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Abstract 

Electrostatic effects on partitioning of spherical colloids into a porous membrane 

consisting of long straight cylindrical pores filled with an electrolytic solution are 

investigated through a mathematical model.  The colloids and the pore surface potential are 

assumed to be constant, and are such that the Debye-Huckel approximation can be applied.  

Assuming that the solution is diluted, the effects of colloid-colloid interactions is negligible. 

The cations and anions are viewed as point charges, and the electric potential is obtained as a 

solution of a linearized Poisson-Boltzmann equation. The colloid equilibrium partition 

coefficient, the ratio between the intrapore colloid concentration and that in the external bulk 

solution, is dependent on the difference between the electrostatic free energy of the system of 

a colloid confined in a cylindrical pore and the addition of the electrostatic free energy of a 

system of an isolated colloid in an unbounded fluid and that of an empty cylindrical pore. 

Effects of colloid size, colloid surface potential and Debye length on the colloid equilibrium 

partition coefficient are investigated.  
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Chapter 1 

Introduction 

1.1) Motivation 

Partitioning of colloidal particles into porous membranes is observed in biological 

transport processes such as solute filtration across the fenestrated endothelial cell layer (as 

shown in Fig. 1 [1]), and in separation processes with applications in industry and 

biotechnology including chromatography and sieving through track-etched membranes (as 

shown in Fig. 2 [2]). During these transport processes, it is often desired to relate 

experimentally measurable quantities, such as the solute concentration in the external bulk 

solution, and those within the membrane pores that cannot be measured directly. If 

thermodynamic equilibrium is assumed, the ratio between the averaged intrapore colloid 

concentration and the external bulk solute concentration is referred to as the equilibrium 

partition coefficient ( ). For the simplest model system of a dilute solution containing rigid 

spherical colloids transported into a membrane with long straight cylindrical pores,   can be 

expressed as follows.  

2 1

0 0
2 1

0 0

( 0) ( )
( 0) ( )

B

E
k T

s s

s s

e d dC x C x L
C x C x L d d

 



  

  

−−

 

= =
 = = =

= =
 

 
  (1) 

where sC and sC   are the averaged intrapore colloid concentrations and the colloid 

concentrations in the bulk solution, respectively. The upstream end of the pore is denoted as  

0x = , whereas x L= refers to the downstream end with L  being the membrane thickness. 

B

E
k T  is the ratio between the electrostatic potential energy of interaction between the colloid 

and the pore wall and the thermal energy (the product of Boltzmann’s constant and the 
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temperature in Kelvin). The Boltzmann factor involving E  is a measure of the probability of 

finding a solute center at a given radial position(  ), whereas 0 =  appeared above in Eq. 

(1) is the sphere radius (normalized by the pore radius). Likewise,   is the particle radial 

position scaled with the pore radius. The limit of integration extends from 0 =  (at the pore 

centerline) to 1 = −  due to the fact that the distance between the center of a rigid sphere 

and the pore surface cannot be less than the sphere radius. (In other words, if both the sphere 

and the pore wall are rigid, →E  for 1  − .)  If the sphere and pore wall are uncharged 

and the colloid-pore wall interaction is a steric interaction, 0=E  for 1  − .   Eq. (1) 

reduces to simply 2(1 ) = − .  

 If, instead, the pore shape is that of a slit pore (consisting of parallel infinite plates), 

the equilibrium partition coefficient can be expressed as follows. 

1

0
1

0







−−

 =




B

E
k Te d

d
     (2) 

where, in this case,   is defined as the transverse colloid position scaled with the pore half-

width. If the colloid and the slit pore are uncharged, and the only interaction between them is 

the steric interaction, 1  = − . 

 In the present work, a model of electrostatic double layer interactions between 

spherical colloids and cylindrical pores is developed in order to evaluate the contribution of 

surface charges to E  through analytical calculation augmented with finite element solution.  

