รายการอ้างอิง

- เปี่ยมศักดิ์ เมนะเศวต. กุ้งในเศรษฐกิจไทย. 2533. <u>การประชุมวิชาการเรื่องวิกฤตการณ์กุ้งกุลาดำ :</u> <u>สาเหตุและแนวทางแก้ไข.</u> กรุงเทพมหานคร : ภาควิชาวิทยาศาสตร์ทางทะเล จุฬาลงกรณ์ มหาวิทยาลัย.
- 2. Knoor, D. 1984. Use of chitinous polymers in food. Food Technol. 38: 85-97.
- Takasaki. 2001. <u>Radiation processing of Natural Polymer for Agro and Agro-chemical</u> <u>Industry(Report of the Regional Workshop)</u>. Japan : International Atomic Energy Agency.
- Nguyen Quoc Hien. 2000. Irradiation of Chitosan and its Biological Effect (Report of Regional Workshop on Radiation Processing of Polysaccharides). China : International Atomic Energy Agency.
- Nguyen Quoc Hien. <u>Raiation Modification of Polysaccharides</u>. Radiation Technology Department Nuclear Research Institute.
- Nguyen Quoc Hien et al., <u>Study on Degradation of Chitosan and preparation of</u> <u>Oligochitosan by Radiation Technique</u>. Radiation Technology Department : Nuclear Research Institute.
- Suwalee Chandrkrachang. 2002. <u>The Applications of Chitin and Chitosan in Agriculture in</u> <u>Thailand</u> (Chitin-Chitosan Symposium and Exhibition 5th Asia Pacific). Thailand : MTEC.
- Seiichi Tokuta and Hiroshi Tamura. 1999. <u>Basic Properties of Chitin and Chitosan</u>. Japan : The Takasaki Workshop on Radiation Processing of Natural Polymer Takasaki Cooperation.
- Seung S. Shin, Young C. Lee and Chan Lee. 2000. <u>The Degradation of Chitosan with the</u> aid of Lipase from *Rhizopus Japonicus* for the Production of Soluble Chitosan (Abstract from Journal of Food Biochemistry). Korea : Department of food science and Technology Chung-Ang University.
- 10. Choi, W.S., Park, Y.S. and Park, H.J. 2002. <u>Preparation of Chitosan Oligomer by Irradiation</u> (Chitin-Chitosan Symposium and Exhibition 5th Asia Pacific). Thailand : MTEC.

- Chyagrit Siri-Upathum. 2002. <u>Radiation Degradation of Chitosan its Application for Young</u> <u>Orchid Plants Growth Promotion</u> (Chitin-Chitosan Symposium and Exhibition 5th Asia Pacific). Thailand : MTEC.
- Nguyen Ahn Dzung and Nguyen Quoc Hein. 2002. Effect of Oligoalucosamine Prepared by Enzyme Degradation on the Growth of SoyBean (Chitin-Chitosan Symposium and Exhibition 5th Asia Pacific). Thailand : MTEC.
- Vo Thi Kim Lang, Le Quang Luan and Nguyen Quoc Hien. 2002. Effect of Irradiated Chitosan in Solution State on the Growth-Promotion of SoyBean in Germination period. (Chitin-Chitosan Symposium and Exhibition 5th Asia Pacific). Thailand : MTEC.
- Trang Si Trung et al., 2002. Effect of Dissolution and Precipitation by Various Acid Solvents on Chitosan Properties (Chitin-Chitosan Symposium and Exhibition 5th Asia Pacific). Thailand : MTEC.
- Alain Domard. 1996. <u>Some physicochemical and structural Basis for Applicability of Chitin</u> and <u>Chitosan</u> (2nd Asia Pacific Chitin Symposium). Bangkok.
- Munawwar Ali Khan. 1998. Enhanced Functionacity of Chitin by Chemical Modification.
 Master of Science, Research and development, School of Environment.
- 17. Austin, P.R. 1977. Chitin Solution. U.S. Patent4. 059, 457.
- Whistler, R.S. and BeMiller, J.N. 1962. Alkaline degradation of amino sugar. <u>Journal of</u> <u>Organic Chemistry</u> 27 : 1161-1164.
- Bough, W.A., A.C.M. Wu and Wm.B. Miller. Effect of Time of Deacetylation on Molecular Weight Distribution, Acetyl Content, Viscosity and Performance of Chitosan as a Conditioning Agent for Activated Sludge, n.d. (Unpublished Manuscript).
- Stelmock, R.L., F.M. Husby and A.L. Brundage. 1985. Application of Van Soest Acid Detergent Fiber Method for Analysis of Shell fish Chitin. <u>Journal of Dairy Science</u> 68 : 1502-1506.
- Carroad, P.A. and R.A. Tom. 1978. Bioconversion of Shellfish Chitin Waste : Process Conception and Selection of Microorganisms. <u>Journal of Food Science</u> 43 : 1158-1161.
- 22. Muzzarelli, R.A.A. 1985. The Polysaccharide. Vol.3. New York : Academic Press.

