 \cdot \mathrm{Na}^+$	1:1	15500	-23.9	
15 ·K ⁺	1:1	688	-16.2	

Table 3.6. The average association constants and Gibbs free energies upon the formation of 14-cation and 15-cation complexes in acetonitrile- d_3 .

Both novel calixarene compounds **14** and **15**, which contained the cation binding site closed to a lower rim of calixarene building block showed strong binding towards sodium. The binding recognition of lithium and potassium afford slightly different in the systems of either **14** or **15**. However, bis-thiourea **14** exhibited a slightly more selective to lithium over potassium. *Vice versa*, analogous **15** showed a particularly more selective to potassium over lithium (Figure 3.6). Additionally, calix[4]arene ester **15** appeared to be more efficient and more selective for alkali cation complexation. This could be rationalized by hard-soft acid-base (HSAB) concept and size complementary.

Figure 3.6. The selectivity of receptors **14** and **15** towards sodium over potassium and lithium cation.

The main idea of HSAB concept is shown in Scheme 3.7.^[18] Oxygen donor atoms in receptors **14** and **15** are hard bases because of their high electronegativity. Alkali cations are hard acid due to their non-polarisable sphere. Receptor **15** contains 10 hard bases (10 oxygen atoms) whereas compound **14** contains 8 hard bases (8 oxygen atoms) as cationic binding site. Thus, it was reasonable that the complex formation constant of **15**·Na⁺ was larger than that of **14**·Na⁺ and the kinetic of complexation of the former was faster than the latter. It is worth mentioning that the amide^[40, 120-123] and ester^[55, 124] cavity on the lower rim of calix[4]arene always afford the slow and the fast exchange on NMR time scale, respectively.

The hard acid of alkali cations is in the order $Li^+ > Na^+ > K^+$ owing to their sizes. Thus, the selectivity trend did not absolutely control by HSAB concept. If we consider the size of alkali cations, potassium ion is larger than sodium and lithium (Table 3.7). Among the three ions, the size of sodium cation probably has the most proper size to fit into the cavity of ligands **14** and **15**. The lithium cation is too small to be bound tightly with the ligands while potassium cation is too large to bind with the receptors without causing significant strain in the calixarene scaffold.

Alkali Cations	r (Å)
Li ⁺	0.69
Na ⁺	1.02
K ⁺	1.38

Table 3.7. A comparison of the ionic radius (Å) of isoelectronic alkali cations.^[125]

For 14-cation complexes, the result suggested that alkali cation was encapsulated in the cavity by cleaving the intramolecular hydrogen bonding between two amide groups using the ion-dipole interaction between two *CO*-amide groups and a cation as previously discovered in the literature.^[120] Murakami and Shinkai proposed the closed form of calix[4]arene amide before complexation due to the intramolecular hydrogen bonding (Figure 3.7 (a)). Their structures were confirmed by IR spectroscopy and the more downfield shift of –CO*NH*- signals in the ¹H-NMR spectrum, compared to their analogous non-intramolecular hydrogen bonding – CO*NH*- signal. Moreover, they also found that the encapsulation of a cation induced an opened form of the receptors (Figure 3.7 (c)).^[121, 126] The ¹H-NMR and IR data in this experiment could not compare to those reported in the literatures due to the different solvent system. Furthermore, the *NH*-thiourea in our receptor interfered with the –CO*NH*- signal in the IR spectrum. However, if we have a look back at our

experimental data (Chapter II), -CO*NH*- signals in bisprotected diamine **20**, bisisothiocyanate **21** and cyclic receptor **14** were identified at 6.55, 8.46 and 8.67 ppm, respectively. The more deshielding of *NH*-amide signals in compounds **21** and **14** as compared to those in **20** might be arisen from the hydrogen bonding which could be either intra- or intermolecular hydrogen bonding. The dilution experiment is the best method to differentiate the hydrogen bonding interaction. ¹H-NMR spectra of 1.87 mmol/L and 3.75 mmol/L of receptor **14** in CD₃CN showed virtually the same position of –CO*NH*- signal (δ at 7.5307 and 7.5298 ppm, respectively) implying the insignificant intermolecular hydrogen bonding.

The complexation of cation in the cavity of host 14 broke the intramolecular hydrogen bonding and induced the rearrangement of calixarene building block. The former was evidenced by the upfield shift of -CONH- signal while the latter was supported by a new set of nearly all signals, especially $-ArCH_2Ar$ -, $-CH_2ArHCH_2$ - and $-ArC(CH_3)_3$ which are not likely to directly interact with the alkali cation. The appearance of new $-OCH_2CH_2OCH_3$ in 14 cation spectrum can be attributed to the involving of both oxygen atoms in the cation recognition.

The two carbonyl groups in free calix[4]arene ester **15** were turned outward to reduce electrostatic repulsion among carbonyl oxygens, while bound Na^+ mechanically changed from the exo-annulus carbonyls (Figure 3.7 (b)) to the endoannulus carbonyls (Figure 3.7 (c)) for the oxygen carbonyls to trap Na^+ ion. X represents of NH and O in the case of receptor **14** and **15**, respectively.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 3.7. From the intramolecular hydrogen bonding in amide **14** (a) or the exoannulus carbonyl (b) in ester **15** to the proposed structure of **14**·cation and **15**·cation complexes (c).

Major resources of these changing might stem from the rearrangement of the molecule to exist in the most stable conformation during complexation. All of these cation complexes existed in the cone conformation, which was determined by two singlets for *tert*-butyl groups, two singlets for ArH-calixarene and a doublet of

doublet signal of AB system which belonged to the bridging methylene on calixarene skeleton with coupling constant ${}^{2}J \approx 12\text{-}13$ Hz in the ¹H-NMR spectrum. In addition, the closer of two $-\text{CH}_2ArH\text{CH}_2$ - signals as well as the closer of two $-\text{ArC}(CH_3)_3$ signals in complexes upon the addition of metal perchlorates implied that the pinched cone conformation of free ligand **14** or **15** adopted to a nearly cone conformation after an inclusion of an alkali cation into their cavities (Scheme 3.8).^[127]

Scheme 3.8. The interconversion between cone and pinched cone conformation of calix[4]arene.^[128]

This observation allowed us to study the effect of sodium ion complexation on the anion binding because of the well-resolved ¹H-NMR spectrum of $14 \cdot Na^+$ complex and a pretty high stable complex of $15 \cdot Na^+$. Hereby, it was possible to saturate the cationic binding site, by adding one equivalent of sodium perchlorate, and then evaluate the association constants with anions.

3.2.2 Binding Ability of Receptors 14 and 15 towards Anions

To minimize possible effects of ion-pair formation on the determination of the association constants as well as to solubilize anions into organic solvents, the bulky tetrabutylammonium ion was chosen as a counter ion for all anions. There are a variety of tetrabutylammonium anions in which the geometry, basicity and branched chain (substituted unit) determine the selectivity. In this case, the branched alkyl ammonium cation (n-Bu₄N⁺) is hardly approach the cationic binding site and consequently forms exclusively exo-complexes.

A solid-liquid extraction was performed for selecting proper anions for titration experiments. To a solution of ligand **14** or **15** in chloroform-*d*, the solid of a wide variety of the excess amount of sodium and potassium salts (about 50 mg of chloride, bromide, nitrate, hydrogen sulfate, acetate, benzoate, hydrogen phosphate, dihydrogen phosphate, phenylphosphate, diphenylphosphate, phenylphosphinate,

hydrogen phenylphosphonate and phenylphosphonate) was added, shaken at room temperature overnight, and then centrifuged for 15 minutes. The solution phase was carefully removed and filtered through a pasteur pipet with cotton wool. Extraction of anionic salts into the complex species which are soluble in organic phase can be detected by peak shifts in the ¹H-NMR spectrum.

Generally, the thiourea group in the receptors acts as acid site for base (anion). The preliminary results revealed that receptor **14** bound phenylphosphinate and diphenylphosphate preferentially that can be observed from the peak shifts in the ¹H-NMR spectrum. Acetate also bound substantially with this host. On the other hand, the spectrum of bis-thiourea **15** was predominantly changed in the presence of benzoate, dihydrogen phosphate or phenylphosphinate. The observed selectivity for phosphate and carboxylate type could be rationalized based on the sum of the guest basicity (Table 3.8) and the complementary structure. The oxyanions like tetrahedron HSO₄⁻ and trigonal planar NO₃⁻ could bind the hosts in a similar manner to H₂PO₄⁻ and CH₃COO⁻ but much weaker complexes would be formed due to much stronger hydrogen bond acceptor. The low basicity spherical inorganic anions like chloride and bromide did not display any significant different from the free host molecules. Compared to phenylphosphinate, the less binding was found in the case of hydrogen phenylphosphinate.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Anions	Geometry	pK_a at 25 °C	pK_a at 25 °C
		in water ^[129-130]	in DMSO ^[81]
Chloride	Spherical	< -2	-
Bromide	Spherical	< -2	-
Nitrate	Trigonal planar	-1.64	-
Hydrogen sulphate	Tetrahedral	< -2	-
Acetate	Trigonal planar	4.75	12.60
Benzoate	Trigonal planar	4.20	10.90
Hydrogen phosphate	Tetrahedral	7.21	-
Dihydrogen phosphate	Tetrahedral	2.12	-
Phenylphosphate	Tetrahedral	-	-
Diphenylphosphate,	Tetrahedral	-	-
Phenylphosphinate	Tetrahedral	2.1	-
Hydrogen phenylphosphonate	Tetrahedral	1.83	-
Phenylphosphonate	Tetrahedral	7.07	-

Table 3.8. Geometry and basicity of various anions.

These receptors formed remarkably strong complexes with carboxylate and phosphate. Therefore, ¹H-NMR titration experiments of receptors **14** and **15** would be done with acetate (**35**), benzoate (**36**), dihydrogen phosphate (**37**), phenylphosphinate (**38**) and diphenylphosphate (**39**) (Figure 3.8) to determine the effect of geometry and the benzene substituent upon complexation process. Additionally, the two different unsubstituted dicarboxylate anions like succinate (**40**) and glutarate (**41**) (Figure 3.8) were chosen aiming to discriminate the effect of the second carboxylate functionality and the length of guest molecules. In the presence of the low basicity anions, the *NH*-protons of thiourea functionality were hardly shifted and these affects were too small to determine either the association constant or the stoichiometry using this spectroscopy. However, the association constants of weakly bound anions in some cases would be intensively enhanced when they are in ion-pairing system. Thus determination of stability constants of some of the above anions like hydrogen sulfate or nitrate would be worth trying by other techniques such as calorimetry. This might be suitable to do as a future work because the calorimetric titration has recently been

exploited in the evaluation of weakly binding small molecular systems to widely apply in biological complexation.^[131]

Figure 3.8. The structures of anions that used in this experiment.

The quantitative anion binding ability of the novel bidentate thiourea receptors 14 and 15 was investigated by titrated with the aliquots of TBA salts of acetate, benzoate, dihydrogen phosphate, phenylphosphinate and diphenylphosphate. NMR titrations were performed and changes in chemical shifts that occurred in several signals of ligand 14 or 15 upon complexation were monitored. The continuous movement of signals indicated the faster exchange of complexation processes than the NMR time scale

The binding of compound **14** using acetate anion was initially investigated. This anion has been known to form strong directional hydrogen bonding with a thiourea due to its basicity.^[87, 132-134] Moreover, the carboxylate itself is a functional group of great biological relevance which leads to a wide application in biotechnology.^[135] The addition of one equivalent of tetrabutylammonium acetate resulted in large downfield shifts in the ¹H-NMR spectrum of ligand **14**. The lower field of thiourea proton -CH₂CH₂NHCSNHCH₂Ar-, the higher field of thiourea signal -CH₂CH₂NHCSNHCH₂Ar- and amide hydrogen atoms -OCH₂CONHCH₂- strongly shifted downfield ($\Delta \delta = +2.1438$, +1.3852 and +0.7329 ppm, respectively). Moreover, the hydrogen atoms at -NHCSNHCH2Ar- and -CH2CH2NHCSNH- shifted downfield with $\Delta \delta = +0.0532$ and +0.0321 ppm, respectively. This clearly indicates that all thiourea NH-protons are involved in anion binding. A similar behavior was observed for -OCH2CH2OCH3, -OCH2CH2OCH3 and -OCH2CH2OCH3 as well as -OCH₂CONH- hydrogen atoms +0.0137, +0.0634, -0.0125 and +0.0603 ppm. The shift of signals which were not closed to hydrogen bond donor site (-OCH₂CH₂OCH₃ and -OCH₂CONH- signals) was probably derived from the preorganization of molecule. This also supported by the upfield shift of $-ArCH_2Ar$ - ($\Delta\delta = +0.0203$ ppm) and $-CH_2ArHCH_2$ - ($\Delta\delta$ = -0.0215 ppm) signals which were the outstanding signals of calixarene unit. Additionally, both -CH₂ArHCH₂- signals were continuously shifted close to each other to propose the interconversion from pinched cone to cone conformation. Unless the movement of building block, the hydrogen signals which are far from the *NH*-thiourea should not be changed.

¹H-NMR spectra of $14 \cdot C_6H_5COO^-$, $14 \cdot H_2PO_4^-$, $14 \cdot Ph(H)POO^-$ and $14 \cdot (PhO)_2PO_2^-$ were shifted in the similar manner as $14 \cdot CH_3COO^-$ but different amount of effect as shown in Figure 3.9. Such chemical shift changes for intracavity interactions and effect of all 15 anion complexes are shown in Figure 3.10.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 3.9. The complexation induced shifts of some proton signals on ¹H-NMR spectrum (a) $14 \cdot CH_3COO^-$ (b) $14 \cdot C_6H_5COO^-$ (c) $14 \cdot H_2PO_4^-$, (d) $14 \cdot Ph(H)POO^-$ (e) $14 \cdot (PhO)_2PO_2^-$.

Figure 3.10. The complexation induced shifts of some proton signals on ¹H-NMR spectrum (a) $15 \cdot CH_3COO^-$ (b) $15 \cdot C_6H_5COO^-$ (c) $15 \cdot H_2PO_4^-$, (d) $15 \cdot Ph(H)POO^-$ (e) $15 \cdot (PhO)_2PO_2^-$.

Compared to the CIS of any signals of $14 \cdot H_2PO_4^-$ in chloroform-*d* in the preliminary experiment, the shift in acetonitrile-*d*₃ solution was much easier to observe. This could be ascribed to the effect of solvents. The halohydrocarbon solvent like chloroform is classified as Lewis acid due to its acidic C-H bond. Hence, anion (such as $H_2PO_4^-$) is able to form hydrogen bonding to the thiourea functionality of receptor 14 and the acidic C-H of chloroform. The halohydrocarbon solvents are able to break the hydrogen bonding leading to the less stable complex. This phenomenon is also found in living organisms. For instance, the anaesthetic properties of some halogen-containing solvents have been connected with their ability to hinder the formation of biologically important hydrogen bonds.^[118]

The broadened and the large (>1 ppm) changes in the chemical shifts of thiourea and amide *NH*-protons were the evidence for the presence of hydrogen bonding in anion complexation. In addition, the upfield shifts for CH_2 -protons adjacent to hydrogen bonded *NH* groups in the presence of anions were usually observed.^[136] This might be attributed to the more basicity at methylene protons compared to NH-thiourea, the through space effect from electron density of anions or the anisotropic effect of carbonyl or phosphonyl group.

The Job's plots of all 14 anion complexes corresponded to an association stoichiometry of 1:1 (Figure 3.11). The Job's analysis for the anion complexation by 15 which composed of two ester moieties instead of amide groups indicated that 15 favored binding acetate, phenylphosphinate and diphenylphosphate anion in a simple 1:1 complex (Figure 3.12). For benzoate and dihydrogen phosphate anion, the distorted bell-shaped curves with a maximum at $X \approx 0.66$ had been shown in Job's plots (Figure 3.12). This indicated a 1:2 host-guest stoichiometry.

Figure 3.11. Job's plots of $-CH_2CH_2NHCSNH$ - in $14 \cdot CH_3COO^-$, $14 \cdot C_6H_5COO^-$, $14 \cdot H_2PO_4^-$, $14 \cdot Ph(H)POO^-$ and $14 \cdot (PhO)_2PO_2^-$ complexes.

Figure 3.12. Job's plots of $-NHCSNHCH_2Ar$ - in $15 \cdot CH_3COO^-$, $15 \cdot C_6H_5COO^-$, as well as $15 \cdot H_2PO_4^-$ and $-CH_2CH_2NHCSNH$ - in $15 \cdot Ph(H)POO^-$ as well as $15 \cdot (PhO)_2PO_2^-$ complexes.

The titration curves of **14** anion and **15** anion complexes are shown in Figure 3.13 and Figure 3.14, respectively. The chemical shifts of some other signals were also plotted against the equivalent of added TBA anion (*see* Appendix B).

Figure 3.13. Titration curves of $-CH_2CH_2NHCSNH$ - in 14·CH₃COO⁻, 14·C₆H₅COO⁻, 14·H₂PO₄⁻, 14·Ph(H)POO⁻ and 14·(PhO)₂PO₂⁻ complexes.

Figure 3.14. Titration curves of $-NHCSNHCH_2Ar$ - in 15·CH₃COO⁻, 15·C₆H₅COO⁻, 15·H₂PO₄⁻, 15·Ph(H)POO⁻ and 15·(PhO)₂PO₂⁻ complexes.

The normal looking titration curves of **14** anion complexes (Figure 3.13), **15** \cdot CH₃COO⁻, **15** \cdot Ph(H)POO⁻ and **15** \cdot (PhO)₂PO₂⁻ (Figure 3.14) supported a 1:1 association stoichiometry. In the case of **15** \cdot C₆H₅COO⁻ and **15** \cdot H₂PO₄⁻, both titration curves displayed a small variation of sigmoidal curve which was a characteristic of an association of more than two species.^[137] Unfortunately attempts to relate these 1:2 complexes with their molecular mass in ESI-MS (Electrospray Ionization Mass Spectrometry) have so far been unsuccessful as it was not possible to obtain the correct mass of **15** and anions.^[138] Electrospray ionization is served as one of the softest ionization methods to date and this technique has rapidly gained momentum to study noncovalently bound complexes. However, the study of hydrogen bond in supramolecular aggregates from smaller organic building blocks by ESI-MS is relatively rare.^[139] This is presumably according to the lower binding constants of these species when compared to, for example, the protein-substrate complex. Another technique that can used to support this formation is molecular weight determination by means of Vapor Pressure Osmometry (VPO).^[140]

The $\Delta\delta$ of the more sensitive -CH₂CH₂*NH*CSNH-, -NHCS*NH*CH₂Ar- and -OCH₂CO*NH*- (in the system of **14**) as well as adjacent methylene signals which located next to the thiourea moiety were used to evaluate binding efficacy. The association constants (β_1) in acetonitrile- d_3 of all **14**·anion complexes as well as **15**·CH₃COO⁻, **15**·Ph(H)POO⁻ and **15**·(PhO)₂PO₂⁻ complexes were evaluated from a 1:1 curve fitting binding model provided by Hunter's NMRTit_HG program.^[105] On the other hand, the degree of complexation selectivity of **15**·C₆H₅COO⁻ and **15**·H₂PO₄⁻ could be calculated using NMRTit_HGG program.^[105] The average binding abilities and Gibbs free energies are displayed in Table 3.9. The good fit between experimental data and calculation of the titration curves in NMRTit_HGG program supported that compound **15** forms stable 1:2 complexes with both benzoate and dihydrogen phosphate.
Complex		Association Constant	Gibbs free energy	
Туре	Stoichiometry	(M ⁻¹)	(kJ·Mol ⁻¹)	
14·CH ₃ COO ⁻	1:1	30400	-25.6	
$14 \cdot C_6 H_5 COO^-$	1:1	3290	-20.1	
$14 \cdot H_2 PO_4^-$	1:1	858	-16.7	
14 ·Ph(H)POO [−]	1:1	17100	-24.1	
$14 \cdot (PhO)_2 PO_2^-$	1:1	2330	-19.2	
15 ·CH ₃ COO ⁻	1:1	2010	-18.8	
$15 \cdot C_6 H_5 COO^-$	1:2	8300	-22.4	
		286350000 (M ⁻²)	-48.2	
$15 \cdot H_2 PO_4^-$	1:2	9710	-22.7	
		10583900 (M ⁻²)	-40.1	
15·Ph(H)POO ⁻	1:1	14300	-23.7	
$15 \cdot (PhO)_2 PO_2^-$	1:1	3240	-20.0	

Table 3.9. The average association constants and Gibbs free energies upon the formation of 14 anion and 15 anion complexes.

In order to compared to the others, only β_1 of $15 \cdot C_6H_5COO^2$ and $15 \cdot H_2PO_4^2$ are shown in Figure 3.15. The amide 14 recognizes acetate better than phenylphosphinate, benzoate, diphenylphosphate and dihydrogen phosphate while the analogous ester 15 binds phenylphosphinate slightly stronger than dihydrogen phosphate (β_1), benzoate (β_1), diphenylphosphate and acetate. The β_1 value does not follow the amount of complexation induced shifts. Sometimes the titration data with smaller $\Delta\delta$ could yield the higher β_1 than the larger $\Delta\delta$ data, for example, in the case of $14 \cdot CH_3COO^2$ and $14 \cdot C_6H_5COO^2$.^[141] Hence, the binding constant depends on the characteristic of curve not the shifting values. The more the curve bents, the higher the binding constant is.

Figure 3.15. The selectivity of receptors 14 and 15 towards various anions.

The binding data of 14 anion and 15 anion complexes does not undergo the same trend. The replacement of the amide group in compound 14 with the ester moiety yields the decrease in selectivity, change in stoichiometry of association and binding affinity trend as well as increase in the association constant when complexing with phenyl substituted anions. These selectivity trends are explained by basicity, complementary structure, π - π interaction and O^{δ}- π repulsion. Compared to macromolecule 15, compound 14 displayed a stronger acidity and consequently from a more stable complex with a stronger base. Thus, host 14 recognized acetate better than benzoate and dihydrogen phosphate. The opposite trend (H₂PO₄⁻ > C₆H₅COO⁻ > CH₃COO⁻) was observed in the system of 15.

The complementary structure between the host and the guest molecule is another factor to control selectivity. For the thiourea base receptor, this type of ligand was discovered to bind guests *via* hydrogen bonding which is a directional interaction. Presumably, the arrangement of the directional hydrogen bond donor on *NH*-thiourea in both receptors might be different attributed to the number of lone pair on –CO*N*Hin **14** and –CO*O*- atom in **15**. This preorganization leaded to the preferential of receptor **14** to Y-shaped carboxylate and the preferential of ligand **15** to tetrahedral phosphate anion. A number of reports showed the binding ability of simple acyclic thiourea (**42a-42c**)^[87, 132, 142] and cyclophane based cyclic thiourea (**43a-43c**)^[143] towards both dihydrogen phosphate and acetate over other anions, with preferentially to the former over the latter (Figure 3.16). The selectivity trend of these receptors was found to be against basicity due to the lack of additional acid site. Like receptor **15**, the structure complementary dominated the other effects.

Figure 3.16. Simple acyclic thiourea and cyclophane cyclic thiourea receptors.

In the case of less acidic molecule like compound **15**, the solvent also plays a role in complexation. There are some examples about the effect of media through the selectivity trend.^[144, 145] This interrelation between solvation effects and receptor structure is also used to achieve anion binding selectivity in nature.^[146] The more steric hindrance around the central atom of anion resulted in the less effective of the binding of solvents towards anions. Therefore, it is easier for acetonitrile to donate electron to central C of acetate compared to P of dihydrogen phosphate yielding β_1 (**15**·CH₃COO⁻) < β_1 (**15**·H₂PO₄⁻).

Compared to $14 \cdot H_2PO_4^-$ and $15 \cdot H_2PO_4^-$, the higher affinity of receptors 14 and 15 towards phenylphosphinate was aided by size and shape complementary as well as π - π interaction. In contrast to phenylphosphinate, the diminished binding strength of diphenylphosphate is likely explained by steric effect and the negative-negative repulsion between oxygen-ester of host and the electron-rich-aromatic guest.

As previously mentioned, the chemical shift of –OCH₂CONH- of receptor **14** displayed a large downfield shift in all cases indicating that two *NH*-amide moieties

might be incorporated in hydrogen bonding for complexation. Although the *NH*-amide donor atoms are far from the main binding site (thiourea), they could involve in anion recognition. Recently, Nam and *co-worker* attached the similar bis-urea linkage on the narrow rim of calix[4]arene **44** (Figure 3.17).^[147] The negative effect of quinone units; which are far from urea function in nearly the same length as compound **14**, on the calixarene scaffold towards anion recognition due to the ion-dipole repulsion was reported.

Figure 3.17. Macrocyclic bis-urea calix [4]quinone.^[147]

Attempt to grow crystals suitable for x-ray analysis produced inappropriate single crystals. Therefore, the **14**·anion and **15**·anion complexes are proposed based on the x-ray structures of **13b**·CH₃COO^{-[117]} (Figure 3.18) and cyclic(thiourea)·H₂PO₄^{-[149]} ^[148] (Figure 3.19) as well as the proposed structures of bis(guanidinium)·H₂PO₄^{-[149]} and bis(thiourea)·H₂PO₄^{-[132]} as well as bis(thiourea)·C₆H₅COO⁻ complexes.^[132] Generally, the stability of these complexes are aided by CH₃- π and π - π interaction. The proposed structures of anion complexes are shown in Figure 3.20. X represents of NH and O in the case of compounds **14** and **15**, respectively. R₁, R₂ and R₃ refer to the substituted group on acetate, benzoate, dihydrogen phosphate, phenylphosphinate and diphenylphosphate as presented in Figure 3.8.

Figure 3.18. X-ray structure of 13b·CH₃COO⁻ complex.^[117]

Figure 3.19. X-ray structure of cyclic(thiourea)·H₂PO₄^{-.[148]}

Figure 3.20. The proposed structures of 1:1 anion complexes (46-47).

Owing to the important role of dicarboxylate in our biological system as well as the high and moderate association constant of respective $14 \cdot CH_3COO^-$ and $15 \cdot CH_3COO^-$ complexes, recognition studies of both receptors towards some dicarboxylate anions are worth performing. Succinate and glutarate which employed as their bis-TBA salts were used in the titration experiment because the numbers of carbons between two carboxylate groups correspond to the chosen amino acid in Section 3.2.3. These dicarboxylate titration results will be compared to monocarboxylate recognition.

When a complex is formed, various protons display signal shifts to indicate a rapid exchange behavior. Chemical shifts of all the NH-signals of the receptor in the mixture of 14 and succinate anion shifted much larger downfield compared to the remaining signals (+0.8825 ppm for -CH₂CH₂NHCSNHCH₂Ar- and +0.4228 ppm for -OCH₂CONH-). The adjacent signals were slightly shifted downfield. For instance, the -NHCSNHCH₂Ar- signal moved +0.0482 ppm and the -CH₂CH₂NHCSNHproton shifted +0.0344 ppm. The aromatic linkage moved downfield with $\Delta \delta =$ +0.1445 ppm. The -OCH₂CH₂OCH₃, -OCH₂CH₂OCH₃ as well as -OCH₂CH₂OCH₃ moved to the lower magnetic field (downfield) by complexation with succinate anion for +0.0423, +0.0236 and +0.0059 ppm, respectively. NMR titration analysis also showed the downfield shift of the $-OCH_2CONH$ - signal from +4.4636 to +4.5204 ppm. The aromatic protons of calixarene unit on thiourea 14 shifted upfield with $\Delta \delta =$ -0.0192 and -0.0261 ppm upon addition of 4 equivalents of succinate whereas the - $ArCH_2Ar$ - protons shifted downfield about +0.0981 ppm. This result supports the preorganization of the receptor molecule. The aromatic unit on calixarene scaffold was probably changed from pinched cone to cone conformation. Thus, two phenyl units were presumably moved close to each other and caused the anisotropic effect to occur. Although the shifts of some signals seem to be very small but their titration curves are in a normal shape (see Appendix B).

Changes in the peak positions during the formation of $14 \cdot \text{glutarate}^{2-}$ (Figure 3.21), $15 \cdot \text{succinate}^{2-}$ and $15 \cdot \text{glutarate}^{2-}$ complexes (Figure 3.22) were found in the similar manner as $14 \cdot \text{succinate}^{2-}$. However, greater shifts were observed in the case of glutarate compared to succinate. The superscript ^a is denoted as the sigmoidal titration curves and superscript ^b is referred to the inverse titration curves.

Figure 3.21. The complexation induced shifts of some proton signals on ¹H-NMR spectrum (a) **14**·succinate²⁻ (b) **14**·glutarate²⁻.

Figure 3.22. The complexation induced shifts of some proton signals on ¹H-NMR spectrum (a) 15·succinate²⁻ (b) 15·glutarate²⁻.

Data sets from the titration experiments verified the bell-shaped curve with a maximum point at $X \approx 0.5$ indicating a 1:1 stoichiometry for all complexes in Job's analysis (Figure 3.23 and Figure 3.24).

Figure 3.23. Job's plots of $-OCH_2CONH$ - in **14**·succinate²⁻ and **14**·glutarate²⁻ complexes.

The titration curves of $14 \cdot \text{succinate}^{2-}$, $14 \cdot \text{glutarate}^{2-}$ and $15 \cdot \text{succinate}^{2-}$ complexes correlated well with a 1:1 binding model whereas the titration curve of $15 \cdot \text{glutarate}^{2-}$ did not agree with that model at all (Figures 3.25 and 3.26).

Figure 3.25. Titration curves of –OCH₂CO*NH*- in **14**·succinate²⁻ and **14**·glutarate²⁻ complexes.

Figure 3.26. Titration curves of $-NHCSNHCH_2Ar$ - in 15·succinate²⁻ and 15·glutarate²⁻ complexes.

The titration curve of 15·glutarate²⁻ complex featured a slow shifting until 1 equivalent of TBA glutarate was added, after that the shifting was accelerated until stable at about 1.5 equivalents of anion. This sigmoidal curve was observed for – CH₂CH₂NHCSNHCH₂Ar-, –CH₂CH₂NHCSNHCH₂Ar- (*see* Appendix B) as well as -

OCH₂CH₂OCH₃ signals. The ArH-calixarene was also shifted in this pattern but in Interestingly, the titration curves of the opposite direction (upfield). NHCSNHCH2Ar-, -CH2CH2NHCSNH- and -OCH2CH2OCH3 showed the upfield shift immediately before the inverse shift at about 1 equivalent. From the literatures, the normal titration curve could be either $1:1^{[150]}$ or $1:2^{[144]}$ host-guest stoichiometry. The sigmoidal or inverse curve have been reported only in the case of a 1:2 association.^[131, 144] However, the Job's plots in 15 glutarate²⁻ did not show a maximum at $X \approx 0.66$. Therefore, it is impossible to assign this interaction to a discrete 1:2 complex. Consequently, the association constant has not been calculated in 15 glutarate²⁻ case. The sigmoidal curve could be originated the negative ion-pair effect of its counter cation $(n-Bu_4N^+)$. Table 3.10 displays the average association constants and Gibbs free energies which belongs to 14 succinate²⁻, 14 glutarate²⁻ and 15 succinate²⁻. The average calculated β_1 of dicarboxylate complexes are compared as shown in Figure 3.27.