The Debye-Huckel approximation valid for systems with small electric potential ( << )
Bk T
e  

was employed in the computation of E and, subsequently, the partition coefficient for 

colloids and pores with constant surface potential. The solvent is an electrolytic solution 
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viewed as a continuum medium with small ions viewed as point charges.  The pores are 

assumed to be long enough such that the hydrodynamic end effects are negligible, and the 

colloidal solution is assumed to be diluted such that solute-solute interaction can be 

neglected. This project will start with the partition coefficient of charged colloids into 

cylindrical pores, and, then, the computation will be extended to include the case of 

partitioning of charged colloids into slit pores. 

 
Fig. 1. An image of fenestrated endothelial cell layer of the glomerular capillary wall obtained from electron microscopy [1] 

 
Fig. 2. An image of a cross-section of a track-etched membrane, a membrane with long straight cylindrical pores [2] 
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1.2) Project objectives 

(1) Compute the electrostatic energy of interaction between charged rigid colloids and 

surfaces of pores with constant surface potential as a function of colloid intrapore radial 

position. 

(2) Calculate the equilibrium partition coefficient of colloids as a function of relative 

particle size, particle and pore surface potential, and Debye length. 

 

1.3) Definitions of variables and parameters 

   : Relative sphere size 

   : Radial position 

 R  : Pore radius 

   : Equilibrium partition coefficient 

   : Inverse of the Debye length 

 sC  : Averaged intrapore colloid concentrations 

 sC   : Colloid concentrations in the bulk solution 

   : Electric potential 

 Bk  : Boltzmann’s constant 

 T  : Absolute temperature 

 e  : Elementary charge 

 0  : Vacuum permittivity 

  r  : Relative permittivity of the electrolytic solution 

 iC  : Bulk concentration of electrolyte specie “i” 

 iz  : Valence of electrolyte specie “i” 
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 iE  : Electrostatic free energy of the system “i” 

 iq  : Surface charge density of the system “i” 

 A  : Charged surface 

 N  : Ion flux 

 iD  : Diffusion coefficient of electrolyte specie “ i ” 
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Chapter 2 

Model Development 

 The objective of the present project is to calculate the equilibrium partition coefficient 

of a spherical particle with constant surface potential ( s ) into a membrane with long 

straight cylindrical pores with constant surface potential ( c ).  Depicted in Fig. 3 is a 

longitudinal cross-section of the cylindrical pore; the sphere radius is denoted as a, whereas 

the pore radius is R ; the dimensionless sphere radius  ; a R = . The dimensionless 

particle radial location is denoted as  ; sr R = .  When a charged surface is submerged 

into an electrolytic solution, a diffuse layer of counter-ions (small ions with the charges 

opposite to that of the charged surface) is formed at the solid-liquid interface as shown in Fig. 

3. This diffuse layer of counter-ions, often referred to as the electrical double layer, strongly 

influences the value of the potential energy of interaction ( E ), and hence, the value of the 

partition coefficient. In Sec. 2.1, the governing equation for the intrapore electric potential, 

the linearized Poisson-Boltzmann equation, is introduced, and, in Sec. 2.2, the calculation of 

E  is discussed in details.  The numerical procedure is presented in Sec. 2.3. 

 

Fig. 3. A schematic drawing of a longitudinal cross-section of a charged cylindrical pore containing a charged sphere. 

Diffuse layers of counter-ions form at the solid-electrolytic solution interface 
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2.1) Linearized Poisson-Boltzmann equation 

In absence of fluid motion, an ionic flux of a small ion i contained in an electrolytic 

solution ( iN ) can be expressed as follows. 