- Budavari, S. 1976. <u>The Merck index : an Encyclopedia of Chemicals. Drugs and Biological</u>. New Jerscy : Merck.
- 24. Ravi Kumar, M.N.V. <u>Property of Chitin and Chitosan</u>. Chitin and Chitosan for Versatile Applications Homepage : An Internet Chitin and Chitosan Applied Research Resource.
- 25. Muzzarelli, R.A.A. 1973. Natural Chelating Polymer. New York : Pergmon press.
- 26. Austin, P.R., C.J. Brine, J.E. Castle and J.P. Zikakis. 1981. Chitin : New Facets of Research. Science. 212 : 749-753.
- Shahdi, F. and Synowiecki, J. 1992. Quality and Compositional characteristics of newfoundland shellfish processing discards. In C.J. Brine, P.A. Sandford and J. P. Zikakis (eds.), <u>Advances in Chitin and Chitosan</u>. pp.617-626. London : Elsevier Science.
- Mima, s., Miya, M., Ivamato, R. and Yoshikama, S. 1983. Highly Deacetylate Chitosan and its Properties. J. App.Pol.Sci. 28 : 1909-1917.
- 29. Moorjani, M.N., Achutha, V. and Iman Khasim, D. 1975. Parameters affecting the viscosity of chitosan from prawn waste. Journal of Food Science and Technology 12 : 187-189.
- Yang, T. 1984. <u>Removal of heavy metals from liquids using chitosan and its scales</u>. Master's Thesis, Cornell University.
- 31. Muzzarelli, R.A.A. 1977. Chitin. New York : Pergamon press.
- Filar, L.J. and Wirick, M.G. 1978. Bulk and Solution properties of chitosan. In R.A.A.
 Muzzarelli(ed.), <u>Proceeding of the first international conference on chitin/chitosan</u>. pp. 182-192. Massachusetts Science and Technology Foundation.
- Englewood and N.J. Fort Lee. (n.d.). <u>Chitin and Chitosan : Speciality Biopolymers for</u> <u>Food.Medicine and Industrial</u>. Technical Insights.
- Singh, A. and Silverman, J. 1992. <u>Radiation Processing of Polymers</u>. Progress in Polymer Processing Series. New York : American Chemical Society.
- Pawadee Mathacanon. 2000. <u>Regional (RCA) Training Course on Radiation Processing of</u> <u>Natural Polysaccharides</u> (Summary Report). Ho Chi Minh City, Vietnam : National Materials Technology Center, Bangkok, Thailand.

- Muraki, E., Yaku, F. and Kejima, H. 1993. Preparation and Crystallization of D-glucosamine Oligosaccharides with DP 6-8. <u>Carbohvdr.Res.</u> 239 : 227-237.
- Sanil Sabharwal. 2001. <u>Radiation Chemistry of Monomers and Polymers</u> (Radiation Technology Development Section). India : Bhabha Atomic Research Center.
- Ulanski, R. and Rosiak, J. 1992. Preliminary Studies on Radiation-Induced Changes in Chitosan. <u>J. Radiat. Appl. Instrum.</u> 39 : 53-57.
- Rangrong Yoksan, Siriratana Biramontri and Suwabun Chirachanchai. 2002. <u>Structural</u> <u>Characterization of γ-rav Iradiated Chitosan</u> (Chitin-Chitosan Symposium and Exhibition 5th Asia Pacific). Thailand : MTEC.
- 40. Nguyen Manh Hung et al., <u>The use of Chitosan as Bioadhesive and its Property</u> <u>Improvement by Radiation Treatment for Waste-Stable Shrimp Feed Product</u>.
- 41. Hitoshi Yamaoka. 1991. Radiation Chemistry of Polymer. <u>UNDP/IAEA/RCA Regional</u> <u>Training Course on Radiation Chemistry Takasaki Radiation Chemistry Research</u> <u>Establishment</u>. JAERI.
- Shaefgen, John R. Schaefgen and Paul J. Flory. 1984. Synthesis of Multichain Polymer and Investigation of their Viscosities. <u>J. Am. Chem. Soc.</u> 70 : 2709-2718.
- 43. George A.F. Roberts. 1992. Chitin Chemistry. Hong Kong : The Macmillan press.
- 44. ศูนย์วิจัยสารออกฤทธิ์ทางชีวภาพ ภาควิชาเคมี คณะวิทยาศาสตร์, วิทยาลัยปิโตรเลียมและปิโตรเคมี , ศูนย์เชี่ยวชาญด้านเทนไซม์เทคโนโลยี ภาควิชาชีวเคมี และศูนย์เทคโนโลยีโลหาและวัสดุ แห่งชาติ สำนักงานพัฒนาวิทยาศาสตร์และเทคโนโลยี. 2544. <u>การประชุมเชิงปฏิบัติการไคติน และไคโตซานจากวัตถุดิบธรรมชาติสุการประยุกต์ใช้ (คู่มือปฏิบัติการ). กรุงเทพมหานคร : จุฬาลงกรณ์มหาวิทยาลัย.</u>
- 45. G.A.F. Roberts and J.G.Domszy. 1982. Determination of the Viscometric Constants for Chitosan. Int. J. Biol. Macromol. 4: 374-377.
- 46. A. Charlesby. 1955. J. Pol. Sci. 15 : 263.
- 47. A. Sharples and H.M. Major. 1958. J. Pol. Sci. 27 : 433.
- 48. G. Sitaramaih and D.A.I. Goring. 1962. J. Pol. Sci. 58 : 1107.
- 49. K. Kamida and K. Okajima. 1981. Pol. J. 13 : 163.
- 50. M. Rinaudo and A. Domard. In ref.46 : p.110

- Malcolm P. Stevens. 1999. <u>Polymer Chemistry</u>. Third Edition. New York Oxford : Oxford University press.
- Kraemer and Elmer O. Kraemer. 1938. Molecular Weight of Cellulose and Cellose Derivatives. <u>Ind. Eng. Chem.</u> 30 : 1200-1203.
- 53. S.T. Holouitz, S. Roseman and H.J. Blumenthal. 1957. J. Am. Chem. Ssoc. 79 : 5046.
- 54. Jeon, Y.J., Kim, C.H. and Kim, S.K. 1998. The Kor. Soc. For chitin and Chitosan 3: 140.
- 55. A.G. Darvill and P. Albersheim. 1984. Ann. Rev. Plant Physiol. 35 : 243-375.
- 56. C.A. Ryan. 1988. <u>Biochemistry</u> 27 : 8879-8883.
- 57. Billmeyer, F. W. 1971. <u>Textbook of polymer Science</u>. 2nd ed. New York : Wiley-Interscience.
- 58. ASTM Standards(D445).1995. <u>Kinematic Viscosity of Transparent and Opaque Liquids</u> (The Calculation of Dynamic Viscosity).
- 59. ธเนศ อินทราลักษณ์. 2545. การพัฒนาท่อโพลิเอทีลีน/เอทีลีนไวนิลอะซิเทตหดตัวได้ด้วยความร้อน โดยการฉายรังสีแกมมาจากโคบอลท์-60. วิทยานิพนธ์มหาบัณฑิต ภาควิชานิวเคลียร์เทคโนโลยี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย.

