

REFERENCES

- Ahn, S.M., Chang, S.C., and Rhee H.K. (1998). Application of Optimal Temperature Trajectory to Batch PMMA Polymerization Reactor.
 Journal of Applied Polymer Science, 69, 59-68.
- Benjamin, B.K., and Ronald, W.N. (1985). <u>Encyclopedia of Polymer Science</u> <u>and Engineering</u>. 2nd ed. New York: John.Wiley and Sons.
- Chui, W.Y., Carratt, G.M., and Soong, D.S. (1983). A Computer Model for the Gel Effect in Free-Radical Polymerization. <u>Macromolecules</u>, 16, 348-357.
- Delphin, W.H., Hutchins, C.S., Buchacek, R.J. (1988). Process forManufacture of Polymethyl methacrylate Sheet with Controlled Color.US Patent 4 948 546.
- Kanazawa, H. (1977). Process for Producing a Casting Plate of Polymethyl methacrylate. US <u>Patent</u> 4 214 064.
- Yasayuki, K., Masahiro, Y., Masahiko, M., and Yukio, Y. (1986). Method for the production of Polymethyl methacrylate. US <u>Patent</u> 4 859 750.
- Mankar, R.B., Gupta, S.K., and Saraf, D.N. (1999). Software Sensor for the Bulk Polymerization of Systems Exhibiting the Trommsdorff Effect Using Viscosity Measurements. <u>Journal of Applied Polymer Science</u>, 73, 2309-2326.
- Mosebach, M., and Reichert, K.H. (1997). Adiabatic Reaction Calorimetry for Data Acquisition of Free-Radical Polymerizations. <u>Journal of</u> <u>Applied Polymer Science</u>, 66, 673-681.
- O'Neil, G.A., Wisnudel, M.B., and Torkelson, J.M. (1996). A Critical Experimental Examination of the Gel Effect in Free Radical Polymerization: Do Entanglements Cause Autoacceleration?. <u>Macromolecules</u>, 29, 7477-7490.

- Ramaseshan, V., Trivedi, M.K., and Raghunathan, T. S., (1993).
 Polymerisation Control in Casting of Methylmethacrylate. <u>Polymer</u> <u>International</u>, 32, 3, 275-281.
- Scali, C., Ciari, R., Bello, T., and Maschio, G. (1995). Optimal Temperature for the Control of the Product Quality in Batch Polymerization:
 Simulation and Experimental Results. Journal of Applied Polymer
 Science, 55, 945-959
- Soh, S.K., and Sundberg, D.C. (1982). Diffusion-Controlled Vinyl Polymerization. I. The Gel Effect. <u>Journal of Polymer Science</u>: <u>Polymer Chemistry Edition</u>, 20, 1299-1313.
- Soh, S.K., and Sundberg, D.C. (1982). Diffusion-Controlled Vinyl Polymerization. III. Free Volume Parameters Diffusion-Controlled Propagation. <u>Journal of Polymer Science: Polymer Chemistry</u> <u>Edition</u>, 20, 1331-1344.
- Motoshi, S., and Shinzo, O. (1986). Process for Producing Polymethyl Methacrylate. US <u>Patent</u> 4 214 064.
- Vaid, N.R., and Gupta, S.K. (1991, December). Optimal Temperature Profiles for Methylmethacrylate Polymerization in the Presence of End Point Constraints. <u>Polymer Engineering and Science</u>, 31(24), 1708-1715.
- Kampour, R.P. (1986) Transparent Blends of Polymethyl methyacrylate and BPA Polycarbonate. US <u>Patent</u> 4 745 029.
- Kyu, T., Saldanha, J.M. (1986) Single Phase Blends of Polycarbonate and Polymethyl methacrylate. US <u>Patent</u> 4 743 654.

APPENDICES

Appendix A Monomer conversion of PMMA sheets produced by various conditions

Table A1 Monomer conversion of PMMA sheets produced by using 0.038wt% ADVN at various isothermal temperatures.

