HYDROGEN PRODUCTION BY AUTOTHERMAL SYSTEM: CATALYST STUDIES

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2002 ISBN 974-03-1557-7

- 4 11.9. 2550

72069,11995

Thesis Title:	Hydrogen Production by Autothermal System: Catalyst Studies
By:	Ms. Anantri Chitranont
Program:	Petrochemical Technology
Thesis Advisor:	Asst. Prof. Thirasak Rirksomboon
	Asst. Prof. Vissanu Meeyoo
	Prof. Johannes Schwank

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

K. Bunyan'nt. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Kingth \supset

(Asst. Prof. Thirasak Rirksomboon)

(Asst. Prof. Vissanu Meeyoo)

(Prof. Johannes Schwank)

imill ander

(Assoc. Prof. Sumaeth Chavadej)

MM

(Dr. Sirirat Jitkarnka)

บทคัดย่อ

อนันตรี จิตรานนท์ : การศึกษาการผลิตไฮโดรเจนโดยระบบความร้อนที่ได้ด้วยตัวเอง โดยศึกษาตัวเร่งปฏิกิริยา (Hydrogen Production by Autothermal System: Catalyst Studies) อาจารย์ที่ปรึกษา: ศ. โจฮานเนส ชวางก์, ผศ.ดร. ธีรศักดิ์ ฤกษ์สมบูรณ์ และ ผศ.ดร. วิษณุ มีอยู่ 61 หน้า ISBN 974-03-1557-7

งานวิจัยนี้ศึกษาการผลิตก๊าซไฮโครเจนผ่านระบบความร้อนที่ได้ด้วยตัวเองซึ่งรวมเอา ระบบ partial oxidation และระบบ steam reforming ไว้ในเครื่องปฏิกรณ์เดียวกันเพื่อเพิ่มประ สิทธิภาพการใช้พลังงาน โดยความร้อนที่เกิดจากระบบ partial oxidation จะส่งไปยังระบบ steam reforming ในขณะเดียวกันคาร์บอนที่เกิดขึ้นจะถูกกำจัดโดยก๊าซออกซิเจน เนื่องจาก นิกเกิลบนตัวรองรับซีเรียม/เซอโคเนียมมิกซ์ออกไซด์เป็นตัวเร่งปฏิกิริยาที่ส่งเสริมปฏิกิริยา steam reforming และ water-gas shift จึงเหมาะที่จะเป็นตัวเร่งปฏิกิริยาที่ส่งเสริมปฏิกิริยา steam reforming และ water-gas shift จึงเหมาะที่จะเป็นตัวเร่งปฏิกิริยาสำหรับระบบความร้อนที่ได้ ด้วยตัวเอง ในงานวิจัยนี้เป็นการศึกษาผลของการเติมตัวเร่งนิกิลบนตัวรองรับซีเรียม/เซอโคเนียม มิกซ์ออกไซด์ โดยแปรปริมาณของนิเกิลตั้งแต่ 5 ถึง 15 เปอร์เซนด์โดยน้ำหนัก ซึ่งใช้ทั้งวิธี solgel และวิธี impregnation ในการเตรียมตัวเร่งปฏิกิริยา จากการทดลองพบว่า 15%Ni/Ce_{0.75}Zr_{0.25}O₂ ของสองวิธีมีประสิทธิภาพดีที่สุดสำหรับปฏิกิริยา iso-octane oxidation และผลจากการศึกษาระบบความร้อนที่ได้ด้วยตัวเองกับตัวเร่งปฏิกิริยา 15%Ni/Ce_{0.75}Zr_{0.25}O₂ พบว่า อัตราส่วนระหว่างไฮโดรเจนต่อคาร์บอนมอนอกไซด์จะเพิ่มขึ้น เมื่อเพิ่มความเข้มข้นของไอน้ำและออกซิเจนเทียบกับความเข้มข้นของการ์บอน

ABSTRACT

4371001063: PETROCHEMICAL TECHNOLOGY PROGRAM Anantri Chitranont: Hydrogen Production by Autothermal System: Catalyst Studies. Thesis Advisors: Prof. Johannes Schwank, Asst. Prof. Thirasak Rirksomboon, and Asst. Prof. Vissanu Meeyoo, 61 pp. ISBN 974-03-1557-7
Keywords: Hydrogen Production/ Steam Reforming/ Autothermal System/ Sol-Gel/Impregnation/ Ce/Zr Mixed Oxides/ Nickel