Table 3.10.	The	average	association	constants	and	Gibbs	free	energies	upon	the
formation of	14 ·di	icarboxyl	ate ²⁻ and 15.	dicarboxyl	ate ²⁻ .					

Complex		Association Constant	Gibbs free energy	
Туре	Stoichiometry	(M ⁻¹)	(kJ·Mol ⁻¹)	
14·succinate ²⁻	1:1	11000	-23.1	
14 ·glutarate ²⁻	1:1	42900	-26.4	
15-succinate ²⁻	1:1	2020	-18.9	
15 ·glutarate ²⁻	1:1		-	

สถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 3.27. The selectivity of receptors 14 and 15 towards dicarboxylate anions compared to the monocarboxylate complexes.

Receptor 14 was found to bind succinate weaker and to recognize glutarate slightly better than acetate while compound 15 showed the moderate stability constants with acetate and succinate with similar binding abilities. The selectivity trend of both receptors towards succinate and glutarate could not be explained by basicity (Table 3.11). Therefore, there should be other effects such as size or length of anions to control the selectivity.

Anions	Geometry	p <i>K</i> at 25 °C	p <i>K</i> at 25 °C
สถ	าบนวทย	in water ^[130]	in DMSO ^[81]
Acetate	Trigonal planar	4.75	12.60
Succinate	Trigonal planar	4.21	ลย -
Glutarate	Trigonal planar	3.77	

Table 3.11. Geometry and basicity of carboxylate anions.

The sizes of cavities between two thiourea functions in either **14** or **15**, which are rigidified by the aromatic linkage and the calixarene scaffold, are probably too small to bind both carboxylate ending sites simultaneously. Compared to receptor **15**, the amide group in compound **14** can be served as an additional anionic binding site.^[151] From our result, the length of cavities in macromolecules **14** (from thiourea

to amide moiety) are well-match with the length of longer dicarboxylate anion like glutarate, but not with shorter dicarboxylate anion like succinate. In the system of compound **15**, insignificant preferential recognition were observed due to the lack of amide group. Therefore, the selectivity of these receptors highly depends on the number of hydrogen bonding interactions. The more involving hydrogen bonding interactions resulted in larger binding constants.^[141] For instance, the crystal structure of tris-guanidinium tricarballate complex which reported by Anslyn and co-workers showed the involvement of all guanidinium moieties to three carboxylate groups in the guest (Figure 3.28).^[152]

Figure 3.28. Tris-guanidinium·tricarballate complex.^[152]

From the x-ray structure of tris-guanidinium tricarballate complex and proposed structures of amide-carboxylate^[151] association, the structures of dicarboxylate anion complexes are proposed in Figure 3.29 (X= NH or O; n = 2 or 3).

Figure 3.29. The proposed structures of 1:1 dicarboxylate complexes (49).

3.2.3 Binding Ability of Receptors 14 and 15 towards Amino Acids in Anionic Forms

The effective receptors for biorelevant oxoanions such as amino acids have recently received attention in the development of ion-selective electrodes or the carriers for drug delivery because amino acids are the most important substrates in living organisms. A well-designed receptor for amino acid should be able to dissolve in aqueous solution and comprises of at least two main recognition sites under neutral condition: ammonium and carboxylate groups. In addition, host should contain stereochemically active site. Accordingly, amino acids do actually exist as chiral zwitterions in blood system.

Although our receptors (14 and 15) are not specifically designed for amino acids, a good selectivity for either mono- or dicarboxylate anions over other inorganic anions have been found. Therefore, it is worth studying the binding ability of both receptors towards a wide range of underivatized amino acids. Basically, common amino acids provide a rich variety of side chains. To achieve a good selectivity for each amino acid, another moiety should be incorporated in the receptor. The aromatic linkage between two thiourea moieties which mainly used to preorganize receptor 14 and 15 is predicted to serve as an additional site for the side chain of aromatic containing amino acids. The chiral recognition is not expected due to the lack of stereochemically dependent. All amino acids are used as their optically pure L-enantiomer due to their importance species and cheaper cost.

The solid-liquid extraction was performed for some amino acids (glycine, Lalanine, D-alanine, β -alanine, 4-aminobutyric acid, L-phenylalanine, L-aspartic acid and L-glutamic acid). The excess amount of amino acids (about 50 mg) were added into acetonitrile- d_3 and dimethylsulfoxide- d_6 solutions of either **14** or **15**. The mixtures were shaken overnight and centrifuged for 15 minutes to precipitate the solid. A small amount of organic layer was collected and characterized by the complexation induced shift in ¹H-NMR spectrum. There was no peak shift observing in the spectrum at all. This reflected that none of the association between solid amino acids and receptors because amino acids would not exist as their zwitterionic form in acetonitrile- d_3 or dimethylsulfoxide- d_6 . Consequently, the dipole-dipole repulsion between *NH*-thiourea and *OH*-carboxylic acid hydrogen bond donor inhibited the complexation. Although some common amino acids are able to solvate and display as zwitterions in methanol in which both host molecules **14** and **15** are hardly soluble prohibiting the preliminary extraction experiment in methanol- d_4 .

Generally, artificial receptors for amino acids have been synthesized using single charged substrate, under either acidic (amino acid or amino ester salts) or basic (carboxylate salts or N-protected amino acid) condition.^[153] Most receptors based on positively and negatively charged binding sites are able to collapse internally or aggregate into dimers or oligomers. Both bis-thiourea calix[4]arene amide **14** and ester **15** can serve as receptors for basic amino acids like carboxylate salts. Therefore, instead of the neutral zwitterions, amino acids are modified to their tetrabutylammonium carboxylate anions to dissolve in acetonitrile- d_3 and to reduce ion-pair effect.

A number of model receptors for recognition of unsubstituted dicarboxylate anion have been prepared and evaluated. Examples of suitable ligands for the selective complexation of mono- and dicarboxylate anions of amino acids are scarce. Consequently, the binding properties of supramolecules 14 and 15 were investigated towards various TBA salts of amino acids. The aspartic acid (50) and glutamic acid (51) were chosen due to their dicarboxylate groups and the equivalent of carbon to succinate (40) and glutarate (41) anion as previously discussed in Section 3.2.2. To probe the chain length and effect of functional side chain of amino acid, binding properties of receptors 14 and 15 towards a wide range of amino acid in anionic form; asparagine (52), glutamine (53), phenylalanine (54), leucine (55), threonine (56) and serine (57), were also investigated. The structures of all substituted mono- and dicarboxylate anions that used in this experiment are displayed in Figure 3.30.

Figure 3.30. The structures of all amino acid anions in this experiment.

¹H-NMR spectra of free and bound receptors **14** and **15** showed only one set of signals corresponding to the faster exchange rate compared to the NMR time scale which was the same as observed in the carboxylate and phosphate anion recognition. The binding property of compound **14** towards the bis-TBA salt of aspartic acid was firstly investigated. The association of host **14** and this substituted dicarboxylate anion was supported by the partial separation of the overlapping *NH*-thiourea signals in the ¹H-NMR spectrum of **14**·Asp²⁻. The acetonitrile-*d*₃ solution of the complex displayed a magnificent downfield shift with $\Delta \delta = +3.3079$ ppm due to the – CH₂CH₂*NH*CSNHCH₂Ar- protons and with $\Delta \delta = +3.0465$ ppm owing to – CH₂CH₂NHCS*NH*CH₂Ar- protons. In addition, –CH₂*CH*₂NHCSNH- signal experienced the upfield shift ($\Delta \delta = -0.1323$ ppm), while the –NHCSNH*CH*₂Arsignals tended to broaden until disappear after shifting to a lower magnetic field (from 4.6817 to 4.6870 ppm, $\Delta \delta = +0.0053$ ppm) in the presence of 0.32 equivalent of the bis-TBA salt of aspartic acid. Another significant downfield shift for this association process was discovered at 7.5617 ppm belonging to the *NH*-amide protons ($\Delta \delta =$ 0.9637 ppm). One of the aromatic linkage protons was moved to the higher magnetic field with $\Delta \delta = -0.1636$ ppm. Moreover, the downfield shift from 4.4630 to 4.5950 ppm ($\Delta \delta = +0.1320$ ppm) of the $-OCH_2CONH$ - signal was observed. Other downfield shifts were also revealed for $-OCH_2CH_2OCH_3$ ($\Delta \delta = +0.1070$ ppm) and - $OCH_2CH_2OCH_3$ ($\Delta \delta = +0.1023$ ppm) signals in ¹H-NMR titration data whereas the changing of $-OCH_2CH_2OCH_3$ was observed as an upfield shift, $\Delta \delta = -0.0342$ ppm. The downfield shift of *n*-Bu₄N⁺ signal ($\Delta \delta = +0.0140$ ppm) suggested that this bulky cation was situated in the close proximity to the anionic substrate. In addition, the changing in the peak position of both $-ArCH_2Ar$ - ($\Delta \delta = +0.2304$, -0.0145 ppm) and - CH_2ArHCH_2 - ($\Delta \delta = -0.0094$, -0.0038 ppm) which were characteristic signals of the calixarene building block were also monitored.

Titrations of an acetonitrile- d_3 solution of either 14 or 15 with aliquots of substituted mono- and dicarboxylate guests resulted in several shifts as displayed in Figure 3.31 and Figure 3.32.

Figure 3.31. The complexation induced shifts of some proton signals on ¹H-NMR spectrum (a) 14·Asp²⁻, (b) 14·Glu²⁻, (c) 14·Asn⁻, (d) 14·Gln⁻, (e) 14·Phe⁻, (f) 14·Leu⁻, (g) 14·Thr⁻ and (h) 14·Ser⁻.

Figure 3.31. Continued.

Figure 3.32. The complexation induced shifts of some proton signals on ¹H-NMR spectrum (a) **15**·Asp²⁻, (b) **15**·Glu⁻, (c) **15**·Asn⁻, (d) **15**·Gln⁻ (e) **15**·Phe⁻, (f) **15**·Leu⁻, (g) **15**·Thr⁻ and (h) **15**·Ser⁻.

The downfield shift observed for the signals corresponding to the *NH*-thiourea moiety of all complexes in the presence of TBA salt of amino acid is an indicative of the intermolecular hydrogen bonding. In some cases (glutamine, phenylalanine and threonine), the signal for the –CH₂CH₂NHCS*NH*CH₂Ar- of host **14** could not be followed because the *NH*-resonance disappears after coalesce in the aromatic signal region upon adding 0.05 equivalents of the anion. However, the strong hydrogen bonding in complexes was indicated by the significant downfield shift before completely disappearing.

The complex stoichiometry in an acetonitrile- d_3 solution was judged by Job's plot consistent with the titration curve of the ¹H-NMR binding data. The formation of simple 1:1 complexes in cases of all **14**·amino carboxylate complexes (Figure 3.33) and **15**·Asp²⁻, **15**·Glu²⁻, **15**·Leu⁻ as well as **15**·Ser⁻ (Figure 3.34) was evidence by the symmetric bell-shaped (X \approx 0.5) in Job's analysis. In contrast, Job's plots of amino monocarboxylate anions such as asparagine, glutamine, phenylalaine and threonine were asymmetrical and exhibited a maximum point when the mole fraction was ~0.66 (Figure 3.34), which reflected the formation of an unexpected 1:2 stoichiometry.

Bis-thiourea calix[4]arene amide **14** was found to bind anions in 1:1 fashions whereas analogous ester **15** was able to recognize these guests in either 1:1 or 1:2 fashions. Theoretically, a 1:2 binding fashion is possible to confirm by ESI-MS^[138-139] or VPO.^[140] Our attempts to observe the molecular peak in ESI⁺/ESI⁻ mass spectra of this complex were unsuccessful because the complex was probably not stable enough under MS conditions.

Figure 3.33. Job's plots of -CH₂CH₂*NH*CSNHCH₂Ar- in **14**·Asp²⁻, **14**·Glu²⁻, **14**·Asn⁻, **14**·Gln⁻, **14**·Phe⁻, **14**·Leu⁻, **14**·Thr⁻, and **14**·Ser⁻ complexes (using -NHCSNH*CH*₂Ar-signal in case of **14**·Leu⁻).

Figure 3.34. Job's plots of -CH₂CH₂NHCS*NH*CH₂Ar- in 15·Asp⁻, 15·Glu²⁻, 15·Asn⁻, 15·Gln⁻, 15·Phe⁻, 15·Leu⁻, 15·Thr⁻, and 15·Ser⁻ complexes.

Generally, the shape of titration curves is dependent on types of complexation. The titration plots of all **14** amino acid anion (Figure 3.35) as well as receptor **15** in the presence of TBA salt of aspartic acid, glutamic acid or leucine (Figure 3.36) exhibited the normal looking curve for the 1:1 stoichiometry complex. In the presence of carboxylate salt of serine, the straight lines of titration curves were displayed in both systems (**14** or **15**) and subsequently, no equilibrium was observed (Figures 3.35 and 3.36). The titration curve of the remaining cases (**15** Asn⁻, **15** Ghr⁻, **15** Phe⁻, and **15** Thr⁻) indicated the successive binding of two anions (Figure 3.36). This singly and doubly bound in each case were nearly coincident leading to two indistinguishable events.^[131] Such a behavior was more clearly displayed in the case of TBA salt of phenylalanine. The suitable technique to observe these multiple binding equilibria is the calorimetric titration due to the distinct nature of the enthalpy of the alternate complexes.

Figure 3.35. Titration curves of -CH₂CH₂NHCSNHCH₂Ar- in 14·Asp²⁻, 14·Glu²⁻, 14·Asn⁻, 14·Gln⁻, 14·Phe⁻, 14·Leu⁻, 14·Thr⁻, and 14·Ser⁻ complexes.

Figure 3.36. Titration curves of $-CH_2CH_2NHCSNHCH_2Ar$ - in 15·Asp²⁻, 15·Glu²⁻, 15·Asn⁻, 15·Gln⁻, 15·Phe⁻, 15·Leu⁻, 15·Thr⁻, and 15·Ser⁻ complexes.

Having verified the 1:1 and 1:2 stoichiometry for the associations by means of continuous variation method, the stability constants were determined by NMRTit_HG and NMRTit_HGG program, respectively.^[105] The average association constants and Gibbs free energies which are based on monitoring of both *NH*-thiourea and their

adjacent methylene protons as well as the *NH*-amide signals (in the case of ligand 14) are displayed in Table 3.12. Binding curves of $15 \cdot \text{Asp}^-$, $15 \cdot \text{Glu}^-$, $15 \cdot \text{Phe}^-$ and $15 \cdot \text{Thr}^-$ were fitted well in NMRTit_HGG program. Clearly, formation of the 1:2 fashion of these complexes can be observed from the sigmoidal curve. The binding data of $15 \cdot \text{Asp}^-$ and $15 \cdot \text{Phe}^-$ complexes gave the association constants at the upper limit of detectability using NMR titrations (>10⁴ M⁻¹) whereas the binding data of $14 \cdot \text{Ser}^-$ and $15 \cdot \text{Ser}^-$ complexes are at the lower limit of this techniques (<10 M⁻¹), thus the binding constants have been reported approximately.^[78, 154-155]

Complex		Association Constant	Gibbs free energy	
Туре	Stoichiometry	(M ⁻¹)	(kJ·Mol ⁻¹)	
$14 \cdot \text{Asp}^{2}$	1:1	21200	-24.7	
14 ·Glu ⁻	1:1	15500	-23.9	
14·Asn ⁻	1:1	19600	-24.5	
$14 \cdot \text{Gln}^-$	1:1	8270	-22.3	
14·Phe ⁻	1:1	24800	-25.1	
14·Leu	1:1	49600	-26.8	
14 ·Thr ⁻	1:1	10300	-22.9	
14·Ser	1:1	< 10	-	
$15 \cdot \text{Asp}^{2}$	1:1	17700	-24.2	
$15 \cdot \text{Glu}^{2}$	1:1	11900	-23.3	
15 ·Asn ⁻	1:2	$> 10^{4}$	-	
		$> 10^7 (M^{-2})$	-	
$15 \cdot \text{Gln}^-$	1:2	39100	-26.2	
		28269300 (M ⁻²)	-42.5	
$15 \cdot \text{Phe}^{-1}$	1:2	>10 ⁴	-	
		$> 10^7 (M^{-2})$	-	
15·Leu ⁻	1:1	10200	-22.9	
15 ·Thr ⁻	1:2	17100	-24.1	
		31122000 (M ⁻²)	-42.7	
15·Ser	1:1	< 10	-	

Table 3.12. The average association constants and Gibbs free energies upon the formation of 14 amino carboxylate and 15 amino carboxylate complexes.

The binding data in Table 3.12 implied that the association constants of the singly bound complexes (K_1) of **15**·Asn⁻, **15**·Gln⁻, **15**·Phe⁻ and **15**·Thr⁻ are much larger than the doubly bound complexes (K_2). This can be rationalized by the anion-anion repulsion. K_1 and K_2 are stepwise formation constants which define by the following equations.

$$K_1 = [HG]/[H][G]$$

$$K_2 = [HGG]/[HG][G]$$

The association constants of all amino carboxylate complexes are displayed in Figure 3.37. In the case of 1:2 association, the first bound association constant (β_1) are shown.

Like the anion recognition study, receptors **14** and **15** did not display the same stoichiometry ratio and trend of selectivity in the presence of TBA salt of amino acids. Macromolecule **15** displayed the higher efficiency and selectivity than compound **14**. Presumably, either amide or ester function played a role in partially controlling the recognition process by means of the complementary structure and the acid-base property.

The binding constants of amide compound **14** towards all amino acid anions suggested the following order of affinity: leucine > phenylalanine > aspartic acid > asparagine > glutamic acid > threonine > glutamine >> serine. On the other hand, the binding efficiency of ester **15** was as follows: phenylalanine \approx asparagine > glutamine > aspartic acid > threonine > glutamic acid > leucine > glutamine >> serine. Generally, the design of a receptor for selective recognition of the amino acid side chain is a difficult task.^[153] Therefore, it is reasonable that the association constant of all complexes is $\sim 10^4$.

Except for 14·Leu[•] and 15·Asn[•], both receptors displayed the largest affinity towards TBA salt of phenylalanine. This can originate from π - π interaction in the similar manner as phenylphosphinate complexes. The strongest affinity of host 14 towards TBA salt of leucine compared to other amino acid anions (especially TBA salt of threonine) as well as the preference of macromolecule 15 to carboxylate anion of threonine over leucine might be attributed to acid-base property (Table 3.13). The more acidic receptor like 14 preferred the more base like TBA salt of leucine. *Vice versa*, the less acidic host like 15 better recognized the less base like carboxylate anion of threonine. The effect of acid-base in the system of 14·Leu[•] was strong enough to override the complementary structure in 14·Phe[•].

Amino acid	Type of anion	p <i>K</i> _{a1}	р <i>К</i> _{а2}
D-Aspartic acid	Dicarboxylate	- 1	3.87
L-Glutamic acid	Dicarboxylate	2.13	4.31
L-Asparagine	Carboxylate	าร	8.80
L-Glutamine	Carboxylate	2.15	9.00
L-Phenylalanine	Carboxylate	2.16	9.31
L-Leucine	Carboxylate	2.328	9.744
L-Threonine	Carboxylate	2.088	9.100
L-Serine	Carboxylate	2.186	9.208

Table 3.13. Basicity of some amino acids in water at 25 °C.^[130]

The ¹H-NMR data of either **14**·Ser⁻ or **15**·Ser⁻ showed moderate spectral changes, however, their calculated association constants displayed a very low stability complex. Presumably, the OH group on serine was able to form the intramolecular

hydrogen bonding (Figure 3.38) which was more stable than the intermolecular hydrogen bonding. This leaded to a generally unfavorable interaction between host and TBA salt of serine. The presence of methyl group on the carboxylate anion of threonine gave an advantage in preventing the rotation of OH moiety to form a six-membered ring. Hence, the host-guest interaction in the system of TBA salt of threonine displayed four orders of magnitude larger than serine.

Figure 3.38. Intramolecular hydrogen bonding of carboxylate anion of serine.

Ligand 14 bound TBA salt of aspartic acid stronger than asparagines and TBA salt of glutamic acid stronger than glutamine. Conversely, macromolecule 15 recognized carboxylate anion of asparagine better than aspartic acid and carboxylate anion of glutamine better than glutamic acid. Receptor 14 preferred to bind amino anions whereas host 15 dicarboxylate preferred to encapsulate amino monocarboxylate anions which had the same length. This could be rationalized based on the complementary of hydrogen bond donors and acceptors. In addition to the NHthiourea, compound 14 contained amide as a hydrogen bond donor to an acceptor like carboxylate group of dicarboxylate salt of aspartic or glutamic acid^[151] whereas the ester moiety in macromolecule 15 acted as a hydrogen bond acceptor for a donor like amide group of monocarboxylate salt of asparagine or glutamine. The selectivity trend of these amino mono and dicarboxylate anion complexations seemed to be a combination of two binding sites.

The ability of either receptor 14 or 15 towards TBA salts of aspartic acid, glutamic acid, asparagine and glutamine also clearly depended on the chain length n of amino acid anions. The order of binding ability are aspartic acid (n = 2) > glutamic acid (n = 3) and asparagine (n = 2) > glutamine (n = 3) when n is defined as number of carbon between two carboxylate end sites. A slightly lower efficiency of both receptors towards longer amino acids (n = 3) was observed. This could be ascribed to the compensation of the steric hindrance by hydrogen bonding.

The binding efficacies of **14** and **15** towards unsubstituted and substituted dicarboxylate anions are displayed in Figure 3.39. In most cases, receptor **14** preferred to bind acetate stronger than dicarboxylate while ligand **15** recognized dicarboxylate better than acetate.

Bis-thiourea **14** is the more effective receptor for the longer unsubstituted dicarboxylate like glutarate compared to the shorter one like succinate. Conversely, the shorter substituted dicarboxylate anion such as bis-TBA salt of aspartic acid is better recognized by either **14** or **15** compared to the longer one like bis-TBA salt of glutamic acid. The different in affinity trend could be described in terms of the more rigid of the side chains of substituted dicarboxylates. Compared to receptor **15**, the greater recognition ability of host **14** towards either unsubstituted or substituted dicarboxylate was supported by the preference of ligand **14** to encapsulate acetate. The observed selectivity order demonstrated the importance of complementary between the substituted unit of guests and the binding site of the hosts as well as the acid-base property. The most stabilized complex occurred when this match is optimized. Although it is not able to indicate the exact position of the guest, the structure of amino acid anion complexes are proposed based on our ¹H-NMR titration

data and the structures reported in literature^[34, 151, 156] (Figure 3.40). X represents of NH and O in the case of compounds **14** and **15**, respectively. R refers to the substituted group on TBA salts of aspartic acid, glutamic acid, asparagine, glutamine, phenylalanine, threonine, leucine and serine as presented in Figure 3.30.

3.2.4 Binding Enhancement of Receptors 14 and 15 towards Anions Using Sodium Cation

Moving to the realm of allosteric system, a new approach for the specific design of a receptor is very important in the allosteric study. To design a positively heteroditopic system, the first guest binding must make the remote site more suitable for the second guest binding. In order to complex an ion-pair successfully, the receptor should design to complex cation and anion species as either contact ion-pairs^[83, 157] or solvent separated ion-pair (C⁺-solvent-A⁻)^[82, 157]

Calixarenes are attractive host molecules to construct recognition sites for target guests. Although calix[4]arene structural framework has been widely modified at the lower rim for the recognition of cations or anions, the design and synthesis of ditopic calix[4]arene to simultaneously bind cations and anions is still relatively rare. Receptors **14** and **15** which contain a potential cation binding site and an effective anion binding site are well designed for ion-pair recognition. Ion-pair recognition can

be achieved based on the sum of weak interactions. Generally, favourable electrostatic forces are strong, but not directional; hydrogen bonding is directional, but usually not strong enough to compete with multiple solvation effects in polar protic media. The combination of both types of interactions and preorganization effect would enhance the binding efficiency, both ability (quantity) and selectivity (quality).

Macromolecules 14 and 15 were found to strongly bind cations and anions separately; therefore, the ability to bind an ion-pair of both receptors was able to achieve in two ways. One equivalent of cation was encapsulated in calix[4]arene amide or ester and followed by evaluating anion binding affinity. Alternatively, one or two equivalents molar of anions (depends on the previous data in anion recognition) were added to the acetonitrile solution of host and then titrated with a cation. The former choice was employed in this thesis, since the latter could form either 1:1 or 1:2 complexes. Sodium cation was added as its perchlorate salt whereas anions are used as their tetrabutylammonium salts. Anions used in this binding study are carboxylate and phosphate type anion (acetate (37), benzoate (38), dihydrogen phosphate (39), phenylphosphinate (40) and diphenylphosphate (41)) as well as dicarboxylate anions of aspartic acid (52) and glutamic acid (53) as the representative of essential amino acids. The binding of either receptor 14 or 15 to cation make a room for anion at the thiourea cavity. This enabled us to study the effect of cationcalixarene complex on the stability of anion complexes. The fact that both cations and anions are involved in many biochemistry processes, the detection of the anion binding ability of these cation bound receptors maybe important for better understanding of interactions with the important anion bearing a large number of cations.

The exchange rates of either anions or amino acid anions in the presence of sodium were observed as the time-averaged signals. The ¹H-NMR spectra of the mixture of host **14** and one equivalent of sodium perchlorate with various amount of acetate were obtained. The spectra of bound receptor **14** exhibited a markedly downfield shift of broaden signal of $-CH_2CH_2NHCSNHCH_2Ar$ - with $\Delta\delta = +1.8323$ ppm and of $-CH_2CH_2NHCSNHCH_2Ar$ - with $\Delta\delta = +2.0848$ ppm due to the intermolecular hydrogen bonding towards the carboxylate group of the guest. The upfield shift of the adjacent methylene protons $-NHCSNHCH_2Ar$ - and -

CH₂*CH*₂NHCSNH- were found from 4.6808 to 4.6588 ppm ($\Delta\delta$ = -0.0220 ppm) and from 3.6334 to 3.5991 ppm ($\Delta\delta$ = -0.0343 ppm), respectively. Proton signals of aromatic linkage shifted to the higher magnetic field with $\Delta\delta$ = +0.1277 ppm. Addition of Bu₄N⁺CH₃COO⁻ also caused considerable upfield shifts of the signals at δ 4.1290, 3.3189 and 4.3956 ppm, which attributed to $-OCH_2CH_2OCH_3$ - ($\Delta\delta$ = -0.0331 ppm), $-OCH_2CH_2OCH_3$ - ($\Delta\delta$ = -0.0294 ppm) and $-OCH_2CONH$ - ($\Delta\delta$ = -0.0265 ppm), respectively, and a downfield shift of the signals at δ 3.4970 ppm, which was attributed to $-OCH_2CH_2OCH_3$ - ($\Delta\delta$ = +0.0839 ppm). Both aromatic signals of calix[4]arene building block were shielded with $\Delta\delta$ = -0.0186 and -0.0256 ppm.

The addition of $Bu_4N^+X^-$; $X = CH_3COO^-$, $C_6H_5COO^-$, $H_2PO_4^-$, Ph(H)POO⁻ and (PhO)₂PO₂⁻, into the acetonitrile- d_3 solution of sodium trapped **14** or **15** caused the similar shifting as shown in Figure 3.41 and Figure 3.42.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 3.41. The complexation induced shifts of some proton signals on ¹H-NMR spectrum (a) $14 \cdot \text{Na}^+ \cdot \text{CH}_3\text{COO}^-$ (b) $14 \cdot \text{Na}^+ \cdot \text{C}_6\text{H}_5\text{COO}^-$ (c) $14 \cdot \text{Na}^+ \cdot \text{H}_2\text{PO}_4^-$, (d) $14 \cdot \text{Na}^+ \cdot \text{Ph}(\text{H})\text{POO}^-$ and (e) $14 \cdot \text{Na}^+ \cdot (\text{PhO})_2\text{PO}_2^-$.

Figure 3.42. The complexation induced shifts of some proton signals on ¹H-NMR spectra (a) $15 \cdot \text{Na}^+ \cdot \text{CH}_3\text{COO}^-$ (b) $15 \cdot \text{Na}^+ \cdot \text{C}_6\text{H}_5\text{COO}^-$ (c) $15 \cdot \text{Na}^+ \cdot \text{H}_2\text{PO}_4^-$, (d) $15 \cdot \text{Na}^+ \cdot \text{Ph}(\text{H})\text{POO}^-$ and (e) $15 \cdot \text{Na}^+ \cdot (\text{PhO})_2\text{PO}_2^-$.

Upon addition of tetrabutylammonium dihydrogen phosphate, the observed peak positions of nearly all signals, except for $-CH_2CH_2NHCSNHCH_2Ar$ -, - OCH₂CONH- and $-ArCH_2Ar$ -, did not show any change compared to the parent molecule (14·Na⁺). However, the binding constant could not be calculated from these three signals because of the unverified Job's analysis (Figure 3.43). These proton signals were closed to the cationic binding site, thus the shifting were probably attributed to the rearrangement around the sodium cation. This indicated that the presence of sodium in amide cavity inhibited the binding of bis-thiourea 14 towards dihydrogen phosphate owning to the uncomplimentary hydrogen bonding.

The 1:1 stoichiometry ratios of the $14 \cdot \text{Na}^+ \cdot (\text{PhO})_2 \text{PO}_2^-$ and all $15 \cdot \text{Na}^+ \cdot \text{anion}$ complexes were suggested by the Job's plots (Figures 3.43 and 3.44). The titration curves of $14 \cdot \text{Na}^+ \cdot (\text{PhO})_2 \text{PO}_2^-$, $15 \cdot \text{Na}^+ \cdot \text{CH}_3 \text{COO}^-$, $15 \cdot \text{Na}^+ \cdot \text{C}_6 \text{H}_5 \text{COO}^-$ and $15 \cdot \text{Na}^+ \cdot (\text{PhO})_2 \text{PO}_2^-$ are almost normal looking and correlate well with the 1:1 binding model (Figures 3.45 and 3.46).

Figure 3.43. Job's plots of $-NHCSNHCH_2Ar$ - in $14 \cdot Na^+ \cdot CH_3COO^-$, $14 \cdot Na^+ \cdot C_6H_5COO^-$, $14 \cdot Na^+ \cdot Ph(H)POO^-$ and $14 \cdot Na^+ \cdot (PhO)_2PO_2^-$ complexes.

