สมบัติทางเคมีไฟฟ้าและสมบัติการเร่งปฏิกิริยาของสารประกอบเชิงซ้อน โลหะแทรนซิชันชิฟเบส

นางสาว สุจิตรา ต้องกระโทก

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ หลักสูตรปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2544 ISBN 974-03-1122-9 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

ELECTROCHEMICAL AND CATALYTIC PROPERTIES OF TRANSITION METAL-SCHIFF BASE COMPLEXES

Miss Sujittra Tongkratok

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master Science in Petrochemistry and Polymer Science Program of Petrochemistry and Polymer Science Faculty of Science Chalulongkorn University Academic Year 2001 ISBN 974-03-1122-9

Thesis Title Electrochemical and Catalytic Properties of	
	Metal-Schiff Base Complexes
By	Miss Sujittra Tongkratok
Field of Study	Petrochemistry and Polymer Science
Thesis Advisor	Assistant Professor Warinthorn Chavasiri, Ph.D.
Thesis Co-advisor	Assistant Professor Orawon Chailaphakul, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial

Fulfillment of the Requirements for the Master's Degree

Deputy Dean for Administrative Affairs Pirat Kounting Acting Dean , Faculty of Science

(Associate Professor Pipat Karntiang, Ph.D.)

Thesis Committee

Gy- Taulay Chairman

(Associate Professor Supawan Tantayanon, Ph.D.)

Wordn than Chavash Thesis Advisor

(Assistant Professor Warinthorn Chavasiri, Ph.D.) Ormon Chailapaket Thesis Co-advisor

(Assistant Professor Orawon Chailaphakul, Ph.D.)

W Ticharaprick Member

(Associate Professor Wimonrat Trakarnpruk, Ph.D.)

J Lumtulam Member

(Assistant Professor Thawatchai Tuntulani, Ph.D.)

สุจิตรา ด้องกระโทก : สมบัติทางเคมีไฟฟ้าและสมบัติการเร่งปฏิกิริยาของสารประกอบ เชิงซ้อนโลหะแทรนซิชันชิฟเบส (ELECTROCHEMICAL AND CATALYTIC PROPERTIES OF TRANSITION METAL-SCHIFF BASE COMPLEXES) อ.ที่ปรึกษา : ผศ.คร. วรินทร ชวศิริ อ.ที่ปรึกษาร่วม : ผศ.คร. อรวรรณ ชัยลภากุล: 58 หน้า; ISBN 974-03-1122-9

ได้ศึกษาสมบัติทางเคมีไฟฟ้าและสมบัติการเร่งปฏิกิริยาของสารประกอบเชิงซ้อนโลหะชิฟ เบสที่ใช้เป็นตัวเร่งปฏิกิริยาในปฏิกิริยาออกซิเคชันของไซโคลเฮกเซน สมบัติทางเคมีไฟฟ้าตรวจ สอบโดยเทคนิคไซคลิกโวลแทมเมทรี โคยใช้กลาสซีคาร์บอน และขั้วไฟฟ้าฟ้าฟิล์มบางของเพชรซึ่ง โคปด้วยบอรอนเป็นขั้วทำงาน ลวดเงินเป็นขั้วอ้างอิงและลวดแพลทินัมเป็นขั้วช่วย จากการศึกษา พบว่าสารประกอบเชิงซ้อนที่เกิดปฏิกิริยารีดอกซ์แบบผันกลับได้และกึ่งผันกลับได้จะให้ปริมาณ ผลิตภัณฑ์สูงกว่าสารประกอบเชิงซ้อนโลหะชิฟเบสชนิดอื่นที่ได้ศึกษา นอกจากนี้ผลของปฏิกิริยา รีดอกซ์ที่ได้จากกลาสซีการ์บอน และขั้วไฟฟ้าฟ้าฟิล์มบางของเพชรซึ่งโดปด้วยบอรอน มีความแตก ต่างกัน เนื่องจากการถ่ายโอนอิเล็กตรอนที่ผิวหน้าของขั้วไฟฟ้าฟ้าฟิล์มบางของเพชรซึ่งโดปด้วย บอรอนเกิดช้ากว่า เมื่อพิจารณาผลการศึกษาทางจลน์ศาสตร์ของปฏิกิริยาออกซิเคชันของไซโคลเฮก เซน พบว่าผลที่ได้สอดกล้องกับผลที่ได้จากเทคนิกไซคลิกโวลแทมเมทรี

หลักสูตร...ปี โตรเคมีและวิทยาศาสตร์พอลิเมอร์... สาขาวิชา...ปี โตรเคมีและวิทยาศาสตร์พอลิเมอร์... ปีการศึกษา.....2544.....

