การศึกษาเชิงสโตแคสติกของความเข้มข้นฝุ่นปลิวจากโรงโม่หินบริเวณหน้าพระลาน โดยการจำลองแบบมอนติ-คาร์โลของแบบจำลอง ISCST3

นางสาว กนิษฐา ผจญอริพ่าย

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2544 ISBN 974-03-1407-4 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

2 8 00 2545

120388408

STOCHASTIC STUDY OF FUGITIVE DUST CONCENTRATION FROM STONE-PROCESSING PLANTS AT NAH PRA LAAN USING MONTE-CARLO SIMULATION OF ISCST3 MODEL

Miss Khanitta Phajon-aripai

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Chemical Engineering Department of Chemical Engineering Faculty of Engineering Chulalongkorn University Academic Year 2001 ISBN 974-03-1407-4

Thesis Title	Stochastic Study of Fugitive Dust Concentration from
	Stone-Processing Plants at Nah Pra Laan Using Monte-
	Carlo Simulation of ISCST3 Model
Ву	Miss Khanitta Phajon-aripai
Field of Study	Chemical Engineering
Thesis Advisor	Professor Wiwut Tanthapanichakoon, Ph.D.
Thesis Co-advisor	Associate Professor Tawatchai Charinpanitkul, D.Eng.

Accepted by the Faculty of Engineering, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master 's Degree

Nuclean of Faculty of Engineering

(Professor Somsak Panyakeow, D.Eng.)

THESIS COMMITTEE

Chirakarn Munpoly Chairman

(Associate Professor Chirakarn Muangnapoh, D.Ing.)

Minut Vanthapamichakon Thesis Advisor

(Professor Wiwut Tanthapanichakoon, Ph.D.)

(Associate Professor Tawatchai Charinpanitkul, D.Eng.)

Achilie Chyviel Member

(Assistant Professor Vichitra Chongvisal, Ph.D.)

กนิษฐา ผจญอริพ่าย : การศึกษาเชิงสโตแคสติกของความเข้มข้นฝุ่นปลิวจากโรงโม่หินบริเวณหน้าพระลาน โดยการจำลองแบบมอนติ-คาร์โลของแบบจำลอง ISCST3 (STOCHASTIC STUDY OF FUGITIVE DUST CONCENTRATION FROM STONE-PROCESSING PLANTS AT NAH PRA LAAN USING MONTE-CARLO SIMULATION OF ISCST3 MODEL) อาจารย์ที่ปรึกษาวิทยานิพนธ์ : ศ. ดร. วิวัฒน์ ตัณฑะพานิชกุล, อาจารย์ที่ปรึกษาวิทยานิพนธ์ร่วม : รศ. ดร. ธวัชชัย ชรินพาณิชกุล จำนวนหน้า 214 หน้า ISBN 974-03-1407-4.

