DISSOLUTION KINETICS OF ANALCIME IN HYDROCHLORIC ACID

Ms. Phan-on Wattanaparadorn

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2002 ISBN 974-03-1571-2

Thesis Title	:	Dissolution Kinetics of Analcime in Hydrochloric Acid
By	:	Ms. Phan-on Wattanaparadorn
Program	:	Petrochemical Technology
Thesis Advisors	:	Assoc. Prof. Sumaeth Chavadej
		Dr. Pomthong Malakul
		Prof. H. Scott Fogler

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

K. Bunyahint. College Director

(Assoc. Prof. Kunchana Bunyakiat)

Thesis Committee:

Curuly.

(Assoc. Prof. Sumaeth Chavadej)

...........

(Dr. Pomthong Malakul)

(Prof. H. Scott Fogler)

Chulan Jonum

(Assoc. Prof. Chintana Saiwan)

(Dr. Sirirat Jitkarnka)

บทคัดย่อ

พันธุ์อร วัฒนะภราคร : การศึกษาจลศาสตร์การละลายของอนัลซิมในสารละลายกรด ไฮโครคลอริก (Dissolution Kinetics of Analcime in Hydrochloric acid) อ. ที่ปรึกษา : ศ. เอช สกอต ฟอกเลอร์, รศ. สุเมธ ชวเคช และ คร. ปมทอง มาลากุล ณ อยุธยา 49 หน้า ISBN 974-03-1571-2

การทำแอซิไดซ์เซชั่นในหลุมปิโตรเลียมเป็นวิธีที่ใช้มาหลายปี เพื่อเพิ่มปริมาณการผลิต จากหลุมปิโตรเลียม การก่อตัวของทรายเป็นซีเมนต์ดิดกับอนัลซิมเกิดขึ้นในบ่อน้ำมันหลายบ่อที่อยู่ นอกชายฝั่ง เมื่อเร็วๆนี้ได้พบปัญหาการเกิดผงสีขาวและซิลิกาเม็ดเล็กๆขึ้นภายหลังจากการทำแอซิ ใดซ์เซชั่น ในการศึกษานี้เป็นการศึกษาอัตราการละลายของอนัลซิมที่ขึ้นกับความเข้มข้นของกรด ไฮโดรคลอริกและอุณหภูมิ โดยใช้เครื่องปฏิกรณ์แบบกะ จากการทคลองพบว่า อัตราการละลาย ของอนัลซิมในกรดไฮโดรคลอริกเพิ่มขึ้นเมื่อเพิ่มความเข้มข้นของกรดและอุณหภูมิและการละลาย เป็นไปตามจลนพลศาสตร์ลำดับที่หนึ่ง การละลายของอนัลซิมในกรดไฮโดรคลอริกในช่วงความ เข้มข้น 0.1-4 โมล/ลิตรเป็นการละลายตามสตอกิโอเมตรีที่มีการสลายและละลายโดรงสร้างของอ นัลซิม อย่างสมบูรณ์ อย่างไรก็ตามการละลายในกรดไฮโดรคลอริกความเข้มข้น 7 โมล/ลิตรนั้น อลูมินัมจะถูกละลายออกมาโดยง่ายและมีซิลิกาเจลเกิดขึ้น นอกจากนี้ยังได้ทำการศึกษาการละลาย ของอนัลซิมโดยใช้เครื่องปฏิกรณ์แบบดิฟเฟอร์เรนเซียลที่อัตราการไหลต่างๆ เพื่อศึกษาถึงขั้นตอน ที่จำกัดการละลาย

ABSTRACT

4371015063 : PETROCHEMICAL TECHNOLOGY PROGRAM
Phan-on Wattanaparadorn: Dissolution Kinetics of Analcime in
Hydrochloric Acid.
Thesis Advisors: Prof. H. Scott Fogler, Assoc. Prof. Sumaeth
Chavadej and Dr. Pomthong Malakul, 49 pp. ISBN 974-03-1571-2
Keywords : Acidizing/ Acidization/ Sandstone Acidizing

Acidization of petroleum reservoirs has been used for many years to increase the productivity of petroleum wells. In a number of offshore oil wells, the formation sands are extensively cemented with analcime. Recently, problems with white powder and fine granular siliceous materials have been found after acidization. This study investigated the rate of analcime dissolution as a function of hydrochloric acid concentration and temperature by using a batch reactor. The rate of dissolution increased with increasing hydrochloric acid concentration and temperature and followed first order kinetics. For hydrochloric acid concentrations in the range of 0.1-4 mol/l, analcime was dissolved in a stoichiometrically uniform manner. There was complete decomposition and dissolution of the analcime framework under these acid solutions. However, at a hydrochloric acid concentration of 7 mol/l, aluminum was preferentially dissolved and a silica gel was formed. Analcime dissolution was further investigated using differential reactor at various flow rates in order to determine the rate-limiting step of the dissolution reaction.

ACKNOWLEDGEMENTS

I would first and foremost like to express my sincere gratitude and respect to my U.S. advisor, Prof. H. Scott Fogler who gave me an opportunity to visit The University of Michigan for his guidance, encouragement and support throughout this study. I would like to express my deep gratitude to Assoc. Prof. Sumaeth Chavadej and Dr. Pomthong Malakul, my Thai advisors, who gave me precious suggestions and did correction of this thesis.

I would like to thank all graduate students in Porous Media Group, Piyarat Wattana, Duc Nguyen, Veerapat Tantayakom, Rama Venkatesan, Dr. Barry Wolf, Kris Paso as well as many others in the Department of Chemical Engineering for their help and encouragement on all aspects of the experimental and their friendship.