Autothermal system is an alternative system for producing hydrogen using a combination of partial oxidation and steam reforming in a single reactor. For efficient energy utilization, heat generated from partial oxidation will be provided for the steam reforming reaction whereas coke formation can be eliminated in the presence of O₂. In a previous study, Ni/Ce_{0.75}Zr_{0.25}O₂ catalyst was found to be a promising candidate for both partial oxidation and steam reforming, thus it would be beneficial for use in the autothermal system. To further investigate the significance of Ni loading, the amount of Ni added over Ce_{0.75}Zr_{0.25}O₂ catalyst was varied from 5 to 15 wt%. The catalysts were prepared by two conventional methods, i.e. impregnation and sol-gel methods. It was found that the 15%Ni/Ce0.75Zr0.25O2 catalyst exhibited the highest catalytic activity regardless of the method of preparation. Autothermal system studies of the effects of H_2O/C and O_2/C ratios on 15%Ni/Ce_{0.75}Zr_{0.25}O₂ showed that the H₂/CO ratio increased with increasing H₂O/C and O_2/C ratios.

ACKNOWLEDGEMENTS

First of all I would like to sincerely thanks Asst. Prof. Thirasak Rirksomboon and Asst. Prof. Vissanu Meeyoo for their useful advice, knowledge and recommendation throughout the course of this work.

Special thanks to all of the Petroleum and Petrochemical College's staff for their help and my acknowledgment is forwarded to Mr. Siriphong Roatluechai for his help and suggestion.

Finally, I would like to express my gratitude to my family and my friend for their love, help, encouragement and understanding.

,

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	х

CHAPTER

Ι	INTRODUCTION	1
	1.1 Steam Reforming	2
	1.2 Partial Oxidation	4
П	LITERATURE SURVEY	5
	2.1 Autothermal System	5
	2.2 Catalysts	8
	2.3 Coke formation	12
III	EXPERIMENTAL	14
	3.1 Materials	14
	3.2 Catalyst Preparation	14
	3.2.1 Preparation of Ce _{0.75} Zr _{0.25} O ₂ Support Catalyst	15
	3.2.2 Sol-gel Technique	15
	3.2.3 Impregnation Technique	16
	3.3 Catalyst Characterization	16
	3.3.1 BET Surface Area	16
	3.3.2 X-ray Diffraction Method	17
	3.3.3 Temperature Programmed Reduction	18

IV

3.3.4	Transmission Electron Microscopy	18
3.4 Experi	mental Apparatus	18
3.4.1	Gas Mixing Section	19
3.4.2	Catalyst Reactor	19
3.4.3	Gas Analytical Instrument	19
3.5 Exper	imental Section	21
3.5.1	Catalyst Testing	21
3.5.2	The Effect of Steam/Carbon Ratio and	
	Temperature	21
3.5.3	The Effect of Oxygen/Carbon Ratio and	
	Temperature	22
3.5.4	Coke Formation Study	22
3.5.5	Catalyst Bed Temperature Profile	23
RESULT	S AND DISCUSSION	24
4.1 BET S	Surface Area	24
4.1.1	BET Surface Area	24
4.1.2	X-ray Diffraction Method	25
4.1.3	Temperature Programmed Reduction	28
4.1.4	Transmission Electron Microscopy	31
4.2 Light	Off Temperature	34
4.2.1	The Effect of Ni Loading Over Ce _{0.75} Zr _{0.25} O ₂	
	By Sol-Gel Method	34
4.2.2	The Effect of Ni Loading Over $Ce_{0.75}Zr_{0.25}O_2$	
	By Impregnation Method	35
4.2.3	The Effect of Loading Method Over	
	15%Ni/Ce _{0.75} Zr _{0.25} O ₂	35
4.2.4	The Effect of O_2/C on Light Off Temperature Over	
	$Ce_{0.75}Zr_{0.25}O_2$ and 15%Ni/Ce_{0.75}Zr_{0.25}O_2 Prepared	
	By Both Sol-gel and Impregnation Method	37

