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Chapter 1

Introduction

In mathematical finance, stochastic differential equations (SDEs) are used to
model various phenomena including unstable stock prices and interest rates. A
stochastic volatility model is a system of SDEs in which the variance of a main stochas-
tic process is another stochastic process. The Heston model is one of the stochastic
volatility models that are easily and popularly used to describe the evolution of the

volatility of the underlying asset. The Heston model have the form

dS, = pSudt + \/ViSydWy, (1)
AV, = k(0 — V) dt + E/V,dW,, 2)

where S, is the price process of the underlying asset,

V; is instantaneous variance process,

 is the rate of return of the asset price,

6 is the long run average price variance,

K is the rate at which V; reverts to 0,

¢ is the volatility of the instantaneous variance,
and W and W are Wiener processes with correlation p.

The knock-out barrier geometric average Asian call option is an “exotic option”

that is a mix between a knock-out barrier option and an Asian call option that have

a payoff function with geometric average given by
max{(H )" — K, 0},
i=1

where Sy, is the asset price at the pre-specified time and K is the strike price.



In this work, we study how to determine the premium price of a knock-out barrier
geometric average Asian call option when the underlying asset of the option is as-
sumed to follow the Heston model. The knock-out barrier option considered in this
work has the upper and lower barriers. We will use the Monte Carlo approach to price
the option by simulating sample paths of the underlying asset price process, which
is assumed to follow the Heston model, using the Euler-Maruyama (EM) method and
the Milstein (MS) method and calculating the present value of the expected payoff
of the option.

The organization of this project is as follows. In chapter 2, we give some back-
ground knowledge in this work such as introduction to stochastic differential equation,
the numerical methods that we use, and the meaning of geometric average Asian op-
tion and barrier option. In chapter 3, we talk about our methodology in this work.
We state the assumption of the model, show schemes for the numerical methods,
give our MATLAB code for simulating sample paths of the price process and calculat-
ing the premium price of the barrier geometric average Asian option, and talk about
our sensitivity analysis of some parameters in the model. In chapter 4, we will show
graphs of the simulated sample paths of the underlying asset price process using
Euler-Maruyama method and Milstein method, premium of option, and run time.
In the last chapter, we give the conclusion and recommendations from the results

obtained from this work.



Chapter 2

Preliminaries

2.1 Introduction to Probability Theory

2.1.1 Probability Spaces
A probability space (2, F, P) consists of the following three components.
1. A sample space 2 is the set of all possible outcomes.

2. The o-algebra F is a set of subsets of (2, called “events”, such that:

« F contains the sample space: 2 € F,
« Fis closed under complements: if A € F, then A¢ € F, and

« F is closed under countable unions: if Ay, Ay, ... € F, then 2, A; € F.
3. The probability measure P: F — [0,1] is a function on F such that:

 Pis countably additive: if {A}32, C Fis a countable sequence of disjoint

set, then o o
P(JA) =D Py,
i=1 =1

» the measure of the entire sample space is equal to one: P(Q2) = 1.

2.1.2 Random Variables and Distribution Functions

Let (2, F, P) be a probability space. A real-valued function X : Q@ — R is called

a random variable, if Vz € R, {w € Q | X(w) <z} € F.



For a random variable X, we say that Fx : R — [0, 1] is a distribution function

of the random variable X, if Fly corresponds to
Fx(x)=P{weQ: X(w) <z})=PX <x),VreR.

A random variable X is said to be a continuous random variable, if there exists a

real-valued function f : R — [0, 1] such that
Fx(z)=P(X <z)= / f(t)dt, vz € R,

and we said that f is the probability density function (PDF) of X.

2.1.3 Joint Distribution Function and Independence of Random

Variables

Let X1, Xs, ..., X,, be random variables on probability space (€2, F, P). The
joint distribution function of them is the function Fl, x,, : R™ — |0, 1] defined

by

.....

.... Xm(xl, e 7[Em>:P(X1 Sl’l,Xg SJ]Q, e ,Xmgl’m)

H:P(Xl SZL’I,XQ SZL’Q, e >Xm Sl’m) = P(Xl SZEl)P(XQ S 5(72) RN P(Xm SZL‘m),
Ve, 29, . .., %, € R, we will say that random variables Xy, X,, . . . , X, are

independent.