[ ( ) ]i i i i i
B

eN D C z C
k T

= −  +      (3) 

where iC  is the concentration of the ion “ i ”. iD  is its diffusivity, whereas iz  is its valence. 

  is the electric potential, and e is the elementary charge.  Eq. (3) is often referred to as the 

Nernst-Planck equation; the first term on the right hand side is simply the diffusion term, 

whereas the second term is the contribution to the ionic flux due to electromigration. Under 

the assumption of vanishing fluxes at equilibrium, iC  follows the Boltzmann distribution as 

shown below. 

i

B

z e
k T

i iC C e
−

=       (4) 

 iC 
 is bulk concentration of electrolyte specie “ i ” where 0 = .  For a univalent-univalent 

binary electrolytic solution, substitutions of the ionic concentrations into the Poisson equation 

lead to the Poisson-Boltzmann equation written in a dimensionless form as shown below. 

2 2ˆ ˆ ˆ( ) sinh( )R   =      (5) 

where ˆ
Bk T e


 = : the electric potential scaled with the thermal potential. R , the pore radius, 

is employed as the length scale, whereas   is the inverse of the Debye length often viewed as 

the “thickness” of the electrical double layer. (The change of the electric potential vanishes 

outside the electrical double layer.) The expression for   is as follows.  

12 2
2

10

( )i
ir B

e C
k T


 



=

=       (6) 

where 0  is vacuum permittivity. r  is the relative permittivity of the electrolytic solution.  It 

is worth noting that the Debye length decreases as a function of the ionic concentration. R , 

therefore, is the ratio between the pore radius and the Debye length, and it strongly influences 

the electrostatic interaction between the colloids and the pore wall.  
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  If ˆ 1   (with the electric potential being much less than 25 mV at 300 K), ˆsinh( )  

can be approximated as ̂  (an approximation referred to as the Debye-Huckel 

approximation), resulting in the Poisson-Boltzmann equation becoming linearized as shown 

(in the dimensionless form) below 

2 2ˆ ˆ ˆ( )R   =      (7) 

The intrapore electric potential in a system of our interest can be obtained by solving Eq. (7) 

with the boundary conditions of constant surface potential at the colloid surface 

ˆ ˆ( )s
s

Bk T e


 = =  and the pore surface ˆ ˆ( )c
c

Bk T e


 = = .   

In addition to the intrapore electric potential, the electric potential in a system of an 

isolated sphere (with the same particle surface potential) in an unbounded fluid obtained as a 

solution of Eq. (7) that satisfies the constant surface potential boundary condition at the 

sphere surface ˆ ˆ( )s = , and a condition of vanishing electric potential far from the sphere, 

and the electric potential in an empty cylindrical pore (with the same pore surface potential) 

obtained as a solution of Eq. (7) that satisfies the constant surface potential boundary 

condition at the pore wall ˆ ˆ( )c =  are also required as will be discussed below in Sec. 2.2. 

The method of obtaining the solution of the linearized Poisson-Boltzmann is presented in 

Sec. 2.3. 

 

2.2) The particle-pore electrostatic potential energy of interaction 

 After ̂  is obtained, the electrostatic free energy can be determined from the 

following expression proposed and proven by Verway and Overbeek [4]. 

0j jA
E q dqdA



= −       (8) 

where jq  is the surface charge density. In this work, j can be s , c  or sc . sE  is the 

electrostatic free energy of a system of an isolated spherical colloid with constant surface 

potential, whereas cE  is the electrostatic free energy of a system consisting of an empty 

cylindrical pore (or an empty slit channel) also with the constant surface potential. scE  is the 

electrostatic free energy of the system of a colloid inside the pore.  As indicated in Eq. (8), 
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the electrostatic potential energy of interaction is the integration of the energy per unit surface 

area required in bringing an uncharged surface to a surface charge density jq  over all 

charged surfaces (denoted above as A ).  If the Debye-Huckel approximation is employed, 

the system free energy is reduced to   

2
j

j jA
E q dA


= −       (9) 

The electrostatic potential energy of interaction, E , a measure of the probability of finding 

the colloid at the radial position inside the pore, can be found as the difference of the free 

energy of the colloid being within the pore, and the addition of the free energy of the system 

of an isolated colloid and that of an empty pore as follows. 

sc s cE E E E= − −                (10) 

After E  is determined, the partition coefficient, computed by using Eq. (1) if the pore is 

cylindrical, is presented as a function of relative particle radius, Debye length as well as the 

colloid and pore surface potential.  

