#### REFERENCES

Anthony, L.A., Plastics and the environment, New Jersey: John Wiley & Sons, 2003.

Askvik, K.M., Hetlesxther, S., Sjöblom, J., Stenius, P., <u>Properties of the lignosulfonate-</u> <u>Surfactant complex phase</u>. Colloids and Surface, **182**, 178-189, 2001.

- Beach, D.L., and Kissin, Y.V., <u>Encyclopaedia of polymer science and engineering</u>. 6, New York: John Wiley & Sons, 1988.
- Buchan, R., Yarar, B., <u>Application of mineral-processing technology to plastic recycling</u>. Mineral engineering, **48**, 69-72, 1996.
- Buchan, R., Yarar, B., <u>Recovery plastics for recycling by mineral processing techniques</u>. J. Miner.Met. Mater. Soc **47**, 1995.

Chemistry in Britain, Good news for polyolefins. in Chemistry in Britain, 2001.

- Curlee, T.R., Das, S., <u>Plastics wastes (management, control, recycling, and disposal)</u>. New Jersey, Noyes Data Corporation, 1991.
- Dodbina, G., Haruki, N., Shibayama, A., Miyazaki, T., Fujita, T., <u>Combination of sink-float</u> separation and flotation technique for purification of shredded PET-bottle from PE or <u>PP flakes</u>. Int.J.Miner.Process, **65**, 2002.
- Drelich, J., Kim, J.H., Payne, T., Miller, J.D., Kobler. R.W., <u>Purification of polyethylene</u> <u>terephthalate from polyvinyl chloride by froth flotation for the plastics (soft-drink</u> <u>bottle) recycling industry</u>. Sep. Puri. Tech, **15**, 1999.
- Ehrig, R.J., Plastic recycling product and process. New York: Hasser, 1992.
- Ferrara, G., Meloy T.P., <u>Low dense media process: a new process for low-density solid</u> <u>separation</u>. Powder Technology,**103**, 1999.
- Fraunholcz, N., <u>Plastics flotation</u>, Ph.D. <u>Thesis</u>. Delft University of Technology, The Netherlands, 1997.
- Fraunholcz, N., <u>Separation of waste plastics by froth flotation a review. part I.</u> Mineral Engineering, **17**, 2004.
- Gisela, A.M., Jorge, A.S.T., <u>Use of froth flotation to separate PVC/PET mixtures</u>. Waste Management **20**, 265-269, 2000.
- Guern, C. LE., Conil, P. and Houot, R., <u>Role of calcium ions in the mechanism of action of a</u> <u>lignosulfonate used to modify the wettability of plastics for their separation by</u> <u>Flotation</u>. Mineral Engineering, **13**, 2000.
- Hans, G.E., An Introduction to Plastics: VCH, 1993.
- Izumi, S., <u>Flotation method for separation of mixture plastics</u>. US Patent, No. 3926790, **12**, 1975.
- Jordan, C.E., Hood, G.D., Susko, F.J., Scheiner, B.J., <u>Elutriation-flotation for recycling of</u> <u>plastics from municipal solid wastes</u>, Preprint 92-83, SME Annual Meeting, 1992.

- Kim, U.Y., Kim, K.U., <u>Research and development activities on polymer for the 21<sup>st</sup> century in</u> <u>Korea</u>, Macromolecules symposium, **98**, 1995.
- Kobler, R.W., <u>Polyvinyl chloride –polyethylene terephthalate Separation</u>. US Patent, No. 5399433, 1995.
- Marques, G.A., Tenorio, J.A.S., <u>Use of froth flotation to separate PVC/PET mixtures</u>. Waste Manag, **20**, 2000
- Milgrom, J., Polyethylene terephthalate, <u>Plastic recycling product and process</u>. New York: Hasser, 1992.

National Metal and Materials Technology Center (MTEC), Material Science. 1998.

- Pollution Control Department (PCD), Pollution situation in Thailand, 2004.
- Relative equilibrium states for a water droplet at a solid surface indicating various wettability regimes, Available from: <u>http:// www.ksvinc.com</u>
- Rubinstein, J.B., Column flotation: Gordon and Breach Science Publishers, 1995.
- Saitoh, K., Nagano, I., Izumi, S., <u>New separation techniques for waste plastics</u>. Proceedings Of the fifth mineral waste utilization symposium, 1976.
- Shen, H., Frossberg, E., Pugh, R.J., <u>Selective flotation separation of plastics by chemical</u> <u>conditioning with methyl cellulose</u>, Res. Conserv. Recycling, **35**, 2002.
- Shen, H., Pugh, R.J., Frossberg, E., <u>A review of plastics waste recycling and the flotation of plastics</u>. Resources Conservation and Recycling, **25**, 1999.
- Shibata, J., Matsumoto, S., Yamamoto, H., Kusaka, E., Pradip, <u>Flotation separation of</u> <u>plastics using selective depressants</u>, Int. J. Miner Process, **48**, 1996.
- Sission, E.A., <u>Process for separating polyethylene terephthalate from polyvinyl chloride</u>. US Patent, No. 5120768, 6, 1992.