2.1.4 Expected Values and Variances

For a continuous random variable X on a probability space (2, F, P) with a

probability density function f(z), the expected value of X is defined as

B(X) = /:z:f(ac) da.
R
For a positive integer k and a random variable X such that E(X*) < oo, E(X*)
is called the k™™ moment of X. If E(X) and E(X?) exist, then the variance of X
is defined as
Var(X) = E[(X — E(X))?]
= E(X?) - [B(X)]*.



2.1.5 Normal Distribution

A random variable X has a normal distribution with parameters p and o? de-

noted by X ~ N (u, o), if the probability density function of X is given by

7 ( ) 1 —(w—;)z
Tr) = e 20
vV 2mo?

If X ~ N(0,1), we say that X is a standard normal distribution and its prob-

ability density function is given by

2.2 Introduction to Stochastic Differential Equation

2.2.1 Standard Brownian Motion

A stochastic process is defined as a collection of random variables defined on
a common probability space (2, F, P). Let [0,7] be an interval. A collection of
random variables { X (t) : t € [0, 7} is called a stochastic process.

Let (2, F, P) be a probability space and {X;},co7] be a stochastic process. If
we fix w € Q, a function X.(w) : [0,7] — R is called a sample path. We say that
the process { X }:cj0,71 has continuous sample paths, if for almost all w € ©, X.(w)
is a continuous function.

A stochastic process {W; }iejo.1] is a scalar standard Brownian motion or stan-

dard Wiener process, if the following conditions hold.
1. Wy = 0 with probability 1.
2. For0<s<t<T,W,— W, ~N(0,t—s).

3. For0 < s <t<u<wv<T, the increments W, — W, and W, — W, are

independent.

4. {W,}iepo,r) has continuous sample paths.



2.2.2 Stochastic Differential Equations

A stochastic differential equation (SDE) is a form of an integral equation in which
one or more of the terms is a stochastic integral. SDEs are used to model various
phenomena such as unstable stock prices and interest rates. Typically, an SDE has
the form

dX; = (X, t)dt + o( Xy, t)dWs,
where X, is the target process,
W, is the Wiener process,
p( Xy, t) is a drift function of X; and t,
and (X4, t) is a diffusion function of X; and t.

This equation should be understood as the stochastic integral equation
t t
X = X, —|—/ M(Xs,s)ds—l—/ o (X, s)dWs.
0 0

Here, the integral fot (X, s)ds is interpreted as the Riemann integral and the integral
fot o(Xs, s)dWy is interpreted as the Ito stochastic integral.

2.3 Numerical Method

2.3.1 Euler-Maruyama Method

To apply the Euler-Maruyama (EM) method to an SDE
dY; = a(Y,)dt + b(Y;)dW,

with initial condition that Yj is a constant in R, where W, stands for the Wiener
process on [0, T], we discretize the interval [0, T] into NV equidistant sub-intervals of
width At = % Define t, = nAt forn = 0,1,2,..., N and denote the numerical

solution of Y;, by y,. The Euler-Maruyama scheme takes the form
Yo = Yo
Ynt1 = Yn + a(yn) At + b(yn) AW,

forn=0,1,2,...,N — 1, where AW,, =W, ,, — W, ~ N (0, At). Figure 2.1 shows

an example of a simulated sample path for the EM scheme.
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Figure 2.1: A simulated sample path for the Euler-Maruyama scheme.

2.3.2 Milstein Method

The Milstein (MS) method is a technique to approximate numerical solutions of
an SDE. The Milstein scheme adds one additional term to the Euler scheme and has

the form

Yo = Yo

Ynt1 = Yn + a(Yn) At + b(yn) AW, + %b(yn)b/(yn)((AWn)Q — At)

forn=0,1,2,...,N — 1, where AW,, =W, ., — W, ~ N (0, At).