งานวิจัยนี้นำเทคนิคมอนติ-คาร์โลมาใช้ร่วมกับแบบจำลอง ISCST3 ซึ่งเป็นแบบจำลองการกระจายด้วมลสารแบบเกาส์เซียน เพื่อคำนวณความเข้มข้นเฉลี่ย 24 ชั่วโมงของฝุ่น PM₁₀ ในบรรยากาศที่เกิดจากโรงโม่หินจำนวน 48 โรง บริเวณดำบลหน้าพระลานและ บริเวณใกล้เคียง ในจังหวัดสระบุรี โดยมีจุดรับมลสารที่สนใจจำนวน 5 จุดในพื้นที่ศึกษา การศึกษาแนวโน้มเฉลี่ยรายปีของความเข้มข้น เฉลี่ย 24 ชั่วโมงและค่าสถิติอื่น ๆ ทำขึ้นภายได้สมมติฐานที่ว่าโรงโม่หินทุกโรงมีการติดตั้งระบบบำบัดฝุนที่มีประสิทธิภาพ 80% ด้วแปร นำเข้าที่มีความไม่แน่นอน (uncertainty) ที่สนใจ ได้แก่ ตัวแปรอุตุนิยม และอัตราการปล่อยฝุนเฉลี่ย ในกรณีที่ศึกษาระดับความไม่แน่ นอนของความเข้มข้นฝุนเฉลี่ย เนื่องจากตัวแปรอุตุนิยมมีความไม่แน่นอน ข้อมูลอุตุนิยมในอดีตจะถูกนำมาวิเคราะห์เซิงสถิติเพื่อกำหนด รูปแบบฟังก์ชันของการกระจายตัวของข้อมูลที่เหมาะสม รวมทั้งค่าคงที่ถ่วงน้ำหนัก (*Q*) จากนั้นจึงทำการสร้างตัวแปรแรนด้มของข้อมูล อุตุนิยมซึ่งเป็นตัวแทนข้อมูลอุตุนิยมในอนาคตจากผลการวิเคราะห์เซิงสถิติของข้อมูลอุตุนิยมในอดีตของ ความเร็วลม, ทิศทางลม, อุณหภูมิบรรยากาศ, ความสูงในการผสม และปริมาณเมฆ พบว่า ฟังก์ชันการกระจายของข้อมูลอุตุนิยมในอดีตมองความเข้มข้นฝุน เฉลี่ยเนื่องจากอัตราการปล่อยฝุนที่มีความไม่แน่นอน ตัวแบรเรือนทำกับ 0.5 ในกรณีที่ศึกษาระดับความไม่แน่นอของความเข้มข้นฝุน เฉลี่ยเนื่องจากอัตราการปล่อยฝุนที่มีความไม่แน่นอน ตัวแปรแรนดัมที่มีการกระจายแบบปกติ (normal random variable) ของค่าของตัว ดูณอัตราปล่อยฝุน (emission factor) จะถูกสร้างขึ้นโดยอ้างจิงค่าตัวดูณอัตราการปล่อยฝุนที่จัดทำขึ้นโดย U.S. EPA สำหรับกระบวน การบดย่อยหิน ซึ่งมีค่าเฉลี่ยเท่ากับ 0.05275 กิโลกรัม / ตัน และสมมติให้มีค่าเบี่ยงเบนมาตรฐานเท่ากับ 0.005275 กิโลกรัม / ตัน

ผลการจำลองแบบซ้ำกัน 50 กรณี หรือปี โดยใช้เทคนิคมอนติ-คาร์โล พบว่าลมที่พัดจากทิศตะวันออกเฉียงใต้เป็นลมที่มีอิทธิ พลมากต่อความเข้มข้นฝุ่น PM₁₀ เฉลี่ยในพื้นที่ศึกษา เนื่องจากความถี่ของจำนวนครั้งที่ลมพัดในทิศดังกล่าวสูงกว่าความถี่ของจำนวน ครั้งที่ลมพัดมาจากทิศทางอื่น ๆ ผลก็คือความน่าจะเป็นที่ความเข้มข้นฝุ่นเฉลี่ย 24 ชั่วโมงมีค่าสูงเกินกว่าค่ามาตรฐานในบรรยากาศ (120 ไมโครกรัมต่อลูกบาศก์เมตร) จะมีค่าสูงโดยเฉพาะอย่างยิงบริเวณจุดรับมลสารที่อยู่ในพื้นที่ท้ายลมนั้นคือบริเวณทิศตะวันตกเฉียง เหนือของพื้นที่ศึกษา นอกจากนี้ยังพบว่าระดับของความไม่แน่นอนของความเข้มข้นฝุ่น PM₁₀ เฉลี่ย 24 ชั่วโมง ในกรณีที่ใช้ตัวแปรอุตุนิยม ที่มีความไม่แน่นอนมีค่าสูงกว่าระดับของความไม่แน่นอนของความเข้มข้นฝุนดังกล่าวเมื่อใช้ตัวแปรอัตราการปล่อยฝุนที่มีความไม่แน่ นอน ดังนั้นจึงสรุปได้ว่าตัวแปรอุตุนิยมเป็นปัจจัยสำคัญต่อระดับความไม่แน่นอนของความเข้มข้นฝุน PM₁₀ มากกว่าตัวแปรอัตราการ ปล่อยฝุน