CHAPTER

V

PAGE

4.3 The Ef	fect of Steam/Carbon Ratios	41
4.3.1	The Effect of Steam/Carbon Ratio Over Support	
	Loaded By Sol-gel Method	41
4.3.2	The Effect of Steam/Carbon Ratios Over Support	
	Loaded By Impregnation Method	42
4.4 The E	ffect of Oxygen/Carbon Ratios	46
4.4.1	The Effect of Oxygen/Carbon Ratios Over Support	
	Loaded By Sol-gel Method	46
4.4.2	The Effect of Oxygen/Carbon Ratios Over Support	
	Loaded By Impregnation Method	47
4.5 Coke	Formation Study	51
4.5.1	Temperature Programmed Oxidation	51
4.5.2	Transmission Electron Microscopy	53
4.5.3	Catalyst Decomposition	53
4.6 Cataly	st Bed Temperature Profile	55
CONCLU	SION AND RECOMMENDATIONS	57
5.1 Concl	usion	57
5.2 Recon	nmendations	58
REFFERI	ENCES	59
CURRIC	ULUM VITAE	61

LIST OF TABLES

TABLE		PAGE
4.1	BET surface area measurements for all fresh catalysts	24
4.2	Pore volume and pore size of all fresh catalysts	25

LIST OF FIGURES

FIGURE

2.1	Schematic of autothermal reformer	6
3.1	Schematic of the experimental apparatus	20
4.1	XRD patterns of 5%, 10% and 15% Ni over $Ce_{0.75}Zr_{0.25}O_2$	
	prepared by sol-gel method in comparison with $Ce_{0.75}Zr_{0.25}O_2$	
	; (\bullet) CeO ₂	26
4.2	XRD patterns of 5%, 10% and 15% Ni over $Ce_{0.75}Zr_{0.25}O_2$	
	prepared by impregnation method in comparison with	
	$Ce_{0.75}Zr_{0.25}O_2; (\bullet) CeO_2, (\blacksquare) NiO$	27
4.3	CO TPR results of $Ce_{0.75}Zr_{0.25}O_2(a)$, 5%Ni/Ce _{0.75} Zr _{0.25} O ₂ (b),	
	10%Ni/Ce _{0.75} Zr _{0.25} O ₂ (c) and $15%$ Ni/Ce _{0.75} Zr _{0.25} O ₂ (d)	
	which prepared by sol-gel method	29
4.4	CO TPR results of $Ce_{0.75}Zr_{0.25}O_2(e)$, 5%Ni/ $Ce_{0.75}Zr_{0.25}O_2(f)$,	
	10%Ni/Ce _{0.75} Zr _{0.25} O ₂ (g) and $15%$ Ni/Ce _{0.75} Zr _{0.25} O ₂ (h)	
	which prepared by impregnation method	29
4.5	CO TPR results of 15%Ni/Ce _{0.75} Zr _{0.25} O ₂ which prepared	
	sol-gel (a) and impregnation method (b)	30
4.6	TEM pictures of Ni loading on Ce0.75Zr0.25O2 by	
	sol-gel method with 5%Ni (a), 10%Ni (b) and 15%Ni (c)	32
4.7	TEM pictures of Ni loading on Ce _{0.75} Zr _{0.25} O ₂ by	
	impregnation method with 5%Ni (d), 10%Ni (e) and 15%Ni (f)	33
4.8	Iso-octane conversion as a function of reaction temperatures	
	over different nickel loading on $Ce_{0.75}Zr_{0.25}O_2$ by sol-gel method;	
	%Ni loadings: (■) 0, (●) 5, (♦) 10 and (▲) 15	
	with reaction condition: O_2/C ratio = 1/1, total flow rate	
	= 160 ml/min and space velocity = $64,000 \text{ h}^{-1}$	34

PAGE

.