2.4 Option

Options are a financial derivative sold by an option writer to an option buyer.
The contract offers the buyer the right, but not the obligation, to buy or sell an
underlying asset or instrument at a specified strike price prior to or on a specified
date. There are 2 general types of options: call and put.

A call option gives the option buyer the right to buy the underlying asset. The
most basic type of options is a European call option which allows the option buyer
to buy the asset only at the expiration date. If the price of the underlying asset at
the expiry date St is higher than the strike price K, the option buyer will exercise
(use the right to buy) the option and buy the asset with the lower price K. If Sy is

lower than K, the option buyer will do nothing. Thus, a European call option has



payoff

max{S; — K,0}

Sr

Figure 2.2: A payoff function of a European call option.
the payoff function given by
max{Sr — K,0}.

Figure 2.2 shows a graph of a payoff function of a European call option.
A put option gives the option buyer the right to sell the underlying asset. A

European put option has the payoff function given by
mazx{K — Sr,0},

where St is the price of the underlying asset at the expiry time 7" and K is the strike

price. Figure 2.3 shows a graph of a payoff function of a European put option.
payoff

max{K — S7,0}

St

Figure 2.3: A payoff function of a European put option.

24.1 Geometric Average Asian Option

An Asian option is a special type of an option contract. The payoff of an Asian

option is determined by the average underlying stock price over some pre-specified



period of time. Thus, it is a path-dependent option. A geometric average Asian

call option is an Asian option whose payoff is given by

mam{(H Sti)% — K,0}

where ty,ts, ..., t,, are the pre-specified time,
S, is the price of the underlying asset at time ¢, ,

and K is the strike price.

2.4.2 Barrier Option

A barrier option is also another path-dependent option. It is activated or inacti-
vated only if the price of the underlying asset reaches a barrier of the predetermined
region. Typically, barrier options are classified as knock-in and knock-out. A knock-in
barrier option is activated and remains in existence until it expires only when the un-
derlying asset price process reaches the predetermined barrier. A knock-out barrier
option cease to exist, if the underlying asset price process reaches the predetermined

barrier during the life of the option.

upper barrier

lower barrier

Figure 2.4: An example for a barrier option.

Figure 2.4 shows an example for a barrier option. The barrier option has upper
and lower barriers shown in the figure. Also, there are three sample paths for the

underlying asset price process. For a knock-in barrier option, the sample paths 1
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and 3 make the option activated because the underlying asset price process in these
paths reach the upper barrier or the lower barrier. Thus, the payoff of the option will
be calculated as usual. However, the sample path 2 makes the option inactivated
because the underlying asset price process in this path never reaches the barriers.
For sample path 2, the option is worthless and the option payoff is zero. As for a
knock-out barrier option, it will be in the opposite direction. The sample paths 1 and

3 make the option inactivated, and the sample path 2 makes the option activated.



Chapter 3
Methodology

In this chapter, we will use the Monte Carlo approach to simulate sample paths
of the underlying asset price process, which is assumed to follow the Heston model,
using the EM and MS schemes and calculating the present value of a knock-out barrier
geometric average Asian call option. Also, a sensitivity analysis for some parameters

in the model is given.

3.1 The Assumption of the Model

Before we talk about our methodology in this work, we would like to discuss
about the assumption of the model. We consider the underlying asset price process,
which is assumed to follow the Heston model given by equations (1) and (2) in chapter
1. We consider 2 methods for the numerical methods that we use to simulate sample
paths. Method | is to use the EM method for both equations (1) and (2), and Method
Il is to use the EM method for equation (1) and the MS method for equation (2).
Unless otherwise specified, the following assumptions for the underlying asset and

the option are used throughout this work.

1. The underlying asset is assumed to follow the Heston model with the starting
value Sy = 100. The starting value of instantaneous variance is V5 = 0.04. The
parameters in equations (1) and (2) are assumed to be p = 0.02, § = 0.06,
k= 1.5,& = 0.2, p = 0.3. The risk-free continuously compounded interest rate

is assumed to be r = 1.6%.
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2. The option is a knock-out barrier geometric average Asian call option that has
the expiry date T' = 1 year. The strike price is K = 90. The upper barrier and
the lower barrier are 170 and 60, respectively. The underlying asset price at the
end of every month will be used to calculate the payoff of the Asian option.

