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Abstract

Electrostatic effects on partitioning of spherical colloids into a porous membrane
consisting of long straight cylindrical pores filled with an electrolytic solution are
investigated through a mathematical model. The colloids and the pore surface potential are
assumed to be constant, and are such that the Debye-Huckel approximation can be applied.
Assuming that the solution is diluted, the effects of colloid-colloid interactions is negligible.
The cations and anions are viewed as point charges, and the electric potential is obtained as a
solution of a linearized Poisson-Boltzmann equation. The colloid equilibrium partition
coefficient, the ratio between the intrapore colloid concentration and that in the external bulk
solution, 1s dependent on the difference between the electrostatic free energy of the system of
a colloid confined in a cylindrical pore and the addition of the electrostatic free energy of a
system of an isolated colloid in an unbounded fluid and that of an empty cylindrical pore.
Effects of colloid size, colloid surface potential and Debye length on the colloid equilibrium

partition coefficient are investigated.
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Chapter 1

Introduction

1.1) Motivation

Partitioning of colloidal particles into porous membranes is observed in biological
transport processes such as solute filtration across the fenestrated endothelial cell layer (as
shown in Fig. 1 [1]), and in separation processes with applications in industry and
biotechnology including chromatography and sieving through track-etched membranes (as
shown in Fig. 2 [2]). During these transport processes, it is often desired to relate
experimentally measurable quantities, such as the solute concentration in the external bulk
solution, and those within the membrane pores that cannot be measured directly. If
thermodynamic equilibrium is assumed, the ratio between the averaged intrapore colloid
concentration and the external bulk solute concentration is referred to as the equilibrium
partition coefficient (D). For the simplest model system of a dilute solution containing rigid
spherical colloids transported into a membrane with long straight cylindrical pores, @ can be

expressed as follows.

o (Ce=0) (c=1)) [[], e papas
C.(x=0) C.(x=1L) joz” j; Bd Bdp

(M

where C and C are the averaged intrapore colloid concentrations and the colloid

concentrations in the bulk solution, respectively. The upstream end of the pore is denoted as

x =0, whereas x = L refers to the downstream end with L being the membrane thickness.

E

— 1s the ratio between the electrostatic potential energy of interaction between the colloid
B

and the pore wall and the thermal energy (the product of Boltzmann’s constant and the



temperature in Kelvin). The Boltzmann factor involving E is a measure of the probability of

finding a solute center at a given radial position( ), whereas £ =0 appeared above in Eq.
(1) is the sphere radius (normalized by the pore radius). Likewise, £ is the particle radial
position scaled with the pore radius. The limit of integration extends from £ =0 (at the pore
centerline) to f =1—«a due to the fact that the distance between the center of a rigid sphere

and the pore surface cannot be less than the sphere radius. (In other words, if both the sphere

and the pore wall are rigid, £ —> o for f>1—«.) If the sphere and pore wall are uncharged

and the colloid-pore wall interaction is a steric interaction, £=0 for f<1—«a. Eq. (1)
reduces to simply ® =(1-a)’.

If, instead, the pore shape is that of a slit pore (consisting of parallel infinite plates),

the equilibrium partition coefficient can be expressed as follows.

el romatef @)

where, in this case, [ is defined as the transverse colloid position scaled with the pore half-

width. If the colloid and the slit pore are uncharged, and the only interaction between them is

the steric interaction, ®=1—¢.

In the present work, a model of electrostatic double layer interactions between
spherical colloids and cylindrical pores is developed in order to evaluate the contribution of

surface charges to E through analytical calculation augmented with finite element solution.

kgT
The Debye-Huckel approximation valid for systems with small electric potential (¥ << 37 )

was employed in the computation of £ and, subsequently, the partition coefficient for

colloids and pores with constant surface potential. The solvent is an electrolytic solution



viewed as a continuum medium with small ions viewed as point charges. The pores are
assumed to be long enough such that the hydrodynamic end effects are negligible, and the
colloidal solution is assumed to be diluted such that solute-solute interaction can be
neglected. This project will start with the partition coefficient of charged colloids into
cylindrical pores, and, then, the computation will be extended to include the case of

partitioning of charged colloids into slit pores.