 

2.3) Calculation procedure 

In this project, sE  and cE  are calculated from an analytical solution of the linearized 

Poisson-Boltzmann equation as presented below in Sec. 2.3.1 and 2.3.2.  scE , on the other 

hand, is obtained from a finite element solution as will be discussed in Sec. 2.3.3.  ( )E in 

the Boltzmann factor is computed as indicated in Eq. (10).   

2.3.1) Calculation of sE  

In order to determine sE , the electric potential in the fluid surrounding the isolated 

sphere (with constant surface potential) with the dimensionless radius  ( )a R = must be 

first computed. The symmetry of the geometry of a system of an isolated sphere in an 

unbounded fluid allows us to solve Eq. (7) as an ordinary differential equation as shown 

below.  

2 2
2

ˆ1 ˆˆ( ) ( )
ˆ ˆ ˆ

r R
r r r


 

 
=

 
                         (11a) 
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 The solution of Eq. (11a) that satisfies the following boundary conditions must be obtained. 

ˆ ˆˆ( ) sr  = =              (11b) 

ˆ ˆ( ) 0r → =              (11c) 

where r̂ , a distance in a spherical coordinate, is normalized by the pore radius ( R ).  Given 

the above boundary conditions, the linearized-Poisson Boltzmann equation becomes an 

ordinary differential equation and can be solved analytically. The dimensionless surface 

potential is found to be 

ˆ( )ˆˆ
ˆ

R rs e
r

  
 − −=               (12) 

As a result, the sphere surface charge density can be computed as follows. 

ˆ

1ˆ ˆ ˆˆ ˆ ( )s sr
q n R


  

=
= −  = +               (13) 

where n̂  is the normal vector perpendicular to the sphere surface.  Substituting ˆsq  from Eq. 

(13) into Eq. (9), the dimensionless free energy of a system of an isolated sphere in an 

unbounded fluid is found to be 

2 1ˆ ˆ2 ( )s sE R  


= − +                (14) 

where ˆ
sE  is the dimensionless free energy of a system of an isolated sphere in an unbounded 

fluid and sE is the dimensional free energy of a system of an isolated sphere in an unbounded 

fluid that can be calculated as follows 

2 ˆ( )B
s s

k TE R E
e

=                          (15) 

2.3.2) Calculation of cE  

Next, the same procedure was repeated but with a system being that of an empty 

cylindrical pore. Once again, the symmetry of the geometry of the system of an empty 

cylindrical pore allows us to solve the linearized Poisson Boltzmann equation as an ordinary 

differential equation as follows 
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2ˆ1 ˆ ˆ( ) ( )
ˆ ˆ ˆ

R
  

  

 
=

 
                         (16a) 

where ˆ R = .The dimensionless electric potential in an empty pore of Eq. (16a) has to 

satisfy the following boundary conditions. 

ˆ ˆ ˆ( 1) c  = =               (16b) 

ˆ ˆ( 0) 0
ˆ






= =


             (16c) 

The first boundary condition, Eq. (16b) indicates that, the pore surface potential is constant, 

whereas the second boundary condition, Eq. (16c), is due to symmetry. By solving Eq. (7) 

with boundary condition stated in Eqs. (16b) and (16c), we found that the solution is in the 

form of the modified Bessel function of the first kind as follows. 

