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Peptide sequencing is an important component for understanding the characterization of proteins.

Typical analyses of mass spectrometry data only identify amino acid sequences that exist in reference

databases. This restricts the possibility of discovering new peptides such as those that contain uncharac-

terized mutations or originate from unexpected proteins. De novo peptide sequencing approaches address

this limitation by directly deriving peptides from MS/MS spectra using the knowledge of the ion fragmen-

tation process but often suffer from low accuracy and require extensive validation by experts. In this thesis,

we develop SMSNet, a deep learning-based hybrid de novo peptide sequencing model that achieves >95%

amino acid accuracy while retaining good identification coverage. We propose a sequence-mask-search

framework which allows the model to recover full-sequence peptide predictions from known database in

case the predictions contain ambiguous amino acid positions. Additionally, because the confidence scores

of each amino acid are often affected by the predictions in the previous positions, we propose the use of

external rescorer for adjusting the scores, which leads to better separation between correct and incorrect

amino acids. Using techniques described and proposed in this thesis, we are able to recover a large number

of peptides which are in accordance with predictions using database searching techniques, suggesting the

potential of SMSNet on other real-life proteomics studies.

Department : Computer Engineering Student’s Signature . . . . . . . . . . . . . . . . . . . . . . . . . .

Field of Study : Computer Engineering Advisor’s Signature . . . . . . . . . . . . . . . . . . . . . . . . . .

Academic Year : 2018 Co-advisor’s Signature . . . . . . . . . . . . . . . . . . . .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vi

Acknowledgements

This work is supported by Chula Computer Engineering Graduate Scholarship for CP Alumni from

the department of computer engineering, Faculty of Engineering, Chulalongkorn University. We grate-

fully acknowledge the contribution of mass spectrometry dataset from the Proteomics and Metabolomics

Core Facility at The Wistar Institute, the support of the Chulalongkorn Academic Advancement into Its

2nd Century Project, and the donation of TITAN Xp graphic card used in this research by the NVIDIA

Corporation. We especially thank Mark A. Knepper (the Epithelial Systems Biology Laboratory, Na-

tional Heart, Lung, and Blood Institute, National Institute of Health, USA) and Trairak Pisitkul (Systems

Biology Center, Chulalongkorn University, Thailand) for facilitating access to computing resources at the

National Institute of Health, USA, and for providing critical advice on the manuscript. This work utilized

high performance computing resources of the Biowulf cluster, National Institute of Health, USA (http://

hpc.nih.gov) and the Center of Excellence for Medical Genomics, Faculty of Medicine, Chulalongkorn

University, Thailand.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONTENTS

Page

Abstract (Thai) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Abstract (English) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Main Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Mass Spectrometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Peptide Sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Review Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Background Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1 Peptide sequencing by database searching . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Neural Networks for Transduction Task . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Convolutional Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.4 Encoder-Decoder Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.5 Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.1 Data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Training, validation, and test sets partitioning . . . . . . . . . . . . . . . . . . . . . . . 14
4.3 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.4 Neural networks model architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.5 Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.6 Model training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.7 Ablation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.8 Rescorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.9 Data preprocessing for the rescorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.10 Comparison with DeepNovo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.11 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

viii

4.12 Mass tag and database search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.13 Definition of amino acid’s evidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.14 Application on real-world studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.15 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1 Dataset compositions and SMSNet model . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Model evaluation on held-out mass spectrometry data . . . . . . . . . . . . . . . . . . 28
5.3 Ablation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.4 Post-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.5 Applications of SMSNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Apppendix A Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Biography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF TABLES

Table Page
4.1 Datasets description. DEEPNOVO-M, WCU-MS-BEST, and ProteomeTools were used for

comparison with DeepNovo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.1 Compositions of species-specific peptides in WCU-MS dataset. A peptide is counted only if it

could be mapped to exactly one of the databases considered. All databases were downloaded
from Uniprot. Isoforms and predicted proteins are included. . . . . . . . . . . . . . . . . . 28

5.2 Ablation study results. Removing the shift layer resulted in the most degradation in perfor-
mance of the model, almost as large as removing the encoder entirely. . . . . . . . . . . . . 31



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LIST OF FIGURES

Figure Page
2.1 An example of tandem mass spectrum. The observable peaks of b-ions and y-ions are plotted

in blue and red, respectively. The distance between two ion peaks could be used to identify
the corresponding amino acid. For example, the difference between y3 and y4 equals to the
mass of Valine. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3.1 A difference between database searching approach and de novo sequencing approach. For
database search, all peptides in the database are compared to the input spectrum to compute
the similarity scores. The peptide with the highest similarity score is then chosen as the
prediction for the input spectrum. For de novo sequencing, the prediction is directly derived
from the input spectrum using the knowledge of the ion fragmentation process. . . . . . . . 9

4.1 A simplified architecture of SMSNet. The encoder captures peak pattern in the input spec-
trum and encodes it into a feature vector. The decoder then iteratively predicts amino acid
based on the feature vector and the previous prediction. . . . . . . . . . . . . . . . . . . . . 16

4.2 The core neural networks of SMSNet. The SMSNet model comprises of three main parts:
the encoder, the decoder, and the candidate ion stack, each part focusing on finding patterns
in one aspect of MS/MS spectra. In the encoder, input spectrum is duplicated and shifted
left according to amino acid masses to highlight relationship between peaks with mass dif-
ference equal to mass of an amino acids. The decoder uses feature representation computed
by the encoder to initialize the Long short-term memory (LSTM) layers, then iteratively pre-
dicts a series of amino acids by conditioning on the previous output and current-step features
calculated by the candidate ion stack. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4.3 The candidate ion stack at each time step. The candidate ion stack used the total mass of
the predicted sequence as a starting point, then cut small windows that might contain the
information of the next amino acid from the input spectrum to be as input. . . . . . . . . . . 19

4.4 Overview of the Sequence-Mask-Search framework. SMSNet encodes the input MS/MS
spectrum and passes the information to the decoder module which outputs amino acid sequen-
tially. During the sequencing process, relevant m/z regions from the input MS/MS spectrum
are extracted and fed to the decoder. Post-processing steps involve the adjustment of posi-
tional confidence scores, the replacement of low confidence positions by mass tags, and the
recovery of exact amino acid sequences in masked segments through database search. . . . . 24

5.1 Comparison between SMSNet and DeepNovo on DEEPNOVO-M and WCU-MS-BEST. (a)
Amino acid-level precision-recall curves for SMSNet and DeepNovo when evaluated on the
dataset curated by DeepNovo’s authors. The corresponding recalls at 5% amino acid false
discovery rate are indicated. (b) Histograms showing the distributions of positional confi-
dence scores produced by SMSNet and DeepNovo. (c-d) Similar plots showing performances
of SMSNet and DeepNovo when evaluated on our WCU-MS-BEST dataset. . . . . . . . . 29

5.2 (left) Precision-recall curve illusting the performance of SMSNet and DeepNovo on high-
quality MS/MS of synthetic peptides. (right) Density plots of amino acid confidence scores
of the predictions from both models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xi

5.3 Evaulation of SMSNet-M model after rescoring. (a) Bar plots showing amino acid-level pre-
cisions and recalls of SMSNet on a test set derived from WCU-MS-M and on MS/MS spec-
tra of nine species that comprise the dataset curated by DeepNovo’s authors. The threshold
on positional confidence score was selected so that 5% amino acid false discovery rate was
achieved on the WCU-MS-M test set (the leftmost bars). (b) Similar bar plots showing the re-
sults at peptide-level. (c) Line plots comparing the fraction of predicted amino acid positions
that pass the same score threshold used in a-b in peptides of various lengths (blue line) to
the fraction of amino acid positions that can be definitely determined based on observed ions
in the MS/MS spectra (orange dashed line). Shaded area indicate the ±1 standard deviation
ranges. (d) Stacked bar plots showing the fraction of predicted peptides that could be matched
to various protein sequence databases. Amino acid sequence database for each species was
downloaded from Uniprot Consortium (2018) (see Methods). Combined database integrates
amino acid sequences from all four species considered. In each bar, only predictions whose
ground truths exist within the corresponding database were counted. ”Unique hit” means
that there the predicted sequence matches to exactly one possibility in the database. ”Multi-
hit” means that the predicted sequence matches to multiple possibilities. ”No hit” means the
predicted sequence does not match to anything in the database. . . . . . . . . . . . . . . . 32

5.4 (a) Precision-recall curves of SMSNets trained on WCU-MS-M. The three lines indicate
three masking methods: normal thresholding, extended masking, and rescoring with another
neural network. (b) Similar plot on WCU-MS-P. . . . . . . . . . . . . . . . . . . . . . . . 33



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter I

INTRODUCTION

Proteins, rather than DNA or RNA, are fundamental molecules that perform critical, basic func-

tions within each cell. Studying proteins therefore provide more direct information on the biological

states of the sample of interest. Nonetheless, because proteins consist of amino acids that could not be

directly sequenced residue-by-residue, an alternative approach is needed. Mass spectrometry (MS) is an

experimental method that allows one to identify amino acid sequences of proteins that are present in a bi-

ological sample. During an MS data acquisition stage, proteins are digested into smaller segments, called

peptides, which are further broken into fragment ions. For each peptide, the profile of masses and abun-

dances of all fragment ions derived from it is called an MS/MS spectrum. The identity of the peptides,

and subsequently the proteins, can then be deduced from these mass spectra.