Fig. 2. An image of a cross-section of a track-etched membrane, a membrane with long straight cylindrical pores [2]



1.2) Project objectives

(1) Compute the electrostatic energy of interaction between charged rigid colloids and
surfaces of pores with constant surface potential as a function of colloid intrapore radial

position.

(2) Calculate the equilibrium partition coefficient of colloids as a function of relative

particle size, particle and pore surface potential, and Debye length.

1.3) Definitions of variables and parameters

o : Relative sphere size

y’) : Radial position

R : Pore radius

O : Equilibrium partition coefficient

K : Inverse of the Debye length

C, : Averaged intrapore colloid concentrations
C,., :Colloid concentrations in the bulk solution
/4 : Electric potential

k B : Boltzmann’s constant

7 : Absolute temperature

e : Elementary charge

& : Vacuum permittivity

g, : Relative permittivity of the electrolytic solution
C., :Bulk concentration of electrolyte specie i

[Tt
1

zZ; : Valence of electrolyte specie



: Electrostatic free energy of the system

: Surface charge density of the system

€C
1

7
1

: Charged surface

: Ton flux

: Diffusion coefficient of electrolyte specie

[T )

l



Chapter 2

Model Development

The objective of the present project is to calculate the equilibrium partition coefficient

of a spherical particle with constant surface potential (/) into a membrane with long

straight cylindrical pores with constant surface potential (y,). Depicted in Fig. 3 is a

longitudinal cross-section of the cylindrical pore; the sphere radius is denoted as a, whereas
the pore radius is R ; the dimensionless sphere radius « ; & =a/R . The dimensionless
particle radial location is denoted as #; S =r,/R. When a charged surface is submerged
into an electrolytic solution, a diffuse layer of counter-ions (small ions with the charges
opposite to that of the charged surface) is formed at the solid-liquid interface as shown in Fig.
3. This diffuse layer of counter-ions, often referred to as the electrical double layer, strongly
influences the value of the potential energy of interaction ( £ ), and hence, the value of the
partition coefficient. In Sec. 2.1, the governing equation for the intrapore electric potential,
the linearized Poisson-Boltzmann equation, is introduced, and, in Sec. 2.2, the calculation of

E is discussed in details. The numerical procedure is presented in Sec. 2.3.

++++++++++++++++H R

+ 4+
a + "+
Relative sphere size | a = = ':_ _|'_'r' ¥
Tt r,
2R

Fig. 3. A schematic drawing of a longitudinal cross-section of a charged cylindrical pore containing a charged sphere.

Diffuse layers of counter-ions form at the solid-electrolytic solution interface



2.1) Linearized Poisson-Boltzmann equation
In absence of fluid motion, an ionic flux of a small ion i contained in an electrolytic
solution (N .) can be expressed as follows.

N, ==D[VC +2C,( V] (3)

B

where C, is the concentration of the ion “i”. D, is its diffusivity, whereas z, is its valence.

w 1s the electric potential, and e is the elementary charge. Eq. (3) is often referred to as the

Nernst-Planck equation; the first term on the right hand side is simply the diffusion term,
whereas the second term is the contribution to the ionic flux due to electromigration. Under

the assumption of vanishing fluxes at equilibrium, C, follows the Boltzmann distribution as

shown below.

—Z’v(’,l//

Ci = Ciooe ksT (4)

C., is bulk concentration of electrolyte specie “i”

A

where 7 =0. For a univalent-univalent

binary electrolytic solution, substitutions of the ionic concentrations into the Poisson equation

lead to the Poisson-Boltzmann equation written in a dimensionless form as shown below.

V3 = (kR)’ sinh(y) (5)

W
k,T/e

where 7 = : the electric potential scaled with the thermal potential. R, the pore radius,

is employed as the length scale, whereas « is the inverse of the Debye length often viewed as
the “thickness” of the electrical double layer. (The change of the electric potential vanishes

outside the electrical double layer.) The expression for « is as follows.