อนึ่ง ในการทดสอบผลของอัตสหสัมพันธ์ (autocorrelation) ของข้อมูลความเร็วลม และทิศทางลมที่มีต่อพฤติกรรมที่เปลี่ยน ไปตามเวลาของความเข้มข้นฝุน PM₁₀ โดยการแปรเปลี่ยนค่าคงที่ถ่วงน้ำหนัก พบว่าระดับของอัตสหสัมพันธ์ของตัวแปรทิศทางลมมีผล ต่อพฤติกรรมที่เปลี่ยนไปตามเวลาของความเข้มข้นฝุน PM₁₀ มากกว่าของตัวแปรความเร็วลม ทั้งนี้เนื่องจากความเร็วลมในพื้นที่ที่ศึกษา ส่วนใหญ่เป็นลมลงบ (ความเร็วลมต่ำกว่า 2 เมตร/วินาที)

ภาควิชา	วิศวกรรมเคมี่	ลายมือชื่อนิสิต 🖉 🖓
สาขาวิชา	วิศวกรรมเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา อีวอง อากกาเทาบราด .
ปีการศึกษ า	2544	ลายมือชื่ออาจารย์ที่ปรึกษาร่วม

4170204421: MAJOR CHEMICAL ENGINEERING KEY WORD: STOCHASTIC STUDY / PM₁₀ / ISCST3 / AIR DISPERSION MODEL / MONTE CARLO SIMULATION KHANITTA PHAJON-ARIPAI: STOCHASTIC STUDY OF FUGITIVE DUST CONCENTRATION FROM STONE-PROCESSING PLANTS AT NAH PRA LAAN USING MONTE-CARLO SIMULATION OF ISCST3 MODEL. THESIS ADVISOR : PROF. WIWUT TANTHAPANICHAKOON, Ph.D., THESIS CO-ADVISOR : ASSOC. PROF. TAWATCHAI CHARINPANITKUL, D.Eng., 214 pp. ISBN 974-03-1407-4.

In this study, Monte-Carlo technique and the ISCST3 Guassian air dispersion model are employed to simulate the 24-hour average concentration of ambient PM_{10} released from 48 stoneprocessing plants in Na Pra Laan and vicinity in Saraburi Province. The annual trend of the 24-hour average concentration and their statistical values at 5 receptors are investigated under the assumption of an 80% across-the-board reduction of the plant emission rates after the introduction of dust control systems. Two types of inputs with uncertainty are investigated, meteorological data and source emission. For uncertain meteorological inputs, past meteorological data are first statistically analyzed to find out the proper distribution functions and weighting parameters (α). Next random values of stochastic variables representing future meteorological data are generated. It is found that the gamma distribution is the best-fit distribution of all meteorological inputs (wind speed, wind direction, ambient temperature, mixing height, and cloudiness) and a proper value of α is 0.5. For uncertain emission inputs, values of normal random emission factor based on U.S. EPA recommended values are generated using specified mean and standard deviation of 0.05275 kg/ton and 0.005275 kg/ton, respectively.

According to the 50 Monte-Carlo simulation results, it is found that the predominant southeastern wind direction has the most influence on the predicted concentration of ambient PM_{10} in the study area compared with other wind directions. As a result, the high probability of the 24-hr average PM_{10} value exceeding the ambient standard value (120 $\mu g/m^3$) can not be neglected particularly at the receptors located in the northwestern region. Besides, it is found that the magnitude of uncertainty in the 24-hour PM_{10} in the case of random meteorological inputs is larger than that in the case of random emission rate inputs. Therefore it may be concluded that uncertainty in meteorological inputs has more significant effect on PM_{10} uncertainty than in the emission rate inputs.

Furthermore, a test of the effect of autocorrelation in the wind speed and direction on the transient behavior of the PM_{10} by varying weighting parameters (α) shows that the degree of autocorrelation in the wind direction has more effect on the behavior of the PM_{10} concentration than that of the wind speed because of the predominance of the calm wind condition in the study area (wind speed < 2.0 m/s).