De novo peptide sequencing from MS/MS spectra is an important building block for characterizing

novel protein sequence. Typically, peptide sequencing techniques could be categorized into two main

groups: database searching and de novo peptide sequencing. Most database search algorithms share the

same core principle, they attempt to match the new MS/MS spectrum to the known peptide sequence

in the database, and return the sequence with highest similarity score, if any, as an output. This method

yields accurate results for species with complete database but performs poorly for novel peptide sequence,

such as in less-studied species or peptides with mutation. On the other hand, de novo peptide sequencing

technique focuses on determining peptide sequence directly from the pattern in MS/MS spectra, thereby

being better at handling novel protein sequences.

In the past years, de novo peptide sequencing was typically treated as a complex global optimization

problem, searching the sequence with best score according to a set of predefined structures. This method

usually suffers from the large search space of possible sequences. On the contrary, neural networks are

known for it ability to learn complex patterns from the data and have already showed great performance

in sequence generating problems. This type of problems share many key features with the way peptide

sequence is derived from the spectrum.

Despite many readily available tools for de novo peptide sequencing (Tran et al., 2017; Frank
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and Pevzner, 2005; Ma et al., 2003; Ma, 2015), reliably predicting peptides from routine tandem mass

spectrometry (MS/MS) spectra is still challenging. Recently, DeepNovo (Tran et al., 2017) has shown

that deep learning approach could be effectively applied to de novo peptide sequencing problem and could

outperform other standard tools such as PepNovo (Frank and Pevzner, 2005), PEAKS (Ma et al., 2003),

and Novor (Ma, 2015). However, performances of these existing tools might not be accurate enough and

still require careful validation by experts. Coincidentally, parts of the limitations of these de novo peptide

sequencing tools might be due to the nature of MS/MS spectrum. We observed that the problems with

sequencing from MS/MS spectrum could be categorized into three main problems: missing data, noise,

and ambiguity. In typical MS/MS experiments, evidence for some amino acid residues in the spectrum

might be missing entirely or the resulting mass spectrum might contain a lot of noises that are unrelated to

the peptide being characterized. In addition, having missing data and noise introduces more ambiguity to

the process as noisy spectrum results in more ’paths’ for possible peptides. Because peptide sequencing

is based on interpreting observed masses as the total weights of some possible amino acid sequences,

it remains unclear whether forcibly making predictions even at the position that are subjected to these

problems would yield accurate results.

In this thesis, we introduce SMSNet, the Sequence-Mask-Search framework for recovering peptides

from MS/MS spectra that addresses these limitations, along with our neural networks-based de novo

sequencing tool. First, SMSNet leverages domain-specific deep learning architecture to predict accurate

peptide sequences and their positional scores indicating how confidence the model is at those positions.

Second, to avoid misinterpreting incomplete MS/MS spectra, SMSNet is allowed to mask low-confidence

amino acids from its prediction, producing a partial sequence that excludes low confidence regions for

each spectrum. Third, by designing a new searching scheme that matches the partial predictions to the

database of known species, we could recover the full peptides sequence. Combining these three steps, we

show that our model could enable accurate discovering of peptide in a wide range of proteomes.

1.1 Main Contributions

The main contributions of this thesis can be summarized as follows:

• Developed a neural networks model for de novo peptide sequencing. This model achieved state-

of-the-art results on various dataset.
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• Proposed a rescorer to adjust the positional score of each amino acids prediction, which leads to

better separation of score distribution between correct and incorrect predictions.

• Proposed the sequence-mask-search framework, SMSNet, for recovering peptides from MS/MS

spectra. SMSNet combined both de novo sequencing technique and database searching to resolve

ambiguous position in the predictions.

• Investigated the use of SMSNet in real-life preoteomics studies.

This thesis propose a complete and robust deep learning pipeline for de novo peptide sequencing,

including data preprocessing, deep learning model, and positional filtering model.

1.2 Thesis Overview

The remainder of this thesis is organized as follows:

• Chapter 2 reviews the works related to mass spectrometry and peptide sequencing, including

database searching and de novo sequencing.

• Chapter 3 describes the background knowledge necessary for building a neural network for inter-

preting MS/MS spectra.

• Chapter 4 describes the methods and details of every experiments in this thesis.

• Chapter 5 presents the results and discuss the impact of SMSNet.

• Chapter 6 summarizes the key concepts of the thesis and provides directions for future works.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter II

LITERATURE REVIEW

Peptide sequencing from MS/MS spectrum has been an active research topics for many years as

it is a vital part for studying the characterization of proteins. Many tools were proposed and consistent

improvement were made over the past few years. Most of the tools, however, focus on identifying peptide

sequences by database searching; thus, they are highly dependent on the availability of database. On the

other hand, de novo peptide sequencing deviates the problem of acquiring database by deducing peptide

sequence using only the pattern in the spectrum. As a result, it is more likely to be affected by noise and

ambiguity. With the recent advancement in deep learning, there were also attempts to do de novo peptide

sequencing using neural networks. In this chapter, we explore the process by which MS/MS spectra are

obtained, traditional peptide sequencing methods, as well as the recent advancement in deep learning and

its application associated with de novo peptide sequencing.

2.1 Mass Spectrometry

Mass spectrometry is a technique for measuring the masses within the sample. During the process,

the sample is ionized and the ions are sorted according to their mass-to-charge ratio. A mass spectrum

is obtained by plotting the ion signal intensity as a function of such mass-to-charge ratio. In general, a

mass spectrum could be used to determine the masses of molecules within the sample, to identify isotopic

signature of the sample, or to annotate the chemical structures of chemical compounds.

Mass spectrometry analysis of proteolytic peptides also plays an important role in protein char-

acterization. By digesting the whole protein into smaller peptide fragments, the sample can be easily

prepared, and each peptide fragment can be identified separately. To this end, a method for measuring

the fragmented spectra, known as tandem mass spectrometry (MS/MS), is used in order to identify the

fragment masses.

In order to induce fragmentation, many techniques were proposed, each with their own bias and

limitation. Higher-energy collisional dissociation (HCD) is one of the possible techniques which induce

fragmentation of molecular ions to generate tandem mass spectrometry (Medzihradszky and Chalkley,

2015). In this process, the peptide is bombarded with electrons, causing it to break into charged fragments.
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Typically, each peptide breaks only once and produces two ion fragments, b-ion and y-ion, which are

measured into tandem mass spectrum. Therefore, by analyzing MS/MS spectrum, which is a collection

of b-ions and y-ions from the sample (Figure 2.1), the peptide sequence associated with the given sample

could be identified.

In addition, as it could be seen in the example in Figure 2.1(b), MS/MS spectrum usually contains

ambiguous information. First, it typically has a lot of noise with high intensity. Second, some b-ion and y-

ion evidences might be missing from the spectrum (for example, b1, b5, y4 are not present in the example).

Both of these problems make peptide sequencing from MS/MS spectrum challenging.

(a) Possible b- and y- ions fragments

(b) Tandem mass spectrum

Figure 2.1: An example of tandem mass spectrum. The observable peaks of b-ions and y-ions
are plotted in blue and red, respectively. The distance between two ion peaks could be used to
identify the corresponding amino acid. For example, the difference between y3 and y4 equals to
the mass of Valine.
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2.2 Peptide Sequencing

Given MS/MS spectra, there are generally two approaches that could be used to determine the

amino acid sequence in the sample: database search and de novo peptide sequencing.

Database Search

Database search is a straight forward approach to identify peptide sequence from MS/MS spectra.

The unknown spectra are run through the database to find the best match among the known peptide se-

quences. This method allows the user to select appropriate threshold by setting the False Discovery Rate.

In this approach, the similarity function to compute the best match varies depending on which charac-

teristic of peptide each tool focuses on. For instance, MaxQuant (Cox and Mann, 2008) uses correlation

analysis and graph theory to detect peaks and identify amino acid labels, while PEAKS DB (Zhang et al.,

2012) integrates de novo peptide sequencing into database search to improve accuracy and sensitivity.

Nevertheless, every database search techniques rely heavily on the availability of database of interested

species and could not recognize novel peptides not presented in the database.

De Novo Peptide Sequencing

De novo peptide sequencing is another sequencing method in which the peptide sequence is de-

termined from MS/MS spectra without any assisting database. This approach focuses more on assigning

amino acid labels by considering peaks in the spectrum which are associated with theoretical fragment

ions. Because of its ability to discover peptide sequence without database, de novo peptide sequencing

could be used to study peptide from less-studied species and peptide with mutation.

Because of the nature of MS/MS spectrum which contains high noise and ambiguity, de novo

peptide sequencing is usually formulated as a complex global optimization problem. Many forms of

dynamic programming were developed over the past few years. For example, PepNovo (Frank and Pevzner,

2005) viewed the problem as a probabilistic model and calculated a score for each peak, then found the

best path that follows pre-specified rules. PEAKS (Ma et al., 2003), instead of transforming the problem

to a graph-based optimization, optimized for a sequence that covers as many high abundance peaks as

possible. Finally, Novor (Ma, 2015) used decision trees to compute matching score between MS/MS

spectra and peptide fragments, then found the sequence with highest score.
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Recently, Tran et al. (2017) proposed a neural networks approach combined with local dynamic

programming to solve the problem, and showed improvement over all previous methods. The proposed

model, DeepNovo, consumes tandem mass spectrum as input to produce amino acid labels in an auto-

regressive manner, one amino acid at a time, while using knapsack algorithm to discard hypothesis which

does not match the sample mass. Deepnovo was claimed to perform at 97.2–99.5% accuracy when used

together with an assembler to reconstruct antibody light and heavy chains of mouse, while, for peptide

sequencing, achieving 38.2-66.1% amino acid recall and 14.6-39.4% peptide recall on various species.