Figure 3.44. Job's plots of $15 \cdot \text{Na}^+ \cdot \text{CH}_3\text{COO}^-^*$, $15 \cdot \text{Na}^+ \cdot \text{C}_6\text{H}_5\text{COO}^{-\$}$, $15 \cdot \text{Na}^+ \cdot \text{H}_2\text{PO}_4^{-\$}$, $15 \cdot \text{Na}^+ \cdot \text{Ph}(\text{H})\text{POO}^{-*}$ and $15 \cdot \text{Na}^+ \cdot (\text{PhO})_2\text{PO}_2^{-*}$ complexes (* using $-\text{NHCSNH}CH_2\text{Arsignal}$ and $^{\$}$ using $-\text{NHCSNH}CH_2\text{Arsignal}$).

Figure 3.45. Titration curves of $-CH_2CH_2NHCSNH$ - signals in $14 \cdot Na^+ \cdot CH_3COO^-$, $14 \cdot Na^+ \cdot C_6H_5COO^-$, $14 \cdot Na^+ \cdot Ph(H)POO^-$ and $14 \cdot Na^+ \cdot (PhO)_2PO_2^{-*}$ complexes (* using $-NHCSNHCH_2Ar$ - signal).

Figure 3.46. Titration curves of $-NHCSNHCH_2Ar$ - signals in $15 \cdot Na^+ \cdot CH_3COO^-$, $15 \cdot Na^+ \cdot C_6H_5COO^-$, $15 \cdot Na^+ \cdot H_2PO_4^-$, $15 \cdot Na^+ \cdot Ph(H)POO^-$ and $15 \cdot Na^+ \cdot (PhO)_2PO_2^{-*}$ complexes (* using $-NHCSNHCH_2Ar$ - signal).

In the case of $14 \cdot Na^+ \cdot CH_3COO^-$, $14 \cdot Na^+ \cdot C_6H_5COO^-$ and $14 \cdot Na^+ \cdot Ph(H)POO^-$, the stoichiometric ratios could not be verified by Job's analysis and the titration curves existed as sigmoidal curves (Figures 3.45 and 3.46). Compared to the titration curve of unbound 14 with acetate, the plotting of initial host containing sodium perchlorate was different (Figure 3.47). It seemed to be no affinity of *NH*-thiourea in $14 \cdot Na^+$ to acetate until 1 equivalent of this anion was added. The subsequent addition reactivated the host as evidence by the sudden downfield shift of *NH*-thiourea signals. Sodium can stoichiometrically sequester acetate and the hydrogen bond recognition site is reactivated in response to the excess amount of guest. The binding curves of $14 \cdot Na^+ \cdot C_6H_5COO^-$ and $14 \cdot Na^+ \cdot Ph(H)POO^-$ displayed the similar events. This sequestering effect by negative ion-pairing in the system of a heteroditopic receptor was recently reported by Gale *et al.*^[158] The species during the titration of anions are also proposed in Figure 3.47.

Figure 3.47. Titration curves of $-CH_2CH_2NHCSNHCH_2Ar$ - in $14 \cdot Na^+ \cdot CH_3COO^-$ compared to $14 \cdot CH_3COO^-$ complex.

The similar titration curves were previously reported by Shukla *et al.*^[159] and Al-Sayah *et al.*^[160] Both research groups reported the sigmoidal curves which did not arise from the 1:2 stoichiometry complex. The former case was rooted from the ion-pair effect of its counter cation in anion recognition study (Scheme 3.9 (**59-60**)). The latter report was stemmed from the intramolecular hydrogen bonding at the cationic binding site of the heteroditopic receptor by another end side of its molecule (Scheme 3.9 (**61-63**)). Both articles displayed the replacements of anion-host interactions by cations.

์ สุสาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Scheme 3.9. The effects of cation on the binding curves.

The salts of alkali cations do not usually exist as free ions in most organic solvents. Instead, they present as solvent separated ion-pairs, contact ion-pairs, and/or aggregated contact ion-pairs.^[159] Hereby, the difficulty in investigating simultaneous cation and anion binding is that there are a number of competing equilibria involved (Scheme 3.10).^[55] The predominant equilibria is judged by types of cation, anion and ion-pair species as well as the medium. The precipitation of ion-pair salt which is not soluble in the solvent will be the major event to compete with anion binding by the bound receptor.

Scheme 3.10. Equilibrium involved in ion-pair binding (H = host, C = cation and A = anion).^[55]

Basically, a heteroditopic host is designed in order to inhibit the negative ionpairing association between anions and its counter cations. However, the sequestering effect in our result can be discussed by two explanations. First, the sodium presenting in solution, in our experiment, was assumed to bind host **14** or **15** completely. It is possible that the unbound cation presenting in the solution associates with anion then leading to the decrease or inhibit in strength of anion binding during the first period of titration. Second, the bound sodium could associate with anion leading to the ionpairing species.

The replacement of amide in 14 with ester moiety in 15 intensively changed the affinity of these receptors for ion-pair recognition. On the other hand, the ester calix[4]arene compound is known to strongly complex alkali metal cations,^[161] thus ligand 15 will minimize competing negative ion-pairing interactions more effectively than host 14. The stronger interaction of ester moiety in 15 towards sodium compared to the amide donor in 14 confirms by the larger β_1 of the former. This explanation is supported by an article by Olmstead *et al* which reported the effective elimination of the negative ion-pairing effect of sodium and [CH₃COCHCOCH₃]⁻ by addition of a cryptand (1 equivalent)^[162] which is a well-known receptor for sodium cation. Generally, the ion-pair association constant of alkali or alkaline earth cation towards various anions in a number of dipolar aprotic solvents is greater in the presence of the more effective electron donor (anions). Sodium has been reported to be the largest ion-pairing cation among the alkali metal cations (sodium, potassium and cesium).^[159] In the absence of sodium, macromolecule 14 displayed a more acidic property than compound 15. The acidity of host 14 was enhanced by the entrapped sodium. Hence, anions were able to compete with the solvent molecules for a site in the coordination sphere of the sodium.^[163] The negative ion-pair effect was found in the system of host 14, but not in the case of receptor 15. The weakest ion-pairing effect of $14 \cdot \text{Na}^+ \cdot (\text{PhO})_2 \text{PO}_2^-$ complex can be rationalized by the lowest basicity of diphenylphosphate.^[130]

For the systems of $15 \cdot \text{Na}^+ \cdot \text{H}_2\text{PO}_4^-$ and $15 \cdot \text{Na}^+ \cdot \text{Ph}(\text{H})\text{POO}^-$, NMR evidences displayed the sigmoidal titration curves despite of their 1:1 stoichiometry ratio from Job's analysis. This could be explained by the stepwise formation of complex from $15 \cdot \text{Na}^+ \cdot \text{A}^-$ to $15 \cdot \text{Na}^+ \cdot 2\text{A}^-$ (A⁻: H₂PO₄⁻ or Ph(H)POO⁻). Thus, the association constants of $15 \cdot \text{Na}^+ \cdot \text{H}_2\text{PO}_4^-$ and $15 \cdot \text{Na}^+ \cdot \text{Ph}(\text{H})\text{POO}^-$ were evaluated using the data range from 0-2 equivalents of anions by 1:1 binding model. The quantitative evaluation of average association constants and Gibbs free energies of $14 \cdot \text{Na}^+ \cdot (\text{PhO})_2\text{PO}_2^-$ as well as all $15 \cdot \text{Na}^+ \cdot \text{anion}$ complexes are listed in Table 3.14 and Figure 3.48.

Table 3.14. The average association constants and Gibbs free energies upon the formation of $14 \cdot Na^+ \cdot anion$ and $15 \cdot Na^+ \cdot anion$ complexes.

Complex		Association Constant	Gibbs free energy
Туре	Stoichiometry	(M ⁻¹)	(kJ·Mol ⁻¹)
$14 \cdot \text{Na}^+ \cdot (\text{PhO})_2 \text{PO}_2^-$	1:1	1790	-18.6
$15 \cdot \text{Na}^+ \cdot \text{CH}_3 \text{COO}^-$	1:1	28000	-25.4
$15 \cdot \text{Na}^+ \cdot \text{C}_6 \text{H}_5 \text{COO}^-$	1:1	982	-17.1
$15 \cdot \mathrm{Na}^{+} \cdot \mathrm{H}_{2}\mathrm{PO}_{4}^{-}$	1:1	53900	-27.0
$15 \cdot \text{Na}^+ \cdot \text{Ph}(\text{H})\text{POO}^-$	1:1	45800	-26.6
$15 \cdot \text{Na}^+ \cdot (\text{PhO})_2 \text{PO}_2^-$	1:1	11100	-23.1

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 3.48. The selectivity of sodium bound 14 and 15 towards various anions.

The sodium bound **14** selectively recognized diphenylphosphate while the sodium trapped **15** bound dihydrogen phosphate more tightly than phenylphosphinate, acetate, diphenylphosphate and benzoate. The sodium bound **15** exhibited remarkable selectivity towards tetrahedral dihydrogen phosphate whereas it tended to form weaker complex towards Y-shaped acetate in spite of the substantially higher basicity of the latter. This trend is similar to the previously result of the unbound **15**. The binding ability of **15**·Na⁺ towards carboxylate and phosphate anions can be explained in terms of complexation geometry^[132] and coordinated solvent.

The phenyl containing anions play a positive role in the system of unbound **15** while these anions play a negative role in the system of $15 \cdot \text{Na}^+$. This could be ascribed by the larger p K_a of acetate over benzoate and dihydrogen phosphate over phenylphosphinate because the basicity plays an important role in the ion-pair recognition. The weakest complex of $15 \cdot \text{Na}^+ \cdot (\text{PhO})_2 \text{PO}_2^{[164]}$ among other phosphate anions is explained by the lowest basicity and the largest steric hindrance of diphenylphosphate. From our results, the complementary interactions between donor and acceptor sites determine selectivity whereas both steric hindrance and basicity determine the binding efficiency.

The cooperativity factors which generate from the ratio of anion association constant in the presence of cation to the anion binding ability in the absence of cation^[159] are displayed in Figure 3.49. Sodium enhances anion recognition of receptor **15** towards acetate, dihydrogen phosphate, phenylphosphinate and diphenylphosphate (cooperativity factor > 1); thus, they are termed as positively heterotropic allosterism. On the contrary, the presence of sodium in **14**·Na⁺·(PhO)₂PO₂⁻ and **15**·Na⁺·C₆H₅COO⁻ reduces the anion binding efficacy (cooperativity factor < 1); therefore, they are classified as negatively heterotropic allosterism.

Figure 3.49. The cooperativity factors of sodium bound to receptor 14 or 15 in the presence of various anions.

The lower association constant of $14 \cdot \text{Na}^+ \cdot (\text{PhO})_2 \text{PO}_2^-$ compared to $14 \cdot (\text{PhO})_2 \text{PO}_2^-$ complex can be explained by the less number of intermolecular hydrogen bonding. Only two $-\text{CH}_2\text{CH}_2NH\text{CSNHCH}_2\text{Ar-}$ donor protons are involving in ion-pairing complex but another *NH*-thiourea and *NH*-amide are inactive which evidences by a slightly upfield shift. However, the association constant of $14 \cdot \text{Na}^+ \cdot (\text{PhO})_2 \text{PO}_2^-$ does not show much lower ability. The stability of this complex can be compensated by the π - π and Na⁺- π ^[165] interaction.

The cooperativity trend of ditopic receptor **15** was found to be slightly different from ion-pair recognition selectivity. The addition of sodium perchlorate changed the molecule into a conformation that demonstrated the interestingly greatest enhancement towards acetate (cooperativity factor = 13.9) but totally inhibited

inclusion of benzoate (cooperativity factor = 0.1). The largest effective of entrapped Na⁺ towards acetate in the system of **15** can be explained by the highest pK_a of acetate. Sodium cation is thus a positive effector that can activate the molecule recognition event of host **15**. Presumably, the negative allosterism in the presence of benzoate arises from the uncomplimentary hydrogen bonding. This present system is a rare example which features both positively and negatively heteroditopic allosterisms between metal ions and anions in a calix[4]arene host.

The positive allosteric property can generally be explained by two possible reasons. Firstly, the ditopic receptor **15** in the presence of sodium has a stronger affinity for anion leading to an additional coulombic force. Secondly, the receptor has the same affinity for anions, but sodium binds one anion stronger than other anions. However, these two explanations refer to the complementary hydrogen bonding (thiourea-anion) and the cooperative acting of the electrostatic component (sodium-anion). In addition, the positive allosterism of heteroditopic **15** in the presence of sodium can be discussed by the enthalpy effect.^[57, 131] This explanation should be supported by thermodynamic data by either variable-temperature ¹H-NMR titration method^[57] or isothermal titration calorimetry (ITC).^[166]

The presence of phenyl group in phosphate anion leaded to the decrease in positive allosteric effect. In contrast, it induced the negative allosterism in the case of carboxylate anions. The stability of $15 \cdot \text{Na}^+ \cdot \text{PhP}(\text{H})\text{OO}^-$ can be compensated by π - π and electrostatic interactions whereas the steric hindrance in $15 \cdot \text{Na}^+ \cdot (\text{PhO})_2 \text{PO}_2^-$ can be compensated by π - π , Na⁺- π and electrostatic interactions. The effective ion-pair recognition can be achieved based on the sum of weak interactions.

Based on the NMR titration data, the proposed structure of cation and anion complexes as well as the literatures^[54, 157, 167-168] of ion-pair complexes, the structure of the 1:1 ion-pair complexes are proposed in Figure 3.50. X represents of NH and O in the case of compounds **14** and **15**, respectively. R_1 , R_2 and R_3 refer to the substituted group on acetate, benzoate, dihydrogen phosphate, phenylphosphinate and diphenylphosphate as presented in Figure 3.8.

Figure 3.50. The proposed structures of cation enhancement anion complexes (64-65).

Moving on from common carboxylate and phosphate anions to amino carboxylate anion, bis-TBA salts of aspartic acid and glutamic acid were chosen as the substrates to investigate the ion-pairing binding ability of the ditopic bis-thiourea calix^[4]arene **14** and **15**. Addition of the dicarboxylate salts of aspartic acid caused either downfield or upfield shift depend upon the complexation induced effects. The predominantly large downfield shift from 6.9235 to 9.2190 ppm ($\Delta \delta = +2.2955$ ppm) upon adding 2.94 equivalents of the anion was found in the case of -CH₂CH₂NHCSNHCH₂Ar- signal. This signal could not be followed after 3 equivalents because it was broaden and disappeared. Another NH-thiourea signal (-CH₂CH₂NHCSNHCH₂Ar-) coalesced with other peaks in the aromatic region after displayed a movement to the lower magnetic field ($\Delta \delta = +0.2035$ ppm). However, both *NH*-thiourea chemical shifts intensively changed in the presence of TBA salt of aspartic acid. These results signified that 14 interacted with dicarboxylate anion of aspartic acid via hydrogen bonding like other anion systems. The typical upfield shift experienced by the -NHCSNHCH₂Ar- and -CH₂CH₂NHCSNH- protons were found at 1.89 and 1.43 equivalents, respectively. The shift of the former protons was observed from 4.6802 to 4.6443 ppm ($\Delta \delta$ = -0.0359 ppm) whereas the latter one was shifted from 3.6327 to 3.6014 ppm ($\Delta \delta = -0.0313$ ppm). One of the aromatic linkage signal moved to the higher magnetic field with $\Delta \delta = -0.1235$ ppm. The protons on

methyl ethyl ether substituted chain were moved with $\Delta \delta = +0.0214$, +0.0646 (1.89 eq) and -0.0632 ppm; they were attributed to $-OCH_2CH_2OCH_3$, $-OCH_2CH_2OCH_3$ and $-OCH_2CH_2OCH_3$, respectively. The $-OCH_2CONH$ - protons which absorbed at around 4.3931 ppm shifted upfield with $\Delta \delta = -0.0239$ ppm in the present of 2.31 equivalent of anion. One of the $-ArCH_2Ar$ - protons shifted downfield with $\Delta \delta = +0.0302$ ppm while the $-CH_2ArHCH_2$ - signals shifted upfield with $\Delta \delta = -0.0287$ and -0.0335 ppm causing by the π cloud of the aromatic rings. The addition of dicarboxylate salt of aspartic or glutamic acid to bis-thiourea **14** or **15** depicted the similar shifting as shown in Figure 3.51 and Figure 3.52.

Figure 3.51. The complexation induced shifts of some proton signals on ¹H-NMR spectrum (a) $14 \cdot Na^+ \cdot Asp^{2-}$ and (b) $14 \cdot Na^+ \cdot Glu^{2-}$.

สถาบนวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Figure 3.52. The complexation induced shifts of some proton signals on ¹H-NMR spectrum (a) $15 \cdot \text{Na}^+ \cdot \text{Asp}^{2-}$ and (b) $15 \cdot \text{Na}^+ \cdot \text{Glu}^{2-}$.

NMR evidence showed the formation of a 1:2 complexes of $14 \cdot \text{Na}^+ \cdot \text{Asp}^{2-}$ (X \approx 0.66) whereas the 1:1 fashion of $14 \cdot \text{Na}^+ \cdot \text{Glu}^2$, $15 \cdot \text{Na}^+ \cdot \text{Asp}^2$ and $15 \cdot \text{Na}^+ \cdot \text{Glu}^2$ (X \approx 0.5) were verified by means of Job's analysis (Figures 3.53 and 3.54). The different in the type of formation between 14·Na⁺·Asp²⁻ and 15·Na⁺·Asp²⁻ can be ascribed to the difference in the hydrogen bond donor site of each thiourea in the host molecule. Job's plots of all systems corresponded with their titration curves (Figures 3.55 and 3.56). The determination of a 1:2 complex from binding curve were verified by two sudden change points during titration which belonged to two binding equilibrium like in the system of $14 \cdot \text{Na}^+ \cdot \text{Asp}^2$. The titration curve of the remaining systems generated only one sudden change point as a normal looking titration curve like other 1:1 cases. No negative ion-pairing effect presented in ion-pair recognition of either receptor 14 or 15 towards both amino dicarboxylate anions in spite of the use of sodium as cation bound substrate. This could be ascribed to the lower basicity of both dicarboxylate anions of aspartic acid and glutamic acid compared to acetate and benzoate as well as the effect of entrapped sodium. These amino acid anions comprised of two carboxylate ending sites and their chains were long enough to stabilize by NHthiourea and bound sodium.

Figure 3.53. Job's plots of $-CH_2CH_2NHCSNHCH_2Ar$ - in (a) $14 \cdot Na^+ \cdot Asp^{2-}$ and (b) $14 \cdot Na^+ \cdot Glu^{2-}$ complexes.

Figure 3.54. Job's plots of $-CH_2CH_2NHCSNHCH_2Ar$ - signal in (a) $15 \cdot Na^+ \cdot Asp^{2-}$ and (b) $15 \cdot Na^+ \cdot Glu^{2-}$ complexes.

Figure 3.55. Titration curves of $-CH_2CH_2NHCSNHCH_2Ar$ - in (a) $14 \cdot Na^+ \cdot Asp^{2-}$ and (b) $14 \cdot Na^+ \cdot Glu^{2-}$ complexes.

Figure 3.56. Titration curves of $-CH_2CH_2NHCSNHCH_2Ar$ - signal in (a) $15 \cdot Na^+ \cdot Asp^{2-}$ and (b) $15 \cdot Na^+ \cdot Glu^{2-}$ complexes.

Association constants and Gibbs free energies of all sodium amino dicarboxylate are shown in Table 3.15. The quantitative binding efficiencies were calculated by an iterative curve fitting method by the use of NMRTit_HG and NMRTit_HGG program for 1:1 and 1:2 complexes, respectively.^[105]

Complex		Association Constant	Gibbs free energy
Туре	Stoichiometry	(M ⁻¹)	(kJ·Mol ⁻¹)
$14 \cdot \text{Na}^+ \cdot \text{Asp}^{2-}$	1:2	$> 10^4$	-
		$> 10^8 (M^{-2})$	-
$14 \cdot \text{Na}^+ \cdot \text{Glu}^{2-}$	1:1	5370	-21.3
$15 \cdot \text{Na}^+ \cdot \text{Asp}^{2-}$	1:1	162	-12.6
$15 \cdot \mathrm{Na}^+ \cdot \mathrm{Glu}^{2-}$	1:1	93.6	-11.2

Table 3.15. The average association constants and Gibbs free energies upon the formation of $14 \cdot \text{Na}^+ \cdot \text{dicarboxylate}^{2-}$ and $15 \cdot \text{Na}^+ \cdot \text{dicarboxylate}^{2-}$ complexes.

The binding constants of both sodium bound receptors towards TBA salts of aspartic acid and glutamic acid compared to common carboxylate anions like acetate are shown in Figure 3.57. In order to compare to the others, only β_1 of $14 \cdot \text{Na}^+ \cdot \text{Asp}^{2-}$ is displayed.

The entrapped sodium in the lower rim cavity of **14** and **15** seems to introduce the new site for recognizing the carboxylate anions indicating by either the higher or lower affinity compared to efficiency of the free receptor. Both receptors in the absence or presence of sodium tend to display the size-complementary with dicarboxylate anion of aspartic acid over glutamic acid. Based on the same geometry of guests, the length of alkyl chain determines the selectivity. The cavity of ligands **14** and **15** are too short for dicarboxylate anion of glutamic acid despite of the presence of sodium cation.

The positive or negative allosteric effect of encapsulated sodium in cavity of **14** or **15** towards substituted dicarboxylate anions is quantitatively displayed by the cooperativity factor (Figure 3.58).

The binding ability of receptor **14** towards the bis-TBA salt of aspartic acid was activated by the entrapped sodium whereas the selectivity towards the bis-TBA salt of glutamic acid was inhibited by the same cation. The binding efficacy of host **15** towards both dicarboxylate anions poorly recognized in the presence of sodium. Presumably, the preorganization of receptor **15** after including sodium in the cavity leads to the mismatch between the hydrogen bond donor site in the host and the acceptor site in the guest.

The sodium bound **14** was recognized dicarboxylate anion especially dicarboxylate anion of aspartic acid while the presence of sodium in compound **15** afforded the much greater selectivity with monocarboxylate anion like acetate. This

could be ascribed to the presence of amide and ester moiety in macromolecules **14** and **15**, respectively. The amide function is widely served as anionic binding site,^[151, 169] therefore, it is possible to interact with the second carboxylate in dicarboxylate salt of aspartic acid and stabilized ion-pair complexes.

In summary, the presence of sodium cation in the system of macromolecule 14 was effective both in the enhancement of amino acid anion binding site using a cation and in the differentiation of dicarboxylate salts of aspartic acid and glutamic acid. The unbound receptor 14 displayed a small ability in differentiating these two substituted dicarboxylate anions.

The structures of ion-pair complexes between sodium bound molecules **14** and **15** towards substituted dicarboxylate anions are proposed based on our NMR data, structure of amino acid anion complexes^[34, 151, 156] and ion-pair complexes^[54, 152, 157, 167] (Figure 3.59). R represents side chains of dicarboxylate anions of aspartic acid and glutamic acid.

Figure 3.59. The proposed structures of 1:1 sodium amino acid anion complexes (66).

3.2.5 Binding Ability of Chiral 26

There is no chiral center in compound 26 which is cyclised from compound 24, however, it is a chiral molecule. Macrocyclic molecule 26 can act as traditional hydrogen bond donor like amide moiety which is known to form stable complexes with anions. Therefore, it is worth testing the efficacy in chiral recognition. The amino carboxylate binding studies were conducted by solid-liquid extraction with compound 26 as a preliminary screening. Interactions of chiral molecule 26 with some TBA salts of amino acids were investigated by ¹H-NMR spectroscopy.

Chiral **26** displayed poor solubility in DMSO or methanol, but it was found to be soluble in chloroform-*d* in which the guest substrates were not soluble. Therefore, acetonitrile-*d*₃ was again the choice of solvent owing to the well-resolved ¹H-NMR spectrum of compound **26** in this media. The difference in amino acid side chains and configuration (L and D) were expected to give difference in selectivity. The solid of mono- or dicarboxylate anions (L-phenylalanine, L-alanine and D-alanine) were added into an acetonitrile-*d*₃ solution of compound **26** and they were shaken at room temperature overnight. After that the mixtures were centrifuged for 15 minutes and consequently filtered through a pasteur pipet with cotton. The clear solutions were measured by the NMR technique. Attempts to study the complexation of all guests with **26** in acetonitrile-*d*₃ were unsuccessful. By monitoring the complexation induced shift (CIS) of the *NH*-amide or any other signals, the ¹H-NMR spectra showed negligible shift of the *NH*-amide signal for all salts probably because of the less flexible and too small cavity of receptor **26**.

สถาบนวทยบรการ จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER IV

CONCLUSION

4.1 Conclusion

The synthesis of U-shaped macrocyclic receptor 14 was carried out from *p-tert*-butylcalix[4]arene in 3.7% overall yield. A nucleophilic substitution reaction of *p-tert*-butylcalix[4]arene with 2-bromoethyl methyl ether using potassium carbonate as base in acetonitrile yielded 17 (73%), then followed by a substitution reaction with methyl bromoacetate in the presence of sodium carbonate as base in acetonitrile to afford 18 (70%). After that 18 was treated with sodium hydroxide in ethanol to gain 19 (70%). The acid derivative 19 was transformed to acid chloride using thionyl chloride in benzene and subsequently by a condensation reaction with boc-protecting diaminopropane 16 in toluene in the presence of triethylamine as base and 4-(dimethylamino)pyridine as catalyst to give product 20 (42%). In the next step, the protecting group was deprotected by trifluoroacetic acid and consequently extracted with sodium hydrogen carbonate solution. Then it was immediately reacted with thiophosgene using potassium carbonate as base to afford thiocyanate derivative 21 Compound 14 was obtained by treating compound 21 with (62%). 1,3-bis(aminomethyl)benzene in pyridine (40%). The crystal structure of compound 14 showed the closed flattened cone conformation of the calix[4]arene unit. Compound 15 was synthesized by treating the acid chloride derivative with bis-thiourea linkage 28 using 4-(dimethylamino)pyridine as base in dry tetrahydrofuran (43%). This method gave calix[4]arene ester **15** in 15% overall yield. Except for tetrasubstituted calix[4]arene 18, other derivatives clearly existed in cone conformation.

Binding recognition of both receptors in acetonitrile- d_3 was investigated towards cations, anions (common and amino acid anion) and ion-pairs using ¹H-NMR titration technique. The alkali cations were used as their perchlorate salts while either common or amino acid anions were prepared as mono- or di-tetrabutylammonium salts. The exchange rate between the complexed and uncomplexed cationic guest in the inner cavity of macromolecule **14** was slower than the ¹H-NMR time scales, giving rise to new separate NMR peaks assignable to the **14**-cation complex. However, the exchange rate of the **15**-cation complexes was faster than the NMR time scale affording the

142

time-average signals. From either integral intensity ratio or chemical induced shift, stoichiometry of complexes, binding constants and Gibbs free energies were evaluated.

Both receptors showed the selective recognition towards sodium; however, receptor **15** displayed the more sensitive and selective to this alkali cation [**14**·sodium $(5531 \text{ M}^{-1}) > 14$ ·lithium $(914 \text{ M}^{-1}) > 14$ ·potassium (617 M^{-1}) and **15**·sodium $(15500 \text{ M}^{-1}) > 15$ ·potassium $(688 \text{ M}^{-1}) > 15$ ·lithium (371 M^{-1})]. The selectivity and affinity trend could be ascribed to the HSAB concept and size complementary.

The anion recognition at the thiourea binding site of calix[4]arene amide **14** and ester **15** displayed the different complex stoichiometry and selectivity trend. Macromolecule **14** preferred to bind trigonal planar carboxylate anion over tetrahedral phosphate anion [glutarate (42900 M⁻¹) > acetate (30400 M⁻¹) > succinate (11000 M⁻¹) > phenylphosphinate (17100 M⁻¹) > benzoate (3290 M⁻¹) > diphenylphosphate (2330 M⁻¹) > dihydrogen phosphate (858 M⁻¹)]. On the other hand, compound **15** bound phosphate type anions stronger than carboxylate anions [phenylphosphinate (14300 M⁻¹) > dihydrogen phosphate (9710 M⁻¹) > benzoate (8300 M⁻¹) > diphenylphosphate (3240 M⁻¹) succinate (2020 M⁻¹) > acetate (2010 M⁻¹)]. These selectivity trends can be rationalized by the complementary structure, the acid-base property and the solvent effect.

Receptor **14** was discovered to bind anionic form of leucine stronger than other amino acids [leucine (49600 M⁻¹) > phenylalanine (24800 M⁻¹) > aspartic acid (21200 M⁻¹) > asparagine (19600 M⁻¹) > glutamic acid (15500 M⁻¹) > threonine (10300 M⁻¹) > glutamine (8270 M⁻¹) >> serine (<10 M⁻¹)] while analogous **15** was selectively recognized TBA salt of phenylalanine and asparagine [phenylalanine ~ asparagine (>10⁴ M⁻¹) > glutamine (39100 M⁻¹) > aspartic acid (17700 M⁻¹) > threonine (17100 M⁻¹) > glutamic acid (11900 M⁻¹) > leucine (10200 M⁻¹) >> serine (<10 M⁻¹)]. Both hosts **14** and **15** had the greatest recognition towards TBA salt of phenylalanine. Both macrocyclic compounds **14** and **15** had the lowest stability constant towards carboxylate anion of serine. Interestingly, the ability of both receptors towards TBA salts of aspartic acid, glutamic acid, asparagine and glutamine clearly depended on the chain length *n* of amino acids. The order of binding ability was aspartic acid (*n* = 2) > glutamic acid (*n* = 3) and asparagine (*n* = 2) > glutamine (*n* = 3). Either the amide function in **14** or ester group **15** acted as alkali cation binding sites and as a remote anion binding sites to discriminate anion and ion-pair binding. The bis-thiourea **14** preferred to bind carboxylate anion of aspartic acid over asparagine and carboxylate salt of glutamic acid over glutamine. On the other hand, analogous **15** afforded the better recognition towards TBA salt of asparagine over aspartic acid and TBA salt of glutamine over glutamic acid. The binding efficacy towards amino carboxylate anions could be explained in terms of acid-base property and complementary structure from additional moiety.

After bound with sodium cation, calix[4]arene amide **14** did not associate with dihydrogen phosphate. Only the binding efficacy upon the addition of TBA salts of diphenylphosphate, aspartic acid and glutamic acid could be evaluated attributed to the negative ion-pairing effect in the remaining systems [aspartic acid $(>10^4 \text{ M}^{-1}) >$ glutamic acid $(5370 \text{ M}^{-1}) >$ diphenylphosphate (1790 M^{-1})]. The presence of sodium cation enhanced the binding recognition of dicarboxylate anion of aspartic acid due to the combination of hydrogen bonding and electrostatic effects but retarded the association process in the case of TBA salts of glutamic acid and diphenylphosphate. Comparison to unbound **14**, the bound receptor displayed much higher ability in differentiating these two amino acid anions.