0

0

ˆ ˆ( )ˆ
( )

cI R
I R

  



=                (17) 

As a result, the surface charge density of the cylindrical pore was found to be  

1
ˆ 1

0

ˆ ˆ( )ˆ ˆˆ ˆ
( )

c
c

RI Rq n
I R

   


=
=  =                  (18) 

Substituting ˆcq  from Eq. (18) into Eq. (9), the dimensionless free energy of isolated cylinder 

is 

2
1

0

ˆ ( )ˆ
( )

c
c

R l RI RE
I R

   



−
=               (19) 

where ˆ
cE  is the dimensionless free energy of isolated cylinder and cE  is the dimensional free 

energy of isolated cylinder that can be calculated as follows 

2 ˆ( )B
c c

k TE R E
e

=                          (20) 

2.3.3) Calculation of scE  

 In order to determine scE , an intrapore electric potential in the electrolytic solution 

surrounding the spherical particle must be first computed from finding the solution of 
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linearized Poisson-Boltzmann equation, Eq. (7), that satisfies the following boundary 

conditions; 

ˆ ˆˆ( ) sr  = =              (21) 

ˆ ˆ ˆ( 1) c  = =                   (22) 

The boundary conditions in Eqs. (21) and (22) are due to the fact that the particle and pore 

surface potential are constant.  In absence of the geometrical symmetry of the system 

consisting of the spherical particle confined within a cylindrical pore, Eq. (7), being the 

partial differential equation, is solved by using a finite element method (COMSOL 

Multiphysics 5.2a, Stockholm, Sweden). The employed meshes are Lagrange-quadratic 

meshes, and the solver is the default linear solver. E, is then, determined as the difference 

between the free energy of a system of a sphere confined in a cylindrical pore and the 

addition between the free energy of a system of an isolated sphere in an unbounded fluid and 

that of a system of an empty pore.  To validate the accuracy of the obtained finite element 

solution, our calculated ( 0) =E is compared to and found to agree with ( 0) =E  

computed by the method of eigenfunction expansion by Smith and Deen [4] within 0.5 %.  

The partition coefficient is, then, calculated as indicated by an expression in Eq. (1) with the 

cross-sectional integration completed by using numerical integration (MATLAB, Netick, 

Massachusetts, USA).  Calculated results are discussed in Chapter 3.  
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Chapter 3 

Results and Discussion 

 Calculated results are presented below, beginning with the calculated electrostatic 

potential energy of interaction in Sec. 3.1.  First, ˆ
sE and ˆ

cE , the dimensionless electrostatic 

free energy of a system of a sphere (with constant surface potential) in an unbounded 

electrolytic solution and that of an empty cylindrical pore (also with constant surface 

potential), are presented as a function of R  (the pore radius divided by the Debye length). 

ˆ
scE , the electrostatic free energy of a system of a confined sphere in a cylindrical pore (also 

made dimensionless as discussed in Chapter 2), are presented as a function of the sphere 

location on the cross-section of the pore.  The dimensionless electrostatic potential energy of 

interaction ( )ˆ ˆ ˆ ˆ
sc s cE E E E= − −  is then discussed as a function of the sphere location as well.  

Finally, the partition coefficient calculated as a function of the sphere size (relative to that of 

the pore) will be presented in Sec. 3.2. 

 

3.1) Electrostatic potential energy of interaction 

 The dimensionless electrostatic free energy of a system of an isolated spherical 

colloid surrounded by an unbounded electrolytic solution ( ˆ
sE ) from an analytical calculation 

is shown as a function of R  (the ratio between the pore radius and the Debye length) in 

Fig. 4.  Results are presented for   = 0.2, 0.4 and 0.6.  As shown below, ˆ
sE  decreases as a 

function of R  (or, in other words, increases as a function of Debye length).  
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Fig. 4. The electrostatic free energy of an isolated colloid ( ˆ
sE ) is plotted as a function of R .   = 0.2, 0.4 and 0.6 with 

dimensionless surface potential = 1 

In Fig. 5, the (dimensionless) electrostatic free energy of a system of an empty 

cylindrical pore containing an electrolytic solution, ˆ
cE , obtained from an analytical solution 

of Eq. (16a) is plotted as a function of R . Similarly, to the trend observed for ˆ
sE , ˆ

cE also 

decreases as the Debye length decreases.  