2 2 1

k=(———=3'C,) 6)

&y dc,T o

where ¢, is vacuum permittivity. &, is the relative permittivity of the electrolytic solution. It

is worth noting that the Debye length decreases as a function of the ionic concentration. xR,
therefore, is the ratio between the pore radius and the Debye length, and it strongly influences

the electrostatic interaction between the colloids and the pore wall.
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If << 1 (with the electric potential being much less than 25 mV at 300 K), sinh(y)
can be approximated as  (an approximation referred to as the Debye-Huckel

approximation), resulting in the Poisson-Boltzmann equation becoming linearized as shown

(in the dimensionless form) below
Vi = (kR (7

The intrapore electric potential in a system of our interest can be obtained by solving Eq. (7)

with the boundary conditions of constant surface potential at the colloid surface

P 2
v =v, K,T)e

l//C‘ ).

and the pore surface (v =y =
) P W=v. k,T /e

In addition to the intrapore electric potential, the electric potential in a system of an
isolated sphere (with the same particle surface potential) in an unbounded fluid obtained as a
solution of Eq. (7) that satisfies the constant surface potential boundary condition at the

sphere surface (7 =y,), and a condition of vanishing electric potential far from the sphere,

and the electric potential in an empty cylindrical pore (with the same pore surface potential)
obtained as a solution of Eq. (7) that satisfies the constant surface potential boundary

condition at the pore wall (7 =) are also required as will be discussed below in Sec. 2.2.

The method of obtaining the solution of the linearized Poisson-Boltzmann is presented in

Sec. 2.3.

2.2) The particle-pore electrostatic potential energy of interaction

After lﬁ is obtained, the electrostatic free energy can be determined from the

following expression proposed and proven by Verway and Overbeek [4].
74
E,=—[ | q,dqdA (®)

where ¢ is the surface charge density. In this work, jcanbe s, ¢ or sc. E is the

electrostatic free energy of a system of an isolated spherical colloid with constant surface

potential, whereas E_ is the electrostatic free energy of a system consisting of an empty
cylindrical pore (or an empty slit channel) also with the constant surface potential. £ is the

electrostatic free energy of the system of a colloid inside the pore. As indicated in Eq. (8),
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the electrostatic potential energy of interaction is the integration of the energy per unit surface

area required in bringing an uncharged surface to a surface charge density ¢; over all

charged surfaces (denoted above as A4 ). If the Debye-Huckel approximation is employed,

the system free energy is reduced to

l//.
E, :—?’qudA (9)

The electrostatic potential energy of interaction, £ , a measure of the probability of finding
the colloid at the radial position inside the pore, can be found as the difference of the free
energy of the colloid being within the pore, and the addition of the free energy of the system

of an isolated colloid and that of an empty pore as follows.
E=E_<E =E, (10)

After E is determined, the partition coefficient, computed by using Eq. (1) if the pore is
cylindrical, is presented as a function of relative particle radius, Debye length as well as the

colloid and pore surface potential.

2.3) Calculation procedure

In this project, £, and E_ are calculated from an analytical solution of the linearized
Poisson-Boltzmann equation as presented below in Sec. 2.3.1 and 2.3.2. E_, on the other

hand, is obtained from a finite element solution as will be discussed in Sec. 2.3.3. E(p)in

the Boltzmann factor is computed as indicated in Eq. (10).

2.3.1) Calculation of E,

In order to determine E_, the electric potential in the fluid surrounding the isolated

sphere (with constant surface potential) with the dimensionless radius @ (« = a/R) must be

first computed. The symmetry of the geometry of a system of an isolated sphere in an
unbounded fluid allows us to solve Eq. (7) as an ordinary differential equation as shown
below.

1 0 .,0y A
=5 (P oD =R’y (11a)
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The solution of Eq. (11a) that satisfies the following boundary conditions must be obtained.
V(P =a)=, (11b)
(i —>0)=0 (11c)

where 7, a distance in a spherical coordinate, is normalized by the pore radius ( R ). Given
the above boundary conditions, the linearized-Poisson Boltzmann equation becomes an
ordinary differential equation and can be solved analytically. The dimensionless surface

potential is found to be

l/}sa —kR(F—a) (12)

G =—A-Vp| = (cR+) (13)
@ a

where 72 is the normal vector perpendicular to the sphere surface. Substituting qu from Eq.