ภาคผนวก

ภาคผนวก ก

แบบจำลองการคำนวณหาค่า Mn, Mw และ Mv และการเปลี่ยนแปลงของค่า Mn Mw และ Mv เมื่อทำการแยกน้ำหนักโมเลกุลที่ไม่ต้องการออกไป

แบบจำลองการคำนวณค่า M_n, M_wและ M_vตามสมการที่ 2.11, 2.15 และ 2.16 ตามลำดับ(โดยค่าคงที่ a เพื่อคำนวณหา M∨ ในการทดลองนี้เท่ากับ 0.93) ของตัวอย่างสารไคโต ซานซึ่งมีข้อมูล และผลการคำนวณค่าต่าง ๆ ดังตารางที่ ก.1

ตารางที่ ก.1 แสดงแบบจำลองข้อมูลและการคำนวณค่าต่าง ๆ เพื่อคำนวณหาน้ำหนักโมเลกุล

i	N	M,	N,M,	M ²	$N_i(M_i)^2$	M ^(1+0.93)	N M (1+0.93)
1	1	70000	70000	4900000000	490000000	2244084558	2244084558
2	1	68000	68000	4624000000	4624000000	2121984472	2121984472
3	2	66000	132000	4356000000	8712000000	2003179170	4006358340
4	3	64000	192000	4096000000	12288000000	1887675546	5663026638
5	5	62000	310000	3844000000	19220000000	1775480720	8877403602
6	8	60000	480000	360000000	28800000000	1666602056	13332816448
7	10	58000	580000	3364000000	33640000000	1561047175	15610471746
8	13	56000	728000	3136000000	40768000000	1458823975	18964711676
g	20	54000	1080000	2916000000	58320000000	1359940653	27198813062
10	25	52000	1300000	2704000000	67600000000	1264405724	31610143099
11	30	50000	1500000	250000000	75000000000	1172228047	35166841424
12	40	48000	1920000	2304000000	92160000000	1083416856	43336674240
13	45	46000	2070000	2116000000	95220000000	997981786	44909180372
14	50	44000	2200000	1936000000	96800000000	915932914	45796645697
15	60	42000	2520000	1764000000	105840000000	837280796	50236847782
16	70	40000	2800000	160000000	112000000000	762036517	53342556179
17	50	38000	1900000	1444000000	72200000000	690211739	34510586954
18	45	36000	1620000	1296000000	58320000000	621818769	27981844593
19	40	34000	1360000	1156000000	46240000000	556870626	22274825025
20	30	32000	960000	1024000000	30720000000	495381129	14861433855
21	25	30000	750000	900000000	22500000000	437364996	10934124894
22	20	28000	560000	784000000	15680000000	382837966	7656759326
23	13	26000	338000	676000000	8788000000	331816946	4313620296
24	10	24000	240000	576000000	576000000	284320187	2843201873
25	8	22000	176000	484000000	3872000000	240367515	1922940122
26	5	20000	100000	40000000	2000000000	199980611	999903057
27	3	18000	54000	324000000	972000000	163183384	489550152
28	2	16000	32000	256000000	512000000	130002459	260004918
29	1	14000	14000	196000000	196000000	100467850	100467850
มาม	635		26054000		1123652000000		531567822247
		Mn =	= 41,030	Mw	= 43,128	Mv	= 43,060

	_						
i	N,	M	N,M,	M ²	N (M,) ²	M ^(1+0.93)	N M (1+0.93)
1	1	70000	70000	490000000	490000000	2244084558	2244084558
2	1	68000	68000	4624000000	4624000000	2121984472	2121984472
3	2	66000	132000	4356000000	8712000000	2003179170	4006358340
4	3	64000	192000	4096000000	12288000000	1887675546	5663026638
5	5	62000	310000	3844000000	19220000000	1775480720	8877403602
6	8	60000	480000	360000000	28800000000	1666602056	13332816448
7	10	58000	580000	3364000000	33640000000	1561047175	15610471746
8	13	56000	728000	3136000000	40768000000	1458823975	18964711676
9	20	54000	1080000	2916000000	58320000000	1359940653	27198813062
10	25	52000	1300000	2704000000	6760000000	1264405724	31610143099
11	30	50000	1500000	250000000	7500000000	1172228047	35166841424
12	40	48000	1920000	2304000000	92160000000	1083416856	43336674240
13	45	46000	2070000	2116000000	95220000000	997981786	44909180372
14	50	44000	2200000	1936000000	9680000000	915932914	45796645697
15	60	42000	2520000	1764000000	105840000000	837280796	50236847782
16	70	40000	2800000	160000000	112000000000	762036517	53342556179
17	50	38000	1900000	1444000000	72200000000	690211739	34510586954
18	45	36000	1620000	1296000000	58320000000	621818769	27981844593
19	40	34000	1360000	1156000000	46240000000	556870626	22274825025
20	30	32000	960000	1024000000	30720000000	495361129	14861433855
21	25	30000	750000	90000000	22500000000	437364996	10934124894
หณ	573		24540000		1085872000000		512981374655
		M _n =	42,827	M _w = 44	1,249	M _v =	44,198

