REFERENCES

- Bhatia, S. (1990). Zeolite Catalysis: Principles and Applications. 1st ed. Florida: CRC Press, Inc..
- Byrappa, K. and Yoshiro, M. (2001). <u>Handbook of Hydrothermal Technology a Technology for Crystal Growth and Materials processing</u>. 1st ed. New Jersey: Noyes Publications.
- Dufrenne, N., Blitz, J., and Meverden, C. (1997). Reactions of group IV mettalocence dichlorides with modified silica gel surfaces. <u>Microchemical</u> iournal, 55, 192-199.
- Gdanski, R. (1995). Fractional pore volume acidizing flow experiments. <u>SPE</u>

 30100, presented at the 1995 SPE European Formation Damage Symposition, The Hague, Netherlands, 1-11.
- Gdanski, R., and Shuchart, C.E. (1995). Newly discovered equilibrium controls HF stoichiometry. <u>SPE 30456</u>, presented at the 1995 SPE Annual Conference and Exhibition, Dallas, Texas, 1-8.
- Gdanski, R. (1998). Advanced sandstone acidizing designs using improved radial models. SPE Production & Facilities, 13(4), 272-278.
- Gdanski, R. (1998). Kinetics of the tertiary reactions of HF on alumino silicates. SPE Production & Facilities, 13(2), 75-80.
- Gdanski, R. (1999). Formation mineral content key to successful sandstone acidizing. Oil & Gas Journal, 97(35), 90-95.
- Gdanski, R. (2000). Kinetics of the secondary reactions of HF on alumino silicates. SPE Production & Facilities, 14(4), 260-268.
- Gdanski, R. (2000). Kinetics of the primary reactions of HF on alumino silicates. SPE Production & Facilities, 15(4), 279-287.
- Golan, M. and Whitson C.H. (1991). <u>Well Performance</u>. 2nd ed. Enggle Cliffs, New Jersey: Prentice Hall.
- Harland, C.E. (1994). <u>Ion Exchange: Theory and Practice</u>. 2nd ed. Cambridge: Royal Society of Chemistry.
- Klein, L. (1987). Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes. 1st ed. New Jersey: Noyes Publications.

- Kline, W.E. and Fogler, H.S. (1981). Dissolution kinetics: the nature of the particle attack of layered silicates in HF. <u>Chemical Engineering Science</u>. 36, 871-884.
- Lund, K. (1974). On the acidizing of sandstone. Dissertation at the University of Michigan, Michigan, USA.
- Meir, W.M. and Olson, D.H. (1987). <u>Atlas of Zeolite Structure Types</u>. 2nd ed. Boston: Butterworths.
- Murphy, W.M., Roberto, T.R., Prikryl, J.D., and Goulet, C.J. (1996). Reaction kinetics and thermodynamics of aqueous dissolution and growth of analcime and Na-clinoptilolite at 25°C. <u>American Journal of Science</u>, 296, 128-186.
- Olphen, H.V (1966). <u>Clay Colloid Chemistry</u>. 3rd ed. New York: John Wiley & sons.
- Quinn, M., Lake, L., and Schechter, R. (2000). Designing effective sandstone acidizing treatments through geochemical modeling. SPE Production & Facilities, 15(1), 33-41.
- Pouchert, C.J. (1985). <u>The Aldrich Library of FT-IR Spectra</u>. 1st ed. Sigma-Aldrich Co..
- Rabo, J.A. (1976). <u>Zeolite Chemistry and Catalysis</u>. 1st ed. Washington, D.C.: American Chemical Society.
- Russell, W.L. (1951). <u>Principle of Petroleum Geology</u>. 1st ed. New York: McGraw-Hill.
- Rogers, A. and Stonecipher, S.A. (1998). Designing a remendial acid treatment for gulf of Mexico deepwater turbidite sands containing zeolite cement. <u>SPE</u> 39595, presented at the SPE International Sympositium on Formation Damage Control, Lafayette, Louisiana, 693-702.
- Sand, L.B. and Mumpton, F.A. (1978). <u>Natural Zeolites Occurance, Properties, Use</u>. 1st ed. New York: Pergamon Press.
- Schechter, R.S. (1992). Oil Well Stimulation. 1st ed. Enggle Cliffs, New Jersey: Prentice Hall.
- Scheirs, J. and Kaminsky, W. (1999). <u>Metallocence-based Polyolefins</u>. 1st ed. New York: John Wiley & Sons.