ลายมือชื่อนิสิต.....ด<u>์</u>คิสภา...สัญกาะโทก... ลายมือชื่ออาจารย์ที่ปรึกษา.....ดิโกษา ลายมือชื่ออาจารย์ที่ปรึกษาร่วม....ด_{้าวไก}

4272431023: MAJOR PETROCHEMISTRY AND POLYMER SCIENCE KEY WORD: OXIDATION/ SHIFF BASE COMPLEX/ CYCLIC VOLTAMMETRY SUJITTRA TONGKRATOK: ELECTROCHEMICAL AND CATALYTIC PROPERTIES OF TRANSITION METAL-SCHIFF BASE COMPLEXES. THESIS ADVISOR: ASST. PROF. WARINTHORN CHAVASIRI, Ph.D. THESIS CO-ADVISOR: ASST. PROF. ORAWAN CHAILAPHAKUL, Ph.D.; 58 pp. ISBN 974-03-1122-9

Electrochemical and catalytic properties of metal Schiff base complexes as catalyst in cyclohexane oxidation were thoroughly investigated. Cyclic voltammetry was performed using either glassy carbon and boron-doped diamond electrode, silver wire as a reference electrode and platinum wire as an auxillary electrode. The results of cyclic voltammetry revealed that metal Schiff base complexes which exhibited reversible and quasi-reversible reactions provided better yield of the desire products than other transition metal Schiff base complexes studied. In addition, the redox reaction employing glassy carbon and boron-doped diamond electrodes was different because the electrode-reaction kinetics of boron-doped diamond electrode was slow. The kinetic study of cyclohexane oxidation was found in good agreement with the results that gained from cyclic voltammetry.

Program ...Petrochemistry and Polymer Science....Student's signature.S. Tangk ratek..Field of study..Petrochemistry and Polymer Science...Advisor's signature...W. ChawaotAcademic year2001......Co-advisor's signature.

ACKNOWLEDGEMENTS

The author would like to express her deep gratitude to her advisor, Assistant Professor Dr. Warinthorn Chavasiri and Dr. Orawon Chailaphakul for his very kind assistance, generous guidance and encouragement throughout the course of this research. She is grateful to Associate Professor Dr. Supawan Tantayanon, Associate Professor Dr. Wimonrat Trakarnpruk and Assistant Professor Dr. Thawatchai Tuntulani, serving as the chairman and members of her thesis committee, respectively, for their valuable comments and suggestions.

Appreciation is also expressed to the Faculty of Science, Chulalongkorn University for granting a teaching assistant fellowship during 1999 and to the Graduate School for financial support of part of this research work. The special thanks for permitting to use some equipments, especially, from Natural Products Research Laboratory.

Finally, the author would like to express her deep gratitude to her parents, family members and her best friends for their love, understanding, encouragement and social support throughout her entire education. Without them, the author would have never been able to achieve this goal.

CONTENTS

	Page
ABSTRACT IN THAI	iv
ABSTRACT IN ENGLISH	v
ACKNOWLEDGEMENTS	vi
CONTENTS	vii
LIST OF FIGURES	x
LIST OF TABLES	xv
LIST OF ABBREVIATIONS	xvi
CHAPTER I INTRODUCTION	1
1.1 Literature review on metal Schiff base-catalyzed oxidation	
of cyclohexane	6
1.2 Literature review on cyclic voltammetry	8
1.3 Literature review on relationship of electrochemical and	
catalytic properties	9
1.4 The goal of this research	10
CHAPTER II EXPERIMENTAL	11
2.1 General procedure	11
2.2 Instruments	11
2.3 Chemicals	12
2.4 Syntheses	12
2.4.1 Syntheses of Schiff base ligands	12

CONTENTS (cont.)