ตารางที่ n.2 แบบจำลองข้อมูลการคำนวณค่าต่าง ๆ และค่าน้ำหนักโมเลกุลเมื่อทำการตัดข้อมูล น้ำหนักโมเลกุลตั้งแต่ 14,000 – 28,000 ดอลตัน

i	N,	M	N M	M ²	N (M) ²	M ^(1+0.93)	N M (1+0.93)
7	10	58000	580000	3364000000	33640000000	1561047175	15610471746
8	13	56000	728000	3136000000	40768000000	1458823975	18964711676
9	20	54000	1080000	2916000000	58320000000	1359940653	27198813062
10	25	52000	1300000	2704000000	6760000000	1264405724	31610143099
11	30	50000	1500000	2500000000	7500000000	1172228047	35166841424
12	40	48000	1920000	2304000000	92160000000	1083416856	43336674240
13	45	46000	2070000	2116000000	95220000000	997981786	44909180372
14	50	44000	2200000	1936000000	9680000000	915932914	45796645697
15	60	42000	2520000	1764000000	105840000000	837280796	50236847782
16	70	40000	2800000	1600000000	112000000000	762036517	53342556179
17	50	38000	1900000	1444000000	72200000000	690211739	34510586954
18	45	36000	1620000	1296000000	58320000000	621818769	27981844593
19	40	34000	1360000	1156000000	46240000000	556870626	22274825025
20	30	32000	960000	1024000000	30720000000	495381129	14861433855
21	25	30000	750000	900000000	22500000000	437364996	10934124894
รวท	553		23288000		1007328000000		476735700598
		Mn =	42,112	Mw	= 43,255	Mv =	43,216

ตารางที่ ก.3 แบบจำลองข้อมูลการคำนวณค่าต่าง ๆ และค่าน้ำหนักโมเลกุลเมื่อทำการตัดข้อมูล น้ำหนักโมเลกุลตั้งแต่ 14,000 – 28,000 ดอลตัน และ 60,000 – 70,0000 ดอลตัน

ตารางที่ n.4 แบบจำลองข้อมูลการคำนวณค่าต่าง ๆ และค่าน้ำหนักโมเลกุลเมื่อทำการตัดข้อมูล น้ำหนักโมเลกุลตั้งแต่ 14,000 – 38,000 ดอลตัน และ 50,000 – 70,0000 ดอลตัน

i	N,	N,	N _i M _i	M ²	$N_i(M_i)^2$	M ^(1+0.93)	N M (1+0.93)
12	40	48000	1920000	2304000000	92160000000	1083416856	43336674240
13	45	46000	2070000	2116000000	95220000000	997981786	44909180372
14	50	44000	2200000	1936000000	96800000000	915932914	45796645697
15	60	42000	2520000	1764000000	105840000000	837280796	50236847782
16	70	40000	2800000	1600000000	112000000000	762036517	53342556179
รวม	265		11510000	8	502020000000		237621904270
		Mn	= 43,434	Mw	= 43,616	Mv	43,610

ตารางที่ ก.5 แบบจำลองข้อมูลการคำนวณค่าต่าง ๆ และค่าน้ำหนักโมเลกุลเมื่อตัวอย่างไคโต ซานมีลักษณะเป็นเนื้อเดียว (Homogenous)

i	N,	Μ,	N _i M,	M, ²	N ₁ (M ₁) ²	M ^(1+0.93)	N M ^(1+0 93)
16	70	40000	2800000	1600000000	112000000000	762036517	53342556179
		Mn = 40,000		Mw = 40,000		Mv = 40,000	

ภาคผนวก ข

ใบรับรองการปรับเทียบมาตรฐาน

CANNON Certificate of Calibration

Viscometer No.

1262.01

The mass of the Alla lago does contactions approval of

the proves in columned in period

UBBELOHDE FYPE

(Standard Test ASTM D 445 and ISO 3104)

Viscometer Constant

The viscometer constant is the same at al) temperatures.

0.001032 mm145 . (cSt/s)

-1*-21.

To obtain kinematic viscousts in minima (CSG multiply the efflux time in seconds by the viscometer constant. In the architecture to according in toPalis, multiply the kanenadia viscosity by the density in g/ml-

Kinematic visities ness of the standards and the dilibrating were established in Muster Visco (1998) as destination in Chem-Anal, Ed. R. 8000 (1994), we TM D2162, and the loarnal of R. search of the National Hubble of Standards V. (1995), Rescaled (1997), 1955, Rescaled (1997), 24.55

the viscout of a start development of the set kinemate viscout is 1.0034 mm of the development of the viscout o Temperature mean rement is traceable to NIST (Test No. 260470).

CALIBRATION DATA AT 40°C

Second Second	Kinemara Viscosity	Eiflux Time Seconds	Constant nm ² /s ² _(cSys.
6201	0.41040	397.37	0.001033
0203	C.E1660	597.80	0.001031
			AND: = 0.001032

attended by	543094 CSN on 24-Apr-02	under supervision of Hand	land
use noise. This .	ourse in returns wellet for our search wellets (Fifther)	Assonant his M R Ho way M	R + 11.

E.1. St.,

Test No.: 543094 - 5

This containers shall not be reproduced except to full, without the written approval of Cannon Instrument Commany.

The ST and of seven our costs as I noter squared per second and is equal to 10° stokes, the ST one many stars trans if er ond, and is equal 5-10 passes. One remaindes is equal to one indiffunctor squared per second.

