การคูคซับคอปเปอร์และซิงก์ไอออนบนเกอไทต์ : การจำลองและ โพเทนชิโอเมทรี

นางสาว กนกวรรณ จันหาญ

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเคมี ภาควิชาเคมี คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2544 ISBN 974-03-1552-6 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

I2030657X

ADSORPTION OF COPPER AND ZINC IONS ON GOETHITE : SIMULATION AND POTENTIOMETRY

Miss Kanokwan Janhan

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Chemistry Department of Chemistry Faculty of Science Chulalongkorn University Academic Year 2001 ISBN974-03-1552-6

Thesis Title	Title Adsorption of Copper and Zinc Ions on Goethi	
	: Simulation and Potentiometry	
By	Miss Kanokwan Janhan	
Field of Study	Chemistry	
Thesis Advisor	Assistant Professor Korbratna Kriausakul, Ph.D.	

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Rine Kuntury Deputy Dean for Administrative Affairs (Associate Professor Pipat Karntiang, Ph.D.) Acting Dean, Faculty of Science

Thesis Committee

Siri Varothai Chairman

(Associate Professor Siri Varothai, Ph.D.)

Kilieta Knisusaful Thesis Advisor

(Assistant Professor Korbratna Kriausakul, Ph.D.)

Sirirat Kskys/ Member

(Associate Professor Siritat Kokpol, Ph.D.)

Kangarat Kalangahar Member

(Assistant Professor Kanyarat Kalampakorn)

กนกวรรณ จันหาญ : การดูคซับคอปเปอร์และซิงก์ไอออนบนเกอไทค์ : การจำลองและ โพเทนชิโอเมทรี (ADSORPTION OF COPPER AND ZINC IONS ON GOETHITE : SIMULATION AND POTENTIOMETRY)อาจารย์ที่ปรึกษา: ผศ.คร. กอบรัคน์ เกรียวสกุล, 136 หน้า. ISBN 974-03-1552-6