- 4.9 Iso-octane conversion as a function of reaction temperatures over different nickel loading on Ce_{0.75}Zr_{0.25}O₂ by impregnation method; %Ni loadings: (■) 0, (●) 5, (◆) 10 and (▲) 15 with reaction condition: O₂/C ratio = 1/1, total flow rate = 160 ml/min and space velocity = 64,000 h⁻¹
 4.10 Iso-octane conversion as a function of reaction temperatures on
- 15%Ni/Ce_{0.75}Zr_{0.25}O₂; %Ni loading methods: (\blacksquare) sol-gel method and (\bullet) impregnation method with reaction condition: O₂/C ratio = 1/1, total flow rate = 160 ml/min and space velocity = 64,000 h⁻¹ 37
- 4.11 Selectivity of CO₂, CO and H₂ product from iso-octane oxidation over 15%Ni/Ce_{0.75}Zr_{0.25}O₂ prepared by sol-gel method;
 (◆) CO₂, (■) CO and (▲) H₂ with reaction condition: O₂/C ratio = 1/1, total flow rate = 160 ml/min and space velocity = 64,000 h⁻¹
- 4.12 Selectivity of CO₂, CO and H₂ product from iso-octane oxidation over 15%Ni/Ce_{0.75}Zr_{0.25}O₂ prepared by impregnation method;
 (◆) CO₂, (■) CO and (▲) H₂ with reaction condition: O₂/C ratio = 1/1, total flow rate = 160 ml/min and space velocity = 64,000 h⁻¹ 38
- 4.13 The effect of O₂/C on Light Off temperature of iso-octane oxidation over Ce_{0.75}Zr_{0.25}O₂; O₂/C ratios: (■) 0.125/1, (●) 0.25/1, (●) 0.50/1 and (▲) 1/1 with reaction condition: total flow rate = 160 ml/min and space velocity = 64,000 h⁻¹
- 4.14 The effect of O₂/C on Light Off temperature of iso-octane oxidation over 15%Ni/Ce_{0.75}Zr_{0.25}O₂ prepared by sol-gel method; O₂/C ratios:
 (■) 0.125/1, (●) 0.25/1, (●) 0.50/1 and (▲) 1/1 with reaction condition: total flow rate = 160 ml/min and space velocity = 64,000 h⁻¹ 39
- 4.15 The effect of O₂/C on Light Off temperature of iso-octane oxidation over 15%Ni/Ce_{0.75}Zr_{0.25}O₂ prepared by impregnation method;
 O₂/C ratios: (■) 0.125/1, (●) 0.25/1, (●) 0.50/1 and (▲) 1/1 with reaction condition: total flow rate = 160 ml/min and space velocity = 64,000 h⁻¹

PAGE

36

38

4.16	The effect of H_2O/C ratios on H_2/CO product ratio	
	at (\blacksquare) 450°C, (\bullet) 500°C, (\blacklozenge) 550°C and (\blacktriangle) 600°C	
	of 15% Ni/Ce _{0.75} Zr _{0.25} O ₂ by sol-gel method with	
	reaction condition: $O_2/C = 1/1$, total flow rate = 160 ml/min	
	and space velocity = $64,000 \text{ h}^{-1}$	43
4.17	The effect of H ₂ O/C ratios on CO selectivity	
	at (\blacksquare) 450°C, (\bullet) 500°C, (\bullet) 550°C and (\blacktriangle) 600°C	
	of 15% Ni/Ce _{0.75} Zr _{0.25} O ₂ by sol-gel method with	
	reaction condition: $O_2/C = 1/1$, total flow rate = 160 ml/min	
	and space velocity = $64,000 \text{ h}^{-1}$	43
4.18	The effect of H ₂ O/C ratios on conversion	
	at (\blacksquare) 450°C, (\bullet) 500°C, (\blacklozenge) 550°C and (\blacktriangle) 600°C	
	of 15% Ni/Ce _{0.75} Zr _{0.25} O ₂ by sol-gel method with	
	reaction condition: $O_2/C = 1/1$, total flow rate = 160 ml/min	
	and space velocity = $64,000 \text{ h}^{-1}$	44
4.19	The effect of H ₂ O/C ratios on H ₂ /CO product ratio	
	at (\blacksquare) 450°C, (\bullet) 500°C, (\bullet) 550°C and (\blacktriangle) 600°C	
	of 15% Ni/Ce _{0.75} Zr _{0.25} O ₂ by impregnation method with	
	reaction condition: $O_2/C = 1/1$, total flow rate = 160 ml/min	
	and space velocity = $64,000 \text{ h}^{-1}$	44
4.20	The effect of H ₂ O/C ratios on CO selectivity	
	at (\blacksquare) 450°C, (\bullet) 500°C, (\bullet) 550°C and (\blacktriangle) 600°C	
	of 15% Ni/Ce _{0.75} Zr _{0.25} O ₂ by impregnation method with	
	reaction condition: $O_2/C = 1/1$, total flow rate = 160 ml/min	
	and space velocity = $64,000 \text{ h}^{-1}$	45
4.21	The effect of H ₂ O/C ratios on conversion	
	at (\blacksquare) 450°C, (\bullet) 500°C, (\bullet) 550°C and (\blacktriangle) 600°C	
	of 15% Ni/Ce _{0.75} Zr _{0.25} O ₂ by impregnation method with	
	reaction condition: $O_2/C = 1/1$, total flow rate = 160 ml/min	
	and space velocity = $64,000 \text{ h}^{-1}$	45