In the neural network aspect of DeepNovo, the model employs Convolution Neural Network to-

gether with an encoder-decoder LSTM (Section 3.2), encoding the input MS/MS spectrum into a represen-

tation vector. Then, conditioning on given representation, the decoder consumes the previously predicted

label and relevant positions based on prefix mass to produce next step prediction. During the decoding

process, the model uses beam search algorithm, a techniques that continuously explores and keeps the k

most possible hypotheses while searching, to select the sequence with maximum score as output. The

knapsack algorithm is also used to help the model filters hypothesis that could not match the total sample

mass.

The results of DeepNovo, however, still indicates the gap that could be improved in de novo peptide

sequencing, particularly, in the aspect of precision of the prediction which could affect the overall usability

of the output peptides in different tasks. DeepNovo also has limitation regarding the ability to express

uncertainty in the predictions with ambiguous amino acids.

2.3 Review Summary

The review of literature presented in this chapter mostly focuses on the development of peptide

sequencing tools and the application of neural networks on sequence transduction tasks. Many works

framed de novo peptide sequencing as global optimization task, and some attempted to apply machine

learning techniques to the problem. It was showed that it is possible to approach de novo peptide sequenc-

ing task from the neural networks standpoint. We believe there is still a gap in performance of de novo

peptide sequencing that could be improved.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter III

BACKGROUND KNOWLEDGE

In this chapter, we outlined the knowledge necessary for effectively constructing a deep learning

model for de novo peptide sequencing.

3.1 Peptide sequencing by database searching

The database search approach for peptide sequencing from MS/MS spectra was used by many

peptide sequencing tools such as MaxQuant (Cox and Mann, 2008) and PEAKS DB (Zhang et al., 2012).

This approach ensures that the predicted peptides are consistent with the proteins in the known database

but lack the ability to handle novel peptides. While each database searching tool differs on how the scores

are assigned and how the spectrum is preprocessed, they shared the following key concepts. First, the

tool is given a database related to the experiments to search from. Then, every candidate sequence in the

database are compared with the input spectrum and are given a score. These scores indicate how likely the

sequence could match the input spectrum. The sequence with the best score that passes a certain threshold

is then assigned as a prediction for that spectrum. Figure 3.1 illustrates the difference between database

searching approach and de novo sequencing approach.

3.2 Neural Networks for Transduction Task

Neural Networks are robust machine learning models which have achieved state of the art perfor-

mance in various fields (LeCun et al., 2015). In sequence modeling and transduction, a form of recurrent

neural networks, usually long short-term memory (Hochreiter and Schmidhuber, 1997) or gated recurrent

unit (Chung et al., 2014), constantly produced highly competitive results in a variety of tasks, such as

machine translation (Sutskever et al., 2014; Wu et al., 2016; Bahdanau et al., 2014), image captioning

(Xu et al., 2015), and language modeling (Devlin et al., 2014). In this section, we review the use of neu-

ral networks in sequence transduction tasks along with the relevant components for building an effective

model.
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Figure 3.1: A difference between database searching approach and de novo sequencing approach.
For database search, all peptides in the database are compared to the input spectrum to compute
the similarity scores. The peptide with the highest similarity score is then chosen as the prediction
for the input spectrum. For de novo sequencing, the prediction is directly derived from the input
spectrum using the knowledge of the ion fragmentation process.

Recurrent Neural Networks

Recurrent Neural Networks (RNN) (Goodfellow et al., 2016) are a family of Neural Networks de-

signed to handle sequential computation. Typically, recurrent neural networks is a type of neural networks

that factors the step position t when processing inputs and outputs. By consuming the input at position t,

the model calculates a hidden state ht as a function of previous state ht−1. Concretely, the model can be

described as follows:

ht = f(ht−1, xt; θ)

where θ are the parameters of the function f , and the hidden state at current time step ht is a function

f of the previous hidden state ht−1 and the current input xt. The output at each step t is then generated

conditioning on ht. This allows RNN to learn the concept of time for the input and summarize the past

input sequence into a hidden state ht.
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Long Short-Term Memory

Long short-term memory (Hochreiter and Schmidhuber, 1997) is a variation of recurrent neural

networks with an additional gate mechanism to adjust the weights of paremeters within the memory units.

In order to avoid the problem with long-term dependencies (Bengio et al., 1994), a memory cell c is added

to the model. The formula of long short-term memory networks (LSTM) can be expressed as follows:

fi = σ(Wfht−1 + Ufxt + bf )

it = σ(Wiht−1 + Uixt + bi)

ot = σ(Woht−1 + Uoxt + bo)

gt = tanh(Wght−1 + Ugxt + bg)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

where ft, it, ot represent forget gate, input gate, and output gate respectively, c is the memory cell, ht is

the hidden state at time step t, and ⊙ is an element-wise dot product operation.

Intuitively, the LSTM decides how much weight each gated elements get based on the previous

hidden state ht−1 and the current input xt. Forget gate f decides how much the model should discount

the previous memory. Output gate ot scales the output of the current step. Both input gates it and gt

determine how much the current input xt should be added to the memory cell c.

Given a dataset of input and output pairs (x, y), a neural network is trained to minimize the dif-

ference between the predicted value ŷ and the true label y according to a loss function. For classification

task, the most common loss function is cross entropy loss:

loss(y, ŷ) =
∑
i

yilog(ŷi)

where y is a one-hot vector with size equals to a number of possible classes and ŷ is a vector of predicted

probabilities of each class.

In the usual neural networks the gradient of the loss function with respect to the network parameters

is calculated by backpropagation algorithm (Rumelhart et al., 1986). For recurrent neural networks, the

modified algorithm known as Backpropagation Through Time (Werbos, 1990) is used to propagate the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11

loss through the unfolded networks. Then, the network parameters are updated according to the optimizer.

The most common optimizers are stochastic gradient decent (SGD) (Bottou, 2010) and Adam (Kingma

and Ba, 2014).

3.3 Convolutional Neural Networks

Convolutional Neural Networks (CNN) (LeCun et al., 1998) is another variant of neural networks

which aims to capture the locality of the features in the input. The network was first designed to exploit

the two properties most images data obeys: highly correlated neighbors and translation invariant. In the

networks, many small filters, usually 3x3 or 5x5 pixels, are used to perform 2-dimensional convolution on

the input image across vertical and horizontal dimensions. For every positions, the same filters are applied

to ensure the translation invariant property. This operation results in a feature vector for each pixel in the

image. Because the inputs and outputs of each CNN layer could be very large, max pooling or average

pooling is commonly used to downsample the feature vectors. Besides, it is important to note that CNN

can be easily extended to handle 1-dimensional data by discarding one dimension from the filters to match

with the 1-dimentional input.

3.4 Encoder-Decoder Architecture

Encoder-decoder structure has become a part of many established models for sequence transduc-

tion. The idea showed great potential following the successes in many fields such as machine translation

(Sutskever et al., 2014; Bahdanau et al., 2014; Cho et al., 2014) and image captioning (Vinyals et al.,

2015). In this architecture, the encoder transforms the input feature x1, ..., xn into a vector representation

z. Given z, the decoder then computes an output sequence y1, ..., ym in an auto-regressive manner. In

other words, the model conditions on the previously generated symbol yt−1 to produce the next output

symbol yt.

3.5 Embeddings

In sequence transduction models, it is common to have learned embeddings as part of the networks.

An embedding layer converts the discrete input tokens into a higher-dimensional, real-valued vectors. The

aim is for these vector representations to provide more information about the inputs to the model than their

original values, and make the model easier to learn. There are several methods for learning embeddings
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such as Continuous Bag-of-Words and Skip-Gram (Mikolov et al., 2013). It is also possible to train an

embedding layer together with the model via backpropagation.

3.6 Summary

In this chapter, we described the background knowledge related to the database search approach

for peptide sequencing and also each component for building an effective neural network model.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV

METHODS

This chapter describes the datasets, experiment settings, and our proposed Sequence-Mask-Search

pipeline (SMSNet) for de novo peptide sequencing. We will also discuss the evaluation metrics for com-

parison with the previous model, DeepNovo (Tran et al., 2017), and for validating the usefulness of our

prediction in the context of real experiments where some spectra do not contain any peptide information.

This chapter was taken from our manuscript which has been submitted for publication.

4.1 Data acquisition

A combined dataset consisting of more than 27 million peptide-spectrum matches (PSM) was ob-

tained from the Proteomics and Metabolomics Core Facility at the Wistar Institute (Philadelphia, PA,

USA). All MS/MS spectra were acquired on Q Exactive HF or Q Exactive Plus mass spectrometers

(Thermo Fisher Scientific, Bremen, Germany) and processed using MaxQuant (Cox and Mann, 2008) by

scientists at the Core Facility. Peptide level false discovery rate was set at 5%. Multiple sets of variable

modifications and multiple protein databases were used depending on the goals and scopes of individual

mass spectrometry experiments. Importantly, the metadata have been removed to safeguard the identity

of principal investigators and the details of their research projects.

From 27 million PSMs, we constructed three individual training datasets: (i) WCU-MS-M, which

consists of 25,174,942 MS/MS spectra that correspond to unmodified peptides and peptides containing

oxidized Methionine, (ii) WCU-MS-P, which consists of 26,943,975 MS/MS spectra that correspond to

unmodified peptides, peptides containing oxidized Methionine, and peptides containing phosphorylated

Serine, Threonine, or Tyrosine, and (iii) WCU-MS-BEST, which consists of 1,239,045 MS/MS spectra

that were assigned the highest quality scores by MaxQuant (the ”Score” column in evidence output file)

for each unique unmodified peptide and charge state. In other words, the WCU-MS-BEST dataset contains

the highest quality MS/MS spectrum for each unmodified peptide.