Relative stabilities for receptor **15** towards anions were as follow: dihydrogen phosphate (53900 M⁻¹) > phenylphosphinate (45800 M⁻¹) > acetate (28000 M⁻¹) > diphenylphosphate (11100 M⁻¹) > benzoate (982 M⁻¹) > aspartic acid (162 M⁻¹) > glutamic acid (94 M⁻¹). The **15**·Na⁺ receptor served as a positive allosteric system in the presence of dihydrogen phosphate, phenylphosphinate, acetate or diphenylphosphate while it acted as a negative allosterism in the presence of benzoate, aspartic acid or glutamic acid. The acid-base property as well as the complementary of donor-acceptor binding sites determined the selectivity.

4.2 Suggestions for Future Work

The host-guest association of these complexes could be studied by other techniques such as infrared spectroscopy,^[170] UV-VIS spectroscopy^[171] or calorimetry.^[166] Furthermore, attempts to recrystalize each complex to obtain a crystal structure should be carried out to reveal the solid state structure of the complexes.

Generally, anions, especially, carboxylate, dicarboxylate and phosphate play an important role in chemical and biological process.^[172] Our receptors are able to bind these anions well in different detail, so it might be valuable to modify our receptor to be an electrochemical^[173-174] or naked-eye^[175-176] sensors that are able to response a specific anion by giving an electrochemical response or color changes. After that the high sensitive and selective electrochemical response receptor should be incorporated in an electrode membrane and used as an ion selective electrode.^[177] A covalent attachment of these receptors to solid-phase HPLC is another possible application for separation of anions.^[178]

An introduction of pendent arms of amino acid or a short chain of peptide on a part of any substituted unit^[179-180] would afford a higher specific ligand for an oligopeptide. An attachment of this oligopeptide receptor to a polystyrine resin will provide a peptide library based on calix[4]arene which is a powerful tool for investigation of host-guest interactions.^[73, 181]

REFERENCES

- 1. Lehn, J-M. Supramolecular Chemistry: Concepts and Perspectives, VCH, Weinheim, 1995, pp.5.
- Beer P. D.; Gale, P. A.; Smith, D. K. Supramolecular Chemistry, Oxford University Press, Oxford, 1999, pp.2.
- 3. Jeffrey, G. A. An Introduction to Hydrogen Bonding, Oxford University Press, Oxford, **1997**, p.2-3.
- 4. Arduini, A.; Secchi, A.; Pochini, A. J. Org. Chem. 2000, 65(26), 9085-9091.
- Bodenant, B.; Weil, T.; Businelli-Pourcel, M.; Fages, F.; Barbe, B.; Pianet, I.; Laguerre, M. J. Org. Chem. 1999, 64(19), 7034-7039.
- 6. Ikeda, A.; Shinkai, S. Chem. Rev. 1997, 97, 1713-1734.
- Kral, V.; Sessler, J. L.; Shishkanova, T. V.; Gale, P. A.; Volf, R. J. Am. Chem. Soc. 1999, 121, 8771-8775.
- 8. Lee, D. H.; Lee, H. Y.; Lee, K. H.; Hong, J-I. J. Chem. Soc., Chem. Commun. 2002, 1188-1189.
- 9. Lee, D. H.; Lee, K. H.; Hong, J-I. Org. Lett. 2001, 3, 5-8.
- 10. Hennrich, G.; Sonnenschein, H.; Resch-Genger, U. Tetrahedron Lett. 2001, 42, 2805-2808.
- Darensbourg, D. J.; Joó, F.; Kannisto, M.; Kathó, A.; Reibenspies, J. H.; Dailage, D. J. *Inorg. Chem.* **1994**, *33*(2), 200-208.
- 12. Costa, J; Delgado, R; Drew, M. G. B.; Felix, V.; Saint-Maurice, A. J. Chem. Soc., Dalton Trans. 2000, 12, 1907-1916.
- Lippard, S. J.; Berg, A. Principles of Bioinorganic Chemistry California: University Science Books, 1994, pp.3.

14. Dilworth, J.; Parrott, S. Chem. Soc. Rev. 1998, 27(1), 43-55.

- Steed, J. W.; Atwood, J. L. Supramolecular Chemistry John Wiley & Sons, Chichester, 2000, p.36-38.
- Vögtle, F. Supramolecular Chemistry: An Introduction Chichester, John Wiley & Sons, 1991, p.27-76.
- Danil de Namor, A. F.; Kowalska, D.; Marcus, Y.; Villanueva-Salas, J. J. Phys. Chem. B 2001, 105, 7542-7549.
- Shriver, D. F.; Atkins, P. W.; Langford, C. H. *Inorganic Chemistry* 3rd ed, W. H. Freeman, New York, **1990**, p.173-176.
- Calladine, C. R.; Drew, H. R. Understanding DNA: The molecule and how it works 2nd ed. New York: Academic Press, 1997, 281 pp.
- 20. Stryer, L. Biochemistry 4th ed, W. H. Freeman, New York, 2000, p.509-528.
- 21. Beer, P. D. J. Chem. Soc., Chem. Commun. 1996, 6, 689-696.
- 22. Harrison, R. M. *Pollution: Causes Effects and Control.* 3rd ed, London, Royal Society of Chemistry, **1996**, 480 pp.
- 23. Stetter, J.; Lieb, F. Angew. Chem., Int. Ed. Engl. 2000, 39, 1724-1744.
- 24. Quinton, P. M. FASEB J. 1990, 4, 2709-2717.
- 25. Renkawek, K.; Bosman, G. J. C. G. M. Neuroreport 1995, 6(6), 929-932.
- 26. Beer, P. D.; Gale, P. A. Angew. Chem., Int. Ed. Engl. 2002, 40, 486-516.
- Scheerder, J.; Engbersen, J. F. J.; Reinhoudt, D. N. Recl. Trav. Chim. Pays-Bas. 1996, 115(6), 307-320.
- 28. Quiocho, F. A., Sack, J. S.; Vyas, N. K. Nature 1987, 329, 561-564.
- 29. Pflugrath, J. W., Quiocho, F. A. J. Biol. Chem. 1988, 200, 163-180.

- 30. Pinkhassik, E.; Sidorov, V.; Stibor, I. J. Org. Chem. 1998, 63, 9644-9651.
- Loll, P. J.; Bevivino, B. D.; Korty, B. D.; Axelsen, P. H. J. Am. Chem. Soc. 1997, 119, 1516-1522.
- 32. Sharman, G. J.; Williams, D. H. J. Chem. Soc., Chem. Commun. 1997, 723-724.
- 33. Linton, B. R.; Goodman, M. S.; Hamilton, A. D. Chem. Eur. J. 2000, 6, 2449-2455.
- 34. Pernía, G. J.; Kilburn, J. D.; Essex, J. W.; Mortishire-Smith, R. J.; Rowley, M. J. Am. Chem. Soc. 1996, 118, 10220-10227.
- 35. Bordwell, F. G.; Algrim, D. J.; Harrelson, J. A., Jr. J. Am. Chem. Soc. **1988**, 110, 5903-5904.
- Molina, M. T.; Yáñez, M.; Mó, O.; Notario, R.; Abboud, J.-L. M. In Supplement A3, The Chemistry of Double-Bonded Functional Groups, Part 2; Patai, S., Ed.; John Wiley & Sons: Chichester, 1997, 1355-1496.
- Rienäcker, C. M.; Klapötke, T. In Supplement A3, The Chemistry of Double-Bonded Functional Groups, Part 1; Patai, S., Ed.; John Wiley & Sons: Chichester, 1997, 341-365.
- 38. Kabalka, G.W.; Li, N.-S.; Pace, R.D. Synth. Commun., 1995, 25(14), 2135-2143.
- 39. Bell, T.W.; Hext, N.M.; Khasanov, A. B. Pure & Appl. Chem. **1998**, 70(12), 2371-2377.
- 40. Koh, K. N.; Imada, T.; Nagasaki, T.; Shinkai, S. *Tetrahedron Lett.* **1994**, 35(24), 4157-4160.
- 41. Chartres, J. D.; Groth, A. M.; Lindoy, L. F.; Lowe, M. P.; Meehan, G. V. J. Chem. Soc., Perkin Trans. 1 2000, 3444-3450.
- 42. Fabbrizzi, L.; Montagna, L.; Poggi, A. J. Chem. Soc., Dalton Trans. 1987, 2631-2634.

- 43. Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H. J. Org. Chem. 1994, 59, 5264-5271.
- 44. Fages, F.; Desvergne, J.-P.; Bouas-Laurent, H.; Lehn, J.-M.; Konopelski, J.P.; Marsau, P.; Barrans, Y. J. Chem. Soc., Chem. Commun. **1990**, 655-658.
- 45. Sutherland, I.O. Pure & Appl. Chem. 1989, 61(9), 1547-1554.
- 46. Ray, J.K., Gupta, S.; Pan, D.; Kar, G. K. Tetrahedron 2001, 57, 7213-7219.
- 47. Graf, E.; Hosseini, W.; Ruppert, R. Tetrahedron Lett. 1994, 35(42), 7779-7782.
- 48. Rudkevich, D. M.; Mercer-Chalmers, J. D.; Verboom, W.; Ungaro, R.; de Jong, F.; Reinhoudt, D. N. J. Am. Chem. Soc. 1995, 117, 6124-6125.
- 49. Beer, P. D.; Dent, S. W. J. Chem. Soc., Chem. Commun. 1998, 825-826.
- 50. Nabeshima, T.; Hanami, T. Heterocycles 1999, 50(2), 1091-1096.
- 51. Love, J. B.; Vere, J. M.; Glenny, M. W.; Blake, A. J.; Schröder, M. J. Chem. Soc., Chem. Commun. 2001, 2678-2679.
- 52. Liu, X.; Kilner, C. A.; Halcrow, M. A. J. Chem. Soc., Chem. Commun. 2002, 704-705.
- 53. Park, C. E.; Jung, Y.-G.; Hong, J.-I. Tetrahedron Lett. 1998, 39, 2353-2356.
- 54. Kirkovits, G. J.; Shriver, J. A.; Gale, P. A.; Sessler, J. L. J. Inclus. 2001, 41, 69-75.
- 55. Cooper, J. B.; Drew, M. G. B., Beer, P. D. J. Chem. Soc., Dalton Trans. 2001, 392-401.
- 56. Beer, P. D.; Dent, S. W. J. Chem. Soc., Chem. Commun. 1998, 825-826.
- 57. Nishizawa, S.; Shigemori, K.; Teramae, N. Chem. Lett. 1999, 1185-1186.
- 58. Luecke, H.; Quiocho, F. A. Nature 1990, 347, 402-406.
- 59. Mangani, S.; Ferraroni, M.; Orioli, P. Inorg. Chem. 1994, 33, 3421-3423.

- Malashkevich, V.; Kammerer, R. A.; Efimov, V. P.; Schulthess, T.; Engel, J. Science 1996, 274, 761-765.
- 61. Kanyo, Z. F.; Christianson, D. W. J. Biol. Chem. 1991, 266, 4246-4268.
- 62. Asfari, Z.; Böhmer, V.; Harrowfield, J.; Vicens, J. *Calixarenes 2001* Kluwer Academic Publishers, Dordrecht, 2001, p.1-2.
- 63. Wieser, C.; Dieleman, D. B.; Matt, D. Coord. Chem. Rev. 1997, 165, 93-161.
- 64. Wolbers, M. P. O.; van Veggel, F. C. J. M.; Peters, F. G. A.; van Beelen, E. S. E.; Hofstraat, J. W.; Geurts, F. A. J.; Reinhoudt, D. N. Chem. Eur. J. 1998, 4(5), 772-780.
- 65. Cuevas, F.; Stefano, S. D.; Magrans, J. O.; Prados, P.; Mandolini, L.; de Mendoza, J. *Chem. Eur. J.* 2000, 6(17), 3228-3234.
- 66. Collins, E. M.; McKervey, M. A.; Madigan, E.; Moran, M. B.; Owens, M.; Ferguson, G.; Harris, S. J. J. Chem. Soc., Perkin Trans. 1 1991, 3137-3142.
- 67. Arnaud-Neu, F.; Browne, J. k.; Byrne, D.; Marrs, D. J. McKervey, M. A.;
 O'Hagan, P. Schwing-Weill, M. J. Walker, A. Chem. Eur. J. 1999, 5(1), 175-186.
- Ludwig, R.; Kunogi, K.; Dung, N.; Tachimori, S. J. Chem. Soc., Chem. Commun. 1997, 20, 1985-1986.
- 69. Tuntulani, T.; Tumcharern, G.; Ruangpornvisuti, V. J. Inclus. Phenom. 2001, 39, 47-53.
- 70. Diamond, D.; Nolan, K. Anal. Chem. 2001, 22A-29A.
- Molenveld, P.; Engbersen, J. F. J.; Kooijman, H. J.; Spek, A. L.; Reinhoudt, D. N. J. Am. Chem. Soc. 1998, 120(27), 6726-6737.
- 72. Haino, T.; Akii, H.; Fukazawa, Y. Synth. Lett. 1998, 9, 1016-1018.

- 73. Hioki, H.; Yamada, T.; Fujioka, C.; Kodama, M. *Tetrahedron Lett.* **1999**, *40*, 6821-6825.
- 74. Mogck, O.; Böhmer, V.; Vogt, W. Tetrahedron 1996, 52, 8489-8496.
- 75. Harmann, B. C.; Shimizu, K. D.; Rebek, J., Jr. Angew. Chem., Int. Ed. Engl. 1996, 35, 1326-1329.
- 76. Zhao, X.; Chang, Y-L.; Fowler, F.W.; Lauher, J. W. J. Am. Chem. Soc. **1990**, *112*, 6627-6634.
- 77. Kane, J. J.; Liao, R.-F.; Lauher, J. W.; Fowler, F. W. J. Am. Chem. Soc. 1995, 117, 12003-12004.
- 78. Fielding, L. Tetrahedron 2000, 56, 6151-6170.
- 79. Macomber, R.S. J. Chem., Ed. 1992, 69(5), 375-378.
- Scheerder, J.; Fochi, M.; Engbersen, J. F. J.; Reinhoudt, D. N. J. Org. Chem. 1994, 59, 7815-7820.
- Pelizzi, N.; Casnati, A.; Friggeri, A.; Ungaro, R. J. Chem. Soc., Perkin Trans. 2 1998, 1307-1311.
- 82. Deetz, M. J.; Shang, M.; Smith, B. D. J. Am. Chem. Soc. 2000, 122, 6201-6207.
- Mahoney, J. M.; Beatty, A. M.; Smith, B. D. J. Am. Chem. Soc. 2001, 123, 5847-5848.
- 84. Mahoney, J. M.; Marshall, R. A.; Beatty, A. M.; Smith, B. D.; Salvatore, C.; Gale,
 P. A. J. Supra. Chem. 1, 2001, 289-292.
- Arduini, A.; Giorgi, G.; Pochini, A.; Secchi, A.; Ugozzoli, F. J. Org. Chem. 2001, 66, 8302-8308.
- Sansone, F.; Baldini, L.; Castani, A.; Lazzarotto, M.; Ugozzoli, F.; Ungaro, R Proc. Natl. Acad. Sci., 2002, 99, 4842-4847.

- Bühlmann, P.; Nishizawa, S.; Xiao, K.P.; Umezawa, Y. *Tetrahedron* 1997, 53(5), 1647-1654.
- Perrin, D. D.; Armarego, W. L. F. Purification of Laboratory Chemicals Pergamon, Oxford, 1988.
- 89. Gutsche, C. D.; Iqbal, M. Org. Synth. 1990, 68, 234-237.
- 90. Muller, D; Zeltser, I; Bitan, G.; Gilon, C. J. Org. Chem. 1997, 62, 411-416.
- 91. Houssin, R.; Bernier, J-L.; Hénichart, J-P. Synthesis 1988, 259-261.
- 92. Hu, W.; Hesse, M. Helv. Chim. Acta 1996, 79, 548-559.
- 93. Guelzim, A.; Khrifi, S.; Baert, F.; Asfari, Z.; Vicens, J.; Acta Crystallogr. Sect.C: Cryst. Struct. Commun. 1993, 49(12), 2121-2124.
- 94. Wieser, C.; Matt, D.; Fischer, J.; Harriman, A. J. Chem. Soc., Dalton Trans. 1997, 2391-2402.
- 95. Jeunesse, C.; Dieleman, C.; Steyer, S.; Matt, D. J. Chem. Soc., Dalton Trans. 2001, 881-892.
- 96. Thuery, P.; Nierlich, M.; Asfari, Z.; Vicens, J. Acta Crystallogr. Sect.C.: Cryst. Struct. Commun. 2000, 56(3), 343-344.
- 97. Araki, K.; Nakamura, R.; Otsuka, H.; Shinkai, S. J. Chem. Soc., Chem. Commun. 1995, 20, 2121-2122.
- 98. Boehmer, V.; Ferguson, G.; Gallagher, J.F.; Lough, A.J. McKervey, M.A. J. Chem. Soc., Perkin Trans. 1 1993, 13, 1521-1527.
- 99. Kawaguchi, M.; Ikeda, A.; Hamachi, I.; Shinkai, S. *Tetrahedron Lett.* **1999**, *40*, 8245-8249.
- 100. Dubowchik, G.M.; Ditta, J.L.; Herbst, J.J.; Bollini, S.; Vinitsky, A. Bioorg. Med. Chem. Lett. 2000, 10, 559-562.

- 101. Chaubet, F.; Duong, M.N.V.; Courtieu, J.; Gaudemer, A. *Can. J. Chem.* **1991**, *69*, 1107-1116.
- 102. Gross, R.; Dürner, G.; Göbel, M.W. Liebigs Ann. Chem. 1994, 49-58.
- 103. Tobe, Y; Sasaki, S-i.; Mizuno, M; Hirose, K.; Naemura, K. J. Org. Chem. 1998, 63, 7481-7489.
- 104. Benito, J. M.; Gomez-Garcia, M.; Blanco, J. L. J.; Mellet, C. O.; Fernandez, J. M. G. J. Org. Chem. 2001, 66(4), 1366-1372.
- 105. Bisson, A. P.; Hunter, C. A.; Morales, J. C.; Young, K. Chem. Eur. J. 1998, 4, 845-851.
- 106. Homer, J.; Perry, M. C. J. Chem. Soc., Faraday Trans. 1 1986, 82, 533-543.
- 107. Ding, Z. N.; Ellis, D. E.; Sigmund, E.; Halperin, W. P.; Shriver, D. F. Phys. Chem. Chem. Phys. 2003, 5(10), 2072-2081.
- 108. Verboom, W.; Datta, S.; Asfari, Z.; Harkema, S.; Reinhoudt, D. N. J. Org. Chem.
 1992, 57(20), 5394-5398.
- 109. Shinkai, S.; Iwamoto, K.; Araki, K.; Matsuda, T. Chem. Lett. 1990, 1263-1266.
- 110. Iwamoto, K.; Ikeda, A.; Araki, K.; Harada, T.; Shinkai, S. *Tetrahedron* **1993**, *49(44)*, 9937-9946.
- 111. Ohseto, F.; Shinkai, S. J. Chem. Soc., Perkin. Trans. 2 1995, 6, 1103-1110.
- 112. Kawaguchi, M.; Ikeda, A.; Shinkai, S. J. Chem. Soc., Perkin. Trans. 1 1998, 2, 179-184.
- 113. Peña, M. S.; Zhang, Y.; Thibodeaux, S.; McLaughlin, M. L.; de la Peña, A. M.; Warner, I. M. *Tetrahedron Lett.* **1996**, *37*(*33*), 5841-5844.
- 114. Mogck, O.; Parzuchowski, P.; Nissinen, M.; Böhmer, V.; Rokicki, G.; Rissanen,
 K. *Tetrahedron*, **1998**, *54*, 10053-10068

- 115. Fernández, J. M.; Mellet, C. O.; Fuentes, J. J. Org. Chem. 1993, 58(19), 5192-5199.
- 116. Blanco, J. L.; Barria, C. S.; Benito, J. M.; Mellet, C. O.; Fuentes, J.; Santoyo-González, F.; Fernández, J. M. Synthesis 1999, 11, 1907-1914.
- 117. Casnati, A.; Sansone, F.; Ungaro, R. Acc. Chem. Res. 2003, 36, 246-254.
- 118. Reichardt, C. Solvents and Solvents Effects in Organic Chemistry, **1988**, VCH publishers, Weinheim, p. 16-17.
- 119. Scheerder, J.; van Duynhoven, J. P. M.; Engbersen, J. F. J.; Reinhoudt, D. N. Angew. Chem., Int. Ed. Engl. 1996, 35(10), 1090-1093.
- 120. Calestani, G.; Ugozzoli, F.; Arduini, A.; Ghidini, E.; Ungaro, R. J. Chem. Soc., Chem. Commun., 1987, 344-346.
- 121. Murakami, H.; Shinkai, S. Tetrahedron Lett. 1993, 34(26), 4237-4240.
- 122. Beer, P. D.; Drew, M. G. B.; Knubley, R. J.; Ogden, M. I. J. Chem. Soc., Dalton Trans. 1995, 3117-3123.
- 123. Nomura, E.; Takagaki, M.; Nakaoka, C.; Uchida, M.; Taniguchi, H. J. Org. Chem. 1999, 64, 3151-3156.
- 124. Cooper, J. B.; Drew, M. G. B., Beer, P. D. J. Chem. Soc., Dalton Trans. 2000, 2721-2728.
- 125. Schmidtchen, F. P.; Berger, M. Chem. Rev., 1997, 97, 1609-1646.
- 126. Murakami, H.; Shinkai, S. J. Chem. Soc., Chem. Commun, 1993, 20, 1533-1535.
- 127. Nomura, E.; Takagaki, M.; Nakaoka, C.; Taniguchi, H.; *J. Org. Chem.* **2000**, *65*, 5932-5936.
- 128. Čajan, M.; Lhoták, P.; Lang, J.; Dvořáková, H.; Stibor, I.; Koča, J. J. Chem. Soc., *Perkin Trans. 2* **2002**, 1922–1929.

- Gordon, A. J.; Ford, R. A. The Chemist's Companion: A Handbook of Practical Data, Techniques and References 1972, John Wiley & Sons, New York, p. 58-62.
- 130. Dean, J. A. Handbook of Organic Chemistry 1987, Mc Graw-Hill, New York, p.8-2 8-65.
- 131. Linton, B. R.; Goodman, M. S.; Fan, E.; van Arman, S. A.; Hamilton, A. D. J. Org. Chem. 2001, 66, 7313-7319.
- 132. Nishizawa, S.; Bühlmann, P.; Iwao, M.; Umezawa, Y. *Tetrahedron Lett.* **1995**, *36*, 6483-6486.
- 133. Nishizawa, S.; Teramae, N. Anal. Sci. 1997, 13 (supplement), 485-488.
- 134. Nishizawa, S.; Kato, R.; Hayashita, T.; Teramae, N. Anal. Sci. 1998, 14, 595-597.
- 135. Pernía, G. J.; Kilburn, J. D.; Rowley, M. J. Chem. Soc., Chem. Commun. 1995, 305-306.
- 136. Werner, F.; Schneider, H.-J. Helv. Chim. Acta. 2000, 83, 465-478.
- 137. Takeuchi, D.; Shioya, T.; Swager, T. M. Angew. Chem., Int. Ed. Engl. 2001, 40(18), 3372-3376.
- 138. Schalley, C. A.; Castellano, R. K.; Brody, M. S.; Rudkevich, D. M. Siuzdak, G.; Rebek, Jr. J. J. Am. Chem. Soc. 1999, 121, 4568-4579.
- 139. Smith, R. D.; Bruce, J. E.; Wu, Q.; Lei, Q. P. Chem. Soc. Rev. 1997, 26, 191-202.
- 140. Kikuchi, Y.; Tanaka, Y.; Sutarto, S.; Kobayashi, K.; Toi, H.; Aoyama, Y. J. Am. *Chem. Soc.* **1992**, *114*, 10302-10306.
- 141. Albrecht, M.; Zauner, J.; Burgert, R.; Röttele, H.; Fröhlich, R. *Mat. Sci. Eng. C* 2001, *18*, 185-190.
- 142. Fan, E.; Van Arman, S. A.; Kincaid, S.; Hamilton, A. D. J. Am. Chem. Soc. 1993, 115, 369-370.

- 143. Sasaki, S-i.; Mizuno, M.; Naemura, K.; Tobe, Y. J. Org. Chem. 2000, 65(2), 275-283.
- 144. Godoy-Alcántar, C.; Rivera, I. L.; Yatsimirsky, A. K. *Bioorg. Med. Chem. Lett.*2001, 11, 651-654.
- 145. Beer, P. D.; Shade, M. J. Chem. Soc., Chem. Commun. 1997, 2377-2378.
- 146. Gale, P. A. Coord. Chem. Rev., 2000, 199, 181-233.
- 147. Yang, Y. S., Ko, S. W.; Song, I. H.; Ryu, B. J.; Nam, K. C. Bull. Korean Chem. Soc. 2003, 24(5), 681-683.
- 148. Tobe, Y; Sasaki, S-i.; Mizuno, M; Naemura, K. Chem. Lett. 1998, 835-836.
- 149. Dixon, R.P.; Geib, S. J.; Hamilton, A.D. J. Am. Chem. Soc. 1992, 114, 365-366.
- 150. Gunnlaugsson, T.; Davis, A. P.; Glynn, M. J. Chem. Soc., Chem. Commun. 2001, 2556-2557.
- 151. Fitzmaurice, R. J.; Kyne, G. M.; Douheret, D.; Kilburn, J. D. J. Chem. Soc., Perkin Trans. 1, 2002, 841-864.
- 152. Metzger, A.; Lynch, V. M.; Anslyn, E. V. Angew. Chem., Int. Ed. Engl. 1997, 36, 862-865.
- 153. Breccia, P.; Gool, M. V.; Pérez-Fernández, R.; Martín-Santamaría, S.; Gago, F.; Prados, P.; de Mendoza, J. J. Am. Chem. Soc. 2003, 125, 8270-8284.
- 154. Wilcox, C. S. Frontiers in Supramolecular Organic Chemistry and Photochemistry (Eds.: H.-J. Schneider, H. Dürr), VCH, Weinheim, 1991, p. 123-143.
- 155. Weber, G.; Anderson, S. R. *Biochemistry*, **1965**, *4*, 1942-1947.
- 156. Kyne, G. M.; Light, M. E.; Hursthouse, M. B.; de Mendoza, J.; Kilburn, J. D. J. Chem. Soc., Perkin Trans. 1 2001, 1258-1263.

157. Gale, P. A. Coord. Chem. Rev. 2003, 240, 191-221.

- 158. Camiolo, S.; Coles, S. J.; Gale, P. A. Hursthouse, M. B.; Tizzard, G. J. Supramol. *Chem.* **2003**, *15*(*3*), 231-234.
- 159. Shukla, R.; Kida, T.; Smith, B. D. Org. Lett. 2000, 20(2), 3099-3102.
- 160. Al-Sayah, M. H.; Branda, N. R. Org. Lett. 2002, 4(6), 881-884.
- 161. Arnaud-Neu, F.; Collins, E. M.; Deasy, M.; Ferguson, G.; Harris, S. J.; Kaitner, B.; Lough, A. J.; Mckervey, M. A.; Marques, E.; Ruhl, B. L.; Schwing-Weill, M. J.; Seward, E. M. J. Am. Chem. Soc. 1989, 111, 8681-8691.
- 162. Olmstead, W. N.; Bordwell, F. G. J. Org. Chem. 1980, 45, 3299-3305.
- 163. Krestov, G. A.; Novosyolov, N. P.; Perelygin, I. S.; Kolker, A. M.; Safonova, L. P.; Ovchinnikova, V. D.; Trostin, V. N. *Ionic Solvation*; Ellis Horwood: Chichester, 1994, p. 159-161.
- 164. Tozawa, T.; Misawa, Y.; Tokita, S.; Kubo, Y. *Tetrahedron Lett.* **2000**, *41*, 5219-5223.
- 165. Gokel, G. W.; Barbour, L. J.; Ferdani, R.; Hu, J. Acc. Chem. Res. 2002, 35, 878-886.
- 166. Wadsö, I. Chem. Soc. Rev. 1997, 79-86.
- 167. Arduini, A.; Brindani, E.; Giorgi, G.; Pochini, A.; Secchi, A. J. Org. Chem. 2002, 67, 6188-6194.
- 168. Sénèque, O.; Giorgi, M.; Reinaud, O. Supramol. Chem. 2003, 15(7-8), 573-580.
- 169. Beer, P. D.; Gale, P. A.; Hesek, D. Tetrahedron Lett. 1995, 36(5), 767-770.
- 170. Nissink, J. W. M.; Boerrigter, H.; Verboom, W.; Reinhoudt, D. N.; van der Maas, J. H. J. Chem. Soc., Perkin Trans. 2, 1998, 2617-2622.
- 171. Xie, H.; Yi, S.; Wu, S. J. Chem. Soc., Perkin Trans. 2, 1999, 2751-2754.

172. Mei, M.; Wu, S. New J. Chem., 2001, 25, 471-475.

- 173. Kang, S. K.; Chung, T. D.; Kim, H. Electrochim. Acta 2000, 45(18), 2939-2943.
- 174. Kuo, L-J.; Liao, J-H.; Chen, C-T.; Huang, C-H.; Chen, C-S.; Fang, J-M. Org. Lett. 2003, 5(11), 1821-1824.
- 175. Kato, R.; Nishizawa, S.; Hayashita, T.; Teramae, N. *Tetrahedron Lett.* **2001**, *42*, 5053-5056.
- 176. Jiménez, D.; Martínez-Máñez, R.; Sancenón, F.; Soto, J. *Tetrahedron Lett.* **2002**, *43*, 2823-2825.
- 177. Sasaki, S-i.; Hashizume, A.; Ozawa, S.; Citterio, D.; Iwasawa, N.; Suzuki, K. *Chem. Lett.* **2001**, 382-383.
- 178. Sessler, J. L.; Gale, P. A.; Genge, J. W. Chem. Eur. J. 1998, 4(6), 1095-1099.
- 179. Molard, Y.; Bureau, C.; Parrot-Lopez, H.; Lamartine, R.; Regnouf-de-Vains, J-B. *Tetrahedron Lett*, **1999**, *40*, 6383-6387.
- 180. Yuan, H-S.; Zhang, Y.; Hou, Y-J.; Zhang, X-Y.; Yang, X-Z.; Huang, Z-T. *Tetrahedron*, 2000, 56, 9611-9617.
- 181. Shuker, S. B.; Esterbrook, J.; Gonzalez, J. Synth. Lett. 2001, 2, 210-213.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

APPENDICES

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

APPENDIX A

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Table 1. Crystal data and structure refinement.