\$41. (19)

Instructions for the use of The Ubbelohde Viscometer

(5)((法定)入((注))、(注)((法定法))(注)()

- 1. Clean has responsed in the standard states of a new problem of an dry. Effected as the superfix and time in the remove the formation of ordering. Percentically, in the of organic deposits should be removed which be removed with the only actual responsed to the ordering as donese.
 - If there is a possibility of last, in a single should investig the second sample. Effort the sample through a transa glass filter in the most screen.
- Charge the vector-near by unroducing sample through taky (2) that the lower reservoir, into dure unanges sample to bring the level between, i. as I and K.
- 4. Place the viscometer into the bodel, and insert it into the constant temperature bath. Vertically align the viscometer in the bath if a self-aligning holder had not been used.
- Allow approximately 30 minutes for the sample to come to the bath temperature.
- 6 Place a finger over tube B and apply suction to take A unit the liquid reaches die center of public. Retrieve suction from take A. Remove finger from take B, and interediately place it over take A unit data sample drops away from the lower end of the capellary into bulk 1. Then remove finger and measure the retrievely.
- Yo successive doscriftus time connecting legital sample to those to the down past mark (), measuring the time for the memorische pass investores by the mark F.
- Calculate the kinematic viscosity of the sample by multiplying the efflux time by the visconstant
- 9 Without recharging the viscometer, make check determinations by repeating steps 6 to 8

	Range of	Expanded	
	Constants	Uncertainty	
1.1	uun 7s		
	THE REF. S.	20.34%	
	5 10 50	10.45%	
	Greater than 50	::0.69%	

CANSON INSTRUMENT CO. P. O. BOX TO STATE COLLEGE, PA. 16804

14216-356

Sel

二な社

Operation

 $_{1,7}$

113

Ubbeluhide Type For Transparent Liquids Presentation and States of

> 1582 Tiek 146 150 N

State SARA SARA SARA

ภาคผนวก ค

การหาปริมาณรังสีที่ตำแหน่งต่าง ๆ^[59]

1. วัสดุอุปกรณ์และสารเคมีสำหรับการหาปริมาณรังสีที่ตำแหน่งต่าง ๆ

- 1.1 Dichromate dosimeter ประกอบด้วย Ag₂Cr₂O₇ K₂Cr₂O₇ HClO₄
- 1.2 เครื่องชั่งอิเลกทรอนิกส์
- 1.3 แท่งพลาสติกยาว 5 เซนติเมตร จำนวน 12 แท่ง
- 1.4 หลอดแก้ว 12 หลอด พร้อมจุกยาง
- 1.5 เครื่องสเปคโตรโฟโตมิเตอร์ (Spectrophotometer)
- 1.6 ชุดภาชนะบรรจุท่อสำหรับฉายรังสี่
- 1.7 เครื่องฉายรังสีแกมมาจากโคบอลต์-60

2. วิธีการหาปริมาณรังสีที่ตำแหน่งต่างๆ (ตามมาตรฐาน ASTM E1401)

2.1 ผสมสารละลาย Dichromate dosimeter ประกอบด้วยซิลเวอร์ไดโครเมท (Ag₂Cr₂O₇) 0.5 × 10⁻³ โมลต่อลิตร และโพแทสเซียมไดโครเมท (K₂Cr₂O₇) 2.0 × 10⁻³ โมลต่อลิตร ในกรดเปอร์-คลอริก (HClO₄) 0.1 โมลต่อลิตร เนื่องจากซิลเวอร์ไดโครเมทละลายช้า โดยใช้เวลาไม่ น้อยกว่า 18 ชั่วโมง จึงควรละลายซิลเวอร์ไดโครเมทก่อนเติมโพแทสเซียมไดโครเมท

2.2 ใส่สารละลายที่ได้ลงในหลอดแก้วทั้ง 12 หลอด อุดจุกให้แน่นด้วยจุกยางห่อด้วยฟิล์ม โพลีเอทีลีน

2.3 ใส่แท่งพลาสติกยาว 5 เซนติเมตรและหลอดแก้วลงในภาชนะบรรจุท่อตามลำดับ โดย ใส่ภาชนะละ 2 ชุด

2.4 น้ำชุดภาชนะบรรจุท่อไปฉายรังสีแกมมาจากโคบอลต์-60 เป็นเวลา 10 ชั่วโมง

2.5 น้ำสารละลายหลังจากจายรังสี ไปห่าค่าการดูดกลื่นแสง (absorbance) ที่ความยาว คลื่น 440 นาโนเมตร โดยเครื่องสเปคโตรโฟโตมิเตอร์ (Spectrophotometer)

2.6 น้ำค่าการดูดกลืนแสงที่ได้มาเปรียบเทียบกับกราฟมาตรฐาน เพื่อหาปริมาณรังสีที่ ตำแหน่งต่างๆ

3. ผลการหาปริมาณรังสีที่ดำแหน่งต่างๆ

รูปที่ ค.1 ตำแหน่งในการหาปริมาณรังส	รูปที่	ค.1 ต	ด้าแหน่งใ	ในการหาเ	โร้มาณ	รังสี
-------------------------------------	--------	-------	-----------	----------	--------	-------

ตารางที่ ค.1	ปริมาณรังสีที่ด้าแหน่งต่างๆ	

ตำแ	เหน่ง	ค่าการดูด	ปริมาณรังสี	ปริมาณรังสี	ค่าเฉลี่ยปริมาณรังสี
		กลื่นแสง	(กิโลเกรย์/10 ชั่วโมง)	(กิโลเกรย์/ชั่วโมง)	(กิโลเกรย์/ชั่วโมง)
Δ	บน	0.4499	25.7856	2.5786	2.0677
	ล่าง	0.5830	33.5692	3.3569	2.9077
B	บน	0.4197	24.0195	2.4019	2,7160
	ล่าง	0.5271	30.3002	3.0300	2.7100
C	บน	0.4230	24.2125	2.4212	2.9151
	ล่าง	0.5577	32.0897	3.2090	2.0101
D	บน	0.3774	21.5458	2.1546	2 5624
	ล่าง	0.5172	29.7212	2.9721	2.0004
F	บน	0.3568	20.3411	2.0341	2 4201
L	ล่าง	0.4919	28.2417	2.8242	2.4291
E	บน	0.3395	19.3294	1.9329	2 2455
	ล่าง	0.4806	27.5809	2.7581	2.3400