We also acquired two external datasets to evaluate SMSNet’s performance on Q Exactive MS/

MS data from diverse species and laboratories. For direct comparison with DeepNovo (Tran et al.,

2017), we combined 1,422,793 PSMs from 9 studies of distinct species (PRIDE accessions PXD005025,
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PXD004948, PXD004325, PXD004565, PXD004536, PXD004947, PXD003868, PXD004467, and

PXD004424) that were previously curated by DeepNovo’s developers. Finally, high-quality MS/MS spec-

tra of synthetic peptides were acquired from the ProteomeTools HCD Spectral Library (Zolg et al., 2017).

It should be noted that this dataset was acquired on Orbitrap Fusion Lumos mass spectrometer. We named

both datasets DEEPNOVO-M and ProteomeTool, respectively.

4.2 Training, validation, and test sets partitioning

To ensure that training, validation, and testing sets do not share a common peptide, we first par-

titioned unique peptides into three sets, then constructed training, validation, and testing sets from mass

spectrum data associated with these peptides. Accounting for the fact that some peptides appear in the

datasets much more often than the others, we kept only one random data entry per peptide in validation

and testing sets. The validation set was used for choosing the model architecture and determining the

number of training steps. For WCU-MS datasets, we used validation and test sets of size 50,000 but used

smaller subset in other datasets to maintain the number of unique peptides in each dataset. During train-

ing, peptides with more than 30 amino acids were ignored to account for the fact that longer peptides are

likely to have more noise in the spectrum. The details of each dataset after partitioning are presented in

table 4.1.

Dataset Unique Peptide
Train Validation Test

DEEPNOVO-M 216,200 20,000 20,000
WCU-MS-BEST 769,208 50,000 49,998

WCU-MS-M 864,990 50,000 50,000
WCU-MS-P 994,786 50,000 50,000

ProteomeTools 162,648 20,000 20,000
Dataset Total Spectra

Train Validation Test
DEEPNOVO-M 1,198,433 111,365 112,995

WCU-MS-BEST 1,095,941 50,000 49,998
WCU-MS-M 22,607,416 50,000 50,000
WCU-MS-P 24,499,353 50,000 50,000

ProteomeTools 212,454 26,154 26,228

Table 4.1: Datasets description. DEEPNOVO-M, WCU-MS-BEST, and ProteomeTools were
used for comparison with DeepNovo.
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4.3 Data preprocessing

MS/MS spectra in the WCU-MS training sets were extracted from raw files and centroided us-

ing Thermo Fisher Scientific’s MSFileReader version 3.0. MS/MS spectra in the HLA peptidome and

phosphoproteome datasets were extracted from raw files into mgf format using ProteoWizard version

3.0.11133 (Chambers et al., 2012) with the following filter parameters: Peak Picking = Vendor for MS1

and MS2, Zero Samples = Remove for MS2, MS Level = 2-2, and the default Title Maker. Charge state

deconvolution was not performed.

The data of a tandem mass spectrum in mgf format is stored as a list of mass and intensity tuples,

where each tuple contains the intensity of each mass value. In all experiments, any mass intensity above

5,000 Da was discarded as we found it is often noisy and uninformative for the model. For each spectrum,

we used two resolutions of 0.1 Da and 0.01 Da for discretizing it to vector representations of length 50,000

and 500,000. The lower resolution vector provides an overview of the spectrum for the encoder while the

higher resolution vector is used by the candidate ion stack. The details of each component are described

in the next section.

4.4 Neural networks model architecture

Inspired by DeepNovo (Tran et al., 2017), we developed our deep learning model focusing on inte-

grating domain knowledge to create a specialized model for de novo peptide sequencing, which we called

SMSNet. By viewing a peptide sequence as a list of amino acids, we can view the peptide sequencing

problem as a problem of predicting a series of amino acid for each position. Let X be an input mass

spectrum data, the model can be written as:

P (Peptide|X) =
N∏
i=1

P (yi|y0, y1, y2, ..., yi−1;X)

where yi is the predicted amino acid at position i, y0 is a special start token, and N is the peptide length.

Our model consists of three main components: an encoder, a decoder, and an ion stack. In general,

the encoder tries to capture an overview of input mass spectrum and use it to initialize the decoder. Then,

conditioning on the predicted prefix, the ion stack focuses on the relevant part of the spectrum and uses

it to compute features for predicting the next amino acid. Finally, the decoder calculates probabilities for

the next amino acid using its previous prediction and features from the ion stack. The model architecture
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is illustrated in Figure 4.1 and Figure 4.2. Every layers in the networks used rectified linear unit (ReLU)

as the activation function unless specified otherwise.

Figure 4.1: A simplified architecture of SMSNet. The encoder captures peak pattern in the input
spectrum and encodes it into a feature vector. The decoder then iteratively predicts amino acid
based on the feature vector and the previous prediction.

Encoder

The encoder was designed to encode an overview of the input spectrum vector into a feature vector

of size 1024 which will be used to initialize the hidden state and cell state of the decoder. To integrate the

knowledge from the peptide fragmentation process into the model, we restructured the input to make it

more likely for the encoder to capture the relationship between positions that could be used to determine

amino acid presences. Firstly, the input vector of length 50,000 was duplicated A times, where A is the

number of possible amino acids, into a tensor of shape (50000,A). (A is 21 when training on datasets with

20 amino acids plus oxidized Methionines and 24 when training on datasets with 20 amino acids plus

oxidized Methionines and phosphorylated Serines, Threonines, and Tyrosines). Each copy of the original

input vector is shifted to the left according to each amino acid mass, then padded with zeros. For example,

with the resolution of 0.1 Da, the vector representing Alanine is shifted to the left by floor(71.037×10) =

710. The first 710 values in the vector are discarded, and 710 zeros are padded to the right. This process

resulted in a tensor of shape (50000, A). Secondly, we created another vector of values from 0 to 49,999

to indicate the index of each positions on the spectrum, then normalized it to have zero mean and unit

variance. The index vector was then concatenated to the input to provide the information regarding the

position, resulting in a tensor of shape (50000, A+ 1).

The restructured input was then passed to the encoder neural networks consisting of three 1x1

convolution layers, followed by three fully connected layers. Each of the 1x1 convolution layers applied the
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Figure 4.2: The core neural networks of SMSNet. The SMSNet model comprises of three main
parts: the encoder, the decoder, and the candidate ion stack, each part focusing on finding patterns
in one aspect of MS/MS spectra. In the encoder, input spectrum is duplicated and shifted left
according to amino acid masses to highlight relationship between peaks with mass difference
equal to mass of an amino acids. The decoder uses feature representation computed by the
encoder to initialize the Long short-term memory (LSTM) layers, then iteratively predicts a
series of amino acids by conditioning on the previous output and current-step features calculated
by the candidate ion stack.

same transformation to every input position separately and compute features along the second dimension

of the input tensor. This forces the encoder to learn about the structure at each location. The three kernels

had shape (1, 32), (1, 64), and (1, 2) that would produce a tensor of shape (50000, 32), (50000, 64), and

(50000, 2) respectively after each layer. After that, the feature vector was flatten and passed through three

fully connected layers with dimension 512, 512, and 1024, finally resulting in a vector of size 1,024.

For regularization, a dropout layer with dropout rate of 0.4 was used between the first and second fully

connected layer.

Decoder

The decoder is a type of recurrent neural network that receives the feature vector from the encoder

and uses it to generated a sequence of amino acids by outputting amino acids one by one. This is similar

to the technique used in training neural networks for image captioning (Vinyals et al., 2015) or machine

translation (Sutskever et al., 2014; Bahdanau et al., 2014; Cho et al., 2014) where the input information
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(an image or a sentence in one language) is encoded into a vector representation, then passed to a decoder

to generate the intended output (a caption or a sentence in a different language). Normally, the decoder for

image captioning takes only the previously outputted word as input. In SMSNet, the decoder also takes

as input a feature vector calculated by the candidate ion stack based on previous predictions for each step.

This additional features were designed to provide more context about the next amino acid to the model.

In the decoder, we used two layers of long short-term memory (LSTM) of size 512 with layer

normalization (Ba et al., 2016) on top of each layer and a residual connection (He et al., 2016) around

the second layer. The same encoded vector of length 1,024 was partitioned into two halves and used as

initial values for the hidden state and memory in both layers. At each step, the LSTMs takes as input a

vector of length 544, a concatenated vector between a feature vector of length 512 from the candidate

ion stack and an embedding vector of size 32 of the previous amino acid. Then, the output from LSTMs

is passed through a fully-connected layer with a softmax activation function to produce probabilities for

each amino acid. The shape of the last output depends on the number of possible amino acids (20, 21, or

24 depending on the number of modified amino acids considered)

Candidate ion stack

Given the total mass of the previously predicted amino acids, the candidate ion stack retrieved

relevant sections of the mass spectrum to compute a feature vector for the decoder. Specifically, it looks

for evidence supporting the next prediction by focusing on regions that can be the next amino acid. For

each possible amino acid, 8 ion types were considered: b, b(2+), b-H2O, b-NH3, y, y(2+), y-H2O, and

y-NH3. Supposed that there are 21 different amino acids, for each of the 8 ions, we sliced a small window

of size 0.2 Da (20 elements at 0.01 resolution) from the original input vector of size 500,000, resulting in

168 20-element vectors. These vectors were stacked together to form an input of shape (168, 20).