้งานวิจัยนี้ได้ศึกษาการเกิดปฏิกิริยากรด-เบสและปฏิกิริยาการเกิดสารเชิงซ้อนระหว่างคอปเปอร์ และซิงก์ไอออนบนผิวเกอไทค์ด้วยโพเทนซิโอเมทริกไทเทรชันที่อุณหภูมิ 25.0 ± 0.1 องศนซลเซียส ใน ช่วงพีเอช 3.5-9.5 และความแรงไอออนิกตั้งแต่ 0.001 ถึง 0.500 โมลาร์โซเคียมในเตรต จากการวิเคราะห์ ผลการทคลองด้วยโปรแกรมคอมพิวเตอร์ได้ค่าคงที่สมดุลการเกิดสปีชีส์สำหรับแต่ละระบบ ดังนี้ ระบบ กรด-เบส สปีชีส์ที่พบคือ ≡FeO (log β $_{L=1}^{int}$ = -9.9 ถึง -9.0) และ ≡FeOH₂⁺ (log β $_{L1}^{int}$ = 5.8 ถึง 6.8) ระบบการเกิดสารเชิงซ้อนของคอปเปอร์ สปีชีส์ที่พบคือ =FeOHCu²⁺ (log β int Lo.1 = 4.5 ถึง 6.0), =FeOCu⁺ (log β ^{int}_{1,-1,1} = 0.8 ถึง 1.3) และ =FeOCuOH (log β ^{int}_{1,-2,1} = -5.4 ถึง -8.0)ระบบการเกิดสารเชิงซ้อน ของซิงก์ สปีชิส์ที่พบคือ (≡FeOH)₂Zn²⁺ (log β int = 8.1 ถึง 9.2) , ≡FeOZn⁺ (log β int = -1.9 ถึง −3.0)และ =FeOZn(OH) $\frac{1}{2}$ (log $\beta_{1,-3,1}^{\text{int}}$ = -16.4 ถึง −18.2) ระบบการเกิดสารเชิงซ้อนของคอป เปอร์-ซัลเฟต สปีชีส์ที่พบคือ =FeOHCuSO₄ (log $\beta_{1,0,1,1}^{int}$ = 11.0 ถึง 13.7), =FeOCuSO₄ (log $\beta_{1,-1,1,1}^{int}$ = 6.0 ถึง 9.0) และ =FeOCuOHSO₄²⁻ ($\log \beta_{1,-2,1,1}^{int}$ = 1.7 ถึง 2.5) ระบบการเกิดสารเชิงซ้อนของซิงก์-ซัลเฟต สปีชีส์ที่พบคือ (=FeOH)₂ZnSO₄ (log $\beta_{2,0,1,1}^{int}$ = 18.0 ถึง 20.3) , =FeOZnSO₄ (log $\beta_{1,-1,1,1}^{int}$ = 11.7 ถึง 13.1) และ =FeOZn(OH)₂SO₄³⁻ (log $\beta_{1,-3,1,1}^{int}$ = -2.5) จากการสร้างแบบจำลองการดูดชับโดยอาศัย Constant Capacitance Model (CCM) ได้ไดอะแกรมที่แสดงการกระจายตัวของสปีชีส์ต่างๆบนผิวเกอไทต์ของ ระบบที่ศึกษาทั้งหมดและพบว่าการดูดซับคอปเปอร์และซิงก์ไอออนบนผิวเกอไทต์เพิ่มขึ้นเมื่อพีเอชสูงขึ้น และ adsorption edge ของคอปเปอร์และซิ่งก็ไอออนอยู่ในช่วงพีเอชประมาณ 4 ถึง 7 และ 5 ถึง 8 ตาม ้ถำคับ เมื่อมีซัลเฟต ไอออนรวมอยู่ในระบบของคอปเปอร์และระบบของซิงก์พบว่าการดูคชับ โลหะ ไอออน ้จะเพิ่มขึ้นในช่วงพีเอชต่ำๆเนื่องจากเกิดสารเชิงซ้อนประเภทเทอร์แนรีระหว่างคอปเปอร์-ซัลเฟตและ ซิงก์-ซัลเฟตบนผิวเกอไทต์ นอกจากนี้ยังพบว่าการเพิ่มค่าความแรงไอออนของสารละลาย 500 เท่า มีผล กระทบต่อค่าคงที่การเกิดสารเชิงซ้อนและปริมาณของคอปเปอร์และซิงก์ไอออนที่ถูกดูคซับเพียงเล็กน้อย เท่านั้น