รูปที่ ค.2 กราฟมาตรฐานแสดงความสัมพันธ์ระหว่างค่าดูดกลืนแสงกับปริมาณรังสี

ภาคผนวก ง

วิธีการคำนวณหาค่าน้ำหนักโมเลกุลของไคโตซาน

1. ตัวอย่างการคำนวณหาค่าน้ำหนักโมเลกุลกุลของไคโตซาน

การหาน้ำหนักโมเลกุลตามวิธี Dilute Solution Viscosity ซึ่งสามารถคำนวณหา ค่าน้ำหนักโมเลกุลโดยคิดในรูปความหนืด (Viscosity average molecular weight, Mv) ได้ ตาม ขั้นตอนในบทที่ 3 ซึ่งจากการทดลองจะได้ค่า efflux time ในแต่ละค่าความเช้มข้นของสารละลาย ไคโตซาน แสดงดังตารางที่ ง.1

ตารางที่ ง.1 ตัวอย่างผลการทดลองหาค่า efflux time ตามความเข้มข้นต่าง ๆ ของสารไคโตซาน มาตรฐานในตัวทำละลาย 0.5M HOAc + 0.5M NaOAc ด้วย Viscometer No.361 (ครั้งที่1)

ความเข้มข้นของ สองอยู่เอาช่วงโลสอง		efflux time (วินาที)	
สารสะสายเคเตชาน (g/100ml.)	ครั้งที่ 1	ครั้งที่ 2	เฉลี่ย
0 (ตัวทำละลาย)	1145	1121	1133
0.015625	1251	1271	1261
0.03125	1405	1373	1389
0.0625	1792	1818	1805
0.125	3123	3093	3108

จากค่า efflux time ที่ได้นำมาคำนวณหาค่าความหนึดเฉพาะ หรือ specific viscosity (η_{sp}) ได้ ตามสมการ

$$\eta_{\rm sp} = \frac{t - t_{\rm o}}{t_{\rm o}}$$
 s.1

เมื่อ t คือ efflux time ที่ความเข้มข้นใด ๆ และ t_o คือ efflux time ของตัวทำละลาย จากตารางที่ง. 1 สามารถคำนวณหาค่า specific viscosity (**η**_{sp}) ได้ดังนี้ ค่า specific viscosity (η_{sp}) ที่ความเข้มข้น 0.015625 % จะได้เป็น

จากค่า specific viscosity (η_{sp}) น้ำมาหาค่า reduced viscosity (η_{red}) ได้ดังสมการ

$$\eta_{\rm red} = \frac{\eta_{\rm sp}}{C}$$
 3.3

แทนค่า **ฦ**₅₀ เท่ากับ 0.1130 และค่าความเข้มข้น (C) เท่ากับ 0.015625 ลงในสมการ ง.3 จะได้

$$\eta_{\rm red} = \frac{0.1130}{0.015625} = 7.232$$
 s.4

เมื่อคำนวณหาค่า reduced viscosity (η_{red}) ในทุก ๆ ค่าความเข้มข้นจากข้อมูลตามตารางที่ ง.1 จะได้ผลแสดงดังตารางที่ ง.2

ตารางที่ ง.2 แสดงค่า reduced viscosity (η_{red}) ที่ความเข้มข้นต่าง ๆ ของสารละลายไคโตซาน มาตรฐาน

ความเข้มข้นของสารละลายไคโตซาน	reduced viscosity (η_{red})
(g/100ml.)	
0.015625	7.232
0.03125	7.230
0.0625	9.490
0.125	13.945

จากข้อมูลตามตารางที่ ง.2 สามารถน้ำมาเขียนกราฟความสัมพันธ์ระหว่าง ความเข้มข้นของ สารละลายไคโตซาน (C) และค่า reduced viscosity ($\eta_{
m red}$) ได้ดังรูปที่ ง.1

รูปที่ ง.1 กราฟแสดงความสัมพันธ์ระหว่างความเข้มข้นของสารละลายไคโตซานกับค่า reduced viscosity

จากกราฟรูปที่ ง.1 เมื่อลากเส้นกราฟมาตัดแกน y โดยสมมติให้ความเข้มข้นของสารละลายมีค่า เท่ากับ 0 พบว่าเส้นกราฟจะตัดแกน y ที่จุด 5.6791 ตามสมการเส้นตรง y = 64.74x + 5.6791 ซึ่งค่าที่เป็นจุดตัดแกน y นี้เรียกว่าค่า intrinsic viscosity [η] ซึ่งนำมาใช้คำนวณหาน้ำหนัก โมเลกุล (Μ,) ตามสมการของ Mark-Houwink

$$[\eta] = \mathsf{K}\mathsf{M}_{\mathsf{v}}^{\mathsf{a}} \qquad \qquad \mathfrak{A}.\mathsf{5}$$

โดยที่ค่า K และ a คือค่าคงที่ซึ่งขึ้นอยู่กับระบบตัวทำละลายและชนิดของโพลิเมอร์ ซึ่งจากตัวทำ ละลายที่ใช้คือ 0.5M HOAc + 0.5M NaOAc พบว่ามีค่า K เท่ากับ 1.99×10⁻³ dL/g และค่า a เท่ากับ 0.59 แทนค่า [η], K และ a

$$5.6791 = 1.99 \times 10^{-3} M_{\downarrow}^{0.59}$$
 3.6

$$M_{v} = 718,877$$
 9.7

ตัวอย่างข้อมูลการหาน้ำหนักโมเลกุลของไคโตซานที่ฉายรังสีที่สภาวะของแข็ง 60 kGy และฉายรังสีต่อที่สภาวะสารละลายกรดอะซิติก 30 kGy