Department	Chemical Enginee	ering Student's signature. Khamitta Phajon-an pou
Field of study	Chemical Engine	ering Advisor's signature Minut Vanthaponichakon.
Academic yea	r 2001	Co-advisor's signature. 2 Charinganithel

ACKNOWLEDGEMENT

The author wishes to express her gratitude to her thesis advisor, Professor Wiwut Tanthapanichakoon, and co-advisor, Associate Professor Tawatchai Charinpanitkul, for their encouraging guidance and valuable suggestions throughout this study. Their comments and suggestions not merely provide valuable knowledge but as well broaden her perspective in practical applications.

The author would like to express her gratitude to Associate Professor Chirakarn Muangnapoh and special gratitude to Assistant Professor Vichitra Chongvisal for their stimulating and worthy comments and participation as thesis committee.

The author is very grateful to the Graduate School, Chulalongkorn University and Thailand Research Fund (Senior Research Scholar Project of Dr. Wiwut Tanthapanichakoon) partial financial support and for research assistantship, respectively.

Thanks are due the Pollution Control Department for useful information and survey data for this study as well as Ms. Sumridh Sudhibrabha, meteorologist of Thai Meteorological Department, for the supply meteorological data and helpful guidance.

Special thanks are due Assistant Professor Pinyo Meechumna and Mr. Watcharin Kaewmaneewan, research assistant of Mining & Petroleum Engineering Department, Chulalongkorn University, for the supply of survey data on stone-processing plants and to Mr. Parinya Tanadtang for his mental support and valuable resources.

Furthermore, the author is indebted to Dr. Sangsant and Dr. Noppaporn Panich for their valuable technical advice on the ISCST3 Model running.

Besides, the author wishes to express her appreciation to her colleagues in Particle Technology and Material Processing (PTMP) Laboratory for their technical assistance on computer facility as well as the helpful advice.

Last but not least, the author is beholden to her parents and siblings for their encouragement, inspiration and eternal understanding.

CONTENTS

ABSTRACT (IN THAI)	Page iv
ABSTRACT (IN ENGLISH)	v
ACKNOWLEDGEMENT	vi
LIST OF FIGURES	xi
LIST OF TABLES	xviii
NOMENCLATURE	xix

CHAPTER

I INTRODUCTION	1
1.1 Background	1
1.2 Objectives of Present Study	3
1.3 Scope of Study	3
1.4 Obtained Benefits	5
II LITERATURE REVIEW	6
2.1 Literature on EPA's ISC modeling	6
2.2 Literature on Stochastic Modeling	11
III FUNDAMENTAL KNOWLEDGE	15
3.1 Stone Crushing Process	15
3.2 Air Pollution Dispersion	19
3.2.1 Atmospheric Turbulence	19
3.2.1.1 Lapse Rate	20
3.2.1.2 Atmospheric Stability Classification	20

CONTENTS (Cont.)

	Page
3.2.1.3 Inversion	22
3.2.1.4 Plume Types	23
3.2.2 Effects of Wind	25
3.2.3 Effect of Topography	26
3.2.3.1 Terrain Effect	26
3.2.3.2 Effect of Surface Roughness	27
3.3 Atmospheric Dispersion Models	29
3.4 Gaussian Dispersion Model	36
3.4.1 Industrial Source Complex (ISC) Model	40
3.4.2 Industrial Source Complex Short-Term 3	
(ISCST) Model	40
3.4.3 Algorithm of the Industrial Source Complex	
Short-Term 3 (ISCST3) Model	41
3.4.3.1 Gaussian plume equation	41
3.4.3.2 Plume Rise Formula	44
3.4.3.3 Dry Deposition Algorithm	45
3.5 Process Simulation	46
3.6 Deterministic and Stochastic Process	46
3.7 Stochastic Process Simulation (Monte-Carlo	
Simulation)	47
IV SIMULATION PROCEDURE	49
4.1 Preparation of Input Parameters for the ISCST3	
Model	50

CONTENTS (Cont.)

