CHAPTER V CONCLUSION AND RECOMMENDATIONS Hydrogen production by autothermal system over Ce/Zr mixed oxides was investigated in this study. Ce/Zr mixed oxides were prepared by urea hydrolysis. The effect of Ce:Zr molar ratios, urea concentrations, drying methods and Ni loading were investigated on the catalytic properties of Ce/Zr mixed oxides. It was observed that the addition of ZrO₂ in CeO₂ lattice increases the thermal stability of CeO₂, resulting in better resistance to sintering. Although Ce_{1-x}Zr_xO₂ (x = 0.25, 0.50 and 0.75) was calcined at high temperature, the surface area of Ce_{1-x}Zr_xO₂ was higher than CeO₂. Urea concentration hardly influences on the properties of Ce_{0.75}Zr_{0.25}O₂. Ce_{0.75}Zr_{0.25}O₂s prepared with different urea concentrations have similar properties, whereas Ce_{0.75}Zr_{0.25}O₂ dried under supercritical conditions has bigger pore sizes and higher pore volumes than Ce_{0.75}Zr_{0.25}O₂ dried by conventional method (100°C). The presence of CeO₂-ZrO₂ solid solution is observed in Ce/Zr mixed oxides, especially in Ce_{0.75}Zr_{0.25}O₂. Ce/Zr mixed oxides were tested the catalytic activity by iso-octane oxidation at O₂/C of 1. It was found that Ce_{0.75}Zr_{0.25}O₂ with reaction time 120 hours and calcined at 500°C exhibited the highest catalytic activity for iso-octane oxidation. In the study of the effect of O₂/C on light off temperature, 5%Ni/Ce_{0.75}Zr_{0.25}O₂ gave the highest catalytic activity at the O₂/C of unity. For the autothermal system study, 5%Ni/Ce_{0.75}Zr_{0.25}O₂ was found to performed very well in autothermal system. H₂/CO product ratio was influenced by increasing steam concentration. In addition, H₂/CO product ratio was slightly affected by a rise in O₂/C. It is suggesting that ceria acts as the oxygen storage. 5%Ni/Ce_{0.75}Zr_{0.25}O₂ would be a good catalyst for hydrogen production from iso-octane by autothermal system. It not only enhances the autothermal reaction but also reduce the coke formation.