Surface tension and contact angle of plastics, Available from:

http://www.accudynetest.com/surfsce\_energy\_materails.html

- Sustic, A., and Pellon, B., Adhesive age. 17, 1991.
- The Dow Chemical Company, Flotation fundamentals to mining chemicals. Michigan, 1986.
- The Federal of Thai Industries, <u>Research of new market study for plastics industries</u> <u>exportation</u>, 2001.
- Thai Plastics Industries Association, <u>Bi-monthly journal for plastics industry in Thailand</u>, **18**, (4) 2002.
- Valdez, E.G., Wilson, W.J., <u>Separation of plastics by flotation</u>, US Patent, NO. 4167477, 9, 1979
- Vogt, V., Bahr, A., Flotation von kunstoffen. Erzmetall, 36 (10), 1983
- Yarar, B., <u>Investigation of recovery of cellulose from difficult to process sources</u>. Using Surface Chemical Principles, Proceeding of the Fourth Recycling World Congress, New Orleans, 1982.

## APPENDICES

## **APPENDIX A**

#### Material Safety Data Sheet of Calcium Lignosulfonate (www.sigma-aldrich.com)

#### 1. Product and Company Information

Product Name LIGNOSULFONIC ACID, CALCIUM SALT Product Number 471054 Company Sigma-Aldrich Pte Ltd #08-01 Citilink Warehouse Singapore 118529 Singapore Technical Phone # 65 271 1089 Fax 65 271 1571

#### 2. Composition/Information on Ingredients

| Product Name                     | CAS #             | EC no |
|----------------------------------|-------------------|-------|
| LIGNOSULFONIC ACID, CALCIUM SALT | 8061-5 <b>2-7</b> | None  |

#### 3. Hazards Identification

SPECIAL INDICATION OF HAZARDS TO HUMANS AND THE ENVIRONMENT: Not required according to Directive 67/548/EC

#### 4. First Aid Measures

AFTER INHALATION:

If inhaled, remove to fresh air. If not breathing give artificial respiration. If breathing is difficult, give oxygen.

AFTER SKIN CONTACT:

In case of contact, immediately wash skin with soap and copious amounts of water.

AFTER EYE CONTACT:

In case of contact, immediately flush eyes with copious amounts of water for at least 15 minutes.

AFTER INGESTION:

If swallowed, wash out mouth with water provided person is conscious. Call a physician.

#### 5. Fire Fighting Measures

EXTINGUISHING MEDIA:

5

Suitable: Water spray. Carbon dioxide, dry chemical powder, or appropriate foam. SPECIAL RISKS:

Specific Hazard(s): Emits toxic fumes under fire conditions.

SPECIAL PROTECTIVE EQUIPMENT FOR FIREFIGHTERS

Wear self-contained breathing apparatus and protective clothing to prevent contact with skin and eyes.

#### **APPENDIX B**

1. Floatability of plastics content (%)

$$F = \frac{A}{B} \times 100$$

A = plastics content that float to the surface of the medium

B = total plastics in the feed

F = plastics floatability in %

2. Plastics recovery (%)

$$W = -\frac{B}{A} \times 100$$

A = plastics content of feed

B = plastics content of tailing (in case of plastics that sank into the bottom of column)

B = plastics content of floating (in case of plastics that floated to the surface of column)

W = plastics recovery in %

#### 3. Recovered plastics purity content

$$P = 100 - \left[\frac{C}{R} \times 100\right]$$

P = plastics purity in %

C = content of plastics A in contaminated with plastics B

R = plastics content of feed

**For example**, to separate a mixture of PET and PVC with content 3 g each. It was found that 2.705 g of PVC separate from PET/PVC by 500 mg/l CaLS at pH 11 and 4 minutes condition time. While, the left sank to the bottom of the flotation column. When considering PET, it was found that 2.097 g of PET remained at the bottom of the column.