Identification code	01sot145	
Empirical formula	$C_{72}H_{104}N_6O_{10}S_2$	
Formula weight	1277.73	
Temperature	120(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	$Pna2_1$	
Unit cell dimensions	$a = 23.8484(9) \text{ Å}$ $\alpha = 90^{\circ}$	
	$b = 20.3212(6) \text{ Å}$ $\beta = 90^{\circ}$	
	$c = 15.0907(4) \text{ Å}$ $\gamma = 90^{\circ}$	
Volume	7313.4(4)Å ³	
Ζ	4	
Density (calculated)	$1.160 \text{ Mg} / \text{m}^3$	
Absorption coefficient	0.131 mm^{-1}	
F(000)	2760	
Crystal	Rod; colourless	
Crystal size	$0.26 \times 0.08 \times 0.06 \text{ mm}^3$	
θ range for data collection	$2.96 - 24.40^{\circ}$	
Index ranges	$-27 \le h \le 27, -23 \le k \le 21, -17 \le l \le 16$	
Reflections collected	25269	
Independent reflections	11335 [$R_{int} = 0.0646$]	
Completeness to $\theta = 24.40^{\circ}$	99.1 %	
Absorption correction	Semi-empirical from equivalents	
Max. and min. transmission	0.9922 and 0.9667	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	11335 / 1 / 851	
Goodness-of-fit on F^2	1.010	
Final <i>R</i> indices $[F^2 > 2\sigma(F^2)]$	R1 = 0.0530, wR2 = 0.1214	
<i>R</i> indices (all data)	R1 = 0.0864, wR2 = 0.1389	
Absolute structure parameter	0.75(9)	
Extinction coefficient	0.0017(3)	
Largest diff. peak and hole	0.358 and -0.227 e Å ⁻³	

Diffractometer: *Enraf Nonius KappaCCD* area detector (*φ* scans and *ω* scans to fill *Ewald* sphere). **Data collection and cell refinement**: *Denzo* (Z. Otwinowski & W. Minor, *Methods in Enzymology* (1997) Vol. **276**: *Macromolecular Crystallography*, part A, pp. 307–326; C. W. Carter, Jr. & R. M. Sweet, Eds., Academic Press). **Absorption correction**: *SORTAV* (R. H. Blessing, Acta Cryst. **A51** (1995) 33–37; R. H. Blessing, J. Appl. Cryst. **30** (1997) 421–426). **Program used to solve structure**: *SHELXS97* (G. M. Sheldrick, Acta Cryst. (1990) A**46** 467–473). **Program used to refine structure**: *SHELXL97* (G. M. Sheldrick (1997), University of Göttingen, Germany).

Further information: http://www.soton.ac.uk/~xservice/strat.htm

Special details:
U_{eq} S.o.f. Atom х Ζ. y C71 9287(2) 5117(2) 8285(3) 54(1) 1 1 C72 9383(2) 4777(2)1810(3) 50(1)09 9311(1) 4444(1)8047(2) 44(1)1 **O10** 9316(1) 5441(2)2054(2)50(1)1 C1 7550(2) 3935(2) 6290(2)30(1)1 C2 7338(1) 3359(2) 5909(2) 29(1)1 C3 6914(2) 3028(2) 6365(3) 32(1)1 C4 6694(2)3256(2) 7159(3) 32(1)1 C5 6898(2)3851(2)7478(2) 35(1) 1 C6 7324(2) 4205(2)7051(2) 33(1)1 C7 6232(2)2870(2)7656(3) 40(1)1 7213(7) C8 5940(6) 2382(8)70(4) 0.50 C9 6529(4)2539(5)8520(7) 54(3)0.50 C8' 5752(5) 2712(8) 6871(9) 75(4) 0.50 C9' 0.50 6455(4)2225(5)7868(8) 63(3) C10 5887(3) 3311(3)8250(4) 93(2) 1 5000(3)C11 7518(2) 3126(2)34(1)1 C12 7218(2) 3531(2)4302(3) 32(1)1 C13 7490(2) 3724(2)1 3965(2)31(1)C14 7184(2) 4400(2) 3195(2) 31(1) 1 1 C15 6598(2) 4352(2)3193(3) 38(1)C16 6315(2) 3886(2)3695(3) 40(1)1 C17 3501(2) 37(1)1 6634(2)4265(3)C18 5679(2) 3773(2) 3625(3) 45(1)1 C19 5413(2) 3691(2) 4537(3)56(1)1 C20 5581(2) 3136(2) 3076(3) 58(1) 1 C21 5387(2) 4343(2)3139(3) 54(1)1 C22 4933(2) 2639(2) 34(1)7459(2) 1 C23 7304(2) 5616(2) 2965(2) 30(1)1 C24 6877(2) 5966(2) 2522(2)33(1) 1 C25 6667(2)6563(2)2820(3)33(1)1 C26 6885(2)6805(2)3600(3) 33(1)1 4074(2)29(1)1 C27 7306(2) 6486(2)C28 5906(2) 3731(2) 28(1)7527(2) 1 C29 6209(2)6934(2)2291(3) 38(1)1 143(4) C30 5920(3) 7437(4) 2825(5)1 1 C31 6498(3)7263(4) 1497(5)128(3)C32 6468(3) 1898(6) 115(3)5789(3) C33 7470(2) 6710(2) 5002(2) 31(1) 1 C34 7455(2) 4903(2) 7372(2) 34(1)1 C35 7175(2) 6272(2)5668(2) 29(1)1 C36 6596(2) 6210(2) 5601(3) 36(1) 1 C37 6291(2) 5751(2) 36(1) 6084(3)1 C38 6585(2)5354(2) 6664(3)39(1) 1 C39 5395(2) 1 7166(2) 6775(2)33(1)C40 7451(2) 5873(2) 6281(2) 31(1) 1 C41 5654(2) 5688(2) 47(1)1 5924(3) C42 5552(2) 5620(3) 4918(3) 81(2) 1

Table 2. Atomic coordinates [× 10⁴], equivalent isotropic displacement parameters [Å² × 10³] and site occupancy factors. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C51 8483(2) 4341(2) 6350(3) 38(1) 1	
C52 9018(2) 4242(2) 5837(3) 35(1) 1	
C53 9480(2) 4118(2) 4399(3) 37(1) 1	
C54 9779(2) 3466(2) 4275(3) 43(1) 1	
C55 10068(2) 3213(2) 5105(3) 41(1) 1	
C56 11048(2) 3637(2) 5233(3) 37(1) 1	
C57 11997(2) 3959(2) 5710(3) 47(1) 1	
C58 8467(2) 5538(2) 3699(3) 32(1) 1	
C59 8992(2) 5712(2) 4221(2) 30(1) 1	
C60 9426(2) 5930(2) 5645(3) 35(1) 1	
C61 9666(2) 6608(2) 5746(3) 41(1) 1	
C62 9946(2) 6879(2) 4922(3) 40(1) 1	
C63 10951(2) 6568(2) 4860(3) 37(1) 1	
C64 11935(2) 6289(2) 4471(4) 54(1) 1	
C65 12237(2) 5682(2) 4761(3) 35(1) 1	
C66 12823(2) 5687(2) 4723(3) 45(1) 1	
C67 13126(2) 5129(3) 4951(3) 49(1) 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
C/0 11969(2) 5122(2) 5074(3) 37(1) 1	
N1 8984(1) 4102(2) 4985(2) 36(1) 1	
N2 $10501(1)$ $3658(2)$ $5456(2)$ $37(1)$ 1	
N3 $11390(1)$ $3979(2)$ $5766(2)$ $39(1)$ 1	
N4 $8939(1)$ $58/1(2)$ $5059(2)$ $32(1)$ 1	
N5 $10418(1)$ $6486(2)$ $4602(2)$ $36(1)$ 1	
N6 $11330(1)$ $6228(2)$ $4370(2)$ $42(1)$ 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
05 $7991(1)$ $4242(1)$ $5829(2)$ $33(1)$ 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
07 7962(1) 5606(1) 4197(2) 31(1) 1	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
52 11134(1) /034(1) 3/15(1) 31(1) 1	

C71–O9	1.415(5)
C71–H71A	0.9800
C71–H71B	0.9800
C71–H71C	0.9800
C72–O10	1.408(5)
C72–H72A	0.9800
С72–Н72В	0.9800
C72–H72C	0.9800
O9_H9	0.8400
010-H10	0.8400
C1-C6	1 382(5)
C1-C2	1.302(5) 1 300(5)
C1-C2	1.399(3) 1.407(4)
C1-O3	1.407(4) 1.205(5)
$C_2 = C_3$	1.595(5)
C2-C11 C2_C1	1.515(5)
C3–C4	1.388(5)
С3-Н3	0.9500
C4–C5	1.390(5)
C4–C7	1.545(5)
C5–C6	1.401(5)
С5-Н5	0.9500
C6–C34	1.531(5)
C7–C8	1.385(12)
C7–C9'	1.450(11)
C7–C10	1.511(7)
С7–С9	1.629(9)
C7–C8'	1.680(12)
C8–H8A	0.9800
C8–H8B	0.9800
C8–H8C	0.9800
С9–Н9А	0.9800
С9–Н9В	0.9800
С9–Н9С	0.9800
C8'–H8'1	0.9800
C8'-H8'2	0.9800
C8'-H8'3	0.9800
C9'–H9'1	0.9800
C9'-H9'2	0.9800
C9'-H9'3	0.9800
C10-H10A	0.9800
C10-H10B	0.9800
C10_H10C	0.9800
C_{11} C_{12}	1 517(5)
	0.0000
	0.9900
C12 C17	1 204(5)
$C_{12} = C_{12}$	1.374(3)
C12 - C13	1.399(3)
C13-C14	1.397(3)
013-01	1.403(4)

Table 3. Bond lengths [Å] and angles [°].

C14–C15	1.402(6)
C14–C22	1.518(5)
C15–C16	1.387(6)
C15-H15	0.9500
C16–C17	1.390(5)
C16–C18	1.539(6)
C17–H17	0.9500
C18–C19	1.525(6)
C18–C21	1.537(6)
C18–C20	1.554(6)
C19–H19A	0.9800
C19–H19B	0.9800
C19-H19C	0.9800
C20–H20A	0.9800
C20–H20B	0.9800
C20–H20C	0.9800
C21–H21A	0.9800
C21–H21B	0.9800
C21-H21C	0.9800
$C_{22} - C_{23}$	1 519(5)
C22–H22A	0.9900
С22-Н22В	0.9900
C_{23} C_{23} C_{28}	1 403(5)
C_{23} C_{24}	1.103(5) 1.411(5)
C_{24} C_{25} C_{24} C_{25}	1 387(5)
C24-H24	0.9500
$C_{24} = C_{26}$	1 377(6)
$C_{25} - C_{20}$	1.5/19(6)
C_{25}^{-} C_{27}^{-}	1.347(0) 1.397(5)
C26-C27	0.9500
C27-C28	1 392(5)
$C_{27} - C_{28}$	1.592(5) 1.523(5)
$C_{27} = C_{33}$	1.323(3) 1 302(4)
$C_{20} = 07$	1.392(4) 1.473(7)
$C_{29} - C_{30}$	1.473(7) 1 501(7)
$C_{29} = C_{32}$	1.501(7) 1.527(7)
$C_{29} = C_{31}$	0.0800
C30 H30R	0.9800
C30 H30C	0.9800
C31 H31A	0.9800
C21 U21D	0.9800
C31_H31B	0.9800
	0.9800
C32_H32A	0.9800
C32-H32B	0.9800
C22 C25	0.9800
	1.313(3)
C22 U22D	0.9900
C34 C20	0.9900
C34-C39	1.512(5)
C34-H34A	0.9900
C34–H34B	0.9900

เยบริการ มหาวิทยาลัย

C35–C36	1.392(5)
C35–C40	1.395(5)
C36–C37	1.389(5)
C36–H36	0.9500
C37–C38	1.382(6)
C37–C41	1.546(6)
C38–C39	1.398(6)
C38–H38	0.9500
C39–C40	1.400(5)
C40–O3	1.409(4)
C41–C43	1.505(6)
C41–C42	1.543(7)
C41–C44	1.549(6)
C42–H42A	0.9800
C42–H42B	0.9800
C42–H42C	0.9800
C43–H43A	0.9800
C43–H43B	0.9800
C43–H43C	0.9800
C44–H44A	0.9800
C44–H44B	0.9800
C44–H44C	0.9800
C45-O1	1.450(4)
C45–C46	1.492(6)
C45–H45A	0.9900
C45–H45B	0.9900
C46–O2	1.423(5)
C46–H46A	0.9900
C46-H46B	0.9900
C47–O2	1.419(5)
C47–H47A	0.9800
C47–H47B	0.9800
C47–H47C	0.9800
C48–O3	1.451(4)
C48–C49	1.491(5)
C48–H48A	0.9900
C48–H48B	0.9900
C49–O4	1.419(5)
C49–H49A	0.9900
C49–H49B	0.9900
C50–O4	1.425(5)
C50–H50A	0.9800
C50–H50B	0.9800
C50–H50C	0.9800
C51–O5	1.427(4)
C51–C52	1.505(5)
С51–Н51А	0.9900
C51–H51B	0.9900
C52–O6	1.251(4)
C52–N1	1.320(5)
C53–N1	1.477(5)

ายบริการ มหาวิทยาลัย

C53–C54	1.518(5)
C53–H53A	0.9900
C53–H53B	0.9900
C54–C55	1.519(6)
C54–H54A	0.9900
C54–H54B	0.9900
C55–N2	1.471(5)
C55–H55A	0.9900
C55–H55B	0.9900
C56–N3	1.339(5)
C56-N2	1.349(5)
C56–S1	1.679(4)
C57–N3	1.449(5)
C57–C69	1.520(6)
С57–Н57А	0.9900
С57–Н57В	0.9900
C58–O7	1.427(4)
C58–C59	1.521(5)
C58–H58A	0.9900
C58–H58B	0.9900
C59–O8	1.238(4)
C59–N4	1.311(5)
C60-N4	1.465(5)
C60–C61	1.500(5)
C60–H60A	0.9900
C60–H60B	0.9900
C61–C62	1.515(6)
C61–H61A	0.9900
C61–H61B	0.9900
C62–N5	1.462(5)
C62–H62A	0.9900
C62–H62B	0.9900
C63–N5	1.340(5)
C63–N6	1.358(5)
C63–S2	1.682(4)
C64–N6	1.455(5)
C64–C65	1.493(6)
C64–H64A	0.9900
C64–H64B	0.9900
C65–C70	1.388(5)
C65–C66	1.399(6)
C66–C67	1.390(6)
C66–H66	0.9500
C67–C68	1.373(6)
С67-Н67	0.9500
C68–C69	1.382(6)
C68–H68	0.9500
C69–C70	1.386(6)
С70-Н70	0.9500
N1-H1	0.8800
N2-H2	0.8800

เยบริการ มหาวิทยาลัย

N3–H3A	0.8800	
N4-H4	0.8800	
N5–H5A	0.8800	
N6–H6	0.8800	
O9–C71–H71A	109.5	
O9-C71-H71B	109.5	
H71A-C71-H71B	109.5	
O9-C71-H71C	109.5	
H71A-C71-H71C	109.5	
H71B-C71-H71C	109.5	
O10-C72-H72A	109.5	
O10-C72-H72B	109.5	
H72A-C72-H72B	109.5	
O10-C72-H72C	109.5	
H72A–C72–H72C	109.5	
H72B–C72–H72C	109.5	
С71-О9-Н9	109.5	
C72-O10-H10	109.5	
C6–C1–C2	122.2(3)	
C6-C1-O5	121.8(3)	
C2-C1-O5	116.0(3)	
C3-C2-C1	117.5(4)	
C3-C2-C11	120.1(3)	
C1-C2-C11	122.1(3)	
C4–C3–C2	122.7(4)	
С4-С3-Н3	118.7	
С2-С3-Н3	118.7	
C3-C4-C5	117.1(3)	
C3–C4–C7	121.3(3)	
C5-C4-C7	121.6(3)	
C4–C5–C6	122.8(4)	
С4-С5-Н5	118.6	
С6-С5-Н5	118.6	
C1-C6-C5	117.5(3)	
C1–C6–C34	123.4(3)	
C5–C6–C34	118.6(3)	
C8–C7–C9'	69.1(9)	
C8–C7–C10	115.8(7)	
C9'-C7-C10	127.2(6)	
C8–C7–C4	119.2(5)	
C9'-C7-C4	107.8(5)	
C10-C7-C4	112.0(4)	
C8–C7–C9	108.0(8)	
C9'-C7-C9	44.8(6)	
C10–C7–C9	90.4(6)	
C4–C7–C9	106.8(4)	
C8-C7-C8'	34.8(8)	
C9'-C7-C8'	103.5(8)	
C10-C7-C8'	99.2(7)	
C4–C7–C8'	103.9(5)	

C9–C7–C8'	141.4(7)
C7–C8–H8A	109.4
C7–C8–H8B	109.5
C7–C8–H8C	109.5
С7-С9-Н9А	109.5
С7-С9-Н9В	109.5
С7-С9-Н9С	109.5
C7–C8'–H8'1	109.5
C7–C8'–H8'2	109.5
H8'1–C8'–H8'2	109.5
C7–C8'–H8'3	109.5
H8'1–C8'–H8'3	109.5
H8'2–C8'–H8'3	109.5
С7-С9'-Н9'1	109.5
С7–С9'–Н9'2	109.5
H9'1–C9'–H9'2	109.5
С7-С9'-Н9'3	109.5
H9'1–C9'–H9'3	109 5
H9'2-C9'-H9'3	109.5
C7-C10-H10A	109.5
C7-C10-H10B	109.5
H10A-C10-H10B	109.5
C7-C10-H10C	109.5
$H_{10A} = C_{10} = H_{10C}$	109.5
H10B-C10-H10C	109.5
$C_{2}-C_{11}-C_{12}$	109.0(3)
C2_C11_H11A	109.9
C12-C11-H11A	109.9
C2_C11_H11B	109.9
C12_C11_H11B	109.9
H11A_C11_H11B	109.3
$C_{17}-C_{12}-C_{13}$	117.8(3)
C17 - C12 - C13	118 3(3)
C_{13} C_{12} C_{11}	123 8(3)
$C_{14} - C_{13} - C_{12}$	120.9(3)
$C_{14} - C_{13} - C_{12}$	120.0(3)
$C_{12} - C_{13} - O_{1}$	110 1(3)
$C_{12} = C_{13} = C_{14}$	119.1(5) 118 5(4)
$C_{13} - C_{14} - C_{13}$	122 8(4)
$C_{15} - C_{14} - C_{22}$	112.6(4)
$C_{15} = C_{14} = C_{22}$	122 1(4)
C16-C15-H15	110.0
$C_{10} - C_{15} - H_{15}$	119.0
$C_{14} = C_{15} = 1115$	117.0 117.2(4)
$C_{15} = C_{16} = C_{17}$	117.2(4) 122.0(4)
C13-C10-C10	122.7(4)
$C_{17} - C_{10} - C_{10}$	117.7(4) 122 1(4)
C10-C17-C12	143.1(4)
$C_{10} - C_{17} - \Pi_{17}$	110.5
$C_{12} - C_{17} - H_{17}$	110.0
C19 - C10 - C21	100.9(5)
U19-U18-U16	111.4(3)

C21-C18-C16	111.5(4)	
$C_{19}-C_{18}-C_{20}$	109.1(4)	
$C_{21}-C_{18}-C_{20}$	107.8(4)	
$C_{16}-C_{18}-C_{20}$	108.0(3)	
C18-C19-H19A	109.5	
C18-C19-H19B	109.5	
H19A_C19_H19B	109.5	
C18-C19-H19C	109.5	
$H19\Delta - C19 - H19C$	109.5	
H19B_C19_H19C	109.5	
C18_C20_H20A	109.5	
$C_{18} - C_{20} - H_{20R}$	109.5	
$H_{20}^{-}C_{20}^{-}H_{20}^{-}B$	109.5	
C18_C20_H20C	109.5	
H20A_C20_H20C	109.5	
H20B_C20_H20C	109.5	
$C_{18} C_{21} U_{21A}$	109.5	
C18 - C21 - H21R	109.5	
$U_{10} - U_{21} - H_{21} U_{21}$	109.5	
$\begin{array}{c} 1121A - C21 - 1121D \\ 1121A - C21 - 1121D \\ 121A - C21 - 1121D \\ $	109.5	
$U_{10} - U_{21} - \Pi_{21}U_{21}$	109.5	
$\begin{array}{c} \mathbf{H}_{21}\mathbf{R} - \mathbf{C}_{21} - \mathbf{H}_{21}\mathbf{C} \\ \mathbf{H}_{21}\mathbf{R} - \mathbf{C}_{21} - \mathbf{H}_{21}\mathbf{C} \end{array}$	109.5	
$\frac{1}{1} \frac{1}{1} \frac{1}$	111 6(2)	
C14 - C22 - C23	100.2	
C14 - C22 - H22A	109.3	
C_{23} - C_{22} - Π_{22A}	109.3	
$C14-C22-\Pi 22D$	109.3	
$U_{23} = U_{22} = \Pi_{22D}$	109.3	
$\frac{1}{22} \frac{1}{22} \frac$	116.0(2)	
$C_{20} - C_{23} - C_{24}$	122 0(2)	
$C_{20} - C_{23} - C_{22}$	123.9(3)	
$C_{24} - C_{23} - C_{22}$	110.9(3)	
$C_{23} - C_{24} - C_{23}$	123.2(4)	
$C_{23} = C_{24} = 1124$	110.4	
$C_{23} - C_{24} - 1124$	110.4 117.0(4)	
$C_{20} = C_{23} = C_{24}$	117.0(4)	
$C_{20} = C_{23} = C_{29}$	122.3(4) 120.8(4)	
$C_{24} = C_{25} = C_{25}$	120.0(4)	
$C_{25} - C_{20} - C_{27}$	118 5	
$C_{23} - C_{20} - H_{20}$	118.5	
$C_{26} - C_{20} - H_{20}$	118.5(3)	
$C_{20} = C_{27} = C_{28}$	121 2(3)	
$C_{20} = C_{27} = C_{33}$	121.2(3) 110 8(3)	
07 - 028 - 027	117.0(3)	
07 - C28 - C23	121 0(3)	
$C_{1} = C_{20} = C_{23}$	121.0(3)	
$C_{21} = C_{20} = C_{23}$	121.2(3) 110 0(5)	
$C_{30} - C_{29} - C_{32}$	100.6(6)	
$C_{20} - C_{20} - C_{21}$	107.0(0)	
$C_{20} = C_{29} = C_{21}$	103.3(0)	
$C_{20} - C_{29} - C_{23}$	112.0(4) 111 6(4)	
(32-(29-(23	111.0(4)	

C31–C29–C25	107.3(3)
C29-C30-H30A	109.5
C29-C30-H30B	109.5
H30A-C30-H30B	109.5
C29-C30-H30C	109.5
H30A-C30-H30C	109.5
H30B-C30-H30C	109.5
C29–C31–H31A	109.5
C29–C31–H31B	109.5
H31A-C31-H31B	109.5
C29-C31-H31C	109.5
H31A-C31-H31C	109.5
H31B-C31-H31C	109.5
C29–C32–H32A	109.5
C29–C32–H32B	109.5
H32A–C32–H32B	109.5
C29–C32–H32C	109.5
H32A–C32–H32C	109.5
H32B-C32-H32C	109.5
C35–C33–C27	108.5(3)
С35–С33–Н33А	110.0
С27–С33–Н33А	110.0
С35–С33–Н33В	110.0
С27–С33–Н33В	110.0
H33A–C33–H33B	108.4
C39–C34–C6	109.3(3)
C39–C34–H34A	109.8
C6-C34-H34A	109.8
C39–C34–H34B	109.8
C6–C34–H34B	109.8
H34A-C34-H34B	108.3
C36–C35–C40	117.7(3)
C36–C35–C33	117.7(3)
C40–C35–C33	124.2(3)
C37–C36–C35	122.7(4)
C37–C36–H36	118.6
C35–C36–H36	118.6
C38–C37–C36	117.4(4)
C38–C37–C41	123.4(4)
C36–C37–C41	119.2(4)
C37–C38–C39	123.0(4)
C37-C38-H38	118.5
С39-С38-Н38	118.5
C38-C39-C40	117.3(4)
C38–C39–C34	118.9(3)
C40-C39-C34	123.7(4)
C35-C40-C39	121.8(3)
C35-C40-O3	118.8(3)
C39–C40–O3	119.4(3)
C43-C41-C42	110.3(4)
C43-C41-C37	108.7(4)

C42-C41-C37	108.4(4)
C43–C41–C44	110.6(4)
C42-C41-C44	107.5(4)
C37–C41–C44	111.4(3)
C41-C42-H42A	109.5
C41-C42-H42B	109.5
H42A-C42-H42B	109.5
C41-C42-H42C	109.5
H42A-C42-H42C	109.5
H42R - C42 - H42C	109.5
C41–C43–H43A	109.5
C41 - C43 - H43R	109.5
$H43\Delta - C43 - H43B$	109.5
CA1_CA3_HA3C	109.5
$H_{13} = C_{13} = H_{13} C_{13}$	109.5
H43B_C43_H43C	109.5
	109.5
$C41 - C44 - \Pi44A$	109.5
$U_{41} - C_{44} - \Pi_{44} D$	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
$U41 - U44 - \Pi44U$	109.5
H44A-C44-H44C	109.5
H44B-C44-H44C	109.5
01-C45-C46	114.6(3)
01–C45–H45A	108.6
C46–C45–H45A	108.6
O1–C45–H45B	108.6
C46–C45–H45B	108.6
H45A-C45-H45B	107.6
O2–C46–C45	109.7(3)
O2–C46–H46A	109.7
C45-C46-H46A	109.7
O2-C46-H46B	109.7
C45-C46-H46B	109.7
H46A-C46-H46B	108.2
O2–C47–H47A	109.5
O2–C47–H47B	109.5
H47A-C47-H47B	109.5
O2–C47–H47C	109.5
Н47А-С47-Н47С	109.5
H47B-C47-H47C	109.5
O3–C48–C49	114.4(3)
O3–C48–H48A	108.7
C49-C48-H48A	108.7
O3-C48-H48B	108.7
C49-C48-H48B	108.7
H48A-C48-H48B	107.6
O4–C49–C48	109.4(3)
O4-C49-H49A	109.8
C48-C49-H49A	109.8
O4-C49-H49B	109.8
C48-C49-H49B	109.8

H49A-C49-H49B	108.2
O4-C50-H50A	109.5
O4-C50-H50B	109.5
H50A-C50-H50B	109.5
O4-C50-H50C	109.5
H50A-C50-H50C	109.5
H50B-C50-H50C	109.5
O5-C51-C52	113.3(3)
O5-C51-H51A	108.9
C52-C51-H51A	108.9
O5-C51-H51B	108.9
C52-C51-H51B	108.9
H51A-C51-H51B	107.7
O6-C52-N1	124.3(4)
O6-C52-C51	117.0(3)
N1-C52-C51	118.6(3)
N1-C53-C54	115.5(3)
N1–C53–H53A	108.4
С54-С53-Н53А	108.4
N1–C53–H53B	108.4
С54-С53-Н53В	108.4
H53A–C53–H53B	107.5
C53–C54–C55	114.0(3)
С53–С54–Н54А	108.7
С55–С54–Н54А	108.7
С53-С54-Н54В	108.7
С55-С54-Н54В	108.7
H54A-C54-H54B	107.6
N2-C55-C54	114.0(3)
N2-C55-H55A	108.7
С54–С55–Н55А	108.7
N2-C55-H55B	108.7
С54-С55-Н55В	108.7
H55A–C55–H55B	107.6
N3-C56-N2	115.1(3)
N3-C56-S1	122.3(3)
N2-C56-S1	122.6(3)
N3-C57-C69	115.5(3)
N3-C57-H57A	108.4
С69-С57-Н57А	108.4
N3-C57-H57B	108.4
С69-С57-Н57В	108.4
H57A–C57–H57B	107.5
O7–C58–C59	113.6(3)
O7-C58-H58A	108.8
C59-C58-H58A	108.8
O7-C58-H58B	108.8
С59-С58-Н58В	108.8
H58A-C58-H58B	107.7
O8-C59-N4	124.8(3)
O8–C59–C58	116.7(3)

N4-C59-C58	118.5(3)
N4-C60-C61	116.1(3)
N4-C60-H60A	108.3
C61-C60-H60A	108.3
N4-C60-H60B	108.3
C61-C60-H60B	108.3
H60A-C60-H60B	107.4
C60–C61–C62	114.8(3)
C60–C61–H61A	108.6
C62-C61-H61A	108.6
C60-C61-H61B	108.6
C62-C61-H61B	108.6
H61A-C61-H61B	107.5
N5-C62-C61	114.3(3)
N5-C62-H62A	108.7
C61–C62–H62A	108.7
N5-C62-H62B	108.7
C61–C62–H62B	108.7
H62A-C62-H62B	107.6
N5-C63-N6	114.2(4)
N5-C63-S2	122.8(3)
N6-C63-S2	122.9(3)
N6-C64-C65	116.0(3)
N6-C64-H64A	108.3
C65–C64–H64A	108.3
N6-C64-H64B	108.3
C65–C64–H64B	108.3
H64A-C64-H64B	107.4
C70–C65–C66	118.7(4)
C70–C65–C64	123.7(4)
C66–C65–C64	117.6(4)
C67–C66–C65	120.2(4)
С67-С66-Н66	119.9
С65–С66–Н66	119.9
C68–C67–C66	119.6(4)
С68-С67-Н67	120.2
С66-С67-Н67	120.2
C67–C68–C69	121.2(4)
C67–C68–H68	119.4 🚽 🖂 🔍
C69–C68–H68	119.4
C68–C69–C70	119.0(4)
C68–C69–C57	118.3(4)
C70–C69–C57	122.7(4)
C69–C70–C65	121.1(3)
С69-С70-Н70	119.4
С65-С70-Н70	119.4
C52-N1-C53	122.0(3)
C52-N1-H1	119.0
C53-N1-H1	119.0
C56-N2-C55	124.8(3)
C56-N2-H2	117.6

C55-N2-H2	117.6
C56-N3-C57	124.0(4)
C56–N3–H3A	118.0
C57–N3–H3A	118.0
C59-N4-C60	121.7(3)
C59-N4-H4	119.1
C60-N4-H4	119.1
C63-N5-C62	124.4(3)
C63-N5-H5A	117.8
C62-N5-H5A	117.8
C63-N6-C64	124.0(4)
C63-N6-H6	118.0
C64-N6-H6	118.0
C13-O1-C45	112.5(3)
C47–O2–C46	112.8(4)
C40-O3-C48	113.4(3)
C49–O4–C50	111.9(4)
C1-O5-C51	113.9(3)
C28–O7–C58	113.9(3)