ภาควิชาเคมี	ลายมือนิสิต ดนุการทน จีนหาญ
สาขาวิชาเคมี	ลายมือชื่ออาจารย์ที่ปรึกษา กองสัตส์ เกรียวงๆว
ปีการศึกษา2544	ลายมือชื่ออาจารข์ที่ปรึกษาร่วม

##4272202623 : MAJOR PHYSICAL CHEMISTRY SCIENCE

KEY WORDS : ADSORPTION / COPPER / ZINC / GOETHITE / SIMULATION / POTENTIOMETRY KANOKWAN JANHAN: ADSORPTION OF COPPER AND ZINC IONS ON GOETHITE : SIMULATION AND POTENTIOMETRY. THESIS ADVISOR: ASST. PROF. KORBRATNA KRIAUSAKUL, Ph.D.136 pp. ISBN 974-03-1552-6

The acid/base and complexation reactions of Cu^{2+} and Zn^{2+} on goethite surface has been investigated by potentiometric titrations at 25.0 \pm 0.1 °C within the pH range 3.5 \leq pH \leq 9.5 in 0.001-0.500 M NaNO3. The computational evaluation of the potentiometric data revealed the complex species with the intrinsic equilibrium constants for each system as follows: the acid/base of Goethite system: =FeO⁻ (log $\beta_{1,-1}^{\text{int}}$ = -9.9 to -9.0) and =FeOH₂⁺ (log $\beta_{1,1}^{\text{int}}$ = 5.8 to 6.8), the Goethite- Cu^{2+} system: =FeOHCu²⁺ (log $\beta_{1,0,1}^{int}$ = 4.5 to 6.0), =FeOCu⁺ (log $\beta_{1,-1,1}^{int}$ =0.8 to 1.3) and =FeOCuOH $(\log \beta_{1,-2,1}^{int} = -5.4 \text{ to } -8.0)$, the Goethite-Zn²⁺ system: (=FeOH)₂ Zn²⁺ (log $\beta_{2,0,1}^{int} = 8.1 \text{ to } 9.2)$, =FeOZn⁺ $(\log \beta_{1,-1,1}^{\text{int}} = -1.9 \text{ to } -3.0) \text{ and } = \text{FeOZn} (OH)_2^- (\log \beta_{1,-3,1}^{\text{int}} = -16.4 \text{ to } -18.2), \text{ the Goethite-Cu}^{2+}-SO_4^{2-}$ system: =FeOHCuSO₄(log $\beta_{1,0,1,1}^{int}$ = 11.0 to 13.7), =FeOCuSO₄ (log $\beta_{1,0,1,1}^{int}$ = 6.0 to 9.0) and =FeOCuOHSO₄²⁻ (log $\beta_{1-2,1,1}^{\text{int}}$ = 1.7 to 2.5), the Goethite-Zn²⁺-SO₄²⁻ system: (=FeOH)₂ZnSO₄ $(\log \beta_{2,0,1,1}^{\text{int}} = 18.0 \text{ to } 20.3), = \text{FeOZnSO}_4 (\log \beta_{1,-1,1,1}^{\text{int}} = 11.7 \text{ to } 13.1) \text{ and } = \text{FeOZn}(OH)_2 \text{SO}_4^{3-} (\log \beta_{1,-3,1,1}^{\text{int}} = 11.7 \text{ to } 13.1)$ = -2.5). The distribution diagrams of the surface complex species on goethite from the adsorption simulation using the Constant Capacitance Model (CCM) showed that the adsorption of Cu²⁺ and Zn²⁺ increased with increasing pH and the adsorption edges were in the pH ranges of 4-7 and of 5-8 for Cu^{2+} and Zn^{2+} , respectively. In the presence of the sulfate ion, the adsorption of Cu^{2+} and Zn^{2+} was enhanced at low pH due to the formation of the Cu^{2+} -SO₄²⁻ and Zn^{2+} -SO₄²⁻ ternary surface complexes. Only little effect on the stability constants and the amount of Cu^{2+} and Zn²⁺adsorbed on goethite surface was observed for 500-fold increase in the ionic strength of solution.

DepartmentChemistry	Student's signature Kondwan, Jonham
Field of studyChemistry	Advisor's signature Korkonton Krisenhel
Academic year	Co-advisor's signature

ACKNOWLEDGEMENT

I wish to express my sincerest gratitude to my thesis advisor Assistant Professor Dr. Korbratna Kriausakul for her guidance, suggestions, encouragement, kindness, and assistance throughout the course of thesis. In addition, I wish to thank Associate Professor Dr. Siri Varothai, Associate Professor Dr. Sirirat Kokpol and Assistant Professor Kanyarat Kalampakorn for their valuable suggestions as committee members and thesis examiners.

This thesis cannot be completed without kindness and helps of many people. First, I am grateful to the National Metal and Materials Technology Center (MTEC) for surface area results. Then, I wish to thank the Department of Chemistry, Mahidol University particularly Mrs. Vittaya Pimtong for XRD results. Futhermore, I gratefully thank to the Department of Chemistry, Faculty of Science, Chulalongkorn University for a financial support of this research.

Finally, I am deeply grateful to my parents and family members for their kindness, encouragement, understanding and support during my graduate study in Chulalongkorn University.

V

CONTENTS

ABSTRACT IN T	HAI	iv
ABSTRACT IN E	ENGLISH	v
ACKNOWLEDG	EMENT	vi
LIST OF FIGURE	ΞS	х
LIST OF TABLE	S	xiii
CHAPTER I	INTRODUCTION	1
CHAPTER II	THEORY	6
2.1 Miner	al-Solution Interface	6
2.2 Comp	lexation at the Oxide-Solution Interface	8
2.3 Ferric	(hydr)oxide : Goethite	10
2.4 Surfac	ce Complexation Models	14
2.5 Deter	mination of the Equilibrium Constant : Potentiometry	22
CHAPTER III	EXPERIMENTAL	26
3.1 Chem	icals and Instruments	26
3.1.1	Chemicals and Materials	26
3.1.2	Instruments	26
3.2 Prepar	ration of Solutions	27
3.3 Synthe	esis and Characterization of Goethite	28
3.4 Deten	mination of Dried Weight per Volume of Goethite Suspensions	29
3.5 Potent	tiometric Titrations	29
3.5.1	Calibration of Electrode	30
3.5.2	The System of Goethite(≡FeOH)-H ⁺	30