For simplicity, we assume that every month has the same number of days.

3.2 Schemes for the Model

In this section, we give the schemes of the numerical methods that we use for

the Heston model. From the SDE (1), dS; = uSidt + /ViS;dW§, we have that
a(S) =pS,  and  b(S,V,) =V, 5.
The Euler-Maruyama (EM) scheme for S; takes the form

so = So,
Sna1 = Sn + a(Sp) At + b(sp, v, AW,
= Sp + U At + /U S, AW,

forn=0,1,2,..., N — 1. To update s,,;1, we need to find v, first. From the SDE (2),
dV;, = k(0 — V;)dt + £/ VidW?, we have that

Vi) =k(O-Vi), b)) =&/V  and b’(vt>=wlvt5.

The Euler-Maruyama (EM) scheme for V; takes the form
Vg = ‘/Oa
Una1 = Up + a(vy) At + b(v,) AW?
= v + k(0 — v, At + E /v, AW

form=0,1,2,..., N — 1. The Milstein (MS) scheme for V; takes the form

Vg = %7
1
Upst = Uy + a(v,) At + b(v,) AW + —b(vn)b’(vn)((AW”)2 — At)

— v+ 10 — V) AL+ EJU AW + fm E((AW,)? — At)

\/_



= v+ (0 — ) EVIRAI +1E(AWE)? - At),

forn=0,1,2,...,N — 1.

3.3 Option Pricing

13

In this work, we use MATLAB program to numerically price the knock-out barrier

geometric average Asian call option. Figure 3.1 shows the MATLAB code for simulation

of method Il.

T=1 >

N = 12000 ;

Delta = T/M:

M= 10000 :

E=100;

up = 130;

down = 70;

S0 = 100; ma = 0.02 ;
rhe = 0.3;

YO = 0.049; theta = 0.06 ; kappa/= 153/ xi = 0.2 ;
r = 0.016;

V= [Vi*ones(M,1l), zeros(M,H)]:

§ = [SO%ones(M,1), zeros(M,N)]:

Wy = randn(M,.N)*sgrc (Delta) ;

Wa = rho*Wv + aqgrtc(l-rhot)*randn{M,¥N)y*sgrc{Delca)

2

for § = 1:H
Vi:,3+1) = V(:,3) + kappa®(checa-V(:,j))*Delca +

end

xivsqro(Viz,3)).*Ww(z,3) + (1/49)* (xi°2).*((Wv(:,3)."2)-Delta)
S(:,J+1l) = 5(:,]3) + ma*S(:,J)" "Delca + SQreiV{i;3)}«*S(:,]3) . ."N=a(:,3)

check = all(S<up&S>down,2) ;

pay = max (geomean(S5(:,N/12:N/12:N).2).*check-K,;0)
Cavg = sum(pay) /M;

C= exp(-x*T)*Cavyg;

"

4

Figure 3.1: MATLAB code for simulation of method II

This code is divided into 4 parts. The first part is to set all parameters for the

simulation which are the expiration time (T), the number of time-steps (N), the time-

step size (Delta), the number of sample paths (M), the strike price (K), the upper

barrier (up), the lower barrier (down), continuously compounded interest rate (r) and
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the parameters Sy, i, Vo, 0, k, & and p in the Heston model (1) - (2).

The second part is to preallocate 2 matrices V and S with dimension M x (N +1)
for collecting values of V; and S; at each time-step for every path. Each row of the
matrices represents one sample path, and there are N + 1 steps,n =0,1,2,..., N,
for each sample path. Also, we create the matrix Wv with dimension M x N for
collecting Brownian increments at each time-step of W’ where each element in this
matrix is generated from a normal distribution with mean 0 and variance Delta. Then,
we create the matrix Ws with dimension M x N where each element in this matrix is
generated from a normal distribution with mean 0 and variance Delta in a way that
Wv and Ws have correlation p.