(13) into Eq. (9), the dimensionless free energy of a system of an isolated sphere in an

unbounded fluid is found to be
E. =2y na’ (K'R+l) (14)
a

where E_ is the dimensionless free energy of a system of an isolated sphere in an unbounded

fluid and E, is the dimensional free energy of a system of an isolated sphere in an unbounded

fluid that can be calculated as follows

y'E (15)

2.3.2) Calculation of E,

Next, the same procedure was repeated but with a system being that of an empty
cylindrical pore. Once again, the symmetry of the geometry of the system of an empty
cylindrical pore allows us to solve the linearized Poisson Boltzmann equation as an ordinary

differential equation as follows
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1 0 .0y A
— LY =Ry y (16a)
pop - Op

where p = p/R.The dimensionless electric potential in an empty pore of Eq. (16a) has to

satisfy the following boundary conditions.

w(p=D=y, (16b)
W 50y 16
7 (p=0)=0 (16¢)
op

The first boundary condition, Eq. (16b) indicates that, the pore surface potential is constant,
whereas the second boundary condition, Eq. (16¢), is due to symmetry. By solving Eq. (7)
with boundary condition stated in Eqgs. (16b) and (16c¢), we found that the solution is in the
form of the modified Bessel function of the first kind as follows.

l)&CIO (K-Rﬁ)

W:—]O(K'R) 17)

As a result, the surface charge density of the cylindrical pore was found to be

..o YKRL(KRP)
=n-V y— N 18
b= Y e (18)
Substituting (?C from Eq. (18) into Eq. (9), the dimensionless free energy of isolated cylinder
is
B —y wR*IKRI (kR)
¢ I,(kR)

(19)

where l:fc is the dimensionless free energy of isolated cylinder and E, is the dimensional free

energy of isolated cylinder that can be calculated as follows

E = gR(kBT VE. (20)
e

2.3.3) Calculation of E,,

In order to determine E

SC >

an intrapore electric potential in the electrolytic solution

surrounding the spherical particle must be first computed from finding the solution of
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linearized Poisson-Boltzmann equation, Eq. (7), that satisfies the following boundary

conditions;
V(F=a)=y, 1)
P(p=D=y, (22)

The boundary conditions in Egs. (21) and (22) are due to the fact that the particle and pore
surface potential are constant. In absence of the geometrical symmetry of the system
consisting of the spherical particle confined within a cylindrical pore, Eq. (7), being the
partial differential equation, is solved by using a finite element method (COMSOL
Multiphysics 5.2a, Stockholm, Sweden). The employed meshes are Lagrange-quadratic
meshes, and the solver is the default linear solver. E, is then, determined as the difference
between the free energy of a system of a sphere confined in a cylindrical pore and the
addition between the free energy of a system of an isolated sphere in an unbounded fluid and
that of a system of an empty pore. To validate the accuracy of the obtained finite element
solution, our calculated £(B = 0)1is compared to and found to agree with E(5 = 0)
computed by the method of eigenfunction expansion by Smith and Deen [4] within 0.5 %.
The partition coefficient is, then, calculated as indicated by an expression in Eq. (1) with the
cross-sectional integration completed by using numerical integration (MATLAB, Netick,

Massachusetts, USA). Calculated results are discussed in Chapter 3.
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Chapter 3

Results and Discussion

Calculated results are presented below, beginning with the calculated electrostatic
potential energy of interaction in Sec. 3.1. First, l:]s and l:]c , the dimensionless electrostatic

free energy of a system of a sphere (with constant surface potential) in an unbounded
electrolytic solution and that of an empty cylindrical pore (also with constant surface

potential), are presented as a function of KR (the pore radius divided by the Debye length).
EA'SC , the electrostatic free energy of a system of a confined sphere in a cylindrical pore (also

made dimensionless as discussed in Chapter 2), are presented as a function of the sphere
location on the cross-section of the pore. The dimensionless electrostatic potential energy of

interaction ( E=E_—FE — Ec) is then discussed as a function of the sphere location as well.