จากข้อมูลตารางที่ 4.6 ข้อมูลการทดลองครั้งที่ 2 ซึ่งมีค่าความผิดพลาดจาก ค่าเฉลี่ยน้อยที่สุด คือ 1.79 % ซึ่งผลการทดลองหาค่า efflux time และการคำนวณหาค่า specific viscosity (**η**_{sp}) และค่า reduced viscosity (**η**_{red}) แสดงดังตารางที่ ง.3

ตารางที่ ง.3 แสดงค่า efflux time, specific viscosity (**η**_{sp}) และ reduced viscosity (**η**_{red}) ของตัวอย่างไคโตซานที่ฝ่านการฉายรังสีที่สภาวะ 60(ของแข็ง)+30(สารละลาย)kGy จากข้อมูลการทดลองครั้งที่ 2 ตามตารางที่ 4.6

ความเข้มข้นของ	Efflux Time (วินาที)				
สารละลายไคโตซาน (g/100ml.)	ครั้งที่ 1	ครั้งที่ 2	เฉลี่ย	$\eta_{s\rho}$	η_{red}
0 (ตัวทำละลาย)	892	896	894		
0.03125	909	901	905	0.012	0.394
0.06250	908	922	915	0.023	0.376
0.12500	940	930	935	0.046	0.367
0.25000	1011	1027	1019	0.140	0.559
0.50000	1216	1192	1204	0.347	0.694
0.75000	1201	1239	1220	0.365	0.486
1.00000	1791	1775	1783	0.994	0.994

รูปที่ ง.2 กราฟแสดงความสัมพันธ์ระหว่างความเข้มข้นของสารละลายไคโตซานกับค่า reduced viscosity (**η**_{red}) ของตัวอย่างไคโตซานที่ผ่านการฉายรังสีที่สภาวะ 60(ของแข็ง)+30(สารละลาย) kGy จากข้อมูลการทดลองครั้งที่ 2 ตามตารางที่ 4.6

จากรูปที่ ง.2 จะได้ค่าจุดตัดแกน y ที่ 0.348 ซึ่งก็คือ intrinsic viscosity เมื่อนำไปแทนค่าใน สมการ Mark-Houwink จะได้ค่า Mv เท่ากับ 40,384 ดอลตัน (ตามตารางที่ 4.6) ตัวอย่างข้อมูลการหาน้ำหนักโมเลกุลของไคโตชานที่ฉายรังสีที่สภาวะของแข็ง 60 kGy และฉายรังสีต่อที่สภาวะสารละลายกรดอะซิติก 110 kGy

จากข้อมูลตารางที่ 4.11 ข้อมูลการทดลองครั้งที่ 8 ซึ่งมีค่าความผิดพลาดจาก ค่าเฉลี่ยน้อยที่สุด คือ 0.37% ซึ่งผลการทดลองหาค่า efflux time และการคำนวณหาค่า specific viscosity (**η**_{sp}) และค่า reduced viscosity (**η**_{red}) แสดงดังตารางที่ ง.4

ตารางที่ ง.4 แสดงค่า efflux time, specific viscosity (η_{sp}) และ reduced viscosity (η_{red}) ของตัวอย่างไคโตซานที่ฝานการฉายรังสีที่สภาวะ 60(ของแข็ง) + 110(สารละลาย) kGy จากข้อมูลการทดลองครั้งที่ 8 ตามตารางที่ 4.11

ความเข้มข้นของ	E	Efflux Time (วินาที)			
สารละลายไคโตซาน (g/100ml.)	ครั้งที่ 1	ครั้งที่ 2	เฉลี่ย	η_{sp}	η_{red}
0 (ตัวทำละลาย)	899	897	898		
0.03125	904	902	903	0.0056	0.178
0.06250	903	901	902	0.0044	0.071
0.12500	926	910	913	0.0167	0.134
0.25000	952	962	957	0.0657	0.263
0.50000	981	971	976	0.0868	0.174
0.75000	1047	1039	1043	0.1615	0.215
1.00000	1036	1052	1044	0.1626	0.162

ความเข้มข้นสารละลายใค้โตชาน, C (g/100ml)

รูปที่ ง.3 กราฟแสดงความสัมพันธ์ระหว่างความเข้มข้นของสารละลายไคโตซานกับค่า reduced viscosity (**η**_{red}) ของตัวอย่างไคโตซานที่ฝ่านการฉายรังสีที่สภาวะ 60(ของแข็ง) + 110(สารละลาย) kGy จากข้อมูลการทดลองครั้งที่ 8 ตามตารางที่ 4.11

จากรูปที่ ง.3 จะได้ค่าจุดตัดแกน y ที่ 0.0847 ซึ่งก็คือ intrinsic viscosity เมื่อนำไปแทนค่าใน สมการ Mark-Houwink จะได้ค่า M∨ เท่ากับ 8,840 ดอลตัน (ตามตารางที่ 4.11)

ด้วอย่างข้อมูลการหาน้ำหนักโมเลกุลของไคโตซานหลังจากผ่านการแยกน้ำหนัก โมเลกุล เพื่อให้ได้น้ำหนักโมเลกุลประมาณ 40,000 ดอลตัน

ไคโตซานที่ฉายรังสีที่สภาวะ 60(ของแข็ง) + 30(สารละลาย) kGy เมื่อทำการ แยกน้ำหนักโมเลกุลในสภาวะ c (ตารางที่ 3.2)น้ำหนักโมเลกุลของตะกอน W_{c2} จากข้อมูลการ ทดลองครั้งที่ 2 จากข้อมูลตารางที่ 4.19 ซึ่งมีค่าใกล้เคียงกับ 40,000 มากที่สุด ซึ่งผลการทดลอง หาค่า efflux time และการคำนวณหาค่า specific viscosity (η_{sp}) และค่า reduced viscosity (η_{red}) แสดงดังตารางที่ ง.5