- Simon, D.E. and Anderson, M.S. (1990). Stability of clay minerals in acid. <u>SPE</u>

 19422, presented at the SPE Formation Damage Control Symposium,
 Lafayette, Louisiana, 201-212.
- Turner, R. (1964). <u>Kinetic Study of Acid dissolution of Montmorillonite and Kaolinite</u>. Dissertation in the University Microfilms, Michigan, U.S.A..
- Underdown, D.R., Hickey, J.J., and Kalra, S.K. (1990). Acidization of analcime-cemented sandstone, gulf of Mexico. <u>SPE 20624</u>, presented at the 65th Annual Technical Conference and Exhibition of the society of Petroleum Engineers, New Orleans, LA, 97-102.
- Wilkin, R.T. and Barnes, H.L. (1998). Solubility and stability of zeolites in aqueous solution: I. analcime, Na-, and K-clinoptilolite. <u>American Mineralogist</u>, 83, 746-761.
- Wilkin, R.T. and Barnes, H.L. (2000). Nucleation and growth kinetics of analcime from precursor Na-clinoptilolite. <u>American Mineralogist</u>, 85, 1329-1341.
- Yang, C. and Xu, Q. (1997). States of aluminum in zeolite β and influence of acidic or basic medium. Elsevier Science Inc, 19, 404-410.

APPENDIX

1. Determination of Analcime Chemical Composition Using Atomic Absorption Spectroscopy

The molar ratio of Si/Al/Na was determined from atomic absorption spectroscopy. A sample of analcime 0.3004 g was dissolved in 100 ml of 3.84% hydrofluoric acid.

Analcime Na₂O Al₂O₃ 4SiO₂ 2H₂O

Mass (g) Si (ppm) Al (ppm) Na (ppm)
0.3004 1600.35 736.209 611

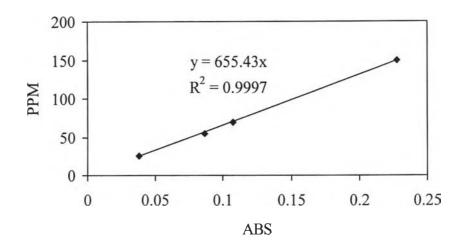
Observed moles ratio of Al: Si: Na = 1: 2.09: 0.985

Theoretical moles ratio of Al: Si: Na = 1: 2: 1

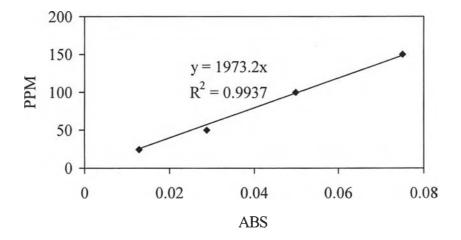
2. Kinetic Analysis of Analcime Dissolution for Batch Experiments

Experimental Conditions:

Weight of analcime = 2 g


HCl concentration = 2 M

Volume of HCl used = 300 ml

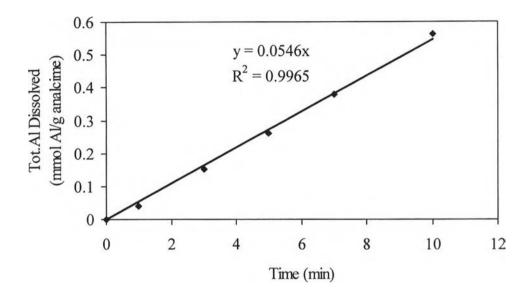

Temperature = 25°C

Stirring rate = 1100 rpm

Calibration Curve of Aluminum

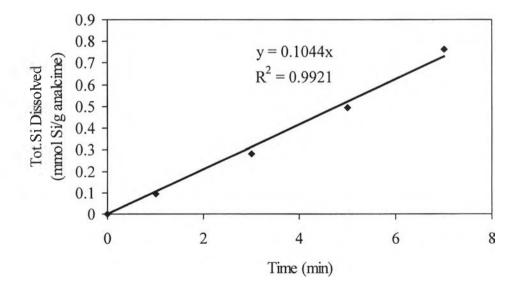
Calibration Curve of Silicon

For Aluminum


Time	ABS	Conc. of Al	Volume of	Al in each vial	Acc. Al	Solvent	Tot. Al	Tot. Al disolved/g
(min)		(mg/l)	solvent	(mg)	in vial (mg)	(l)	dissolved (mg)	analcime (mmolAl/g)
	<u> </u>		in each vial (l)					
0	0	0	0	0	0	0.300	0	0
1	0.011	7.20973	0.005	0.03604865	0.03604865	0.295	2.1629190	0.040054056
3	0.042	27.52806	0.005	0.13764030	0.17368895	0.290	8.15682635	0.15105234
5	0.073	47.84639	0.005	0.23923195	0.4129209	0.285	14.04914205	0.260169297
7	0.107	70.13101	0.005	0.35065505	0.76357595	0.280	20.40025875	0.377782569
10	0.161	105.52423	0.005	0.52762115	1.29119710	0.275	30.31036035	0.561302969

For Silicon

Time	ABS	Conc. of Si	Volume of	Si in each vial	Acc. Si	Solvent	Tot. Si dissolved	Tot. Si dissolved/g
(min)		(mg/l)	solvent	(mg)	in vial (mg)	(1)	(mg)	analcime (mmolAl/g)
			in each vial (l)				_	
0	0	0	0	0	0	0.300	0	0
1	0.009	17.7588	0.005	0.088794	0.088794	0.295	5.32764	0.094831613
3	0.027	53.2764	0.005	0.266382	0.355176	0.29	15.805332	0.281333784
5	0.048	94.7136	0.005	0.473568	0.828744	0.285	27.82212	0.495231755


Calculation of Initial Dissolution Rate of Aluminum

Plot graph between total aluminum dissolved in HCl solution and time

∴ Initial dissolution rate of aluminum = 0.0546 mmol Al/g·min Calculation of Initial Dissolution Rate of Silicon

Plot graph between total silicon dissolved in HCl solution and time

:. Initial dissolution rate of silicon = 0.1044 mmol Si/g·min

3. Calculation of Activation Energy (E)

The specific rate constants for the dissolution of aluminum from analcime in HCl at 25°C and 45°C were found to be 2.54x10⁻⁵ and 1.306x10⁻⁴ mole analcime/(g·min·HCl molarity), respectively.

A quantitative relationship for the activation energy is given by the Arrehenius equation.

$$k = A \exp(-\frac{E}{RT})$$
 (3)

Where k = specific rate constant

A = frequency factor or pre-exponential factor (a constant)

E = activation energy (Cal/mol)

R = gas constant = 1.987 Cal/mol/K

T = absolute temperature (K)

From equation (3);

$$\frac{k_2}{k_1} = \exp((-\frac{E}{R})(\frac{1}{T_1} - \frac{1}{T_2})) \tag{4}$$

$$\ln\frac{k_2}{k_1} = \left(-\frac{E}{R}\right)\left(\frac{1}{T_1} - \frac{1}{T_2}\right) \tag{5}$$

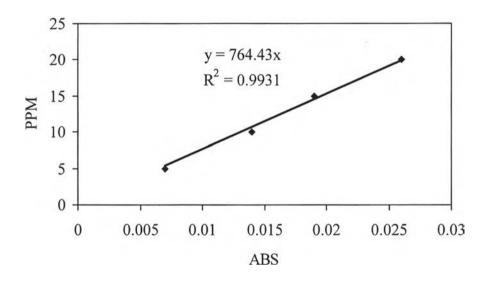
On rearrangement equation (5) gives

$$E = R \ln(\frac{k_2}{k_1})(\frac{T_1 T_2}{T_2 - T_1})$$
 (6)

The activation energy, E for dissolution of aluminum from analcime in hydrochloric acid was calculated by equation (6).