		Page
2.4.2 Syntheses of metal Se	chiff base complexes	14
2.5 Oxidation of cyclohexane c	catalyzed by metal Schiff base	
complexes		17
2.6 Examination the redox read	ction of metal Schiff base	
complexes		17
2.7 Kinetic study on the reaction	on rate of cyclohexane oxidation	18
2.8 Analysis of oxidizing powe	er in cyclohexane oxidation	18
2.9 Oxidation reaction of other	organic compounds	18
CHAPTER III RESULTS AND D	DISCUSSION	19
3.1 Syntheses and characterizat	ion of metal Schiff base complexes.	19
3.2 Effect of metal-salophen co	mplexes on reactivity of	
cyclohexane oxidation		20
3.3 Effect of Schiff base struct	ure on reactivity of cyclohexane	
oxidation		21
3.4 Analysis of the redox react	ion of metal Schiff base complexes	
by cyclic voltammetry		23
3.4.1 Study the redox reac	tion using glassy carbon electrode	
as a working electroo	de	24
3.4.2 Study the redox reac	tion using boron-doped diamond	
electrode as a workir	ng electrode	32

CONTENTS (cont.)

	Page
3.5 Comparative study of the redox property using glassy carbon	
and boron-doped diamond electrodes as working electrode	40
3.6 Comparative redox and catalytic properties of metal	
Schiff base complexes	41
3.7 Kinetic study on the reaction rate of cyclohexane oxidation	42
3.7.1 Kinetic study of cyclohexane oxidation	42
3.7.2 Kinetic study of cyclohexane oxidation examined by	
cyclic voltammetry	43
3.8 Analysis of oxidizing power in cyclohexane oxidation	46
3.9 Oxidation reaction of other organic compounds	48
3.9.1 Oxidation reaction of cyclohexanol	49
3.9.2 Oxidation reaction of cyclohexene	49

CHAPTER IV CONCLUSION AND SUGGESTION FOR

FURTHER WORK	51
REFERENCES	53
VITAE	58

LIST OF FIGURES

Figures		Page
1.1	Potential-time excitation signal in cyclic voltammetric	
	experiment	4
1.2	The relationship between the potential and the current	5
1.3	The cyclic voltammogram of three type of redox reactions	6
3.1	Effect of various metal Schiff base complexes in	
	cyclohexane oxidation	23
3.2	Cyclic voltammogram of complex 6 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	25
3.3	Cyclic voltammogram of complex 7 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	25
3.4	Cyclic voltammogram of complex 8 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	26
3.5	Cyclic voltammogram of complex 9 in 0.1 M C ₁₆ H ₃₆ FNP	
	obtained from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	26
3.6	Cyclic voltammogram of complex 10 in 0.1 M C ₁₆ H ₃₆ FNP	
	obtained from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	27

Figures		Page
3.7	Cyclic voltammogram of complex 11 in 0.1 M C ₁₆ H ₃₆ FNP	
	obtained from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	27
3.8	Cyclic voltammogram of complex 12 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	28
3.9	Cyclic voltammogram of complex 13 in 0.1 M C ₁₆ H ₃₆ FNP	
	obtained from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	28
3.10	Cyclic voltammogram of complex 14 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	29
3.11	Cyclic voltammogram of complex 15 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	29
3.12	Cyclic voltammogram of complex 16 in 0.1 M C ₁₆ H ₃₆ FNP	
	obtained from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	30
3.13	Cyclic voltammogram of complex 17 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	30

Figures		Page
3.14	Cyclic voltammogram of complex 6 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using boron-doped diamond as	
	working electrode, scan rate: 0.05 V/s	33
3.15	Cyclic voltammogram of complex 7 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using boron-doped diamond as	
	working electrode, scan rate: 0.05 V/s	33
3.16	Cyclic voltammogram of complex 8 in 0.1 M C ₁₆ H ₃₆ FNP	
	obtained from using boron-doped diamond electrode as	
	working electrode, scan rate: 0.05 V/s	34
3.17	Cyclic voltammogram of complex 9 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using boron-doped diamond as	
	working electrode, scan rate: 0.05 V/s	34
3.18	Cyclic voltammogram of complex 10 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using boron-doped diamond as	
	working electrode, scan rate: 0.05 V/s	35
3.19	Cyclic voltammogram of complex 11 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using boron-doped diamond as	
	working electrode, scan rate: 0.05 V/s	35
3.20	Cyclic voltammogram of complex 12 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using boron-doped diamond as	
	working electrode, scan rate: 0.05 V/s	36