 

Fig. 5. The electrostatic free energy of an empty pore ( ˆ
cE ) is plotted as a function of R  with dimensionless surface 

potential = 1 

 Next, the electrostatic free energy of a system consisting of a spherical colloid inside a 

cylindrical pore, ˆ
scE , is plotted as a function of the distance between the sphere center and 

the pore centerline scaled with the pore radius ( )sr R =  in Figs. 6 – 8. 0.4 = , resulting in 
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the sphere-pore steric interaction preventing   being larger than 0.6 (as the distance between 

the sphere center and the rigid pore wall cannot be smaller than the sphere radius).   Results 

are presented for the cases where ˆ ˆ 1s c = =  (in Fig. 6), ˆ 1s =  whereas ˆ 0c =  (in Fig. 7), 

and ˆ 0s =  whereas ˆ 1c =  (in Fig. 8). As indicated in Fig. 6, if ˆ ˆ 1s c = = , ˆ
scE remains 

approximately constant for all presented values of  .   If ˆ 1s =  and ˆ 0c =  or ˆ 0s =  and 

ˆ 1c = , however, ˆ
scE decreases as a function of   with 0.6 =  (the location where the 

sphere touches the pore surface) is a favorable radial position as shown in Figs. 7 and 8. As 

shown in all the figures, ˆ
scE decreases as a function of R  or increases as a function of 

Debye length.   

 

Fig. 6. Dimensionless electrostatic free energy of a system consisting of a colloid inside the pore ( ˆ
scE ) as a function of 

scaled sphere radial position ( ) = sr R . ˆ ˆ 1s c = = . The relative sphere size (  ) = 0.4. R  = 0.25, 0.5 and 1 
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Fig. 7. Dimensionless electrostatic free energy of a system consisting of a colloid inside the pore ( ˆ
scE )  as a function of 

scaled sphere radial position ( ) = sr R . ˆ 1s =  and ˆ 0c = . The relative sphere size (  ) = 0.4. R  = 0.25, 0.5 and 1 

 

Fig. 8. Dimensionless electrostatic free energy of a system consisting of a colloid inside the pore ( ˆ
scE ) as a function of 

scaled sphere radial position ( ) = sr R . ˆ 0s = and ˆ 1c = . The relative sphere size (  ) = 0.4. R  = 0.25, 0.5 and 1 

As aforementioned, the probability of finding the spherical colloid at a certain radial 

position inside the pore depends on the electrostatic potential energy of interaction ( Ê ) 

contained in the Boltzmann factor that can be found as the difference between the 

electrostatic free energy of a system of a cylindrical pore containing the confined sphere        

( ˆ
scE ) and the addition of the electrostatic free energy of a system of an isolated sphere in an 

unbounded fluid ( ˆ
sE ) and that of the empty pore ( ˆ

cE ).  In Fig. 9, Ê  is presented as a 

function of the distance between the pore centerline and the sphere radial position scaled with 

the pore radius ( )sr R =  for R  equal to 0.25, 0.5 and 1. 0.4 = . ˆ ˆ 1s c = = . Although 

not apparent in Fig. 9, the most favorable radial position for a spherical colloid is at β = 0  

(the pore centerline) where ( )Ê   is found to be lowest. As shown in the figure, the variation 

of ( )Ê   as a function of   is very small, implying that the probability of finding the sphere 

at all value of β is almost equal.  This is to be expected since the particle and pore surface 

potential are equal.  The increase in R  (or a decrease in the Debye length if R  is kept 

constant) elevates the value of Ê  which is positive implying that the particle and pore 

surface are of the same charge, resulting in the intrapore location being less energetically 
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favorable than the location in the external bulk fluid. This indicates that the probability of 

finding the sphere confined in the pore decreases as the Debye length decreases. 