Finally, the partition coefficient calculated as a function of the sphere size (relative to that of

the pore) will be presented in Sec. 3.2.

3.1) Electrostatic potential energy of interaction

The dimensionless electrostatic free energy of a system of an isolated spherical
colloid surrounded by an unbounded electrolytic solution (l:fs) from an analytical calculation
is shown as a function of KR (the ratio between the pore radius and the Debye length) in
Fig. 4. Results are presented for & =0.2, 0.4 and 0.6. As shown below, l:]s decreases as a

function of KR (or, in other words, increases as a function of Debye length).
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0
0 0.2 0.4 0.6 0.8 1 1.2
-1
® —— —
-2
=@ =0.2
3 B
(Lﬂw 0=0.4
-4 == 0=0.6
5
-6
-7
KR

Fig. 4. The electrostatic free energy of an isolated colloid ( E s ) is plotted as a function of KR . o =0.2, 0.4 and 0.6 with

dimensionless surface potential = 1

In Fig. 5, the (dimensionless) electrostatic free energy of a system of an empty

A

cylindrical pore containing an electrolytic solution, E,, obtained from an analytical solution

of Eq. (16a) is plotted as a function of xR . Similarly, to the trend observed for EAS , EE also

decreases as the Debye length decreases.

0 0.2@ 0.4 0.6 0.8 1 1.2
-10

-20

ey 30

kR

Fig. 5. The electrostatic free energy of an empty pore ( E, ) is plotted as a function of &R with dimensionless surface
potential = 1
Next, the electrostatic free energy of a system consisting of a spherical colloid inside a
cylindrical pore, E ., is plotted as a function of the distance between the sphere center and

sc

the pore centerline scaled with the pore radius ( p=r/ R) in Figs. 6 — 8. =04, resulting in
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the sphere-pore steric interaction preventing g being larger than 0.6 (as the distance between
the sphere center and the rigid pore wall cannot be smaller than the sphere radius). Results

are presented for the cases where 7, =y, =1 (in Fig. 6), v, =1 whereas y, =0 (in Fig. 7),

~

and 7, =0 whereas 7, =1 (in Fig. 8). As indicated in Fig. 6, if ¢, =y, =1, E_ remains
approximately constant for all presented values of . If ¥ =1 and 7, =0 or 7, =0 and
v, =1, however, ESC decreases as a function of B with g =0.6 (the location where the
sphere touches the pore surface) is a favorable radial position as shown in Figs. 7 and 8. As

shown in all the figures, E_decreases as a function of KR or increases as a function of

Debye length.
0
o ® 0:2 @ 0:4 ® 0:6
-10
i—i
-20
g —8—KR=0.25
=30 KR=0.5
——KR=1
-40
-50
¥ L L L L L A
-60
p

Fig. 6. Dimensionless electrostatic free energy of a system consisting of a colloid inside the pore ( E,. ) as a function of

scaled sphere radial position (B =r,/R). ¥, =y, =1. The relative sphere size (& ) =0.4. KR =0.25,0.5 and 1
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Fig. 7. Dimensionless electrostatic free energy of a system consisting of a colloid inside the pore ( £, ) as a function of

scaled sphere radial position (g =s,/R). ¥, =1 and 7, =0 . The relative sphere size (¢ ) =0.4. kR =0.25,0.5 and 1
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Fig. 8. Dimensionless electrostatic free energy of a system consisting of a colloid inside the pore ( E,. ) as a function of

scaled sphere radial position (g =7, /R).y, =0and y7, =1. The relative sphere size (& )=0.4. KR =0.25,0.5 and 1

As aforementioned, the probability of finding the spherical colloid at a certain radial
position inside the pore depends on the electrostatic potential energy of interaction ( £ )
contained in the Boltzmann factor that can be found as the difference between the

electrostatic free energy of a system of a cylindrical pore containing the confined sphere

(ESC ) and the addition of the electrostatic free energy of a system of an isolated sphere in an

unbounded fluid (ES) and that of the empty pore (Z:fc ). InFig. 9, £ is presented as a
function of the distance between the pore centerline and the sphere radial position scaled with
the pore radius (ﬂ = I’S/R) for KR equal to 0.25,0.5and 1. =0.4. y, =y, =1. Although
not apparent in Fig. 9, the most favorable radial position for a spherical colloid is at f = 0