Figures		Page
3.21	Cyclic voltammogram of complex 13 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using boron-doped diamond as	
	working electrode, scan rate: 0.05 V/s	36
3.22	Cyclic voltammogram of complex 14 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using boron-doped diamond as	
	working electrode, scan rate: 0.05 V/s	37
3.23	Cyclic voltammogram of complex 15 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using boron-doped diamond as	
	working electrode, scan rate: 0.05 V/s	37
3.24	Cyclic voltammogram of complex 16 in 0.1 M C ₁₆ H ₃₆ FNP	
	obtained from using boron-doped diamond as	
	working electrode, scan rate: 0.05 V/s	38
3.25	Cyclic voltammogram of complex 17 in 0.1 M $C_{16}H_{36}FNP$	
	obtained from using boron-doped diamond as	
	working electrode, scan rate: 0.05 V/s	38
3.26	Kinetic study on cyclohexane oxidation catalyzed	
	by various catalysts	43
3.27	Kinetic cyclic voltammogram of cyclohexane oxidation	
	catalyzed by complex 9 in 0.1 M $C_{16}H_{36}FNP$ obtained	
	from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	44

Figures		Page
3.28	Kinetic cyclic voltammogram of cyclohexane oxidation	
	catalyzed by complex 10 in 0.1 M $C_{16}H_{36}FNP$ obtained	
	from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	44
3.29	Kinetic cyclic voltammogram of cyclohexane oxidation	
	catalyzed by complex 11 in 0.1 M $C_{16}H_{36}FNP$ obtained	
	from using glassy carbon as working electrode,	
	scan rate: 0.05 V/s	45
3.30	Amount of cyclohexanone and hydrogen peroxide left in	
	the reaction catalyzed by complex 9	47
3.31	Amount of cyclohexanone and hydrogen peroxide left in	
	the reaction catalyzed by complex 10	47
3.32	Amount of cyclohexanone and hydrogen peroxide left in	
	the reaction catalyzed by complex 12	48

LIST OF TABLES

	LIST OF TABLES	
Tables		Page
1.1	Comparison of homogeneous and heterogeneous catalysts	1
1.2	Major industrial oxidations of hydrocarbons	2
3.1	Cyclohexane oxidation catalyzed by various	
	metal-salophen complexes	20
3.2	Cyclohexane oxidation catalyzed by various metal	
	Schiff base complexes	22
3.3	The redox property of metal Schiff base complexes using	
	a glassy carbon electrode	31
3.4	The redox property of metal Schiff base complexes using	
	a boron-doped diamond electrode	39
3.5	The catalytic and redox properties of the metal	
	Schiff base complexes	41
3.6	Kinetic study of cyclohexane oxidation using H_2O_2	
	as oxidant	46
3.7	The cyclohexanol oxidation catalyzed by complexes 9, 10	
	and 12 at 24 h	49
3.8	The cyclohexene oxidation catalyzed by complexes 9, 10	
	and 12	50

LIST OF ABBREVIATIONS

Fig	figure
°C	degree celsius
atm	atmosphere
mmol	millimole
NMR	nuclear magnetic resonance
IR	Infrared spectroscopy
g	gram (s)
mL	milliliter (s)
min	minute (s)
h	hour (s)
cm ⁻¹	unit of wavenumber
ppm	part per million
J	coupling constant
m	multiplet (NMR)
dd	doublet of doublet (NMR)
d	doublet (NMR)
S	singlet (NMR)
m.p.	melting point
dec	decomposed
lit	literature
%	percent
R _f	retardation factor

LIST OF ABBREVIATIONS (cont.)

haen	Bis(2-hydroxyacetophenone)-N, N'-ethylenediimine
sac	N-salicylalidene-2-anthranilic acid
sap	N-salicylalidene-2-aminophenol
salen	Bis(salicylaldehyde)-N,N'-ethylenediimine
salophen	Bis(salicylaldehyde)-N,N'-trimethylenediimine
H_2O_2	hydrogen peroxide
TBHP	tert-butylhydroperoxide