4.1.1 Meteorological Inputs	Page 50
4.1.1.1 Wind Speed / Direction	50
4.1.1.2 Ambient Temperature	51
4.1.1.3 Mixing Height	51
4.1.1.4 Atmospheric Stability Class	51
4.1.2 Source Inventory	54
4.1.2.1 Coordinate System of the sources	54
4.1.2.2 Equivalent Stack Parameters	55
4.1.2.3 Emission Rate of Fugitive Dust	58
4.1.3 Coordinates of Receptor Locations	59
4.1.4 Deposition Parameters	60
4.1.4.1 Fugitive Dust Characteristics	60
4.1.4.2 Surface Roughness	61
4.1.4.3 Monin-Obukhov Length	61
4.1.4.4 Friction Velocity	62
4.2 Methodology of Monte-Carlo Simulation	64
RESULT AND DISCUSSION	66
5.1 Evaluation of ISCST3 Model	66
5.2 Statistically Generated Meteorological Inputs	75
5.2.1 Wind Speed	75
5.2.2 Wind Direction	82
5.2.3 Ambient Temperature	85

V

CONTENTS (Cont.)

5.2.4 Mixing Height	Page
5.2.5 Cloudings	01
	91
5.3 Stochastic Simulation and Analysis of Predicted PM_{10}	
Concentration	94
5.3.1 The Case of Random Meteorological Inputs	95
5.3.2 The Case of Random Emission Inputs	107
5.4 Effect of the Auto-correlation Coefficient (α)	115
5.4.1 The Case of Wind Speed	115
5.4.2 The Case of Wind Direction	116
VI CONCLUSIONS AND RECOMMENDATIONS	119
6.1 Conclusions	119
6.2 Recommendation for future study	122
REFERENCE	123
APPENDICES	126
A. Calculation of Solar Elevation Angle	127
B. Calculation of Emission Rate	129
C. Sampled Probability Plots of Meteorological	
Inputs	136
D. Generated Gamma Random Wind Data	152
E. Gamma Distribution and Its Parameter for the	
Gamma Random Variable Generation	153
VITA	214

LIST OF FIGURES

Page

Figure 3.1 Typical stone crushing process	. 18
Figure 3.2 Plume behavior influenced by the lapse rate and inversion	
layer above and below the release height Comparison of	
24-hour average concentrations of PM ₁₀	24
Figure 3.3 Effect of terrain roughness on the wind speed profile over	
different size roughness elements	. 27
Figure 3.4 The Gaussian plume in a wind-oriented coordinate	
system	. 38
Figure 3.5 Pasquill-Gifford dispersion parameters as a function of	
stability and downwind distance	. 39
Figure 4.1(a) The dimension in front view of representative stone	
processing plant	. 56
Figure 4.1 (b) The dimension of side view of representative stone	
processing plant	. 57
Figure 4.2 Semiempirical relation between L, Turner stability class,	
and z_0	. 62
Figure 5.1 Comparison of 24-hr average concentrations of PM_{10}	
predicted by ISCST3 model vs. measurement at Na Pra	
Laan monitoring station of PCD in 1996	. 67
Figure 5.2 Comparison of 24-hour average concentrations of PM_{10}	
predicted by ISCST3 model vs. measurement at Na Pra	
Laan monitoring station of PCD in February 1996	. 70

	Page
Figure 5.3 Comparison of 24-hour average concentrations of PM_{10}	
predicted by ISCST3 model vs. measurement at Na Pra	
Laan monitoring station of PCD in July 1996	71
Figure 5.4 (a) Comparison of normal Q-Q probability distribution plot	
and detrended plot with historical wind speed data at 1:00	
A.M. for January of 1995 - 2000	77
Figure 5.4 (b) Comparison of gamma Q-Q probability distribution plot	
and detrended plot with historical wind speed data at 1:00	
A.M. for January of 1995 - 2000	78
Figure 5.4 (c) Comparison of uniform Q-Q probability distribution plot	
and detrended plot with historical wind speed data at 1:00	
A.M. for January of 1995 - 2000	79
Figure 5.4 (d) Comparison of Laplace Q-Q probability distribution plot	
and detrended plot with historical wind speed data at 1:00	
A.M. for January of 1995 - 2000	80
Figure 5.5 Actual average diurnal wind speed vs. auto-correlated	
gamma random wind speed with different weighting	
parameter (α)	81
Figure 5.6 Actual average diurnal wind direction vs. auto-correlated	
gamma random wind speed with different weighting	
parameter (α)	84