The candidate ion stack consisted of two 1x1 convolution layers followed by two fully-connected

layers. The idea is to force the model to first learn the peak patterns of each ion, then learn the relationship

between ions based on the calculated features. The two 1x1 convolution layers had 32 and 64 filters

respectively, while both fully-connected had 512 dimensions. The output feature tensor was then used as

input for the decoder. Figure 4.3 illustrates the process of the candidate ion stack at each time step.
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Figure 4.3: The candidate ion stack at each time step. The candidate ion stack used the total
mass of the predicted sequence as a starting point, then cut small windows that might contain
the information of the next amino acid from the input spectrum to be as input.

4.5 Inference

During inference, we used beam search with beam size of 20 to explore and find the most likely

sequence of amino acids. At each step, every remaining hypotheses are ranked by the following formulas,

which is a modified version from Wu et al. (2016):

score(Y,X) = log(P (Y |X))/length_penalty(Y )

length_penalty(Y ) =
5 + |Y |

6

where P (Y |X) is a product of the previously predicted amino acid probabilities. The length penalty term

is used to compensate longer sequences which usually have lower product value than the shorter ones.

Additionally, during each step, we filtered out hypotheses that the difference between its current mass

and the precursor mass did not match any possible amino acid combinations using the knapsack search

algorithm.

The beam search decoding would continue until a special ending token is produced or a maximum

length of 50 is reached for every remaining beam. After the decoding process ended, the amino acid

sequence with the best score according to the provided formulas was selected as the final output.
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During beam search, we prune the hypotheses using its remaining mass, total_mass −

prefix_mass(Y ), to keep only hypotheses that are possible to match the total mass of the spectra. The

hypothesis is discarded if there is no amino acid combination that has a mass equal to the remaining mass.

Knowing every possible amino acids, we can construct a look-up table using dynamic programming de-

scribed as follows:

DP [i] =


1, if any DP [i− aaj ] = 1.

0, otherwise.

where DP [0] = 1 and aaj is a mass of possible amino acids. The table is built with 0.0005 Da resolution

and allows 0.01 Da tolerance when searching. Concretely, a hypothesis is deemed possible if ∃iDP [i] = 1

where i ∈ [suffix_mass(Y )− 0.01, suffix_mass(Y ) + 0.01].

4.6 Model training

We modeled the peptide sequencing task as a series of amino acid predictions where each pre-

diction is a multi-class classification problem. We chose the focal loss (Lin et al., 2017), which is a

dynamically scaled cross-entropy loss, as a loss function for our model. For binary classification tasks,

the focal loss is defined as:

Focal Loss = −α(1− pt)
γ

where pt = p for the class with label y = 1 and pt = 1 − p otherwise, p is the model’s estimated

probability for the class with label y = 1, α and γ are hyperparameters for balancing the importance

of positive/negative examples and easy/hard examples, respectively. We set α to 0.25 and γ to 1.0 as

it performed best on the validation set. The focal loss is chosen instead of normal cross-entropy loss

because we suspected that there is an imbalance between easy examples with complete mass spectrum

data evidence and hard examples with missing peaks.

To extend the focal loss to multi-class classification, we can view a multi-class classification prob-

lem as many binary classification problems. Concretely, we can pass the output of the last layer of the

model through multiple sigmoid functions to obtain binary probabilities of being each class, then use the

provided formula to calculate the focal loss. For inference, the sigmoid function was substituted with a

softmax function to compute probability scores which can be summed to 1.

We initialized all parameters by drawing from a uniform distribution between -0.1 and 0.1, and
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trained the model using stochastic gradient descent with learning rate decay. An initial learning rate of

0.01 was used until two-thirds of the maximum training step. Afterwards, as a form of learning rate decay

for the model to better fit the data when loss is small, the learning rate was halved every one-twelfth of

the maximum training steps. The gradient of the loss was normalized so that its L2-norm was less than

or equal to 5. With a batch size of 32, the models were trained for 4,000,000 steps on WCU-MS-M and

WCU-MS-P, which took roughly one month on Nvidia GeForce GTX 1080 Ti.

4.7 Ablation study

To evaluate the impact of each component to the performance of SMSNet, we performed ablation

studies by making some modifications to the model, then measuring the performance degradation caused

by those modifications. The following modifications were tested:

• Removing the encoder entirely and initializing the decoder with a vector of zeros.

• Removing the shift mechanism in the encoder. In this variation, we removed the 1x1 convolution

layers and fed the low-resolution input vector of size 50,000 directly to the fully-connected layer.

• Using normal cross-entropy loss instead of the focal loss.

• Not using layer normalization after LSTM layers in the decoder.

• Not considering b-H2O, b-NH3, y-H2O, and y-NH3 ions in the candidate ion stack.

Every modified models were trained for 20 epochs on WCU-MS-BEST.

4.8 Rescorer

Once the entire amino acid sequence has been predicted, SMSNet adjusts the confidence score for

each position in the prediction through another model called the rescorer. We designed the rescorer to be

a shallow neural network consisting of two fully connected layers of size 64. To train the model, we used

binary cross-entropy loss and the Adam optimizer with default parameters of β1 = 0.9 and β2 = 0.999.

The rescoring validation set was used for early stopping.

4.9 Data preprocessing for the rescorer

Unlike the main model, the rescorer operates solely on the level of amino acids. For each hypoth-

esized amino acid, it predicts the confidence level of the prediction. The following features were used:
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peptide length, numbers of amino acids with probability more than 0.7, 0.8, and 0.9, a geometric mean

of amino acid probabilities in the peptide, the position of amino acid normalized by the peptide length,

probabilities of amino acids at index t−1 to t+2 for current index t. We chose these features on the basis

that they are not visible to the main model during the decoding process and they gave the lowest loss on

the validation set. The label for each data point is 1 if the given de novo amino acid matches the true label

and 0 otherwise.

As the rescoring model is designed to evaluate amino acids labels predicted by the main model, we

could not used the original training set that the main model was trained on. Therefore, the amino acids in

the original validation set was partitioned into rescoring training and validation sets with ratio of 90:10.

The test set were still the same for both tasks.

4.10 Comparison with DeepNovo

To compare the performance of our model with DeepNovo (Tran et al., 2017), we trained both

DeepNovo and SMSNet on two datasets, one from nine species used in DeepNovo (Tran et al., 2017) and

one from our new dataset, which were used for comparison only. Both models used the same training,

validation, and test sets. For DeepNovo, we used the code provided together with their publication.

The first dataset is constructed by combining together all high-resolution datasets in DeepNovo

publication. As we only focused on amino acid with Methionine-oxidation, any peptide that contains

amino acid with Asparagine- or Glutamine-deamidation in the original dataset was discarded. The re-

maining data consisted of 1,422,793 mass spectra from 256,200 unique peptides. Due to its lower number

of unique peptides, instead of using 50,000 unique peptides as validation and testing sets as in other exper-

iments, we sampled only 20,000 unique peptides from the dataset and used all of their associated spectra,

resulting in validation and test sets of size 111,365 and 112,995, respectively.

The second dataset, called WCU-MS-BEST, is a subset of WCU-MS-M dataset that contained only

peptide with no amino acid modification. We selected only spectrum with best quality score according

to MaxQuant (Cox and Mann, 2008) for each unique peptide and charge state to form an easy but diverse

dataset. In total, there are 1,239,045 spectrum of 869,206 unique peptide. The validation and test set

each contains 50,000 unique peptide spectra (two spectra were later removed from the test set due to

mismatches between their precursor masses and the labels, resulting in the test set of size 49,998). For
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peptides with many charge states, we randomly chose one charge state and discarded the rest.

The third dataset is the high-quality MS/MS spectra of synthetic peptides from the ProteomeTools

HCD Spectral Library (Zolg et al., 2017). To preserve the number of unique peptides in each of train,

validation, and test set, only 20,000 unique peptides out of 242,648 were randomly chosen for validation

and test set. In total, there were 212,454, 26,154, 26,228 spectra in train, validation, and test set, respec-

tively. As the dataset was acquired on Orbitrap Fusion Lumos mass spectrometer, the noise patterns in

the spectrum were different from those in WCU-MS datasets. As a result, using the models trained on

WCU-MS-BEST for predicting peptides from ProteomeTools spectra yielded near-zero recall. Thus, by

using this dataset, we could evaluate the generalizability of SMSNet and DeepNovo model by retraining

the models on the MS/MS spectra from different mass spectrometer.

The amino acid vocabulary were set according to the dataset for both models, with 20 possible

amino acids for the first dataset and 21 for the second dataset. Apart from the amino acid vocabulary, our

model settings were the same as in other experiments. For DeepNovo, we set the spectrum resolution to

0.02 Da and kept other default parameters. At inference time, both models used beam search with beam

size 20 to find the most probable peptide for each input.

4.11 Evaluation metrics

For evaluation, we considered the performance on both amino acid level and peptide level. A

predicted amino acid is considered matched to the ground truth only if their masses differs less than 0.0001

Da and their prefix masses differs less than 0.03 Da, and a peptide sequence is considered matched only

if all of its amino acids match the true labels. As the models provided confidence scores that reflect the

quality of each amino acid predictions, we could set a threshold below which the predictions are discarded.