E =
$$1.987 \times \ln(1.306 \times 10^{-4}/2.540 \times 10^{-5}) \times (\frac{298.16 \times 318.16}{318.16 - 298.16})$$
 Cal/mol = 15431.74 Cal/mol = 15.43 kCal/mol

4. Kinetic Analysis of Analcime Dissolution for Differential Experiments


Weight of analcime (W) = 0.2 g

HCl concentration = 1 M

Flow rate of HCl used $(v_0) = 15$ ml/min

Temperature = 25° C

Calibration Curve of Aluminum

The dissolution rate of aluminum and silicon were calculated by this equation:

$$-\mathbf{r} = \frac{C_p v_0}{W} \tag{7}$$

where -r = rate of dissolution of analcime, mol Al/g of analcime·min

 C_p = production concentration, mol/l

 v_0 = volumetric flow rate of HCl solution, l/min

W = weight of analcime, g

For Aluminum

Time	ABS	PPM	Conc. of Al	-r _{Al}
(min)		(mg/l)	(M)	(mol Al/g·min)
0	0	0	0.00000	0
0.333	0.018	13.75974	0.00051	3.82215x10 ⁻⁵
0.667	0.018	13.75974	0.00051	3.82215x10 ⁻⁵
1.000	0.018	13.75974	0.00051	3.82215x10 ⁻⁵
1.333	0.018	13.75974	0.00051	3.82215x10 ⁻⁵
1.667	0.018	13.75974	0.00051	3.82215x10 ⁻⁵

∴ Initial dissolution rate of aluminum = $3.82215x10^{-5}$ mol Al/g·min

5. Characterization of Analcime Particles After Dissolved by 7 M HCl for 9 Minutes.

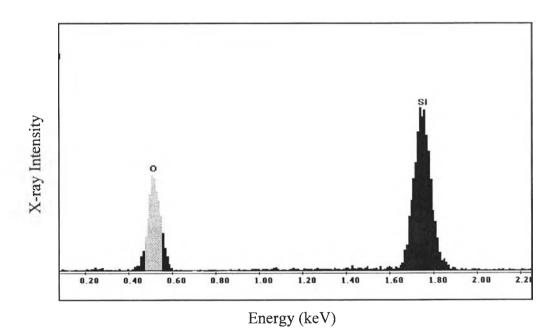


Figure 1 EDX Analysis of Analcime Particles After Dissolved by 7 M HCl for 9 Minutes.

6. Confirmation of Silica Gel Formation

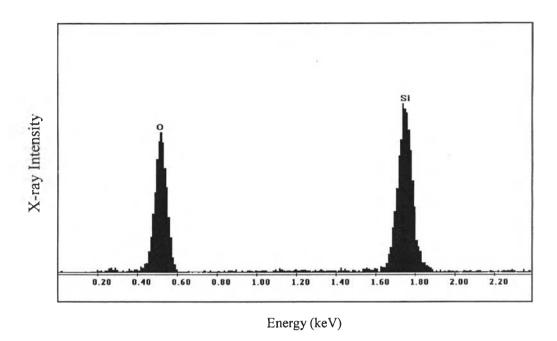


Figure 2 EDX analysis of silica gel precipitates from the experiment using 4 M HCl at 25°C.

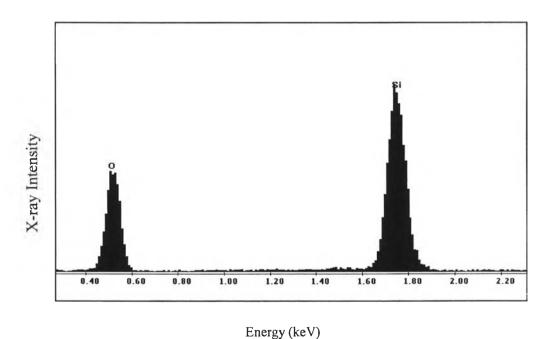


Figure 3 EDX analysis of silica gel precipitates from the experiment using 7 M HCl at 25°C.

CURRICULUM VITAE

Name: Ms. Phan-on Wattanaparadorn

Date of Birth: December 3, 1979

Nationality: Thai

University Education:

1996-2000 Bachelor Degree of Engineering (2nd Class Honours) in Chemical Engineering, Faculty of Engineering, Kasetsart University, Bangkok, Thailand