Symmetry transformations used to generate equivalent atoms:

Atom	<i>U</i> ¹¹	U ²²	<i>L</i> ³³	<i>U</i> ²³	<i>U</i> ¹³	<i>U</i> ¹²
Atom	U	U	U	U	U	U
C71	66(2)	50(2)	27(2)	1(2)	4(2)	1(2)
C71	66(3)	39(3)	37(3) 38(3)	-1(2)	-4(2)	-1(3)
C/2	50(3)	47(3) 52(2)	30(3)	-4(2)	3(2)	0(2) 1(2)
09	50(2)	55(2)	50(2)	0(1)	-2(2)	1(2)
010 C1	37(2)	03(2)	31(2) 37(2)	-1(1)	0(2)	0(2)
C1	20(2)	30(2)	27(2)	7(2)	-2(2)	0(2)
C_2	27(2)	33(2)	20(2)	3(2)	-3(2)	2(2)
C_3	33(2)	50(2)	33(2) 21(2)	2(2)	-6(2)	0(2)
C4	29(2)	50(2)	31(2) 37(2)	7(2)	-4(2)	-4(2)
C_{5}	$\frac{57(2)}{22(2)}$	41(3)	27(2) 20(2)	2(2)	4(2)	-5(2)
C_0	52(2)	57(2)	29(2)	3(2)	-2(2)	-3(2)
C^{\prime}	54(2)	33(3)	50(5) 19(6)	2(2)	10(2)	-3(2)
	/4(9) 47(6)	70(7)	18(0)	-7(6)	/(5)	-03(9)
C9	4/(6)	70(7)	45(6)	42(5)	-4(5)	-15(5)
	58(7)	139(14)	49(8)	3(7)	-5(5)	-51(8)
C9	52(0)	09(8)	08(7) 102(5)	30(0)	18(0)	2(5)
C10	88(4) 20(2)	87(3)	103(3)	-22(4)	58(4)	-43(4)
	39(2)	33(2)	30(2)	0(2)	-1(2)	-1(2)
C12	34(2)	29(2)	32(2)	-5(2)	-6(2)	-2(2)
C13	32(2)	36(2)	24(2)	-2(2)	-5(2)	-2(2)
C14	30(2)	35(2)	22(2)	-3(2)	-3(2)	2(2)
C15	4/(3)	34(2)	31(2)	0(2)	-9(2)	4(2)
C16	39(2)	40(2)	40(2)	-/(2)	-8(2)	4(2)
C1/	39(2)	37(2)	36(2)	5(2)	-2(2)	-5(2)
C18	42(2)	49(3)	45(2)	0(2)	-4(2)	8(2)
C19	48(3)	54(3)	65(3)	7(2)	2(2)	2(2)
C20	52(3)	53(3)	68(3)	2(2)	-23(2)	-6(2)
C21 C22	45(3)	54(3)	62(3)	1(2)	-9(2)	9(2)
C22	39(2)	42(3)	22(2)	0(2)	-3(2)	9(2)
C25	20(2)	58(2) 40(2)	24(2)	5(2)	4(2)	4(2)
C24 C25	30(2)	40(2)	28(2)	5(2)	3(2)	-I(2)
C25 C26	29(2) 25(2)	37(2)	33(2) 32(2)	3(2)	-1(2)	1(2) 2(2)
C20 C27	33(2)	32(2)	32(2)	4(2)	0(2)	2(2)
C_{28}	29(2)	23(2) 32(2)	32(2) 25(2)	2(2) 9(2)	3(2)	-3(2)
C_{20}	20(2)	32(2)	23(2) 38(2)	9(2)	1(2)	5(2)
C29	147(6)	43(3) 182(8)	30(2) 00(5)	2(2) 74(5)	-4(2)	J(2) 142(6)
C30	61(4)	102(8)	131(6)	-74(3) 113(6)	-72(3) 9(4)	142(0) 13(5)
C31	88(5)	90(5)	151(0) 168(7)	-16(5)	-86(5)	+3(3) 26(4)
C32	30(2)	31(2)	32(2)	-10(3)	-30(3)	20(4)
C34	30(2) 35(2)	31(2) 37(3)	32(2) 30(2)	1(2) 1(2)	-1(2)	-8(2)
C35	30(2)	37(3) 32(2)	$\frac{30(2)}{24(2)}$	-2(2)	+(2)	-0(2) -1(2)
C36	30(2) 37(2)	32(2) 39(2)	24(2) 33(2)	-2(2) -6(2)	2(2) 5(2)	-1(2) 1(2)
C37	37(2) 30(2)	39(2)	35(2) 36(2)	-1(2)	S(2)	-4(2)
C39	30(2)	43(2)	30(2) 35(2)	-1(2)	O(2) 7(2)	-4(2)
C30	+0(3) 30(3)	42(3)	33(2) 38(3)	-1(2)	f(2)	-4(2)
C39	37(3) 31(3)	31(2) 34(2)	20(2)	-7(2)	1(2)	-4(2)
C40 C41	31(2) 38(2)	34(<i>2</i>) 56(2)	21(2) 18(3)	-1(2) 8(2)	1(2) 5(2)	$\Delta(\Delta)$
C41	30(2)	30(3)	40(3)	0(2)	J(2)	O(2)

Table 4. Anisotropic displacement parameters $[\mathring{A}^2 \times 10^3]$. The anisotropic displacement factor exponent takes the form: $-2\pi^2 [h^2 a^{*2} U^{11} + \dots + 2h k a^* b^* U^{12}]$.

C42	54(3)	129(5)	60(3)	10(3)	-11(3)	-34(3)
C43	42(3)	54(3)	99(4)	23(3)	21(3)	2(2)
C44	37(3)	56(3)	77(3)	-1(3)	6(2)	-11(2)
C45	48(3)	44(3)	25(2)	-6(2)	2(2)	7(2)
C46	47(3)	47(3)	35(2)	-6(2)	-4(2)	3(2)
C47	105(5)	45(3)	76(4)	9(3)	5(3)	12(3)
C48	37(2)	42(3)	27(2)	-5(2)	-1(2)	-6(2)
C49	43(2)	46(3)	35(2)	-16(2)	-2(2)	3(2)
C50	109(4)	32(3)	73(4)	1(2)	-31(3)	-4(3)
C51	32(2)	50(3)	33(2)	1(2)	-1(2)	-6(2)
C52	37(2)	35(2)	33(2)	5(2)	-4(2)	-3(2)
C53	28(2)	46(3)	35(2)	4(2)	4(2)	6(2)
C54	37(2)	47(3)	45(3)	-8(2)	1(2)	0(2)
C55	45(3)	33(2)	45(3)	0(2)	-4(2)	3(2)
C56	39(2)	39(2)	31(2)	9(2)	2(2)	11(2)
C57	43(3)	42(3)	56(3)	4(2)	-10(2)	4(2)
C58	29(2)	42(2)	26(2)	-2(2)	2(2)	4(2)
C59	31(2)	31(2)	27(2)	5(2)	2(2)	1(2)
C60	32(2)	43(2)	29(2)	-2(2)	0(2)	0(2)
C61	34(2)	50(3)	39(2)	-10(2)	-1(2)	1(2)
C62	38(2)	33(2)	49(3)	-3(2)	-6(2)	0(2)
C63	44(3)	29(2)	36(2)	8(2)	-3(2)	-4(2)
C64	40(3)	44(3)	77(3)	7(2)	6(2)	-3(2)
C65	37(2)	37(2)	33(2)	-5(2)	4(2)	-2(2)
C66	41(3)	62(3)	31(2)	-6(2)	2(2)	-12(2)
C67	29(2)	78(3)	39(2)	-3(2)	2(2)	5(2)
C68	38(3)	55(3)	38(2)	0(2)	-8(2)	10(2)
C69	39(2)	49(3)	27(2)	-7(2)	-4(2)	-2(2)
C70	31(2)	43(2)	38(2)	-2(2)	1(2)	-1(2)
N1	30(2)	43(2)	33(2)	4(2)	-4(2)	0(2)
N2	40(2)	35(2)	35(2)	0(1)	-2(2)	5(2)
N3	43(2)	34(2)	41(2)	-1(2)	-1(2)	-3(2)
N4	28(2)	40(2)	28(2)	-1(1)	-2(1)	0(2)
N5	43(2)	31(2)	34(2)	0(1)	-1(2)	-2(2)
N6	40(2)	38(2)	48(2)	-5(2)	0(2)	1(2)
01	30(2)	38(2)	28(1)	-2(1)	-1(1)	1(1)
O2	53(2)	40(2)	48(2)	2(1)	-5(2)	4(1)
03	30(2)	34(2)	29(1)	-1(1)	-1(1)	-1(1)
O4	64(2)	34(2)	41(2)	-3(1)	-4(2)	-2(1)
05	29(1)	45(2)	25(1)	6(1)	-3(1)	-5(1)
06	27(2)	49(2)	38(2)	-1(1)	-10(1)	1(1)
O7	22(1)	40(2)	31(2)	6(1)	1(1)	5(1)
08	32(2)	44(2)	32(2)	-1(1)	-1(1)	5(1)
S 1	54(1)	54(1)	44(1)	-8(1)	-1(1)	15(1)
S2	53(1)	48(1)	52(1)	-9(1)	-9(1)	-11(1)

APPENDIX B

a) <u>NMR titration data for lithium with receptor 14 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$9.14 \times 10^2 \mathrm{M}^{-1}$ (ave)

Volume added	Integration signal of -ArCH ₂ Ar- and -OCH ₂ CONH-/mm				
$/\mu L$	Unbound receptor	Bound receptor			
0	1.80	0.00			
5	1.95	0.00			
10	2.00	0.40			
20	1.75	0.50			
30	1.55	0.45			
40	1.40	0.70			
50	1.40	0.80			
60	1.15	0.85			
70	1.10	1.15			
80	0.85	1.25			
90	0.90	1.30			
100	0.60	1.30			
120	0.60	1.60			
K ₁	9.142	x10 ²			

b) <u>NMR titration data for sodium with receptor 14 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$5.53 \times 10^3 \mathrm{M}^{-1}$ (ave)

Volume added	Integration signal of –ArCH ₂ Ar- and –OCH ₂ CONH-/mm			
$/\mu L$	Unbound receptor	Bound receptor		
0	2.05	0.00		
5	2.10	0.55		
10	2.15	0.80		
20	1.70	0.65		
30	1.30	0.90		
40	1.05	1.20		
50	0.75	1.65		
60	0.40	1.85		
K ₁	5.532	x10 ³		

c) NMR titration data for potassium with receptor 14 in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$6.17 \times 10^2 \mathrm{M}^{-1}$ (ave)

Volume added	Integration signal of -ArCH ₂ Ar- and -OCH ₂ CONH-/mm		
$/\mu L$	Unbound receptor	Bound receptor	
0	2.10	0.00	
5	1.95	0.00	
10	2.20	0.45	
20	1.95	0.50	
30	1.80	0.65	
40	1.55	0.80	
50	1.65 1.15		
60	1.50	1.10	
70	1.10	1.10	
80	1.00 1.15		
90	1.00 1.45		
100	1.00 1.45		
120	1.00	1.35	
140	0.60	1.55	
160	0.60	1.90	
180	0.60	1.50	
K ₁	6.17	$x10^2$	

d) <u>NMR titration data for lithium with receptor 15 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$3.71 \times 10^2 \text{ M}^{-1}$ (ave)

Volume added	-0 <i>CH</i> ₂ COO-	-COOCH ₂ -	-CH ₂ CH ₂ OCH ₃	-OCH ₃
/µL	/ppm	/ppm	/ppm	/ppm
0	4.5419	4.5077	4.0647	3.3173
5	4.5428	4.5077	4.0748	3.3176
10	4.5428	4.5072	4.0743	3.3180
20	4.5427	4.5042	4.0747	3.3182
30	4.5427	4.5025	4.0747	3.3183
40	4.5430	4.5018	4.0857	3.3186
50	4.5433	4.5016	4.0659	3.3187
60	4.5436	4.5000	4.0663	3.3184
70	4.5438	4.4990	4.0690	3.3186
80	4.5444	4.4975	4.0746	3.3183
90	4.5445	4.4964	4.0868	3.3186
100	4.5448	4.4958	4.0671	3.3186
120	4.5449	4.4959	4.0671	3.3185
140	4.5456	4.4939	4.0674	3.3185
160	4.5453	4.4900	4.0769	3.3186
180	4.5456	4.4880	4.0966	3.3185
200	4.5467	4.4879	4.0806	3.3190
250	4.5459	4.4861	4.0773	3.3188
300	4.5470	4.4859	4.0691	3.3192
350	4.5470	4.4860	4.0923	3.3190
400	4.5475	4.4801	4.0746	3.3191
K ₁	1.03x10 ¹	1.26×10^2	91119	9.78x10 ²

จฬาลงกรณมหาวทยาลย

Titration curves for lithium with receptor 15 in CD₃CN

Job's plots for lithium with receptor 15 in CH₃CN

e) <u>NMR titration data for sodium with receptor 15 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	14.7 mM
Association constant:	$1.55 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added	-0 <i>CH</i> ₂ CO-	-COOCH2-	-CH ₂ CH ₂ OCH ₃	-OCH ₃
/µL	/ppm	/ppm	/ppm	/ppm
0	4.5414	4.5076	4.0720	3.3172
5	4.5421	4.5057	4.0852	3.3177
10	4.5423	4.5022	4.0664	3.3177
20	4.5448	4.4939	4.0748	3.3180
30	4.5468	4.4779	4.0772	3.3188
40	4.5485	4.4684	4.0713	3.3193
50	4.5506	4.4595	4.0711	3.3195
60	4.5521	4.4486	4.0845	3.3199
70	4.5529	4.4408	4.1067	3.3208
80	4.5539	4.4367	4.0786	3.3212
90	4.5547	4.4308	4.0770	3.3212
100	4.5549	4.4289	4.0865	3.3212
120	4.5555	4.4249	4.0969	3.3214
140	4.5559	4.4271	4.0863	3.3210
160	4.5558	4.4249	4.1005	3.3213
180	4.5562	4.4211	4.0982	3.3212
200	4.5559	4.4211	4.0885	3.3212
250	4.5563	4.4190	4.0824	3.3211
300	4.5562	4.4231	4.1023	3.3209
350	4.5570	4.4231	4.0865	3.3207
400	4.5568	4.4190	4.0887	3.3207
K ₁ 6	9.85x10 ³	2.66×10 ⁴	91119	9.95x10 ³

ฉพาลงกรณมหาวทยาลย

Titration curves for sodium with receptor 15 in CD₃CN

Job's plots for sodium with receptor 15 in CH₃CN

f) <u>NMR titration data for potassium with receptor 15 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$6.88 \times 10^2 \mathrm{M}^{-1}$ (ave)

Volume added	-OCH ₂ CO-	-COOCH2-	-CH ₂ CH ₂ OCH ₃	-OCH ₃
/µL	/ppm	/ppm	/ppm	/ppm
0	4.5411	4.5062	4.0730	3.3156
5	4.5418	4.5044	4.0886	3.3157
10	4.5433	4.5054	4.0693	3.3164
20	4.5452	4.5039	4.0753	3.3185
30	4.5444	4.4995	4.0750	3.3172
40	4.5449	4.4961	4.0903	3.3174
50	4.5459	4.4940	4.0677	3.3174
60	4.5468	4.4821	4.0773	3.3175
70	4.5469	4.4782	4.0703	3.3175
80	4.5472	4.4758	4.0711	3.3181
90	4.5478	4.4705	4.0800	3.3178
100	4.5489	4.4683	4.0803	3.3186
120	4.5493	4.4639	4.0928	3.3184
140	4.5500	4.4604	4.1139	3.3186
160	4.5510	4.4542	4.0805	3.3190
180	4.5510	4.4508	4.0959	3.3189
200	4.5516	4.4505	4.0966	3.3190
250	4.5525	4.4486	4.0965	3.3191
300	4.5532	4.4447	4.0885	3.3191
350	4.5533	4.4408	4.0850	3.3191
400	4.5536	4.4388	4.0754	3.3191
K ₁	5.01x10 ²	8.74×10^{2}	61116	-

จพาลงกรณมหาวทยาลย

Job's for potassium with receptor 15 in CH₃CN

g) NMR titration data for acetate with receptor 14 in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$3.04 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-CONH ^c -	- <i>CH</i> ₂ ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	7.0188	7.5221	3.5344	4.6849
5	7.0923	7.5378	3.5344	4.6822
10	-	7.5851	3.5328	4.6966
20	7.3950	7.6473	3.5512	4.6982
30	7.6038	7.7070	3.5453	4.7127
40	7.7744	7.7876	3.5453	4.7205
50	7.8842	7.8741	3.5555	4.7268
60	8.1091	7.9304	3.5524	4.7326
70	8.1713	7.9785	3.5551	4.7361
80	8.2084	8.0387	3.5579	4.7389
90	8.2370	8.0899	3.5602	4.7393
100	8.2534	8.1216	3.5586	4.7353
120	8.2410	8.1431	3.5614	4.7412
140	8.2898	8.1666	3.5641	4.7232
160	8.3054	8.1658	3.5653	4.7424
180	8.3136	8.1380	3.5657	4.7420
200	8.3324	8.1545	3.5618	4.7420
250	8.3633	8.1764	3.5535	4.7412
300	8.3786	8.2061	3.5555	4.7393
350	8.3989	8.2409	3.5633	4.7401
400	8.4040	8.2550	3.5665	4.7381
K ₁	1.11×10 ⁴	andra	61119	4.97×10 ⁴

งหาลงกรณมหาวทยาลย

Titration curves for acetate with receptor 14 in CD₃CN

Job's plots for acetate with receptor 14 in CH₃CN

h) <u>NMR titration data for benzoate with receptor 14 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$3.29 \times 10^3 \text{ M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-CONH ^c -	- <i>CH</i> 2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	7.0381	7.5209	3.5327	4.6850
5	-	7.5930	-	-
10	-	7.6199	3.5368	4.6852
20	- / / /	7.7354	3.5439	4.6882
30	7.4922	7.8378	3.5469	4.6912
40	7.6374		3.5586	4.6916
50	7.7332	8.0139	3.5582	4.7018
60	7.8201	8.0765	3.5588	4.6949
70		8.1316	3.5658	4.7059
80		8.1711	3.5693	4.7080
90	- 3	8.2030	3.5680	4.7080
100	-	8.2250	3.5705	4.7099
120	-	8.2493	3.5732	4.7102
140	8.4056	8.2626	3.5693	4.7123
160	8.5036	8.2758	3.5759	4.7126
180	8.5641	8.2824	3.5735	4.7136
200	8.6136	8.2923	3.5724	4.7154
250	8.6939	8.2800	3.5715	4.7147
300	8.7512	8.3088	3.5703	4.7164
350	8.7842	8.3088	3.5771	4.7180
400	8.8106	8.3187	3.5760	4.7182
K_1 of	5.66x10 ²	5.42×10^3	5.02×10^3	2.11×10^3

จพาลงกรณมหาวทยาลย

Titration curves for benzoate with receptor 14 in CD₃CN

Job's plots for benzoate with receptor 14 in CH₃CN

i) <u>NMR titration data for dihydrogen phosphate with receptor 14 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$8.58 \times 10^2 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-CONH ^c -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	7.0301	7.5273	3.5338	4.6870
5	7.0768	7.5616	3.5317	4.6836
10	-	7.6038	3.5363	4.6828
20	7.3984	7.6629	3.5350	4.6816
30	7.5091	7.7315	3.5358	4.6795
40	7.6133	7.8076	3.5296	4.6787
50	7.6125	7.8658	3.5247	4.6799
60	7.9274	7.9274	3.5193	4.6758
70	8.1080	7.9890	3.5160	4.6787
80	8.2097	8.0403	3.5434	4.6762
90	8.2697	8.0832	-	4.6737
100	8.3081	8.1233	-	-
120	8.4077	8.2015	-	-
140	8.5160	8.2647	-	-
160	8.5813	8.3110	<u> </u>	-
180	8.6313	8.3515	-37-	-
200	8.6888	8.2846	- 64	-
250	8.7574	8.4453	- 111	-
300	8.8115	8.4838		-
350	8.8520	8.5148	-	-
400	8.8781	8.5354	รื่อาร	-
K_1 6	8.76x10 ²	8.40×10^2	5111-5	-

จุฬาลงกรณมหาวทยาลย

Titration curves for dihydrogen phosphate with receptor 14 in CD₃CN

Job's plots for dihydrogen phosphate with receptor 14 in CH₃CN

j) <u>NMR titration data for phenylphosphinate with receptor 14 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$1.71 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-CONH ^c -	- <i>CH</i> ₂ ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	7.0024	7.5205	3.5340	4.6861
5	7.0990	7.5671	3.5309	4.6845
10	-	7.6007	3.5297	4.6861
20	7.4157	7.6942	3.5324	4.6830
30	-	7.8049	3.5344	4.6908
40	-	7.8874	3.534	4.6986
50	- 1 1 5	7.9664	3.5344	4.6923
60	8.1807	8.0328	3.5336	4.6935
70	8.2910	8.0747	3.5379	4.6955
80	8.3394	8.1036	3.5336	4.6963
90	8.3676	8.1087	3.5352	4.6982
100	8.3692	8.1220	3.5356	4.6978
120	8.3899	8.1251	3.5371	4.6994
140	8.3883	8.1369	3.5379	4.6959
160	8.3950	8.1412	3.5363	4.6970
180	8.4091	8.1467	3.5356	4.6986
200	8.4208	8.1510	3.5363	4.7009
250	8.4235	8.1506	3.5367	4.7013
300	8.4259	8.1576	3.5379	4.7009
350	8.4368	8.1693	3.5363	4.7103
400	8.4364	8.1662	3.5363	4.6998
K_1 of	3.08x10⁴	1.70x10 ⁴		3.63x10 ³

าฬาลงกรณมหาวทยาลย

Job's plots for phenylphosphinate with receptor 14 in CH₃CN

k) NMR titration data for diphenylphosphate with receptor 14 in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$2.33 \times 10^3 \mathrm{M}^{-1}$ (ave)

Volumo addad		CONH ^c	CH. ^e NH	
volume auueu	- <i>ivii</i> Cii ₂ -	-00//11 -	-CH2 NII-	-CH2 NII-
/µL	/ppm	/ppm	/ppm	/ppm
0	7.0086	7.5202	3.5340	4.6849
5	7.0587	7.5335	3.5465	4.6849
10	7.1224	7.5593	3.5473	4.6857
20	-	7.5983	3.5394	4.6872
30	-	7.6316	3.5426	4.6896
40	7.4118	7.6692	3.5461	4.6920
50	7.5037	7.6973	3.5465	4.6963
60	7.5679	7.7176	3.5406	4.7025
70	7.6132	7.7333	3.5410	4.7025
80	7.6758	7.756	3.5434	4.7045
90	- 3	7.7677	3.5430	4.7060
100	- 1000	7.7732	3.5438	4.7060
120	-	7.7939	3.5438	4.7072
140	- 124-215	7.8092	3.5410	4.7092
160	8.1693	7.8127	3.5410	4.7103
180	8.1873	7.8260	3.5410	4.7127
200	8.1834	7.8354	3.5414	4.7115
250	8.1768	7.8322	3.5426	4.7111
300	8.1830	7.8401	3.5403	4.7119
350	8.1811	7.8471	3.5410	4.7162
400	8.1783	7.8545	3.5403	4.7127
<i>K</i> ₁	ыппи	1.84×10^3	1113	2.81×10^3

จพาลงกรณมหาวทยาลย

Job's for diphenylphosphate plots with receptor 14 in CH₃CN

l) <u>NMR titration data for succinate with receptor 14 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$1.10 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-CONH ^c -	- <i>CH</i> 2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	7.0244	7.5303	3.5326	4.6785
5	7.0749	7.5758	3.5332	4.6795
10	7.1411	7.5925	3.5339	4.6852
20	- / / /	7.6242	3.5459	4.6957
30	-	7.6823	3.5502	4.7003
40	-	7.7200	3.5527	4.7068
50	7.4701	7.7531	3.5572	4.7113
60	7.5141	7.7773	3.5655	4.7167
70	7.5625	7.8003	3.5646	4.7159
80	7.6120	7.8157	3.5658	4.7172
90	7.6232	7.8299	3.5665	4.7193
100	7.6504	7.8412	3.5658	4.7183
120	7.6905	7.8663	3.5680	4.7226
140	7.7079	7.8782	3.5685	4.7239
160	7.7497	7.8960	3.5694	4.7243
180	7.7717	7.9055	3.5671	4.7277
200	7.8036	7.9103	3.5688	4.7271
250	7.8222	7.9256	3.5676	4.7309
300	7.8420	7.9399	3.5666	4.7276
350	7.8860	7.9487	3.567	4.7249
400	7.9069	7.9531	3.5655	4.7267
K ₁ 6	1.23×10^{3}	1.38×10^3	3.53x10 ⁴	6.09x10 ³

จุฬาลงกรณมหาวทยาลย

Titration curves for succinate with receptor 14 in CD₃CN

Job's plots for succinate with receptor 14 in CH₃CN

m) NMR titration data for glutarate with receptor 14 in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$4.29 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-CONH ^c -	- <i>CH</i> ₂ ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	7.0247	7.5309	3.5330	4.6795
5	7.0784	7.5452	3.5327	4.6828
10	7.5177	7.6211	3.5299	4.6838
20	7.5980	7.8500	3.5181	4.6900
30	8.0833	8.0833	-	4.6975
40	8.2857	8.4705	-	4.6996
50	8.4275	8.7048	-	4.7065
60	8.5315	8.9790	-	4.7092
70	8.6166	9.2133	-	4.7301
80	8.6816	9.4015	-	4.7334
90	8.7292	9.5554	-	-
100	8.7676	9.6688	-	-
120	8.8183	9.7956	-	-
140	8.8303	9.8208	-	-
160	8.8342	9.8241	-	-
180	8.8348	9.8262	-22-	-
200	8.8345	9.8252	-	-
250	8.8314	9.8188	- 11	-
300	8.8315	9.8119	<u> </u>	-
350	8.8281	9.8041	-	-
400	8.8246	9.8027	2015	-
<i>K</i> ₁ 61	6.89x10 ³	7.90x10 ⁴	6-111	-

ฉฬาลงกรณมหาวทยาลย

Titration curves for glutarate with receptor $14 \mbox{ in } \text{CD}_3\text{CN}$

Job's plots for glutarate with receptor 14 in CH₃CN

n) NMR titration data for acetate with receptor 15 in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	3.74 mM
Concentration of guest solution:	37.4 mM
Association constant:	$2.01 \times 10^3 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-NH ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
$/\mu L$	/ppm	/ppm	/ppm	/ppm
0	8.1353	8.0727	3.6979	4.6822
5	8.2468	8.1533	3.6971	4.6802
10	8.3934	8.2589	3.6947	4.6779
20	8.5639	8.3856	3.6857	4.6732
30	8.7074	8.4841	3.6799	4.6697
40	8.8166	8.5807	3.6720	4.6646
50	8.9124	8.6507	3.6674	4.6634
60	8.9753	8.7133	3.6646	4.6611
70	9.0340	8.7696	3.6646	4.6618
80	9.0840	8.8166	3.6619	4.6622
90	9.1153	8.8690	3.6630	4.6618
100	9.1615	8.9139	3.6630	4.6618
120	9.2190	8.9835	3.6599	4.6618
140	9.2635	9.0418	3.6603	4.6622
160	9.3116	9.1032	3.6591	4.6626
180	9.3468	9.1529	3.6584	4.6630
200	9.3840	9.1939	3.6572	4.6630
250	9.4427	9.2721	3.6552	4.6626
300	9.4872	9.3418	3.6560	4.6634
350	9.5338	9.3844	3.6541	4.6650
400	9.5604	9.4258	3.6509	4.6654
K_{I}	4.96×10^2	2.41×10^2	5.30x10 ³	-

าฬาลงกรณมหาวทยาลย

Titration curves for acetate with receptor $15\ \text{in }\text{CD}_3\text{CN}$

Job's plots for acetate with receptor 15 in CH₃CN

o) <u>NMR titration data for benzoate with receptor 15 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	3.74 mM
Concentration of guest solution:	37.4 mM
Association constant:	$K_l: 8.30 \times 10^3 \text{ M}^{-1} \text{ (ave)}$
	K_2 : 3.45x10 ⁴ M ⁻¹ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	- <i>NH</i> ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	8.1868	8.1133	3.6736	4.6640
5	8.2281	8.1332	3.6714	4.6631
10	8.2497	8.1648	3.6693	4.6619
20	8.2720	8.1927	3.6651	4.6615
30	8.3072	8.2360	3.6636	4.6617
40	8.3314	8.2775	3.6607	4.6618
50		8.3313	3.6551	4.6631
60	- 21	8.3852	3.6512	4.6636
70	- 10	8.4339	3.6499	4.6643
80	<u> </u>	8.4769	3.6467	4.6658
90	- 036	8.5137	3.6407	4.6664
100	-	8.5472	3.6390	4.6680
120		8.6098	3.6354	4.6701
140	-	8.6551	3.6313	4.6694
160	8.6396	8.6837	3.6307	4.6703
180	8.6549	8.7134	3.6299	4.6707
200	8.6874	8.7355	3.6306	4.6719
250	8.6979	8.7803	-	4.6725
300	8.7297	8.8190	3.6284	4.6734
350	8.7408	8.8317	3.6272	4.6738
400	8.7540	8.8500	3.6286	4.6749
K ₁	3.78x10 ³	1.13x10 ⁴	9.81x10 ³	. ·
K_2	1.48×10^3	2.06×10^3	1.00x10 ⁵	Е.