	Page
Figure 5.7 Actual average diurnal ambient temperature vs. auto-	
correlated gamma random wind speed with different	
weighting parameter (α)	87
Figure 5.8 Actual average diurnal mixing height vs. auto-correlated	
gamma random wind speed with different weighting	
parameter (α)	90
Figure 5.9 Actual average diurnal cloudiness vs. auto-correlated	
gamma random wind speed with different weighting	
parameter (α)	93
Figure 5.10 Wind rose of the statistically generated hourly wind speed	
in 16 wind directions throughout all 50 annual sets of data	
(438,050 hourly values)	96
Figure 5.11 Map of study area with locations of stone-processing	
plants (round dots) and receptors (triangular dots)	101
Figure 5.12 Annual trend of statistical values of 24-hour average	
concentration of PM ₁₀ at Wat Koong Kao Keaw obtained	
from modeling with uncertain meteorological inputs	102
Figure 5.13 Annual trend of statistical values of 24-hour average	
concentration of PM ₁₀ at Saraburi Cement obtained from	
modeling with uncertain meteorological inputs	103
Figure 5.14 Annual trend of statistical values of 24-hour average	
concentration of PM_{10} at Ban Sab Cha-om obtained from	
modeling with uncertain meteorological inputs	104

	Page
Figure 5.15 Annual trend of statistical values of 24-hour average	C
concentration of PM ₁₀ at Wat Tam Sriwilai obtained from	
modeling with uncertain meteorological inputs	105
Figure 5.16 Annual trend of statistical values of 24-hour average	
concentration of PM ₁₀ at Na Pra Laan School obtained from	
modeling with uncertain meteorological inputs	106
Figure 5.17 Annual trend of statistical values of 24-hour average	
concentration of PM ₁₀ at Wat Koong Kao Keaw obtained	
from modeling with uncertain emission inputs	110
Figure 5.18 Annual trend of statistical values of 24-hour average	
concentration of PM ₁₀ at Saraburi Cement obtained from	
modeling with uncertain emission inputs	111
Figure 5.19 Annual trend of statistical values of 24-hour average	
concentration of PM ₁₀ at Ban Sab Cha-om obtained from	
modeling with uncertain emission inputs	112
Figure 5.20 Annual trend of statistical values of 24-hour average	
concentration of PM ₁₀ at Wat Tam Sriwilai obtained from	
modeling with uncertain emission inputs	113
Figure 5.21 Annual trend of statistical values of 24-hour average	
concentration of PM ₁₀ at Na Pra Laan School obtained	
from modeling with uncertain emission inputs	114
Figure 5.22 Effect of autocorrelation level in the wind speed on the	
transient behavior of PM ₁₀ at receptor # 1	117

	Page
Figure 5.23 Effect of autocorrelation level in the wind direction on the	U
transient behavior of PM_{10} at receptor # 1	118
Figure C.1(a) Comparison of normal Q-Q probability distribution plot	
and detrended plot with historical cloudiness data at 1:00	
A.M. for January of 1983 – 2000	127
Figure C.1(b) Comparison of gamma Q-Q probability distribution plot	
and detrended plot with historical cloudiness data at 1:00	
A.M. for January of 1983 – 2000	128
Figure C.1(c) Comparison of uniform Q-Q probability distribution plot	
and detrended plot with historical cloudiness data at 1:00	
A.M. for January of 1983 – 2000	129
Figure C.1(d) Comparison of Laplace Q-Q probability distribution plot	
and detrended plot with historical cloudiness data at 1:00	
A.M. for January of 1983 – 2000	130
Figure C.2(a) Comparison of normal Q-Q probability distribution plot	
and detrended plot with historical wind direction data at	
1:00 A.M. for January of 1995 – 2000	131
Figure C.2(b) Comparison of gamma Q-Q probability distribution plot	
and detrended plot with historical wind direction data at	
1:00 A.M. for January of 1995 – 2000	132
Figure C.2(c) Comparison of uniform Q-Q probability distribution plot	
and detrended plot with historical wind direction data at	
1:00 A.M. for January of 1995 – 2000	133