Then, by varying the threshold, we can plot precision-recall curves to summarize the performance of the

models. In addition, if a peptide has less than four amino acids left, we will also discard all of the remaining

amino acids regardless of their scores. The precision and recall were measured by the number of matched

predictions divided by the number of total predictions and the number of ground truth labels, respectively.
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The formulas for calculating precision and recall can be described as follows:

Precision =
True Positive

True Positive+ False Positive

Recall =
True Positive

True Positive+ False Negative

4.12 Mass tag and database search

After the scores of each amino acid prediction were adjusted by the rescorer in the ”sequence”

phase, we set a threshold below which a prediction is considered ambiguous. Then, during the ”mask”

phase, all of the continuous amino acids positions whose confidence scores lie below a user-specified

threshold were grouped together and replaced by a mass tag that reflect their combined masses. Finally,

during the ”search” phase, SMSNet attempts to recover the exact amino acid sequences from masked

positions by searching all predictions against a reference amino acid sequence database. Combining the

three steps together, the sequence-mask-search framework can be illustrated as in Figure 4.4

Figure 4.4: Overview of the Sequence-Mask-Search framework. SMSNet encodes the input MS/
MS spectrum and passes the information to the decoder module which outputs amino acid se-
quentially. During the sequencing process, relevant m/z regions from the input MS/MS spectrum
are extracted and fed to the decoder. Post-processing steps involve the adjustment of positional
confidence scores, the replacement of low confidence positions by mass tags, and the recovery
of exact amino acid sequences in masked segments through database search.

To identify the exact amino acid sequences for predictions that contain mass tags or ambiguous

Leucine/Isoleucine positions, we search for possible matches within a given protein sequence database.

For analyzing HLA peptidome and human phosphoproteome dataset, the Uniprot (Consortium, 2018)

reference human proteome was used. For evaluating whether each of SMSNet’s predictions could be

matched to a unique possibility, the Uniprot reference proteome for either human, mouse (Mus muscu-
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lus), budding yeast (Saccharomyces cerevisiae), Escherichia coli strain K12, or a combination of all four

species was used. All databases include isoforms and predictions proteins. An amino acid sequence

within the database is considered a match to an ambiguous prediction if (i) all non-Isoleucine positions

in both sequences match, (ii) all Isoleucines in the prediction match to either Leucine or Isoleucine in the

database sequence, and (iii) all mass tags in the prediction match to amino acid substrings in the database

sequence whose weights differ less than 20 ppm from the corresponding mass tags. For evaluating the

fraction of SMSNet’s prediction that can be uniquely mapped to a peptide in a database, we considered

only the spectra whose labels were also present in that database.

4.13 Definition of amino acid’s evidence

Given a mass spectrum, we determined that an amino acid has supporting evidence if it follows

our defined criteria. Firstly, for an amino acid with mass Maa and prefix mass Mprefix, there must be

ions with mass Mprefix and Mprefix +Maa present in the spectrum. Secondly, a fragmented ion is said

to be present in the spectrum if there is at least a peak with any intensity within 0.1 Da of its theoretical

b-, b(2+)-, y-, or y(2+)-ion. The first and last amino acid in a peptide only require one ion mass presence.

4.14 Application on real-world studies

In order to assess the performance of SMSNet as part of the real-world studies, we run the trained

models on the spectra from two external datasets: human leukocyte antigen (HLA) peptidome and hu-

man phosphoproteome. In both studies, some spectra might not correspond to any peptide as a result of

noise in the detection process or chemical contamination. We set the cutoff of SMSNet at 95% amino

acid-level precision on the training dataset of the model. The predicted sequences which contain less

than four remaining amino acids were discarded. For evaluating SMSNet’s ability to discover new pep-

tides, we downloaded 83 raw files consisting of more than 3.5 million MS/MS spectra from an HLA

peptidome study of mono-allelic cell lines (Abelin et al., 2017) (MassIVE accession MSV000080527).

Finally, for testing SMSNet-P model’s ability to identify phosphorylated peptides, we downloaded 12 raw

files consisting of more than 676,000 MS/MS spectra from a comprehensive phosphoproteome study of

control and epidermal growth factor-treated glioblastoma cells (Humphrey et al., 2018) (PRIDE accession

PXD009227). The details of both studies are beyond the scope of this thesis. We refer the reader to Abelin

et al. (2017) and Humphrey et al. (2018) for more information.
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4.15 Summary

In this chapter, we described the datasets used in this thesis, the SMSNet model, and the evalu-

ation on various aspect. We started by providing a step by step detail of how the data were curated and

preprocessed. Then, we explained the motivation and construction of each part of SMSNet, including the

encoder, the decoder, and the candidate ion stack. Finally, we outlined the methods for comparing our re-

sults to the state-of-the-art de novo sequencing tool DeepNovo and for evaluating SMSNet’s performance

in the real-world setting. The results of each evaluation will be presented in the next chapter.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter V

RESULTS

In this chapter, we present the results from the experiments described in the previous chapter. We

tested SMSNet on both controlled datasets and real-world datasets where some spectra might not have

a label. We will also discuss the results, especially in term of model architecture comparison between

SMSNet and DeepNovo (Tran et al., 2017), and the impact of each component of SMSNet to the overall

performance.

5.1 Dataset compositions and SMSNet model

To train our neural networks model, we gathered a large collections of mass spectrum data from

experiments at Proteomics Core Facility at Wistar Institute to be used as training data. Our dataset contains

a diverse range of species, including peptides that can be uniquely matched to the protein database of

Homo sapiens(17%), Mus musculus(9%), Saccharomyces cerevisiae(6%), and Escherichia coli(3%). The

complete compositions of species-specific peptides in WCU-MS dataset are shown in table 5.1. First, by

combining 1,543,394 spectra of peptides with Methionine-oxidation and peptides with no modification,

we constructed a dataset of size 25,174,942, which we called WCU-MS-M dataset. Then, an addition

of 1,769,033 spectra with Serine-, Threonine-, or Tyrosine-phosphorylation were added to WCU-MS-M

to form the second dataset called WCU-MS-P, consisting of 26,943,975 spectra. For comparison with

the current state-of-the-art de novo sequencing tools DeepNovo (Tran et al., 2017), we prepared another

two sets of spectra. The first set was a collection of high-resolution spectra from nine species used in

DeepNovo (Tran et al., 2017) with a total size of 1,422,793. The second set was a high-quality subset

of WCU-MS-M of size 1,239,045 (see Methods for details). We chose these two sets on the basis that

DeepNovo settings were configured for the dataset of this size. We named these two sets DEEPNOVO-M

and WCU-MS-BEST, respectively.

Using these mass spectrometry data, we trained four neural network models for de novo sequenc-

ing, one for each dataset. We named our neural network model SMSNet, reflecting the Sequence-Mask-

Search mechanism used in our sequencing pipeline. To reduce the complexity of the output space, we

reframed de novo sequencing task from outputting the whole peptide chain all at once into a task of
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Species Number of Unique Peptides
Homo sapiens 165,783
Mus muculus 91,482

Saccharomyces cerevisiae 55,466
Escherichia coli 31,585

Rattus norvegicus 17,587
Arabidopsis thaliana 13,865

Xenopus laevis 11,441
Bos taurus 6,515

Table 5.1: Compositions of species-specific peptides in WCU-MS dataset. A peptide is counted
only if it could be mapped to exactly one of the databases considered. All databases were down-
loaded from Uniprot. Isoforms and predicted proteins are included.

predicting a series of amino acids to match the encoder-decoder framework (Sutskever et al., 2014; Venu-

gopalan et al., 2015; Vinyals et al., 2015; Cho et al., 2014), where the inputs are first encoded into a

fixed-length vector representation that is then used for generating outputs. More specifically, the model

takes a MS/MS spectrum as the input then predicts one amino acid at each step by conditioning on the

spectrum and previously predicted amino acid. SMSNet comprises of three main components: the en-

coder, the candidate ion stack, and the decoder (Fig 4.4). Each component focuses on one aspect of the

mass spectrum data: (i) the encoder captures an overview of mass spectrum in low resolution, (ii) the

candidate ion stack considers only a few locations necessary for predicting the next amino acid in high

resolution, and (iii) the decoder learns the peptide sequence pattern based on the other two features. Dur-

ing inference, we used beam search to keep only a constant number of top candidate sequences at each

decoding step. More details can be found in Methods.

5.2 Model evaluation on held-out mass spectrometry data

We evaluated performance of SMSNet on the held-out test sets of each datasets by using peptide

labels from a database searching tool MaxQuant (Cox and Mann, 2008) at <5% false discovery rate (FDR)

as ground truth and comparing them with the predicted sequences.

First, we compared SMSNet results to the current state-of-the-art de novo sequencing model Deep-

Novo (Tran et al., 2017) on two datasets, DEEPNOVO-M and WCU-MS-BEST, with both model trained

and tested on the same datasets. The recalls of SMSNets trained on DEEPNOVO-M were 47.11% on

peptide-level and 71.24% on amino acid-level, outperforming DeepNovo which obtained 44.41% on

amino acid-level and 65.57% on peptide-level by 2.7% and 5.7%, respectively. The precision-recall curve
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Figure 5.1: Comparison between SMSNet and DeepNovo on DEEPNOVO-M and WCU-MS-
BEST. (a) Amino acid-level precision-recall curves for SMSNet and DeepNovo when evaluated
on the dataset curated by DeepNovo’s authors. The corresponding recalls at 5% amino acid false
discovery rate are indicated. (b) Histograms showing the distributions of positional confidence
scores produced by SMSNet and DeepNovo. (c-d) Similar plots showing performances of SM-
SNet and DeepNovo when evaluated on our WCU-MS-BEST dataset.