Titration curves for benzoate with receptor 15 in CD₃CN

Job's plots for benzoate with receptor 15 in CH₃CN

p) NMR titration data for dihydrogen phosphate with receptor 15 in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	3.74 mM
Concentration of guest solution:	37.4 mM
Association constant:	$K_l: 9.71 \times 10^3 \text{ M}^{-1}$ (ave)
	K_2 : 1.09x10 ³ M ⁻¹ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-NH ^a CH ₂ -	- <i>CH</i> 2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	8.2353	8.1576	3.7016	4.6688
5	8.2581	8.1688	3.7003	4.6679
10	8.2635	8.1795	3.7008	4.6679
20	8.2965	8.1998	3.7012	4.6679
30	8.3044	8.2242	3.6987	4.6671
40	8.3283	8.2531	3.6921	4.6663
50	8.3374	8.2916	3.6904	4.6655
60	8.3606	8.3345	3.6801	4.6609
70	- 10	8.3759	3.6722	4.6617
80		8.4275	3.6693	4.6576
90	- 04464	8.4714	3.6623	4.6551
100	-	8.5143	3.6594	4.6551
120		8.5805	3.6536	4.6518
140	8.3908	8.6478	3.6446	4.6477
160	8.3998	8.7144	3.6371	4.6473
180	8.4292	8.7528	3.6396	4.6436
200	8.4205	8.7999	3.6379	4.6498
250	8.4701	8.8748	3.6574	4.6473
300	8.4995	8.9173	3.6718	4.6580
350	8.5102	8.9578	3.6598	4.6609
400	8.5350	8.9810	3.6545	4.6576
K ₁		9.84x10 ³	9.64x10 ³	9.65x10 ³
K_2	011130	1.25×10^3	1.02×10^3	9.93×10^2

Titration curves for dihydrogen phosphate with receptor 15 in CD₃CN

Job's plots for dihydrogen phosphate with receptor 15 in CH₃CN

q) <u>NMR titration data for phenylphosphinate with receptor 15 in CD_3CN </u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	3.34 mM
Concentration of guest solution:	50.4 mM
Association constant:	$1.43 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-NH ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
$/\mu L$	/ppm	/ppm	/ppm	/ppm
0	8.1279	8.0571	3.6963	4.6822
5	8.3215	8.2386	3.6865	4.6759
10	8.4638	8.3574	3.6756	4.6704
20	8.6359	8.5342	3.6505	4.6591
30	8.7825	8.6746	3.6325	4.6493
40	8.8948	8.7817	3.6157	4.6423
50	8.9538	8.8443	3.6083	4.6380
60	8.9824	8.8670	3.6024	4.6376
70	8.9886	8.8791	3.6017	4.6349
80	8.9988	8.8866	3.5997	4.6356
90	8.9964	8.8893	3.6005	4.6356
100	8.9992	8.8916	3.6001	4.6356
120	9.0070	8.8967	3.5985	4.6360
140	9.0074	8.8959	3.5997	4.6349
160	9.0105	8.8971	3.5989	4.6352
180	9.0109	8.8995	3.5985	4.6356
200	9.0069	8.8924	3.5946	4.6297
250	9.0042	8.8978	3.5930	4.6293
300	9.0069	8.8982	3.5938	4.6289
350	9.0046	8.9021	3.5938	4.6289
400	9.0050	8.9049	3.5926	4.6301
	2.28×10^4	$1.84 \text{x} 10^4$	6.37x10 ³	9.65x10 ³

งพาลงกรณมหาวทยาลย

Titration curves for phenylphosphinate with receptor 15 in CD₃CN

Job's plots for phenylphosphinate with receptor 15 in CH₃CN

r) <u>NMR titration data for diphenylphosphate with receptor 15 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	29.7 mM
Association constant:	$3.24 \times 10^3 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-NH ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	8.1251	8.0575	3.6963	4.6826
5	8.2425	8.1740	3.6611	4.6708
10	8.2550	8.2167	3.6318	4.6630
20	8.2565	8.2405	3.6052	4.6556
30	8.2706	8.2573	3.5829	4.6493
40	8.2788	8.2663	3.5653	4.6435
50	8.2718	8.2718	3.5328	4.6399
60	8.2812	8.2812	3.5399	4.6376
70	8.2863	8.2863	3.5344	4.6352
80	8.2753	8.2886	3.5406	4.6337
90	8.2780	8.2925	3.5356	4.6309
100	8.2624	8.2992	3.5281	4.6290
120	8.2561	8.2992	3.5211	4.6270
140	8.2577	8.3043	3.5011	4.6259
160	8.2561	8.3050	3.4976	4.6255
180	8.2550	8.3078	3.4949	4.6247
200	8.2546	8.3136	3.4906	4.6227
250	8.2542	8.3097	3.4871	4.6219
300	8.2573	8.3136	3.4851	4.6216
350	8.2558	8.3117	3.4832	4.6212
400	8.2467	8.3116	3.4772	4.6168
K_{I}	ыппи	6.93x10 ³	1.46×10^3	1.34×10^{3}

จพาลงกรณมทาวทยาลย

Job's for diphenylphosphate plots with receptor 15 in CH₃CN

s) <u>NMR titration data for succinate with receptor 15 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	3.74 mM
Concentration of guest solution:	37.4 mM
Association constant:	$2.02 \times 10^3 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	- <i>NH</i> ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	8.2574	8.1755	3.6940	4.6780
5	8.2792	8.1915	3.6948	4.6773
10	8.3012	8.2032	3.6952	4.6779
20	8.3165	8.2098	3.6944	4.6771
30	8.3207	8.2220	3.6935	4.6771
40	8.3272	8.2306	3.6928	4.6767
50	8.3296	8.2355	3.6932	4.6769
60	8.3316	8.2328	3.6924	4.6770
70	8.3450	8.2350	3.6914	4.6771
80	8.3450	8.2327	3.6913	4.6768
90	8.3492	8.2438	3.6934	4.6768
100	8.3439	8.2429	3.6912	4.6768
120	8.3435	8.2460	3.6904	4.6763
140	8.3479	8.2501	3.6911	4.6763
160	8.3591	8.2502	3.6904	4.6765
180	8.3668	8.2501	3.6903	4.6760
200	8.3626	8.2537	3.6909	4.6763
250	8.3658	8.2576	3.6901	4.6762
300	8.3680	8.2602	3.6888	4.6758
350	8.3724	8.2646	3.6857	4.6754
400	8.3757	8.2646	3.6868	4.6753
<i>K</i> ₁ 6	ыци	2.02×10^3	6-1110	-

จฺฬาลงกรณมหาวทยาลย

Titration curves for succinate with receptor 15 in CD₃CN

Job's plots for succinate with receptor 15 in CH₃CN

t) <u>NMR titration data for glutarate with receptor 15 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	3.74 mM
Concentration of guest solution:	37.4 mM
Association constant:	-

Volume added	- <i>NH</i> ^b CH ₂ -	- <i>NH</i> ^a CH ₂ -	$NH^{a}CH_{2}$ $CH_{2}^{e}NH$ -	
/µL	/ppm	/ppm	/ppm	/ppm
0	8.2690	8.1680	3.6951	4.6778
5	8.2979	8.2006	3.6921	4.6764
10	8.3223	8.2204	3.6883	4.6759
20	8.3480	8.2561	3.6811	4.6720
30	8.3890	8.3022	3.6765	4.6720
40	-////	8.3262	3.6611	4.6608
50	- / / .	8.3703	3.6549	4.6576
60	- / 3	8.4066	3.6527	4.6681
70	-	8.4781	3.6294	4.6735
80	8.7059	8.6056	3.6477	4.6746
90	8.9163	8.8205	3.6729	4.6749
100	9.1306	9.0108	3.6952	4.6746
120	9.5698	9.5698	3.7071	4.6721
140	9.6859	9.6859	3.7154	4.6736
160	9.8129	9.6973	3.7180	4.6732
180	9.8151	9.7061	3.7190	4.6718
200	-	9.7160	3.7195	4.6685
250		9.7304	3.7201	4.6644
300		9.7249	3.7200	4.6624
350	-0.7	9.7260	3.7201	4.6604
400	การังเว็	9.7228	3.7200	4.6573
K_1			J - d	-

จุฬาลงกรณมหาวทยาลย

Titration curves for glutarate with receptor 15 in CD₃CN

Job's plots for glutarate with receptor 15 in CH₃CN

u) <u>NMR titration data for carboxylate anion of aspartic acid with receptor 14 in</u> <u>CD₃CN</u>

Volume added NH ^b CH	NH ^a CH CONH ^c
Association constant:	$2.12 \times 10^4 \mathrm{M}^{-1}$ (ave)
Concentration of guest solution:	18.7 mM
Concentration of host solution:	1.87 mM
Starting volume of host solution:	600µL
Solvent:	CD ₃ CN

Volume added	-NH ^b CH ₂ -	-NH ^a CH ₂ -	-CONH ^c -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
$/\mu L$	/ppm	/ppm	/ppm	/ppm	/ppm
0	7.0396	7.0396	7.5617	3.5329	4.6817
5	-	-	7.6253	3.5289	4.6875
10	-		7.7066	3.5196	4.6850
20	8.2768	8.2768	8.0107	-	4.6870
30	8.7544	8.7544	8.1947	-	4.6851
40	9.1582	9.0451	8.3250	-	-
50	9.4763	9.2978	8.4103	3.4256	-
60	9.7426	9.5346	8.4681	3.4212	-
70	9. <mark>9</mark> 395	9.7227	8.5054	3.4258	-
80	10.0868	9.8891	8.5223	3.4213	-
90	10.2395	9.9935	8.5296	3.3988	-
100	10.2920	10.0420	8.5271	3.3964	-
120	10.3517	10.0917	8.5255	3.3914	-
140	10.3690	10.1037	8.5212	3.3989	-
160	10.3788	10.1091	8.5223	3.3975	-
180	10.3654	10.1091	8.5213	3.4007	-
200	10.3753	10.1056	8.5226	3.3996	-
250	10.3698	10.1061	8.5242	3.3987	-
300	10.3687	10.0979	8.5233	3.4003	-
350	10.3555	10.0951	8.5244	3.3997	-
400	10.3475	10.0861	8.5254	3.4006	-
<i>K</i> ₁	2.00x10 ⁴	2.14×10^4	2.29x10 ⁴	2.06x10 ⁴	-
- MH	01113	BRAA	1 J J VI		

Titration curves for carboxylate anion of aspartic acid with receptor 14 in CD₃CN

Job's plots for carboxylate anion of aspartic acid with receptor 14 in CH₃CN

v) <u>NMR titration data for carboxylate anion of glutamic acid with receptor 14 in</u> <u>CD₃CN</u>

Volume added -NH ^b CH ₂ NH	$I^{a}CH_{2}$ CONH ^c -
Association constant.	1.55×10 W (ave)
Association constant:	$1.55 \times 10^4 \mathrm{M}^{-1}$ (ave)
Concentration of guest solution:	18.7 mM
Concentration of host solution:	1.87 mM
Starting volume of host solution:	600µL
Solvent:	CD ₃ CN

/uL					
· •	/ppm	/ppm	/ppm	/ppm	/ppm
0	7.0403	7.0403	7.5297	3.5322	4.6827
5	-	-	7.6140	3.5306	4.6870
10	7.4221	7.4221	7.7044	3.5237	4.6888
20	7.9336	7.9336	-	3.5084	4.6874
30	8.4045	8.4045	8.1404	3.4921	4.6875
40	8.7962	8.7962	8.3017	-	4.6860
50	9.0472	9.0472	8.4085	-	-
60	9.2089	9.2089	8.4752	-	-
70	9.4070	9.3685	8.5405	-	-
80	9.5314	9.4733	8.5862	-	-
90	9.6260	9.5456	8.6174	3.4624	-
100	9.6843	9.5797	8.6370	-	-
120	9.7350	9.6314	8.6555	3.4745	-
140	9.7834	9.6532	8.6629	3.4844	-
160	9.7834	9.6604	8.6643	3.4834	-
180	9.7878	9.6615	8.6669	3.4825	-
200	9.7989	9.6622	8.6662	3.4820	-
250	9.8121	9.6805	8.6657	3.4806	-
300	9.8121	9.6830	8.6664	3.4800	-
350	9.8044	9.6791	8.6638	3.4797	-
400	9.8176	9.6881	8.6646	3.4794	-
<i>K</i> ₁	1.57x10 ⁴	1.41x10⁴	1.67x10 ⁴		-

Titration curves for carboxylate anion of glutamic acid with receptor 14 in CD₃CN

Job's plots for carboxylate anion of glutamic acid with receptor 14 in CH₃CN

w) NMR titration data for carboxylate anion of asparagine with receptor 14 in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$1.96 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-NH ^a CH ₂ -	-CONH ^c -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm	/ppm
0	7.0273	6.9695	7.522	3.5329	4.6838
5	7.0866	7.0202	7.5914	3.5322	4.6850
10	-	-	7.6198	3.5309	4.6957
20	7.4416	-	7.7938	3.5277	4.7092
30	7.7255		7.9038	3.5251	4.7244
40	7.9071		8.0191	3.5221	4.7394
50	8.1502	The second second	8.2604	3.5197	4.7534
60	8.2307		8.3890	-	4.7596
70	8.2967	sul <u>a</u> nd	8.4971	-	4.7637
80	8.3331	7.3453	8.5761	-	4.7671
90	8.3583	7.4593	8.6382	-	4.7687
100	8.3740	7.5557	8.6595	-	4.7688
120	8.3936	7.7199	8.7037	-	4.7709
140	8.4026	7.8334	8.7575	-	4.7720
160	8.4105	7.9369	8.7902	-	4.7762
180	8.4181	8.0130	8.8369	-	4.7756
200	8.4253	8.0756	8.8732	-	4.7742
250	8.4370	8.1809	8.9512	-	4.7724
300	8.4455	8.2471	8.9970	-	4.7742
350	8.4518	8.2872	9.0568	-	4.7710
400	8.4559	8.3184	9.0867	5	4.7680
K ₁ 6V	1.93×10^4	1.36x10 ³		l d -	1.99x10 ⁴

ฉพาลงกรณมหาวทยาลย

Titration curves for carboxylate anion of asparagine with receptor 14 in CD₃CN

Job's plots for carboxylate anion of asparagine with receptor 14 in CH₃CN

x) NMR titration data for carboxylate anion of glutamine with receptor 14 in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$8.27 \times 10^3 \mathrm{M}^{-1}$ (ave)

Volume added	-NH ^b CH ₂ -	-NH ^a CH ₂ -	-CONH ^c -	- <i>CH</i> ₂ ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm	/ppm
0	7.0268	6.9651	7.5196	3.5329	4.6842
5	7.0760	7.0126	7.5881	3.5328	4.6834
10	7.1358	-	7.5969	3.5321	4.6897
20	- //	-	7.6552	3.5306	4.6907
30	7.5213		7.7597	3.5450	4.7007
40	7.7002		7.8435	3.5439	4.7130
50	7.9446		7.9786	3.5431	4.7279
60	8.0076		8.1239	3.5375	4.7344
70	8.0751	surance.	8.3022	3.5435	4.7348
80	8.1318	State (2) 12 3	8.4188	3.5435	4.7440
90	8.1732	12/2/2/2	8.5178	3.5398	4.7477
100	8.2087	11/10-10111	8.5894	3.5387	4.7507
120	8.2601		8.7324	-	4.7542
140	8.2890	2320-2/1.1/1.	8.7930	-	4.7499
160	8.3073		8.8591	-	4.7492
180	8.3383	-	8.9382	-	4.7520
200	8.3571	-	9.0043	-	4.7472
250	8.3934	-	9.1143	-	4.7545
300	8.4166	-	9.1925	-	4.7500
350	8.4365	-	9.2310	-	4.7513
400	8.4489	เกิรกย	9.2850	5	4.7494
K ₁	4.37×10^3	4 4 M C	1.03×10^3	d -	1.94x10 ⁴

จพาลงกรณมหาวทยาลย

Titration curves for carboxylate anion of glutamine with receptor 14 in CD₃CN

Job's plots for carboxylate anion of glutamine with receptor 14 in CH₃CN

y) <u>NMR titration data for carboxylate anion of phenylalanine with receptor 14 in</u> <u>CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$2.48 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added	-NH ^b CH ₂ -	-NH ^a CH ₂ -	-CONH ^c -	- <i>CH</i> ₂ ^e NH-	$-CH_2^{d}NH-$
/µL	/ppm	/ppm	/ppm	/ppm	/ppm
0	7.0185	///- <	7.5088	3.5331	4.6809
5	7.0732	-	7.5772	3.5320	4.6817
10	-		7.6223	3.5299	4.6906
20	- //	12 20 6	7.7479	3.5254	4.6992
30	7.6047		7.8963	3.5229	4.7184
40	7.9458	B. COLA	8.0461	3.5174	4.7336
50	8.1817	10-201	8.4873	3.5164	4.7444
60	8.3266	a sta - man	8.5676	3.5247	4.7547
70	8. <mark>4</mark> 114	- Internet	8.5522	3.5252	4.7635
80	8. <mark>4816</mark>	<u></u>	8.6301	3.5311	4.7733
90	8.5151	6664C <u>2</u> 19779	8.6872	-	4.7754
100	8.5271	anne an ai	8.7009	-	4.7755
120	8.5353	2220 <u>-</u> /3333	8.7315	-	4.7753
140	8.5447	_	8.7923		4.7754
160	8.5519	-	8.8185	-	4.7745
180	8.5597	-	8.8540	-	4.7755
200	8.5624	_	8.8900	-	4.7797
250	8.5686	-	8.9363	-	4.7755
300	8.5677	<u> </u>	9.0110	-	4.7710
350	8.5729	19491	9.0253	15 -	4.7753
400	8.5688	9910	9.0374	ld -	4.7709
K_1	4.00×10^4		2.77×10^3		3.16x10⁴

Titration curves for carboxylate anion of phenylalanine with receptor 14 in CD₃CN

Job's plots for carboxylate anion of phenylalanine with receptor 14 in CH₃CN

z) NMR titration data for carboxylate anion of leucine with receptor 14 in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$4.96 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added	-NH ^b CH ₂ -	-NH ^a CH ₂ -	-CONH ^c -	- <i>CH</i> ₂ ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm	/ppm
0	7.0245	6.9662	7.5021	3.5329	4.6801
5	7.1468	7.5276	7.6156	3.5328	4.6910
10	-	-	7.8696	3.5280	4.7114
20	8.1185	7.9028	7.9028	3.5229	4.7342
30	8.3882	8.4739	8.4739	-	4.7565
40	8.5434	8.7213	-	-	4.7711
50	8.6149	8.8887	-	-	4.7775
60	8.6376	8.9669	-	-	4.7773
70	8.6424	8.9490	-	-	4.7674
80	8. <mark>6</mark> 498	8.9350	-	-	4.7697
90	8.6508	8.9821	-	-	4.8070
100	8.6514	8.9856	-	-	-
120	8.6554	9.0085	-	-	-
140	8.6585	9.0352	-	-	-
160	8.6602	9.0407	-	-	-
180	8.6580	9.0506	- 3	-	-
200	8.6596	9.1232		-	-
250	8.6596	9.1848	- 70	-	-
300	8.6582	9.2355	- 44	-	-
350	8.6580	9.2949	-	-	-
400	8.6558	9.3125	แร็กา	5	-
<i>K</i> ₁ 0	8.64x10 ⁴	1.27×10^4		l d -	-

ฉพาลงกรณมหาวทยาลย

Titration curves for carboxylate anion of leucine with receptor 14 in CD₃CN

Job's plots for carboxylate anion of leucine with receptor 14 in CH₃CN

aa) NMR titration data for carboxylate anion of threonine with receptor 14 in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$1.03 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added	-NH ^b CH ₂ -	-NH ^a CH ₂ -	-CONH ^c -	- <i>CH</i> ₂ ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm	/ppm
0	7.0191		7.5265	3.5330	4.6841
5	7.0751	<u></u>	7.5182	3.5324	4.6830
10	-	-	7.6027	3.5316	4.6916
20	-	-	7.7080	3.5295	4.7043
30	7.5047		7.8205	3.5265	4.7184
40	7.7197		7.9189	3.5237	4.7298
50	7.9106		8.0306	3.5212	4.7435
60	- // /		8.1166	3.5188	4.7512
70	-	Miganda.	8.1880	3.5009	4.7630
80	8.2364	2. 4. 66 (-) 1. 12 A	8.3409	-	4.7655
90	8.2749	32231	8.4300	-	4.7687
100	8.3017	ALLIG STATES	8.4135	-	4.7691
120	8.3135		8.4179	-	4.7721
140	8.3314	2390-01.11.	8.4476	-	4.7691
160	8.3475	<u> </u>	8.4819	-	4.7656
180	8.3608	-	8.5041	-	4.7689
200	8.3702	-	8.5064	-	4.7715
250	8.3448	-	8.5583	-	4.7712
300	8.3956	-	8.5745	-	4.7746
350	8.4013	-	8.6169	-	4.7777
400	8.4051	เกิรกค	8.6269	5	4.7736
K ₁ 6	1.18x10 ⁴	4 9 N C	1.90x10 ³	ld -	1.71×10^4

งพาลงกรณมหาวทยาลย

Titration curves for carboxylate anion of threonine with receptor 14 in CD₃CN

Job's plots for carboxylate anion of threonine with receptor 14 in CH₃CN

ab) NMR titration data for carboxylate anion of serine with receptor 14 in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$0.95 \times 10^{0} \mathrm{M}^{-1}$ (ave)

Volume added	-NH ^b CH ₂ -	-NH ^a CH ₂ -	-CONH ^c -	-CH2 ^e NH-	- <i>CH</i> ² ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm	/ppm
0	7.0219	6.9751	7.5308	3.5331	4.6829
5	7.0280	6.9773	7.5218	3.5336	4.6821
10	7.0369	6.9960	7.5277	3.5336	4.6837
20	7.0620	7.0126	7.5441	3.5333	4.6834
30	7.0869		7.5495	3.5333	4.6870
40	7.1139		7.5759	3.5331	4.6865
50	7.1490		7.5914	3.5330	4.6885
60	- //		7.6042	3.5330	4.6881
70	-	su <u>c</u> ana	7.6135	3.5328	4.6910
80	7.2314	2 4 46 (2) 12 4	7.6253	3.5324	4.6927
90	-	7.6245	7.6245	3.5320	4.6953
100	- / /	7.6456	7.6456	3.5380	4.6981
120		7.6983	7.6983	3.5385	4.7009
140	7.4022	7.7193	7.7193	3.5374	4.7041
160	7.4557	7.7486	7.7486	3.5364	4.7047
180	7.5207	7.7641	7.7641	3.5350	4.7106
200	7.5661	7.7915	7.7915	3.5351	4.7125
250	7.6904	7.8414	7.8414	3.5354	4.7182
300	7.7984	7.8886	7.8886	3.5352	4.7259
350		7.9249	-	3.5352	4.7297
400	ักว่าไข	7.9182	แร้กา	3.5351	4.7343
K_1	61 LUI	2 1 1 C	1.28×10^{0}	ld -	1.29×10^{0}

จุฬาลงกรณมหาวทยาลย

Titration curves for carboxylate anion of serine with receptor 14 in CD₃CN

ac) <u>NMR titration data for carboxylate anion of aspartic acid with receptor **15** in <u>CD₃CN</u></u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	3.74 mM
Concentration of guest solution:	37.4 mM
Association constant:	$1.77 \times 10^4 \mathrm{M}^{-1}$ (ave)

olume added	- <i>NH</i> ^b CH ₂ -	-NH ^a CH ₂ -	-CH2 ^e NH-	$-CH_2^{d}NH-$
$/\mu L$	/ppm	/ppm	/ppm	/ppm
0	8.1638	8.1066	3.6732	4.6647
5	8.2133	8.1407	3.6710	4.6628
10	8.2497	8.1727	3.6676	4.6624
20	8.3190	8.2410	3.6641	4.6608
30	8.3895	8.3522	3.6581	4.6699
40	8.4973	8.4743	3.6514	4.6543
50	8.5248	8.3227	3.6478	4.6599
60	8.7581	8.7344	3.6433	4.6633
70	- 1	8.8726	3.6541	4.6637
80		9.0365	3.6325	4.6489
90	- 0.669	9.1304	3.6244	4.6483
100	-	9.2139	3.6167	4.6479
120		and a start	3.6116	4.6479
140	-	9.4668	3.6124	4.6472
160	-	9.5423	3.6137	4.6639
180	-	9.5642	3.6078	4.6630
200	-	9.6006	3.6071	4.6628
250	-	9.6286	3.6093	4.6618
300	2 0	9.6638	3.6060	4.6608
350	9.7618	9.6416	3.6063	4.6602
400	ыци		-d	-
K_1		1.93x10⁴	8.85x10 ³	· · ·

Titration curves for carboxylate anion of aspartic acid with receptor 15 in CD₃CN

Job's plots for carboxylate anion of aspartic acid with receptor 15 in CH₃CN

ad) <u>NMR titration data for carboxylate anion of glutamic acid with receptor **15** in <u>CD₃CN</u></u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	3.74 mM
Concentration of guest solution:	37.4 mM
Association constant:	$1.19 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added /µL	- <i>NH</i> ^b CH ₂ - /ppm	- <i>NH</i> ^a CH ₂ - /ppm	- <i>CH</i> 2 ^e NH- /ppm	- <i>CH</i> 2 ^d NH- /ppm
5	8.2201	8.1468	3.6915	4.6766
10	8.2632	8.1772	3.6866	4.6759
20	8.3292	8.2425	3.6815	4.6732
30	8.4326	8.3653	3.6698	4.6579
40	8.5977	8.5195	3.6653	4.6532
50	8.7297	8.6592	3.6555	4.6592
60	8.8508	8.7754	3.6695	4.6632
70	8.9355	8.8794	3.6494	4.6644
80	9.0224	8.9927	3.6424	4.6637
90	9.0683	9.0683	3.6393	4.6647
100	9.0974	9.1369	3.6351	4.6638
120		9.2297	3.6308	4.6637
140	-	9.3076	3.6369	4.6634
160	-	9.3417	3.6335	4.6630
180	-	9.3691	3.6349	4.6619
200	-	9.3882	3.6247	4.6621
250	-	9.4109	3.6270	4.6601
300	2 0	9.4494	3.6288	4.6757
350	2191914	9.4395	3.6269	4.6751
400	ыцы	9.4505	3.6269	4.6750
K_1		1.06x10 ⁴	1.55x10 ⁴	9.67x10 ³

Titration curves for carboxylate anion of glutamic acid with receptor 15 in CD₃CN

Job's plots for carboxylate anion of glutamic acid with receptor 15 in CH₃CN

ae) <u>NMR titration data for carboxylate anion of asparagine with receptor **15** in <u>CD₃CN</u></u>

CD ₃ CN
600µL
3.74 mM
37.4 mM
$K_1: 8.90 \times 10^5 \mathrm{M}^{-1}$ (ave)
K_2 : 1.49x10 ³ M ⁻¹ (ave)

Volume added	-NH ^b CH ₂ -	-NH ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	8.2701	8.1637	3.6955	4.6766
5	8.2881	8.1799	3.6942	4.6761
10	8.2924	8.1924	3.6928	4.6752
20	8.3096	8.2120	3.6909	4.6746
30	8.3284	8.2272	3.6882	4.6731
40	8.3315	8.2324	3.6705	4.6720
50	8.3484	8.2768	3.6759	4.6599
60	8.4036	8.3091	3.6696	4.6698
70	8.4873	8.4245	3.6759	4.6726
80	8.6237	8.4918	-	4.6741
90	8.7222	8.5397	-	4.6733
100	8.7876	8.6039	-	4.6731
120	8.8893	8.6692	-32-	4.6729
140	8.9431	8.7193	- 64	4.6730
160	9.0064	8.7603		4.6728
180	9.0229	8.7899		4.6730
200	9.0512	8.8159	-	4.6729
250	9.1167	8.8979		4.6709
300	9.1827	8.9617		4.6706
350	9.2209	8.9954	<u> </u>	4.6695
400	9.2534	9.0297		4.6688
K_{I}	1.75x10 ⁶	3.09x10 ⁴	111210	5.5
K_2	8.01×10^2	2.17×10^3	-	-

Titration curves for carboxylate anion of asparagine with receptor 15 in CD₃CN

Job's plots for carboxylate anion of asparagine with receptor 15 in CH₃CN

af) <u>NMR titration data for carboxylate anion of glutamine with receptor 15 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	3.74 mM
Concentration of guest solution:	37.4 mM
Association constant:	$K_1: 3.91 \times 10^4 \mathrm{M}^{-1}$ (ave)
	K_2 : 7.23x10 ² M ⁻¹ (ave)

Volume added	-NH ^b CH ₂ -	-NH ^a CH ₂ -	- <i>CH</i> 2 ^e NH-	- <i>CH</i> 2 ^d NH-
$/\mu L$	/ppm	/ppm	/ppm	/ppm
0	8.2554	8.1696	3.6949	4.6771
5	8.2876	8.1834	3.6940	4.6762
10	8.2958	8.2037	3.6920	4.6755
20	8.3276	8.2188	3.6862	4.6745
30	8.3539	8.2497	3.6814	4.6724
40	8.3704	8.2813	3.6769	4.6699
50	8.4210	8.3187	3.6684	4.6576
60	8.4749	8.3605	3.6681	4.6553
70	8.5004	8.4178	3.6497	4.6615
80	8.5862	8.4651	3.6460	4.6635
90	8.6302	8.5075	3.6438	4.6663
100	8.6730	8.5620	3.6438	4.6680
120	8.7358	8.6342	3.6417	4.6697
140	8.7942	8.7037	3.6572	4.6712
160	8.8492	8.7568	3.6444	4.6718
180	8.9061	8.8130	3.6353	4.6711
200	8.9667	8.8541	3.6346	4.6698
250	9.0472	8.9405	3.6317	4.6703
300	9.1354	9.0156	3.6313	4.6687
350	9.1882	9.0721	3.6298	4.6693
400	9.2519	9.1005	3.6275	4.6675
K ₁	9.46x10 ³	1.10x10 ⁴	9.69x10 ⁴	
K_2	4.29×10^2	6.99x10 ²	1.04×10^3	E -

Titration curves for carboxylate anion of glutamine with receptor 15 in CD₃CN

Job's plots for carboxylate anion of glutamine with receptor 15 in CH₃CN

ag) <u>NMR titration data for carboxylate anion of phenylalanine with receptor 15 in $\underline{CD_3CN}$ </u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	3.74 mM
Concentration of guest solution:	37.4 mM
Association constant:	$K_1: 1.48 \times 10^7 \mathrm{M}^{-1}$ (ave)
	K_2 : 2.94x10 ³ M ⁻¹ (ave)

Volume added	-NH ^b CH ₂ -	- <i>NH</i> ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	8.2515	8.1719	3.6956	4.6784
5	8.2909	8.1860	3.6945	4.6777
10	8.2968	8.1978	3.6953	4.6775
20	8.3211	8.2206	3.6923	4.6768
30	8.3271	8.2394	3.6883	4.6755
40	8.3506	8.2568	3.6824	4.6738
50	8.3638	8.2772	3.6780	4.6628
60	8.4606	8.3506	3.6728	4.6715
70	8.6246	8.4716	3.658	4.6731
80	8.7809	8.5663	3.6428	4.6737
90	8.8843	8.6366	3.6373	4.6732
100	8.8919	8.6638	3.6325	4.6732
120	9.0121	8.7670	3.6303	4.6740
140	9.0909	8.8140	3.6228	4.6737
160	9.1408	8.8579	3.6247	4.6735
180	9.1792	8.8845	3.6288	4.6729
200	9.2098	8.8984	3.6299	4.6727
250	9.2552	8.9452	3.6299	4.6710
300	9.2866	8.9679	3.6312	4.6712
350	9.3081	8.9859	3.6176	4.6709
400	9.3258	8.9963	3.6327	4.6698
K_1	4.43×10^7	4.24×10^3	2.34x10 ⁵	J -
K ₂	3.28×10^3	5.37×10^3	1.83×10^2	-

Titration curves for carboxylate anion of phenylalanine with receptor 15 in CD₃CN

Job's plots for carboxylate anion of phenylalanine with receptor **15** in CH₃CN

ah) NMR titration data for carboxylate anion of leucine with receptor 15 in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	3.74 mM
Concentration of guest solution:	37.4 mM
Association constant:	$1.02 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-NH ^a CH ₂ -	- <i>CH</i> 2 ^e NH-	- <i>CH</i> 2 ^d NH-
$/\mu L$	/ppm	/ppm	/ppm	/ppm
0	8.2543	8.1647	3.6962	4.6785
5	8.2969	8.1958	3.6938	4.6772
10	8.3298	8.2352	3.6859	4.6749
20	8.4254	8.3275	3.6760	4.6621
30	8.6896	8.4145	3.6615	4.6729
40	8.8458	8.6070	3.6683	4.6745
50	9.0814	8.7338	3.6289	4.6741
60	9.2013	8.8142	3.6188	4.6747
70	9.2905	8.8855	3.6188	4.6732
80	9.3565	8.9350	3.6222	4.6727
90	9.3796	8.9713	3.6225	4.6713
100	- 600	9.0088	3.6243	4.6718
120	9.4996	9.0517	3.6231	4.6697
140	9.5040	9.0770	3.6246	4.6697
160	9.5282	9.1034	3.6265	4.6685
180	9.5513	9.1243	3.6273	4.6668
200	9.5766	9.1507	3.6268	4.6653
250	9.5908	9.1858	3.6283	4.6627
300	9.6152	9.2102	3.6289	4.6615
350	9.6328	9.2334	3.6270	4.6591
400	9.5095	9.2542	รื่อวร	4.6570
K_{I} 6	6.35x10 ³	1.90x10 ³	2.22×10^4	-

Titration curves for carboxylate anion of leucine with receptor 15 in CD₃CN

Job's plots for carboxylate anion of leucine with receptor 15 in CH₃CN

ai) <u>NMR titration data for carboxylate anion of threonine with receptor 15 in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	3.74 mM
Concentration of guest solution:	37.4 mM
Association constant:	$K_l: 1.71 \times 10^4 \mathrm{M}^{-1}$ (ave)
	K_2 : 1.82x10 ³ M ⁻¹ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-NH ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	8.2592	8.1682	3.6959	4.6780
5	8.2724	8.1780	3.6945	4.6781
10	8.2902	8.1966	3.6944	4.6775
20	8.3034	8.2121	3.6924	4.6768
30	8.3198	8.2328	3.6895	4.6761
40	8.3429	8.2453	3.6849	4.6749
50	8.3550	8.2751	3.6798	4.6733
60	8.3935	8.2923	3.6770	4.6619
70	8.4023	8.3374	3.6665	4.6609
80	8.4408	8.3645	3.6697	4.6661
90	8.5047	8.4034	3.6602	4.6695
100	8.5278	8.4331	3.6561	4.6707
120	8.6102	8.4913	3.6461	4.6717
140	8.6553	8.5091	3.6456	4.6719
160	8.6883	8.5515	3.6356	4.6717
180	8.7190	8.5601	3.6382	4.6719
200	8.7457	8.5865	3.6387	4.6720
250	8.7809	8.6278	3.6457	4.6715
300	8.8149	8.6589	3.6499	4.6711
350	8.8324	8.6676	3.6376	4.6714
400	8.8602	8.6983	3.6483	4.6710
K ₁	2.02×10^4	2.18x10 ⁴	9.18x10 ³	
K_2	2.68×10^3	1.82×10^3	9.61x10 ²	Ы.