Time (hr)	% Monomer conversion at various casting temperatures				
	58°C	60°C	62°C	70°C	
0.0	7.1	7.1	7.1	7.1	
0.5	7.6	7.6	9.3	10.1	
1.0	11.3	12.8	15.6	24.0	
1.5	21.4	21.4	20.9	86.6	
2.0	28.0	55.9	31.1	86.2	
2.5	84.6	86.7	31.4	89.0	
3.0	84.6	87.1	44.8	87.7	
3.5	86.8	88.7	88.5	88.0	
4.0	86.4	86.6	88.5	87.0	

 Table A2
 Monomer conversion of PMMA sheets produced at 60°C by varying ADVN concentrations.

Time (hr)	% Monomer conversion at various initiator concentrations			
	0.019 wt%	0.038 wt%	0.076 wt%	
0.0	6.1	7.1	5.7	
0.5	6.5	7.6	6.4	
1.0	8.2	12.8	15.3	
1.5	15.4	21.4	36.8	
2.0	17.9	55.9	64.5	
2.5	39.4	86.7	88.5	
3.0	67.8	87.1	87.8	
3.5	88.3	88.7	88.6	
4.0	86.3	86.6	88.8	

Table A3 Monomer conversion of PMMA sheets produced by using 0.038 wt% ADVN with non-isothermal temperature profiles (Condition A is the temperature profile at 60°C for 2.5 hr and 120°C for 1.5 hr. Condition B is the temperature profile at 62°C for 2.5 hr and 120°C for 1.5 hr).

Time (hr)	% Monomer conversion at various initiator concentrations		
	Condition A*	Condition B*	
0.00	7.1	7.08	
0.50	7.6	7.64	
1.00	12.8	12.84	
1.25	19.6	19.64	
1.50	21.4	21.45	
1.75	26.4	26.39	
2.00	32.7	63.38	
2.50	87.4	85.60	
3.00	98.3	98.66	
4.00	96.2	96.98	

Table A4Monomer conversion of PMMA sheets produced by differentprocess conditions (*Water bath is the PMMA sheet produced by using waterbath at 60°C, Blank is the commercial PMMA sheet).

Time (hr)	% Monomer conversion by different processes		
	Water bath*	Blank	
0.0	7.08	-	
0.5	11.89	-	
1.0	17.85	-	
1.5	26.85	-	
2.0	38.61	-	
2.5	84.55	-	
3.0	86.43	-	
3.5	87.30	-	
4.0	88.66	-	
Final	-	97.13	

Appendix B Mechanical properties of PMMA sheet produced by various conditions

Table B1 Mechanical properties of PMMA sheet produced by using 0.038wt% ADVN at various isothermal casting temperatures.

Mechanical properties	Casting temperature			
-	58°C	60°C	62°C	70°C
Impact resistance (J/m)	23.7	22.4	20.8	22.6
Hardness (shore D)	88	90	89	90

Table B2 Mechanical properties of PMMA sheet produced at 60°C by varyingADVN concentrations.

Mechanical properties	Initiator concentration (wt%)		
	0.019	0.038	0.076
Impact resistance (J/m)	24.2	22.8	24.4
Hardness (shore D)	88	89	90

Table B3 Mechanical properties of PMMA sheets produced by using 0.038 wt% ADVN with non-isothermal temperature profile (Condition A is the temperature profile at 60°C for 2.5 hr and 120°C for 1.5 hr. Condition B is the temperature profile at 62°C for 2.5 hr and 120°C for 1.5 hr).

Mechanical properties	Process condition	
	А	В
Impact resistance (J/m)	19.7	20.8
Hardness (shore D)	93	94

Table B4 Monomer conversion of PMMA sheets produced by differentprocess conditions (*Water bath is the PMMA sheet produced by using waterbath at 60°C, Blank is the commercial PMMA sheet).

Mechanical properties	Process condition		
	Water bath	Blank	
Impact resistance (J/m)	24.8	21.7	
Hardness (shore D)	90	95	

CURRICULUM VITAE

Name: Pitee Tantivess

Date of Birth: 6 September 1975

Nationality: Thai

Unversity Education:

1993-1996 Bachelor Degree of Science in Industrial Chemistry
Department of Chemistry
King Mongkut's Institute of Technology Ladkrabang,
Bangkok, Thailand.

Working Experience:

1997-1998	Position:	Lecturer
	Company Name:	Department of Chemistry
		King Mongkut's Institute of Technology
		Ladkrabang, Bangkok, Thailand