(Fig 5.1(a-b)), produced by varying the threshold for each amino acid predictions, showed that SMSNet

provided better recalls at every precision levels. At 95% precision (5% FDR), SMSNet achieved as large as

21.7% improvement over DeepNovo. On WCU-MS-BEST (Fig 5.1(c-d)), the result follows the same be-

haviour where SMSNet attained 44.73%/64.45% peptide/amino acid recall, surpassing DeepNovo which

acheived 37.57% and 57.02% recall by 7.16% and 7.43%, while showing improvements at every precision

threshold. Overall, our model outperforms the current state-of-the-art tool DeepNovo on both datasets.

Second, we evaluated the performance of both SMSNet and DeepNovo on the high-quality MS/

MS of synthetic peptides. Because the peptide labels of the MS/MS spectra in WCU-MS dataset and

DEEPNOVO-M dataset were acquired by databases searching, the labels might have some bias towards

peptides which are known to databases, or the data might contain some wrong labeling that would affect

the model when used for training. Thus, we used an addition synthesized dataset from the Proteome-

Tools HCD Spectral Library (Zolg et al., 2017) (described in Methods) which could restrict the effect of

database search to analyze the models. Furthermore, this evaluation also functioned as a generalizability
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test to show that SMSNet architecture does not overfit to only MS/MS spectra from Q Exactive HF or

Q Exactive Plus mass spectrometers. Both model were trained on a portion of ProteomeTools dataset.

The results showed that, considering all predicted peptides, SMSNet achieved 53.51% peptide recall and

75.06% amino acid recall while DeepNovo achieved 50.69% peptide recall and 72.49% amino acid recall,

respectively. The precision-recall curves of both models are shown in Figure 5.2.

Figure 5.2: (left) Precision-recall curve illusting the performance of SMSNet and DeepNovo on
high-quality MS/MS of synthetic peptides. (right) Density plots of amino acid confidence scores
of the predictions from both models.

We then evaluated the other two SMSNet models trained on the entirety of our available data,

WCU-MS-M and WCU-MS-P datasets. We referred to both models as SMSNet-M and SMSNet-P from

here on. The models were tested against their own held-out test sets. SMSNet-M and SMSNet-P acheived

40.24% and 38.23% peptide recall, and 60.4% and 59.39% amino acid recall, respectively.

5.3 Ablation studies

The results of our ablation studies are shown in table 5.2. The peptide recall and amino acid recall

degradation range between -0.63 to -4.67% and -0.56 to -2.64%, respectively. The modification which

impacted the model the most are the removal of the encoder at -4.67% peptide recall, followed closely by

the removal of shift layer at -2.64%.

5.4 Post-processing

We first evaluated the completeness of information contained in the MS/MS spectra from our

datasets and found that correctly recovering the whole peptide from MS/MS spectrum could be challeng-

ing. By comparing MS/MS spectra in the test sets with their amino acid labels (more details in Methods),

the results show that less than 30% of MS/MS spectra in WCU-MS-P and WCU-MS-M dataset con-
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Modification Peptide Difference Amino acid Difference
recall (%) (%) recall (%) (%)

SMSNet 44.73 - 64.45 -
No layer normalization 44.10 -0.63 63.89 -0.56
Using cross-entropy loss 43.41 -1.32 63.79 -0.66
No neutral loss 43.01 -1.72 63.00 -1.45
No shift layer 40.23 -4.50 61.90 -2.55
No encoder 40.06 -4.67 61.81 -2.64

Table 5.2: Ablation study results. Removing the shift layer resulted in the most degradation in
performance of the model, almost as large as removing the encoder entirely.

tain complete information that would permit correct de novo sequencing of all amino acids. On amino

acid-level, among all datasets, at least 24% of all amino acids do not have any mass in the correspond-

ing location in the spectrum that could be used to recover those labels. Only 65.53% of amino acids

in WCU-MS-P have corresponding masses, 66.24% in WCU-MS-M, 70.13% in WCU-MS-BEST, and

75.68% in DEEPNOVO-M. As such, we proposed that the model should have a mechanism to filter out

some positions from the predicted peptides. Our proposed method works as follows: first, amino acids

that have their positional scores below a certain threshold are considered to be ”uncertain predictions”

and are masked, then the sequence of masked amino acids is replace with a mass tag equaling it sum of

masses to be used for database search. We called this method ”masking.”

Based on the hypothesis and positional score for each amino acid from SMSNet deep learning

model, we evaluated three methods which could be used for masking ”uncertain” amino acid: normal

thresholding, extended masking, and rescoring with another neural network. In the first method, amino

acids with scores lower than a threshold were masked independently then grouped together if it has neigh-

boring masked amino acids. For the second method, we also masked the amino acid immediately following

the amino acids masked by the first method. By design, SMSNet is a kind of auto-regressive model com-

monly used in machine translation, meaning that it assumes the previous output as being correct when

making the next prediction. Thus, the model tends to overestimate the confidence of the next prediction

even when the previous one has low confidence. This second method (extended masking) was used as a

baseline for further comparisons with the rescorer as it outperformed the normal thresholding procedure

for every precision level (Figure 5.4).

Nevertheless, because of the auto-regressive property in SMSNet, amino acids predictions and

their scores are made based solely on the previous predictions and without the knowledge of any following
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Figure 5.3: Evaulation of SMSNet-M model after rescoring. (a) Bar plots showing amino acid-
level precisions and recalls of SMSNet on a test set derived from WCU-MS-M and on MS/MS
spectra of nine species that comprise the dataset curated by DeepNovo’s authors. The thresh-
old on positional confidence score was selected so that 5% amino acid false discovery rate was
achieved on the WCU-MS-M test set (the leftmost bars). (b) Similar bar plots showing the re-
sults at peptide-level. (c) Line plots comparing the fraction of predicted amino acid positions
that pass the same score threshold used in a-b in peptides of various lengths (blue line) to the
fraction of amino acid positions that can be definitely determined based on observed ions in the
MS/MS spectra (orange dashed line). Shaded area indicate the ±1 standard deviation ranges.
(d) Stacked bar plots showing the fraction of predicted peptides that could be matched to various
protein sequence databases. Amino acid sequence database for each species was downloaded
from Uniprot Consortium (2018) (see Methods). Combined database integrates amino acid se-
quences from all four species considered. In each bar, only predictions whose ground truths
exist within the corresponding database were counted. ”Unique hit” means that there the pre-
dicted sequence matches to exactly one possibility in the database. ”Multi-hit” means that the
predicted sequence matches to multiple possibilities. ”No hit” means the predicted sequence
does not match to anything in the database.

amino acids. The nature of auto-regressive prediction, while ensuring the consistency among amino acids,

does not provide any mean to re-calculate previous scores if the next output drastically changes the context

of the sequence. Thus, we developed another neural networks-based post-processing model capable of

using the whole context of the sequence to adjust the scores of each amino acid. This post-processing

model was designed to focus only on rescoring the positional scores of each amino acids without changing
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Figure 5.4: (a) Precision-recall curves of SMSNets trained on WCU-MS-M. The three lines
indicate three masking methods: normal thresholding, extended masking, and rescoring with
another neural network. (b) Similar plot on WCU-MS-P.

the predicted peptide. We trained this model on the original validation sets using the correctness of the

de novo model as labels. The objective of this model is simply to maximize scores of amino acids that

match the labels while minimizing ones that do not. We compared this rescoring method with the other

two on the same test sets of WCU-MS-M and WCU-MS-P. The rescoring method improved amino acid

recalls at 95% precision by 9.53% and 9.08% from the baseline, pushing amino acid recalls to 39.49%

and 38.09%, respectively (Fig 5.4). Additionally, at 95% precision, the average number of remaining

amino acids of the rescored predictions almost reached the number of amino acids with evidence on the

spectrum (Fig 5.3(c)). Furthermore, using the rescoring method, we evaluated the ability of SMSNet

to generalize to different species and to datasets that the model was not trained on by using SMSNet-M

model to do de novo sequencing on test set of DEEPNOVO-M. Figure 5.3(a,b) shows SMSNet achieves

comparable performance across all nine species with 53%-70% peptide recall and 35%-55% amino acid

recall at above 95% amino acid precision. Based on these results, the rescoring model was integrated into

SMSNet and used by default for any subsequent evaluations.

Lastly, to evaluate the ability to uniquely identify proteins in the database by the partially predicted

peptide, we compared the results of database search using the ground truths and our predictions on the top-

hit species of WCU-MS-M datasets. For every ground truth peptides in the test set that could be found

in the Uniprot database (Consortium, 2018), we counted the number of peptide matched by SMSNet

prediction in those species. Because our partial predictions could not be used for string matching, we

devised a new searching scheme as described in Methods. The results in Figure 5.3d showed that the

partial predictions could still maintain a high number of peptide matches in the database of all species.
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In summary, with our novel partially predicting method and database searching scheme, SMSNet could

provided de novo sequenced peptides with high amino acids precision while still being useful for searching

in a database of known species.

5.5 Applications of SMSNet

To measure the performance of SMSNet on real-world proteomics experiments, we run SMSNet

on two datasets from HLA peptidome and human phosphoproteome studies. Both studies shared the

same characteristics that some spectra might not have a corresponding peptide and each spectrum might

not have a verified true label. To verify the new peptides recovered by SMSNet would require complex

external validations which are beyond the scope of this works. Thus, we used our trained models with the

cutoff at 5% false discovery rate as in the previous section on these two tasks, then report only the number

of discovered peptides instead.