The next part is to generate sample paths for V; and S;. For method II, we use a

for loop to update each column of the matrices V and S using the scheme
1
Unt1 = Up + K(0 — ) AL + E /0, AW + 152 (AWY)? — At),
Snt1 = Sp + 1S At 4 \/Un s, AW,

For method |, we just change the MS scheme for V; to the EM scheme instead. We

use the scheme

Una1 = Un + K(0 — 0,) At + EN/U, AW
Snt+1 = Sp + 1SR At + /U5, AW,

In the last part, we create the boolean matrix check with dimension M x 1 to
check whether each sample path live within the barrier (down,up). An entry in the
matrix check is set to 1, if the corresponding sample path lives in the barrier, or 0,
if the corresponding sample path is once outside the barrier. Next, we compute the
payoff of the option for each path. We use the sample path of the price process at

the end of every month to calculate the payoff of the option
12000

12
maa:{(H 51000i)12 — K, 0} - ( H ]1(down,up)(8j))-
i=1 j=1
Since this option is a knock-out barrier option, we calculate the payoff for the path
that never has element reaches the barrier. Then, Cavg is the average of the payoffs
for all paths. We use it to calculate the present value of the expected payoff of the

option e~"T-Cavg.
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3.4 Sensitivity Analysis

In this section, we will study the effect of changing some parameters. The pa-
rameters considered in this section are only p, K and the level of barriers because
the effect of varying those parameters is interesting. We use method I, which is the
EM method for S; and the MS method for V4, to simulate sample paths for the un-
derlying asset price process and use the parameter setup Sy = 100, Vp = 0.04, u =
0.02,0 = 0.06,xk = 1.5,£ =0.2,p = 0.3, K = 100,r = 1.6%, M = 10000, N = 12000,
upper barrier = 130 and lower barrier = 70. With this parameter setup, we simulate
the sample path using different values of the certain considered parameter. For the
parameter p, we use p = 0, p = 0.3 and p = 0.6. For the stike price K, we use
K =95, K =100 and K = 105. For the level of the barriers, we use the range of
the level of the barriers to be £10%, 4-30%, and £50% from the starting price Sp.



Chapter 4

Results and Discussion

In this chapter, we show graphs of the simulated sample paths of the underlying
asset price process using EM method and MS method, the approximated premium
of the option, and run time. Also, we present the sensitivity of the option premium

when the parameter p, K, and the level of the barriers are changed.

4.1 Sample Paths of the Price Process

250 -

L]

150 -

50 =100

Figure 4.1: Graphs for sample paths of method |

Figure 4.1 and 4.2 show 10,000 sample paths of the price process that we simulate
in section 3.3 using methods | and Il, respectively. From the figure 4.1 and 4.2, the
upper barrier and the lower barrier are the black thick lines shown in figures. All of the
sample paths start at 100. At the expiry date, we calculate the payoff of the option

for every sample path. For the sample paths that once reach the upper barrier or
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lower barrier, their payoff at the expiry date will be set to 0. Then, we calculate the
average of the payoff for every path and discount back to the present time to get

the value of the option premium.

Figure 4.2: Graphs for sample paths of method |I

4.2 Premium of the Option and Run Time

In the same experiment that we simulate sample paths of the underlying asset
price process and numerically find the option premium in section 3.3, we show the
price of the knock-out barrier geometric average Asian call option. Here, we use two
sizes for the number of simulated sample paths: M = 10000 and M = 75000. The
results with M = 10000 and M = 75000 are presented in Table 4.1 and 4.2, respectively

S¢ | Vi | Premium of Option
EM | EM | 11.024603091680783
EM | MS | 11.020464309395157

Scheme

Table 4.1: Premium of option with M = 10000.

From the table 4.1, if we simulate sample paths with M = 10000, the approximated
premium of the option for method | and method Il are equal up to two decimal

places. Although the sample paths is figure 4.1 and 4.2 look similar, the corresponding
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option premiums are different. From the table 4.2, if we simulate sample paths with
M = 75000, the approximated premium of the option for method | and method Il are

equal up to four decimal places.

S |V, Premium of Option
EM | EM | 11.064457234404511
EM | MS | 11.064463972522715

Scheme

Table 4.2: Premium of option with M = 75000.