 

Fig. 9. Dimensionless electrostatic potential energy of interaction ( )ˆ ˆ ˆ ˆ
sc s cE E E E= − −  as a function of scaled sphere radial 

position ( ) = sr R .  ˆ ˆ 1s c = = . The relative sphere size (  ) = 0.4.  R  = 0.25, 0.5 and 1 

As shown below, Ê  is presented as a function of the distance between the pore 

centerline and the sphere radial position scaled with the pore radius ( )sr R =  for ˆ 1s =

and ˆ 0c =  (in Fig. 10) and ˆ 0s =  and ˆ 1c =  (in Fig. 11), respectively.  In both figures, R  

= 0.25, 0.5 and 1.  Ê  is found to be negative, indicating that the sphere being in the pore is 

more energetically favorable than it being outside the pore. The most energetically favorable 

location on the pore cross-section is at β = 0.6 (the location where the sphere touches the pore 

wall).  The fact that Ê  is negative implies that the particle and pore surface charges are of 

opposite signs, resulting in an particle-pore electrostatic attraction.  If either the particle or 

pore surface potential is zero, the partition coefficient (the ratio between the intrapore colloid 

concentration and that outside the pore) results from the competition between the electrostatic 

interaction (that enhances the partitioning of the colloids into the pore) and the steric 

interaction (preventing the sphere entering the pore) as discussed further in Sec. 3.2.  
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Fig. 10. Dimensionless electrostatic potential energy of interaction ( )ˆ ˆ ˆ ˆ
sc s cE E E E= − −  as a function of scaled sphere radial 

position ( ) = sr R .  ˆ 1s = and ˆ 0c = . The relative sphere size (  ) = 0.4. R  = 0.25, 0.5 and 1 

 

Fig. 11. Dimensionless electrostatic potential energy of interaction ( )ˆ ˆ ˆ ˆ
sc s cE E E E= − −  as a function of scaled sphere radial 

position ( ) = sr R . ˆ 0s = and ˆ 1c = . The relative sphere size (  ) = 0.4. R  = 0.25, 0.5 and 1 

 

3.2) Calculation of the colloid equilibrium partition coefficient   

 The electrostatic energy of interaction as shown in Figs. 9 – 11 are, then, substituted 

into Eq. (1) in order to compute the partition coefficient ( )  of a spherical colloid (with a 

constant surface potential) in a cylindrical pore (with a constant pore surface potential). In 

Fig. 12,   is presented as a function of the relative colloid size ( )a R = . Similar to an 

uncharged system where the only colloid-pore interaction is the steric interaction,   declines 
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as a function of  .  As shown below, for a system with ˆ ˆs c = , an increase in the particle 

and pore surface potential amplifies the decrease in the partition coefficient, as expected, 

since, as shown in Fig. 9, E is positive indicating that the colloid-pore interaction is that of an 

electrostatic repulsion between surfaces of like charge.  The increase in the surface potential 

corresponds to the increase in the surface charge density, resulting in the decrease in the 

amount of colloid being partitioned into the membrane.  

 
Fig. 12. The partition coefficient of interaction (  ) as a function of a relative sphere size (  ) at R  = 0.5 with 

ˆ ˆ 1s c = = , ˆ ˆ 0.5s c = = , ˆ ˆ 0.1s c = =  and steric interaction (uncharged) 

 Effects of Debye length on the equilibrium partition coefficient is presented in Figs. 

13 – 15.  For a sphere confined in a pore (with sphere and pore charge densities being 

constant), it has been demonstrated that the decrease in Debye length leads to an increase in 

  [3].  For a sphere with constant surface potential confined in a cylindrical pore with 

constant surface potential, however, an increase in Debye length (a decrease in R ) causes a 

decrease in the partition coefficient.  Another difference from the partition coefficient of a 

sphere and a pore with constant surface charge densities is the fact that, for a system of a 

sphere and a pore with constant surface potential, it is possible for the partition coefficient to 

be larger than that of an uncharged sphere in an uncharged pore (where the only sphere-pore 

interaction is the steric interaction) as shown in Figs. 14 and 15.   
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Fig. 13. The partition coefficient of a colloid inside pore where ˆ 1s =  and ˆ 1c =  (  ) is plotted as a function of relative 

sphere size ( ) with R  equal to 0.25, 0.5, 1 and steric interaction (uncharged) 