3.5.3 The System of Goethite(\equiv FeOH)-H ⁺ -Cu ²⁺ and	
Goethite(=FeOH)-H ⁻ -Zn ² ⁻	31
3.5.4 The System of Goethite(=FeOH)-H ⁺ -Cu ²⁺ -SO ₄ ²⁻ and	
Goethite(=FeOH) -H ⁺ -Zn ²⁺ - SO_4^{2-}	31
CHAPTER IV ANALYSIS OF DATA	32
4.1 Determination of Dried Weight per Volume of Goethite Suspensions	32
4.2 Determination of the Standard Electrode Potential (E ⁰)	33
4.3 Determination of the Equilibrium Constants	34
4.3.1 Acid / Base Equilibrium Constants of Goethite	36
4.3.2 Complex Stability Constants	37
4.3.2.1 The System of Goethite(\equiv FeOH) - H ⁺ - Cu ²⁺	37
4.3.2.2 The System of Goethite(=FeOH) - H^+ - Zn^{2+}	39
4.3.2.3 The System of Goethite(=FeOH) - H ⁺ - Cu ²⁺ - SO ₄ ²⁻	41
4.3.2.4 The System of Goethite(=FeOH) - H^+ - Zn^{2+} - SO_4^{2+}	42
4.4 Adsorption Simulation	44
4.4.1 The System of Goethite(=FeOH) - H^+ - Cu^{2+}	48
4.4.2 The System of Goethite(=FeOH) - H^+ - Zn^{2+}	52
4.4.3 The System of Goethite(=FeOH) - H^+ - Cu^{2+} - SO_4^{2-}	56
4.4.4 The System of Goethite(\equiv FeOH) - H ⁺ - Zn ²⁺ - SO ₄ ²⁻	59
CHAPTER V RESULT AND DISCUSSION	62
CHAPTER VI CONCLUSIONS	70

APPENDICES A APPENDIX A The results of XRD spectrum and BET plot. APPENDIX B The example of the titration curves for each system. APPENDIX C The example of the input-output file for determination of the Standard Electrode Potential(E ⁰). APPENDIX D The example of the input files for Superquad program to determination of the equilibrium constant. APPENDIX E The example of the output for Superquad program. APPENDIX F Determination of the surface charge density. APPENDIX G Determination of the capacitance(C). 1 VITA.	REFERENCES		73
APPENDIX A The results of XRD spectrum and BET plot	APPENDICES		77
APPENDIX B The example of the titration curves for each system APPENDIX C APPENDIX C The example of the input-output file for determination of the Standard Electrode Potential (E ⁰)	APPENDIX A	The results of XRD spectrum and BET plot	78
APPENDIX C The example of the input-output file for determination of the Standard Electrode Potential(E ⁰)	APPENDIX B	The example of the titration curves for each system	84
of the Standard Electrode Potential(E ⁰)	APPENDIX C	The example of the input-output file for determination	
APPENDIX D The example of the input files for Superquad program to determination of the equilibrium constant		of the Standard Electrode Potential(E ⁰)	87
determination of the equilibrium constant.9APPENDIX EThe example of the output for Superquad program.10APPENDIX FDetermination of the surface charge density.11APPENDIX GDetermination of the capacitance(C).1VITA.1	APPENDIX D	The example of the input files for Superquad program to	
APPENDIX EThe example of the output for Superquad program10APPENDIX FDetermination of the surface charge density11APPENDIX GDetermination of the capacitance(C)1VITA1		determination of the equilibrium constant	92
APPENDIX FDetermination of the surface charge density1APPENDIX GDetermination of the capacitance(C)1VITA1	APPENDIX E	The example of the output for Superquad program	102
APPENDIX G Determination of the capacitance(C)	APPENDIX F	Determination of the surface charge density	121
VITA	APPENDIX G	Determination of the capacitance(C)	131
	VITA	•••••	136

LIST OF FIGURES

Figur	Figures	
2.1	Representation of the adsorption, absorption and precipitation	
	of Zn on goethite surface	8
2.2	Representation of inner-sphere and outer-sphere complexation	9
2.3	A is the 110 surfaces and B is the 021 surfaces. (a) top view of the	
	surface atoms. (b) slab viewed perpendicular to the z direction	12
2.4	Representation of (A) singly, (B) doubly, (C) triply coordinated	
	surface oxygen atom on goethite	13
2.5	The schematic illustration of (A) Diffuse Double Layer Model and	
	(B) Constant Capacitance Model	18
2.6	The schematic illustration of Basic Stern Model	20
2.7	The schematic illustration of Triple Layer Model	21
4.1	The relation between dried weight (g) and volume of goethite	
	suspension (cm ³)	33
4.2	The flow chart of the procedure for chemical equilibrium modeling	44
4.3	Surface charge density as a function of pH for various ionic strengths	
	of NaNO ₃	46
4.4	The distribution diagram of Cu ²⁺ in 0.500 M NaNO ₃	49
4.5	The distribution diagram of Cu ²⁺ in 0.100 M NaNO ₃	49
4.6	The distribution diagram of Cu ²⁺ in 0.010 M NaNO ₃	50
4.7	The distribution diagram of Cu ²⁺ in 0.005 M NaNO ₃	50
4.8	The distribution diagram of Cu ²⁺ in 0.001 M NaNO ₃	51