Titration curves for carboxylate anion of threonine with receptor 15 in CD₃CN

Job's plots for carboxylate anion of threonine with receptor 15 in CH₃CN

aj) NMR titration data for carboxylate anion of serine with receptor 15 in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	3.74 mM
Concentration of guest solution:	37.4 mM
Association constant:	$1.22 \times 10^1 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	- <i>NH</i> ^a CH ₂ -	- <i>CH</i> ₂ ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	8.2518	8.1674	3.6957	4.6779
5	8.2682	8.1678	3.6966	4.6782
10	8.2726	8.1833	3.6958	4.6782
20	8.2858	8.1919	3.6954	4.6776
30	8.2922	8.1930	3.6934	4.6773
40	8.3034	8.2033	3.6925	4.6766
50	8.3067	8.2074	3.6907	4.6765
60	8.3223	8.2119	3.6907	4.6756
70	8.3243	8.2232	3.6897	4.6763
80	8.3243	8.2317	3.6881	4.6757
90	8.3309	8.2391	3.6879	4.6758
100	8.3386	8.2406	3.6829	4.6751
120	8.3551	8.2536	3.6826	4.6725
140	8.3607	8.2672	3.6813	4.6731
160	8.3695	8.2748	3.6793	4.6708
180	8.3935	8.2842	3.6750	4.6650
200	8.4024	8.2945	3.6718	4.6700
250	8.4386	8.3365	3.6574	4.6620
300	8.4937	8.3705	3.6541	4.6640
350	8.5277	8.4022	3.6548	4.6584
400	8.5649	8.4337	3.6494	4.6621
<i>K</i> ₁ 6	1.13x10 ¹	1.31x10 ¹	6-111	-

Titration curves for carboxylate anion of serine with receptor 15 in CD₃CN

ak) <u>NMR titration data for acetate with 14·Na⁺ in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	-

Volume added	- <i>NH</i> ^b CH ₂ -	-NH ^a CH ₂ -	- <i>CH</i> 2 ^e NH-	- <i>CH</i> ² ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	6.9007	6.9007	3.6334	4.6808
5	6.9623	6.9623	3.6355	4.6808
10	7.0090	7.0090	3.6355	4.6816
20	7.0326	7.0326	3.6450	4.6783
30	7.0698	7.0698	3.6367	4.6766
40	7.1107	7.1107	3.6338	4.6770
50	- / / .		3.6384	4.6799
60	- 7	-	3.6400	4.6712
70	-	Salanda_	3.6235	4.6725
80	- 284	146(9)11210 A	3.6264	4.6741
90	7.6374	7.6374	3.6182	4.6685
100	7.9055	7.9055	3.6235	4.6729
120	8.2618	8.4023	3.6169	4.6613
140	8.3961	8.6367	3.6131	4.6580
160	8.5114	8.7437	3.6136	4.6576
180	8.5577	8.8086	3.6090	4.6580
200	8.5945	8.8533	3.6065	4.6576
250	8.6454	8.9120	3.6057	4.6576
300	8.6838	8.9446	3.6049	4.6584
350	8.7028	8.9698	3.6007	4.6588
400	8.7330	8.9855	3.5991	4.6630
<i>K</i> ₁ 5		1/12/0 0	J I I J	-

Titration curves for acetate with $14 \cdot Na^+$ in CD_3CN

Job's plots for acetate with 14. Na⁺ in CH₃CN

al) <u>NMR titration data for benzoate with $14 \cdot Na^+$ in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	-

Volume added	- <i>NH</i> ^b CH ₂ -	-CONH ^c -	- <i>CH</i> 2 ^e NH-	- <i>CH</i> ² ^d NH-
$/\mu L$	/ppm	/ppm	/ppm	/ppm
0	6.9652	6.7512	3.6336	4.6847
5	7.0168	6.8099	3.6329	4.6783
10	7.0444	6.8535	3.6311	4.6797
20	7.0646	6.8816	3.6339	4.6775
30	7.0700	6.8804	3.6319	4.6761
40	7.0775	6.8848	3.6358	4.6770
50	7.0949	6.8913	3.6360	4.6816
60	7.1037	6.8947	3.6348	4.6752
70	7.1136	Siland _	3.6353	4.6802
80	7.1291	166 (2) 112 h (4)	3.6330	4.6830
90	7.1510	21212-	3.6370	4.6807
100	7.1719	and a second	3.6318	4.6794
120			3.6346	4.6819
140	- 131-21	211.211.1- 51-	3.6346	4.6858
160			3.6359	4.6907
180		-	3.6310	4.6861
200	8.0382	8.0382	3.6306	4.6906
250	8.5334	8.5334	3.6293	4.6949
300	8.6478	8.6478	3.6290	4.6990
350	8.7114	8.7114	3.6336	4.7016
400	8.7397	8.7397	3.6344	4.7024
K 1		1/10/0	6-1116	-

Titration curves for benzoate with $14 \cdot Na^+$ in CD_3CN

Job's plots for benzoate with 14.Na⁺ in CH₃CN

am) NMR titration data for dihydrogen phosphate with 14.Na⁺ in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	_

Volume added	- <i>NH</i> ^b CH ₂ -	-CONH ^c -	- <i>CH</i> 2 ^e NH-	- <i>CH</i> ² ^d NH-
$/\mu L$	/ppm	/ppm	/ppm	/ppm
0	6.9086	6.6784	3.6388	4.6795
5	6.9164	6.6949	3.6429	4.6828
10	6.9115	6.7106	3.6454	4.6828
20	6.9127	6.6974	3.6396	4.6841
30	6.9127	6.6895	3.6392	4.6861
40	6.9127	6.6812	3.6412	4.6849
50	6.9123	6.6891	3.6396	4.6861
60	6.9119	6.6854	3.6379	4.6812
70	6.9127	6.6912	3.6396	4.6824
80	6.9148	6.6974	3.6446	4.6849
90	6.9127	6.6850	3.6425	4.6828
100	6.9127	6.6866	3.6396	4.6841
120	6.9135	6.6908	3.6408	4.6828
140	6.9131	6.6994	3.6404	4.6841
160	6.9131	6.6990	3.6404	4.6849
180	6.9160	6.7069	3.6437	4.6861
200	6.9164	6.7015	3.6371	4.6870
250	6.9144	6.7213	3.6388	4.6828
300	6.9156	6.7284	3.6388	4.6828
350	6.9139	6.7366	3.6392	4.6808
400	6.9168	6.7569	3.6417	4.6828
K ₁		1100	6-116	-

Titration curves for dihydrogen phosphate with $14 \cdot \text{Na}^+$ in CD₃CN

Job's plots for dihydrogen phosphate with 14·Na⁺ in CH₃CN

an) <u>NMR titration data for phenylphosphinate with $14 \cdot Na^+$ in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	_

Volume added	- <i>NH</i> ^b CH ₂ -	- <i>NH</i> ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	6.9662	6.9207	3.6404	4.6821
5	6.9378	6.9175	3.6392	4.6828
10	6.9377	6.9115	3.6388	4.6766
20	6.9048	6.9044	3.6280	4.6746
30	6.9072	6.9067	3.6357	4.6770
40	6.9077	6.9072	3.6408	4.6793
50	6.9084	6.9079	3.6385	4.6789
60	6.9066	6.9061	3.6402	4.6753
70	6.9029	6.9033	3.6387	4.6782
80	6.9063	6.9068	3.6403	4.6795
90	6.904 1	6.9036	3.6394	4.6731
100	6.8964	6.8969	3.6401	4.6753
120	6.8832	6.8827	3.6403	4.6723
140	6.8756	6.8751	3.6412	4.6689
160	6.8590	6.8585	3.6402	4.6711
180	6.8446	6.8442	3.6400	4.6632
200	6.8249	6.8254	3.6404	4.6563
250	6.8183	6.8178		4.6458
300	6.7467	-	<u> </u>	4.6466
350	6.7335	-	-	4.6488
400	6.7324	<u>nele s</u>	การ	4.6477
	ыпы		b l l l d	-

Titration curves for phenylphosphinate with $14 \cdot \text{Na}^+$ in CD₃CN

Job's plots for phenylphosphinate with 14.Na⁺ in CH₃CN

ao) <u>NMR titration data for diphenylphosphate with $14 \cdot Na^+$ in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$1.79 \times 10^3 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	- <i>NH</i> ^a CH ₂ -	- <i>CH</i> 2 ^e NH-	$-CH_2^{d}NH-$
/µL	/ppm	/ppm	/ppm	/ppm
0	6.9206	6.9206	3.6398	4.6796
5	7.0206	6.9122	3.6243	4.6769
10	-	6.9067	3.6147	4.6731
20	-	6.8955	3.5895	4.6652
30	7.4968	6.8871	3.5710	4.6606
40	7.5266	6.8821	-	4.6533
50	7.6014	6.8799	-	4.6503
60	7.7214	6.8778	-	4.6477
70	7.7662	6.8793	-	4.6432
80	7.8472	6.8719	-	4.6403
90	7.8931	6.8809	-	4.6405
100	7.9524	6.8729	-	4.6387
120	8.0315	-	-	4.6310
140	8.0437	21.21.14	-	4.6279
160	8.0756	<u> </u>	<u> </u>	4.6260
180	8.1042	-		4.6262
200	8.1052	-		4.6256
250	8.1262	-		4.6246
300	8.1448	-	<u> </u>	4.6235
350	8.1504	-	-	4.6230
400	8.1603	<u>กิจกย</u> าจารี	์การ	4.6220
K_1	2.15×10^{3}	and u a	JIII.d	1.42×10^{3}

งหาลงกรณมหาวทยาลย

Titration curves for diphenylphosphate with 14·Na⁺ in CD₃CN

Job's for diphenylphosphate plots with 14.Na⁺ in CH₃CN

ap) <u>NMR titration data for carboxylate anion of aspartic acid with $14 \cdot Na^+$ in CD₃CN</u>

	and
	K_2 : 1.84x10 ⁴ M ⁻¹ (ave)
Association constant:	$K_l: 1.74 \times 10^5 \mathrm{M}^{-1}$ (ave)
Concentration of guest solution:	18.7 mM
Concentration of host solution:	1.87 mM
Starting volume of host solution:	600µL
Solvent:	CD ₃ CN

Volume added	- <i>NH</i> ^b CH ₂ -	-NH ^a CH ₂ -	- <i>CH</i> 2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	6.9235	6.9128	3.6327	4.6802
5	6.9624	6.9138	3.6360	4.6845
10	6.9943	6.9128	3.6357	4.6740
20	7.0426	6.9158	3.6281	4.6776
30	7.1029	6.9182	3.6319	4.6764
40	-/-// / 9	6.9203	3.6282	4.6809
50		6.9251	3.6337	4.6790
60	7.5839	6.9333	3.6215	4.6677
70	7.8525	6.9831	3.6121	4.6610
80	8.3960	7.0601	3.6028	4.6500
90	8.5887	7.1163	3.6021	4.6407
100	8.6865	7.1063	3.6014	4.6434
120	8.7997	and the second	-	4.6447
140	8.8909	-	<u> </u>	4.6431
160	8.9766	-	- 12	4.6443
180	9.0450	-		4.6565
200	9.0505	-	- 1	4.6749
250	9.2190	-	-	4.6670
300	2		-	4.6667
350	219191	19761915	เการ	4.6489
400	ыци	9 A LET A	J -d	4.6721
K_1	1.74x10 ⁵			· · ·
K_2	1.84×10^4	หม่าไ	111516	٤ -

Titration curves for carboxylate anion of aspartic acid with $14 \cdot Na^+$ in CD_3CN

Job's plots for carboxylate anion of aspartic acid with 14·Na⁺ in CH₃CN

aq) NMR titration data for carboxylate anion of glutamic acid with 14·Na⁺ in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	18.7 mM
Association constant:	$5.37 \times 10^3 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	-CONH ^c -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
$/\mu L$	/ppm	/ppm	/ppm	/ppm
0	6.9068	6.7122	3.6375	4.6785
5	6.9073	7.0323	3.6390	4.6796
10	6.9149	7.1742	3.6410	4.6778
20	6.9445	-	3.6333	4.6732
30	-	7.8545	3.6310	4.6644
40	-	8.2152	3.6175	4.6620
50	8.0461	8.4008	3.6062	4.6542
60	8.1176	8.5522	3.6059	4.6520
70	8.2265	8.6403	3.6055	4.6512
80	8.3135	8.7335	3.6053	4.6534
90	8.3497	8.7842	3.6035	4.6543
100	8.3530	8.7986	3.6029	4.6556
120	8.4233	8.8699	3.6025	4.6620
140	8.4728	8.9613	-	4.6665
160	8.5138	9.0122	<u> </u>	4.6738
180	8.5399	9.0703	-37-	4.6810
200	8.5620	9.0978	- 6	4.6868
250	8.5961	9.1858	- 11	4.6904
300	8.6169	9.2312		4.6873
350	8.6277	9.2598	-	4.6969
400	8.6312	9.2718	รื่อวร	4.6951
K_1 by	6.30x10 ³	4.44×10^3	5111-5	-

Titration curves for carboxylate anion of glutamic acid with $14{\cdot}\text{Na}^{\scriptscriptstyle +}$ in CD_3CN

Job's plots for carboxylate anion of glutamic acid with 14.Na⁺ in CH₃CN

ar) <u>NMR titration data for acetate with $15 \cdot Na^+$ in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	10.7 mM
Association constant:	$2.80 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	- <i>NH</i> ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
$/\mu L$	/ppm	/ppm	/ppm	/ppm
0	7.0325	6.8226	3.6622	4.6833
5	7.0800	6.9059	3.6632	4.6858
10	7.1195	6.9476	3.6632	4.6785
20	7.1017	7.1017	3.6638	4.6768
30		5.7-	3.6617	4.6761
40	-		3.6621	4.6721
50	7.4914	7.4914	3.6614	4.6705
60	7.5485	7.5485	3.6620	4.6688
70	7.6289	7.6717	3.6620	4.6682
80	7.8304	7.7744	3.6608	4.6652
90	7.9038	7.9038	3.6598	4.6627
100	8.0228	8.0228	3.6605	4.6606
120	8.3177	8.4938	3.6597	4.6567
140	8.3957	8.5761	3.6585	4.6548
160	8.4248	8.6150	3.6588	4.6549
180	8.4420	8.6313	3.6592	4.6553
200	8.4582	8.6519	3.6582	4.6546
250	8.5247	8.7338	3.6544	4.6524
300	8.6049	8.8382	3.6492	4.6494
350	8.6478	8.8855	3.6462	4.6475
400	8.6521	8.8832	3.6452	4.6466
K_1	3.65x10 ⁴	3.82x10 ⁴	0111.0	9.28x10 ³

Titration curves for acetate with $15 \cdot Na^+$ in CD_3CN

Job's plots for acetate with $15 \cdot Na^+$ in CH_3CN

as) <u>NMR titration data for benzoate with $15 \cdot Na^+$ in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	10.7 mM
Association constant:	$9.82 \times 10^2 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	- <i>NH</i> ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	6.8561	6.5929	3.6766	4.6841
5	6.8564	6.6023	3.6768	4.6848
10	6.8572	6.5984	3.6733	4.6840
20	6.8616	6.6047	3.6808	4.6847
30	6.8731	6.6144	3.6775	4.6927
40	6.8904	6.6377	3.6784	4.6956
50	6.8936	6.6395	3.6752	4.6867
60	6.8968	6.6401	3.6776	4.6961
70	6.8993	6.6415	3.6769	4.6999
80	6.9011	6.6467	3.6758	4.6966
90	6.9022	6.6565	3.6774	4.6966
100	6.9034	6.6563	3.6796	4.7002
120	6.9075	6.6557	3.6769	4.7002
140	6.9102	6.6608	3.6788	4.6955
160	6.9118	6.6609	3.6746	4.6971
180	6.9141	6.6654	3.6767	4.6978
200	6.9159	6.6687	3.6779	4.6959
250	6.9218	6.6733	3.6780	4.6938
300	6.9283	6.6769	3.6637	4.6938
350	-	-	-	-
400	การังเร	กิจภุยิเจเรี	การ	-
<i>K</i> ₁		9.82×10^2	6-1 I I	-

Titration curves for benzoate with $15 \cdot \text{Na}^+$ in CD₃CN

Job's plots for benzoate with 15.Na⁺ in CH₃CN

at)	NMR	titration	data	for	dihy	drogen	phos	phate	with	$15 \cdot Na^+$	in CD	₃ CN
						-	-	-				

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	10.7 mM
Association constant:	$5.39 \text{x} 10^4 \text{ M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	- <i>NH</i> ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
$/\mu L$	/ppm	/ppm	/ppm	/ppm
0	6.9222	6.6846	3.6784	4.6845
5	6.9375	6.7094	3.6755	4.6857
10	6.9478	6.7197	-	4.6878
20	6.9805	6.7647	3.6879	4.6874
30	7.0094	6.7850	3.6859	4.6861
40	7.0334	6.8429	3.6809	4.6812
50	7.0615	6.8627	3.6830	4.6770
60	7.0884	6.8920	3.6921	4.6820
70	7.0979	6.9247	3.6892	4.6841
80	7.1128	6.9263	3.6875	4.6803
90	7.1148	6.9342	3.6863	4.6696
100	7.1247	6.9578	3.6879	4.6787
120	7.1648	6.9757	3.6842	4.6766
140	- 31-21	7.0371	3.6875	4.6750
160	-	7.1016	3.6879	4.6766
180		7.3583	3.6896	4.6762
200		7.3579	3.6917	4.6770
250	-	7.3566	3.6834	4.6774
300	<u>-</u>	7.3558	3.6830	4.6737
350	-	7.3554	3.6863	4.6750
400	7.6769	7.3732	3.6871	4.6729
<i>K</i> ₁ 5	2.95x10 ⁴	7.82x10 ⁴	6-1110	-

Titration curves for dihydrogen phosphate with $15 \cdot \text{Na}^+$ in CD₃CN

Job's plots for dihydrogen phosphate with 15.Na⁺ in CH₃CN

au) <u>NMR titration data for phenylphosphinate with $15 \cdot Na^+$ in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	22.7 mM
Association constant:	$4.58 \times 10^4 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	- <i>NH</i> ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
$/\mu L$	/ppm	/ppm	/ppm	/ppm
0	6.9072	6.6669	3.6769	4.6843
5	7.0189	6.7969	3.6769	4.6843
10	7.1149	6.9179	3.6725	4.6785
20	-	-	3.6667	4.6755
30	-		3.6582	4.6672
40	-		3.6500	4.6596
50	7.7157	7.7157	3.6477	4.6604
60	7.7477	7.7477	3.6466	4.6585
70	7.7762	7.7762	3.6450	4.6554
80	7.8081	7.8081	3.6442	4.6554
90	7.8960	7.8960	3.6418	4.6554
100	7.9258	7.9258	3.6413	4.6532
120	8.0271	8.0271	3.6395	4.6536
140	8.1834	8.1834	3.6337	4.6543
160	8.3418	8.3418	3.6299	4.6527
180	8.4486	8.4486	3.6255	4.6497
200	8.5587	8.5587	3.6208	4.6453
250	8.7448	8.8295	3.6093	4.6378
300	8.7722	8.8580	3.6073	4.6362
350	8.7755	8.8580	3.6067	4.6358
400	8.7733	8.8613	3.6056	4.6357
<i>K</i> ₁	3.90×10 ⁴	1.25×10^{5}	9.61×10 ³	9.56×10 ³

Job's plots for phenylphosphinate with $15 \cdot \text{Na}^+$ in CH₃CN

av) <u>NMR titration data for diphenylphosphate with $15 \cdot \text{Na}^+$ in C</u>	CD ₃ CN
---	--------------------

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.17 mM
Concentration of guest solution:	18.7 mM
Association constant:	$1.11 \times 10^4 \mathrm{M}^{-1}$ (ave)

X 7 1 1 1	Arthory	MIRIN	CHI PNIH	CIT ONIT
Volume added	- <i>NH</i> [°] CH ₂ -	- <i>NH</i> "CH ₂ -	$-CH_2$ °NH-	$-CH_2$ "NH-
$/\mu L$	/ppm	/ppm	/ppm	/ppm
0	-		3.9935	-
5	-	17 -	3.6339	4.6909
10	-	////-	3.6085	4.6787
20	-		3.5590	4.6571
30	-	5 6 4-	-	4.6488
40	-		-	4.6375
50	- / / 5	101 -	-	4.6307
60	3		-	4.6278
70		Michild -	-	4.6272
80	- 284	Con Marine	-	4.6257
90		1816 A -	-	4.6227
100	- State	(13 (3 (3 f) - 5 / 3 ()	-	4.6228
120	-	-	-	4.6225
140		21.21.25	-	4.6208
160	a -		-	4.6190
180	· · ·	-	- 12	4.6039
200	-	-		4.5952
250		-		4.6024
300	<u> </u>	_	<u> </u>	4.5992
350	0.7	-	-	4.5998
400	กาบับเรื่	าจกยางเรื	การ	4.6028
	ol L D Ko		0.111	1.11×10 ⁴

พาลงกรณมหาวทยาลย

Titration curves for diphenylphosphate with $15 \cdot \text{Na}^+$ in CD₃CN

Job's plots for diphenylphosphate with 15.Na⁺ in CH₃CN

aw) <u>NMR titration data for carboxylate anion of aspartic acid with $15 \cdot Na^+$ in CD₃CN</u>

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	10.7 mM
Association constant:	$1.62 \times 10^2 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	- <i>NH</i> ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
$/\mu L$	/ppm	/ppm	/ppm	/ppm
0	6.8641	6.6163	3.6783	4.6797
5	6.8859	6.6355	3.6757	4.6889
10	6.9133	6.6680	3.6773	4.6797
20	6.9650	6.7289	3.6802	4.6785
30	6.9962	6.7849	3.6801	4.6928
40	7.0301	6.8307	3.6747	4.6849
50	7.0773	6.8818	3.6739	4.6687
60	7.1007	-	3.6717	4.6698
70	7.1513	Silaila _	3.6783	4.6712
80	7.1106	146(9)122 <u>1</u> 9 4	3.6775	4.6756
90	7.1657	222-	3.6740	4.6825
100	7.1668	111305-03D	3.6622	4.6844
120	-	-	3.6764	4.6842
140	- (31-2))	11×2/1×1-	3.6768	4.6777
160	7.4034		3.6652	4.6776
180	7.4077	-	3.6631	4.6733
200	7.4110	-	3.6675	4.6727
250	7.4435	-	3.6652	4.6742
300	7.4840	-	3.6785	4.6679
350	-	-	3.6683	4.6647
400	7.5720	วิจภุยิเจเรี	3.6605	4.6627
<i>K</i> ₁	1.62×10^2	JUCU	J - J	-

จุฬาลงกรณมหาวทยาลย

Titration curves for carboxylate anion of aspartic acid with $15 \cdot \text{Na}^+$ in CD₃CN

Job's plots for carboxylate anion of aspartic acid with 15.Na⁺ in CH₃CN

ax) NMR titration data for carboxylate anion of glutamic acid with 15 Na⁺ in CD₃CN

Solvent:	CD ₃ CN
Starting volume of host solution:	600µL
Concentration of host solution:	1.87 mM
Concentration of guest solution:	10.7 mM
Association constant:	$9.36 \times 10^1 \mathrm{M}^{-1}$ (ave)

Volume added	- <i>NH</i> ^b CH ₂ -	- <i>NH</i> ^a CH ₂ -	-CH2 ^e NH-	- <i>CH</i> 2 ^d NH-
/µL	/ppm	/ppm	/ppm	/ppm
0	6.8767	6.6201	3.6799	4.6766
5	6.8939	6.6433	3.6762	4.6889
10	6.9181	6.6719	3.6703	4.6812
20	6.9512	6.7084	3.6805	4.6871
30	6.9648	6.7522	3.6786	4.7011
40	7.0086	6.7941	3.6787	4.6943
50	7.0306	6.8345	3.6826	4.6816
60	7.0594	6.8720	3.6799	4.6704
70	7.0877	6.8898	3.6765	4.6706
80	7.1148	146(2)122/2014	3.6791	4.6728
90	7.1473	222	3.6813	4.6781
100	7.1583		3.6785	4.6750
120	-	-	3.6779	4.6781
140	- 3623	211.2/11/2	3.6823	4.6854
160	7.4048	A A A A A A A A A A A A A A A A A A A	3.6791	4.6844
180	7.4130	-	3.6792	4.6749
200	7.4212	-	3.6788	4.6811
250	7.4421	-	3.6780	4.6769
300	7.4618	-	3.6786	4.6774
350	7.4809	-	3.6788	4.6771
400	7.5035	วิจายเจเรี	3.6684	4.6702
K_1	9.36x10 ¹		J - d	-

จฺฬาลงกรณมหาวทยาลย

Titration curves for carboxylate anion of glutamic acid with $15 \cdot \text{Na}^+$ in CD₃CN

Job's plots for carboxylate anion of glutamic acid with 15.Na⁺ in CH₃CN

VITA

Miss Gamolwan Tumcharern was born on January 2, 1975 in Udornthanee, Thailand. She was a student under "The Development and Promotion of Science and Technology Talent Project (DPST)" from 1989 till 1998. She received her Bachelor's and Master's degree of Science in Chemistry from Chulalongkorn University in 1995 and 1998, respectively. Since then, she has been a postgraduate student studying inorganic chemistry and become a member of Supramolecular Chemistry Laboratory under the supervision of Assist. Prof. Thawatchai Tuntulani. During this period, her financial support is granted by "Royal Golden Jubilee (RGJ)", the Thailand Research Fund (TRF). This scholarship gave her an opportunity to do the research under the supervision of Prof. Jeremy D. Kilburn at University of Southampton, United Kingdom during 2001-2002. She graduated with a doctorate degree in chemistry in the academic year 2003.

Publications

- "A Novel Ditopic Receptor and Reversal of Anion Binding Selectivity in the Presence and Absence of Bound Cation" Tumcharern, G.; Tuntulani, T.; Coles, S. J.; Hursthouse, M. B.; Kilburn, J. D. Org. Lett. 2003, 5(26), 4971-4974.
- "Recognition Studies of a Pyridine-Pendant Calix[4]arene with Neutral Molecules: Effects of Non-Covalent Interactions on Supramolecular Structures and Stabilities"

Tuntulani, T.; Tumcharern, G.; Ruangpornvisuti, V. *J. Inclu. Phenom.* **2001**, *39*, 47-53.

- 3. "S- and NH- Bridging Pyridine- and Pyrimidine-Based Ligands for 2x2, 3x3 and 4x4 Molecular grids: Evidence of [2x2]Zn(II) Grids"
 Tuntulani, T.; Tumcharern, G.; Volkmer, D.
 Bull. Kor. Chem. Soc. 2000, 21, 1245-1248.
- "Synthesis and characterisation of polyaza crown ether derivatives of calix[4]arene and their role as anion receptors" Rojsajjakul, T.; Veravong, S.; Tumcharern, G.; Seangprasertkij-Magee, R.; and Tuntulani, T.

Tetrahedron, **1997**, *53*(13), 4669-4680.