PAGE

4.22	The effect of O ₂ /C ratios on H ₂ /CO product ratio	
	at (\blacksquare) 450°C, (\bullet) 500°C, (\blacklozenge) 550°C and (\blacktriangle) 600°C	
	of 15%Ni/Ce _{0.75} Zr _{0.25} O ₂ by sol-gel method with	
	reaction condition: $O_2/C = 1/1$, total flow rate = 160 ml/min	
	and space velocity = $64,000 \text{ h}^{-1}$	48
4.23	The effect of O ₂ /C ratios on CO selectivity	
	at (\blacksquare) 450°C, (\bullet) 500°C, (\bullet) 550°C and (\blacktriangle) 600°C	
	of 15%Ni/Ce _{0.75} Zr _{0.25} O ₂ by sol-gel method with	
	reaction condition: $O_2/C = 1/1$, total flow rate = 160 ml/min	
	and space velocity = $64,000 \text{ h}^{-1}$	48
4.24	The effect of O ₂ /C ratios on conversion	
	at (\blacksquare) 450°C, (\bullet) 500°C, (\bullet) 550°C and (\blacktriangle) 600°C	
	of 15% Ni/Ce _{0.75} Zr _{0.25} O ₂ by sol-gel method with	
	reaction condition: $O_2/C = 1/1$, total flow rate = 160 ml/min	
	and space velocity = $64,000 \text{ h}^{-1}$	49
4.25	The effect of O ₂ /C ratios on H ₂ /CO product ratio	
	at (\blacksquare) 450°C, (\bullet) 500°C, (\bullet) 550°C and (\blacktriangle) 600°C	
	of 15% Ni/Ce _{0.75} Zr _{0.25} O ₂ by impregnation method with	
	reaction condition: $O_2/C = 1/1$, total flow rate = 160 ml/min	
	and space velocity = $64,000 \text{ h}^{-1}$	49
4.26	The effect of O ₂ /C ratios on CO selectivity	
	at (\blacksquare) 450°C, (\bullet) 500°C, (\bullet) 550°C and (\blacktriangle) 600°C	
	of 15% Ni/Ce _{0.75} Zr _{0.25} O ₂ by impregnation method with	
	reaction condition: $O_2/C = 1/1$, total flow rate = 160 ml/min	
	and space velocity = $64,000 \text{ h}^{-1}$	50
4.27	The effect of O ₂ /C ratios on conversion	
	at (\blacksquare) 450°C, (\bullet) 500°C, (\bullet) 550°C and (\blacktriangle) 600°C	
	of 15% Ni/Ce _{0.75} Zr _{0.25} O ₂ by impregnation method with	
	reaction condition: $O_2/C = 1/1$, total flow rate = 160 ml/min	
	and space velocity = $64,000 \text{ h}^{-1}$	50

4.28	TPO results of $Ce_{0.75}Zr_{0.25}O_2(a)$, 5%Ni/Ce _{0.75} Zr _{0.25} O ₂ (b),	
	10%Ni/Ce _{0.75} Zr _{0.25} O ₂ (c) and $15%$ Ni/Ce _{0.75} Zr _{0.25} O ₂ (d)	
	which prepared by sol-gel method	52
4.29	TPO results of $Ce_{0.75}Zr_{0.25}O_2(e)$, 5%Ni/Ce _{0.75} Zr _{0.25} O ₂ (f),	
	10%Ni/Ce _{0.75} Zr _{0.25} O ₂ (g) and $15%$ Ni/Ce _{0.75} Zr _{0.25} O ₂ (h)	
	which prepared by impregnation method	52
4.30	TEM results of used 15%Ni/Ce0.75Zr0.25O2 which	
	prepared by sol-gel method (a) and impregnation method (b)	54
4.31	The activity of 15%Ni/Ce _{0.75} Zr _{0.25} O ₂ versus time for	
	coke formation study carried under autothermal system	
	with reaction condition: $O_2/C = 1/1$, total flow rate = 160 ml/min	
	and space velocity = $64,000 \text{ h}^{-1}$	54
4.32	Catalyst bed temperature profiles measured at the furnace	
	set-point of 600° C for steam reforming (\blacksquare), partial oxidation	
	(\blacklozenge) and autothermal system (\blacklozenge) ; the temperature difference	
	refers to the measured bed temperature minus the furnace	
	set-point temperature	56