(the pore centerline) where E ( S ) is found to be lowest. As shown in the figure, the variation

of E ( i) ) as a function of g is very small, implying that the probability of finding the sphere

at all value of § is almost equal. This is to be expected since the particle and pore surface
potential are equal. The increase in KR (or a decrease in the Debye length if R is kept
constant) elevates the value of £ which is positive implying that the particle and pore

surface are of the same charge, resulting in the intrapore location being less energetically
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favorable than the location in the external bulk fluid. This indicates that the probability of

finding the sphere confined in the pore decreases as the Debye length decreases.

3.8
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—o—KR=0.25
Q32
= KR=0.5
3 —A—KR-1

23 o ° ® ° ® ° ®

2.6

p

Fig. 9. Dimensionless electrostatic potential energy of interaction (E = ESC = ES - Ec) as a function of scaled sphere radial

position (g =1r,/R). ¥, =y, =1.Therelative sphere size (& ) =0.4. xR =0.25,0.5and 1

As shown below, E is presented as a function of the distance between the pore

centerline and the sphere radial position scaled with the pore radius ( p=r/ R) for y =1
and 7, =0 (in Fig. 10) and y, =0 and y, =1 (in Fig. 11), respectively. In both figures, KR

=0.25,0.5and 1. E is found to be negative, indicating that the sphere being in the pore is
more energetically favorable than it being outside the pore. The most energetically favorable

location on the pore cross-section is at f = 0.6 (the location where the sphere touches the pore

wall). The fact that Eis negative implies that the particle and pore surface charges are of
opposite signs, resulting in an particle-pore electrostatic attraction. If either the particle or
pore surface potential is zero, the partition coefficient (the ratio between the intrapore colloid
concentration and that outside the pore) results from the competition between the electrostatic
interaction (that enhances the partitioning of the colloids into the pore) and the steric

interaction (preventing the sphere entering the pore) as discussed further in Sec. 3.2.
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Fig. 10. Dimensionless electrostatic potential energy of interaction (E =FE, - E —EC) as a function of scaled sphere radial

position (B =r,/R). ¥, =1and y, =0. The relative sphere size (& )=0.4. KR =0.25,0.5 and 1
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Fig. 11. Dimensionless electrostatic potential energy of interaction (E = ESC = ES —Ec) as a function of scaled sphere radial

position (g =1, /R). ¥, =0and ¥, =1. The relative sphere size (@ )= 0.4. KR =0.25,0.5and 1

3.2) Calculation of the colloid equilibrium partition coefficient

The electrostatic energy of interaction as shown in Figs. 9 — 11 are, then, substituted
into Eq. (1) in order to compute the partition coefficient (q)) of a spherical colloid (with a
constant surface potential) in a cylindrical pore (with a constant pore surface potential). In
Fig. 12, @ is presented as a function of the relative colloid size (a =af R) . Similar to an

uncharged system where the only colloid-pore interaction is the steric interaction, @ declines
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as a function of & . As shown below, for a system with 7, =, an increase in the particle

and pore surface potential amplifies the decrease in the partition coefficient, as expected,
since, as shown in Fig. 9, E is positive indicating that the colloid-pore interaction is that of an
electrostatic repulsion between surfaces of like charge. The increase in the surface potential
corresponds to the increase in the surface charge density, resulting in the decrease in the

amount of colloid being partitioned into the membrane.