Figur	gures	
4.9	The distribution diagram of Cu ²⁺ in 0.100M NaNO ₃ [7]	51
4.10	The distribution diagram of Zn^{2+} in 0.500 M NaNO ₃	53
4.11	The distribution diagram of Zn^{2+} in 0.100 M NaNO ₃	53
4.12	The distribution diagram of Zn^{2+} in 0.010 M NaNO ₃	54
4.13	The distribution diagram of Zn^{2+} in 0.005 M NaNO ₃	54
4.14	The distribution diagram of Zn^{2+} in 0.001 M NaNO ₃	55
4.15	The distribution diagram of Zn^{2+} in 0.100 M NaNO ₃ [26]	55
4.16	The distribution diagram of Cu^{2+} - SO_4^{2-} surface complexes	
	system in 0.500 M NaNO ₃	57
4.17	The distribution diagram of Cu^{2+} SO ₄ ²⁻ surface complexes	
	system in 0.100 M NaNO ₃	57
4.18	The distribution diagram of Cu^{2+} - SO_4^{2-} surface complexes	
	system in 0.010 M NaNO ₃	58
4.19	The distribution diagram of Cu^{2+} - SO_4^{2-} surface complexes	
	system in 0.005 M NaNO ₃	58
4.20	The distribution diagram of Zn^{2+} - SO_4^{2-} surface complexes	
	system in 0.500 M NaNO ₃	60
4.21	The distribution diagram of Zn^{2+} - SO_4^{2-} surface complexes	
	system in 0.100 M NaNO ₃	60
4.22	The distribution diagram of Zn^{2+} - SO_4^{2-} surface complexes	
	system in 0.010 M NaNO ₃	61

Page

xi

Figures

4.23	The distribution diagram of Zn^{2+} SO ₄ ²⁻ surface complexes	
	system in 0.005 M NaNO ₃	61
5.1	The schematic representation of the goethite/solution interface	
	(a) $Cu^{2+}-SO_4^{2-}$ and (b) $Zn^{2+}-SO_4^{2-}$ complex systems according to	
	Constant Capacitance Model	71
A.1	XRD spectrum of goethite	79
A.2	BET plot for determination the surface area of goethite No.1	82
A.3	BET plot for determination the surface area of goethite No.2	83
B .1	Calibration curve for 0.100 M NaNO ₃	84
B.2	Acid-base titration curve for 0.100 M NaNO ₃	84
B .3	Titration curve of Goethite - H^+ - Cu^{2+} system: 0.100 M NaNO ₃	85
B .4	Titration curve of Goethite - H^+ - Zn^{2+} system: 0.100 M NaNO ₃	85
B.5	Titration curve of Goethite - H^{+} - Cu^{2+} -SO ₄ ²⁻ system: 0.100 M NaNO ₃	86
B .6	Titration curve of Goethite - H^+ - Zn^{2+} -SO ₄ ²⁻ system: 0.100 M NaNO ₃	86

Page

LIST OF TABLES

Tables	5	Page
2.1	Goethite characteristics	11
4.1	The experimental data of dried weight and volume of goethite	
	suspension	32
4.2	Acid-base equilibrium constants of goethite surface with varying	
	ionic strengths of NaNO3 medium	36
4.3	Complex stability constants of Cu ²⁺ on goethite surface with	
	varying ionic strengths of NaNO3 medium	38
4.4	Complex stability constants of Zn^{2+} on goethite surface with	
	varying ionic strengths of NaNO3 medium	40
4.5	Complex stability constants of $Cu^{2+}-SO_4^{2-}$ on goethite surface with	
	varying ionic strengths of NaNO ₃ medium	41
4.6	Complex stability constants of $Zn^{2+}-SO_4^{2-}$ on goethite surface with	
	varying ionic strengths of NaNO3 medium	43
4.7	The values of capacitance for the system in 0.001,0.005, 0.010, 0.100,	
	and 0.500 M NaNO ₃	47
5.1	Goethite Characteristics	63
5.2	A summary of the equilibrium constants with varying ionic strengths	
	of NaNO3	64