In this experiment, we use a computer with Intel(R) Core(TM) i5-6200U CPU @
2.30GHz 2.40GHz and RAM 12 GB. The run time with M = 10000 and M = 75000 are
presented in Table 4.3 and 4.4, respectively.

S, | Vi | Run Time (seconds)
EM | EM 10.434104
EM | MS 12. 755577

Scheme

Table 4.3: Run Time with M = 10000.

S, | V4 | Run Time (seconds)
EM | EM 452.221241
EM | MS 473.262705

Scheme

Table 4.4: Run Time with M = 75000.

From the table 4.3 and 4.4, the run times using the MS methods are longer than
those using the EM methods for both cases M = 10000 and M = 75000. This is
because the number of updating terms in the MS scheme is more than those in the

EM scheme.

4.3 The Effect of Varying Parameters

In this section, we use the parameter setup Sy = 100, V5 = 0.04, u = 0.02,6 =
0.06,k = 1.5, = 0.2,p = 0.3, K = 100,r = 1.6%, M = 10000, N = 12000 and
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the level of barriers is +£30% from Sy. Then, we study the effect of changing the

parameter p, K, and the level of barriers.

4.3.1 The effect of changing values of p

Figure 4.3 shows sample paths for different correlation p between W and W}'.
The price processes simulated with different correlation have different sample paths.
Therefore, they also yield different option premiums. Table 4.5 shows the option
premiums when we use p = 0, 0.3 and 0.6. From the table 4.5, we can see that the

more p increases, the less the option premium decreases.

p | Premium of Option

1.520329455663076
0.3 | 1.290747477950326
0.6 | 1.110312300481883

Table 4.5: Premium of option when changing values of p.

4.3.2 The effect of changing values of K

Figure 4.4 shows sample paths with different strike prices shown in the figure.
The sample paths in the three graphs are the same, but there are different strike
prices K = 95, 100 and 105. Therefore, the option premiums are different. Table 4.6
shows the option premiums when we use K = 95, 100 and 105. From the table 4.6,

we can see that the more K increases, the less the option premium decreases.

K | Premium of Option

95 | 2.851576959744568

100 | 1.290747477950326
105 | 0.420741537742028

Table 4.6: Premium of option when changing values of K.
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4.3.3 The effect of changing range of the level of the barriers

Figure 4.5 shows sample paths with different level of the barriers shown in the
fisure. The sample paths in the three graphs are the same, but there are different
level of the barriers +10%, £30%, and +50% from Sy. Therefore, the option premi-
ums are different. Table 4.7 shows the option premiums when we use the level of
the barriers = £10%, £30%, and £50% from Sy. From the table 4.7, we can see that
the more range of the level of the barriers increases, the more the option premium

increases.

range of the level of the barriers | Premium of Option

+10% 0.004844363835729
+30% 1.290747477950326
+50% 3.374743804160928

Table 4.7: Premium of option when changing range of the level of the barriers.
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Figure 4.3: Graphs for the effect of changing values of p.
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Figure 4.4: Graphs for the effect of changing values of K.
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Chapter 5

Conclusions

In this work, we study how to price a knock-out barrier geometric average Asian
call option. We use the Monte Carlo approach to simulate sample paths of the
underlying asset price process, which is assumed to follow the Heston model using
the EM and MS methods, and calculate the present value of the expected payoff of
the option. In addition, the author gains new knowledge about stochastic differential
equations, Euler-Maruyama method, Milstein method and using MATLAB which can
be useful in the future. Also, the author knows how to simulate the price process
of the underlying asset, how to calculate the present value of the average payoff of
the option.

From the results in chapter 4, the run time using the MS method is more than
the run time using the EM method because there is an additional calculation in the
MS scheme. However, the premium of the option obtained from the MS method
may be close to the actual price of the premium than that obtained from the EM
method. As for sensitivity analysis, the more p increases, the less option premium
will be. Similarly, the increase in the strike price yields the lower premium. On the
contrary, the increase in the level of the barriers from the starting price give in the

higher premium.
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Background and Rationale

A stochastic differential equation (SDE) is a form of an integral equation in which
one or more of the terms is a stochastic integral. SDEs are used to model various
phenomena such as unstable stock prices or physical systems subject [2,3]. Typically,

an SDE has the form
dXt — /L(Xt, t)dt + U(Xt, t)th

where X, is the target process,
W, is the Wiener process,
p(Xe, t) is a drift function of X; and t,
and  o(Xy,t) is a diffusion function of X, and t.