| Floatability of PET | = (0.90<br>= 30.1  |                                            |
|---------------------|--------------------|--------------------------------------------|
| Floatability of PVC | = (2.7)<br>= 90.1  | ,                                          |
| Recovered PET       | = (2.09<br>= 69.9  | 97/3) x 100<br>%                           |
| Recovered PVC       | = (2.70)<br>= 90.1 | 5 / 3) x 100<br>7 %                        |
| Purity of Recovered | I PET              | = 100 - {(0.295 x 100)/2.392}<br>= 87.67 % |
| Purity of Recovered | I PVC              | = 100 - {(0.903 x 100)/3.068}<br>= 70.57 % |

## **APPENDIX C**

The surface tension of medium solution in flotation technique: CaLS can reduce dramatically liquid surface tension ( $\gamma_{L/G}$ ).

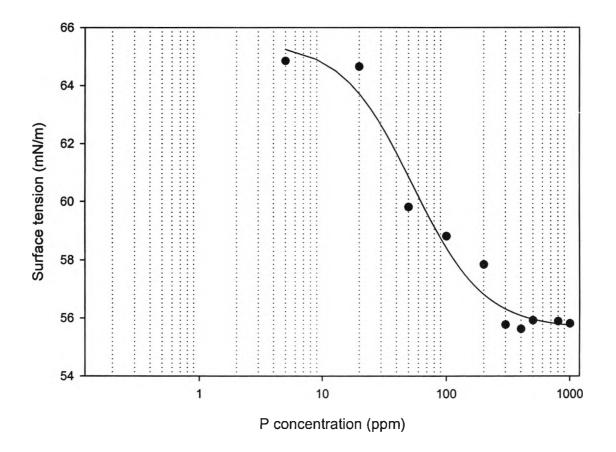



Figure C.1 Effect of wetting agent (CaLS) on the surface tension of flotation medium (pH 7, 25 °C)

## APPENDIX D

The average of density of medium solution that used in flotation experiments

## Table D.1 Densities of medium solution at various concentration of wetting agent (medium solution is water)

| Medium solution (GaES: mg/l) | Density (g/cm³) |
|------------------------------|-----------------|
| 0                            | 1.00            |
| 20                           | 1.00            |
| 50                           | 1.00            |
| 100                          | 1.00            |
| 200                          | 1.00            |
| 300                          | 1.00            |
| 400                          | 1.00            |
| 500                          | 1.00            |

# Table D.2 Densities of medium solution at various concentration of electrolyte (CaCl<sub>2</sub>) at CaLS 500 mg/l

| Medium solution (CaCl <sub>2</sub> : %w/v) | Density (g/cm³) |
|--------------------------------------------|-----------------|
| 0                                          | 1.00            |
| 0.1                                        | 1.01            |
| 0.3                                        | 1.01            |
| 0.5                                        | 1.01            |
| 0.7                                        | 1.02            |
| 0.9                                        | 1.03            |

| Medium solution (CaLS: mg/l) | Density (g/cm³) |
|------------------------------|-----------------|
| 0                            | 0.97            |
| 20                           | 0.97            |
| 50                           | 0.97            |
| 100                          | 0.97            |
| 200                          | 0.97            |
| 300                          | 0.98            |
| 400                          | 0.98            |
| 500                          | 0.98            |

## Table D.3 Densities of medium solution at various concentration of wetting agent (medium solution is 20 %v/v ethyl alcohol)

 Table D.4 Densities of medium solution at various concentration of electrolyte (CaCl<sub>2</sub>)

 at CaLS 500 mg/l

| Medium solution (CaCl <sub>2</sub> : %w/v) | Density (g/cm <sup>3</sup> ) |
|--------------------------------------------|------------------------------|
| 0                                          | 0.97                         |
| 0.1                                        | 0.98                         |
| 0.3                                        | 0.98                         |
| 0.5                                        | 0.98                         |
| 0.7                                        | 0.98                         |
| 0.9                                        | 0.98                         |

•

## BIOGRAPAHY

## Napatr Kunachitpimol



Date of birth:8 December 1980Address:56/267 Kranjanapisek Rd. Bangkroung district Nontaburi 11130

## Qualification

| High school:   | Srinakharinwirot University Patumwan Demonstration school      |
|----------------|----------------------------------------------------------------|
| Undergraduate: | Faculty of Science, Chulalongkron University                   |
| Master degree: | National Research Center for Environmental and Hazardous Waste |
|                | Management, Chulalongkron University                           |