	Page
Figure C.2(d) Comparison of Laplace Q-Q probability distribution plot	
and detrended plot with historical wind direction data at	
1:00 A.M. for January of 1995 – 2000	134
Figure C.3(a) Comparison of normal Q-Q probability distribution plot	
and detrended plot with historical ambient temperature	
data at 1:00 A.M. for January of 1995 – 2000	135
Figure C.3(b) Comparison of gamma Q-Q probability distribution plot	
and detrended plot with historical ambient temperature	
data at 1:00 A.M. for January of 1995 – 2000	136
Figure C.3(c) Comparison of uniform Q-Q probability distribution plot	
and detrended plot with historical ambient temperature	
data at 1:00 A.M. for January of 1995 – 2000	137
Figure C.3(d) Comparison of Laplace Q-Q probability distribution plot	
and detrended plot with historical ambient temperature	
data at 1:00 A.M. for January of 1995 – 2000	138
Figure C.4(a) Comparison of normal Q-Q probability distribution plot	
and detrended plot with historical mixing height data at	
1:00 A.M. for January of 1993 – 2000	139
Figure C.4(b) Comparison of gamma Q-Q probability distribution plot	
and detrended plot with historical mixing height data at	
1:00 A.M. for January of 1993 – 2000	140
Figure C.4(c) Comparison of uniform Q-Q probability distribution plot	
and detrended plot with historical mixing height data at	
1:00 A.M. for January of 1993 – 2000	141

Figure C.4(d) Comparison of Laplace Q-Q probability distribution plot	Page	
and detrended plot with historical mixing height data at		
1:00 A.M. for January of 1993 – 2000	142	

LIST OF TABLES

Table 3.1 Pasquill-Gifford Stability Classification	Page 21
Table 3.2 Value of Surface Roughness Length (z_0), for typical	
surface	28
Table 3.3 Features of U.S. EPA's preferred air quality models	31
Table 4.1 Summary of physical stack parameters for a typical	
stone-processing plant	58
Table 4.2 Emission Factor for crushed stone processing operations	
(U.S. EPA, 1992)	59
Table 4.3 Mass fraction versus mass mean diameter of particles used	
in the model	61

NOMENCLATURE

C 24	=	24-hour average concentration (μ g/m ³)
C min	=	24-hour minimum concentration ($\mu g/m^3$)
C max	=	24-hour maximum concentration ($\mu g/m^3$)
d	=	the Julian day
d	=	top inside stack diameter (m)
D	=	a decay term
g	=	acceleration of gravity, 9.8 m/s
Δh	=	plume rise (m)
k _a	=	von Karman constant (0.40)
L	<u></u>	Monin-Obukhov length (m)
Ρ	-	atmospheric pressure (millibar)
Q	=	pollutant emission rate (mass per unit time)
r _a	=	the aerodynamic resistance (s/cm)
r _d	=	the deposition layer resistance (s/cm)
SD	=	standard deviation
T_s	=	stack gas temperature (K)
T _a	=	ambient air temperature (K)
7 _{1/2}	=	pollutant half life (second)
U*	=	friction velocity (m/s)
ū	=	mean wind speed measured at height z (m)
U _s	-	mean wind speed at release height (m/s)
V	=	a vertical term

V _d	=	the deposition velocity (cm/s)
Vg	=	the gravitational settling velocity (cm/s)
V_{s}	=	stack gas exit velocity (m/s)
x	=	downwind distance from the source (m)
Z _o	=	surface roughness length (m)

Greek symbols

α	=	weighting parameter
λ	=	the longitude (radians)
σ_y	=	horizontal dispersion coefficient (m)
σ_z	=	vertical dispersion coefficent (m)
φ	=	the latitude (radians)
τ	=	the time of day (hours GMT)
Ψ	=	the decay coefficient
Ψm	=	Monin-Obukhov similarity function for normalized
		velocity