ตารางที่ ง.5 แสดงค่า efflux time, specific viscosity (**η**_{sp}) และ reduced viscosity (**η**_{red}) ของตัวอย่างไคโตซานหลังจากผ่านการแยกน้ำหนักโมเลกุลในสภาวะ c (ตารางที่ 3.2) ของไคโตซานที่ฉายรังสีที่ 60(ของแข็ง) + 30(สารละลาย) kGy จากข้อมูลการ ทดลองครั้งที่ 2 ตามตารางที่ 4.19

ความเข้มข้นของ	E	Efflux Time (วินาที)			
สารละลายไคโตซาน (g/100ml.)	ครั้งที่ 1	ครั้งที่ 2	เฉลี่ย	η_{sp}	$\eta_{{}_{red}}$
0 (ตัวทำละลาย)	950	948	949		
0.03125	959	959	959	0.0105	0.337
0.06250	969	967	968	0.0200	0.320
0.12500	997	1001	999	0.0527	0,421
0.25000	1062	1056	1059	0.1159	0.464
0.50000	1190	1194	1192	0.2560	0.512
0.75000	1349	1355	1352	0.4246	0.566

รูปที่ ง.4 กราฟแสดงความสัมพันธ์ระหว่างความเข้มข้นของสารละลายไคโตซานกับค่า reduced viscosity (η_{red}) ของตัวอย่างไคโตซานหลังจากผ่านการแยกน้ำหนักโมเลกุล ในสภาวะ c ของไคโดซานที่ฉายรังสีที่สภาวะ 60(ของแข็ง) + 30(สารละลาย) kGy จากข้อมูลการทดลองครั้งที่ 2 ตามตารางที่ 4.19

จากรูปที่ ง.4 จะได้ค่าจุดตัดแกน y ที่ 0.3449 ซึ่งก็คือ intrinsic viscosity เมื่อนำไปแทนค่าใน สมการ Mark-Houwink จะได้ค่า M∨ เท่ากับ 40,009 ดอลตัน (ตามตารางที่ 4.19)

ด้วอย่างข้อมูลการหาน้ำหนักโมเลกุลของไคโตซานหลังจากผ่านการแยกน้ำหนัก โมเลกุล เพื่อให้ได้น้ำหนักโมเลกุลประมาณ 8,000 ดอลตัน

ไคโตขานที่ฉายรังสีที่สภาวะ 60(ของแข็ง) + 110(สารละลาย) kGy เมื่อทำการ แยกน้ำหนักโมเลกุลในสภาวะที่ 3 (ตารางที่ 3.4)น้ำหนักโมเลกุลของตะกอน W₃₂ จากข้อมูลการ ทดลองครั้งที่ 4จากข้อมูลตารางที่ 4.22 ซึ่งมีค่าความผิดพลาดจากค่าเฉลี่ย 7,915 ดอลตัน น้อย ที่สุดคือ 2.29 เปอร์เซ็นต์ ซึ่งผลการทดลองหาค่า efflux time และการคำนวณหาค่า specific viscosity (**η**_{sp}) และค่า reduced viscosity (**η**_{red}) แสดงดังตารางที่ ง.6

ตารางที่ ง.6 แสดงค่า efflux time, specific viscosity (**η**_{sp}) และ reduced viscosity (**η**_{red}) ของตัวอย่างไคโตซานหลังจากผ่านการแยกน้ำหนักโมเลกุลในสภาวะที่ 3 (ตารางที่ 3.4) ของไคโตซานที่ฉายรังสีที่สภาวะ 60(ของแข็ง) + 110(สารละลาย) kGy จาก ข้อมูลการทดลองครั้งที่ 4 ตามตารางที่ 4.22

ความเข้มข้นของ	E	ifflux Time (วินาโ	1)		
สารละลายไคโตซาน (g/100ml.)	ครั้งที่ 1	ครั้งที่ 2	เฉลี่ย	η_{sp}	η_{red}
0 (ตัวทำละลาย)	925	923	924		
0.03125	930	932	931	0.0046	0.242
0.06250	932	926	929	0.0054	0.086
0.12500	935	943	939	0.0162	0.130
0.25000	965	955	960	0.0390	0.156
0.50000	1032	1040	1036	0.1212	0.242

รูปที่ ง.5 กราฟแสดงความสัมพันธ์ระหว่างความเข้มข้นของสารละลายไคโตซานกับค่า reduced viscosity (η_{red}) ของตัวอย่างไคโตซานหลังจากผ่านการแยกน้ำหนักโมเลกุล ในสภาวะที่ 3 ของไคโตซานที่ฉายรังสีที่สภาวะ 60(ของแข็ง) + 110(สารละลาย) kGy จากข้อมูลการทดลองครั้งที่ 4 ตามตารางที่ 4.22

จากรูปที่ ง.5 จะได้ค่าจุดตัดแกน y ที่ 0.0748 ซึ่งก็คือ intrinsic viscosity เมื่อนำไปแทนค่าใน สมการ Mark-Houwink จะได้ค่า M∨ เท่ากับ 7,734 ดอลตัน (ตามตารางที่ 4.22)

ประวัติผู้เขียนวิทยานิพนธ์

นางสาววรรณวิมล ปาสาณพันธ์ เกิดเมื่อวันที่ 18 กุมภาพันธ์ พ.ศ.2522 ที่ ต.ท่า นัด อ.ดำเนินสะดวก จ.ราชบุรี สำเร็จการศึกษาระดับปริญญาตรี ภาควิชารังสีประยุกต์และ ไอโซโทป คณะวิทยาศาสตร์ มหาวิทยาลัยเกษตรศาสตร์ เมื่อปีการศึกษา 2542 และเข้าศึกษาต่อ ในหลักสูตรวิทยาศาสตรมหาบัณฑิต ภาควิชานิวเคลียร์เทคโนโลยี คณะวิศวกรรมศาสตร์ จุฬาลง กรณ์มหาวิทยาลัย ปีการศึกษา 2543 และสำเร็จการศึกษาในปีการศึกษา 2546