 

As shown in Fig. 13, if ˆ ˆ 1s c = = ,   is smaller than 1, and much smaller than the 

partition coefficient of an uncharged system where the particle-pore interaction is purely a 

steric interaction.  As demonstrated earlier in Fig. 9, E of a system where ˆ s  = ˆc = 1 is 

found to be positive, implying that the pore and particle surfaces are of like charge.  The 

repulsive electrostatic interaction between the particle and the pore results in the decline in 

the probability of finding the particle inside the pore, and, thus, a reduction of the equilibrium 

partition coefficient.    declines as a function of α. 
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Fig. 14. The partition coefficient of a colloid inside pore where ˆ 1s =  and ˆ 0c =  ( ) is plotted as a function of relative 

sphere size ( ) with R  equal to 0.25, 0.5, 1 and steric interaction (uncharged) 

 
Fig. 15. The partition coefficient of a colloid inside pore where ˆ 0s =  and ˆ 1c =  ( ) is plotted as a function of relative 

sphere size ( ) with R  equal to 0.25, 0.5, 1 and steric interaction (uncharged) 
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In contrast to results presented in Fig. 13, when either ˆ s  or ˆc  is 0,   is found to  

increase as a function of α.  In addition, its value is larger than the partition coefficient of an 

uncharged system.  This is to be expected since, as shown earlier in Figs 10 and 11, E is 

found to be negative, implying that the particle-pore electrostatic interaction is an attractive 

electrostatic interaction.  For certain values of α and κR,  > 1, indicating that the particle 

concentration inside the pore is higher than that outside the pore.  As aforementioned, if 

either ˆ s  or ˆc  is 0, the value of the partition coefficient is a result from a competition 

between the steric interaction preventing the pore wall-sphere center distance being less than 

the sphere radius (and, thus, reducing the location on the pore cross-section where the sphere 

center can be found) and the attractive electrostatic interaction causing these locations on the 

pore cross-section (where a sphere center can be found) to be energetically more favorable 

than that outside the pore. If ˆ s = 1 and ˆc  = 0, the steric interaction dominates when the 

value of α, causing   to be smaller than 1.   As α becomes larger, the attractive electrostatic 

interaction becomes more prominent, causing   to be larger than 1.  For the case where ˆ s = 

0 and ˆc  = 1,  > 1 for the entire range of α presented, indicating that the attractive 

electrostatic interaction dominates, resulting in the intrapore particle concentration being 

larger than that in the external bulk solution. 
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Chapter 4 

Conclusion 

 The present calculation of the partition coefficient of spherical colloids into porous 

membranes by employing Debye-Huckel approximation in finding the solution of the 

Poisson-Boltzmann equation confirms that the presence of the electrical double layer causes 

an alteration in the amount of colloids that is partitioned into the pores. The decrease in the 

Debye length is found to reduce the partition coefficient. If either the colloid or the pore is of 

zero surface potential, the colloid partition coefficient increases as a function of its size.  It is 

possible for the partition coefficient of the colloid to be larger than that of an uncharged 

colloid in an uncharged pore.  In fact, for certain values of Debye length and relative colloid 

size, the intrapore colloid concentration can be larger than that of the external bulk solution as 

the effect of the electrostatic attraction outweigh that of the steric interaction. If both the 

colloid and the pore are of non-zero constant surface potential, however, the partition 

coefficient is found to be smaller than that of the uncharged system as the pore and colloid 

surfaces are of like charge; the partition coefficient decreases as a function of colloid size.  

Directions for future work include an investigation of the electrokinetic effect on the 

partitioning of colloids into pores under the condition of charge regulation where the 

boundary condition is the Robin boundary condition. 
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