I also wish to thank all Thai graduate students both in the Department of Chemical Engineering and outside the department for their hospitality during my visit to Ann Arbor.

I would also like to thank all the undergraduate students who helped in the experimental work, especially Marcela Rousseau.

I can't forget to thank my friends at PPC for their help and friendship.

Finally, I would like to extend the most important thank to my family for their love, support and understanding.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	v
Table of Contents	vi
List of Tables	ix
List of Figures	Х

CHAPTER

Ι	INTRODUCTION	1
II	LITERATURE SURVEY	3
	2.1 Oil Production and Problems	3
	2.1.1 Problems in Oil Production	3
	2.1.1.1 Matrix formation	3
	2.1.1.2 Clay swelling resulted from ion exchange	
	on clay	3
	2.1.1.3 Plugging problems caused by clay	
	instability during acid treatment	4
	2.1.1.4 Minerals precipitation	4
	2.1.2 Treatment Methods	4
	2.1.2.1 Fracturing	4
	2.1.2.2 Matrix acidizing	3
	2.2 Acid Treatment	5
	2.3 Acid – Aluminosilicate Reactions	5
	2.4 Zeolite	9
	2.4.1 Analcime	10

vii

ш	EXPERIMENTAL	12
	3.1 Materials	12
	3.2 Pretreatment of Analcime	12
	3.3 Verification of Analcime Purity by Elemental Analysis	13
	3.4 Analcime Dissolution Study	13
	3.5 Analysis of Leaching Reaction	14
	3.6 Characterization of Silica Gel Precipitates	15
	3.7 Determination of Analcime Chemical Composition	16
	3.7.1 EDX	16
	3.7.2 AAS	17
IV	RESULTS AND DISCUSSION	18
	4.1 Dissolution Rate of Analcime	18
	4.1.1 Batch Experimental Results	18
	4.1.2 Differential Experimental Results	24
	4.2 Effects of HCl Concentration and Temperature on	
	Analcime Dissolution	
	4.2.1 HCl Concentration Effect	26
	4.2.2 Temperature Effect	29
	4.3 Precipitation of Silicon	30
	4.4 Confirmation of Silica Gel Formation	31
	4.5 Determination of the Rate-Limiting Step	34
V	CONCLUSIONS AND DECOMMENDATIONS	26
Y	51 Conclusions	26
	5.2 Recommendations	27
	5.2 Recommendations	16

REFERENCE	ES
-----------	----

38

CHAPTER		PAGE
	APPENDIX	41
	CURRICULUM VITAE	49

LIST OF TABLES

TABLE

3.1	Properties of analcime	12
3.2	Composition of elements in analcime sample	17
4.1	Rates of analcime dissolution by HCl at 25°C and 45°C	22
4.2	Rates of dissolution of aluminum and silicon from analcime using	
	the differential reactor using 7 M HCl solution with a flow rate of	
	10 ml/min at 25°C	25
4.3	IR band assignments	32
4.4	Dissolution rates of aluminum from analcime using 1 M HCl	
	at different flow rates	34

PAGE

LIST OF FIGURES

FIGURE

2.1	The Process of Dealumination of Zeolite β in HCl Solution	9
2.2	Development of Zeolite Structures	11
3.1	The Slurry Reactor	14
3.2	Schematic Illustration of the Experimental Set up for	
	the Dissolution Study	15
3.3	The Enlarged View of the Differential Reactor	15
3.4	EDX Analysis of Analcime	16
4.1	Dissolution of Aluminum from Analcime in 0.1-7 M HCl at 25°C	20
4.2	Dissolution of Silicon from Analcime in 0.1-7 M HCl at 25°C	20
4.3	Dissolution of Aluminum from Analcime in 0.1-6 M HCl at 45°C	21
4.4	Dissolution of Silicon from Analcime in 0.1-0.6 M HCl at 45°C	21
4.5	The Rate of Silicon Dissolution versus the Rate of Aluminum	
	Dissolution in 0.1-7 M HCl at 25°C Determined from Batch Reactor	
	Experiment	23
4.6	The Rate of Silicon Dissolution versus the Rate of Aluminum	
	Dissolution in 0.1-7 M HCl at 45°C Determined from Batch Reactor	
	Experiment	23
4.7	Dissolution Rate of Aluminum from Analcime as a Function of	
	the Concentration of HCl at 25°C	27
4.8	Dissolution Rate of Aluminum from Analcime as a Function of	
	the Concentration of HCl at 45°C	27
4.9	Dissolution Rate of Silicon from Analcime as a Function of	
	the Concentration of HCl at 25°C	28
4.10	Dissolution Rate of Silicon from Analcime as a Function of	
	the Concentration of HCl at 45°C	28

PAGE

FIGURE

4.11	Concentration Profiles of Aluminum and Silicon from Analcime	
	Dissolution in 7 M HCl at 25°C	30
4.12	Concentration Profiles of Aluminum and Silicon from Analcime	
	Dissolution in 4 M HCl at 25°C	31
4.13	FTIR Spectra of Silica Gel Precipitates from the Experiment Using	
	4M HCl at 25°C	32
4.14	FTIR Spectra of Silica Gel Precipitates from the Experiment Using	
	7M HCl at 25°C	32
4.15	Plot of Dissolution Rate of Aluminum from Analcime versus	
	Square Root of the Flow Rate of 1M HCl	35