The Heston model is a stochastic volatility model that is popularly used to de-
scribe the evolution of the volatility of the underlying asset [2]. The basic Heston

can be represented by

dS, = pSydt + / VS, dWy (1)
AV, = k(0 — V) dt + E\/V,dW} (2)
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where S, is the price process of the underlying asset,
V, is instantaneous variance process,
1 is the rate of return of the asset price,
6 is the long run average price variance,
K is the rate at which V; reverts to 6,
¢ is the volatility of the instantaneous variance,

and W7 W are Wiener processes or Brownian motion with correlation p.

An option is a contract which gives the buyer the right, but not the obligation, to
buy or sell an underlying asset or instrument at a specified strike price prior to or on
a specified date. There are 2 general types of options: call and put. A call option
gives the option buyer the right to buy, and a put option gives the option buyer the
right to sell.

An Asian option is a special type of option contract. The payoff of an Asian
option is determined by the average underlying price over some pre-specified period
of time. Thus, it is a path-dependent option. A geometric average Asian call option

is an Asian option whose payoff is given by
maz{(J] $)= = K,0}
=1

where tq, 1o, ..., t,are the pre-specified time,
S, is the price of the underlying asset at time ¢;

and K is the strike price.

A barrier option is also another path-dependent option. It is activated or inacti-
vated only if the price of the underlying asset reaches a barrier of the predetermined
region. Typically, Barrier options are classified as knock-in and knock-out. A knock-in
barrier option is activated and remains in existence until it expires only when the
underlying asset price process reaches a barrier. A knock-out barrier option cease
to exist, if the underlying asset price process reaches a barrier during the life of the

option.
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In this work, we study how to price a barrier geometric average Asian option. We
will use the Monte Carlo approach by simulating sample paths of the underlying asset
price process, which is assumed to follow the Heston model (1) - (2), and calculating

the present value of the expected payoff of the option.
Objectives

To study how to price barrier geometric average Asian options using Heston model.
Scope

In this work, we will consider the Heston model (1)-(2) for the underlying asset
price process. The option that we will price is a knock-out barrier geometric average
Asian call option with predetermined upper and lower barriers. We will use the Euler-
Maruyama (EM) method for both (1) and (2), and then use the EM method for (1) and
the Milstein (MS) method for (2).

Project Activities

1. Determine the topic and scope of the project through the feedback from the

advisor.
2. Study contents used in the project.

« Geometric average Asian option

The Heston model

The Euler-Maruyama and Milstein methods

Matlab [1]

3. Write Matlab codes to estimate numerical solutions.

o

. Analyze the results.

5. Check for accuracy.

(o))

. Conclude all results and write a report.

~

. Prepare for the presentation.
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Procedure

August 2017 - April 2018

Nov

Dec

Jan

Feb

1. Determine the topic and scope
of the project through the feed-

back from the advisor.

2. Study contents used in this

project.

3. Write Matlab codes to estimate

numerical solutions.

4. Analyze the results.

5. Check for accuracy.

6. Conclude all results and write a

report.

7. Prepare for the presentation.
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Benefit

1. To develop knowledge in stochastic differential equations and MATLAB pro-

gram.

2. To understand the Euler-Maruyama and the Milstein methods and to know the

procedure for estimating solutions of a stochastic differential equation.

3. Other researchers may benefit from this project and improve it in the future.
Equipment
1. Hardware

+ A notebook computer
* A printer

o Thumb drives
2. Software

» Microsoft Word
 MATHLAB R2018a

o Overleaf ver. 2
Budget

1. Photocopying
2. Solid State Drive (SSD)
3. Thumb drives

4. Random-access memory (Ram) 8 Gb
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