0.9
0.8
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Fig. 12. The partition coefficient of interaction (D ) as a function of a relative sphere size (¢ )at KR = 0.5 with

v,=w,=1,y, =y, =05, vy =y, =0.1 and steric interaction (uncharged)

Effects of Debye length on the equilibrium partition coefficient is presented in Figs.
13 —15. For a sphere confined in a pore (with sphere and pore charge densities being
constant), it has been demonstrated that the decrease in Debye length leads to an increase in
® [3]. For a sphere with constant surface potential confined in a cylindrical pore with
constant surface potential, however, an increase in Debye length (a decrease in KR ) causes a
decrease in the partition coefficient. Another difference from the partition coefficient of a
sphere and a pore with constant surface charge densities is the fact that, for a system of a
sphere and a pore with constant surface potential, it is possible for the partition coefficient to
be larger than that of an uncharged sphere in an uncharged pore (where the only sphere-pore

interaction is the steric interaction) as shown in Figs. 14 and 15.
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Fig. 13. The partition coefficient of a colloid inside pore where 7, =1 and 7, =1 ( @ ) is plotted as a function of relative

sphere size (@ ) with KR equal to 0.25, 0.5, 1 and steric interaction (uncharged)

As shown in Fig. 13, if 7, =y, =1, ® is smaller than 1, and much smaller than the

partition coefficient of an uncharged system where the particle-pore interaction is purely a

steric interaction. As demonstrated earlier in Fig. 9, E of a system where ¥/, = /=1 is

found to be positive, implying that the pore and particle surfaces are of like charge. The
repulsive electrostatic interaction between the particle and the pore results in the decline in
the probability of finding the particle inside the pore, and, thus, a reduction of the equilibrium

partition coefficient. @ declines as a function of a.
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Fig. 14. The partition coefficient of a colloid inside pore where 7, =1 and @, =0 (@) is plotted as a function of relative

sphere size (@ ) with KR equal to 0.25, 0.5, 1 and steric interaction (uncharged)
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Fig. 15. The partition coefficient of a colloid inside pore where 7, =0 and y, =1 (® ) is plotted as a function of relative

sphere size (@ ) with KR equal to 0.25, 0.5, 1 and steric interaction (uncharged)
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In contrast to results presented in Fig. 13, when either 7, or 7, is 0, @ is found to

increase as a function of a. In addition, its value is larger than the partition coefficient of an
uncharged system. This is to be expected since, as shown earlier in Figs 10 and 11, E is
found to be negative, implying that the particle-pore electrostatic interaction is an attractive
electrostatic interaction. For certain values of a and xR, @ > 1, indicating that the particle

concentration inside the pore is higher than that outside the pore. As aforementioned, if
either 17 or 7, is 0, the value of the partition coefficient is a result from a competition
between the steric interaction preventing the pore wall-sphere center distance being less than
the sphere radius (and, thus, reducing the location on the pore cross-section where the sphere
center can be found) and the attractive electrostatic interaction causing these locations on the

pore cross-section (where a sphere center can be found) to be energetically more favorable

than that outside the pore. If 7 =1 and ¥, = 0, the steric interaction dominates when the
value of a, causing @ to be smaller than 1. As a becomes larger, the attractive electrostatic
interaction becomes more prominent, causing @ to be larger than 1. For the case where 7, =
0and 7, =1, ®> 1 for the entire range of a presented, indicating that the attractive

electrostatic interaction dominates, resulting in the intrapore particle concentration being

larger than that in the external bulk solution.



25

Chapter 4

Conclusion

The present calculation of the partition coefficient of spherical colloids into porous
membranes by employing Debye-Huckel approximation in finding the solution of the
Poisson-Boltzmann equation confirms that the presence of the electrical double layer causes
an alteration in the amount of colloids that is partitioned into the pores. The decrease in the
Debye length is found to reduce the partition coefficient. If either the colloid or the pore is of
zero surface potential, the colloid partition coefficient increases as a function of its size. It is
possible for the partition coefficient of the colloid to be larger than that of an uncharged
colloid in an uncharged pore. In fact, for certain values of Debye length and relative colloid
size, the intrapore colloid concentration can be larger than that of the external bulk solution as
the effect of the electrostatic attraction outweigh that of the steric interaction. If both the
colloid and the pore are of non-zero constant surface potential, however, the partition
coefficient is found to be smaller than that of the uncharged system as the pore and colloid
surfaces are of like charge; the partition coefficient decreases as a function of colloid size.
Directions for future work include an investigation of the electrokinetic effect on the
partitioning of colloids into pores under the condition of charge regulation where the

boundary condition is the Robin boundary condition.
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