First, we used the SMSNet-M model trained on WCU-MS-M dataset to analyze a large-scale HLA

class I peptidome dataset of mono-allelic human B lymphoblastoid cell lines (Abelin et al., 2017) which

consists of more than 35 million MS/MS spectra. SMSNet made 95,062 full-sequence predictions and

68,159 partial predictions. From the 20,780 unique fully-predicted sequences, 7,217 peptides were new

according to the Immune Epitope Database (Vita et al., 2015). Additionally, most of the SMSNet’s iden-

tified peptides were also of the right length between 8 and 12 amino acids (88,611 peptides out of 95,062

full-sequence predictions). Note that we did not compare the predicted results in a peptide-to-peptide ba-

sis as Abelin et al. (2017) provided only the best spectrum-peptide pairs for each peptide and the database

searching software is commercialized.

Then, we used the SMSNet model trained on WCU-MS-P dataset was used to analyze a phospho-

proteome dataset of control and epidermal growth factor (EGF)-treated glioblastoma cells (Humphrey

et al., 2018), which was previously analyzed by the database searching tool MaxQuant (Cox and Mann,

2008). At 5% amino acid false discovery rate, SMSNet made 181,144 full-sequence predictions and

81,874 predictions with mass tag. As MaxQuant did not output partially predicted peptides, we consid-

ered only the full sequence for comparison. Within the full-sequence predicitons, 134,562 peptides are

in agreement with the previous study, 1,808 peptides are mismatched, and 45,430 peptides are only an-

swered by SMSNet. This high accordance with MaxQuant predictions illustrates the high accuracy of

SMSNet that is on par with state-of-the-art database-search approach.
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5.6 Discussion

As SMSNet shares the same underlining concept of neural networks encoder-decoder with Deep-

Novo, we noted that the key differences between SMSNet and DeepNovo are as follows: (i) SMSNet

is explicitly constructed to integrate the nature of mass spectrum and de novo sequencing process into

the model, reflected by the shift encoder, and the positioning of the LSTM, (ii) we factorized the bell-

shape signals feature processing into two separate steps: detecting signal presences and computing the

relevance between signals, and (iii) we incorporated various new techniques from computer vision and

machine translation into the model, including focal loss (Lin et al., 2017), residual connection (He et al.,

2016), layer normalization (Ba et al., 2016), and new normalization formulas for beam search during in-

ference. Notably, the LSTM layers in SMSNet take both the previous prediction and the output of the

candidate ion stack as inputs instead of only the previous prediction as in DeepNovo. Doing so lets the

LSTM layers keep track of information not only from the previous prediction but also from the previous

input as well. Likewise, the focal loss was used to reflect the nature of MS/MS data where it is relatively

easy to determine the presence of an amino acid when all fragmented ions are presented in the spectrum

but remarkably harder when some ions are missing or ambiguous. Coincidentally, this feature has also

been introduced in a later version of DeepNovo (Tran et al., 2019). Overall, each of these modifications

leads to an improvement on the final model.

From the ablation studies, interestingly, the performance degradation by removing the shift layer,

which explicitly integrates the knowledge of ion fragmentation into the model, was almost as large as

removing the encoder entirely (-4.5%/-2.55% on peptide/amino acid recall compared to -4.67%/-2.64%).

Comparing to other modifications which showed lower performance degradation ( Table 5.2), this indi-

cates that incorporating domain-specific knowledge is highly critical for handling complex data generated

in the field of biotechnology.

For every machine learning system, generalizability is always of great concern. We have shown that

SMSNet could acheive high accuracy on MS/MS spectra from a wide range of species and laboratories.

We also demonstrated that the SMSNet framework not only can perform well on the data from Q Exactive

mass spectrometer with higher-energy collisional dissociation (HCD), but can also adapt to data from

different mass spectrometers and peptide fragmentation methods, such as the MS/MS spectra acquired on

Orbitrap Fusion Lumos (Zolg et al., 2017).
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One limitation in the sequence-mask-search framework of SMSNet is that the ”search” step effec-

tiveness is still highly dependent on the quality of the database provided. Even though multiple databases

can be given to SMSNet to search all at once, too much sequence possibilities could also degrade the

ability to recover the full sequence from the mass tag. Another possibility is to generate all sequence ar-

rangements that can fit the mass tag, then do a scoring-based search to match the spectrum with the highest

score peptide. With the recent advance in using a deep learning-based model for predicting fragment ion

intensity (Gessulat et al., 2019), the ”search” step of SMSNet could be improved in the future.

5.7 Summary

In this chapter, we presented the performance of our SMSNet model on all of the WCU-MS datasets

and DEEPNOVO-M dataset. We compared SMSNet to the current state-of-the-art de novo sequencing

tool DeepNovo, and showed that SMSNet could consistently outperformed DeepNovo on all datasets.

SMSNet is not limited to any species or the Q Exactive mass spectrometer but could also generalize to

other species and other mass spectrometer as well.

Our ablation studies demonstrated the importance of the shift layer in the encoder which engineers

the knowledge of the fragmentation process into the model. This suggests that incorporating domain-

specific knowledge is highly critical for handling complex data generated in the field of biotechnology.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter VI

CONCLUSION

6.1 Summary

In this thesis, we explored and further improved the task of de novo peptide sequencing from MS/

MS spectrum. The research is motivated by the limitations of the database-search approaches and the

previous de novo sequencing tools. The searching technique is highly dependent on the completeness

of the database provided, while the de novo approach derives peptide directly using the theoretical ion

fragmentation process which overcomes the database dependency but is more susceptible to the noise in

MS/MS spectrum.

We examined various techniques that are useful for sequencing peptide from MS/MS spectrum,

then conceived a new framework, SMSNet, which considerably improve the performance of de novo

peptide sequencing. SMSNet is a deep learning-based model which incorporates both new deep learning

techniques and the specific knowledge of the sequencing process altogether. We proposed the sequence-

mask-search frameworks which overcame many problems in prior works. To help boost the accuracy of

the raw amino acid prediction from the model, we constructed our neural networks such that each part

can focus on only one aspect of the data and became a more specialized model. To account for the fact

that the scores of each amino acid prediction often affected by prior outputs, we introduced a rescorer to

adjust those score. Finally, to handle the ambiguities normally present in MS/MS spectra, we allowed the

model to mask out some amino acid position with low confidence then recovered those positions using

the databases of known proteins.

6.2 Future work

Improve the search step

One possibility lies in the ”search” step of the sequence-mask-search frameworks. In this step, the

model attempts to resolve the mass tag using known sequence in the database. In the current setting, if a

ambiguous peptide can be matched to more than one sequence in the database, the peptide is considered

cannot be resolved and discarded. With the recent advancement in database search using deep learning-
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assisted prediction of fragment ion intensity (Gessulat et al., 2019), it might be possible to generate all

amino acid arrangements that can fit the mass tag, then performs a scoring-based search and picks the

most likely sequence.

Incorporate attention mechanism into the model

Another possibility to enhance the performance of SMSNet is in the construction of encoder-

decoder framework in the ”sequence” model. With many works trying to explore the attention mechanism

(Vaswani et al., 2017), it might be possible to incorporate it into SMSnet model. One problem that pre-

vents the use of the attention mechanism in SMSNet is that a MS/MS spectrum has a very sparse structure

yet requires very high resolution which makes using the attention in the encoder very computationally ex-

pensive. SMSNet’s accuracy would be boosted even further if one know how to make it computationally

possible to integrate the attention layers into the model.

Input spectrum denoising

There is also a possibility of denoising the input spectrum before using it as input for the model.

In this work, we tried to improve the input spectrum quality by removing some peaks according to the

following conditions. First, we viewed the set of peaks in the spectrum as a possibly fragmented graph

where peaks are nodes and edges only exist between peaks that have mass difference equal to any amino

acid mass. Then, we added additional edges that connected two peaks with mass difference equal to

the collective mass of any combination of two amino acids. This process essentially created a graph

that connected nodes with non-adjacent missing peaks from the input spectrum. Finally, we kept only

nodes that connected to N-terminus and discarded the rest. The processed spectrum was supposed to have

cleaner data compared to the spectrum before denoising. However, we found that training and testing

on the cleaned data resulted in a significant drop of performance to around 10% amino acid recall. The

result suggested that only allowing length-one adjacent missing peaks might discard too much information

from the input as there might be several longer adjacent missing peaks that are still useful for the model.

Furthermore, there might exist other pattern that could be used for detecting the presence of amino acids.

In addition, we also tried training the model on a subset of training spectra with fewer missing

amino acid evidences. We defined the existence of each amino acid evidence such that an amino acid is

deemed as having support evidences when there is at least one peak present at its b-ion, y-ion, b(2+)-ion,
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or y(2+)-ion position, regardless of its intensity. The subset of peptides in WCU-MS-BEST training set

which more than 40% of their amino acids have evidences were selected as a clean training set. The

results, however, showed the drop of around 3-5% in both amino acid-level and peptide-level recalls in

the test set. This indicated that it might be useful patterns for the model to learn on in the peptides with

missing evidences that still require further investigation.
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Appendix I

HYPERPARAMETER TUNING

For the main model training, we considered the followings hyperparameter ranges:

• Learning rate: 0.01 to 0.5

• Focal loss α: 0.25 to 2.0

• Focal loss γ: 0.5, 1.0, 1.5, 2.0

• Max gradient norm: 1.0, 5.0

• Embedding size: 5, 32, 64

• Candidate ion stack resolution: 0.01 Da, 0.02 Da, 0.05 Da, 0.1 Da

The hyperparameter that affected the model the most is the learning rate, which varied the final

amino acid recall up to 5%. The rest of the hyperparameters contributed up to 1-2% amino acid recall on

the test set of WCU-BEST. For the focal loss, any other combination of α and γ beside the one used in

our final model resulted in the model not converging at all. We chose the largest layer size for all layers

such that the model could still fit in the GPU memory.
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